

			, , ,
			1
			1
			1
			1 1
			- 1
			1
			1
			1

THE NATIONAL STREAM QUALITY ACCOUNTING NETWORK (NASQAN)— SOME QUESTIONS AND ANSWERS

By John F. Ficke and Richard O. Hawkinson

GEOLOGICAL SURVEY CIRCULAR 719

United States Department of the Interior

STANLEY K. HATHAWAY, Secretary

Geological Survey V. E. McKelvey, Director

Library of Congress Cataloging in Publication Data

Ficke, John F

The National Stream Quality Accounting Network (NASQAN)—Some questions and answers.

(Geological Survey circular;

Bibliography: p.

Supt. of Docs. no.: I 19.4/2:

1. Water quality management—United States. 2. Water—Pollution—United States—Measurement. 3. National Stream Quality Accounting Network. I. Hawkinson, Richard O., joint author. II. Title. III. Scries: United States. Geological Survey. Circular;

QE75.C5 [TD223] 557.3'08s [628.1'61'0973] 75-619140

CONTENTS

	Page
Introduction	
Purpose	
What is NASQAN?	TITL 1 . 1
Why is it needed?	at NIACOANI stations?
How are NASQAN stations different from those	Will changes be made in the suite of chara?
that have operated for many years?	teristics measured at NASQAN stations?
Who began NASQAN?	Who collects data at NASQAN stations?
Accounting networks	How long will stations be operated?
What are the geographical units used in level I accounting?	What will be done with the data?
How are NASQAN stations located within	interpretation of the data?
accounting units?	
How are stations in coastal units selected?	tions near reservoirs?
How are sites selected for stations in closed	Summary
basins?	
Rivers. Uncontrolled spectral scanner data the Tennessee Valley	Page
	s showing outlines of regions and accounting 4
2. Map showing account	ating units in New England 6
	s showing NASQAN stations in operation 5 9
4. Graph showing numb	bers of stations in NASQAN, 1973-78 10
	ma Di Fi
	TABLE
TABLE 1. Stations in the Nations	Page

Page

The National Stream Quality Accounting Network (NASQAN)— Some Questions and Answers

By JOHN F. FICKE and RICHARD O. HAWKINSON

INTRODUCTION

One of the major new efforts of the U.S. Geological Survey is the National Stream Quality Accounting Network (NASQAN). This circular is intended to answer some of the frequently asked questions concerning concepts used in establishing NASQAN, its purposes, design, value, and future plans.

PURPOSE

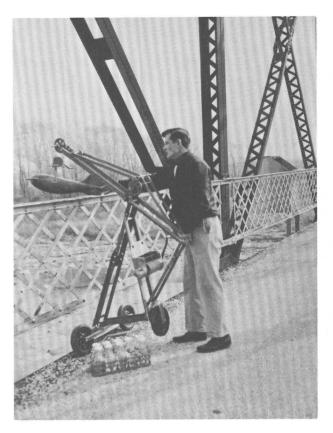
What is NASQAN?

NASQAN is a series of stations at which systematic and continuing measurements are made to determine the quality of the Nation's streams. Design of the network specifies measurement of a broad range of water-quality characteristics which were selected to meet many of the information requests of groups involved in planning and management on a national or regional scale. The primary objectives are (1) to account for the quantity and quality of water moving within and from the United States, (2) to depict areal variability, (3) to detect changes in stream quality, and (4) to lay the groundwork for future assessments of changes in stream quality.

Why is it needed?

Data of the type needed to determine longterm trends in the physical, chemical, and biological characteristics of the Nation's surface waters are relatively sparse. Wolman (1971) and Enviro Control (1972) have documented the problems associated with the assessment of changes in characteristics of surface waters. Wolman stated some fairly obvious problems involving statistical analysis of water-quality data; these include (1) the relatively short length of hydrologic records, (2) changes in location and frequency of observations, (3) the fact that comparisons of specific variables related to surface-water quality require systematic correlation with hydrologic behavior, and (4) the fact that knowledge of temporal variability of a specific constituent is often essential to the detection of a trend. Enviro Control's study verified the existence of the first problem, noting that of 70,000 stations in the Environmental Protection Agency's waterquality data-storage system, only 142 stations had 8 or more years of records of samples taken as frequently as at quarterly intervals.

Another problem is the unbalanced areal distribution of existing stations having adequate data for statistical analysis. Seventy percent of the stations used in the Enviro Control study were in the northwestern and northeastern United States. Steele and others (1974) noted a deficiency of stations in the northcentral and southeast United States. With continued operation of the series of stations established under NASQAN, a set of systematically collected baseline water-quality data will be available for nationwide studies involving transport of and changes in chemical constituents in surface waters.


NASQAN also will provide data needed to assess regional trends in order to evaluate the

effectiveness of programs to control water quality. Such assessments will provide local and State officials with some of the information required to judge whether revisions in programs or new legislation is needed. However, the broad-scale information from NASQAN is not likely to be detailed enough to assess the effectiveness of pollution-control measures on a localized basis, as prescribed by Public Law 92–500. Enough insight should be supplied by the NASQAN data, however, to identify problem areas which require detailed monitoring of subbasins to evaluate the effects of land use and treatment measures.

How are NASQAN stations different from those that have operated for many years?

Stations in NASQAN are different in that they form a nationwide network in which station location was based upon hydrologic subdivision of river basins. This assures fairly uniform coverage of the entire United States, including Puerto Rico. NASQAN stations can be further characterized by the facts that a uniform operational design has been designated and station operations are committed to fulfilling the long-term objectives of detection of trends in water quality.

In the past, it has not been possible, on a nationwide basis, to determine areal differences and (or) changes in water quality over time because most data-collection programs have been operated to satisfy local objectives or objectives of special programs. Consequently, the stations have been operated for short periods. have been moved frequently, and have experienced variation in constituents sampled. However, it should be noted that many of the stations specified in NASQAN were previously operated for other programs and that some historical data exist for certain chemical constituents (primarily the common constituents) that will be useful in evaluation of trends. Unfortunately, most previous data-collection programs did not monitor the suites of constituents (nitrogen and phosphorus species, bacteria, minor elements, organic indicators, and biological parameters) that are of primary concern in establishing the suitability of water for a given use. The NASQAN program, as designed, will help to eliminate this deficiency as well as. in time, some of the problems which Wolman

Sampling from bridge.

(1971) discussed; notably, establishing the data base needed for nationwide evaluation of trends in quality of surface waters, and the need to account for the movement of materials in surface waters.

In addition, NASQAN will use other agencies' documentation of the man-induced changes that occur within basins to help explain changes that may occur in water quality. Water-quality data from adjacent nonnetwork stations and other environmental data will also be used in the analyses and interpretation of NASQAN data, particularly where changes in the water-quality characteristics of a river are detected.

Who began NASQAN?

NASQAN was established by the U.S. Department of Interior, Geological Survey. The initial need for a national network to provide water data for Federal agencies was recognized in Bureau of the Budget Circular A-67, dated August 28, 1964. The circular stated that the national network is the mechanism for providing data on the quantity and quality of surface water and ground water, including sedi-

Sampling by boat in a large river.

ment load of streams, and it assigns the responsibility for network operation to the Department of the Interior. The Office of Water Data Coordination of the U.S. Geological Survey was designated by the Secretary of the Interior to design and coordinate the National Water Data Network.

As a basis for network design activities, the Office of Water Data Coordination used the "level-of-information concept" to specify three categories (levels I, II, and III) into which data-collection activities can be classified (Langford and Davis, 1970). Level I data constitute a basic level of information nationwide and thus are suitable for broad national and regional planning and as a foundation for more detailed work in the future.

The need for a national river-quality accounting network to provide broad-scale accounting data (Office of Water Data Coordination level I information) was a primary component of a Departmental "thrust document" on river-quality monitoring in March 1972. On the basis of this impetus, NASQAN became an official activity of the Geological Survey.

Data-collection activities were either initiated or upgraded at 50 stations in January 1973, and at another 50 stations in January 1974, to meet the design specifications for network operation. Appropriations during the 1975 fiscal year permitted expansion to at least one station in each unit of the level I accounting network, thereby placing the present level of network operations at 345 stations.

ACCOUNTING NETWORKS

What are the geographical units used in level I accounting?

Through the Water Resources Planning Act of 1965 (PL 89-80), the Water Resources Council was established to provide a framework that would facilitate coordination of water-resource and land-resource activities. In compliance with this charge, Water Resources Council (1970) divided the United States into water-planning regions and subregions. The U.S. Geological Survey's Office of Water Data Coordination has carried the division one step further by specification of accounting units. Figure 1 outlines the existing 21 regions and 324 accounting units in the United States.

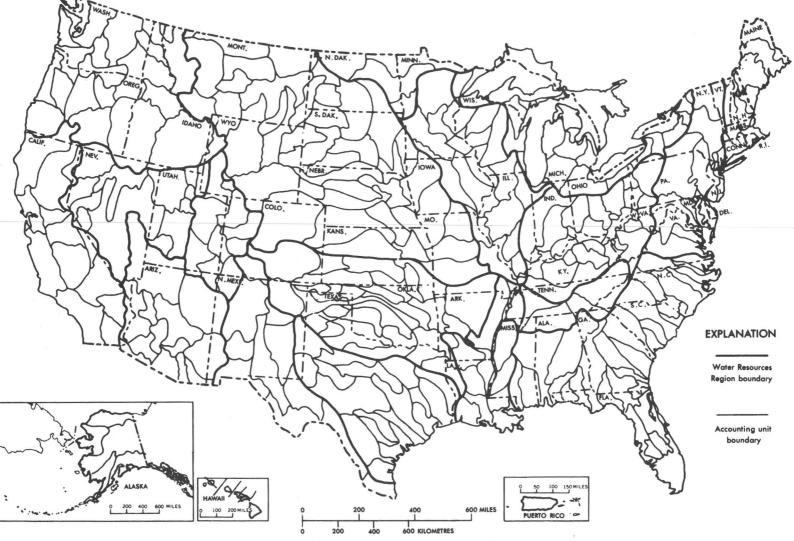
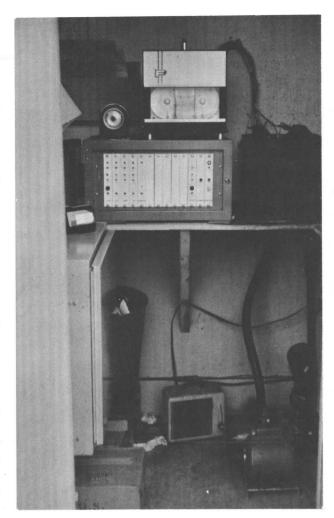


FIGURE 1.—Outlines of the 21 regions and the 324 accounting units as defined by the U.S. Water Resources Council and the Office of Water Data Coordination (U.S. Department of Interior, Geological Survey).

The Office of Water Data Coordination is presently revising certain accounting-unit boundaries, using input from other Federal, State, and local agencies. Revisions receive approval from the Water Resources Council before publication of base maps (Hydrologic Unit Map—1974, U.S. Geological Survey, issued by State) bearing the hydrologic subdivisions.


Accounting units in New England are shown at a larger scale (1:5,000,000) in figure 2 to illustrate in greater detail than in figure 1 how stream drainage patterns influence selection of station locations. Figure 2 shows that accounting units along coastlines are drained by numerous streams flowing into the sea; similar situations exist along the shores of the Great Lakes. In inland accounting units, however, most of the outflow drains by single streams.

How are NASQAN stations located within accounting units?

Guidelines for level I accounting that have been established specify that data will measure water discharge and water quality for approximately 90 percent of the surface water leaving an accounting unit. This means that most NASQAN stations will measure or account for discharge and quality at a stream station near the downstream end of each accounting unit. Obvious exceptions must be made for units that discharge to the oceans or to the Great Lakes, across international boundaries, or into closed basins. Current revisions of accounting-unit boundaries have been reviewed and apparently have little affect on the locations of stations specified in 1972 for inclusion in the network.

How are stations in coastal units selected?

As figure 2 shows, some units stretch along coastlines (oceans or the Great Lakes) where numerous stations would be needed to sample 90 percent of the flow. This problem has been recognized in the design of NASQAN, and special criteria have been established for selecting station locations within coastal accounting units. NASQAN stations have been located to provide a sampling of from 30 to 50 percent of the water flowing from the coastal accounting unit. Such sampling is possible because adjacent drainage basins usually have similar physio-

Automatic continuous monitor.

graphic and hydrologic characteristics. Therefore, it may reasonably be inferred that waterquality data from properly selected stations may be extrapolated to represent the remainder of the discharge. In choosing sites for stations, short-term reconnaissance studies are needed to confirm similarity of waters. It is also necessary to recognize and evaluate obvious differences in such parameters as population patterns, geology, or industrial development.

How are sites selected for stations in closed basins?

Accounting units with only interior drainage have been considered on a case-by-case basis in the selection of NASQAN station locations. The principal policy has been to select sites on streams that represent as much of the drainage area of or flow within the accounting unit as possible.

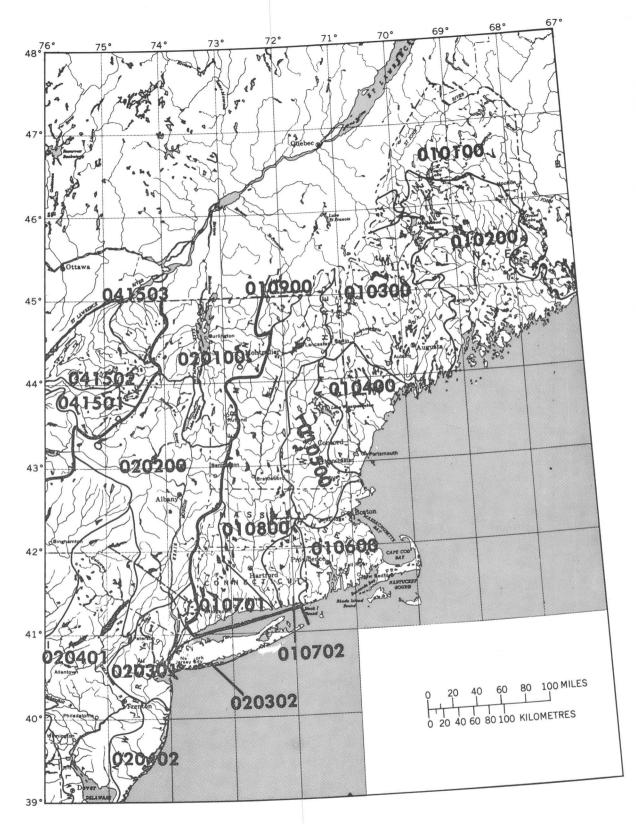
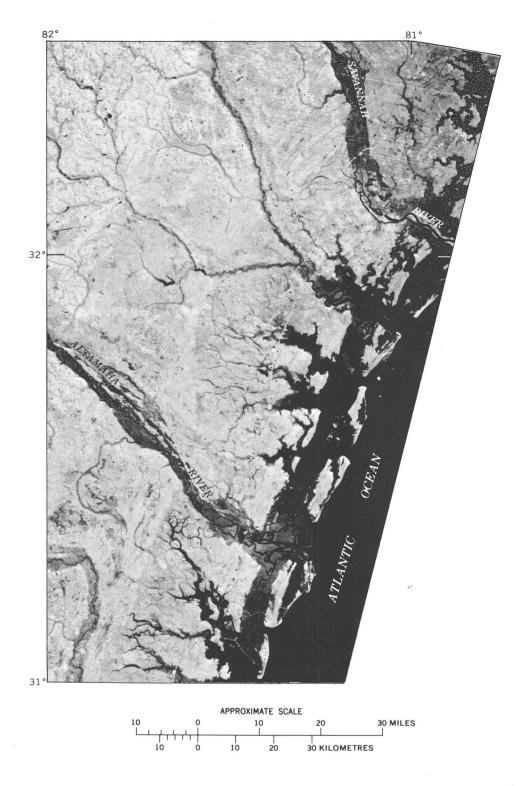



FIGURE 2.—Accounting units in New England.

Part of the coast of Georgia from ERTS imagery, February 1974. (NASA ERTS E-1568-15284, band 7.)

OPERATION

How many stations are in NASQAN and where are they?

As of January 1, 1975, 345 NASQAN stations were being operated. As stated earlier, the plan used in selecting locations of existing and future stations calls for most of them to be near the points of outflow from accounting units. Locations of the current 345 stations are shown in figure 3. Details of station location, including the names of towns or other cultural features near the stations, and latitudes and longitudes are given in table 1 (see p. 15).

Plans call for NASQAN to reach its final design size of 525 stations by October 1976. Figure 4 summarizes the network's past growth as well as the projected expansion to full implementation.

What water-quality characteristics are measured at NASQAN stations?

The following list summarizes the characteristics measured at network stations and the minimum frequencies of measurements under present network design.

Characteristics measured at NASQAN stations

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
[Frequencies: C, continuous; D, daily; M, monthly; C	
Field determinations:	Frequency
Water temperature	¹ C. D. or W
Specific conductance	
pH	M
Discharge	C
Coliform, fecal	M
Streptococci, fecal	M
Common constituents (dissolved)2:	³ M or Q
(Bicarbonate, carbonate, total hardness,	
non-carbonate hardness, calcium,	
magnesium, fluoride, sodium,	
potassium, dissolved solids, silica,	
turbidity, chloride, and sulfate).	
Major nutrients:	
Phosphorus, total as P	M
Nitrite plus nitrate, total as N	M
Nitrogen, total Kjeldahl as N	M
Trace elements (total and dissolved):	\mathbf{Q}
(Arsenic, cadmium, chromium, cobalt,	
copper, iron, lead, manganese, mer-	
cury, selenium, and zinc).	
Organics and biological:	
Organic carbon, total	Q
Phytoplankton, total, cells/ml	M
Phytoplankton, identification of 3	
co-dominants	\mathbf{M}

Characteristics measured at NASQAN stations—Con. Organics and biological—Continued

Phytoplankton, 3 co-dominants, percent	
of total	M
Periphyton, biomass, dry weight g/m ²	Q
Periphyton, biomass, ash weight g/m ² -	Q
Periphyton, chlorophyll a	Q
Periphyton, chlorophyll b	Q
Suspended sediment:	
Suspended sediment concentration	M
Percent finer than 0.062-mm sieve	
diameter	M

¹ Continuous or daily depending upon whether the station is equipped with a monitor or whether daily observations are made. Monthly measurements made at stations where a long-term record is available.

² Dissolved constituents in water are those remaining after filtering samples through 0.45-micrometre membrane filters.

³ Quarterly or monthly, depending upon whether relationships have been established between conductance and concentrations of various common constituents.

⁴ Total concentrations are those determined by analyses of unfiltered samples. They include both dissolved and suspended materials.

In addition to the measurements shown above, determinations of pesticide residues and radiochemical constituents are made at selected stations. These stations can be viewed as subnetworks of NASQAN.

Will changes be made in the suite of characteristics measured at NASQAN stations?

Yes, but in a manner that conforms with the stated objectives of the network. A continual examination will be made for correlations among measured characteristics. If correlations are established so that changes in one characteristic can be used to estimate changes in others, certain measurements may be discontinued. Also, some measurements may be added as water-quality characteristics change in importance. Consideration presently is being given to including two 24-hour dissolved oxygen profiles each year, to be conducted during critical periods; to monthly determination of ammonia nitrogen; and to an increased frequency of determination of total organic carbon, from quarterly to monthly. Any such adjustments in the operational design of the network will be made to coincide with the beginning of a water year (October 1).

Who collects data at NASQAN stations?

Most of the NASQAN data are and will be collected by the Geological Survey. However,

M

M

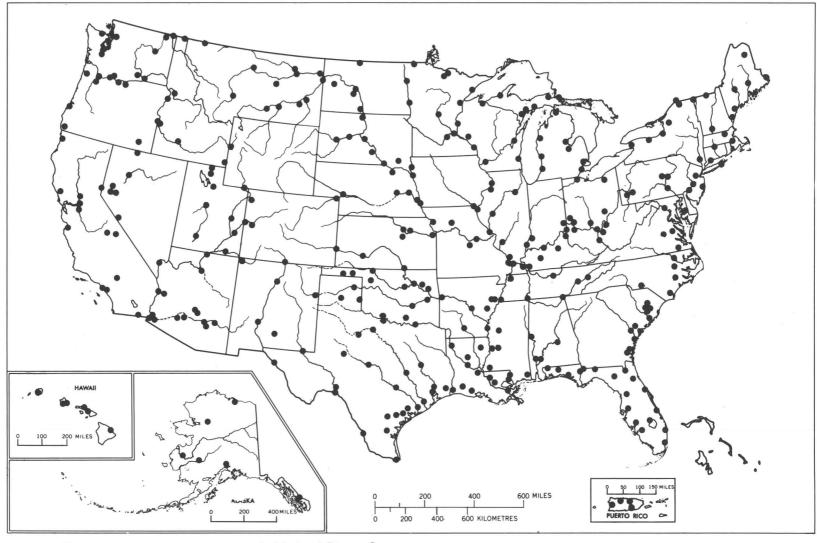


FIGURE 3.—Locations of stations in the National Stream Quality Accounting Network in operation as of January 1, 1975.

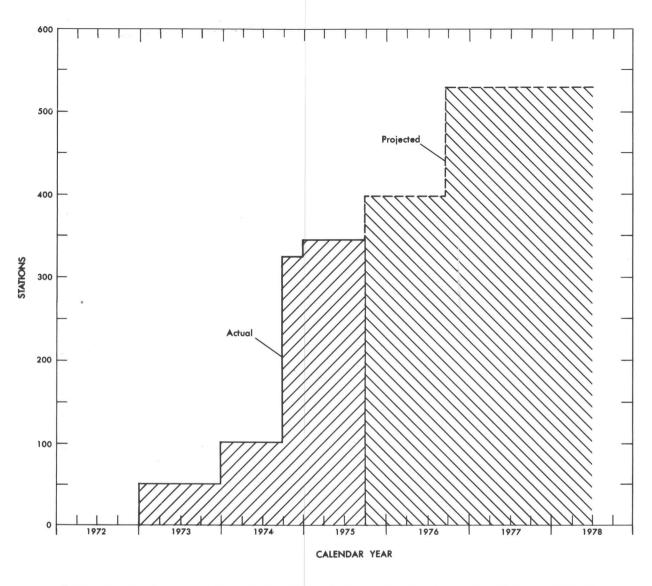


FIGURE 4.—Numbers of stations in the National Stream Quality Accounting Network, 1973-78.

some of the stations are operated partly by other Federal agencies, such as the Environmental Protection Agency and the U.S. Army Corps of Engineers, and some are operated partly by State and local organizations. For those stations operated by the Geological Survey, some are paid for partly by monies from other Federal agencies, from State and local cooperators, and from other more specialized Federal data-collection programs of the Geological Survey. Because of local interests or needs, it is not uncommon to have several different sources interested in and paying for total operations of a single station.

How long will stations be operated?

Indefinitely, as required by one of the network objectives—to assess changes in water quality with time. However, some changes in operating practices will be made, as explained previously in answer to a question regarding changes in the suite of characteristics. Such changes will be made only after it has been determined that the proposed modification, presumably a change in frequency of sampling, will not affect the fulfillment of network objectives.

Automatic analyzer in Central Laboratory, Doraville, Ga.

What will be done with the data?

Present plans call for data collected under the auspices of NASQAN to be published in three types of publications.

First, all data will be published in the annual Geological Survey basic-data reports on a State-by-State basis. Copies of these reports can be obtained from Geological Survey district offices or from Geological Survey head-quarters, Reston, Virginia 22092. Users of STORET, the computerized data base of the Environmental Protection Agency, can retrieve

NASQAN data by using Geological Survey station numbers (see table 1).

The second type of report is an annual summary report depicting the Nation's surfacewater quality. This report, the prototype of which should be completed by August 1975, will use tabulations of the yearly range in concentrations of specific constituents, statistical summaries, and graphical presentations.

The third type of report, which will be more analytical, will deal with the changes (or lack thereof) in water quality. Preliminary work by the Geological Survey (Steele and others, 1974) employed an approach which may be used to evaluate trends in water quality. This type of report will be prepared less frequently (every 3 to 5 years).

NASQAN interpretive reports (the second and third types) will be published in forms suitable for use by hydrologists as well as non-technical persons.

What will be the principal problems in the interpretation of the data?

Undoubtedly there will be several problems in data interpretation, but two will probably be hardest to resolve: (1) Differentiating year-to-year variability (wet-year, dry-year effects) from the long-term trends and from the real areal differences in variables significantly affected by flow conditions, and (2) adjusting for the effects of streamflow regulation (particularly by reservoirs) or streamflow diversions on the water-quality conditions.

To resolve the first problem, several statistical and other analytical techniques are being evaluated to discover their utility in determining significant long-term trends from the data. For some water-quality characteristics, 5 or more years of data may be needed before adequate bases exist for detecting long-term trends.

Regarding the second problem, reservoirs are particularly significant because they alter the pattern of streamflow during the year and also influence many water-quality characteristics. Seasonal streamflow patterns are affected by patterns of reservoir release, but the annual volumes of flow usually do not change, except for evaporation losses. The quality of water released from reservoirs differs from that of inflow, in terms of temperature, dissolved solids, sediment, nutrients, dissolved oxygen, and other characteristics. There is much literature describing the processes that take place in reservoirs, but quantitative modeling is not far enough advanced to be helpful in determining the precise degree to which the reservoirs will affect water quality at NASQAN stations.

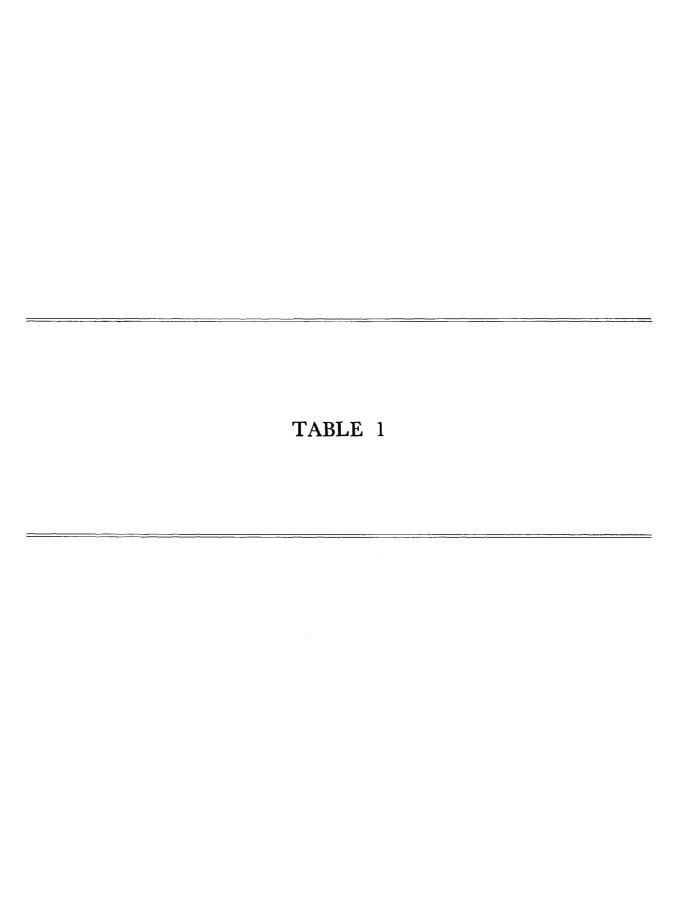
What is the policy regarding NASQAN stations near reservoirs?

The lower boundaries of many of the accounting units used to establish the hydrologic design of NASQAN cross stream channels at or just below dams. Because an objective of the network operation is to account for the quantity and quality of water actually flowing from one accounting unit into another, the placement of sampling stations below reservoirs is necessary. On the other hand, NASQAN's goal of interpreting changes in water quantity and quality in terms of cultural changes in the basin is not fully served by a station located below a reservoir because the effects of the reservoir will mask most other influences. Therefore, operation of NASQAN will involve evaluation of the effects of some reservoirs by placing secondary stations above several large reservoirs. These stations are referred to as secondary because they will be used to collect a more limited suite of data and probably will operate for a limited number of years.

SUMMARY

NASQAN is designed to describe the water quality of the Nation's streams and rivers on a systematic and continuing basis. NASQAN station operation supplements the ongoing activities of the U.S. Geological Survey and other agencies. Whereas other operations meet local and short-term needs, NASQAN provides for nationwide quantitative descriptions of the physical, chemical, and biological characteristics of streams. There presently are 345 stations in the network, and network design allows for an ultimate size of 525 stations.

REFERENCES


Enviro Control, 1972, National assessment of trends in water quality: U.S. Dept. Commerce, Natl. Tech. Inf. Service, PB-210 669, 52 p.

Langford, R. H., and Davis, G. H., 1970, National system for water data: Am. Soc. Civil Engineers Proc., Jour. Hydraulics Div., v. 96, no. HY7, p. 1391-1401.

Steele, T. D., Gilroy, E. J., and Hawkinson, R. O., 1974, An assessment of areal and temporal variations in streamflow quality using selected data from the National Stream Quality Accounting Network: U.S. Geol. Survey open-file rept. 74-217, 210 p.

Water Resources Council, 1970, Water resources regions and subregions for the national assessment of water and related land resources: Washington, D.C., U.S. Water Resources Council, 188 p., 6 plates.

Wolman, M. G., 1971, The Nation's rivers: Science, v. 174, no. 4012, p. 905-918.

		-	

USGS STAT.NO.	STATION NAME	ST ¹	LATI- TUDE DEG/ MIN	LONGI- TUDE DEG/ MIN
02429500	ALABAMA RIVER NEAR MONTGOMERY ALABAMA RIVER AT CLAIBORNE TOMBIGBEE RIVER AT GAINESVILLE TOMBIGBEE R. AT COFFEEVILLE L&D NR. CFVL	AL AL	3224 3133 3249 3145	08624 08731 08809 08808
15294350 15304000 15565447	KOBUK RIVER NEAR KIANA	AK AK AK	5642 6132 6152 6156 6658 7017	13207 15033 15807 16253 16007 14858
09401200 09421500 09426600 09429490	COLORADO RIVER ABOVE IMPERIAL DAM	AZ AZ TAZ AZ	3253	11135 11125 11444 11402 11428
09502000	SAN PEDRO RIVER AT WINKELMAN	AZ AZ AZ	3311 3259 3306 3314 3334 3349	11031 11049 11059 11210 11132 11138
09518000 09520700 09522000	GILA RIVER ABOVE DIV AT GILLESPIE DAM GILA RIVER NEAR MOUTH NEAR YUMA COLORADO RIVER AT N.INT.BURY.AB MORELOS (AZ AZ DAZ	3314 3243	11246 11433 11443
07047800 07047900 07077800 07250550 07263620 07265450	ST FRANCIS RIVER NEAR PARKIN ST FRANCIS BAY AT RIVERFRUNT WHITE RIVER AT CLARENDON ARKANSAS RIVER AT DAM 13 NEAR VAN BUREN ARKANSAS RIVER AT L AND D 6 LIT ROCK MISSISSIPPI RIVER NEAR ARKANSAS CITY	AR AR AR AR AR	3516 3516 3441 3521 3440 3334	09034 09041 09119 09418 09209 09115
09424190 10254970 10277400 10261500	OUACHITA RIVER AT CAMDEN COLORADO RIVER AQUED. NR SAN JACINTO NEW RIVER AT INT. BDRY. NR. CALEXICO OWENS RIVER BLW TINEMAHA D. NR BIG PINE MOJAVE R. AT LOW NARROWS NR VICTORVILLE SANTA ANA RIVER BELOW PRADO DAM	CA CA CA	3336 3349 3240 3703 3434 3353	09249 11658 11530 11813 11719 11739
11103010 11152500 11250000	LOS ANGELES K.AT WIL.ST.BRDG.AT LONG BCH SALINAS RIVER NEAR SPRECKELS FRAINT-KERN CANAL AT FRAINT SAN JOAQUIN RIVER NEAR VERNALIS	CA CA		11812 12140 11942 12116

¹ See footnote at end of table.

USGS STAT.NO.	STATION NAME	ST1	LATI- TUCE DEG/ MIN'	LONGI- TUDE DEG/ MIN
11447650 11467000	MOKELUMNE RIVER AT WOODBRIUGE SACRAMENTO RIVER AT FREEPORT RUSSIAN RIVER NEAR GUERNEVILLE KLAMATH RIVER NEAR KLAMATH	CA	3810 3827 3820 4121	12118 12130 12256 12358
07137500 08251500 09152500 09163530 09251000	SOUTH PLATTE RIVER AT JULESBURG ARKANSAS RIVER NR COOLIDGE (KS) RIO GRANDE NEAR LOBATOS GUNNISON RIVER NEAR GRAND JUNCTION COLORADO RIVER BLW. COLO-UTAH STATE LINE YAMPA RIVER NEAR MAYBELL LITTLE SNAKE RIVER NEAR LILY	CO CO CO CO	4059 3802 3705 3859 3905 4000 4003	10215 10201 10545 10827 10906 10802 10825
	CONNECTICUT RIVER AT THOMPSONVILLE HOUSATONIC RIVER AT STEVENSON	-	4159 4123	07236 07310
02244450 02248000 02253000 02273000 02279000 02288600 02292400 02296750 02303000 02313000 02320500 02329000 02358000 02359000 02366500	ST MARYS RIVER NEAR MACCLENNY ST JOHNS RIVER AT PALATKA SPRUCE CREEK NEAR SAMSULA MAIN CANAL AT VERO BEACH KISSIMMEE RIVER AT S65E NEAR OKEECHOBEE WEST PALM BEACH CANAL AT WEST PALM BEACH MIAMI CANAL AT NW 36TH STREET, MIAMI CALOOSAHATCHEE CNL AT ORTONA L.NR LABELLE PEACE RIVER AT ARCADIA HILLSBOROUGH RIVER NEAR ZEPHYRHILLS WITHLACOOCHEE RIVER, NEAR HOLDER SUWANNEE RIVER AT BRANFORD OCHLOCKONEE RIVER NEAR HAVANA APALACHICOLA RIVER AT CHATTAHOOCHEE CHIPOLA RIVER NEAR ALTHA CHOCTAWHATCHEE RIVER NEAR BRUCE YELLOW RIVER AT MILLIGAN		2548	08205 08138 08103 08024 08058 08004 08016 08105 08153 08214 08221 08256 08423 08452 08510 08554 08638
02202500 02226000	OGEECHEE RIVER NEAR CENTURY OGEECHEE RIVER NEAR EDEN ALTAMAHA RIVER AT DOCTORTOWN SATILLA RIVER AT ATKINSON	GA GA	3057 3211 3139 3113	08714 08125 08149 08152
16213000 16229300 16400000 16618000	WAIMEA RIVER AT WAIMEA WAIKELE STREAM AT WAIPAHU KALIHI STREAM AT KALIHI HALAWA STREAM NEAR HALAWA KAHAKULOA STREAM NEAR HONOKOHAU WAILUKU RIVER AT PIIHONUA	HI HI HI	2159 2123 2120 2110 2059 1943	15940 15801 15753 15646 15633 15509

¹ See footnote at end of table.

USGS STAT.NO.	STATION NAME	ST ¹	LATI- TUDE DEG/ MIN	LONGI- TUDE DEG/ MIN
13154500 13213000 13213100 13290450		ID ID R) ID R) ID	4855 4300 4347 4353 4515 4545	11625 11512 11659 11659 11642 11619
05543500 05585500 05594100	ROCK RIVER NEAR JOSLIN ILLINOIS RIVER AT MARSEILLES ILLINOIS RIVER AT MEREDOSIA KASKASKIA RIVER NEAR VENDY STATION BIG MUDDY RIVER AT MURPHYSBORO	IL IL IL	4143 4120 3949 3827 3745	09011 08843 09034 08938 08921
03374100	WHITEWATER RIVER AT BROOKVILLE WHITE RIVER NEAR HAZELTON WABASH RIVER AT NEW HARMONY	IN	3924 3829 3808	08501 08733 08756
05474500	MISSISSIPPI RIVER AT CLINTON MISSISSIPPI RIVER AT KEOKUK MISSOURI RIVER AT SIOUX CITY MISSOURI RIVER AT NEBRASKA CITY (N	IA IA	4147 4024 4229 4041	09015 09122 09625 09551
06877600 06887000 06892350 07139500	REPUBLICAN RIVER AT CLAY CENTER SMOKY HILL RIVER AT ENTERPRISE BIG BLUE RIVER NEAR MANHATTAN KANSAS RIVER AT DESOTO ARKANSAS RIVER AT DODGE CITY ARKANSAS RIVER AT ARKANSAS CITY	KS KS KS	3921 3854 3914 3859 3745 3703	09708 09707 09634 09458 10001 09704
03216600 03254000 03277200 03290500 03301630 03303280 03321230 03438220 03609750	BIG SANDY RIVER AT LOUISA OHIO RIVER AT GREENUP DAM LICKING RIVER AT BUTLER OHIO R. AT MARKLAND DAM NEAR WARSAW KENTUCKY RIVER AT LOCK 2 AT LOCKPORT ROLLING FORK NEAR LEHANON JUNCTION OHIO RIVER AT CANNELTON DAM GREEN RIVER NEAR BEECH GROVE CUMBERLAND RIVER NEAR GRAND RIVERS TENNESSEE RIVER AT HWY 60 NEAR PADUCAH OHIO RIVER AT L&D 53 NEAR GRAND CHAIN(KY KY KY KY KY KY		08238 08252 08422 08458 08458 08545 08642 08716 08813 08832 08902
02492000 07344410 07355500	PEARL RIVER NEAR BOGALUSA BOQUE CHITTO NEAR BUSH RED RIVER ABOVE SHREVEPORT RED RIVER AT ALEXANDRIA OUACHITA RIVER AT COLUMBIA end of table.	LA LA	3048 3038 3233 3119 3206	08949 08954 09346 09227 09204

USGS STAT.NO.	STATION NAME	ST ¹	LATI- TUDE DEG/ MIN	LONGI- TUDE DEG/ MIN
07373420 07374508 07378510 07381490	TENSAS RIVER AT TEMDAL MISSISSIPPI RIVER NEAR ST FRANCISVILLE MISSISSIPPI RIVER AT NEW ORLEANS AMITE RIVER AT 4-H CAMP NR DENHAM SPGS ATCHAFALAYA RIVER AT SIMMESPORT BAYOU TECHE AT KEYST L&D NR ST MARTINSVL CALCASIEU RIVER NEAR LAKE CHARLES		3226 3046 2957 3026 3059 3004 3018	09122 09124 09008 09058 09148 09150 09311
01021050 01034500 01046500 01059000	AROOSTOOK RIVER AT CARIBOU ST. CROIX RIVER AT MILLTOWN PENOBSCOT RIVER AT WEST ENFIELD KENNEREC RIVER AT BINGHAM ANDROSCOGGIN RIVER NEAR AUBURN SACO RIVER AT CORNISH	ME ME ME	4651 4510 4514 4503 4404 4348	06800 06718 06839 06953 07013 07047
01645500 01096550	CHOPTANK RIVER NEAR GREENSBORD POTOMAC RIVER AT GREAT FALLS MERRIMACK RIVER ABOVE LOWELL	MD MA	3900 3900 4238	07547 07715
04040000 04045500 04045580 04057005 04059000 04059500 04108690 04122030 04126520 04132052	CHARLES RIVER AT CHARLES RIVER VILLAGE ONTONAGON RIVER NEAR ROCKLAND TAHQUAMENON R. NR TAHQUAMENON PARADISE ST MARYS RIVER ABOVE SAULT STE MARIE MANISTIQUE RIVER AT MANISTIQUE ESCANABA RIVER AT CORNELL FORD RIVER NEAR HYDE KALAMAZOO RIVER AT SAUGATUCK MUSKEGON RIVER AT BRIDGETON MANISTEE RIVER AT MANISTEE CHEBOYGAN RIVER AT CHEBOYGAN RIFLE RIVER NEAR STERLING	MI MI MI MI MI MI MI	4215 4643 4643 4629 4557 4555 4545 4239 4319 4415 4539 4404	07116 08912 08516 08425 08615 08713 08712 08612 08602 08619 08428 08401
04157000 04165500	SAGINAW RIVER AT SAGINAW CLINTON RIVER AT MT. CLEMENS DETROIT RIVER AT DETROIT	MI MI	4325 4236 4221	08358 08255 08258
04024000 05112000 05131500 05132000 05267000 05331000 05378500	BAPTISM RIVER NEAR BEAVER BAY ST LOUIS RIVER AT SCANLON ROSEAU RIVER NEAR CARIBOU LITTLE FORK RIVER AT LITTLEFORK BIG FORK RIVER AT BIG FALLS MISSISSIPPI RIVER NEAR ROYALTON MISSISSIPPI RIVER AT ST PAUL MISSISSIPPI RIVER AT WINONA MINNESOTA RIVER NEAR JORDAN	M	4720 4642 4859 4824 4812 4552 4457 4403 4442	09112 09225 09628 09334 09348 09422 09305 09138 09338

¹ See footnote at end of table.

USGS STAT.NO.	STATION NAME	ST¹	LATI- TUDE DEG/ MIN	LONGI- TUDE DEG/ MIN
07287000 07289000	PASCAGOULA RIVER NEAR BENNOALE YAZOO RIVER AT GREENWOOD MISSISSIPPI RIVER AT VICKSBURG BIG BLACK RIVER NEAR ROVINA HOMOCHITTO RIVER AT ROSETTA	MS MS MS	3053 3331 3219 3221 3119	(8846 (9011 (9054 (9042 (9106
05587550 06818000 06902000 06926500 06934500	DES MOINES RIVER AT ST FRANCISVILLE MISSISSIPPI RIVER BELOW ALTON (IL) MISSOURI RIVER AT ST JOSEPH GRAND RIVER NEAR SUMNER OSAGE RIVER NEAR ST. THOMAS MISSOURI RIVER AT HERMAN MISSISSIPPI RIVER AT THEBES (IL)	MO MO MO MO	4028 3852 3948 3938 3820 3843 3713	(9134 (9008 (9453 (9316 (9214 (9126 08928
06109500 06130500 06132000 06174500 06185500 06214500 06294700 06308500 06326500 06329500	MISSOURI RIVER AT TOSTON MISSOURI RIVER AT VIRGELLE MUSSELSHELL RIVER AT MOSBY MISSOURI RIVER BELOW FT PECK DAM MILK RIVER AT NASHUA MISSOURI RIVER NEAR CULBERTSON YELLOWSTONE RIVER AT BILLINGS BIGHORN RIVER AT BIGHORN TONGUE RIVER AT MILES CITY POWDER RIVER NEAR LOCATE YELLOWSTONE RIVER NEAR SIDNEY N.F. FLATHEAD RIVER AT FLATHEAD, B.C.	MT MT MT MT MT MT MT MT	4609 4800 4700 4803 4808 4807 4548 4069 4622 4627 4741 4900	11125 11015 10753 10621 10622 10428 10828 10728 10548 10519 10409 11428
06686000 06792499 06796000	NIOBRARA RIVER NEAR VERDEL NORTH PLATTE RIVER AT LISCO LOUP RIVER ON AT DIV NR GENOA PLATTE RIVER AT NORTH BEND PLATTE RIVER NEAR LOUISVILLE	NB NB NB	4244 4130 4124 4127 4101	09813 10238 09749 09646 09609
10301500 10312000 10335000 10346000 10351700	CHIATOVICH CREEK NEAR DYER WALKER RIVER NEAR WABUSKA CARSON RIVER NEAR FORT CHURCHILL HUMBOLDT RIVER NEAR RYE PATCH TRUCKEE RIVER AT FARAD (CA) TRUCKEE RIVER NEAR NIXON MC DERMITT CREEK NEAR MC DERMITT	NV NV NV NV	3750 3909 3918 4028 3926 3947 4158	11920
01404100 01408500	CONNECTICUT RIVER AT NORTH WALPOLE RARITAN RIVER NEAR SOUTH BOUND BROOK TOMS RIVER NEAR TOMS RIVER DELAWARE RIVER AT TRENTON	LN LN	4308 4031 3959 4013	07226 07432 07413 07447

¹ See footnote at end of table.

USGS STAT.NO.	STATION NAME	ST¹	LATI- TUDE DEG/	LONGI- TUDE DEG/
08313000 08358300	CANADIAN RIVER ABOVE NM-TEX STATELINE RIO GRANDE AT OTOWI BRIDGE NR S.ILDEFONSORIO GRANDE CNV CH AT SAN MARCIAL PECOS RIVER AT RED BLUFF TULAROSA RIVER NEAR BENT SAN JUAN RIVER AT SHIPROCK	MN MN MN	3523 3552 3341 3204 3309 3648	10303 10608 10700 10402 10554 10844
01304500 01372043 04219640 04232006 04249000 04260500 04264331 04269000	PECONIC RIVER AT RIVERHEAD HUDSON RIVER NEAR POUGHKEEPSIE NIAGARA RIVER AT FORT NIAGARA GENESEE R AT CHARLOTTE DOCKS AT ROCHESTER OSWEGO RIVER AT LOCK 7. OSWEGO BLACK RIVER AT WATERTOWN ST LAWRENCE R AT CORNWALL ONT NR MASSENA ST REGIS RIVER AT BRASHER CENTER RICHELIEU RIVER AT ROUSES POINT	YN YN YN YN YN	4100 4143 4316 4313 4327 4359 4500 4452 4500	07241 07356 07904 07737 07630 07556 07448 07447
02083500 02089500 02105769 02129000	ROANOKE RIVER NEAR SCOTLAND NECK TAR RIVER AT TARBORO NEUSE RIVER AT KINSTON CAPE FEAR RIVER AT LOCK 1 NEAR KELLY PEE DEE RIVER NEAR ROCKINGHAM	NC NC NC	3612 3554 3515 3424 3457	07723 07732 07735 07818 07952
06337000 06338490 06340500		ND ND ND ND	4656 4812 4900 4735 4730 4717 4623	09647 09708 10057 10315 10126 10137 10056
03234500 03245500 03274600 04193500	MUSKINGUM RIVER AT MCCONNELSVILLE SCIOTO RIVER AT HIGBY LITTLE MIAMI RIVER AT MILFURD GREAT MIAMI HIVER AT NEW BALTIMORE MAUMEE RIVER AT WATERVILLE CUYAHOGA RIVER AT INDEPENDENCE	0H 0H 0H	3939 3913 3910 3916 4130 4124	08151 08252 08418 08440 08343 08138
07161000 07164400 07178620 07193500 07231500 07232500	CIMARRON RIVER NEAR BUFFALO CIMARRON RIVER AT PERKINS ARKANSAS RIVER AT SD SPNG NEAR TUL NEWT GRAHAM L&D (VERDIGRIS R) NEAR INOLA NEOSHO R BL FT GIBSON RES NR FT GIBSON CANADIAN RIVER AT CALVIN N CANADIAN RIVER NEAR GUYMON NORTH CANADIAN (BEAVER) RIVER AT BEAVER	0K 0K 0K 0K 0K	3655 3558 3607 3603 3551 3459 3643 3649	

¹ See footnote at end of table.

USGS STAT.NO.	STATION NAME	ST¹	LATI- TUDE DEG/ MIN	LONGI- TUDE CEG/ MIN
07245000 07305000	NORTH CANADIAN RIVER AT WOODWARD CANADIAN RIVER NEAR WHITEFIELD NF RED RIVER NEAR HEADRICK WASHITA RIVER NEAR DURWOOD	0K 0K	3626 3516 3438 3414	09917 09514 09906 09659
10396000 14048000 14103000 14128910 14207500 14211720 14301000 14321000 14372300	JOHN DAY RIVER AT MCDONALD FERRY DESCHUTES RIVER AT MOODY NEAR RIGGS COLUMBIA RIVER AT WARRENDALE TUALATIN RIVER AT WEST LINN WILLAMETTE RIVER AT PORTLAND NEHALEM RIVER NEAR FOSS UMPQUA RIVER NEAR ELKTON	OR OR OR OR OR OR	4247 4535 4537 4537 4521 4531 4542 4335 4235	11852 12024 12054 12202 12240 12240 12345 12333 12404
01540500 01553500 01570500 03049625	SCHUYLKILL RIVER AT PHILADELPHIA SUSQUEHANNA RIVER AT DANVILLE W.BR. SUSQUEHANNA RIVER AT LEWISBURG SUSQUEHANNA RIVER AT HARRISBURG ALLEGHENY RIVER AT NEW KENSINGTON MONONGAHELA RIVER AT BRADDOCK	PA PA PA PA	4000 4057 4058 4015 4034 4024	07512 07637 07653 07653 07946 07953
50046000 50092000	RIO GRANDE DE MANATI RIO DE LA PLATA AT TOA ALTA RIO GRANDE DE PATILLAS NEAR PATILLAS RIO GRANDE DE ANASCO NEAR SAN SEBASTIAN	PR PR	1826 1824 1802 1817	06632 06615 06602 06703
02136000 02170500 02171500 02175000 02176500	LYNCHES RIVER AT EFFINGHAM BLACK RIVER AT KINGSTREE LAKE MARION MOULTRIE CANAL NR PINEVILLE SANTEE RIVER NEAR PINEVILLE EDISIO RIVER NEAR GIVHANS COOSAWHATCHIE RIVER NEAR HAMPTON SAVANNAH RIVER NEAR CLYO (GA)	SC SC SC SC	3403 3340 3323 3327 3302 3250 3232	07945 07950 08008 08009 08024 08108
06438000 06439300 06440000 06452000 06453000 06478500	GRAND RIVER AT LITTLE EAGLE BELLE FOURCHE RIVER NEAR ELM SPRINGS CHEYENNE RIVER AT CHERRY CREEK MISSOURI RIVER AT PIERRE WHITE RIVER NEAR OACOMA MISSOURI RIVER BELOW FT RANDALL DAM JAMES RIVER NEAR SCOTLAND BIG SIOUX RIVER AT AKRON (IA)	SD SD SD SD SD	4530 4422 4436 4422 4345 4304 4311 4250	10049 10234 10129 10022 (9933 (9833 (9738 (9634
	CUMBERLAND RIVER AT CARTHAGE FRENCH BROAD RIVER NEAR KNOXVILLE		3615 3558	(8557 (8346

¹ See footnote at end of table.

USGS STAT.NO.	STATION NAME	ST ¹	LATI- TUDE DEG/ MIN	LONGI- TUDE DEG/ MIN
03571850 03593005	TENNESSEE R. AT WATTS BAR DAM (TAILWATER) TENNESSEE RIVER AT SOUTH PITTSBURG TENNESSEE R. AT PICKWICK LAND. D. (L.LOCK) OBION RIVER AT OBION	TN TN	3501	08447 08542 08815 08912
07228000 07297910 07300000 07308500 07331600 08030500	SALT FORK RED RIVER NEAR WELLINGTON RED RIVER NEAR BURKBURNETT RED RIVER AT DENISON DAM NEAR DENISON	TX TX TX TX		10022 10125 10013 09832 09634 09345
08066500 08068000	NECHES RIVER AT EVADALE TRINITY RIVER NEAR CROCKETT TRINITY RIVER AT ROMAYOR WEST FORK SAN JACINTO RIVER NEAR CONROE SALT FORK BRAZOS RIVER NEAR ASPERMONT BRAZOS RIVER AT SEYMOUR	TX TX TX TX TX	3021 3120 3026 3015 3320 3335	09406 09539 09451 09527 10014 09916
08098290 08116650 08123800 08136700 08158000 08162000	COLORADO RIVER NEAR STACY COLORADO RIVER AT AUSTIN	TX TX TX TX TX	3108 2921 3212 3130 3015 2919	09649 09535 10101 09934 09742 09606
08212400	LOS OLMOS CREEK NEAR FALFURRIAS	ΤX	2902 2840 2839 2826 2716 3105	09633 09701 09723 09811 09808 10536
08447410 08459000 08475000	PECOS RIVER NEAR LANGTRY RIO GRANDE AT LAREDO RIO GRANDE AT BROWNSVILLE	TX TX TX	294° 294° 273° 2553	10145 10127 09930 09727
09234500 09315000 09379500 10059500	GREEN RIVER NEAR GREENDALE GREEN RIVER AT GREEN RIVER SAN JUAN RIVER NEAR BLUFF	UT UT UT	3849 4054 3859 3709 4210 4135	10918 10925 11009 10952 11121 11206
10141000 10171000 10224000	WEBER RIVER NEAR PLAIN CITY JORDAN RIVER AT SALT LAKE CITY SEVIER RIVER NEAR LYNNDYL	UT UT UT	4117 4044 3929 3815	11206 11205 11155 11224 11246
04296500	CLYDE RIVER AT NEWPORT	VT	4456	07211

¹ See footnote at end of table.

TABLE 1 .- Stations in the National Stream Quality Accounting Network on January 1, 1975-Continued

USGS STAT.NO.	STATION NAME	ST	LATI- TUDE DEG/	LONGI- TUDE DEG/
01673000			3746	07720
			3740	07805
02049500	BLACKWATER RIVER NEAR FRANKLIN	VA	3646	07654
12031000	CHEHALIS RIVER AT PORTER	WA	4656	12319
12045500	ELWHA R AT MCDONALD BRIDGE NR PT ANGELES	WA	4803	12335
	SKAGIT RIVER NEAR MT VERNUN		4831	12220
	PEND OREILLE R AT INTERNATIONAL BOUNDARY		4900	11721
	COLUMBIA RIVER AT NORTHPORT		4855	11747
	SPOKANE RIVER AT LONG LAKE		4750	11751
-	YAKIMA RIVER AT KIONA		4615	11929
	SNAKE RIVER AT BURBANK		4613	11901
14113000	KLICKITAT RIVER NEAR PITT		4545	12113
14113000	METCHTIAL METH PILL	WA	4545	15117
03201300	KANAWHA RIVER AT WINFIELD	wv	3832	08155
	MUD RIVER NEAR MILTON	wV	3823	08207
04027000	BAD RIVER NEAR ODANAH	WI	4629	09042
04085000	FOX RIVER AT WRIGHTSTOWN	WI	4420	08810
04087000	·	-	4306	08755
	ST. CROIX RIVER AT ST. CROIX FALLS		4524	09239
	CHIPPEWA RIVER AT DURAND		4438	09158
	WISCONSIN RIVER AT MUSCODA	_	4312	09026
03401000	MICCOLOGIA WITEN MI MOCCON		7316	0 7 V C U
13022500	SNAKE RIVER ABOVE RESERVOIR NEAR ALPINE	WY	4318	11047

¹ If two States are shown, that in parentheses is the State in which the station is located. The other State designates the Geological Survey district that operates the station.