DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY

CHARLES D. WALCOTT, DIRECTOR

DETERMINATION OF STREAM FLOW DURING THE FROZEN **SEASON**

BY

H. K. BARROWS AND ROBERT E. HORTON

WASHINGTON GOVERNMENT PRINTING OFFICE 1907

CONTENTS.

	Page.
Importance of winter records of stream flow.	5
Methods of gaging streams during the open season	ϵ
General statement	ϵ
Weir method	6
Velocity method	6
Slope method	7
Conditions during the winter season.	7
Factors affecting ice formation	7
Classification of winter conditions	
Duration of ice season	ç
Change in thickness of ice	10
Surface, anchor, and needle ice	10
Range of winter gage heights	1;
Flow of streams under ice cover	14
General considerations.	14
Friction due to air and ice.	14
Relative importance of air and ice friction	1.
Variation in slope due to freezing.	1'
Change in area of waterway required by freezing	18
Effect of thickness of ice on flow.	19
Methods of obtaining winter records.	2
Current-meter stations	2
Gage heights.	2
Current-meter discharge measurements	2
Stations at dams.	2
Estimates from precipitation.	2
Winter records.	26
Conditions at stations.	26
Catskill Creek at South Cairo, N. Y.	20
Connecticut River at Orford, N. H	29
Evenue Creek at Vincton N V	30
Esopus Creek at Kingston, N. Y Fish River at Wallagrass, Me	32
	3
Kennebec River at North Anson, Me	34
Rondout Creek at Rosendale, N. Y.	3:
Wallkill River at Newpaltz, N. Y	37 37
Winooski River at Richmond, Vt.	38 38
Gage heights and discharge measurements.	_
Station rating curves for ice cover	4
General considerations	43
Wallkill River at Newpaltz, N. Y.	43
Kennebec River at North Anson, Me.	4.
Connecticut River at Orford, N. H.	4.

Winter records—Continued. Page.
Station rating curves for ice cover—Continued.
General form of rating curve for ice cover
Relation between discharge under ice cover and for open section
Vertical velocity measurements under ice cover
Details of vertical velocity curves. 46
Summaries of vertical velocity curves
Form of vertical velocity curves
Relation of depth and velocity to form of curve
Comparison of vertical velocity curves with and without ice cover
Position of threads of mean velocity. 79
Position of maximum velocity and relation to mean velocity
Relation of velocity at mid depth to mean velocity
Relation of mean of velocities at 0.2 and 0.8 depth to mean velocity 83
Percentage variation in observations at different depths
Slope determinations and values of n in Kutter's formula, under ice conditions 87
Data from other sources. 88
Conclusions. 89
Practicability of winter estimates of flow
Recommendations as to methods.
Index

ILLUSTRATIONS.

The state of the s	
*	Page.
PLATE I. A, Gaging station on Sandy River at Madison, Me., at dam of Madison Electric Company; B, Gaging station on Winooski River at Richmond, Vt	24
Fig. 1. Cross sections of Chemung River at Chemung, N. Y, showing effect of needle ice	12
2. Effect of freezing on a smooth section of a river terminated by rapids	17
3. Effect of change of stage on discharge under ice cover, with varying thickness of ice	20
4. Rating and velocity curves under ice cover, Wallkill River, New York	43
5. Rating curve under ice cover, Kennebec River, Maine	44
6. Rating curve under ice cover, Connecticut River, New Hampshire	45
7. Form of vertical velocity curves	75
8. Comparison of vertical velocity curves for streams with and without ice cover	78
9. Vertical velocity curves under ice cover, Kennebec River, Maine	79
10. Vertical velocity curve under ice cover, Wallkill River, New York	80
11. Vertical velocity curves under ice cover, Connecticut River, New Hampshire	81
12. Vertical velocity curves under ice cover, Fish River, Maine	82
13. Effect of depth on form of vertical velocity curves under ice	83
14. Effect of very rough, broken, and tilted ice on form of vertical velocity	
curves under ice cover	84

DETERMINATION OF STREAM FLOW DURING THE FROZEN SEASON.

By H. K. Barrows and R. E. Horton.

IMPORTANCE OF WINTER RECORDS OF STREAM FLOW.

Estimates of the flow of rivers are now being made by the United States Geological Survey in all parts of the country. To a great extent these are based on daily gage readings and numerous currentmeter measurements.

In the northern and central parts of the United States the streams may be closed by a more or less permanent ice cover for a considerable portion of the year. This period varies from nearly five months in the extreme north to a few weeks or less in the Central and Atlantic States.

The methods in use for estimating flow under open-channel conditions have become well defined, and the limits of accuracy are known to be reasonable. On the other hand, the laws governing the flow of rivers that are frozen over have been but little investigated, and methods for estimating the flow under such conditions have not been formulated. Moreover, in winter the measurement of precipitation is more difficult, and available data of this kind are much less accurate than in summer. Finally, there is not even an approximate relation between the snowfall and the stream flow, so that the failure to obtain winter records of flow at a gaging station means a considerable percentage of uncertainty as to the total run-off as well as to its distribution.

In the Northern States droughts are apt to occur in the late summer or fall and during the winter. At times this condition of drought may be nearly or quite continuous between these two periods, with its culmination in January or February. If there is no melting of snow during the winter, the inflow to streams that freeze is chiefly derived from springs, ground water, and lake storage, and in a long, cold winter, especially if it succeeds a period of low water, the minimum flow for the year may be reached and continue for some time. Estimates of flow, therefore, to be of conclusive value on streams utilized for water power, must embrace these winter periods of low water.

METHODS OF GAGING STREAMS DURING THE OPEN SEASON.

GENERAL STATEMENT.

The methods of stream gaging in common use by the United States Geological Survey contemplate especially the determination of discharge when streams are free from ice at or near the gaging stations. One object of the present paper is to determine what modifications of these methods are necessary to secure good results when the streams are ice covered. With this in view a brief description of open-water methods is given below.

In general a record of the fluctuations in stage is obtained by daily reading a gage or gages. Various methods are used to obtain a rating of the stream so that the discharge in second-feet can be determined from the gage readings. Three principal methods of rating are in use—(1) the weir method, in which a weir or dam is used and the flow is computed for a given gage height; (2) the velocity method, in which a series of current-meter or float gagings are made at a given cross section and a discharge rating curve is obtained for that cross section; (3) the slope method, in which observations are made of the mean cross section and surface slope in a stretch of the river, and the velocity is computed by the Chezy-Kutter formula, $V = C \sqrt{RS}$, a suitable value being assumed for the coefficient C.

WEIR METHOD.

Weirs of standard type with sharp crest can be used on small streams only, on account of the cost of installation and liability to injury. Where practicable, they offer the best facilities for determining the flow. The flow at dam stations is usually divided—part going over the dam, part through the wheels, and part through by-channels. A weir formula with modified coefficient is used to compute the flow over the dam. The wheels are used as meters, a record being kept of gate openings, head, etc. Flow through by-channels which at many dams occurs only at intervals, is computed by the use of weirs, orifices, etc. The sum of these components is the total discharge of the river at the section. The general methods used at stations of this character are fully described in Water-Supply Paper No. 150.

VELOCITY METHOD.

The determination of the rate of flow past a certain section of a stream at a given time is termed a "discharge measurement." This rate is the product of two factors—the mean velocity and the area of cross section. The mean velocity is a function of surface slope, wetted perimeter, roughness of bed, and the channel conditions at, above, and below the gage section. In this method it is assumed

that the stream bed is constant in form and position and that the mean velocity at any given stage will always be the same. Therefore a rating curve may be obtained by plotting the results of a sufficient number of discharge measurements at different stages. making the measurements an arbitrary number of points, known as "measuring points," are laid off on a line perpendicular to the thread of the stream, and the velocity and depth are observed. These points are usually at regular intervals from 2 to 20 feet apart, depending on the size and condition of the stream. The current meter is commonly used for obtaining velocities, although in a few cases rod or tube floats are utilized for this purpose. The area is thus divided into small sections in which the velocity is observed and the discharge computed, and the sum of the values for these sections gives the total area and discharge. If a sufficient number of discharge measurements are made at different stages, a rating table can be constructed that will show the discharge at any stage of the stream. The methods used in selecting current-meter stations and in collecting data are fully described in Water-Supply Papers Nos. 94 and 95.

SLOPE METHOD.

The results obtained from the slope method are in general only roughly approximate, owing to the difficulty in obtaining accurate data and the uncertainty of the value to be used for n in Kutter's formula. The most common use of this method is in estimating flood discharge of streams when the only data available are the cross sections, the surface slope as shown by marks along the bank, and a knowledge of the general conditions.

Throughout this paper velocities are expressed in feet per second, gage heights in feet, and the volume of flow of streams in cubic feet per second, or second-feet.

CONDITIONS DURING THE WINTER SEASON.

FACTORS AFFECTING ICE FORMATION.

Rarely, if ever, in this country does a stream of any size freeze over throughout its whole length, there being usually short stretches that remain more or less open. Two important factors govern the formation of ice on streams—(1) the climatic or general temperature conditions; (2) the size and character of the stream and the conditions affecting its flow.

In California, Washington, and Oregon, and south of latitude 37°, with the exception of perhaps a portion of northern New Mexico and Arizona in the Rocky Mountain district, the rivers do not in general freeze over sufficiently to affect records of flow or to occasion any change in methods from those of the open season.

In the most general sense, the character of the bed and banks of a stream depends on its slope and the materials over which it flows. A stream will not freeze over unless the water has a temperature as low as 32° F. and is comparatively still. If the water is greatly agitated, needle ice will be formed instead of an ice cover. This tendency to form needle ice always exists at rapids, particularly if the stream bed is very rough. If the cold is extreme and long continued even such places may eventually become frozen—the freezing starting at the water's edge or around rocks and piers, where the velocity is lower, and extending toward the center of the stream. The result, however, is not in any case a smooth ice cover, but a piling up of very rough or "honeycombed" ice which may be partly supported by rocks.

Where dams have been constructed there is usually above the dam more or less pondage and a great diminution in velocity, so that such portions of a river freeze over very readily. Below the dam quick water is frequently left, and conditions may be the same as at rapids.

Any special conditions tending to raise the temperature of the water may have a marked effect on the time or manner of freezing over of a portion of a stream. Near the outlets of lakes or in streams fed by springs or ground water there may be a sufficient inflow of water having a temperature considerably above 32° F. to prevent wholly or at least for some time the formation of an ice cover. Such conditions are also potent in assisting the rapid wearing away of the under surface of the ice and, in general, they result in very unstable conditions as regards ice cover. The temperature of springs is ordinarily about equal to the average annual temperature of the locality, which is for the Northern States 40° to 50° F.

CLASSIFICATION OF WINTER CONDITIONS.

It is evident that streams of any considerable length can not be classified as a whole with regard to ice formation or winter conditions, for the reason that very diverse conditions may occur at different parts of the same stream. The conditions on short stretches of streams, and particularly on such stretches as need to be considered in selecting current-meter stations, may be classified as fellows:

Classification of winter conditions at current-meter stations.

- (1) Smooth, permanent ice cover.
- (2) Tendency for anchor or needle ice to accumulate underneath ice cover.
- (3) Unstable ice cover, due to-
 - (a) Effect of warmer inflow from lakes or tributary streams.
 - (b) Effect of inflow of ground water.
 - (c) Effect of warm currents due to artificial causes, such as factory waste, etc.
 - (d) Concentrated quick water and wearing away due to friction.
 - (e) Considerable fluctuation in stage occasioned by winter freshets.
- (4) Rough ice cover and piling up of ice due to quick water and rough bed.

25

- (5) Tendency for ice jams to occur, with consequent backwater, etc.
- (6) Streams that remain open altogether or freeze over thinly for short times, owing to—

(a) Extremes of conditions as noted under (3).

(b) High temperature, mainly in the southern portion of the area, subject to ice conditions in winter.

The above classification is intended for the ordinary winter. The winter of 1904–5 was much colder than the average, and many streams remained frozen over in places where ordinarily there would not be permanent ice. On the other hand, the winter of 1905–6 was remarkably mild, and ice was carried away by freshets at many points where this very rarely happens. A gaging station, then, can be only approximately fixed in any of the above classes.

The following tables summarize the winter conditions at 179 current-meter stations and 25 dam stations:

Summary of winter conditions at current meter stations.

Class.	New Eng- land.	New York and lower Michigan.	Atlantic States.	Central States.
(1) Smooth, permanent ice cover. (2) Tendency for anchor and needle ice to accumulate. (3) Unstable ice cover. (4) Rough ice cover and piling up. (5) Tendency for ice jams. (6) Remain open.	10 7 1	11. 5 3 3 1 10	13 2 21 6 8 7	(a) 9 (a) (a) 7 51

a Not reported in detail.

Of the 179 stations considered 29 remain unfrozen thruout the winter, and at these stream flow can be estimated in the same manner as during the open season. Smooth, permanent ice cover is found at 70 stations. The remaining 80 stations have miscellaneous conditions, all of which are probably unfavorable for estimating winter flow.

Summary of winter conditions at stations at dams.

Good conditions for estimates, crest unobstructed, ice cut away, or water mostly used	
by wheels	.13
Poor conditions for estimates, crest seriously obstructed	12

DURATION OF ICE SEASON.

The following table gives the usual duration of ice cover in different areas where the streams freeze during the winter.

Duration of ice cover, by areas.

Locality.	Date of closing in.	Date of breaking up.	Time frozen.
Northern Maine. Northern Michigan Lower New England New York Pennsylvania Illinois. North Dakota.	December 15-January 1 December 1-15 January 1-15 December 15-January 15	February 15-March 15 March 15-31 March 1-15 February 15-March 1	$\begin{array}{c} \textit{Months}.\\ \frac{3\frac{1}{2}-5}{2}-\frac{3}{2}\\ \frac{2}{1}\frac{2}{2}3\\ \frac{3}{2}-4\\ \frac{1}{2}-\frac{2}{2}\\ \frac{1}{2}-\frac{2}{2}\\ \frac{3}{2}-\frac{4}{2} \end{array}$

A large amount of information relating to the duration of the ice season, especially with regard to lakes and navigable streams, was published in the report of the United States Deep Waterways Commission.^a A few of the results for rivers there given are compiled in the following table:

Duration	of ice	cover	on	northern	streams.
	9 000	0000	~,,,		00, 000,,000

River.	7 74	Length	Average	Time	
	Locality.	of record.	Closing.	Opening.	closed.
		Years.			Days.
Connecticut	Hartford, Conn	42	Dec. 12	Mar. 12	90
Do	Turners Falls, Mass	12	Dec. 9	Mar. 16	97
Hudson			Dec. 15	Mar. 20	95
Illinois			Dec. 17	Feb. 21	66
Merrimac	Amoskeag, N. H	18	Nov. 28	Mar. 19	111
Mississippi	Davenport, Iowa	25	Dec. 12	Mar. 19	97
Do	St. Louis, Mo	31.	Dec. 19	Jan. 20	32
Missouri	Bismarck, N. Dak	24	Nov. 25	Mar. 31	126
Do	Fort Buford, N. Dak	15	Nov. 15	Apr. 13	151
	Cincinnati, Ohio	39	Jan. 15	Jan. 25	10

CHANGE IN THICKNESS OF ICE.

After a stream becomes frozen over, the thickness of the ice usually increases rapidly, reaching a maximum generally by midwinter and then remaining nearly constant until shortly before the open-water season begins. As a rule there is some melting and thinning of the ice before it goes out, but a heavy early spring freshet may carry out ice at its maximum thickness.

The following table shows the ice thickness at intervals through the winter at two fairly typical gaging stations.

Thickness of ice on Connecticut River at Orford, N. H., and Esopus Creek at Kingston, N. Y.

Date.		Connecticut River at Orford, N. H.			Esopus Creek at Kings- ton, N. Y.		
	1903-4.	1904–5.	1905-6.	1903-4.	1904-5.	1905–6.	
November 15.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	
December 1		.3	.1	0	0	0	
December 15		.7	0	0	. 4	.1	
January 1 January 15	1.7	1. 3 1. 5	0 7	.5	. 65 . 6	.4	
February 1.		1.7	0,,	1. 1	1. 25	.7	
February 15	. 1.9	2. 1	1.05	1. 25	1.5	.9	
March 1	. 2.1	2. 2	1. 15	1. 25	1.6	. 4	
March 15		2.1	1.1	. 6	.7	.2	
March 30	.' 0	0	0	a 0	a ()	a 0	

a March 31.

SURFACE, ANCHOR, AND NEEDLE ICE.

The three following forms of ice occur in streams and each of them affects the flow in a different way: (1) Cake, border, or surface ice; (2) needle ice, or "frazil," so called from the French word signifying

"forge cinders," which are suggested by its dull, slushy appearance; (3) anchor ice, which closely resembles needle ice, but which is formed in a different manner.

Surface ice is formed when the temperature of a quiet body of water becomes 32° F. As the maximum density of water occurs at 39.1°, the temperature of a quiet body of water that is cooled from the surface will gradually increase from the surface downward after a general water temperature of 39.1° has been reached. Surface ice probably always begins to form at the shore or at the borders of solid objects and is extended by spicules shooting out and forming a network, the process being analogous to the growth of crystals in a saturated solution except that ice is formed at the surface only. The surface layer of ice gradually increases in thickness and continues to grow as long as the air temperature is below 32° F. The rate of such increase varies with the temperature and other atmospheric conditions affecting heat radiation. The thickness of the ice layer increases in nearly direct proportion to the square root of the time. Surface ice also forms over smooth-flowing water, but as the velocity and roughness of the current are increased a condition is soon reached where the projecting ice needles are broken off as fast as they are foremd.

It is obvious that the surface temperature of a stream passing over rapids where surface ice can not form would often fall below 32° F. if a portion of the water were not converted into ice in some manner and enough latent heat released to maintain the temperature constantly at 32°. It is well known that perfectly quiet water can be cooled below 32° F. without the formation of ice, apparently because the necessary nuclei and other conditions to start ice formation are not present. If, however, the slightest motion occurs, the water molecules are enabled to assume the arrangement necessary to crystallization and the water becomes filled with ice spicules.

Elaborate experiments by Prof. Howard T. Barnes by means of an electrical-resistance thermometer indicate that flowing water in a stream can not be cooled more than one one-hundredth of a degree below the freezing temperature without the formation of ice. The ice spicules that form in agitated water vary in character with the variations in the rate of their formation. Elongated needles, cubical crystals, and broad, thin plates have been observed under different conditions. Apparently the stream may be filled with needle ice formed in the manner described without the flow being affected in any considerable degree. If, however, the needle ice is carried underneath the layer of surface ice, it forms an effective obstruction.

Observations in St. Lawrence River indicate that masses of needle ice may travel under the surface ice for several miles. There is undoubtedly some flow through these masses, but the velocity is very

slight. It has not been found possible to measure the flow through such ice with the current meter. The existence of flow is, however, indicated by the presence of impurities in the ice. A striking illustration of this flow is also given in fig. 1, which shows two cross sections of Chemung River. At the upper section the channel underneath the surface ice was almost completely blocked by needle ice, while at the lower section, 200 feet downstream, there was but little needle ice;

Fig. 1.—Cross sections of Chemung River at Chemung, N. Y., showing effect of needle ice.

yet the observed velocities at the lower section were so great as to indicate that considerable flow through the masses of needle ice must have taken place.

Gage readings or attempts to estimate the winter flow of streams at cross sections affected by needle ice are apparently worthless. Although the general features of ice formation in a given locality will be the same from year to year, a consideration of the conditions of needle-

ice formation shows that the differences will be sufficient to produce in effect a constantly changing regimen. The formation of needle ice, like that of surface or anchor ice, is due chiefly to radiation of heat from the water mass. Needle ice never forms underneath surface ice and is most frequently formed on cold, clear nights, when the heat lost by radiation is most greatly in excess of that received at the earth's surface. Professor Barnes states that the margin between the disintegration and the formation of the ice is exceedingly narrow, amounting to only a few thousandths of a degree change of temperature, the radiation and the absorption of the sun's rays by water being controlling factors.

Snow falling on the surface of a stream becomes water-logged and forms a slush resembling floating needle ice. Snow crystals probably often form the nucleus of masses of needle ice, but the presence of snow is not an essential or important condition for the occurrence of such ice, as is sometimes supposed.

Anchor ice is sometimes formed when stones or other objects in a stream are cooled by radiation to 32° F. It is a crystalline growth similar to needle ice and having the same density. It remains attached to the objects upon which it is formed as long as their surface temperature is below 32°. Like needle ice, it forms most readily when the difference between radiation and absorption is a maximum. Apparently it never forms underneath surface ice; but whenever the relative loss by radiation is decreased, as, for instance, on a cloudy day, it may become detached and rise to the surface, carrying with it stones or other objects. It affects the regimen of streams chiefly by forming obstructions in portions of the channels that do not freeze over, thereby causing back water, or by rising and floating underneath the surface ice, as needle ice often does. Anchor ice does not ordinarily form in streams with earth beds and apparently forms more extensively on dark-colored rocks, radiation from dark objects being greater than from light ones. a

RANGE OF WINTER GAGE HEIGHTS.

Data regarding extremes of winter gage heights are given in connection with station descriptions (pp. 26-38). In general, winter freshets are uncommon in the northern portion of the area, in which the streams freeze and the range in stage is small, but the liability of their occurrence increases rapidly to the south. They are, however, usually not of long duration, and are not serious factors in winter

^a Rept. Commission of Engineers on Floods, Montreal, 1890. Henshaw, Geo. H., Frazil ice: Trans. Canadian Soc. Civil Eng. vol. 1, pp. 1–23. Barnes, Howard T., Formation and agglomeration of frazll and anchor ice: Canadian Engineer, May, 1897, pp. 6–10; Formation of anchor ice and precise temperature measurements: Trans. Am. Soc. Mech. Eng., 1905. Horton, R. E., Anchor ice and frazi: Paper Trade Journal, December 24, 1903.

estimates unless they are of sufficient size to cause the ice to break up and go out more or less completely, when the conditions of flow may become entirely changed. As a rule the regimen of flow changes less in winter than during the open season.

FLOW OF STREAMS UNDER ICE COVER.

GENERAL CONSIDERATIONS.

In the Chezy formulas

$$Q = A V$$

 $V = C \checkmark \overline{R S}$

C is the coefficient dependent on the physical character of the stream bed and the hydraulic radius. The physical character enters into the determination of C in the form of a coefficient of roughness, n. The relation of n, R, and C, as deduced by Kutter, is as follows (for English units):

$$C = \frac{41.66 + \frac{1.811}{n} + \frac{0.00281}{S}}{1 + \left(41.66 + \frac{0.00281}{S}\right)\frac{n}{\sqrt{R}}}$$

It will be seen that for a given slope and hydraulic radius the mean velocity of a stream is nearly proportional to $1 \div n$; that is, the velocity is inversely proportional to the roughness of the stream bed. The Chezy and Kutter formulas are empirical and in their application values of n determined from previous experiments are selected by judgment.

FRICTION DUE TO AIR AND ICE.

If V, R, and S are given, the value of n may be calculated from the Kutter formula. In such calculations for open-channel conditions the hydraulic radius is taken as the ratio of area of cross section to the wetted perimeter, not including the surface in contact with the air. It is probably true, however, that the mean velocity of a stream is usually less than it would be if there was no friction between water and air.

If the air-contact surface is replaced by a film of ice, then, in making a calculation of C or of the velocity, the entire wetted perimeter, including that portion of the boundary of the stream section in contact with ice, would naturally be included in calculating the hydraulic radius.

If the value of n is derived by considering the wetted perimeter as including the air and ice contacts as well as those of bed and banks, and if the frictional resistance of the water-ice contact is greater than

the frictional resistance of the water-air contact, then n will have a correspondingly greater value for conditions of ice cover than for those of open channel. In other words, the ice cover increases total friction by an amount representing the difference between air and ice resistance and not by an amount representing the total ice friction.

The ordinary friction of a stream bed may be considered as made up of two parts—(1) skin friction and (2) internal motion.

In most instances a film of water adheres to the surface of solid objects over which the water flows, and the skin friction between the water and these objects is essentially the same as that between two fluid surfaces. It is measured by the viscosity of the liquid, the energy absorbed probably being for the most part converted into heat.

If the stream bed is rough, the impact of the water creates swirls or eddies, in which a portion of the energy is converted into internal or vortex motion not useful in causing forward motion.

So far as known, no experiments have been made relative to the skin friction of a smooth ice surface. It may be assumed, however, to be about the same as for a smooth glass or planed-wood surface, especially the latter. A layer of water adheres to such a surface or is entrapped by the capillaries, so that the friction surface is essentially a layer of liquid particles, the conditions thus closely resembling those where water at 32° F. is in contact with ice.

The value for glass or planed-wood surfaces of n in Kutter's formula is given by various authorities as about 0.009, or from one-fourth to one-third the resistance due to an ordinary stream bed. When the under ice surface is rough, broken, tilted, or honeycombed, its impact resistance may become of the same or even greater relative importance than that of an earth or rock surface. It is presumable that cases are rare where the under surface of the ice cover is so free from irregularities as to give a value of n as low as those applying to glass or planed wood.

Occasionally a layer of needle ice of varying thickness floats under or accumulates on the lower surface of the ice cover. Such ice not only obstructs the flow through the portion of the cross section occupied, but also greatly increases the friction as compared with that of a smooth ice surface.

RELATIVE IMPORTANCE OF AIR AND ICE FRICTION.

As already pointed out, the actual increase in friction due to an ice cover is the difference between the ice friction and the air friction previous to the formation of the ice cover. Owing to the divergent opinions entertained as to the magnitude of air friction, it has been thought well to discuss the matter somewhat at length.

In the Chezy formula and in most other similar slope formulas it is assumed that all the resistance to the motion of the water proceeds from the stream bed. Humphreys and Abbot a found, however, that the position of the point of maximum velocity in vertical velocity curves on Mississippi River was controlled by the direction and velocity of the wind. They give the following expression:

$$d = (0.317 + 0.06f)$$
 D

In this formula D=depth in feet; d=depth of point of maximum velocity; f=relative wind velocity on a scale such that a calm=0 and a hurricane=10.

- In deriving a formula for the mean velocity of streams in terms of the slope and hydraulic radius, Humphreys and Abbot assumed that the frictional resistance between the water and air contact surfaces was similar in nature and magnitude to the bed resistance. In their formula, accordingly, the hydraulic radius is expressed as follows:

$$R = \frac{A}{P + W}$$

In this formula A = area of cross section, P = wetted perimeter in earth, W = width of surface.

In discussing the results of Humphreys and Abbot's investigations, the late James B. Francis made the following clear statement as to the effect of air friction:

When the air in contact with the surface of the water flowing in an open channel is moving in the same direction and with the same velocity as the surface of the water, it is clear that it can have no effect on the motion of the water; but such exact conformity in the motion of the air and water is uncommon; ordinarily the air has some motion relatively to that of the water and either retards or accelerates the velocity of the surface. That the air may produce a material effect on the scale of velocities is apparent from the following considerations.

Let us suppose the surface of the water to move, relatively to the air, with the same velocity that the water at the bottom moves relatively to the bed; also that the inequalities of the surface of the water caused by the action of the air and those in the bed of the stream are alike; and suppose, also, that a sheet of water of uniform thickness, in contact with the bed, is at rest; we shall then have the water near the bottom moving over a bed of water and the water at the surface moving under a bed of air, and as both beds have the same inequalities, they will cause the same retardation in the velocity of the water, except as these beds, from the nature of the substances of which they are composed, offer more or less resistance. These resistances will be of the same nature as is experienced by a body moving in a resisting medium. According to well-known principles, the retardation in this case is as the square of the velocity of the moving body relatively to that of the medium and as the density of the medium. The density of the air is about $\frac{1}{840}$ of that of water; a body moving through the air with the same velocity will therefore be retarded $\frac{1}{840}$ as much as if it moved through water.

The above conclusions are confirmed by a comparison of the coefficients that have been determined experimentally for use in comput-

a Physics and Hydraulics of Mississippi River, p. 305.

b Lowell Hydraulic Experiments, pp. 158-159,

ing loss of pressure occasioned by the flowing of air and water through pipes, the form of expression adopted by Weisbach being used:

$$p = f \frac{l}{d} \frac{v^2}{2g}$$

In this formula p = loss of pressure in pounds per square inch; l = length of pipe in feet; d = diameter of pipe in inches; v = mean velocity in feet per second; f = coefficient of resistance to flow.

Rough average values of the coefficient f, according to Weisbach's experiments, may be taken as follows: For air, f=0.000160; for water, f=0.104, the relative friction loss for water being 650 times that for air.

It seems probable, then, that with still air the frictional effect of air on water surface is but a small percentage of that due to stream bed, although with a strong wind upstream the retardation of the filaments of water near the surface may be considerable.

VARIATION IN SLOPE DUE TO FREEZING.

As an ordinary stream is made up of smooth-water reaches separated by more or less pronounced rapids, and as the swiftest portions of a stream freeze least readily, the freezing of a stream will

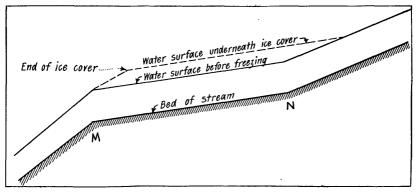


Fig. 2.—Effect of freezing on a smooth section of a river terminated by rapids.

lead to the following conditions: (1) There will be an increase in the total friction due to replacing the water-air contact surface by water-ice contact surface; (2) if the discharge remains the same, it follows that with increased friction either the slope or the cross-sectional area must increase.

In a long, uniform channel, frozen throughout, there can be but little or no increase in slope; but in short reaches separated by open water, such as those where gaging stations are commonly located, an appreciable local increase in slope due to freezing may easily occur, as shown in fig. 2. As a result of freezing of the smooth-water reach

M N there is a tendency for the stage to be raised, as shown by the dotted line, and the upper stretch of quick water above N may be partly submerged by backwater. If the discharge remains the same the depth of open water at M will not be increased unless there is backwater here due to ice cover below this point. If the depth at M is not increased, the fall of the water surface between N and M will have been increased. There is no actual increase in slope, except in the vicinity of M, and the ice surface adjusts itself parallel to the channel bed, as in the case of flow in an open channel, but the effective fall from N to M is of course increased.

CHANGE IN AREA OF WATERWAY REQUIRED BY FREEZING.

The conditions that occur when a broad river becomes covered with a uniform ice surface are illustrated by the following example: Consider a rectangular channel in which the width B D is many times the depth, so that the wetted perimeter may be taken as approximately equal to the width. Neglecting the air friction, call the coefficient of roughness applying to the channel n_1 . Consider also that the cover E F may be brought just in contact with the stream surface, the coefficient of roughness for this ice cover being n_2 . The slope and discharge being assumed to remain constant, the effect of cover of varying roughness may be illustrated as follows:

```
Let width B D =500 feet,

slope S =0.0005,

depth D =5 feet,

area of section =2,500 square feet,

wetted perimeter =500 feet approximately,

hydraulic radius =5 feet approximately.
```

Then for n = 0.030, as in an ordinary river, the mean velocity would be 3.29 feet per second, and the discharge would be 8,225 second-feet.

If, now, the stream is covered over, if n_1 and n_2 equal 0.030 each, and if the discharge is the same as before, then the stream stage must evidently rise in such manner that the increase in C, resulting from increased hydraulic radius, together with the increase in R and A, will counterbalance the increased friction. Owing to the complexity of the Kutter formula, the result can best be determined by successive approximations rather than by analysis.

We will have, if D remains as before,

By interpolation between the last two values it appears that the

stage must increase about 1.65 feet in order that the discharge shall be the same as for open channel. If, on the other hand, the value of n_2 for the covered surface was 0.010, then since the wetted perimeter for the bed and for the covered surface are approximately the same, the average coefficient of roughness for the entire stream section would be

$$\frac{0.010 + 0.030}{2} = 0.02$$

With this value of n, in order to give the original discharge of 8,225, the stage would need to be raised about 0.2 foot.

In actual streams the wetted perimeter of the stream bed will usually be somewhat more than half of the total cross-sectional boundary; furthermore, as shown elsewhere (pp. 14–15), when the stream is covered, the effect is to replace air-surface friction by ice-surface friction; so that, all things considered, the presence of a thin, smooth ice cover will probably not necessitate any very great increase in stage in order to maintain the discharge undiminished.

As a river becomes nearly or quite frozen over and the thickness of ice increases, the diminution of area of water may be considerable. In the example previously quoted, for the given stage the area of waterway would be reduced as follows (if the ice is floating):

Effect of thickness of ice on area of waterway.

Thickness of ice.	Reduction in area o waterway.			
Feet.	Sq. ft.	Per cent.		
0.5	230	9. 2		
1	460	18. 4		
1.5	690	27. 6		
2	920	36. 8		

With ice 2 feet thick, then—which is not uncommon—there would be a reduction in area of about 37 per cent. In the example, above, a rise of stage of 0.2 foot was occasioned by thin ice cover. With 2 feet thickness of ice a further rise of about 1.84 feet, with no snow load upon the ice, would be required to insure the same discharge. The total necessary rise of stage would then be 2.04 feet.

EFFECT OF THICKNESS OF ICE ON FLOW.

It is evident that the discharge for a given gage height, taken to the water surface where there is a thick ice cover, may be diminished very materially as compared with that for open-water conditions.

By further considering the data on page 18, and also assuming a change in depth (or gage height) from 5 to 8 feet, we obtain the following:

Relation of gage height to discharge.

[S=0.0005; n=0.030 for open water; n=0.020 for thin ice cover.]

Depth (or gage	Discharge (open sec-	Ratio Discharge under ice cover. Discharge for open section.			
height).	tion).	Thin ice.	Ice 1 foot thick.	Ice 2 feet thick.	
Feet. 5.0	Second-feet. 8, 225	0.91	0.65	0.42	
6.0 7.0 8.0	11, 200 14, 500 18, 200	$.91 \\ .92 \\ .92$.70 .73 .74	. 49 . 55 . 59	

For the rectangular section as chosen this indicates that for a given stage the ratio of discharge under ice cover to that for open section diminishes as the ice thickness increases; for thin ice cover it is

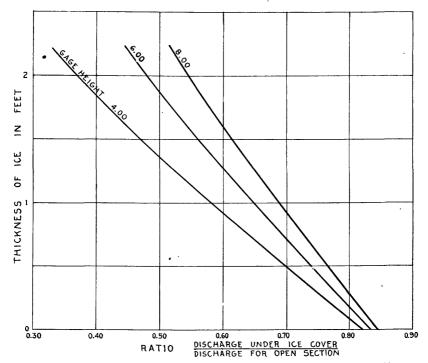


Fig. 3.—Effect of change in stage on discharge under ice cover, with varying thickness of ice.

approximately constant for ordinary stages, but as the ice thickens, the effect on the ratio is much greater at the lower gage heights. To further illustrate this tendency, fig. 3 has been prepared. The properties of the gaging cross section of the Connecticut River at Orford, N. H., are here used (at gage height 4.0; area = 1,280; width = 267; hydraulic radius = 4.76; slope assumed as 0.00012; n = 0.035 for openwater conditions; and n = 0.025 for channel frozen). Under these assumptions with thin ice, the relation between discharge under ice

cover and that for open water is nearly constant for ordinary stages; for thick ice this relation may vary 25 or 30 per cent in this range of gage heights (which is about the usual winter range at this station), the tendency being for this ratio to increase as gage heights increase.

The effect of a thickening ice cover for given conditions of slope and roughness and for a given gage height is as follows: (1) To diminish the cross-sectional area; (2) to slightly diminish the wetted perimeter, by lessening the width; (3) to decrease the hydraulic radius as a result of the loss of area while, the wetted perimeter changes only slightly.

Changes of area and hydraulic radius both tend to diminish flow. It is evident that the relative effect of this diminution will become less and less as stage increases, for both area and hydraulic radius increase directly as the gage height, while the loss of area and hydraulic radius for a given thickness of ice is approximately the same at any ordinary stage.

METHODS OF OBTAINING WINTER RECORDS.

CURRENT-METER STATIONS.

GAGE HEIGHTS.

Previous to the winter of 1903–4 records of gage heights for the frozen season were not in general obtained, the exception being in the case of a few gaging stations on Catskill Mountain streams in the vicinity of New York City, where the attempt was made to procure continuous records from the time of their establishment in 1901. Since 1903 gage heights have been procured during the winter at a considerable number of stations in the Eastern and Central States. An effort has been made to obtain data bearing on both the stage of the river and ice conditions.

The observer is not expected to read the gage and obtain the attendant ice data oftener than once or twice a week unless unusual conditions prevail (such as high water, due to rains or melting snow), as the change in stage under ice cover is usually a slow and even one. The essentials in these observations are as follows: (1) A hole is cut in the ice at (or underneath) the gage, the gage is read to the water surface and to the top of the ice, and the thickness of the ice is measured; (2) any special conditions are noted, either in remarks or by sketch, such as areas of open water, backwater effect due to ice jams, etc. Observers are instructed to measure the thickness of ice occasionally at other places in the cross section at the gage and at points up and down stream. For these winter duties observers are furnished with an ice chisel and an ice-measurement stick, so arranged with an L end that the bottom of the ice can be definitely located and the thickness noted.

The transition periods from open channel to frozen conditions in the fall and the reverse in the spring are important. During the fall-transition period, while the river is freezing, two methods have been

used for gage readings, as follows: (1) Daily gage readings to the top of the ice are made continuously, until the ice is strong enough to walk on, the date of first freezing having been noted. After the ice cover forms the usual winter observations begin, as previously described. (2) The ice is broken daily under the gage, a good-sized hole being made with a weight and rope provided for the purpose, and gage heights are read to the water surface, until the ice is strong enough to walk on, when the thickness can be noted and the usual method followed.

In spring when the ice goes out daily gage readings begin with any considerable increase in stage and conditions as to ice—time of ice going out and of river being clear from ice, etc.—are noted. If at any time during the winter high water occurs or the ice goes out, daily gage readings are resumed until steady conditions once more prevail.

CURRENT-METER DISCHARGE MEASUREMENTS.

Holes are cut in the ice at points in the cross section where it is desired to obtain velocity determinations. These holes can be cut usually to best advantage with an ice chisel and are made only large enough to allow the ready lowering of the current meter through them. A rectangular hole 12 by 24 inches, with its length in the direction of the cross section and with vertical sides, has been found convenient for thick ice; lesser dimensions may be used where the ice is thin. In a few cases it has been necessary to cut a continuous channel between two or more adjacent holes, especially where the holes are close together, to prevent rapid vertical pulsations of water in the holes. Where a large number of holes are to be cut, a special auger cutting out a cylindrical core of ice has been used to advantage by United States Army engineers. The auger is driven by hand, by means of a suitable framework and gearing, similar to a carpenter's frame boring machine.

The cross section at which open-water discharge measurements are made is always used, when possible, as more direct comparisons can thus be made of the various features of flow under ice cover, with similar data for open channel. If, as sometimes happens, it is desirable that the measurements of flow under ice cover be made at a different or auxiliary section in order to obtain more favorable conditions, it is necessary to install an auxiliary gage or reference point, or, by sufficient soundings at the section used to keep control of the area, positions of ice surfaces, etc.

Soundings are always referred to the surface of the water in the holes, and, in addition, the distance from the water surface to the top and the bottom of the ice is noted. The depth of snow covering the ice, if any, is also noted and if possible a determination made of its

water equivalent. The character of the ice and of its under surface is noted, especially with regard to smoothness.

Gage heights are taken to the water surface and the top of the ice in the same way as by the observer, but, in addition, especially if an auxiliary section is being used for the current meter, holes are cut in the gage cross section and a little distance up and down stream in sufficient number to get a good average determination of the thickness of the ice and its position relative to the water surface.

Velocity observations have been most generally made by the vertical velocity-curve method, or at least a sufficient number of curves have been obtained to give good control of any single or double point method. Vertical velocity curves have also been very frequently taken for the reason that data were thus obtained for study and for the devising of shorter methods of observation.

A double-point method giving good results was developed from data obtained in 1904 and was used in measurements for the next two seasons. This consists in making observations at 0.2 and 0.8 of the total depth (below the bottom of the ice), the mean of these two velocities being very nearly the mean velocity of the vertical.

Single-point methods, in which the velocity is determined at 0.4, 0.6, or mid depth, are sometimes used, it being necessary to have vertical velocity curves at the same points and taken under similar conditions in order to deduce the mean velocity from the observed velocity.

Vertical integration has been used to a limited extent, but it has not been found as convenient as the methods previously described and it gives no data for the study of the vertical velocity curve. It is also objectionable owing to the difficulty of properly handling the current-meter cable, which becomes wet and covered with ice.

The horizontal distance between velocity observations should probably be about the same as for open water for the best results, but frequently it is advisable to extend it somewhat beyond that limit, in order to reduce the labor required for cutting holes in the ice.

The current meter is used either suspended by a cable in the ordinary manner or fastened to a wooden or metal rod. If a cable is used, it is marked at intervals of 0.5 or 1 foot by small lengths of cord wound and tied about it for use in sounding and placing the meter. It is most convenient to refer these to the center of the meter and add to soundings the distance from the center of the meter to the bottom of the weight. If a rod is used (this is of course limited to comparatively small depths and low velocities), it may be graduated from the center of the meter in a similar way. The rating of the small Price meter when it is fastened to a rod, but free to tip on its horizontal axis, is almost identical with that when the meter is suspended by a cable in the usual way.

The meter must be kept in the water continuously, or nearly so, if the temperature of the air is much below freezing, as ice will form very quickly on exposure and perhaps cause the meter wheel to stick. If the temperature is very low, trouble is also experienced from ice gathering on the cable or rod supporting the meter.

Measurements during inclement weather can often be most conveniently made under a shelter consisting of a framework of light boards or poles covered with canvas. A cross plank at a height of about 3 feet serves as a convenient support for instruments and stop watches, as well as a datum for lowering the meter in making vertical velocity curves.

In moving from station to station the meter is drawn up until it clears the ice and left suspended from the cross plank while the entire shelter is carried forward to the next point of measurement. By this method the necessity of handling the wet cable, often troublesome, even when rubber mittens are used, is generally avoided.

The additional cost of measurements on frozen streams over that for the open season is occasioned by the following conditions: (1) General difficulty of field work during cold weather, and consequently longer time required; (2) labor required to cut holes in ice and perhaps clear off snow; (3) longer methods required in gaging. The following table gives data regarding the cost of gaging under ice cover at certain stations during 1904–1906 as compared with the cost of gagings made under open-water conditions.

Locality.	Number of stations.	Year.	Number of gagings.	Average cost per gaging, exclusive of travel to and from station.	Average total cost per gaging.	Usual total cost per gaging, river open.
New England	1 3 4	1904 1905 1906 1906	4 7 19	\$30. 52 16. 67 14. 18 18. 24	\$34. 64 18. 82 15. 65 22. 13	\$10.00 8.57 10.42 10.32

Cost of current-measurements under ice cover.

The "usual total cost per gaging, river open," is based on a record of actual costs during 1904 and 1905 for New England and from July, 1904, to July, 1905, for New York stations. During the greater part of the 1906 winter gagings in New England only one hydrographer was in the field, laborers being employed for the work of cutting holes in the ice and assisting in gaging. Previous to that time there were usually two hydrographers. All New York gagings have been made by two hydrographers.


The average cost per gaging for ice cover, exclusive of travel, is from one and one-half to three times that for open-water conditions.

 $\ensuremath{\varDelta_{-}}$ Gaging station on sandy river at madison, Me., at dam of madison electric company.

 $\it B.$ GAGING STATION ON WINOOSKI RIVER AT RICHMOND, VT.

STATIONS AT DAMS.

A considerable number of the gaging stations of the Survey are at water-power plants, and records are obtained by observing the flow over the dam, the wheel-gate openings, etc., and the amount of water used by wheels.

During cold weather ice may form in large quantities on the crest of a dam and vitiate the computations made from gage heights of flow over the dam. Pl. I, A, gives an excellent illustration of the manner in which ice may form upon a dam. This plate shows one of the regular stations of the Survey at Madison, Me. In some cases this difficulty can be obviated by keeping the ice cut away from the crest, as is frequently done at an electric-light and power plant; or where that is impracticable, a record of ice conditions, with proper corrections, may serve to make approximate estimates.

The flow through turbines is as easily determined in winter as in summer. Frequently the greater part of the flow is taken through the wheels. Gaging stations at dams and mills usually afford better opportunities for securing winter records than exist at many currentmeter stations.

ESTIMATES FROM PRECIPITATION.

Methods of estimating stream flow from precipitation are so generally known as to require no detailed explanation. In most such estimates the run-off in any month is determined from the contemporaneous precipitation by the use of a ratio or reduction factor. In crude estimates it is assumed that a constant percentage of the precipitation will appear as run-off regardless of the amount of precipitation. In more exact work a sliding scale of coefficients is used, the values depending on the amount of precipitation and the month or season.

For precipitous and impervious basins the run-off will be nearly coincident with the precipitation. If, however, there are lakes, forests, extensive ground-water storage, or accumulated snow within the basin, the precipitation in one month may not appear as run-off for a considerable interval of time, and any attempt to estimate the run-off for any month from the contemporaneous precipitation will be valueless. This is especially true in basins where much of the winter precipitation is in the form of snow, which accumulates on the ground, especially in ravines and forests, so that water representing several inches depth on the drainage basin may be carried forward from month to month, or from one calendar year to another, without entering the stream.

A heavy precipitation in the form of snow may occur without any appreciable effect on the stream flow. On the other hand, whenever the temperature rises above 32° F., run-off from melting snow occurs,

and often the entire winter's snow storage enters the stream in the course of a few days. During from one to three months of the spring freshet season northern streams generally show a run-off considerably in excess of the contemporaneous precipitation.

Data regarding the evaporation loss from snow-covered surfaces are very meager. If records of the snowfall, snow accumulation, and temperature are at hand it may be possible to form estimates of the total run-off of a stream for the winter season. It is obviously impossible at present to form reliable estimates of winter flow for shorter periods from precipitation data alone in any manner similar to that commonly used in estimating the flow from the rainfall during the summer months.

The minimum flow of a stream, either in summer or winter, ordinarily occurs at times when there is no direct surface run-off and when the permanent supply from ground water, lakes, or storage reservoirs is at a minimum.

The presence of snow with low temperature effectively cuts off direct surface inflow in winter, sometimes for a period of several months. Careful studies of the laws of supply to a stream from ground water during either summer or winter droughts will be of value in estimating the winter regimen.

With present knowledge it is evident that actual measurements of flow from gagings are even more needful in winter for the determination of available water supply from streams than in summer, although in the existing data of stream flow the winter period is to a considerable extent neglected.

WINTER RECORDS.

Data on open-water and winter conditions and the discharge measurements made during the frozen season are here given for the following stations:

Catskill Creek at South Cairo, N. Y. Connecticut River at Orford, N. H. Esopus Creek at Kingston; N. Y. Fish River at Wallagrass, Me. Kennebec River at North Anson, Mc. Rondout Creek at Rosendale, N. Y. Wallkill River at Newpaltz, N. Y. Winooski River at Richmond, Vt.

CONDITIONS AT STATIONS.

CATSKILL CREEK AT SOUTH CAIRO, N. Y.

This station was established July 4, 1901. It is located at the highway bridge in the village of South Cairo, about 1 mile north of the Catskill Mountain Railroad station for that place. The drainage area

is 263 square miles. Measurements are made from the downstream side of the bridge at ordinary and high stages, and by wading a short distance above the bridge at low stages.

The drainage basin of this stream receives the run-off from the north slope of the Catskill Range and lies for the most part in the timbered highlands of Greene County. The source of the creek is in a swamp at Franklinton, Schoharie County. It enters Hudson River at Catskill after traversing Greene County for nearly 25 miles. The stream flows over a rocky bed through the greater part of its course, having a total fall of 1,200 feet. At the station the bed consists of gravel and rock, the main channel lying nearest the right-hand abutment of the bridge, which has a clear span of about 194 feet. About twothirds of the way across is a gravel bar covered with brush which affects the discharge to some extent in high water and at low-water stages rapids about 1.800 feet below the bridge tend to cause slack water at the regular section for gaging. Both banks are high and not subject to overflow. The left bank is wooded; the right is rocky and abrupt. Below the bridge the stream is fairly straight for about 1,000 feet; it then curves to the left and flows over some rifts, which at ordinary stages narrow the stream from about 200 to about 30 feet. Above the bridge the course is straight for about 500 feet; there is then a slight turn and some rapids that narrow the channel down to 80 or 90 feet, the width at the bridge being about 125 feet. A portion of the stream bed is permanent, the gravel bar on the left-hand side having a tendency to shift.

From Hudson River to the mouth of Kaaterskill Creek, about 2 miles, there is practically no velocity. From Kaaterskill Creek to Leeds, 3 miles farther up, Catskill Creek flows through a gorge of bluestone, in which it has a fall of about 180 feet. Two dams formerly utilized a portion of this head at Leeds. There is no interference at the station, however, as it is about 3 miles farther up. The extreme stages observed are as follows:

Extreme stages observed on Catskill Creek at South Cairo, N. Y.

	Gage height.	Discharge.
High water Low water	Feet. 11. 7 2. 25	Second-feet. 18,600 18
Extreme range	9.45	18,582

Catskill Creek in this vicinity usually freezes over about December 1, and the general breakup comes about March 1, the stream being partly free from ice for short periods in January or February during what is commonly known as the January thaw. The entire width is usually frozen from a point 500 feet above the station to a point about

1,500 feet below; the rapids seldom freeze except in the coldest weather. Needle ice is produced in abundance in this stream, the observer reporting that the channel is obstructed by this kind of ice for the greater part of the winter.

Ice conditions on Catskill Creek at South Cairo, N.Y.

SEASON OF 1903-4.

November 29, ice 0.6 foot; practically the same up to December 13.

December 17, ice at gage 0.88 foot.

December 19, ice at gage 1 foot.

December 20, rains; creek broken up.

December 27, ice at gage 0.25 foot.

December 31, ice at gage 0.6 foot.

January 1-22, ice averaged about 0.65 foot.

January 23-26, inclusive, ice broken up.

January 27 to February 8, ice from 0.1 to 0.6 foot thick.

February 9, heavy thaw; ice went out.

February 16 to March 3, ice from 0.2 to 1 foot thick.

March 8, heavy rains; ice went out.

SEASON OF 1904-5.

November 27, ice 0.1 foot thick.

December 1–7, ice 0.2 foot thick, increasing to 1 foot by December 27.

December 28, creek broken up.

January 5, creek filled with anchor ice.

January 7, anchor ice broken up.

January 15, creek filled with anchor ice.

January 25–28, ice 0.5 foot thick; stream frozen across to about same thickness both above and below gage. Observer states that stream is filled with anchor ice attached to bottom, except in narrow strip along gage. Conditions continued the same for three weeks with exception that general ice thickness increased from 1.2 feet upstream to 1.5 feet downstream from gage.

February 18, stream frozen over except along right bank, where ice becomes honey-combed and is broken.

February 25, stream frozen across both above and below gage 1.08 to 1.25 feet thick. Observer states that ice is gradually melting, and shows channel near left bank below gage.

March 4, ice throughout 0.83 to 1 foot thick, but narrow channel on each side.

March 19, ice broken up.

SEASON OF 1905-6.

December, some ice about the middle of the month, but river not frozen solid.

January 8, ice about 0.17 foot thick.

January 9-11, ice 0.25 foot thick.

January 12-14, ice 0.33 foot thick.

January 15, ice 0.25 foot thick

January 24, ice broken up.

February 1, about 0.83 foot of ice both above and below gage, also at gage.

February 22, ice broken up.

February 28, creek filled with anchor ice, both above and below gage.

March 5, ice went out about this date.

The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Catskill Ćreek at South Cairo, N. Y.

Date.	Gage height to water surface.			Maximum
	Minimum.	Maximum.	Range.	thickness of ice.
1901-2. 1902-3. 1903-4. 1904-5. 1905-6.	Feet. 2.90 3.08 3.10 2.80 2.70	Feet. 4.82 4.90 4.55 3.05 5.15	Feet. 1.92 1.82 1.45 .25 2.45	Feet. 1.37 .16 .54 .17 .83

CONNECTICUT RIVER AT ORFORD, N. H.

This station was established August 6, 1900. It is located at the wooden highway bridge between Orford, N. H., and Fairlee, Vt. The drainage area at this point is 3,305 square miles. Measurements are made from the downstream side of the highway bridge.

The bed of the stream consists of gravel and is permanent. Both banks are high and do not overflow. At the bridge the channel is about 275 feet wide at ordinary stages and is broken by one pier. It is straight for 1,000 feet above the station and for a considerably longer distance below. The channel is about the same width both up and down stream, but at the bridge this width is cut down approximately 13 feet by the pier.

Several small streams enter the Connecticut near Orford, but the only stream of any considerable size is Waits River, about 5 or 6 miles above this point. The nearest dam is at Wilder, about 18 miles downstream. Backwater effect from this dam reaches probably within a few miles of Orford. Upstream the nearest dam is at East Ryegate, about 20 miles above Orford. There is considerable fall in the river in this 20-mile stretch, although it is somewhat concentrated at a few points. The extreme stages observed are as follows:

Extreme stages observed on Connecticut River at Orford, N. H.

	Gage height.	Discharge.
High water	Feet. 26.1 2.0	Second-feet. 33,000 640
Extreme range	24. 1	32,360

Connecticut River in this vicinity usually freezes over about December 1 and remains frozen until the middle or last of March. Near the bridge ice first forms at the shores and around the pier, the left channel always freezing over first and the right channel somewhat later. This portion of the river—from the dam at Wilder to quick water at or above Wells River—has usually a permanent ice cover during the winter months. Anchor or needle ice has never been found here in sufficient quantities to affect gage heights or interfere with gagings.

During the season of 1905–6 the river was completely frozen over at the Orford bridge only from about December 30 to January 24, when a rise in stage carried out the ice. It did not freeze entirely across again during the winter. An area about 1,000 feet long and 150 feet wide, nearly in the middle of the river and extending downward from the bridge, remained open.

Ordinary winter conditions are good at this station, and the range of gage heights is small. Occasionally a winter freshet such as those of December, 1901, and January, 1906, occurs, but these usually last only a few days. The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Connecticut River at Orford, N. H.

•	Gage height to water surface.			Maximum
Date.	Minimum.	Maximum.	Range.	thickness of ice.
	Feet.	Feet.	Feet.	Feet.
1900-1	5.8	9.0	3.2	
1901–2	3.8	21.7	17.9	
1902-3	6.6	8.8	2.2	
1903-4	4.0	8.3	4.3	2. :
1904–5	4.0	4.5	0.5	2. :
1905-6	5. 5	20.5	15.0	1

ESOPUS CREEK AT KINGSTON, N. Y.

This station was established July 5, 1901. It is located at the Washington Street Bridge, Kingston, N. Y., about 1 mile from the West Shore Railroad station. The measurements are made from the upstream side of a two-span highway bridge. The main span is about 117 feet wide. There is also a short span of about 19 feet on the left-hand end for extreme high water. The drainage area above this station is 324 square miles. The bed of the stream consists of earth and loose rock and is permanent. At ordinary stages the channel is from 90 to 110 feet wide at the bridge, but it is wider above and below. Upstream the channel is straight for about 300 feet. It then deflects slightly to the right. Downstream the channel is fairly straight for 700 or 800 feet. Rapids about 300 feet below affect the low-water

flow. Measurements can be made by wading above the Ulster and Delaware Railroad bridge, about 1 mile upstream. The right bank is of earth, of medium height and slightly wooded; it is not subject to overflow except at very high stages. The left bank is of ordinary height, slightly wooded, and subject to overflow in high water. The conditions are such that the overflow can be readily estimated.

Esopus Creek receives numerous small tributaries—mostly small torrential streams—which cause rapid fluctuations in the main streams. The stream channel is usually broad and shallow, the bed being covered with cobbles and small bowlders, until the vicinity of the gaging station is reached, when the slope is more gradual and the current less swift. At Olivebridge, about 20 miles above the station, there is a natural fall of about 22 feet that is increased to 28 feet by a timber dam on the crest of the ledge, and at Glenerie, where the West Shore Railroad crosses the Esopus, about 6 miles downstream, there is a cascade that has a fall of about 56 feet. The final descent to tidewater at Saugerties is made through a fall of 42 feet.

There are no dams in the vicinity of the gaging station, and the channel is unobstructed except by small rapids which affect the low-water flow only. The extreme stages observed are as follows:

Extreme stages observed on Esopus Creek at Kingston, N. Y.

	Gage height.	Discharge.
High water. Low water Extreme range.	Feet. 25. 0 3. 7 21. 3	Second-feet. 23,400 36 23,364

Esopus Creek in this vicinity usually freezes over about December 1, though the entire stream is not closed up. Ice generally forms first along the shore below the bridge and gradually works upstream, the velocity being swifter on the upstream side. The stream here has a wide range during the frozen season, the gage heights ranging from about 5 feet to 17 or 18 feet. These freshets sometimes occur as often as twice a month, and occasionally clear the creek of ice, this depending somewhat on the time of year and the thickness of the ice. The channel below the bridge sometimes becomes jammed, and in the spring it frequently has to be cleared out with dynamite. There is more or less open channel during the greater part of the winter at this station. Several ice measurements have been made here, and invariably there was a portion of the stream open. There are no reports or indications of needle ice, though it may form at times.

During 1901, 1902, and 1903 there was comparatively little ice in this stream, but in the winter of 1904-5 the ice had a thickness of about 1.5 feet for a period of about six weeks, ranging from 0.1 to 0.2 feet at other times. The ice went out about March 18. The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Esopus Creek at Kingston, N. Y.

,	Gage height to water surface.			Maximum	
Date.	Minimum. Maximum. Ra		Range.	thicknes of ice.	
1901-2. 1902-3. 1903-4. 1904-5. 1905-6.	Feet. 5. 28 6. 10 4. 91 4. 74 5. 35	Feet. 9. 95 9. 82 18. 23 12. 90 14. 60	Feet. 4. 67 3. 72 13. 32 8. 16 9. 25	Feet. 0. 36 . 43 . 80 . 71 1. 42	

FISH RIVER AT WALLAGRASS, ME.

This station was established July 29, 1903. It is located just below the outlet of Wallagrass Brook. The drainage area at this point is 910 square miles. Measurements of the flow are made from a cable located about 1,500 feet downstream from the gage, and soundings are made on the line of the cable. The bed consists of gravel and is permanent. The banks are of medium height, but rarely overflow during high stages. The channel is straight for 500 feet above and 300 feet below the cable and is about 100 feet wide, being fairly uniform in cross-section near the station. Wallagrass Brook is the only stream of any considerable size entering Fish River in this vicinity. The gaging station is about 8 miles above the entrance of Fish River into the St. John and about 2 miles upstream from an undeveloped fall of about 20 feet. There are no dams in this vicinity. The extreme stages observed are as follows:

Extreme stages observed on Fish River at Wallagrass, Me.

	Gage height.	Discharge.
High water. Low water Extreme range	Feet. 13. 6 1. 7	Second-feet. 8,300 50 8,250

Fish River in this vicinity usually becomes frozen over about December 1 and remains so without interruption until about April 1. Ice forms first at the shores and gradually extends across the stream, with the exception that in the vicinity of the gage a small area remains open for a time. Occasionally during the winter the ice thins out, owing to the entrance of water from springs. Winter freshets are unusual in this vicinity. Winter conditions are very uniform, fluctuations in stage are usually slow, and the ice cover is

smooth and permanent, so that in general this station is especially favorable for records. The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Fish River at Wallagrass, Me.

	Gage height to water surface.			Maximum
. Date-	Minimum.	Maximum.	Range.	thickness of ice.
1903-4 1904-5 1905-6	. 3.3	Feet. 5.0 5.2 5.2	Feet. 2. 2 1. 9 3. 2	Feet.

KENNEBEC RIVER AT NORTH ANSON, ME.

This station was established October 18, 1901. It is located 1½ miles east of North Anson village and a short distance above the mouth of Carrabassett River. The drainage area at this point is 2,880 square miles. Measurements are ordinarily made from the covered wooden highway bridge, known locally as Patterson Bridge.

The bed of the stream is rocky, with stone and gravel in places, and is permanent. The right bank is high. The left bank is of medium height and is subject to overflow in times of highest water. At the bridge the channel is about 350 feet wide, broken by one pier. It is straight for about 100 feet upstream and 200 feet downstream from the bridge and is curved beyond these points. The channel widens out to about 500 feet a short distance up and down stream from the bridge.

Carrabassett River enters the Kennebec about 1 mile below Patterson Bridge, and at its mouth is a large island dividing the Kennebec into two narrow channels. The nearest dam is at Madison, 6 or 7 miles downstream, and backwater from this dam extends about to the mouth of Carrabassett River. Upstream the nearest dam is at Solon, about 8 miles above; the slope of the river in this portion at ordinary stages is in general about 4 feet to the mile, although it is concentrated somewhat at several points. At low water the velocity at the bridge becomes somewhat low and poorly distributed, and measurements have been made by means of a boat at a distance of about 1,000 feet downstream. The extreme stages observed are as follows:

Extreme stages observed on Kennebec River at North Anson, Me.

	Gage height.	Discharge.
High water. Low water. Extreme range.	Feet. 14. 95 1. 55	800

Kennebec River in this vicinity usually becomes frozen over during the first week in December and remains so without interruption until about March 15 or April 15. Near the bridge ice first forms at the shores and around the piers and gradually extends, the channel being completely frozen over in a week or so in ordinary seasons. During the winter of 1905–6, however, narrow channels remained open in each span until about January 1, and narrow areas of open water remained somewhat after this date for short distances above and below the bridge.

In December there is probably considerable needle and anchor ice in the vicinity of the station, but after the ice becomes permanent no trouble has been occasioned from this source.

Ordinary winter conditions are good for recording gage heights at this station. The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Kennebec River at North Anson, Me.

Date.	Gage height to water surface.			Maximum	
3400.	Minimum. Maximum.		Range.	thickness of ice.	
903-4 904-5 905-6	Feet. 2. 3 3. 8 3. 4	Fect. 4.8 6.6 5.8	Feet. 2.5 2.8 2.4	Feet. 2.8 2.7 2.0	

RONDOUT CREEK AT ROSENDALE, N. Y.

This station was established July 6, 1901. It is located at the highway bridge in Rosendale about one-half mile downstream from the Wallkill Valley Railroad station. The drainage area above this point is 380 square miles. There is some diversion through the Delaware and Hudson Company's canal, which is parallel to the river and is operated during the summer months from High Falls to tide water in Hudson River at the mouth of Rondout Creek. This canal receives its supply from Rondout Creek at High Falls, 3 miles upstream from Rosendale, but a large percentage of this diversion returns before reaching the gaging station. Observations made at Creeklocks of the stage of water in the canal and a record of the number of lockages afford sufficient data to estimate the flow through the canal. As the canal is closed during the winter months, it has no effect on the winter's record.

At the gaging station the bed of the stream consists of rock and is permanent. The channel at the bridge ranges from 90 to 135 feet in width and widens out considerably both above and below the bridge. It is straight for several hundred feet each way from the bridge, and some rifts about 1,000 feet downstream cause slack water at low

stages, when measurements are made at a ford about 1 mile below.

Both banks are high and rocky and are not subject to overflow. Water passes under the bridge at all stages.

There is practically 75 feet fall from the diversion dam near High Falls, about 3 miles above the station, to the junction with Wallkill River, about 3 miles below. There are no streams of importance flowing into Rondout Creek in the neighborhood of Rosendale. The extreme stages observed are as follows:

Extreme stages observed on Rondout Creek at Rosendale, N. Y.

	Gage height.	Discharge.
High water	Feet. 19. 40 6. 00	Second-feet. 18,130 50
Extreme range		18,080

Rondout Creek usually freezes over about December 1 and the ice goes out about March 1. There are usually two or three freshets during this period that break the ice up and in most cases carry it out.

The record was discontinued November 7, 1903, but started again

about December 1, 1905, by the city of New York. The 1905-6 records show that the river was not closed by ice until about February 3 and that the ice went out February 22. The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Rondout Creek at Rosendale, N.Y.

Date.	Gage hei	ght to water	surface.	Maximum thickness
. Date,	 Minimum.	Maximum.	Range.	of ice.
1901-2. 1902-3. 1905-6.	 Feet. 6. 95 6. 95 5. 04	Feet. 9. 35 9. 85 5. 60	Feet. 2. 40 3. 10 . 56	Feet. 0. 42 . 40 . 46

WALLKILL RIVER AT NEWPALTZ, N. Y.

This station was established July 7, 1901, and was discontinued November 19, 1903. It was located at the highway bridge in Newpaltz, near the Wallkill Valley Railroad. The drainage area above this point is 736 square miles. The measurements were made from the downstream side of the highway bridge at all times except during extreme high water, when the Wallkill Valley Railroad bridge about 3 miles below was used. At low stages the water is rather slack and it is difficult to obtain a satisfactory measurement. The bed of the stream is composed of clay with large cobblestones and some bowlders,

and is permanent. Upstream the channel is straight for 400 or 500 feet; it then bends rather sharply to the right; downstream it is straight for several hundred feet. The right bank is rather high and slightly wooded, and does not overflow. The left bank is of medium height and is subject to overflow during high-water stages.

The principal tributary to the Wallkill in the vicinity of Newpaltz is the Shawangunk Kill, which enters near Gardiner, about 7 miles above, its total drainage area being 149 square miles. The dam nearest the station is at Walden, about 12 miles above. At low stages slight rapids about 300 feet below the bridge cause slack water in places and affect the discharge; at extreme high water a plain on the left side is overflowed, making it impossible to determine the flow at this point. The extreme stages observed were as follows:

Extreme stages observed on Wallkill River at Newpaltz, N. Y.

	Gage height.	Discharge.
High water. Low water. Extreme range.	Feet. 24.8 5.5	105

While Wallkill River freezes more or less in December, there are no records that show the stream to be completely closed before January, and then only for short periods. Several discharge measurements under ice cover have been made, some showing backwater from ice and others giving fairly good results. In general, however, the river is partially open during the entire winter season, except in parts of January and February. The ice usually goes out about March 5.

Ice records on Wallkill River at Newpaltz, N. Y.

1902.

January 12, ice 1.2 feet thick.

January 19, ice 1.2 feet thick.

January 26, ice 1.2 feet thick.

February 2, ice 1.3 feet thick.

March 1, high water.

1903.

December 11, 1902, to January 4, ice about 0.5 foot thick.

January 4-17, ice 0.83 foot thick.

January 18-24, ice 0.92 foot thick.

January 25-31, ice 0.83 foot thick.

February 1-26, ice 1 foot thick.

February 28, ice went out under bridge.

March 1-4, ice 200 feet above and 300 feet below bridge.

March 5, river clear.

* The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Wallkill River at Newpaltz, N. Y.

Dete	Gage hei	ght to water	surface.	Maximum
Date.	Minimum.	Maximum.	Range.	thickness of ice.
1901-2 1902-3	Feet. 7. 20 7. 05	Feet. 18. 50 16. 55	Feet. 11. 30 9. 50	Feet. 1. 25 . 82

WINOOSKI RIVER AT RICHMOND, VT.

This station was established June 25, 1903. It is located at the steel highway bridge about one-fourth mile from Richmond railway station on the road to Huntington. The drainage area at this point is 885 square miles. The bed consists of sand and gravel and is fairly permanent. The banks are fairly high, but overflow at extreme high water. The channel is slightly curved upstream, but straight for 1,000 feet or more downstream. It is about 175 feet wide at the bridge, and somewhat wider above and below. The nearest dam downstream is at Essex Junction, about 8 or 9 miles below the station, and there is a considerable amount of undeveloped fall between these two points. Upstream the nearest dam is at Bolton Falls, about 7 or 8 miles above the station. The extreme stages observed are as follows:

Extreme stages observed on Winooski River at Richmond, Vt.

	Gage height.	Discharge.
High waterLow water	Feet. 18. 7 3. 7	Second-feet. ±19,000
Extreme range	15. 0	± 18,861

Winooski River in this vicinity usually freezes during the first part of December and remains frozen until about March 15. That part adjacent to and below the bridge, where the velocity is medium, freezes first. About one-fourth mile upstream, where a stretch of quick water begins, freezing takes place considerably later, and during some winters a permanent ice cover does not form here.

The contraction in the channel at the bridge tends to cause ice jams, and low velocity just below favors the formation of thick ice. During the January freshet of 1906 a jam affected gage readings during the remainder of the winter season. Pl. I, B (p. 24), shows the conditions at the gaging section March 9, 1906. The ice is extremely

rough, broken, and tilted, and the gage heights give no index whatever of the flow, which was confined to about one-third the ordinary width of channel. The range of winter gage heights and maximum thickness of ice observed are as follows:

Range of winter gage heights and maximum thickness of ice on Winooski River at .

Richmond, Vt.

Date.	Gage height to water surface.						
Date.	Minimum.	Maximum.	Range.	thickness of ice.			
1903-4	Feet. 4.15 4.95 4.9	Feet. 6.7 5.7 14.7	Feet. 3.55 .75 9.8	Feet. 2.75 3.05 ±2.5			

Ordinary winter conditions are rather poor for estimates of flow at this station owing to the liability of unstable conditions. During low stages, which frequently occur in winter, the change in discharge is considerable for a slight difference in stage, and a slight change in the controlling ice conditions downstream may markedly affect the discharge:

GAGE HEIGHTS AND DISCHARGE MEASUREMENTS.

The following measurements have been made at the stations described above.

Stream measurements during frozen season.

CATSKILL CREEK AT SOUTH CAIRO, N. Y.

					G: heig	age ght—			to w	height vater iace.	Gage l to bo of i	ttom
Date.	Width.	Area under ice.	Mean velocity	Discharge.	To water surface.	To bottom of ice.	Thickness of ice.	Snow on ice.	Discharge for open-water conditions.	Coefficient for reducing open water to ice conditions.	Discharge for open-water conditions.	Coefficient for reducing open water to ice conditions.
1901 December 9	Feet.	Sq. ft. 106	Feet per sec. 1.03	Sec feet. 110	Feet. 3.30	Feet. 2.93	Feet. 0.37	Feet.	Sec feet. 120	0.92	Sec feet. 66	1. 67
1902 January 15	90	166	. 89	148	3.50	2.84	. 66		152	.97	53	2. 79
1906 February 16	100	190	. 33	62	2.82	2.22	. 70		56	1.11	17	3.65

a Gaging made 70 yards below bridge.

Stream measurements during frozen season—Continued.

CONNECTICUT RIVER AT ORFORD, N. H.

					Ga heig	ge ht			to v	height vater face.	to be	height ettom ice.	
Date.	Width.	Width.	Width. Area under ice.	Mean velocity.	Discharge.	To water surface.	To bottom of ice.	Thickness of ice.	Snow on ice.	Discharge for open-water conditions.	Coefficient for reducing open- water to ice conditions.	Discharge for open-water conditions.	Coefficient for reducing open- water to ice conditions.
1903. January 24 January 29 January 29 January 30 February 7 February 7	Feet. 276 273 273 276 278 278	Sq. ft. 1,760 1,610 1,620 1,760 1,810 1,810	Feet per sec. 1.69 1.63 1.66 1.69 1.65 1.67	Sec- feet. 2,970 2,620 2,690 2,980 2,990 3,030	Feet. 7.33 6.71 6.75 7.30 7.38 7.40	Feet. 6.00 5.40 5.50 6.00 6.05 6.05	Feet.	Feet.	Sec feet. 4,925 4,240 4,285 4,890 4,980 5,000	6.60 .62 .63 .61 .60	Sec feet. 3, 470 2, 880 2, 975 3, 470 3, 520 3, 520	0. 86 . 91 . 90 . 86 . 85	
1904. February 3 February 4 February 4 February 5 February 5	240 241 239 236 235 235	851 847 804 804 813 805	1.00 .99 .93 .95 .93 .95	850 840 750 760 760 765	4. 20 4. 17 4. 03 3. 99 4. 03 4. 03	2. 40 2. 37 2. 23 2. 19 2. 23 2. 23	2.03 2.03 2.03 2.03 2.03 2.03 2.03		1,880 1,860 1,760 1,735 1,760 1,760	. 45 . 45 . 43 . 44 . 43 . 43	815 801 738 720 738 738	1.04 1.05 1.02 1.05 1.03 1.04	
1905. February 28 March 1 March 1	235 235 235 235	775 794 794	.88	686 766 739	4. 07 4. 26 4. 25	2.30 2.40 2.39	2.01 2.09 2.09	0.1 .1 .1	1,790 1,925 1,918	.38 .40 .39	770 815 810	. 89 . 94 . 91	
1906. February 8 February 15 February 17 March 14 March 15	327 327 327 327 327 327	1, 920 1, 870 1, 790 1, 560 1, 440	1. 17 1. 20 1. 14 1. 08 1. 04	2, 250 2, 240 2, 040 1, 680 1, 490	5.84 6.80 6.56 6.00 5.59	5. 51 5. 32 5. 06 4. 56 4. 15	1. 48 1. 48 1. 52 1. 55 1. 55	.2 .9 .9 .1	4, 380 4, 340 4, 080 3, 470 3, 060	.51 .52 .50 .48 .49	2,980 2,810 2,570 2,160 1,840	.76 .80 .79 .78	
		!	ESOF	us cr	EEK	AT K	INGS	TON,	N. Y.	1		<u> </u>	
1901. December 4	86	280	0.84	236	5. 28	5.20	0.083		329	0.72	309	0.76	
1902. January 9a February 28 b December 11 December 1 c	90	419 706 404 1,170	1. 25 2. 39 1. 18 2. 96	522 1,690 476 3,460	6.54 9.14 1.60	6. 41 8. 94 6. 50	. 13 . 20 . 10		716 2,030 741 5,300	.73 .83 .64 .65	669 1,900 700	. 78	
1903. January 14 d February 24 e	101.6 104.6	413 443	1.03 1.47	425 654	6. 9 7. 1	6.32 6.70	.58		864 950	. 49	638 782	.67	
1906. February 15	90	287	. 87	250	5.60	5. 17	. 33		412	.61	302	. 83	
	r	F	ISH	RIVER	AT	WALI	AGR	ASS M	E.				
1906. February 15 Do March 15	95 95 115 115	205 205 312 319	0.95 .96 1.21 1.22	195 196 378 390	3. 91 3. 91 4. 99 5. 08	2. 66 2. 66 3. 83 3. 92	1. 25 1. 25 1. 20 1. 20	0.65 .65 .9	620 620 1,080 1,125	0.32 .32 .35 .35	225 225 580 620	0. 87 . 87 . 65 . 63	

a Partly frozen over; stations 20-70 and 110-115 open.
b Partly frozen over; stations 0-25 and 110-116 open.
c River frozen over 150 feet below bridge and 200 feet above. Measurements taken at 0.6 depth. No ice at bridge.
d Stations 15-40 river open.
c Stations 12-40 river open; ice rough.

NOTE.—February 8 and 17, river partly open for a short distance below bridge. March 14 and 15, river partly open for a short distance below bridge, but not as much as on February 17.

Stream measurements during frozen season—Continued.

KENNEBEC RIVER AT NORTH ANSON, ME.

					G: heig	age ght—			to v sur	height vater face.	to be	height ottom ice.
Date.	Width.	Area under ice.	Mean velocity.	Discharge.	To water surface.	To bottom of ice.	Thickness of ice.	Snow on ice.	Discharge for open-water conditions.	Coefficient for reducing open- water to ice conditions.	Discharge for open-water conditions.	Coefficient for reducing openwater to ice conditions.
1904. January 27. January 28. March 2. March 4.	Feet. 240 240 230 230	Sq. ft. 393 398 285 285	Feet per sec. 1.90 1.97 1.86 2.01	Sec- feet. 749 786 529 572	Feet. 3. 40 3. 40 3. 55 3. 65	Feet. 1.55 1.55 1.45 1.55	Feet. 1. 8 1. 8 2. 1 2. 1	Feet. 2.0 2.0	Sec feet. 3, 170 3, 170 3, 450 3, 650	0. 24 . 25 . 15 . 16	Sec feet. ±675 ±675 ±600 ±675	±1.11 ±1.16 ± .88 ± .85
1905. February 9 Do	458 458	1,390 1,390	1.50 1.54	2,080 2,140	5.27 5.32	3. 27 3. 32	2. 10 2. 10	1.0 1.0	7,530 7,680	. 28	2, 920 3, 020	. 71
1906. January 9a. January 10a. March 2. March 3. March 30. Do. Apr 1 11 b. Do.b.	440 440 445 445 447 447 450 450	1, 100 1, 030 1, 140 1, 050 1, 180 1, 200 1, 210 1, 240	1. 17 1. 09 1. 40 1. 31 1. 36 1. 38 1. 37 1. 38	1, 290 1, 120 1, 590 1, 380 1, 660 1, 660 1, 710	3.58 3.40 4.26 4.08 4.77 4.80 4.70 4.70	2.38 2.22 2.43 2.27 2.67 2.70 2.80 2.80	1. 28 1. 30 1. 97 1. 98 2. 26 2. 26 1. 95 1. 95	.1 .1 .1 .0 .0 ±1.0 ±1.0	3,520 3,170 4,980 4,580 6,220 6,300 6,050 6,050	.37 .35 .32 .30 .26 .26 .28	1,550 1,370 1,630 1,420 1,950 1,990 2,140 2,140	. 83 . 82 . 98 . 97 . 82 . 83 . 79 . 80
		ROI	IDOU	T CRE	EK A	T RC	SENI	DALE,	N. Y.	·		•
1901. December 6 c	104	479	0.46	222	6.80	6. 74	0. 26		415	0. 53	253	0.88
January 14 February 8 February 26 Do	105 102 80 100	479 732 489 517	. 88 1.62 1.11 1.32	423 732 543 684	7.00 8.81 8.13 8.43	6.53 8.41 6.71 7.01	. 47 . 40 1. 42 d1. 42		540 2,330 1,610 1,930	.78 .31 .34 .35	247 1,900 359 549	1.71 .40 1.51 1.24
1903. February 25	115	474	1.6	676	7.9	7.40	. 50		4, 370	. 15	885	. 76
1906. February 27	117	555	. 35	194	€5. 15	4.51	. 46					
		WA	LLKI	LL RI	VER	AT N	EWP	ALTZ,	N. Y.		•	
1901. December 11 f	135	1,310	2.32	3,040	11.50	10.8	0.70		3, 830	0.79	3, 250	0.94
January 21 January 23 g January 31 h February 10 February 24	80 140 100 115 85	423 1,880 679 496 388	. 78 3. 22 1. 72 1. 20 . 74	332 6,060 1,170 597 288	7. 24 17. 33 9. 07 7. 78 7. 35	6.04 16.41 8.07 6.78 i5.25	1.20 .92 1.00 1.00 2.10		860 9, 290 1, 980 1, 160 919	.39 .65 .59 .51	277 8, 300 1, 330 619	1.20 .73 .88 .97
1903. February 7	140	1.070	2 14	2, 290	11 2	10 45	75		3,580	64	2, 970	77

2.14 2.03 1.24

2, 290 | 11. 2 2, 030 | 10. 9

945 8.85 7.89

10, 45 9, 73

. 75 1. 17

. 96

3,5803, 330 1, 830 2,970 2,440 1,230

.61

. 77 . 83 . 77

999

757

February 7..... February 10 j.... February 26.....

140 1,070

142

130

a Frozen except for narrow channels above and below bridge. b Frozen except for narrow channel near left bank. c Ice varied from one-half inch to 5 inches from bank to bank at riff just below; ice extended one-third

way across.

d Estimated from previous measurements, same date.
e Subject to correction.

I studget to correction.

I Lee over from stations 40-85.

I Lee badly broken at station 20.

I Lee badly broken at station 110.

I Below rating table; water considerably above top of ice.

I Stations 135-142 open.

Stream measurements during frozen season—Continued.

WINOOSKI RIVER AT RICHMOND, VT.

					Ga beig	ige ht—			to w	height ater face.	to be	height ottom ice.
Date.	Width.	Area under ice.	Mean velocity.	Discharge.	To water surface.	To bottom of ice.	Thickness of ice.	Snow on ice.	Discharge for open-water conditions.	Coefficient for reducing open- water to ice conditions.	Discharge for open-water conditions.	Coefficient for reducing openwater to ice conditions.
1905. March 3 March 4 1906, March 9 a	Feet. 75 75 75	Sq. ft. 109 114	Feet per sec. 1.89 2.30	Sec- feet. 206 262	Feet. 5. 45 5. 58	Feet. 2. 70 2. 83 ± 3. 4	Feet. 2.95 2.95 ±2.8	Feet. 0 0	Sec feet. 1, 460 1, 610	0. 14 . 16	Sec feet.	

 $[^]a$ Channel open 1,000 feet upstream and one-half mile downstream. Ice very rough, broken, and tilted, reaching to bottom for about two-thirds of section.

The following table includes some single sets of discharge measurements, with a brief description of the conditions. As a rule, these are insufficient in range at a given station to give much information regarding the winter rating curve.

Single discharge measurements on frozen streams, 1906.

ight to of ice.	Coefficient for reducing open water to ice conditions.	1.1
Gage height to bottom of ice.	Dis- charge for open- water cond:- tions.	Second- feet. 2, 510 2, 510 3, 450 534 730 654 709 687 880 850
Gage height to water surface.	Coeffi- cient for reducing open water to ice con- ditions.	852.25.25.25.25.25.25.25.25.25.25.25.25.2
Gage he water	Discharge for openwater conditions.	Second- feet. 808 808 3, 555 4, 415 1, 650 1, 650 1, 110 1, 920 1, 380 1, 380
	Thick- ness of ice.	76ee. 0.53. 0.53. 1.20.
eight—	To bot- tom of ice.	7. 7.64 7.64 7.64 7.65 7.66
Gage height—	To water surface.	7 66 76 76 76 76 76 76 76 76 76 76 76 76
-	Dis- charge.	Second- feet. 674 2, 260 632 473 473 5,25 708 1, 180 5,370 4,110 6,220,
	Mean velocity.	Feet per second. 10.65 10.065
	Area under ice.	Square feet. 1,040 2,040
	Width.	Feet. 225. 332. 332. 332. 333. 333. 334. 1118. 1118. 336. 136. 172. 6. 172. 6. 172. 5.
	Date.	1906. Bebruary 17 January 23 January 18 January 18 January 18 February 18 February 18 February 18 February 19 February 19 February 19 February 10 March 28 March 28 March 28 March 29 March 29 March 29
	River and station.	Chemung, Chemung, N. Y. a. Chippewa, Eau Claire, Wis. b. Des Moines, Keosaqua Iowa c. Flambeau, Ladysmith Wis. d. Do. c. Do. c. Genesee, Jones Bridge, Mount Morris, N. Y. s. Do. f. Hooste, Buskirk, N. Y. f. Mamme, Shewood, Oho. k. Raquite, Massena Springs, N. Y. f. Do. d. Radmuct, Massena Springs, N. Y. f. Do. d. Do. d. West Canada Creek, Twin Rock Bridge, N. Y. n.

a Gravel bed' under ice surface smooth; considerable needle ice.

^b Gravel bed; open 70 feet wide upstream for a long distance; same for about 1,000 feet downstream; then frozen for about 600 feet; then open for a long distance.

^c Gravel and sice rough.

^c Gravel and sand bed.

Measurements made about 250 feet downstream from regular station.

g Gravel bed. h Elmwood Avenue Bridge (regular station); ice smooth on bottom; some needle ice running at stations 100-140. f Considerable needle ice; gravel bed.

J Gravel bed; ice rough.

R Sand and gravel bed; iver open 500 feet below gage for about 800 feet to dam and arch bridge where gaging was made.

R Gravel bed; river open, stations 150-175.

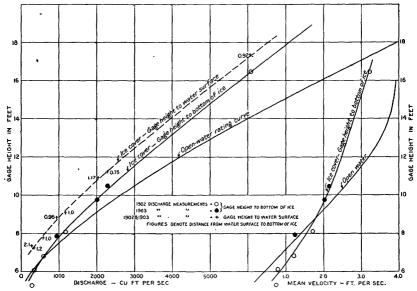
M River open, stations 0-35 and 130-175.

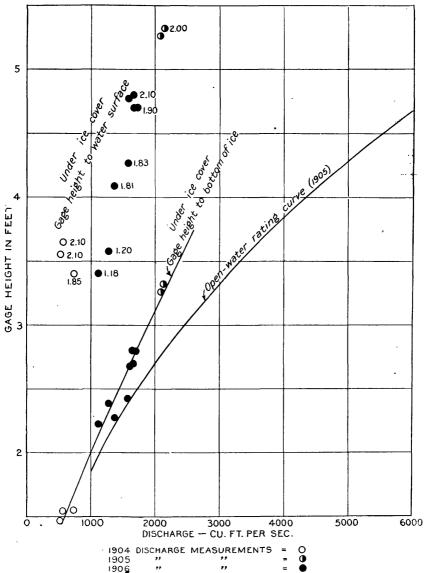
Gravel bed; under ice surface nearly smooth; a little needle ice.

STATION RATING CURVES FOR ICE COVER.

GENERAL CONSIDERATIONS.

At several stations sufficient data have been gathered to construct a rating curve for conditions of ice cover, applicable to average ice conditions within the range of winter gage heights, but the variation in form of curve with change in thickness of ice is still uncertain, and the proper rating curve or coefficient to apply for the time when the ice is thin has not been sufficiently verified by gagings. A station rating curve for conditions of ice cover must evidently be constructed on one of the following bases: (1) Gage heights to the surface of the water as determined from a hole cut in the ice, or 2) gage heights to the bottom of the ice.




Fig. 4.—Rating and velocity curves under ice cover, Wallkill River at Newpaitz, N. Y.

In figs. 4 to 6 are shown the results of such gagings as have been made under ice cover at three gaging stations, the gage heights being plotted in each of the above ways and the open-water rating curve being shown for comparison.

WALLKILL RIVER AT NEWPALTZ, N. Y.

So far as can be determined at present, the rating curve based on gage heights to the water surface seems to give the best results; that is, the points lie more nearly on a smooth curve (fig. 4). There is no great difference, however, except in the case of the lowest gaging, in which the thickness of the ice was perhaps only half of the

distance, 2.1 feet, from the water surface to the bottom of the ice, indicating that the water below the ice was under some pressure. It will be noticed that the range in ice thickness is not large.

FIGURES DENOTE DISTANCE FROM WATER SURFACE TO BOTTOM OF ICE
FIG. 5.—Rating curve under ice cover, Kennebec River at North Anson Me.

KENNEBEC RIVER AT NORTH ANSON, ME.

The effect of varying thickness of ice on discharge for a given gage height is clearly shown (fig. 5). No one curve can be drawn through the points plotted for the gage heights to the water surface, although a few

more gagings would, perhaps, enable a series of curves to be drawn for different distances from the water surface to the bottom of the ice. It is preferable to use these distances rather than thickness of the ice, for the position of the bottom of the ice with reference to the water surface is not only dependent on the ice thickness (in general being about 92 per cent of it), but will also vary with the

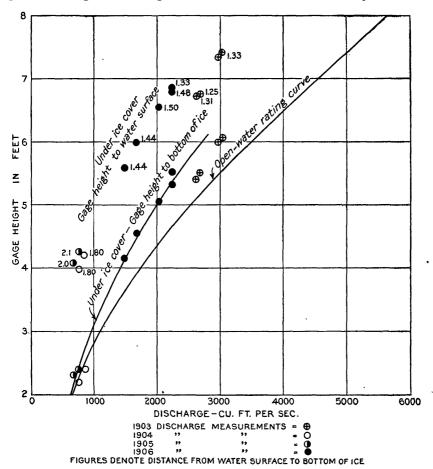


Fig. 6.—Rating curve under ice cover, Connecticut River at Orford, N. H.

snow load and thus include its effect. If gage heights to the bottom of the ice are used a fairly consistent curve is obtained for this station.

CONNECTICUT RIVER AT ORFORD, N. H.

The same general results appear here as in the case of the Kennebec, although the range of ice thickness is less (fig. 6). The gagings of 1903 and 1904 are open to some question, owing to the manner in

which they were made, and have been given little weight in drawing the curve as shown.

GENERAL FORM OF RATING CURVE FOR ICE COVER.

The curve, as constructed with gage heights to the bottom of the ice, in general lies to the left of the open-water rating curve, but tends to approach it in its lower portion and perhaps to cross it.

The degree of curvature of the two curves is in general about the same in their lower parts and, like the open-water curve, the rating curve for ice cover is apparently a tangent in its upper part. In fact, it will be noticed in the case of the Wallkill and Connecticut that the ice-cover curve will be approximately the same as the open-water curve if the latter is swung around the intersection point of the two curves until the upper parts coincide.

With gage heights to the surface of the water, the indications are that the curve for ice cover (or rather the series of curves constructed for different thicknesses of ice) will be approximately parallel to the curve determined by gage heights to the bottom of the ice.

RELATION BETWEEN DISCHARGE UNDER ICE COVER AND FOR OPEN SECTION.

If gage heights are taken to the bottom of the ice and the discharge compared with that for the same gage heights in open channel, it is found that as the stage increases this ratio decreases. In the case of the Wallkill, this ratio is greater than unity below about gage height 6.8, where the curves cross, and decreases from this point to a value of about 0.71 at gage height 18.0. With the Connecticut the range in this ratio is from 0.97 at gage height 2.0 to 0.78 at gage height 6.0. Evidently no mean value of the ratio can be assumed that will give anything more than rough results.

It is not deemed wise in the light of existing data to advise the use of either one of the above-described methods for the construction of rating curves to the exclusion of the other, although the indication seems to be that the use of gage heights to the bottom of the ice will prove most generally convenient. There will undoubtedly be cases, however, where this method must be used with caution, more especially in the lower part of the curve, as it would not take into account the effect of ice being held down by shores or piers, and the consequent pressure or head under which flow was taking place.

VERTICAL VELOCITY MEASUREMENTS UNDER ICE COVER.

DETAILS OF VERTICAL VELOCITY CURVES.

The principal data for vertical velocity curves at 25 stations are given on the following pages. It will be noted that each curve can be replotted from the table, if desired. In general, mean results are given for each set of curves taken, but some sets are subdivided in order to separate different conditions.

 ϵ Needle ice from 1 to 4 feet in depth under bottom of ice.

b Coarse gravel bed.

a Gravel bed.

Vertical velocity measurements.

CATSKILL CREEK AT SOUTH CAIRO, N. Y.a

		V IE	RTIC.	A. I.	VEI
for		0.2+0.8 2 depth.	0.95	88.5	86.
Coefficients for educing to mean	vejocity.	0.5 depth.		8,8,5	88.
Coeff reduci	A A	.minmix.eM	0.72	9.8.8	8.
Depth of hread of	ity.	In per cent of depth.	0.27	5.8.4.	.31
Depth of	velocity	In feet.	0.8	 	
ls of	ver.	In per cent of depth.	0.64	8,69	02.
thread elocity	Lower	.1991 nI	2.0	2.2	
Velocity in feet per second from vertical velocity Depth of threads curves.	ber.	In per cent of depth.	0.03	.10	8.
Dept	Upper	In feet.	0.1	0,00	
ocity		.mumix.BM	0.51	5.13.13	:
cal vel		Bottom.	0.14	3.8.4	
verti		.qoT	8:	58.8	
d fron	·ų	$^{3.0+2.0}_{2} = 10^{10}$	0.39	4.6	
r second fi		0.8 depth.	0.28	443	
eet per		.dtqsb 2.0	0.50	8,8,8	
ity in f		.63 depth.	0.43	£ 83.55	
Veloc	-	мевп.	6.37	#. #.	4.
•	99i 1	.Тhickness o	Feet.	386	86.
	eoi v	Depth below	Feet. 3.1	- (- - 4	2 7
		Total depth	Feet.	, 	3.6
laltin	i mo	ort sonstrid niog	Feet.	383	
-tod	ot i 99i	Oage heigh To mot	Feet.		;
тэтву	to v ce.	idgiəd əgab alrus	Feet.		
		Date.	1906. February 16		Mean of 4 curves

CHEMUNG RIVER AT CHEMUNG, N. Y.b

0.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	. &	97 00 00 00	1.02
0.78 .71 .67 .42 .29	3.3	¥.8°28	38.
0.78 .66 .54 .38 .38	.52	8.8.8.8	8.
0.41 .38 .29 .38 .38	8. 8.	.55 .50	.46
66.69 1.21.8 1.00 1.00	2	2.1 1.4 1.6	
0.86 688 .70 .70	8 28	.82 .69 .75	62.
6.20 6.20 7.00 7.00 7.00 7.00	3	8.818181 8648	:
41.0 22.0 70.0 20.0 20.0 20.0 20.0	3 7	E. 88. 12.	.16
2.1.0.0.1.0.4.0.0.1.0.0.1.0.0.1.0.0.0.0.0	?	<u> ကယ်က်ဆဲ</u>	
0.50 1.85 1.70 1.72 1.72 1.28	: :	85.8	
0.06 .15 .40 .120 .26 .26	2	44.44.	
000000000000000000000000000000000000000		888	
0.42 60 1.00 1.28 68 68		8858	
0.40 1.45 1.30 1.70 66 .66	3	.34 .61 .85	
0.43 .74 .58 1.26 1.55 1.05	3	38	
0.50 . 79 1.38 1.38 2.12 1.54 1.26	2	96.	
0 39 55 89 89 89 89 89 88	.65	¥2;48	3 .
0.50 0.54 0.86 0.84 0.84 0.84 0.84 0.84	42	4.3.3.8	.51
86.00 66.00	7.7	4.00.00 8.00.21 21	3.7
10.2 10.2 10.6 9.1 6.5 6.5	8.0	3.8 2.8 7.7	4 1
888888	1	120 130 150	
3.27	:	3.38	
2.85		2.85	
1906. February 17c	Mean of 8 curves	February 17	Mean of 4 curves

Vertical velocity measurements—Continued.

WISa
AIRE
CI
EAII
A.T.
RIVE
CHIPPEWA RIVER AT EAH CLAIRE, WIS.
CH

	OII	KEAM.	F.T.	OW	Dυ	KIN	G
s for	γ.	2+0.8 epth.		1 04	1.00	1.02	
Coefficients for educing to mean	relocit	.daqəb		22	22.83	8.	
Coef		.mumix	вM	2.7	88	. 79	
Depth of thread of	velocity.	ger cent depth.	jo IuI	0 47	.57	.56	
Dept	velo	.199î	uĮ	6 9	6.5		
ls of y.	ower.	depth.	i aI ìo	77 0	2.8	.84	
h of threads mean velocity	Lo	.1991	uI	10.4	10.0		
Velocity in feet per second from vertical velocity Depth of threads curves.	per.	ger cent depth,	jo Iul	0 19	88.83	83.	
Dept	Up	.1991	uI	9.	2.7		
ocity		.mumix	вМ	22	1.39		
cal vel		.mo11	оя		8.4		
a verti		•6	юТ	21.0	8.6		
cond fron	.d.	$t_{\rm qeb} \frac{8.0}{2}$	2.0	0.50	1.14		
r secor		depth.	8.0	0 47	1.83		
eet be		qebth.	2.0	53	1.10		
ity in f		depth.	6.0	0 79	38.		
Veloc		·ur	Жe	65 0	1.14	18	
	. 90i i	скиева о	цТ	Feet.	22.1	1.10	
	.99i v	oth belov	Del	Feet.	12.4	12.4	
		dtqəb lei	оТ	Feet.	13.5	13.5	
laitial	i mo	orl songt nioq	Dia	Feet.	120		
-10q	01 .90i	rdgiəd əg io mot	Gal	Feet.			
1918V	το ν .90	idgiəd əş girns	Gal	Feet.	5		
		Date.		1906.	out the state of t	Mean of 3 curves	

CONNECTICUT RIVER AT ORFORD, N. H.b

1112	LI			11		110	J11	•				
	0.99 86.	8	-i-	1.00	66.	76.	1.00	8.8	1.08	1.00	9.1.	
	0.88	26.	8.8	88.	68.	.93	8.8	8.5	.95	6.	8.8	
	9.84	8 .	38	8.	.87	77.	88	8:	ē.	æ.	8.38	
	0.30	.40	9.55	.37	.37	.15	4.8	8,5		E.	.13	
	3.0								1.9	7.8	— 4.∞	d.
_	0.68	8.	æ. æ.	.77	. 73	.60	.57	88.5	.67	.67	 §§	and be
	4.5	5.0	6.4 2.2	5.7		1.2	2.2		4. 4. 4. 60	3.9	2.0	l and s
_	0.08				.12	.05	8	3.5	38	90.	8 . :	b Gravel and sand bed
_	0.5					.1.		wie	ن بن	<u>ښ</u>	2, :	q
-	2, 27	1.97	2.9	2.04		78.	1.48	1.2	1.25	1.23	1.32	
_	1.08	1.58	3.55	1.05		 8.	88	.61	38	.70	8.8	
	1.22						1.08				_	
	1.92	1.89	1.59	1.77			1.24	_		-		
	1.65	<u>-i</u>			<u>:</u>		88					
_	2.23			-	<u>:</u>		1.60					
_	2.17			⊢						_		
	1.92	_	1.58	1.76	1.80		6.E					
_	9.8	:				2.00	25.0	જાં -		-i	3 1.7	
-	9.6			7	7.5		در در در در	90		ξĊ	ო'ო' ——	
-	-				-				_			
_	150				-		915		8 E			Ġ.
_	5.50	_			<u> </u>	5 2.45		5 2.25			7 - 2.37 2.22	avel be
-	6.73	7.30	7 7		+	4.1		36.8			 4.4.	a Grs
	January 29		February 7		Mean of 6 curves	Pebruary 1.		February 2 3.95			February 3 4.17 February 4 4.03	
2	į				curve	1904.		:				
1 0	20.	30	y 7	y 7	an of	19 Y		y 2			y 3	
	nuary	nuary	ebruar nuarv	bruar	Με	bruar		sbruar,			ebruar ebruar	
1	Jа	Ja	Ę,Ę	Ē		Ħ		Ē			E E	

Vertical velocity measurements—Continued.

CONNECTICUT RIVER AT ORFORD, N. H .- Continued.

		.90			ice.		Velocit	y in fe	et per	Velocity in feet per second from vertical velocity curves.	from es.	vertice	al velo		Depth c meal Upper.	of san v	threads crelocity.	of .	Depth of thread of maximum velocity.		Coefficients for reducing to mean velocity.	efficients icing to velocity	S 1 ×
Date.	t tagish sgat) sartae	tdgled egse of to mot	noil seance fron Jaioq	Total depth.	Depth below	Thickness of i	Меап.	0.5 depth.	0.2 depth.	0.8 depth.	$\frac{6.2+6.8}{2} \operatorname{depth}$.qoT	Bottom.	Maximum.	Jool al	In per cent of depth.	In feet.	or depen.	In feet.	In per cent of depth.	.mumixsM	0.5 depth.	8.0.+2.0
1904. February 5	Feet. 4.03	Feet. 2. 23	Feet. 90 100 340	Feet. 5.2	Feet. 3.6 4.2	Feet. 1.75 1.95 1.60	0.93 .96 .85	1.03	1.05	0.82	96. 88.	90.92	45.00	1.06 1.15 1.02		0.14 .17 .12	21.2	0.61 .63 .69	1.3	8.8.4. 0	888	86.88	
Mean of 12 curves			:	5.7	4.1	1.91	.92	:	:	:	:	:	:		:	.07	-	.63	:	.25	88	.92	
1905.	4.07	2. 25	100 1100 1170 1170 1170 1170 1170 1170	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	ಪ್ಪಪ್ಪಪ್ಪಪ್ಪ 44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		1.24 1.124 1.152 1.15 1.19 1.19	1.1.22 1.23 1.23 1.28 1.33 1.33	1.00 1.34 1.34 1.10 1.10 1.25 1.25	. 98 1.14 1.14 1.16 1.16 1.16 1.13			86886477798888	1.33 1.33 1.13 1.11 1.11 1.22	848881120812 081	11 11 10 00 00 03 11 11 18	00000000000000000000000000000000000000	23.33.05.05.05.05.05.05.05.05.05.05.05.05.05.	111111111111111111111111111111111111111	828222347588	288888888	88.88.44.88.05.88.09.18.	
Mean of 10 curves		:	:	5.5	3.8	1.96	1.02	<u>:</u>	÷	i	:		- ;	i	-	. 12		02.	:	.36	.84	88.	
March 1	4.26	. 40	110 160 180 250 270 270 320	ふふらなててらら なアアちきまちゅ	ಟೃ4ಪಟ್ಟಾಟ್ಟ್ ಕಾರಿಯಬ್ಯಬಹು	112222	1. 28 1. 14 1. 14 1. 25 1. 25 1. 25 1. 14	1. 25 1. 36 1. 36 1. 37 1. 32 1. 32	11.33		1.06 1.15 1.15 1.25 1.25 1.14		\$52.83.52.83.88 \$52.93.52.83.88	1. 32 1. 53 1. 41 1. 07 1. 33 1. 33	₩ ⊕₩₩₩₩ ₩₩	00.1.08 00.08 10.09 12.01 12.01	244114444 88799774	46.05.05.05.05.05.05.05.05.05.05.05.05.05.	11.3 1.9 1.7 1.7 1.7	8,98,419,44	8.2.2.8.6.2.8.2	88.829.928. 82.83.	
Mean of 8 curves				5.8	4.1	1.98	1.06									. 10		.68		.37	- 98:	88.	

Vertical velocity measurements—Continued.

	Continued
	þ
	Z
	COTO
	F-
•	DIVED
	CONNECTION DIVIDE

Coefficients for reducing to mean	Ÿ.	0.2+0.8 2 depth.	0.97 1.04 1.00 1.00 1.99	1.00	1,03 1,00 1,00 1,01 1,01 1,08	1.00	1.04 1.04 1.00 1.00 1.00 1.00	1.01
ficient ing to	elocit	.6.5 depth.	0	68.	88888888	88.	8.8.9.8.9.8.	. 87
Coef		.mumix&M	0.8 8.8 8.8 8.9 8.9 8.9 8.9 8.9	98.	2288888	98.	8.85.78.88. 88.88.88	.85
th of	mum city.	In per cent of depth.	0.25 .59 .31 .31 .47	68.	4088844	. 42	72.88.84.4.0c	. 44
Depth of thread of	maximun velocity.	In feet,	1.8.1.1.9.8.9. 1.4.8.9.8.4.9		1932 1932 1932 1935 1935 1935 1935 1935 1935 1935 1935		9994499999 4808690	
ls of	er.	In per cent of depth.	0.67 .81 .72 .68 .71	. 74	6.88.30 6.82 6.83 6.83 6.83 6.83 6.83 6.83 6.83 6.83	. 74	88888	.74
threads elocity.	Lower	In feet.	8444467 0040710		ಟ. 4 4 ಟ. 4 ಗ. 4 4 ಗು ○ ∞ 4 ∞ ∞		&4&&4 81-07-887-	
1 >	er.	In per cent of depth.	0.02 .29 .09 .09 .17	.13	. 22 . 23 . 03 . 03 . 13 . 17 . 16	. 15	22.00.02.22	. 15
Depth of mean	Upper	In feet.	0.1 1.6 4.1 1.1 1.1		6.1. 6.1. 1.2. 1.0. 1.0.	:	1.0	
ocity		.maximum.	1.10 1.95 1.72 1.60 1.15	i	1.34 1.97 1.86 1.69 1.54 1.21		11.1.1.28 22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
Velocity in feet per second from vertical velocity curves.		востош.	0.34 1.14 1.80 .66 .67	-	65. 96. 198. 198. 198. 198.	:	. 70 1. 05 1. 03 1. 45 . 77 	
ı vertic		Top.	0.89 1.00 1.44 1.32 1.03 3.37	:	. 57 . 92 1. 25 1. 38 1. 04 . 90		. 85 1. 138 1. 138 1. 19 1. 19 1. 19	
d fron	·u:	140b 8.0+2.0	0.97 1.52 1.70 1.44 1.37 1.08		1.06 1.57 1.42 1.14 1.14 1.14		1111111 1388 1388 1388 1388 1388 1388 1	:
r second f		.6.8 дерћа.	0.85 1.62 1.23 1.21 1.08		1.03 1.75 1.34 1.19 1.14 1.14	-	1.07 1.53 1.39 1.19 1.03 1.03	
eet be		0.2 depth.	1. 65 1. 65 1. 65 1. 53 1. 07		1.09 1.45 1.86 1.66 1.48 1.14 1.14		1.07 1.32 1.73 1.62 1.146 1.12 59	
ity in f		.63 depth.	1. 03 1. 89 1. 86 1. 63 1. 57 1. 14		1.32 1.92 1.80 1.63 1.21 70		1.27 1.73 1.73 1.55 1.18 1.18	
Veloci		Mean.	0.95 1.58 1.67 1.44 1.37 1.06	1.24	1.09 1.60 1.58 1.38 1.12 1.12	1.26	1.09 1.49 1.57 1.29 1.07 1.07	1.20
	ice.	Lpickness of	Feet. 1.45 2.15 1.20 1.30 1.30 1.90	1.59	1.22 1.22 1.23 1.33 1.20 1.70	1.73	1.2.1.20 1.2.20 1.4.40 1.90 1.90 1.90	1.67
	.99i v	Depth below	Feet. 4.6 6.0 6.0 7.3 6.4	0.9	4.0.0.0.0.0.0 0.0.1.0.0.1.0	5.9	4.0.0.0.0.0.0 	5.6
		Total depth	Feet. 7.2 7.2 7.2 7.2 8.9 8.9	7.5	\$\$2,7,7,5 \$\$5,23,6 \$\$5,23,6	7.5	621.7.7.8.7. 021-047-8	7.3
laitin	m ir	Distance fro	Feet. 60 140 180 220 220 260 300 340	-	140 180 220 300 340		3822288 380888 340888	
-tod	ot ; ice.	Idgiəd əgad to mot	Feet. 5.51		5.90		5.61	
19J.B.	и ој .90	tdgisd sgaÐ sirus	Feet. 6.84		6.80		6.56	
		Date.	1906. February S ^a	Mean of 7 curves	February 15 a	Mean of 7 curves	February 17 a.	Mean of 7 curves

a Ice rough.

Vertical velocity measurements—Continued.
CONNECTICUT RIVER AT ORFORD, N. H.—Continued.

										•													
	Toley	-10d	lsitin				Velocity in feet per second from vertical velocity curves.	ty in fe	et per	second f	from s.	vertica	al veloc	-	Depth me	th of threads mean velocity.	reads ocity.	of I	Depth thread		Coefficients for educing to mea	jents 1 g to m	for
		t to lee.			.99i v	.99i 1					-ца				Upper.	ı.	Lower.	Ι.	maximum velocity.		velocity.	city.	
Date.	tdgiəd əgaə altus	Gage height to mot	Distance fro prioq	Total depth	Depth belov	Трісклеss o	Меап.	0.5 depth.	.c. depth.	0.8 depth.	qeb 8.0+2.0	.qoT	Bottom.	.mnmixsM	In feet.	In per cent of depth.	In per cent	of depth.	In feet. In per cent	of depth.	.mumixsM	.64 depth. 8.0+2.0	g depth.
March 14 a	Feet. 6.00	Feet. 4.56	Feet. 60 140 180 220 220 260 340	Feet. 4.9 6.6 6.2 6.5 6.7 7.0	Feet. 3.55.00.00.00.00.00.00.00.00.00.00.00.00.	Feet. 1.35 1.95 2.05 2.09	1. 01 1. 38 1. 39 1. 18 1. 24 1. 02	1. 24 1. 56 1. 56 1. 38 1. 18	1.06 1.45 1.137 1.10 1.10		1.00 1.134 1.122 1.022 1.023 1.023	0. 91 1. 12 1. 05 1. 28 1. 28 . 57	0.25 .882 .872 .349	11.25 2.11.14.86 3.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1	0.07.7.8.	0.13 .16 .10 .07	0	77 71 71 66 63 66 73 73	11.1.1.1.2.2.2.2.2.2.2.0	0.51 .33 .35 .41 .41	0.83.83.83.83.83.83.83.83.83.83.83.83.83.	0.82 88.83 88.90 87.87 87.87	1.01 1.00 1.00 1.00 1.00
Mean of 7 curves	:	:		6.6	4.9	1.69	1:11	-					-	-	:	60.	:	. 92	-	. 39	8.		1.00
March 15 a	5. 59	4. 15	60 1180 220 360 340	6.6 6.0 6.0 7.0 6.0 7.0 7.0	6444664 2007 8	1211112 2025 420 80 80 80 80 80 80 80 80 80 80 80 80 80	1.01 1.36 1.22 1.22 1.53 1.53	1.1.20 1.1.25 1.10 1.10 1.10	1.143 1.355 1.055 1.055	.1.23 1.23 1.08 1.08 4.7	1. 02 1. 34 1. 12 1. 12 1. 12 51 51	.11.13. .88. .88. .88. .88.	1.02 .80 .55 .35 .30	1.1.1.23 1.1.1.38 1.1.1.38 60	969-466	. 12 . 03 . 03 . 12 . 12	9.000004.000004.00000000000000000000000	222288222	11111111111111111111111111111111111111	88882888	888388	<u> </u>	.1.1.1.1. 0000011.000
Mean of 7 curves				6.2	4.6	1.71	1.08	<u> </u>	<u> </u>	\dagger			i			<u>:</u> - 86.	<u> </u>			. 37		8	1.00
					DES	MOID	DES MOINES RIVER	IVER	AT,	KEOSAUQUA, IOWA.	TOOU	А, ІО	WA.b										
1906. January 13 <i>a</i>	2. 45	2.10	50 350 380 410 520	4.0.0.0.4 200000	6.0.0.0.4 0.1.8 2.2	0. 55 55 55	1.86 1.82 1.65 1.38	1.32 2.35 2.03 1.87 1.52	1. 33 1. 98 1. 91 1. 41	1.07 1.87 1.66 1.39 1.38	1. 83 1. 83 1. 65 1. 38	1.08 .63 1.25 1.35	0.60 .95 .92 .78	1.37 2.35 2.09 1.97 1.52	0.2 1.0 5	0.05 .21 .09 .09	600004	0.70 .80 .69 .81	25.52 25.88 25.88	0.32 .50 .32 .51	0.87 .87 .84 .91	.90 .90 .91 .91	1.1.00 1.00 1.00 1.00
Mean of 5 curves				5.2	4.8	. 46	1.58	i	i	i	-	Ť	÷	- 	-	. 13		.73		. 40	 8.	 8.	1.00
				a	a Ice rough	gh.							b Gr	b Gravel bed.	ed.								

Vertical velocity measurements—Continued.

Υ.α
ż
AT KINGSTON,
AT
CREEK
ESOPUS

to water ce. t to bot-	f ice.		.99i w	.95i î	Veloci	Velocity in feet per second from vertical velocity curves.	et per	second f	th.	vertica	l veloc	-	Depth of threads mean velocity. Upper.	of th	1 1	of .	Depth of thread of maximum velocity.		oeffici ducing velo	Coefficients for reducing to mean velocity.	or
orl sonstrid nioq		Total depth	Depth belov	Thickness o	Меап.	.5 depth.	.0.2 depth.	.64 depth.	qəb 8.0+2.0	.qoT	Bottom.	Maximum.	In feet. In per cent	of depth.	In feet. In per cent	of depth.	In per cent	of depth.		6.5 depth.	qebth.
Feet. Feet. F. 100 E		Feet. 6.8 5.0	t. Feet. 8 6.7 9 4.9	Feet. 0. 10 . 10	0.91	1.10	0.88 (0.88 0	0.88	0.60	0.20	1.10	1.4 0.	0.21	5.1 0. 3.6	7.76 3.	7-4	55 0. 49	83 0. 91 .	. 91	1.03 1.00
:	:	5.9	9 5.8	. 10	.94	-			:	<u>.:</u>		:	<u>.</u>	91 :	· :	.74	:	22		87	1.02
 20 20 4,00 6,00			118.0 6.6 6.0	(e) (50 (10 (10 (10	1.28 1.15 1.20	1.50 1.33 1.32	1.43 1.38 1.28	1.13 1.33 1.96 1.18	1.28 1.42 1.17 1.23	1.05 1.05 .80	4.8883 	11.1.1. 32.25 32.25	4.8.4.0	01.10	6.44.4 0.84.4 	. 71 . 73 . 68 . 78	19.9. 2.8.8.4 	821 128 40 40	83 91 91	.85 .93 .91	88.86 88.86
6.	9	0.5	3 5.2	. 10	1.25				<u>:</u>	:	:	- :	-	60	· :	72	· :	23	. 87		86.
: 84285888 844444780			00000000000000000000000000000000000000	99999999	. 87 1.14 1.24 1.24 1.28 1.28 1.17	23.28.29.20.23.28.28.28.28.28.28.28.28.28.28.28.28.28.	1.1.10 1.50 1.55 1.24 1.24				8.0005.00		ರಾಜರಾಜ ತರ್ಣ	2888 888	000000044 4004044	882 69 11 66 11 74 2 67 2 67 2 67 2 67 2 67 2 67 2 67 2 68 3 69 11 69 11 60 11	25511028	8222222	888888388	25 25 25 25 25 25 25 25 25 25 25 25 25 2	.91 .99 .97 1.02 1.00 1.96
		4	9 4.8	. 10	1.16	:	-	<u>:</u>		-:	- ;	- :	- - !		- - !		· ;	. 29	8.	- 82	86.
55 70 90 105		82.44.14.44.	5 2 2 3 6 4 7 1 1 1 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	8888	1.08	1. 12 1. 09 1. 15	1.30 1.19 1.00	76.58.5	1. 14 1. 12 1. 04 1. 85	96.99.80 50.44	. 1540	1.32 1.22 1.16	धंधं धं यं	005 11 11	1949 7989	.59 .73 .73	25.00 2000 2000 2000	82888	28888	. 25 . 25 . 26 . 26 . 26 . 26 . 26 . 26 . 26 . 26	.95 .96 .97
	_	5.0	0 4.4	.60 1.02	1.02			_	_ <u>;</u>	-				90	_ <u>;</u>		- <u>:</u>	.35		- 68.	86.
a Sar	a Sar	\simeq	a Sand and gravel bed	avel be	d.							P E	b Edge ice								

Vertical velocity measurements—Continued. ESOPUS CREEK AT KINGSTON, N. Y.—Continued.

	Totev	-10d	lsitin				Veloci	ty in f	eet bei	Velocity in feet per second from vertical velocity curves.	d from es.	vertic	al velo	city	Dept	Depth of threads mean velocity.	hread	of	Depth of thread of	h of d of	Coefficients for reducing to mean	Coefficients for educing to mea	for
	to v				.99i v	.99i l					• ų ;	\mu			Upper.	er.	Lower		veloc	ity.	ve	velocity	
Date.	tdgied egad afrua	dagied egad to mot	Distance fro nioq	Тотаі дерті	Depth below	Трісклева о	Меап.	0.5 depth.	.dtqsb 2.0	.64 depth.	tqəb $\frac{8.0+2.0}{2}$	Top.	Bottom.	.mnmixsM	In feet.	In per cent of depth.	Jəəl al	In per cent of depth.	.təəi nI	In per cent of depth.	.mumixsM	0.5 depth.	0.2+0.8 2 depth.
1903. February 24.	Feei. 7.10	Feet.	Feet. 60 70 85 90	Feet. 4.2 7.2 7.8	Feet. 3.8 4.4 7.4	Feet. 0.40 .40	1.1.40 1.540 1.50	1.38 1.38 1.88	1.88 1.70 1.63	1.00 1.28 1.38	1. 58 1. 58 1. 50	1.00 1.12 1.22	0.35 1.00 .60	1.96 1.96 1.73		0.07	0; 0; 4; 7; 12 ← 4; 8;	0.66 .71 .65	9.29.1.1 0.85.3	2 2 2 3 4 4	0.74 .79 .88	8.8.8.8	0.96 .97 1.03
Mean of 4 curves				6.0	5.6	. 40	1.51	i		i	:			:	:	60.	:	. 68	-	.37	.82	.84	66.
1906. February 15	5.60		8480 010	9,9,9,9, 41,070	191919 191919	2299	\$8.E.G.	74. 82. 87.	. 56 . 96 1. 21 . 78	.31 .75 .16	.50 .50	. 52 . 70 . 92 . 55	.18 .00 .00	1.22	67	.10	1111 0448	£6. 49. 56.	2000	13.88	8888	8688	1.03 .98 1.07 1.00
Mean of 4 curves	-	;	:	2.6	2.1	.09	.62	- <u>:</u>	:	:	:	Ī			:	.02		.58		. 19	.71	.84	1.02
February 15	5.60		5888	လုံးကုံကုံ တစ်အစ		8.8288	0.0.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.24 1.122 1.02	1.30 1.15 1.18 1.10			1.08 .75 .86 .40	8.33.53	1.30	72.50	98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		1.1.38	8488	8888	86.88	1.90
Mean of 4 curves	:			5.1	4.6	. 52	. 98									.04		- 89		-30	· 28		1.00
						FI	FISH RIVER AT WALLAGRASS,	VER	AT W	'ALL!	AGRA		ME.º										
1906. February 15.	3.91	3.25	110 130 150	0.440 01000	1.8.8.1. 1.8.6.8.1	1122	0.84 1.17 1.04	0. 98 1. 30 1. 19 56	0. 93 1. 20 1. 20 56	0.72	0.82 1.16 1.04	0.83 .98 .50	0.49 44.25	0.97 1.30 1.25	0.0	0.02	2440	0.69 .74 .68	0.1. 9.1. 4.0	0.35	0.87 .90 .83	0.86 .90 .87	1.02 1.01 1.00 99
Mean of 4 curves							68.									.07		.71			88.	68	1.01
								•	2 Grav	a Gravel bed.													

Vertical velocity measurements—Continued.

ME Continued
WALLA GRASS
G.P.
٧
Ξ
٩
۶
F
ρ
7.
PIVER
FISH
ž
_

a Coarse gravel bed.

Vertical velocity measure ments—Continued.

GENESEE RIVER AT MOUNT MORRIS (JONES BRIDGE), N. Y.ª

nean	4.0+2.0 2 depth.	1.02	::. 888			11111.	.96.	; F	.1 .11.1 8.39 11.04 12.09	1.02	
ng to r locity	.ftq9b č.0	0.74	886	888	22.88	×28.8.8.8	88 %	3	188372887	69 .	
reduci ve	.mumixsM	0. 72	885	555	28.2.8.	<u> </u>	8× 8			.68	
mum ity.	In percent of depth.	0.44	888	888	8.8.6.6.	25. 25. 26. 26. 26. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27	82. 28	. 12	55. 60. 60. 51. 51.	99.	
maxin veloc	.1991 nl	25.0	 	12.00	1.00	2000188	9.		10000000000000000000000000000000000000		
er.	In percent of depth.	0.75	19.63	88.45	51.69	66. 66. 66. 66. 66.	19.		76.88.88	99.	, ai
Low	.1991 aI							•	დე ფ4დ ი∞ თ4ი		b Needle ice
er.	In per cent of depth.	0.18	88	14	208	888 98	40.	8	8852588	. 22	b Ne
Upp	.1991 nI	0.8	0.0.8	.65	6644		24				
	Maximum.	3.08	24.54 25.85 25.85	2.27 2.16	1.68	445844 4458778	1.21				
	Bottom.	1.06	1. 07 . 62 . 10	1.61 .63 .58	872.86	324819 22818	×.8.		1.1.2.2.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2		
	.qoT	0.63	2.1.1. 842.51	1.86		1.30 1.30 1.50 1.50 1.50	27.	•	0000010		
	$\frac{8.0+2.0}{2}$	2.18 1.56	208 808 808	1.2.2.48 1.66 89.2	1.16	44	1.06 .62				
	.6.8 depth.	2.04 2.04		2.16 1.25 1.25		1.73 1.73 1.55 1.20	8.4.	1 46	: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:		
	.d4q9b 2.0								21.1.1.1.1.1.2.1.2.1.2.1.2.1.2.2.2.2.2.		
	0.5 depth.	3.02	21-15 84-20	.2.23- 2.230- 3.230-	1.38	22.22.22.22.23.30 1.22.230 1.65	1.11	54	333566 333566 3335663		
	Mean.	લંન	% -i -i	100	:			8	2.1.1.98 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1.80	
.eoi	Thickness of	Feet. 0.50	8.8.8	888	8:8:8:8:	88888	88 4	9	4.88448	4	ed.
əəi	Depth below	Feet. 4. 4 4. 7	4.6.4 0.80	4.0.0.4	4010101 10040	% ′′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′					a Coarse gravel bed
	Total depth.	Feet. 4.9 5.7	ψ. 4. ψ. ω ω μ.		40000	ಬ಼ಟಟ್444 ೮೮೩4೦೬	4.61 ×				arse gr
iui u	ort sonstaid frioq	Feet. 110 120	843	115 130 135	17 27 37	74. 75. 75. 76. 76. 76.	107	8	100 100 100 120 120 120 120 120 120 120	:	a Co
to 1	tdgisd sgad to mot	Feet.									
вw оз .9	thgien egad eirus	Feet. 5.75	5.78		6.00			5,75	5. 78		
	Date.	1906. February 12	February 13	•	February 16		Mean of 20 curves	Fahriiary 12 h	February 13 b	Mean of 7 curves	
	too times minimized.	Gage height to wa Gage height to wa to dege height to boint. Total depth. Total depth. Total depth. Total depth. O.2 depth. O.3 depth. In feet. In f	1906. 1907. 1908. 1909. 19	966. Feet, Feet, Feet, Feet, Press, 111, 29, 22, 20, 21, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45	1906 1907 1908 1909	906. Gage height to was surface them initiated to be compared to the compared	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	996. Gage height to was surface. Gage height to was surface. Gage height to be to	20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	25. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	9.6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

Vertical velocity measurements—Continued.

GENESEE RIVER AT ELMWOOD AVENUE BRIDGE, ROCHESTER, N. Y.ª

for nean		qebth.	1. 090 1. 090	1.00
ts i	ty.	8.0+2.0		-
Coefficients for	veloci	0.5 depth.	0 88.88.88.89.99.97.18.88.88.88.88.88.88.88.88.88.88.88.88.	.87
Coe	Coefficients for reducing to mean. Velocify to mean.		0.88.88.88.88.88.88.88.88.88.88.88.88.88	.82
In feet. In per cent In depth of thread of t		In per cent of depth.	0 888. 888. 84. 84. 84. 84. 84. 84. 84. 8	8
Depth of thread of	maximur velocity.	.teet.	111111111 11111 . 1 . 11 88666448668680886	
s of	er.	In percent of depth.	0.0 0.0 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	. 70
threads velocity.	Lower.	.1991 nI	00000000000000000000000000000000000000	:
	er.	In per cent of depth.	0.02	10.
Depth of mean	Upper.	In feet.	0.5	i
		.mumixsM	11111111111111111111111111111111111111	÷
Velocity in feet per second from vertical velocity curves.		Bottom.	6 80 80 80 80 80 80 80 80 80 80 80 80 80	i
vertic		Top.	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	i
l from es.	·q1	49b. 8.0+2.0	0.0 1.08 1	
second f		0.8 depth.	0.76 1.18 1.18 1.104 1.104 1.103 1.104 1.103 1.033 1.0	
et per		0.2 depth.	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	
ty in f		.65 depth.	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	:
Veloci	Меап.			68.
Thickness of ice.		Тріскпева о	# 0. 59 00 00 00 00 00 00 00 00 00 00 00 00 00	.43
	v ice.	Depth belov	H 9 W 4 4 4 W W W W W W 4 4 4 4 4 4 W W Y 5 0 0 0 0 0 4 70 0 00 1 70 1 0 0 0 0 0 0 0 0 0 0 0 0	3.8
		Total depth	g 9 4 4 4 4 10 10 10 10 10 4 4 10 10 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	4.4
laitia	i me	Distance fro poin	Feet. 50 200 2200 2200 250 250 250 250 250 25	:
Gage height to bot- tom of ice.		Gage heigh to mot	Feet.	_
Gage height to water surface.		RITING	Feet.	:
	Date.		1906.	Mean of 19 curves

a Coarse gravel bed.

Vertical velocity measurements—Continued.

GENESEE RIVER ONE-FOURTH MILE ABOVE ELMWOOD AVENUE BRIDGE, ROCHESTER, N. Y.ª

for nean		8.0+2.0 -2 .dtqəb	1. 09 0.1 99 0.1. 09 0.1. 09 0.1. 09 0.1. 09 0.1. 09	66.		0.75 .97 .81 .71 .90	.76	
Coefficients for reducing to mean	velocity.	0.5 depth.				0.65 .88 .56 .56 .88	.63	
Coeff	Λe	.mumixsM	28. 29. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	8.		0.64 .72 .56 .59	.62	
h of	ity.	In per cent of depth.	0. 24.4. 26. 36. 37. 37. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38	. 44		0.47 .78 .38 .38	.45	all of these curves
Depth of thread of	velocity	In feet.	%%!			2442484 007970		these
s of y.	rer.	In percent of depth.	0.68 633 811 831 831 841 68	. 72		0.68	. 24	all of
threads velocity.	Lower	In feet.	でいるようららららよよう 052008474007			0.0 5.6 5.6		ace on
of	er.	In per cent of depth.	0.05 1.08 1.14 1.14 1.14 1.08 0.00 0.00	60.		0.11 .23 .08 .22	.13	c More or less needle ice under ice surface on
Depth II	Upper.	.4991 aI	0			4.0 4.1. 8	:	nder i
eity		.mumix& M	0.50 522 538 555 555 555 555 555 555 555 555 555			222224 238253 238253		e ice u
Velocity in feet per second from vertical velocity curves.		Bottom.	2.50 2.8888 8.89 6.80 6.80 6.80 6.80 6.80 6.80 6.80 6.80		Y.b	1.35 1.95 1.00 1.10		needl
vertic		.qoT	0 88.24.85.25.88.88.88.88.88.88.88.88.88.88.88.88.88		K, N.	000000		or less
d from	.th.	qəb $\frac{8.0+2.0}{2}$	0. 64.4.4.2.2.4.4.0.0.4.4.4.		SKIR	1.21 2.22 2.22 1.82 1.82		More
second f		0.8 depth.	0. 8.4.2.2. 6.4.4.4.8. 8.4.8.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8. 8.4.8.8. 8.4.8.8. 8.4.8.8. 8.4.8.8. 8.4.8.8. 8.4.8.8.8. 8.4.8.8.8.8		T BU	1.22.22.15 1.22.23 1.33 1.68		٠
eet pei		.dəqeb.	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	-	HOOSIC RIVER AT BUSKIRK,	11.58 1.58 1.25 1.35 2.06		
ty in f	-	0.5 depth.			RIV	222222 222222 222222 2322 2322 2322 23		
Veloci		Mean.	0	.45	000310	0.54455 0.88448 0.88448	1.57	bed.
	.90i l	Thickness o	Feet. 0.50 45 46 40 50 50 50 50 50 50 50 50 50	. 45	H	0.35 64. 34. 34.	88.	b Gravel bed
	y jee.	Depth delow	Feet. 7.7.7.7.7.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	6.6		40.05.5.0 21.4002	6 1	9 6
		Total depth	Feet. 7.7.7.00 0.00 0.00 0.00 0.00 0.00 0.0	7.1		4.73.08.72.0 0.73.00.17.00	6.6	
lsitin	i mi	orl sonstrid nioq	Feet. 40. 40. 100. 120. 140. 160. 180. 220. 220. 240.			20 20 10 110 110		
-10q	01 1 991	hagish sgafi to mot	Feet.					ed.
1918V		Jagied egad Gage height	Feet. 1. 42	<u>.</u>		3.90		ravel l
		Date.	1906. February 14	Mean of 11 curves		1906. February 10 c	Mean of 6 curves	a Coarse gravel bed

Vertical velocity measurements—Continued.

KENNEBEC RIVER AT NORTH ANSON, ME.a

for		depth.	1.1.98 1.000	1.02	1.01	1.02	1.00	1.08	
Coefficients for	velocity.	.614q9b 6.0 8.0+2.0	0.888.6888.428882.1	.8.	28.	16.89.99	.92	2.8888	
Coeffi	vel	.mumix&M	88886888888888888888888888888888888888		8 .	26.85.25 26.85.25	.82		
d of	num ity.	In per cent of depth.	4.7.8.7.8.4.7.9.8.4.4.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		.45	8 <u>18</u> 3	61.	888.58	
Depth of thread of	veloc	In feet.	0	ó <u>4</u> .	:	1.004		.6 .5 .6 1.0	
s of y.	ver.	In per cent of depth.	0. 6.28.88.88.88.88.88.88.88.88.88.88.88.88.	8.6%	12.	9 4.7.5.62	.63	7:99:99:	
h of threads mean velocity.	Lower	.1991 nI	0	5.1-	:	1.5 2.0 1.7		1.2	
h of mean	er.	In per cent of depth.	0.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	77.	. 18			128.95	
Depth	Upper.	In feet.	० थन कं क्यां कं रुं कं कं रुं रुं रुं		:			21.01.2	
ocity		Maximum.	24112424244444444444444444444444444444	1.92		2.2.2.2 2.2.2.2 3.94 3.94		1. 17 1. 67 2. 27 2. 41 2. 63	
second from vertical velocity curves.		Bottom.	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	8. <u>8.</u>		1.00 8.00 95.00		. 85 . 57 1. 25 . 92 1. 45	
a verti		.qoT	2.5.2.1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.	8,8,	:	2.40 2.75 2.83	:	. 62 1. 22 1. 65 1. 45 1. 60	
d fron	'ч	$tqob \frac{8.0+2.0}{2}$	1111222222222 25212324 2521232 2521232 2521232 2521232 2521232 2521232 252123 25	1.10		2, 15 2, 22 2, 30 2, 37	:	1.33 2.00 2.20	bed.
r second f		.dtqsb 8.0	11.1.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	 88		1.72 1.75 1.67 1.82		1.06 1.04 1.63 1.63 1.96	Gravel bed
leet pe		.41ф. 2.0	11.2.2.2.2.2.2.2.1.1. 25.2.2.2.2.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2	1.12		2.59 2.94 2.94	:	1.06 1.62 2.23 2.37 2.44	8
Velocity in feet per		0.5 depth.	12222222222222222222222222222222222222	-1-1 88		2.38 2.47 2.60	:	1.16 1.60 2.08 2.27 2.54	
Veloc		Mean.	111112222221111 844872221111 844872222	1.13	1.87	22.22.23 33.23.33 38.33.33	2.27	1.96 1.36 2.00 2.23	
	.eoi 1	Тріскпева о	Feet. 123224410009090909090909090909090909090909090	4. 4.	2.15			999999 01009	
	.99i v	Depth belov	790111111111111111111111111111111111111	1.1 9.	1.6	23.25 23.07 27.07	2.7	1.1.3.2.4. 2.2.2.4.	
	•	Тота дертћ	Feet					88.44.00 8.81.21	
lsitin		Distance fro	Feet. 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>		8888		10½ 31 50 71½ 92	
-joq	ot t .ee.	Gage heigh To mot	Feet. ± 1. 45			1.55	• !	3.27	
Totev	7 O1 .99	Jdgiəd əgaə arra	3.55 3.55		:	3.40		5.27	
		Date.	March 2 1904.		Mean of 15 curves	January 27	Mean of 4 curves	1905. February 9	

Vertical relocity measurements—Continued.

KENNEBEC RIVER AT NORTH ANSON, ME.—Continued.

s for mean		6.2+0.8 2 depth.	1.00	1.08 1.09	1.00	40.00000000000000000000000000000000000	1.02	1.01 1.00 1.00 1.02 1.02	00
Coefficients for reducing to mean	velocity	0.5 depth.	98.0 98.0 90.0	86.78	88.	\$	25	1000 0 0 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8
Coeff	Α¢	.mumixsM	2.88 2.88	868	.85	888888888888888888888888888888888888888	58	28.89.88.88	8
th of	ity.	In per cent of depth.	0.36	24. 38.	. 40	3.E. 4.8.8.8.8.7.4.4.8.9.4.4.8.9.4.4.8.9.4.4.8.9.9.4.4.8.9.9.4.4.8.9.9.4.4.8.9.9.4.4.8.9.9.4.4.8.9.9.9.9	4	ช ่ช่ช่ช่ช่	8
Depth of thread of	velocity.	.təəl nI	1.5 1.3	61 61 8 63 68				8.1.00.47.	
lo s	ver.	In per cent of depth.	0.69 .76 .68	25.85.5	17:	7.888.887.8888.8888.888888888888888888	2.	68 68 68 69 65 65	0
threads elocity.	Lower	In feet.	9.8.9	21 55 55 0 55 0		021000000000000000000000000000000000000		1503158 103158	
of an v	er.	In per cent of depth.	0.12		. 12.	2000.000.000.000.000.000.000.000.000.00	.12	0.02	0
Depth me	Upper.	.1991 nI	0.5	5. 9.1	:	21.1.28.2.2.1.1.2		121	
ocity		.mnmixsM	2.2 2.78 2.69	1.98	:	11.2221.11. 2.24.22 2.44.22 2.86.60 3.		1.60 1.75 1.62 1.37 1.37	
sal vel		Bottom.	1.40 1.40 1.72	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	:	1. 61 1. 85 1. 85 1. 85 1. 85 1. 85 1. 93 1. 93		8.69.79.38. 19.19.25.	
ı verti		Top.	1.60 2.02 1.00	75.43	:	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.1.35 1.42 1.27 7.78 53	
d fron es.	•ц	$\frac{8.0+2.0}{2} \operatorname{dept}$	2.35 2.34 34		-	1.20 1.48 1.123 1.134 1.		1.38 1.22 1.22 7.2 56	
Velocity in feet per second from vertical velocity curves.		.68 дерth.	2.29 2.29 2.10	2.00 1.74 .87	:	1.07 1.31 1.58 1.58 2.07 2.10 1.61 1.52 1.52 67		1.18 1.34 1.29 1.07 .52	
eet be		.0.2 дерұр.	2.62 2.59 2.58	2.1. 2.4.3. 8.		11.32 1.32 1.32 1.32 1.32 1.32 1.33 1.33		1.58 1.62 1.37 1.37 .93	
ity in 1		.6.5 depth.	2.74 2.77	1.98 1.04		24.2.2.2.1.1		1.55 1.55 1.31 88 .88	
Veloc		Mean.	2.38 2.33	2.18 1.57 .89	1.85	1.25 2.22 2.22 2.22 2.22 2.22 2.33 2.33 2	1.37	1.55 1.23 1.23 7.45 .58	
	. 99i l	Thickness o	Feet. 1.9 1.9 2.0	2.00 2.00 2.00	2.00	198199999999	2.01		
	99i v	Depth belov	Feet. 4.2 4.2 4.0	9.3.9 1.1	3.4	111644646464144 6026007-68666		000000111 0000000000000000000000000000	
		Total depth	Feet. 6.1 6.1 6.0		5.4	88888888888888888888888888888888888888			,
lsitin		Distance fro	Feet. 112 134 154	173 194 216		101 31 111 112 112 113 113 113 113 113 113		90 130 290 330 370 410	
-tod	ot t lee.	Gage heigh o mot	Feet. 3.27	-		3.32		2.05	
rater	. to 1	tage height arra	Feet. 5.27		:	5. 32		3.40	
1		Date.	1905. February 9		Mean of 11 curves	February 9.	Mean of 12 curves.	1906. January 10	

Vertical velocity measurements—Continued.

- Doming	ME.—Continued.
200	ANSON,
principal salaman anoma fancasa anoma sa	NORTH
; ;	\mathbf{AT}
ana ana	RIVER
	KENNEBEC RIVER AT NORTH ANSON, ME.—Co

for		depth.	1.02 1.01 1.01 1.04 1.04	1.02	0.1.08 88.88 89.09 1.00 99.88 89.88 99.98	66.		1.00
Coefficients for educing to mea	velocity.	.6 depth. 8.0+2.0	0.89 .92 .89 .89	.92	%8888228888	06.	88888989888	06.
Coeff	ΔA	.mumixsM	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.87	8,28,8,8,8,2,8,2,8	- 8.	2888888282	- 28.
h of d of	ity.	In per cent of depth.	0.32 .32 .86 .38 .38 .38	.31	4:6:6:8:8:8:8:8:4	.33	22422888888	.36
Depth of thread of	velocity	.təəi nI	1.1 1.1 1.1 6 5.		8.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	-	a.1. e.e.e.e.s.a.r.s.	
jo s	rer.	In per cent of depth.	. 68 . 68 . 65 . 64	.65	27.7.7.3 668 668 668 668 7.7.7.3	69.	88 11.05 10.	69.
th of threads mean velocity.	Lower.	.1991 nI	9,9,9,1,1,1 188409		1.0.0.0.0.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1	:	1200531	
h of nean v	er.	In per cent of depth.	0.06	.05	86869	.05	22.00.00.00.00.00.00.00.00.00.00.00.00.0	
Depth me	Upper.	.teet.	0.2 2.2 3.3 1.0		0		<u>ಚ-ಚಚಚಚ</u> ಜ	
ocity		Maximum.	1.59 1.82 1.64 1.37 .90		1.79 1.38 1.38 1.27 1.07	:	2.163 1.28 1.28 1.66 1.66 1.14 1.12 1.12	
Velocity in feet per second from vertical velocity curves.		Bottom,	0.77 1.25 .93 .71 .51			-	2.1.08.3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
a verti		.qoʻr	1.24 1.32 1.32 1.22 1.22 1.23	:	1.33 1.97 1.39 1.39 1.27 1.27 1.15 1.00 1.00	:	1.14 1.78 1.48 1.95 1.14 1.14 1.75	
nd fron ves.	•ц	$\frac{8.2+6.8}{2} \operatorname{dept}$	1.32 1.44 1.20 1.20 6.75	:	1.48 1.74 1.18 1.18 1.60 1.94 1.94 1.94		1.36 1.08 1.08 1.46 1.30 1.30 1.30 1.30	
r second fi curves.		.6.8 дерth.	1.13 1.29 1.03 1.03		1.34 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03		1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28	:
teet pe		.dtqsb 2.0	1.51 1.78 1.60 1.36 .85		1.62 1.84 2.18 1.97 1.34 1.58 1.58 1.21 1.07		2.1.50 1.23 1.23 1.64 1.06 1.06 1.06	_
ity in		.6.5 depth.	1.52 1.74 1.59 1.31 1.31		1.72 1.85 2.15 1.92 1.30 1.73 1.53 1.19 1.00		1.55 1.23 1.23 1.57 1.10 1.10 1.60	
Veloc		Mean.	1.35 1.65 1.45 1.21 .78	1.18	1.48 1.94 1.71 1.15 1.15 1.05 1.05 .90	1.35	1.38 1.68 1.68 1.96 1.43 1.31 1.31 1.31 1.31	1.23
	əəi î	Lpickness o	Feet. 1.2 1.3 1.3 1.3	1.32	22.00 22.00 22.00 22.00 22.00 22.00	1.90	12221222	1.92
	99 i v	Tepth belov	Feet. 3.1 3.7 3.7 2.2 1.6 1.6	2.6	1.2.2.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2.2.2	2.6	1.6.6.2.6.9.1.1. 0.7.0.8.1.1.4.8.4	2.4
		T otal depth	Feet. 5.1 3.3 3.3 3.1 3.1 3.1 3.1	3.8		4.4	0,00,04,00,00,00,00,00,00,00,00,00,00,00	4.2
Isitin		ort sonstric Dioq	Feet. 90 130 290 330 370 410	:	200 170 170 210 230 330 410 410		70 130 170 210 230 330 410 450	
-10d	ot t ice.	Gage heigh tomot	Feet. 2. 21		2. 43		25. 27	
194gV	. to 7	Gage height arta	Feet. 3.56	:	4. 26		4.08	
		Date.	January 10	Mean of 6 curves	March 2	Mean of 10 curves	March 3	Mean of 9 curves

Vertical velocity measurements—Continued.

KENNEBEC RIVER AT NORTH ANSON, ME.--Continued.

for		8.0+2.0 2 dtqob	1.00 0.1.00 0.1.00 0.1.00 0.1.00 0.1.00	86.	982000000000000000000000000000000000000	1.00
Coefficients for educing to mea	velocity.	.6 depth.	0.86 .90 .87 .93 .93 .93 .93	6.	88888888888888888888888888888888888888	8.
Coeff reduci	Ă	.mumixsM	28.28.28.28.28.28.28.28.28.28.28.28.28.2	.87	<u> </u>	.87
h of	ity.	In percent of depth.	0.37 .36 .38 .28 .24 .38 .38	. 32	74.48.66.66.66.66.66.66.66.66.66.66.66.66.66	.37
Depth of thread of	velocity.	In feet.	6.04880400		1111111 100000000000000000000000000000	
lo sl	ver.	In per cent of depth.	0.72 .68 .70 .71 .72 .72	.70	88891766977	17.
th of threads mean velocity.	Lower	In feet.	282127111		9.69.99.99.11.11.11.11.11.11.11.11.11.11.11	
h of nean v	Upper.	In per cent of depth.	0.12 .08 .08 .08 .08	80.		.10
Depth of mean	Up	.1991 nI	4.6.6.6.6.6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.		ा-्ष्यं यं यं यं नं o नं छ	
ocity		.mumixeM	1.82 2.29 1.72 1.50 1.04 1.35		2.82 2.16 2.16 2.16 2.11 2.20 2.11 2.20 2.11 2.20 2.11 2.20 2.11 2.20 2.20	
Velocity in feet per second from vertical velocity curves.		Bottom.	0.80 1.28 1.125 1.125 1.53 1.60		1.22 1.152 1.152 1.755 1.00 1.00 1.34 65	
n verti		.qoT	1.18 1.67 1.55 1.55 1.15 1.40 1.40 1.89 1.89		75. 1.30 1.00 1.27 1.135	
econd fror curves.	• प 2	4.0+2.0 dept	1.54 2.00 1.74 1.26 1.38 1.38 1.94		1.50 1.124 1.124 1.135 1	
r secol		0.8 depth.	1.36 1.120 1.39 1.39 1.39 1.39 1.39		2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.2.1.2.2.2.1.2.2.2.1.2	
feet pe		0.2 depth.	2.25 2.25 2.1.39 2.1.44 1.03 1.03		1.50 2.00 1.92 1.192 1.193 1.61 1.45 1.30 1.30 1.30	
sity in		.fdepth.	2.23 2.23 3.23 1.03 1.02 1.02		1.81 1.96 1.96 1.22 1.60 1.60 1.25 1.25 1.125 1.125	
Veloc		Mean.	1.53 1.21 1.52 1.93 1.04 1.04	1.33	1.50 1.74 1.74 1.10 1.14 1.14 1.14 1.14 1.14 1.14 1.1	1.32
	f ice.	Thickness o	F 999999999999999999999999999999999999	2.34	1.9.9.1.9.9.9.9.9.9.9.9.0.0.0.0.0.0.0.0.	2.04
	oot v	Depth belov	Feet. 3.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	2.9	6466666641641 6666666666	3.0
	•	Total depth	Feet. 5.0.5 5.0.0 6.0.0	. 5.0	ಸ್ಕಾರಾಶ್ರಭವ್ವವ್ಯವ್ಯ ಈಜರು H ಅರ್ಗಾಶರಚಾ	. 5.0
Lsitin	i mo	ort sonstaid nioq	Feet. 130 170 220 230 330 410 450		250 250 250 250 250 250 250 250 250 250	
-10 q	ot 1 iee.	dgied egs. to mot	Feet.		8.3	
Tojen	to 7	dage height arus	Feet. 4.77		4.70	
		Date.	March 30. 1906.	Mean of 9 curves	April 11.	Mean of 10 curves

Vertical velocity measurements—Continued.

MAUMEE RIVER AT SHERWOOD, OHIO.

for		0.2+0.8 2 depth.	000000000000000000000000000000000000000	1.01
Coefficients for reducing to mean	relocity.	0.5 depth.	0.91 .93 .95 .95 .95 .95 .95	. 95
Coeff	7.6	.mumixsM	88.99.99.99.99.99.99.99.99.99.99.99.99.9	- 36
h of d of	ity.	In per cent of depth.	88.88.88.88.84.44.	. 34
Depth of thread of	maximum velocity.	.1991 nI	0.1.09.09.09.09.09.09.09.09.09.09.09.09.09.	
s of	er.	In percent of depth.	0.70 .65 .58 .58 .58 .59 .78 .78	89.
thread	Lower.	Jəəj al	1111111111111 801-84860888	
Velocity in feet per second from vertical velocity Depth of threads curves.	er.	In percent of depth.	0.11 .13 .08 .08 .22 .22 .31	Ŧ.
Depti	Upper.	.teet nl		MOTAUT DIVIDE AN COUNTY DIVIDE MANAGEMENT OF THE ANALY DIVIDE AND COUNTY DIVIDED AND COUN
ocity		Maximum.	0. 7.7. 8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	
cal vel		Bottom.	0.51 5.50 5.50 5.77 5.72 5.74 5.75 5.75 5.75 5.75 5.75 5.75 5.75	
ı verti		.qoT	0. 12.88 5 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
nd fron ves.	·ų:	1q9b 8.0+2.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E
r second f		.64 depth.	0. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	: 5
feet pe		0.2 depth.	0 	
ity in		.dtqsb	0. 6.44.1.08.8.8.9.9.9.5.3.8.9.9.9.5.3.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	
Veloc		Меап.	0. 88.88.88.88.88.88.88.88.88.88.88.88.88	87 .
	t ice.	Тріскпеза с	Feet. 0.7 5 5 6 6 6 6 5	.58
,	99i v	Depth belov	F_{ee}	2.5
		Тоғаі дергр	Feet	
lsitin	i mo	orl esnataid nioq	Feet. 50 20 20 220 220 220 220 220 220 220 22	
-tod	ot i ice.	Gage heigh tomot	Feet. 2. 79	
тэлвү		Gage height Arns	Feet. 3.34	
		Date.	1906. February 11 ^b	Mean of 11 curves

1902. December 10	16.4	28 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.0 11.6 11.4 11.0 9.6	10.5 11.1 10.9 10.5 9.1	0.30 .30 .30 .30	0.74 .90 .88 1.03 1.03	0.91 1.08 1.10 1.22 1.22	0.0 88.0 88.0 90.0 90.0	0.80 1.00 1.10 1.10 1.00	0. 0 28 99 59	0.55 .56 .74 .10	0.50 .88 .83 .71	0.95 1.10 1.23 1.23	6.4.6.6.9 0.0000	0.37 .36 .28 .22	9.0 10.4 9.8 8.9 7.6	8.8.8.8.8 	0.00.04	57 59 64 53		18.08.38.18.	1.06 1.07 1.04 1.02
Mean of 5 curves	:	 	10.9		.50	8.					:	:									_	1.05
December 11 16	16.0	288	9.2 11.0 11.8	8.7 10.5 11.3	.50	1.00	1.20 1.38	1.20	.38	. 45 . 98 1. 10	.35 1.05	88.39	.1.1. 82.88 83.88	3.6 2.6	8.5.8	8.6.8 8.82 6.83		3.5	¥.8.2			11.1 02.00 05.00
a Gravel bed.	jq.						b Ice 1	Ice rough.		•						. 무	bed v	ery sm	Ч	-	_	

Vertical velocity measurements—Continued.

Ţ
٦,
Z
UTICA.
GE.
BRIT
STREET
LER
SCHUZ
ΥT
RIVER
MM
MOH

s for		8.0+2.0 2 depth.	1.03 1.11 1.08 1.08 1.05	1.04		1.00 1.00 1.02 1.02	1.00	
Coefficients for reducing to mean	velocity.	.dtqsb č.0	0.86 .80 .80 .80 .80	.85		0.84 .90 .92 .83	68.	
Coeff	Δ	.mumixsM	88.6.9.8	88.		0.73 .87 .97 .82	<u>\$</u>	
h of d	num ity.	In per cent of depth.	988.384	. 42		0.0 8.0 64.2 14.	. 34	
Depth of thread of	maxımun velocity.	In feet.	4.4.0.4.e. 6.00.0.0			0.1.1.1.0		
of		In per cent of depth.	0.70 .70 .78 .68	.72		0.62 .65 .62 .71	.64	
hread locity.	Lower.	In feet.	6.7 6.7 6.0 6.0					
Depth of threads mean velocity.	er.	In per cent of depth.	0.19 .20 .23 .16	.18		0.05	.07	
Depth	Upper.	In feet.	22.0 1.5 1.5			0.2		
		.mumixsM	1.45 1.55 1.40 1.32 1.10	i	0.0	0.22 .39 .27 .18		
Velocity in feet per second from vertical velocity curves.		Bottom.	0.65 .75 .50 .20		IVER AT COLUMBUS, OHIO.a	0.00 .20 .27 .12 .10		
vertic		.qoT	0.56 1.05 1.10 .48		MBUS	0.17 .32 .27 .23 .10		
d from es.	·.प्:	4deb 8.0+2.0	1.17 1.26 1.19 1.06		OLU	0.16 34 22 22 16		. bed
second f		.64 depth.	1.04 1.10 1.90 75		AT (0.10 .30 .28 .17		a Gravel and silt bed
eet per		.dtqsb 2.0	1.30 1.26 1.12 1.00		IVER	0.22 .38 .29 .26 .17		ravel a
ty in f		.f1qėb č.0	1.40 1.40 1.32 1.10		rd	0.19 .38 .30 .24		9
Veloci		Меап.	1.20 1.40 1.28 1.05	1.06	OLENTANGY	0.16 .34 .29 .22	.23	
	.99i I	Тhickness o	Feet. 0.50 .50 .50 .50	Σ. 23.	OLEN		¥.	
	oj v	Depth belov	Feet. 10.9 10.4 9.6 9.8 8.8	6.6		9,6,4,6,6 087008	3.6	
		Total depth	Feet. 11.4 10.9 10.1 9.8 9.3	10.4		24.04.4 08004	4.2	
[sitin	i mo	ort sanstaid nioq	Feet. 40 50 60 70 80			286438		
-10q	ot to ice.	ngied egad to mot	Feet.			6.22		
тэлег	to v	dage height strus	Feei. 16.0			6.77		
		Date.	1902. December 11	Mean of 8 curves		1906. February 13	Mean of 5 curves	

Vertical velocity measurements—Continued.

RAQUETTE RIVER AT MASSENA SPRINGS, N. Y. a

		I madan	616400	_	800800	_	a=a**	
s for	velocity.	8.0+2.0 2 depth.	0.99 1.01 1.01 1.00 1.00	1.00	1.02	1.00	1.03 1.03 1.03 1.02	1.01
Coefficients for	elocit	.6.5 depth.		8.	8888898	.87		88.
Coer		.mumixsM	0.99 .99 .99 .99	66.	888888	98.	22.23.22	98.
Depth of thread of	mum city.	In per cent of depth.	4.0 4.0 64.0 88.3 84.0 84.0	.41	42.44.88	.42	2.4.2.2.2	.46
Depi	maximur velocity.	.1991 nI	4.00.04.00.00 00000000		က် ကဲ ကဲ ကဲ ကဲ က က က တ က က		24.0.0 20.0 7.0 7.0	:
ds of	Lower.	In per cent of depth.	0.76 .67 .79 .70 .72	69.	27. 27. 27. 27. 27.	92.	.62 .78 .78 .83	92.
threads elocity.	Lor	.teet.	6.6 9.7.7.7.3 8.3 8.5 8.5 8.5 8.5 8.5			_ ;	5.7.7.8 8.8.0 8.8.0	
of an v	Upper.	In per cent of depth.	0.11 .16 .07 .10	.11	115 115 117 118	. 17	81.22.8	.23
Depth mea	Π	In feet.	2.1.75		11111111111111111111111111111111111111		. 1.9.9.9. 8.8048	
ocity		.mumixs M	3.58 3.61 3.64 3.76	:	3.36 3.37 3.38 3.73 3.73		4.48 3.74 3.51 3.99 4.27	į
cal vel		Bottom.	2.1.22 2.24 2.24 2.1.51 2.151 2.151	:	1. 76 1. 28 1. 52 1. 52 2. 44 2. 00		2.2.2.1.2.2.4.2.2.3.3.2.3.3.3.3.3.3.3.3.3.3.3.3	
n verti		$\cdot \mathbf{q} \mathrm{o} \mathrm{T}$						
nd fror ves.	•ца	qəb 8 <u>.0+2.0</u>	33 53 53 53 53 53 53 53 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55	:	32.22.23 33.23.88 33.30 33.30 33.30		3.80 3.48 3.22 3.13	
Velocity in feet per second from vertical velocity curves.		.6.8 dерth.	83.23.23.23 83.23.23.23 83.23.23.23		3.2.2.2.2.3.3.3.2.5.3.3.3.2.2.3.3.3.3.3.		3.15 3.28 3.28 3.18	
feet pe		.41фер 2.0	3. 40 3. 40 3. 40 3. 3. 40 3. 38		8.8.9.9.8.8 9.8.8.8.8.8.8.8.8.8.8.8.8.8.		3.55 3.15 3.08 3.32	
ity in		0.5 dерth.	25.59 27.72 27.72 3.76 3.76 7.60		8.8.8.8.8.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9		3. 24 3. 24 3. 25 4. 24 4. 24	:
Velo		Mean.	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	3.25	22.22.22.22 24.22.22.22 24.22.22.23	3.02	3. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	3.45
	99i Ice	Thickness o	Feet. 2.5 1.8 1.9 1.9 1.7 1.7	1.92	111112	1.62	1.0	1.28
•,	w ice	Depth belor	Feet. 9.1 10.1 9.4 10.2 10.2 12.0	10.2	8.8 9.8 10.9 10.9	7.4	0.0.0.0 10.0.0 10.0.0 10.0.0	9.9
	, •τ	Total depti	Feet. 11.6 11.9 11.1 12.3 12.3 12.1 13.8	12.1	0.01 10.0 10.0 10.0 10.0 10.0	10.6	10.9 11.3 10.7 11.3 11.6	11.2
Gage height to bot- tom of ice. Distance from initial point.			Feet. 40 60 80 100 120 140		040 080 041 120 041		48888	
		dgied egad o mot	Feet.					
Tojew	. 60 1	dgiəd əgaĐ strus	Feet. 10.31		8.77		9.73	
	·	Date.	1905.	Mean of 6 curves	March 29	Mean of 6 curves	March 30.	Mean of 5 curves

a Coarse gravel bed.

Vertical velocity measurements—Continued.

RONDOUT CREEK AT ROSENDALE, N. Y.a

for		depth.	1.02	1.12 1.00 1.03	1.04	.76 .70 .82	92.		1.00	
Coefficients for reducing to mean	velocity.	0.5 depth. 8.0+5.0	0.76	8.29	.85	. 55	83	.98	68.	
Coeff	Λ	.mnmixsM	0.76	.75 .91	- 08.	0.58	.65	.85	08.	
p of	num ity.	In per cent of depth.	0.52	.50	92.	£. 42.	. 42	22.22.25.25	42.	
Depth of thread of	maximum velocity.	In feet.	8:	3.5	i	1.2.2. 2.8.4.		1.9		ream.
lo sl	ver.	In per cent of depth.	0.82	82	88.	2.8.8	.87		.65	c Needle ice on bed of stream
threads relocity.	Lower	In feet.	4.4	5.2		4.00.4. 4.00.70		5.0 4.4 3.8		on pe
of	Upper.	In per cent of depth.	0.20	8.83.83	.27	: : :	:	02		edle ice
Depth	Up	.teet.	1.1	11.1.				: :-		c Ne
locity		.mumixsM	0.62	.96 .90 1.18		. 46 . 55	i			
ical vel		Bottom.	0.21	.67 .62 .65		888		888		
n verti		.qoT	0.08	86.0		.38		. 56 . 56 . 56	_ :	9
Velocity in feet per second from vertical velocity curves.	·ų:	$\frac{8.0+2.0}{2}$ dept	0.46	26.65		. 42 . 38 . 45				d tilte
		.6.8 дер£ћ.	0.48			8.8.8		4.8.3		ken an
feet pe		0.2 depth.	0.45	84.85.		.46 .40		.86		1—bro
ity in		0.5 дерth.	0.62	.78 .90 1.17		.55				blee cover very rough—broken and tilted
Veloc		Mean.	0.47	2.8.2.	.74	.32	.32	.51	. 55	er very
	.90i î	Дрісклеза о	Feet. 0.2	∞ 4 4 i	.45	.75	92.	.72 .78 .75	.75	ce cov
	.9 9 i v	Depth below	Feet. 5.4	6.0	5.3	4.4.0 0 & 0	4.9	7.1 7.1 5.8	6.7	PI
		Total depth	Feet. 5.6	4.8 4.4 4.4	5.8	6.7 7.1 7.5	7.1	7.7	7.3	
fsitin		ort sonsteid nioq	Feet. 50	 688		388	. !	08 60 100 100		
-10q	ot to ice.	dage heigh dagad agad do mot	Feet.				<u>:</u>			ed.
Tetev	to 7	tdgiəd əgati atrus	Feet. 6.80	2.00	_	5.15		5.15		a Rock bed
		Date.	December 6 b.	1902. January 14	Mean of 4 curves.	1906. February 17 c	Mean of 3 curves	February 17	Mean of 3 curves	8

Vertical velocity measurements—Continued.

WALLKILL RIVER AT NEWPALTZ, N. Y.

for		depth.	0.99 1.03 1.01	1.01	.99 1.00 1.01 .99	1.00	1.01 1.00 1.00 1.00 1.02	1.00	1.02 .98 1.00 1.00 .97	
Coefficients for	velocity.	0.5 depth. 8.0+5.0	0.89 .87 .87	98.	8,88,88	8		.87	.85 .91 .92 .92	0
Coeff	vel	.mumixsM	0.89 .82 .83	8.	2282	28.	888885	8.	882888	g - 16.40.
h of d of	num ity.	In per cent of depth.	0.54 .33 .37	.37	8848	.56	86. 86. 86. 86. 86. 86. 86. 86.	.37	. 62 . 44 . 30 . 51 . 40	ending
Depth of thread of	maxir veloc	Jaol nI	0.0169.4 0.408	-	7.89.7. 7.85.55 6.55		11-14666 20-1214	-	8.0 6.5 7.5 10.5	-18.26; at
s of	1	In per cent of depth.	0.82 .669 .70	02.	8888	8.	4. 4. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	. 72	888581	ng — 18
th of threads mean velocity.	Lower.	. teet nI	7.5 6.0 7.9 8.1		13.7 13.7 13.4	:	21.83.44.0.00 0.48.7.0.00		10.8 11.2 14.7 11.6 17.4	at beginning
of an v	per.	In per cent of depth.	0.26	.10	8288	. 27	.02 .02 .15 .12 .10	.11		ge at b
Depth	Upper.	.1991 aI	2.4 1.2 .8		0.4.4.0. 1.4.0.10		4.1.0.8.8.4.	:	4.02.03.03.04.02.02.02.02.02.02.02.02.02.02.02.02.02.	d Gage
ocity		.mumix&M	3.23 3.23 3.13 13		3.00 3.96 3.13	:	. 95 1. 18 1. 19 1. 25 1. 27 1. 27	:	26.4.4.4.4. 200.8888888888888888888888888888888888	
cal vel		Bottom.	88:11 88:88		22.25 30.25 30.25		.36 .35 .50 .50 .4	:	2.20 2.20 2.00 2.00	
n verti		.qoT	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		2.35 2.35 2.15 .85	į	89.89.45.52 22.023	į	1.58 1.45 2.70 2.10 2.10	Mean
Velocity in feet per second from vertical velocity curves.	•ц:	1q9b 8.0+2.0	2.48 2.10 2.61 2.60		2.47 3.48 3.36 2.66	į	1.00 1.00 1.05 1.07 38		2.16 3.71 4.12 4.15 4.04	
		.d4q9b 8.0	2, 51 1, 22 2, 25 2, 25	i	2.70 3.74 3.60 2.89		5.84888		2.37 3.13 4.02 4.11 3.88	
feet pe		.Аздэр 2.0	2.2.2.2.2.2.98 2.98 3.98	į	2.24 3.22 3.13 4.44		1.14 1.07 1.18 1.18 1.18		1.96 3.23 3.70 4.21 4.19	en.
ity in		.fdepth.	2.75 3.03 2.98	į	2.97 4.00 3.94 3.10				23.58 24.4.4.4.4.38 33.38 33.38	blee very rough and broken
Veloc		.п.թ.э.М	2.45 2.17 2.64 2.60	2.46	2.44 3.48 3.40 2.63	2.98		8.	2.20 3.13 3.13 3.13 9.02 9.02	igh an
	,90i l	Дріскиєва о	Feet. 0. 70 : 70 : 70	.70	4.50 .05 1.00	1.40	61.20	1.20	1.40 1.00 1.80 1.80 1.00 1.00	ry rou
	.99i v	Depth belov	Feet. 9.2 10.0 11.5 11.6	10.6	13.5 16.0 15.6 13.5	14.6	6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	6.2	13.0 14.0 17.0 15.2 20.8	lce ve
•1		Тоғаі дерғі	Feet. 9.9 10.7 12.2 12.3	11.3	18.0 16.0 15.6 14.5	16.0		:	14.4 15.4 18.0 16.0 21.6	
		Distance fro nioq	Feet. 53 64 75 85		115 95 85 75	:	50 70 88 90 100 110	:	843858	
t to bot- lice.		Gage height Io mot	Feet.			:		:	;	peq.
to water		Gage beight Gage beight	Feet. 11.5		13.7		7.24		17.33	ъ
		Date.	1901. December 11	Mean of 4 curves	December 19 b	Mean of 4 curves	January 21	Mean of 6 curves	January 23 d	a Clay and coarse grav

Vertical velocity measurements—Continued.

WALLKILL RIVER AT NEWPALTZ, N. Y.-Continued.

for		8.0+2.0 <u>2</u> .daqəb	1.00 .98 .98 .97	66.	3.1.1. 3.1.1.3. 3.3. 3.	1.00	$\begin{array}{c} 1.00 \\ .99 \\ 1.02 \\ 1.07 \end{array}$	1.02	1.00 1.00 1.00 1.00 1.00	1.02
Coefficients for reducing to mean	velocity.	.6 depth.	0.92 .90 .87	.91	888888	68.	8.6.28.6	8.	2 888.88.78	8
Coeff	Λe	.mumix.eM	0.88.	68.	8888888	98.	8888	&.	& & & & & & & & & & & & & & & & & & &	8
n of d of	oum ity.	In per cent of depth.	0.37 .42 .33	. 43	<u> </u>	34	86.84.	.46	888.48	43
Depth of thread of	maximun velocity.	Jaol n feet.	8.0 5.2 5.2	-	41114444 4000400	-	2,2,4,8, 2,2,0,0	:	400%9	
s of	·er.	In per cent of depth.	0.70 .87 .78 .71	.79	4.65.25.65. 6.65.25.65.	17.	£2.52	92	5225	×
Depth of threads mean velocity.	Lower.	. dəəl n I	15.0 18.0 17.4 11.4		4.00,000,000 0.4000000	-	4.4.6.8. 6.8.6.4		9.69.47.4. 4400%	
n of lean ve	er.	In percent of depth.	0.07 . 19 . 17	.16	51.00.00.11.11.	. 10	56.09	83	12225	13
Depti	Upper.	In feet.	1.5 3.8 0.9 0.0		9:8:4:004		1.0 1.6 4.0		4.1.4.0.6.	
ocity		Maximum.	4. 37 3. 4. 18 3. 45	i	1.9.9.9.9.9.9 £ 2.5.2.4.4.8.4.8.4.8.4.4.4.4.4.4.4.4.4.4.4.4		1.68 1.74 1.81 1.98		4.0.1. 20.1.1. 20.1.1. 20.1.1.	
cal vel		Bottom.	2.2.20 1.2.20 1.10	:	.92 .96 .46 .95 1.30 1.15		8.6.6.5	-:	24.5°5.5°5.	
Velocity in feet per second from vertical velocity curves.		.qoT	1.22.2 1.22.08 60.00		1.20 1.48 1.72 1.28 1.15 1.62				ង់ន <u>ិ</u> ននៃវ	
nd froi ves.	•ча	$\frac{8.0+2.0}{2}$	3.93 3.95 2.81 85		1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	-	1.43 1.44 1.50 73		.52 .87 .94 .51	
r second f		.41дэр 8.0	3.4.3 3.80 5.50		1. 1. 1. 42 1. 1. 35 1.	-	1.32 1.43 1.43 96		385284	
feet pe		.dtqsb 2.0	3.82 3.82 3.20		12:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:		1.54 1.66 1.50		88.1.1 88.288.	
ity in		.6.5 depth.	4. 27 4. 20 4. 17 3. 22	:	2.2.2.2.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3		1.58 1.58 1.88 .82	-	8 1 1 1	
Veloc		Mean.	3.93 3.73 2.73	3.54	1. 52 2. 1. 74 2. 108 2. 09 2. 24	1.95	1.43 1.53 1.53	1.29		75
	.99i Î	Тріскиєва о	Feet. 0.70 .80 .80	.92	8888888	1.03	11111 2888	1.05	នឹងមុខមុខ 88888	2, 10
99i woled fith		Depth below	Feet. 21.5 20.8 22.4 16.0	18.2	5.8 7.8 7.8 10.3	7.1	8.8 8.9 8.9	7.9	8.5 5.0 7.0 7.0	r.
Total depth.		Feet. 22.2 21.6 23.2 16.8	19.1	10.088128 11.0888138	8.2	7.5 8.5 9.6 10.1	8.9	7.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	7.9	
to beight to bot- tom of ice. ance from initial point.		Distance fro	Feet. 90 100 110 120		04.89.89.80 04.89.89.80 04.89.89.80		8888		488851 488851	
		dage heigh to mot	Feet.				<u> </u>			
Totev	το ν 60·	dage beight sins	Feet.		9.07		7.78		7.35	
		Date.	January 23	Mean of 10 curves	January 31	Mean of 7 curves	February 10.	Mean of 4 curves	February 24.	Mean of 5 curves

a Thickness of ice as given includes considerable water above ice.

Vertical relocity measurements—Continued

	19187	-tod	Laiti		WAL	Vertical velocity measurements—Continued. WALLKILL RIVER AT NEWPALTZ, N. Y.—Continued. Velocity in feet per second from vertical velocity curves.	KILL RIVER AT NEWPALTZ, N. Y.—Con Velocity in feet per second from vertical ve curves.	LER A	measi T NE	wrement WPAL second 1	LTZ, Ifrom	ted velocity measurements—Continued. L RIVER AT NEWPALTZ, N. Y.—Continue Velocity in feet per second from vertical velocity ourves.	Cont	inued.	Depth of mean		threads elocity.	fo	Depth of thread of	l	Coefficients for	Coefficients for	for
		to.	m in	-	. 90i v	.991					•ч				Upper.	i.	Lower.	Ϊ.	maxin veloci		[ea	velocity.	
Date.	tdgiad agat) arrua	fage height to mot	Distance fro nioq	Total depth	Depth below	Тріскиева от	Меап.	0.5 depth.	.674 дергр.	.64 depth.	тфэь 8.0+2.0 <u>2</u>	.qoT	Bottom.	.mumixsM	.1991 nI	In per cent of depth.	In feet.	In per cent of depth.	.1991 nI	In per cent of depth.	.mmixsM	.64qeb 6.0 8.0+5.0	depth.
1903.	Feet. 11.2	Feet.	Feet. 60 80 90 110	Feet. 7.6 11.1 11.6 13.1	Feet. 6.8 10.3 10.8 12.3	Feet. 0.80 .80 .80	22.23 25.38 52.88	2.51 2.74 2.57 2.82	2.77 2.91 2.68 2.63	1.66 2.25 2.25 2.58	22.23.23 28.43.83	2.00 1.60 1.30 1.74	1.70	22.2.2.2 82.7.29 83.23.24	1.2 1.0 1.8	0.23 1.38 1.58 1.59	4.2 7.0 10.0	. 68 . 70 . 81	5.2.0 5.2.0 5.2	8888	0.80 .88. .89.	0.89 .93 .90	1.00 .99 .98 .97
Mean of 4 curves	:			10.8	10.0	.80	2. 42	:	i	:	i	- :		i	:	.13	-	.70		.31	98.	.91	66.
ruary 10	10.8		26 26 20 11 10 10		8.4.8 6.0 8.11.8	111.00	1.29 2.226 2.253 2.53	1.4.4.4.8. 4.4.8.80	22.22.38 22.25.20 81.25.25	1.2.1.2.2 1.2.2.3 1.2.2.3 2.2.3.3	2.2.25 2.2.25 2.5.56 2.66	11.78		62 52 52 52 52 52 52 52 52 52 52 52 52 52	2.2 4.1.8 4.1.8	25.50 25.00	6.6.4.9.9. 1.0.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		24.22.23 2017.2	4.8.8.4 4.0.8.8.4	2.8.8.8.8	26.28. 28. 28. 28.	1.00 1.00 1.00 1.00
Mean of 5 curves		:		:	8.0	1.06	2.18	i		i		i	-	i		π.		22.	:	.41	88.	68.	1.00
ruary 26	% %		24885121	25.2 7.0 8.8 11.2 8.5 8.5	2.0.4.7.9.1. 2.82.82.0.7.	11112 000 000 000 000 000 000 000 000 00	. 59 11.20 11.43 11.87 11.87	.11.1.1.2. 8.1.2.2. 8.1.2.2. 8.1.2.2.	.1.1.1.1. 244.25 288.85 7.88 8.00 7.00 7.00 7.00 7.00 7.00 7.00	. 52 1.15 1.30 1.30 1.92 1.92	26.1.28 1.1.08 1.44 1.86 1.86	24.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	3.85.85.75.25.75.25.75.25.75.25.75.75.75.75.75.75.75.75.75.75.75.75.75	. 11.53 1.1.53 1.1.53 1.88 1.88 1.88	6460077	90.00.00.00.00.00.00.00.00.00.00.00.00.0	400041-8	883 833 833 833 833	41114466 8448444	411.48 38.33.44 43.88 43 43.88 43 43.88 43 43 43 43 43 43 43 43 43 43 43 43 43	85.25.25.25.25.25.25.25.25.25.25.25.25.25	4.658.99.98. 26.858.99.98.	. 95 1.04 1.00 1.00 1.00
Mean of 7 curves			:	8.0	7.2	96.	1.20		i	-		i		i	:	Π.	:	.70	Ī	68.	8.	68.	66.

Vertical velocity measurements—Continued.

WEST CANADA CREEK AT TWIN ROCK BRIDGE, N. Y.ª

" =		-uadeb	8,88	1.001033	1.01	28.2	0022333	1.02	1
s for	A	8.0+2.0	0-1-		<u>-</u> i		əəəəə	- i	
Coefficients for reducing to mean	velocity	0.5 depth.	0.89 .96	7.65 6.65 7.65 7.65 7.65 7.65	16.	9.8.2	8.8.8.8.2	16.	
Coef	<u> </u>	.mumixsM	0.87	58888	88.	8.8.8	ट.इ.इ.इ.इ.इ. <u>इ</u>	98.	
h of	ity.	In per cent of depth.	0.41	34. 34. 39.	. 27	33.35	ខេត្តខេត្តន	.34	
Depth of thread of	velocity.	. 1991 aI	0.0	2:0 1:7 1:0 1:0	:	4.8.8.	0.1. 0.0.8.8.2.2.		
jo si	rer.	In percent of depth.	0.74	58885	. 67	8.23.33	552528 552528	99.	
Depth of threads mean velocity.	Lower	.teet nI	1.8	201999 00190	7 :	1.8 1.5	111111		ce.
h of nean v	er.	In per cent of depth.	0.14	.13 .10 .10 .19	80.	. 13	2:18:28 1:18:28	.04	b Needle ice on under surface of ice
Dept	Upper.	In feet.	0.3	க்க் வக்		8. 1.	H4.00		r surf
ocity		.mumix&M	1.8 3.86 3.86	2.06 76 1.16 1.35 1.04		1.84 1.82 1.76	2.2.2.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3		n unde
Velocity in feet per second from vertical velocity curves.		Bottom.	0.98	.00 .38 .76 .112 .84	:	88.8			e ice o
n verti		Top.	1.00 1.86 2.23		:	1.53 1.61 1.40	1.46 2.33 3.30 3.33		Needl
nd fron ves.	•ц	$^{1}\operatorname{deb}\frac{8.0+2.0}{2}$	1.60	1.41 .64 1.28 1.28	:	1.63 1.52 1.48	1.66 1.76 2.14 2.00		2
r second f		.6.8 дерth.	1.53	1.15 1.02 1.21 1.21		1.56 1.26 1.21	1.51 1.54 1.97 1.99 1.56		
feet pe		0.2 depth.	1.71 1.85 2.35	1.67 .73 1.16 1.34 .95		1.70 1.79 1.74	1.80 2.30 2.38 2.38 4.38		
ity in		.fdepth.	1.78 1.77 2.30	2.03 1.13 1.32 1.03	:	1.84 1.70 1.65	1.84 2.04 2.30 2.31 2.31		
Veloc		Меап.	1.58 1.70 2.13	1.45 1.10 1.28 1.28	1.35	1.65 1.57 1.50	1.82 1.83 2.22 2.22 2.00	1.82	
	.99i i	Тhickness o	Feet. 1.25 1.30	1.48 1.58 1.60 1.75	1.45	1.5 1.5	1.5 1.5 1.75 1.75	1.56	
	.99i 1	Depth below		14.0.8.9.9. 17.04.0.0	3.2	2.23 7.6	202244 202244	2.5	l bed.
	•	птота дертр	Feet. 3.6	000044 00008	5.2		444;000;4 2200000	4.0	a Coarse gravel bed
. [sitin	i me	Distance fro nioq	Feet. 30	38888		888	X 4 4 5 7 8		Coarse
-tod	ot : .ee.	Gage height fomot	Feet.			:			a
roter	to v .90	Jdgiəd əgaĐ strua	Feet.	3.03		85 80			
		Date.	1906. February 9 ^b	February 10	Mean of 8 curves	1903. February 21	:	Mean of 9 curves	

Vertical velocity measurements—Continued.

WINOOSKI RIVER AT RICHMOND, VT.

s for	٠.	8.0+2.0 2 depth.	1 .111111111	1.05 29.1 1.05	1.02	111111111111111111111111111111111111111	1.02
Coefficients for	velocity.	0.5 depth.	0.0 88. 88. 88. 88. 88. 88. 88. 88. 88.		88	288888528855888	.84
Coeff	Δ	.mumix&M	0. 62. 62. 62. 62. 63. 63. 64. 64. 64. 64. 64. 64. 64. 64. 64. 64	58.2	. 79	2 88888858555558888	8.
to of	velocity.	In per cent of depth.	14.0 88.0 14.4 88.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0		.40	48.48.44.88.4488.44	9.
Depth of thread of	velo	Jæf aI	0.000.0	2.7.2.		কত <i>জদে</i> জভাজৰাজজভাতৰ	
is of	Lower.	In per cent of depth.	0.09 0.09 0.09 0.09 0.09 0.09 0.09	82.75	.72	7568737779	7.
threads velocity.	Ļ	In feet.	0.0 8.1.1 8.1.1 1.1.1 1.0 4.1	1.7 1.0 .6	:	111111111111111111111111111111111111111	
of	Upper.	In per cent of depth.	0.17 .10 .06 .10 .10 .17 .12	.37 .07 .12	.13	288628282888888	Π.
Depth	ďn	1999î al	0.0000000000000000000000000000000000000			######################################	
ocity		.mnmixsM	19999999999999999999999999999999999999	787 788 788		1388 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
cal vel		Bottoin.	0.68 8.1.1.1.28 8.1.1.1.28 1.1.28 1.1.29 1.1.29	82.8	-	58422222255 584222222255 5855 5855 5855	:
ı verti		.qoT	0.70 11.20 11.55 11.55 11.33 11.33		:	:::22:::2:::2::2::2::2::2::2::2::2::2::	
Velocity in feet per second from vertical velocity curves.	•ч	$tqab \frac{8.0 + 2.0}{2}$	1212222211. 12122224211. 12122224211.	1.84 1.55 1.55		11299299999999999999999999999999999999	
r secon		0.8 depth.	1.13 1.50 1.92 1.92 1.92 1.62 1.62 1.70	1.93 1.25 1.25	:	11222222222222222222222222222222222222	
eet be		.41фэр 2.0	1.9999999999999994444444	1.27 2.14 1.85	:	25,275,275,274,274,275,275,275,275,275,275,275,275,275,275	
ity in 1		0.5 depth.	1.999999999999999999999999999999999999		-	10.00	
Veloc		меяп.	1112222222121 24222222 10242222 102522222	1.98 2.93 3.05	1.92	1.44444444444444 48888883888	2.31
	.99i Î	Дріскиєва o	1.22.22.25.45.56.1.5.1.42.1.25.45.5.1.44.1.44.14.1	1.5 2.0	2.10	96.55. 0.65.51.32. 0.65.51.32.	2.17
	,991 V	рерсћ регоу	Feet. 1.2	0.1. 8.	1.6	0028170000000000000000000000000000000000	1.7
	•	Total depth	# # # # # # # # # # # # # # # # # # #	66.64 66.64	3.3		3.6
lsiria		Oistance fro nioq	Feet. 10 10 25 25 25 25 25 25 25 25 25 25 25 25 25	388			
-joq		Gage heigh fo mot	Feet. 2.70			. 88	
Teter	to v	Jdgiəd əgad arnıs	Feet. 5. 45			ro. 80	
		Date.	March 3 a		Mean of 13 curves	March 4 a	Mean of 13 curves

a At section about one-half mile above bridge; gravel bed.

Vertical velocity measurements—Continued.

WINOOSKI RIVER AT RICHMOND, VT .- Continued.

for		qebth.	1.02 .94 1.03 1.02	1.02
Coefficients for educing to mean	locity.	0.5 depth.	83. 17. 17. 17.	92.
Coeffi	Δe	.mumixald	. 83 . 68 . 77 . 72	. 74
h of d of	ity.	In per cent of depth.	0.64 .52 .57 .54 .54	. 52
Depth of thread of	velocity.	.1991 nI	70000000000000000000000000000000000000	-
ls of	ver.	In per cent of depth.	0.94 77 77 88	.81
Velocity in feet per second from vertical velocity Depth of threads curves.	Lower	In feet.	% 7.6.4.4.4. 7.6.7.1.1.5	
h of nean v	Jpper.	In per cent of depth.	0.37 .16 .12 .21 .22 .30	. 22
Dept	dn_	In feet. 🌲	3.3 1.1.1.6 1.1.1.5	
locity		.mumixsM	2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	
ical ve		Bottom.	1.28 .30 .94 .70	
m vert		.qoT	0.50 2.20 1.46 .50 .50	
econd from	•q:	$\frac{8.0+2.0}{2}$	1.70 2.24 2.17 1.90 1.90	
er seco cur		.6.8 depth.	2. 27 2. 04 1. 96 1. 77 2. 04 2. 15	<u>.</u>
feet pe		.0.2 depth.	2. 44 2. 38 2. 03 1. 76 1. 41	-
city in		0.5 depth.	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	
Velo		Mean.	2. 24 2. 24 2. 02 1. 93 1. 80	1.99
	.99i î	Thickness or	Feet. 25.0 22.0 22.0 22.0 22.0 22.0 22.0 22.	2. 45
	99i v	Depth below	Feet. 9.00 7.0 7.0 5.3 5.0	6.2
	•	Total depth	Feet. 11.5 10.0 7.5 7.3 6.9 6.9	. 8.6
lsitin	i mo	Distance fro Distance from	Feet. 211 30 50 60 60 60	
-10d	ot 1 .901	Gage heigh fomot	. Feet. 3. 42	
тэлви	to 7	Jdgiəd əgrə strus	Feet. 5.62	
				Mean of 6 curves
		ė	96.	6 curve
		Date.	1906.	an of (
			Mårch 9 a	Me

a At bridge; sand and gravel bed; ice cover very rough, broken, and tilted.

SUMMARIES OF VERTICAL VELOCITY CURVES.

The mean results from the vertical velocity curves (pp. 47-71) have been arranged in three groups—(1) 352 curves for smooth ice cover, (2) 51 curves for rough ice cover, (3) 13 curves for very rough ice cover. It will be noted that in some cases where gage heights were approximately the same for different sets of curves they have been combined. There is little difference between the results of groups 1 and 2, but as rough ice cover was reported for group 2, it seemed best not to include it in the larger list.

Summary of vertical velocity curves under ice cover.

SMOOTH ICE COVER.

		.86	Tetry				Depth o	Depth of threads of velocity.	ls of	Coefficient to reduce to mean velocity.	beficient to reducto mean velocity.	educe ity.	
River.	Station.	Number of curve	Gage beight to research	Depth under ice.	Ice thickness.	Mean velocity.	Upper mean.	Гомет теап.	.mumixsM	.mumixsM	0.5 depth.	0.2+0.8 depth	Bed of stream.
Catskill Chemung. Connecticut	South Cairo, N. Y Chemung, N. Y Orford, N. H	4 4 8 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Feet. 2.82 2.85 4.16	Feet. 2.7 3.7 4.0 4.1	Feet. 0.98 .51 1.97 1.97	Ft. per sec. 0.4464 1.04	0.06 .16 .11	0.70 .69 .63	0.31 .37 .25	0.8 8.8 8.5 8.5 8.5	.8.88.89.	0.98 1.02 1.09	Gravel. Coarse gravel. Gravel and sand.
Esopus	Kingston, N. Y	ထ⊘≀∞ဋ	5.5.5.6 6.88	r. r. s. ∠ s. ∞ 4 c	.56	8.4.8.5	213.89	£¥88	8.8.4.8	8.8.5.8	& & & & & & & & & & & & & & & & & & &	8.22.28	Sand and gravel.
Fish	Wallagrass, Me	ညှတတတ	5.33 5.00 5.00		1.550	23.65.1.	20.01.	99.27.1.	85. 85. 843. 843.		6888	88.88	Gravel.
Genesee	Mount Morris (Jones Brage), N. Y. Rochester, N. Y. North Anson, Me.	811614	2.1.1.8.0 2.55.4.6	2000 2000 2000	43.54	2.27	a.039	222.83	4486	8 <u>`\$</u> `\$	8888	5888	Coarse graver. Do. Gravel.
Mohowib	A N orth	22500022	4.8.3.4.4.4.5.70 6.7.7.4.4.3.30	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2.2.2.2.2.2.2.3.2.2.3.4.2.2.3.4.2.2.3.4.2.2.3.4.2.3.4.2.3.4.2.3.4.2.3.4.3.4	11:138	4.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	81.821.82	8448844	22.28.28.28.28.28.28.28.28.28.28.28.28.2	2888888	20865	Parth name connotth
anguerte Raquette Rondout Creek Wallkill	Massera Springs, N. Y Rosendale, N. Y Newpaitz, N. Y	57 6 H 4 4 E 5	7.15 7.78 7.78 11.2	6.0 7.9 7.9 7.9 7.9 7.9	# 1.05 1.05 1.05 1.05 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8	2.5	1.0° 1.2° 1.2° 1.2° 1.2° 1.2° 1.2° 1.2° 1.2	24.855.555.55	÷. ±. ±. ±. ±. ±. ±. ±. ±. ±. ±. ±. ±. ±.	;88888 <u>888</u>		588888888	Latur, very smooth. Coarse gravel. Rock. Clay and coarse gravel.
, a Upper threa	a Upper thread of mean velocity at 4 curves only.	01	200.71	b Below reference point.	eference	point.	01.	10	Jpper th	read of 1	nean vel	ocity fo	c Upper thread of mean velocity for 1 curve only.

Summary of vertical velocity curves under ice cover-Continued.

SMOOTH ICE COVER—Continued.

		.89	1948V				Depth	Depth of threads of velocity.	Jo sp	Coeffic to m	Coefficient to reduce to mean velocity.	reduce city.	
River.	Station.	Number of curve	Gage height to v surface.	Depth under ice.	fee thickness.	Mean velocity.	Upper mean.	Lower mean.	.mumixsM	.mumixsM	0.5 depth.	41qeb 8.0+2.0 2	Bed of stream.
West Canada Creek Twin J Winooski Richm Mean of 352 curves. Highest Lowest	West Canada Creek Twin Rock Bridge, N. Y. Winooski Richmond, Vt. Mean of 352 curves. Highest Lowest	9 26	Feet. 3.8 5.5	Feet. 2.5 1.6	Feet. 1.50 2.10	Ft. per sec. 1.82 2.12	0.04 .12 .10 .22 .00	0.66 .72 .71 .79 .63	0.34 .40 .37 .52	0.86 .80 .90 .90	0.91 .83 .878 .92	1.02 1.02 1.002 1.04 1.04	Coarse gravel. Gravel.
			pri pri	отен	ROUGH ICE COVER.	VER.							
Connecticut Orford Des Moines Keosau Maumee Sherw Highest Lowest	Orford, N. H. Keosangua, Iowa. Sherwood, Ohio.	21 21 11	5.59 6.00 6.70 3.45 3.34	445444 6000000	1.7.1 1.69 1.66 58 58	1.08	0.0 0.0 113 111 111 111 112 113 114 115 116 117	0.70 .74 .73 .68 .68 .74 .71	E 8 4 4 8 4 8 4 8 6 4 8 6 4 8 6 4 8 6 8 6	8.2.8.8.8.9.8.9.9.8. 8.8.8.9.9.9.9.9.9.9.9.	8.88888888	1.00	Gravel and sand. Gravel. Do.
	VEI	Y RO	UGH IC	E COV	ER, BR	VERY ROUGH ICE COVER, BROKEN AND TILTED	AND T	ILTED.	į				
Rondout Creek Rosenowalkili Newpa Walkili Newpa Winooski Richm Mean of 13 curves	Rosendale, N. Y. Newpaltz, N. Y. Richmond, Vt.	440	± 7.0 13.7 5.62	5.3 14.6 6.2 8.7	0.45 1.40 ± 2.5 1.45	0.74 2.98 1.99 1.90	22. 22. 23.	+a0.88 .88 .81	0.56 .56 .52	0.80 48. 47.	. 85 . 85 . 82 . 82	1.04 1.05 1.02	Rock. Clay and coarse gravel. Sand and gravel.

a No lower mean thread of velocity for 1 curve.

FORM OF VERTICAL VELOCITY CURVE.

For an ideal cross section and length of river, the difference in velocity at different points in a vertical section is due to the difference in resistance to flow met with by the filaments of water at different depths. If no resistances of any kind existed, the vertical curve of velocity would be a straight line normal to the surface of the stream. If bed friction and the incidental losses due to it were the only resistances to flow, the vertical velocity curve would probably be curved in the lower part and straight in the upper part, the line being tangent to the curve at that point in the vertical where the effect of bed resistance is lost (fig. 7, a); or if the bed friction is of sufficient amount relatively to the depth the curve might be continuous to the surface (fig. 7, b). Varying degrees between a and b would be met with, depending on the relation of depth to velocity, condition of bed, etc. If there is resistance at the surface due to air friction only, there would be a similar effect on the form of the curve

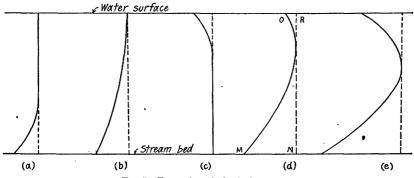


Fig. 7.-Form of vertical velocity curves.

from the surface downward. If there were no bed friction, the form of curve would be as in fig. 7, c, or some modification of this, as explained above.

Resistance to flow occasioned by the roughness of the sides of a stream is also an important factor in determining the form of the vertical velocity curve, especially if the channel is narrow and deep. F. P. Stearns a has advanced the theory that there is an upward flow toward the center at the surface. He says:

Let us first suppose the case of a single obstacle projecting from the lining of a channel. The current approaching this obstacle loses some of its velocity just before reaching it, and thereby causes an excess of head in a small pyramid of water just above the projection.

This excess of head in turn causes a transverse flow of the water in all directions; but the strongest transverse flow will be in the direction of the least resistance, which is, as a rule, vertically toward the surface.

a Trans. Am. Soc. Civil Eng., vol. 12, 1883, pp. 331 et seq.

The irregularities upon the surfaces of even the smoothest channel linings met within practice are very large in comparison with the size of the particles of water striking them, and they may be considered as obstacles present in all parts of the lining, each tending to produce an upward flow, as above indicated.

Although the tendency to upward flow is general, yet since it can not occur without a corresponding downward flow to replace the water which rises it follows that it will take place only in those portions of the width of the channel where the obstacles producing it are the more frequent and nearer the surface—i. e., generally at or near the sides.

It is therefore the theory that there is at the sides of channels an upward flow, due to the cause already described, which carries with it the slow-moving water always found in the immediate vicinity of channel linings, and that this water, reaching the surface, flows toward the middle of the channel, retarding by its slower movement the velocity of the surface layers, thereby causing the maximum velocity to be, in most cases, below the surface.

It must not be inferred from what has just been stated that the writer believes there is a continuous flow in the direction indicated, since it is well known that the motions of water are very irregular, particularly in channels with rough linings or variable sections, and that masses of water find their way from the bottom to the surface in the middle of the channel as well as elsewhere. The idea which he wishes to convey is that in most cases the resultants of these irregular movements are in the directions indicated.

The typical vertical velocity curve for open-water conditions (fig. 7,d) may be considered as due to a combination of these various resistances, but the amount and direction of the wind may change greatly the retardation due to air friction, and consequently the form of the curve. The relative effect of bed and surface friction will be in a measure shown by the difference in length of mn and or, or, in other words, the relation of surface and bottom velocities to the maximum velocity. If there is an ice cover the upper part of the vertical velocity curve will be still more curved (fig. 7, e), and, as shown later (pp. 78-79), may even be more pronounced in this way than the lower part.

The foregoing statements would apply to a straight stretch of river with the bed approximately parallel to the water surface. The usual uneven conditions of bed and banks have a modifying influence and tend to obscure more or less the relative effect of bed and surface friction. This relation of top and bottom velocity to the maximum will, however, serve to indicate something of the relative amount of resistance due to ice cover and to the stream bed, and will be briefly considered.

For open-water conditions the results from 78 vertical velocity curves under various conditions at gaging stations on New York streams are as follows: a

Kelation of top, maximum, and bottom velocity for open-water conditions.

•	Velocity in terms of mean velocity=1.00	Difference as regards maximum velocity.
Top Maximum. Bottom.	1. 15 1. 18 . 50	

The relation of air or water surface friction to that of bed friction is here $\frac{9}{0.6}, \frac{9}{8}$, or 0.044. (Compare with Francis's ratio of $\frac{1}{840}$ for still air, p. 16.)

For smooth ice cover, the comparative effect of bed and ice friction is shown for several cases in the following table. The average amount of resistance due to ice cover is 0.58 of that due to roughness of bed, but there is considerable variation from this amount.

Comparative effect of bed and ice friction on vertical velocity curves under smooth ice cover.

River and station.	Gage	Number	Average	Average		e as re- naximum y.	Ratio of
212.101 11.11 2010.01.1	height.	of curves	depth.	velocity.	Top (1).	Bottom (2).	1 to 2.
	Feet.		Feet.	Feet per second.			
Kennebec, North Anson, Me	3.48	18	2.6	1.17	0.22	0.62	0.35
	$\frac{4.17}{4.77}$.19	$\frac{2.5}{2.9}$	1.30 1.33	.30 .40	.62 .57	.48
Connecticut, Orford, N. II	4.15	18	4.0	1.04	.50	.66	.76
ounced, offera, in it	5.59	7	4.6	1.08	.27	.72	.38
	6.00	7	4.9	1.11	.32	.72	.44
	6.70	21	5.8	1.23	. 41	.65	.63
Fish, Wallagrass, Me	3.91	8	2.5	.90	.23	.51	. 45
MT7' 11 TO 1 1 T T T	5.04	8	3.6	1.25	.64	.74	.86
Winooski, Richmond, Vt		26	1.6	2.12	.59	.77	.77
Wallkill, Newpaltz, N. Y	• • • • • • • • • • • • • • • • • • •	5	8.0	2.18	.37	.65	.57
M ean					.39	.66	.58

For very rough ice cover, the frictional effect of ice cover is the greater of the two, averaging 1.28 times that for roughness of bed.

Comparative effect of bed and ice friction on vertical velocity curves under very rough ice cover.

River and station.	Number	Average	Average velocity.		e as re- naximum y.	Ratio of 1 to 2.
1	of curves.	depth.	verocity.	Top (1).	Bottom (2).	1 60 2.
Rondout Creek, Rosendale, N. Y. Wallkill, Newpaltz, N. Y. Winooski, Richmond, Vt.	4	Feet. 5.3 14.6 6.2	Feet per second. 0.74 2.98 1.99	1.02 .81 1.11	0.55 .89 1.05	1.86 .91 1.96
Mean				.98	.83	1.28

RELATION OF DEPTH AND VELOCITY TO FORM OF CURVE.

It is evident from the foregoing tables that for a given mean velocity the vertical velocity curve under ice cover becomes flatter as the depth increases, since the curvature due to top and bottom resistances is distributed through a greater distance. (See fig. 13, p. 83.) For a given depth, as the mean velocity increases, the curvature will become greater, as both top and bottom resistances increase with velocity.

For a given station the change in curvature as the stage increases will depend on the relative increase of depth and velocity. In the case of Wallkill River (fig. 10) the depth increases considerably faster than the velocity, and it will be noted that the curve becomes flatter as the stage increases.

COMPARISON OF VERTICAL VELOCITY CURVES, WITH AND WITHOUT ICE COVER.

Fig. 8 affords a comparison of mean vertical velocity curves for conditions of open water and ice cover, at substantially the same stations. The essential difference between these curves is the greater

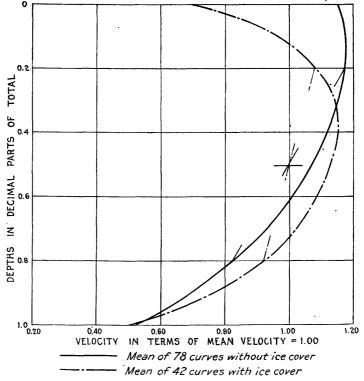


Fig. 8.—Comparison of vertical velocity curves for streams with and without ice cover.

drawing back of the curve for ice cover in its upper portion, on account of the greater retarding effect of the ice over that of air. As a consequence of this there are two threads of mean velocity, viz, at 0.13 and 0.71 of the depth, for ice cover, as compared to one mean thread at 0.61 depth for the open section. The position of maximum velocity is lowered from about 0.14 depth in the case of open section to 0.36 depth with ice cover, its relative value as regards mean velocity being

slightly less in the case of ice cover. The bottoms of the two curves are at substantially the same position, as would be expected.

With very rough ice cover the difference between the two curves becomes still more pronounced, and the drawing back of the curve in its upper part may predominate over the curvature existing in the lower part due to roughness of bed.

POSITION OF THREADS OF MEAN VELOCITY.

The data in the table on pages 73-74 and figs. 8 to 14 serve as a basis for the following discussions, except where special reference is made to other material.

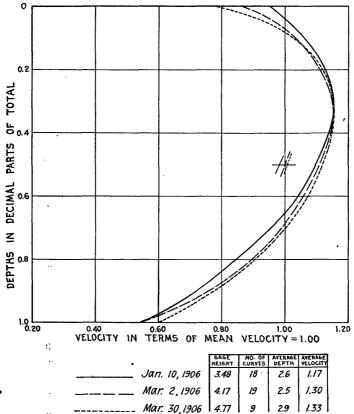


Fig. 9.—Vertical velocity curves under ice cover, showing change in form of curve with change of stage,

Kennebee River at North Anson, Me.

The average of 352 vertical velocity curves made under widely varying conditions (pp. 73–74) indicates that in general under ice cover two threads of mean velocity occur in the vertical, their average position being at 0.10 and 0.71 of the depth below the bottom of the ice.

The depths of threads of mean velocity being plotted as ordinates and the total depths as abscissas, it is seen that there is a general tendency for both threads to move toward the bottom of the curve as depth increases. A similar plat for depths of threads of mean velocity and for mean velocities indicates that as mean velocity increases both threads of mean velocity become lowered. An increase in stage for a given station means usually an increase of both depth and mean velocity; consequently it will be found

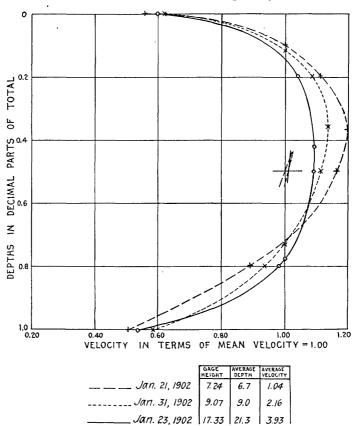


Fig. 10.—Vertical velocity curves under ice cover; average of curves at stations 80, 90, 100 for different stages, Wallkill River at Newpaltz, N. Y.

that both threads of mean velocity tend to move downward as the stage increases. (See figs. 9 to 11.)

The range in position of mean threads seems to be about the same for both upper and lower threads, being about 0.18 depth (with a few exceptions). Moreover, the change in position of the two threads is about the same in amount, the average difference being 0.60 of the depth. With very rough ice cover the tendency is toward greater depression of both mean threads, but it will be

noted that they still preserve about the same distance apart, viz, 0.60 depth. (See table on pp. 73-74, and fig. 14, p. 84).

POSITION OF MAXIMUM VELOCITY AND RELATION TO MEAN VELOCITY.

The average position of maximum velocity is at 0.37 depth below the ice, varying from 0.19 to 0.52 depth. In general, it becomes

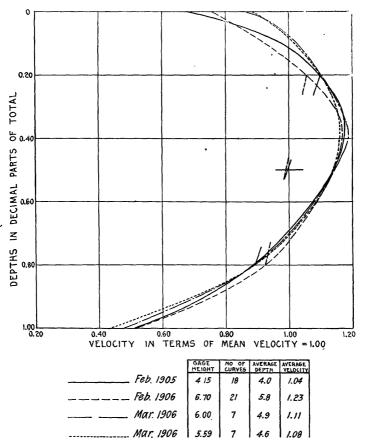


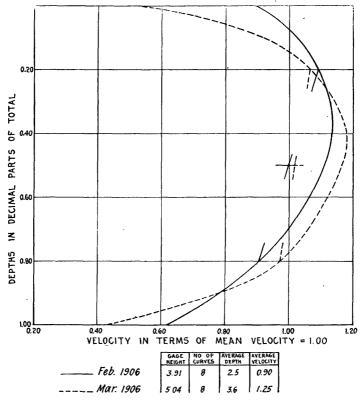
Fig. 11.—Vertical velocity curves under ice cover, showing change in form of curve with change of stage, Connecticut River at Orford, N. H.

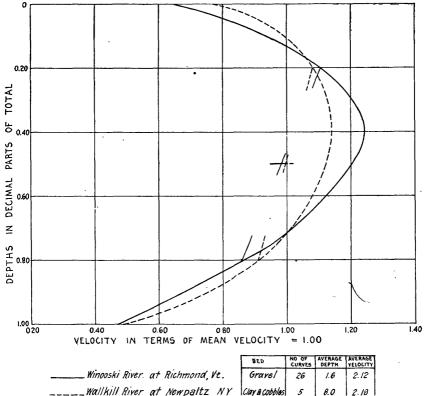
lower as the depth and velocity increase and hence as the stage increases. Rough ice cover tends also to lower the depth of the maximum thread, and when the ice becomes broken and tilted or when needle ice accumulates near its under surface the thread may be considerably below mid depth, indicating a greater effect due to ice friction than to that of the stream bed; in other words, the curve is a complete reversal of the ordinary open-water vertical velocity curve.

The average coefficient to apply for obtaining maximum from mean velocity is 0.839, the variation being from 0.76 to 0.90. This coefficient becomes less as the velocity increases, but greater as the depth increases, consequently its variation from the mean is not large for smooth ice. For rough ice it is considerably diminished and may reach a value of 0.75.

RELATION OF VELOCITY AT MID DEPTH TO MEAN VELOCITY.

The average coefficient for obtaining mean velocity from that at mid depth is 0.878, the range being from 0.82 to 0.92. The range



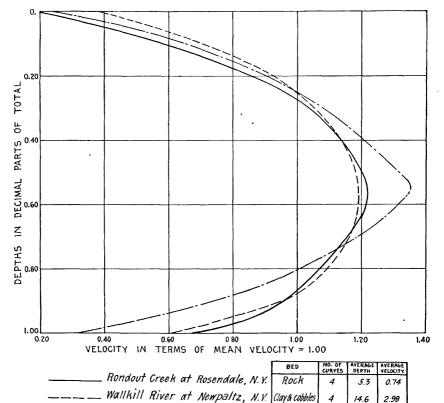

Fig. 12.—Vertical velocity curves under ice cover, Fish River at Wallagrass, Me.

in values for this coefficient, like that for maximum velocity, is small, as the tendency is for it to increase directly with the depth and inversely with the velocity; consequently for a given station little variation occurs as the stage changes. Nearly this same average relation was found on the upper Mississippi by A. O. Powell, assistant engineer, under the direction of Col. Charles J. Allen, Corps of Engineers, U. S. Army, in 1882 and 1890, a the variation being

between 0.87 +and 0.88 +. No data are given, however, as to conditions of depth, velocity, or bed of stream. The coefficient for obtaining mean velocity from that at mid depth becomes less for very rough ice, just as in the case for maximum velocity, the average value for the 13 curves being 0.82, with a range of from 0.76 to 0.85.

RELATION OF MEAN OF VELOCITIES AT 0.2 AND 0.8 DEPTH TO MEAN VELOCITY.

The average coefficient for obtaining mean velocity from the mean of the velocities at 0.2 and 0.8 depth is 1.002, the range being from



0.98 to 1.04, there being, however, but one set of curves with a greater value than 1.02. This relation is shown graphically by connecting the 0.2 and 0.8 depth points of the mean vertical velocity curves and noting where this line crosses the horizontal at 0.5 depth. (See figs. 8 to 13.)

In general, this coefficient seems to decrease slightly as gage heights increase. (See figs. 8 to 11, and table on pp. 73-74.) For very rough ice cover the mean value is 1.002, the range being from 1.00.

to 1.04, indicating that rough ice tends to increase this coefficient slightly.

The typical vertical velocity curve for open-water conditions corresponds approximately in form with an ordinary parabola drawn through top, bottom, and mid-depth points of the curve and with axis horizontal. The mean ordinate to this parabola is a mean of the ordinates at 0.22 and 0.79 of the depth, and it is evident that the mean of the ordinates at 0.2 and 0.8 depth would always be less than the true mean ordinate, so that if the vertical velocity

14.6 2.98 Winooski River at Richmond Vt. Sandagravel

Fig. 14.—Effect of very rough, broken, and tilted ice on form of vertical velocity curves under ice cover.

curve were truly parabolic the coefficient for this method would always be slightly greater than 1.00. Usually the parabola passes wholly to one side of the actual curve above mid depth and on the opposite side below mid depth, the resulting effect being that the mean of the velocities at 0.2 and 0.8 depth ordinarily gives closely the mean velocity for the vertical.

For ice cover the vertical velocity curve diverges markedly from a parabola drawn as described above. The results of the table on pages 73-74 seem to indicate, however, that this relation holds almost

as well for curves under ice cover as with open section, and the 0.2 and 0.8 method, as it is called, seems to have much promise as a two-point method, being both reasonably accurate and convenient for use.

The range of variation in the reduction of coefficients is as follows:

tunge of coefficient to readed to mean colocing.	
Maximum	0.14
Mid depth	
0.2 and 0.8 depth	06

The accuracy of the method being assumed to be proportional to the square root of the number of observations, and either of the singlepoint methods being adopted as a basis, the computed probable range of error for the two-point method would be

$$\frac{\text{Range for single point}}{\checkmark^2},$$

or, as compared with maximum point, the range would be 0.099; with mid-depth point, the range would be 0.071. The actual range of variation for the two-point method is considerably smaller, indicating that it has a greater accuracy as compared with single-point methods than can be attributed to the use of two observations instead of one.

PERCENTAGE VARIATION IN OBSERVATIONS AT DIFFERENT DEPTHS.

In general the top and bottom of the vertical velocity curve is most poorly determined, because greater variations occur in velocity in these portions of the curve. The 0.5 depth method has the advantage of utilizing a depth of observation at which variations in velocity are least apt to occur.

As bearing on the variations between successive observations at 0.2 and 0.8 depth, the following table gives results-from two sets of curves where independent observations were made at these depths just after the curves were completed:

Variation in observations at 0.2 and 0.8 depth, Connecticut River at Orford, N. H., meter suspended from cable.

MARCH 14, 1906, GAGE HEIGHT, 6.00.

		velocity.	Ratio of determ the 0.2 method	velocity ined by	Depth under	Mean velocity.
	0.2 depth.	0.8 depth.	Actual observation.a	From curve.b	ice.	velocity.
Average of 7 curves	0.993 1.07 .94	0.995 1.05 .95	1.013 1.04 .98	1.004 1.02 .99	Feet. 5.0 6.3 3.5	Feet ver second. 1.10 1.39 .56

a Mean from 0.2 and 0.8 velocity as observed.
Mean from 0.2 and 0.8 velocity taken from vertical velocity curve.

Variation in observations at 0.2 and 0.8 depth, Connecticut River at Orford, N. H., meter suspended from cable—Continued.

MARCH 15, 1906, GAGE HEIGHT 5.59.

	Observed Ratio: Vel cur		determ the 0.2 method	velocity ined by ahd 0.8 I to the velocity.	Depth under	Mean velocity.
	0.2 depth.	0.8 depth.	Actual observa- tion.	From curve.	ice.	,
Average of 7 curves Highest Lowest	1.006 1.04 .95	0. 974 1. 13 . 90	1.011 1.05 .97	1.003 1.01 .99	Feet. 4.6 5.7 3.2	Feet per second. 1.08 1.36 .51

As would be expected, the actual observations at 0.2 and 0.8 depth, when used to obtain mean velocity, give a larger percentage variation in coefficient than do the curve values at these depths, but the average variation is small and far within the degree of accuracy required.

A further index of the amount of variation in observations at 0.2 and 0.8 depth is afforded by two successive gagings made February 15, 1906, on Fish River at Wallagrass, Me., under ice cover, when the gage heights height remained the same.

Comparison of velocities for two separate gagings on Fish River at Wallagrass, Me., gage height 3.91, meter fastened to rod.

FEBRUARY 15, 1906, GAGE HEIGHT 3.91.

		velocities nd second		Damah	Mean
	0.2 depth.	0.8 depth.	Mean	Depth.	velocity.
Average of 4 stations, observations at 0.2 and 0.8 depth. Highest Lowest Average of 4 stations, vertical velocity curves. Highest Lowest			0.990 1.05 .94 0.978 1.01	Feet. 2.6 4.1 .9 2.5 3.6 1.3	Feet per second. 0.88 1.10 .62 .90 1.18

Other details of these gagings are given on page 53. It will be noted that the depths are small and that in order to get 0.2 and 0.8 depth the meter had to be held within a range of 0.2 to 0.8 feet from the bottom of the ice and the bed of the river. The average variation in the results of these two sets of velocities at 0.2 and 0.8 depth is small and, in fact, is less than in the case of the vertical curves.

SLOPE DETERMINATIONS AND VALUES OF *n* IN KUTTER'S FORMULA, UNDER ICE CONDITIONS.

In 1906 two sets of slope determinations and measurements of the other hydraulic properties were made on Connecticut River at Orford, N. H.

February 17, 1906.—River in general frozen. A strip of open water, beginning at bridge, extended about 1,000 feet downstream. This was about 100 feet wide and approximately in the middle of the channel. The ice was rough in places and numerous ice cakes were frozen in, owing to high water and a partial going out of the ice during January. There were about 11 inches of snow on the ice.

Bench marks, consisting in most cases of spikes in trees, were established along each bank by a double-rodded line of levels. Soundings for determination of cross section were made at 100 feet, 250 feet, and 516 feet upstream from the gage. The level was set on the ice in the middle of the river, and water-surface elevations were determined on both banks at each section at holes cut in the ice. The following table gives results of the best set of observations:

Slope determinations and value of "n" on Connecticut River at Orford, N. H., February 17, 1906.

[Gage height to water surface, 6.65 feet; gage height to bottom of ice, 5.15 feet; gage height to top of ice 6.67 feet; discharge, 2,070 second-feet.]

Distance of sec- tion from gage.	Width below ice.	Area below ice.	Veloc- ity.	Wet- ted Per- imeter.	Hy- draulic Radius.	Distance between sections.	Differ- ence in eleva- tion of water surface.	Slope.	Aver- age Hy- draulic ra- dius.	Average velocity.	n.
Feet.	Feet.	Sq. ft.	Ft.per	Feet.	Feet.	Feet.	Feet.		Feet.	Ft. per	
516	302	2, 110	0.98	605	3.49	266	0.026	0.000098	3.12	1.04	0.030
250	340	1,890	1.10	685	2.76	} 150	.043	.000287	2.70	1, 15	.042
100	329	1,730	1.20	659	2.63	J 100	.010		2	1.10	.012

March 15, 1906.—The conditions were about the same as during February, but the strips of open water were considerably shorter and narrower. There was no snow on the ice. Iron rods 4 or 5 feet long were driven into the bank to within about 6 inches of the water surface in holes cut in the ice. These were located on each bank at sections 100 feet, 296 feet, and 516 feet upstream from the gage and the elevation of the tops was determined by several series of levels. Measurements were then made from these points to the water surface with a 2-foot rule. Independent observations were made at each point by two men, each man's set being averaged separately and the mean of the two sets being finally used. The results were as follows:

Slope determinations and value of "n" on Connecticut River at Orford, N. H., March 15, 1906.

[Gage height to water surface, 5.62 feet; gage height to bottom of ice, 4.18 feet; gage height to top of ice 6.67 feet; discharge, 2,070 second-feet.]

Distance of section from gage.	Width below ice.	Area below ice.	Velocity.	Wetted perimeter.	Hydraulic radius.	Distance between sections.	Average hydraulic radius.	Average velocity.	Series.	Difference in elevation of water surface.	. Slope.	n.
Feet. 516 296 100	Feet. 295 330 319	Sq. ft. 1,800 - 1,530 1,440	Ft. per sec. 0.83 .98 1.04	Feet. 592 662 640	Feet. 3. 04 2. 31 2. 25	Feet.	Feet. 2.67 2.28	## Per sec 0.90	$\left\{ \begin{array}{l} 1\\2\\3\\1\\2\\3 \end{array} \right.$	Feet. 0.020 .020 .024 .030 .031 .030	0.000091 .000091 .000109 .000153 .000158 .000153	0. 030 .030 .033 .030 .031 .030

Conclusions.—The mean value of n for the February observations is 0.036, and for the March observations is 0.031. The March series are much the more reliable of the two.

DATA FROM OTHER SOURCES.

Up to the present time very little information has been published on the flow of streams under ice cover, other than that gathered by the United States Geological Survey.^a

Raucourt made experiments on the Neva^b at a point where it is 900 feet wide and of regular section, the maximum depth being 63 feet. When the river was frozen over the maximum velocity (2 feet 7 inches per second) was found a little below the middle of the deepest vertical. It was somewhat less than double the velocity at the surface and bottom, which were nearly equal to each other.

The United States Engineer Corps^c recently made some current-meter measurements of flow under ice cover on St. Marys River.

No details of the observations are given, but the general results were as follows: (1) The location of the threads of mean velocity was found to be at 0.067 and 0.753 depth. (2) The maximum velocity was found to be at approximately 0.4 depth. (3) The friction caused by the ice was found to be 0.309 of that caused by the bottom.

Further measurements under ice cover on St. Marys River were made during 1905, but have not yet been reported for publication.

Considerable data on conditions in the frozen period, duration of the frozen season, etc., may be found in the proceedings of the International Meteorological Congress, Chicago, 1893.^d

a Water-Sup. and Irr. Papers Nos. 76 (1903) and 95 (1904).

b Humphreys and Abbot, Physics and Hydraulics of Mississippi River, p. 190.

c Rept. Chief of Engineers for 1897, p. 4092.

d The four great rivers of Siberia: Bull. U.S. Weather Bureau No. 11, 1893.

CONCLUSIONS.

PRACTICABILITY OF WINTER ESTIMATES OF FLOW.

The classification of current-meter gaging stations on page 9 indicates that about one-sixth of them remain open during the winter and permit about the same degree of accuracy for winter estimates as for those of the summer; they can, therefore, be classed with stations south of the area subject to ice cover. About one-third of these stations usually have a smooth, permanent ice cover, and it is probably fair to assume that this is about the proportion at which winter estimates that will be fairly reliable can be made without too great cost. Undoubtedly there is a further number of stations where good estimates can be made if sufficient attention is given by the hydrographer, and particularly if an intelligent gage reader, with ability to note and sketch conditions affecting flow, is available.

Stations at dams, in general, give less trouble during the winter than current-meter stations, and this should be kept in mind where there is any question as to which form of station is preferable.

RECOMMENDATIONS AS TO METHODS.

The study of the flow of streams under ice cover is but just started, and in order to systematize the accumulation of data and to provide the material in convenient form for future use it is desirable that certain general methods be followed.

The methods of obtaining gage heights used should be as described on pages 21-23, and the observer should be especially encouraged to note any unusual conditions affecting flow, furnishing sketches where It should be kept in mind that what is desired is the average thickness of ice, distance from bottom of ice to water surface, etc., for the portion of the river near the gage, and that the hole cut in the ice should be so located as to give average results; preferably, several holes should be cut from time to time. The cost of currentmeter measurements under ice cover can be kept within reasonable. limits by employing laborers when necessary to cut holes in the ice, so as to utilize to better advantage the time of the hydrographer, and by using the two-point method of observations at 0.2 and 0.8 depth, with a few vertical velocity curves, if possible, for purposes of study. In case time is short a single observation at 0.5 depth will give fairly good results, the coefficient 0.88 being applied, or if a few vertical curves have been taken a closer value of the coefficient can be determined from them.

By following the above suggestions the total time required for a gaging will not be usually more than half a day, and the cost will be but little greater than that for a gaging under open-water conditions.

For depths less than 5 feet it is desirable to use the current meter fastened to a rod for convenience in handling and in order that 0.8 depth may be reached; in fact, this method is generally preferable to the use of a cable where depths and velocities are not too great.

Vertical velocity curves should be taken at typical points in the cross section when time permits just as for open water. These should always be taken just before or after the two or one point observations at the point in question to give further information as to the field accuracy of these methods, the observations by the point method not being incorporated in the vertical velocity curve.

Rating curves should be constructed in each of the two ways described on pages 43–46, and the method which seems to give the best results should be used. Special efforts should be made to obtain gagings for thin ice cover for the purpose of better defining the rating curve or coefficient to use under such conditions.

It is believed that the methods previously indicated for discharge measurements (pp. 22-24) will give results well within the degree of accuracy consistent with winter estimates of flow, and that less time need be spent hereafter on individual gagings. This will make it possible to give more attention to the study and completion of station rating curves—the direction in which the most effort should be expended in the immediate future.

INDEX.

Page.	Page.
Air, friction of	Discharge measurements, accuracy of 89, 90
Anchor ice, character of	effect of freezing on
See also Ice.	figure showing
Barnes, H. T., on formation of ice 11, 13	See also Flow; Velocity, etc.
Bed, friction of, comparison of ice friction	Droughts, periods of
and	Eau Claire River, gaging station on, condi-
Buskirk, N. Y., gaging station at, condi-	tions at 45
tions at	velocity curves on, for ice cover 48
velocity curves at, for ice cover 57	Esopus Creek, gaging station on, condi-
Catskill Creek, gaging station on, condi-	tions at 30–32, 39
tions at	ice on, thickness of
velocity curves on, for ice cover 47,73	velocity curves on, for ice cover 52-53,73
Catskill Mountains, streams in, measure-	Fish River, gaging station on, conditions
ments of	at
Chemung, N. Y., gaging station at, condi-	velocity of, variations in 86
tions at 42	velocity curves on, for ice cover 53-54,73,77
needle ice at, figure showing 12	figure showing 85
velocity curves at, for ice cover 47,73	Flambeau River, gaging station on, condi-
Chemung River, gaging station on, condi-	tions at 45
tions at 42	velocity curves on, for ice cover 5
needle ice in, figure showing	Flow under ice, friction and, relations of. 14-17
velocity curves on, for ice cover 47,73	19–21,77
Chippewa, Wis., gaging station at, condi-	friction and, relations of, figures show-
tions at 42	ing
Chippewa River, velocity curves on, for ice	measurements of, accuracy of 89
cover	methods for 89–90
Climate, effect of, on ice formation 7	See also Velocity; Discharge.
Columbus, Ohio, velocity curves at, for ice	Francis, James B., on air friction 10
cover	Freezing, effect of, on slope
Connecticut River, discharge of, relation be-	effect of, on slope, figure showing 1'
tween ice cover and open flow in. 46	Freshets, winter, occurrence and character
gaging station on, conditions at 29-30,39	of13-14
ice on, thickness of	Friction. See Air, friction of; Ice, friction
slope determinations on 87-88	of; Bed, friction of.
rating curve for ice cover on 45-46	Gaging, cost of
figure showing 45	methods of, in closed season 21-22,23,89
velocity of, variations in	in open season 6-
velocity curves on, for ice cover. 48-51, 73, 74, 77	Gaging stations, conditions at 26-33
figure showing 81	discharge under ice cover at, relations
Cost of measurements under ice cover, dis-	between open section and 46
cussion of 24	rating curves for ice cover at
Current meter, measurements by, cost of 24	Genesee River, gaging stations on, condi-
measurements by, methods of 22-24	tions at 4:
use of	velocity curves on, for ice cover 55-57,73
Current-meter stations, ice conditions at . 9, 26-38	Hoosic River, gaging station on, conditions
See also Gaging stations.	at 4
Dams, effect of, on ice formation 8	velocity curves on, for ice cover 5
gaging stations at, conditions at 9	Ice, character of 10-13
figure showing	discharge under, relation between open
measurements at	flow and 40
Des Moines River, gaging station on, condi-	flow under
tions at 42	measurements of, accuracy of 8
velocity curves on, for ice cover 51,74	formation of, factors affecting 7-

Page	Page.
Ice, friction of	Orford, N. H., slope determinations at 87-88
comparison of bed friction and 77	rating curve for ice cover at 45-46
prevalence of	figure showing
roughness of, effect of, figure showing 84	velocity at, variations in
season of, duration of 9-10	velocity curves at, for ice cover 48-51,73,77
thickness of, change in 10	figure showing
effect of, on flow	Otter Creek, gaging station on, conditions
figure showing 20	at
Kennebec River, gaging station on, condi-	Precipitation, flow estimates from 25-26
tions at	Raquette River, gaging stations on, condi-
rating curve for ice cover at	tions at
figure showing	velocity curves on, for ice cover 64,73
velocity curves on, for ice cover 58-61,73,77	Rating curves, construction of 90
figure showing	details of 48-46
Keosagna, Iowa, gaging station at, condi-	Raucourt, —, velocity measurements by 88
	Richmond, Vt., gaging station at, condi-
	tions at
velocity curves at, for ice cover	gaging station at, view of
Kingston, N. Y., gaging station at, condi-	= = = '
tions at	velocity curves at, for ice cover 70-71,74,77
ice at, thickness of	Rochester, N. Y., gaging stations at, condi-
velocity curves at, for ice cover 52-53	tions at
Kutler's formula, value of "n" in, under ice	velocity curves at, for ice cover 56-57,73
conditions	Rondout Creek, gaging station on, condi-
Ladysmith, Wis., gaging station at, condi-	tions at 34–35, 40
tions at 42	velocity curves on, for ice cover 65,73,74,77
velocity curves at, for ice cover 54	Rosendale, N. Y., gaging station at,
Madison, Me., gaging station at, view of 24	conditions at 34-35, 40
Massena Springs, N. Y., gaging stations at,	velocity curves at, for ice cover 65,73,77
conditions at 42	St. Marys River, velocity of, under ice 88
velocity curves at, for ice cover 64,73	Sandy River, gaging station at, view of 24
Maumee River, gaging station on, condi-	Sherwood, Ohio, gaging station at, condi-
tions at 42	tions at
velocity curves on, for ice cover 62,74	velocity curves at, for ice cover 62
Middlebury, Vt., gaging station at, condi-	Slope, determination of, under ice conditions
tions at	17-18, 87-88
Minimum flow, period of 5	measurement of stream flow by 7
Mohawk River, velocity curves on, for ice	variation in, due to freezing 17-18
cover	diagram showing 17
Mount Morris, N. Y., gaging stations at,	Snow, effect of, on formation of ice
conditions at 42	effect of, on stream flow
velocity curves at, for ice cover 55,73	evaporation of
Needle ice, character of	South Cairo, gaging station at, conditions
effect of, on flow measurements 12	at
formation of 8	velocity curves at, for ice cover 47,73
conditions of11	Springs, temperature of 8
movement in	Stearns, F. P., on form of vertical velocity
See also Ice.	curves 75-76
Neva River, velocity of, under ice	Streams, character of, effect of, on ice form-
Newpaltz, N. Y., gaging station at, condi-	ation 7,8
tions at	flow of. See Flow; Disharge: Velocity;
rating curve for ice cover at	etc.
figure showing	Surface ice, character of
velocity curves at, for ice cover 66-68,73,77	See also Ice.
figures showing	Twin Rock Bridge, N. Y., gaging station at,
North Anson, Me., gaging station at, condi-	conditions at
	velocity curves at, for ice cover 69,74
tions at	Utica, N. Y., velocity curves at, for ice
rating curve for ice cover at	cover
-	Velocities, mean and 0.2 and 0.8 depth, re-
velocity curves at, for ice cover 58-61,73,77	lations of
figure showing 79	Velocities, mid depth and mean, relations of .82-83
Olentangy River, velocity curves on, for ice	Velocity, measurement of stream flow by 6-7
cover	position of maximum thread of
Orford, N. H., gaging station at, conditions	position of mean thread of
at	observations on, accuracy of
ice at, thickness of	variation in, at different depths 85-86

INDEX.

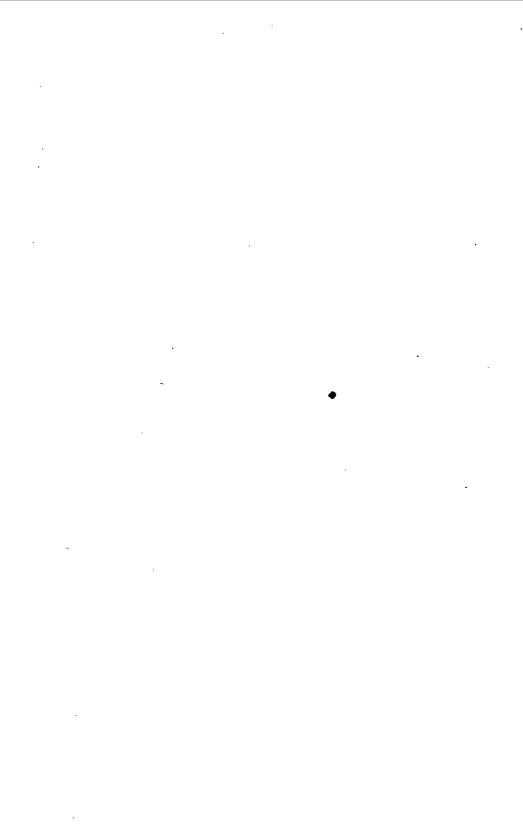
Page,	· Page.
ertical velocity curves for ice cover, change	Wallkill River, gaging station on, rating
of, with change of stage 80	curve for ice cover at, figure showing. 43
change of, figures showing 79,81	velocity curves on, for ice cover66-68,
comparison of curves without ice cover	73, 74, 77, 78
and 78-79	figures showing 43,80
figure showing 78	Waterway, area of, change in, due to freez-
depth and relations of, figure showing 83	ing 18
details of	Weirs, measurement of stream flow by 6
form of	West Canada Creek, gaging station on, con-
figures showing 75, 78, 79, 80, 81, 82, 83, 84	ditions at 42
relation of depth and velocity to	velocity curves on, for ice cover 69,74
rough ice, and relations of, figure	Winooski River, gaging station on, condi-
showing 84	tions at 37-38, 41
summaries of	gaging station on, view of 24
Vallagrass, Me., gaging station at, condi-	velocity curves on, for ice cover 70-71, 74, 77
tions at	Winter, conditions during 7-14
velocity at, variations in 86	conditions during, classification of 8-9
velocity curves at, for ice cover 53-54, 73, 77	observations during, accuracy of 89
figure showing 82	See also Ice.
Vallkill River, discharge of, relation be-	Winter records, accuracy of 89
tween ice cover and open water	discussion of
at 46	importance of
gaging station on, conditions at 35-37, 40	methods of obtaining 21-26
rating curve for ice cover at 43-44	See also Gaging.

CLASSIFICATION OF THE PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY.

[Water-Supply Paper No. 187.]

The serial publications of the United States Geological Survey consist of (1) Annual Reports, (2) Monographs, (3) Professional Papers, (4) Bulletins, (5) Mineral Resources, (6) Water-Supply and Irrigation Papers, (7) Topographic Atlas of United States—folios and separate sheets thereof, (8) Geologic Atlas of the United States folios thereof. The classes numbered 2, 7, and 8 are sold at cost of publication; the others are distributed free. A circular giving complete lists can be had on application.

Most of the above publications can be obtained or consulted in the following ways:


- 1. A limited number are delivered to the Director of the Survey, from whom they can be obtained, free of charge (except classes 2, 7, and 8), on application.
- 2. A certain number are delivered to Senators and Representatives in Congress for distribution.
- 3. Other copies are deposited with the Superintendent of Documents, Washington, D. C., from whom they can be had at prices slightly above cost.
- 4. Copies of all Government publications are furnished to the principal public libraries in the large cities throughout the United States, where they can be consulted by those interested.

The Professional Papers, Bulletins, and Water-Supply Papers treat of a variety of subjects, and the total number issued is large. They have therefore been classified into the following series: A, Economic geology; B, Descriptive geology; C, Systematic geology and paleontology; D, Petrography and mineralogy; E, Chemistry and physics; F, Geography; G, Miscellaneous; H, Forestry; I, Irrigation; J, Water storage; K, Pumping water; L, Quality of water; M, General hydrographic investigations; N, Water power; O, Underground waters; P, Hydrographic progress reports. This paper is the nineteenth in Series M, the complete list of which follows (WS=Water-Supply Paper):

SERIES M-GENERAL HYDROGRAPHIC INVESTIGATIONS.

- WS 56. Methods of stream measurement. 1901. 51 pp., 12 pls.
- WS 64. Accuracy of stream measurements, by E. C. Murphy. 1902. 99 pp., 4 pls.
- WS 76. Observations on the flow of rivers in the vicinity of New York City, by H. A. Pressey. 1902. 108 pp., 13 pls.
- WS 80. The relation of rainfall to run-off, by G. W. Rafter. 1903. 104 pp. WS 81. California hydrography, by J. B. Lippincott. 1903. 488 pp., 1 pl.
- WS 88. The Passaic flood of 1902, by G. B. Hollister and M. O. Leighton. 1903. 56 pp., 15 pls.
- WS 91. Natural features and economic development of the Sandusky, Maumee, Muskingum, and Miami drainage areas in Ohio, by B. H. Flynn and M. S. Flynn. 1904. 130 pp.
- WS 92. The Passaic flood of 1903, by M. O. Leighton. 1904. 48 pp., 7 pls.
- WS 94. Hydrographic manual of the United States Geological Survey, prepared by E. C. Murphy, "J. C. Hoyt, and G. B. Hollister. 1904. 76 pp., 3 pls.
- WS 95. Accuracy of stream measurements (second edition), by E. C. Murphy. 1904. 169 pp., 6 pls.
- WS 96. Destructive floods in the United States in 1903, by E. C. Murphy. 1904. 81 pp., 13 pls.
- WS 106. Water resources of the Philadelphia district, by Florence Bascom. 1904. 75 pp., 4 pls.
- WS 109. Hydrography of the Susquehanna River drainage basin, by J. C. Hoyt and R. H. Anderson, 1904. 215 pp., 28 pls,

