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Introduction 
Ride-hailing or transportation network companies (TNCs), such as Uber, Lyft, DiDi Chuxing, or 
RideAustin, are emerging as a new and disruptive on-demand mobility service in recent years. 
However, the methods for developing predictive analytics to explore the nature and dynamics of 
TNCs across cities in the United States are still nascent due to the lack of publicly available data. 
Recently available public datasets on TNCs by RideAustin offer a unique opportunity to examine 
spatial, temporal, environmental, and special event factors associated with TNC trip demand. This 
study explores the use of a deep learning approach—Long Short-Term Memory (LSTM)—to 
predict TNC trip demand at the ZIP Code level using data from Austin, Texas. The analysis 
includes key predictive factors such as time of day, day of week, precipitation, and temperature, 
indicating their corresponding associations with TNC trip demand. Results from initial analysis 
show that LSTM is able to predict the TNC trip demand for the upcoming hour accurately. LSTM, 
when compared to other prediction methods, such as historical average and instantaneous trip 
demand, reduces the mean absolute error (MAE) of the model predictions by 37% and 24%, 
respectively. This novel method offers significant potential for scaling up and/or replicability 
across cities where data are available for understanding TNC trip demand to inform emerging 
mobility system operators. Predicting trip demand can help TNC drivers make informed decisions 
on how to be more efficient by maximizing passenger pickups and minimizing wait times and 
deadheading. 

This study utilizes data from RideAustin to explore the spatial and temporal distribution of TNC 
trip demand, identify factors that are relevant to TNC trip demand, and develop a TNC trip demand 
prediction model using deep learning techniques. Before TNCs arrived as an alternative 
transportation mode, taxis were the most popular alternative transportation mode to travel 
distances that are hard to cover by bike or foot. There has been considerable interest in predicting 
the demand for taxi trips both from the operator perspective (to optimally position the taxis with 
respect to demand) and also the city’s perspective (to understand the amount of travel made by 
taxis). Chang et al. (1) mined historical data to predict taxi demand distributions using clustering 
algorithms. Moreira-Matias et al. (2) applied time series techniques to forecast taxi passenger 
demand. Gong et al. (3) proposed a machine learning model, XGBoost, to predict New York City 
taxi demand. However, studies on TNC trip demand prediction are limited. Recently, Ke et al. (4) 
introduced the fusion convolutional long short-term memory network (FCL-Net) to forecast 
passenger demand for on-demand ride services in Hangzhou, China, using real-world data 
provided by DiDi Chuxing. 

This paper adopts a deep learning model, called Long Short-Term Memory (LSTM), to predict the 
spatio-temporal features of TNC trip demand. LSTM is a special recurrent neural network 
architecture designed to learn time series data with long time spans and high dimensions. By 
presenting the available data and methods for predictive analytics, this paper aims to lay the 
groundwork for new early-stage research, analyses and adaptable decision support for cities and 
TNCs. 

Methodology 
LSTM is a special recurrent neural network architecture that was first introduced by Hochreiter 
and Schmidhuber (5). LSTM has the same chain-like structure as a recurrent neural network, but 
the repeating module has a different structure. Instead of a single neural network layer, LSTM has 
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four layers interacting in a very special way. The calculation steps in LSTM repeating module are 
performed as follows. 

1. A sigmoid layer σ called the “forget gate layer” makes a decision on what information to 
throw away from the cell state. It looks at the output of the previous step, ht−1, and current 
inpu,t xt, and outputs a binary decision for each number in the previous cell state, Ct−1. It is 
calculated as: 

ft = σ(Wf. [ht−1, xt] + bf) (1) 

2. LSTM decides what new information to store in the cell state. A sigmoid layer σ called the 
“input gate layer” decides which values to update. Then, a tanh layer outputs an array of 
new candidate values, C�t, to add to the previous cell state, Ct−1. It is calculated as: 

it = σ(Wi. [ht−1, xt] + bi)   (2) 

C�t = tanh(WC. [ht−1, xt] + bC) (3) 

3. The previous cell state, Ct−1, is updated by the equation below. 

Ct = ft ∗ Ct−1 + it ∗ C�t   (4) 

4. Finally, LSTM decides what to output. First, a sigmoid layer σ called the “output gate 
layer” decides what part of cell state to output. Next, cell state is passed through a tanh 
layer and multiplied by the output of “output gate layer”. The mathematical form of the 
calculations is ((5) and (6)): 

          ot = σ(Wo. [ht−1, xt] + bo)    (5) 

ht = ot ∗ tanh (Ct) (6) 

Findings 
The seven ZIP Codes considered for the TNC demand prediction analysis are shown in red in 
Figure 1. The proposed models predict TNC trip demand in all zones for the coming hour. The 
target variable for the study is the number of TNC trips originating from any of the seven ZIP 
Codes within the coming hour. From an extensive data exploration exercise, the TNC trip demand 
of the previous hours of the day was found to be a significant predictor of the trip demand for the 
coming hour. In addition, four other relevant factors, namely time of day, day of week, 
precipitation, and temperature, were also considered as independent variables in the model. After 
data aggregation, a total of 4,745 observations (~ 6 months of observations = 24*180) were 
extracted from the dataset. A total of 3,990 observations (~85% of the data) from July 24, 2016, to 
January 6, 2017, were used for model training. A total of 755 (~15% of the data) observations from 
January 7 to February 6, 2017, were used to test the model. 
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FIGURE 1  The seven ZIP Code zones for trip demand prediction. 

An exhaustive trial-and-error process was adopted for tuning hyperparameters. During the training 
process, mean square error (MSE) was chosen as the loss function. In every epoch, 10% of the 
training data was used for validation. LSTM with 6 hours of “look-back” interval, one LSTM layer 
of 128 hidden neurons, 30 epochs, and a batch size of 32 yielded the best model accuracy with 
lowest MSE for the validation dataset. 

Two baseline methods, namely instantaneous trip demand and historical average, were used for 
comparison against the LSTM results. Instantaneous trip demand uses the trip demand of the most 
recent hour as a proxy for the trip demand of the next one hour. The historical average is 
conditioned on hour of the day, day of the week, and ZIP Code. All methods were evaluated using 
MAE and root mean square error (RMSE) (formulations shown in (7) and (8)). 

MAE =
1
N
��𝑑𝑑i − 𝑑𝑑ı� �
N

i=1

   (7) 

RMSE = �
1
𝑁𝑁
�(𝑑𝑑𝑖𝑖 − 𝑑𝑑𝚤𝚤� )2
𝑁𝑁

𝑖𝑖=1

   (8) 

where 𝑑𝑑i is the observed trip demand, 𝑑𝑑ı�  is the predicted trip demand, and 𝑁𝑁 is the total number of 
observations. 

Prediction results for the test data are presented in Table 2. From the results, it can be observed that 
the historical averaging performs the worst of the three methods considered, followed by the 
instantaneous trip demand method. LSTM emerges as the clear winner with the lowest MAE as 
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well as RMSE values. Compared to the historical average and instantaneous trip demand, LSTM 
reduces the MAE by 37% and 24%, and RMSE by 51% and 45%. 

TABLE 1 One Hour Ahead – Trip Demand Prediction Results 

Model MAE RMSE 

Historical Average 11.5 25.0 

Instantaneous Trip Demand 9.5 22.5 

LSTM 7.2 12.3 

Units: number of trips per hour. 

A robust model must be able to predict accurately under a variety of conditions (i.e., peak hour, 
non-peak hour, weekdays, and weekends). Therefore, the developed LSTM was evaluated by 
comparing the predicted TNC trip demand with that of observed data for a span of one full week. A 
one-week time window from Monday to Sunday was randomly selected from the time range of test 
data. Figure 2 shows the predicted results of LSTM for each of the ZIP Codes in the one-week 
period from January 16 to January 22, 2017. The blue line in the figure indicates predicted trip 
demand. The red dashed line represents observed trip demand. Figure 2 shows that LSTM is 
effective in predicting TNC trip demand on both weekdays and weekends. The observed TNC trip 
demand clearly indicates that there are two distinct peaks on Friday and Saturday nights for all 
zones except the airport. It can be observed from the figure that LSTM was able to capture these 
peaks. In addition to periodical peaks, LSTM is able to provide adequate prediction for special 
events.  
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(a) Downtown (b) ZIP Code 78702 

  

(c) ZIP Code 78703 (d) ZIP Code 78704 

  

(e) ZIP Code 78705 (f) ZIP Code 78741 

 

(g) Airport 

FIGURE 2 Predicted values versus observed values. 
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Conclusions 
The Long Short-Term Memory (LSTM) deep learning method is adopted in this paper to develop a 
TNC demand prediction model. LSTM is capable of simultaneously predicting trip demand at 
multiple locations in the city for the coming hour, thereby enabling drivers and future mobility 
system operators to optimize system performance using available TNC travel data. The model was 
evaluated in the seven ZIP Codes of the downtown core, surrounding areas of downtown, and the 
airport area (which cover about 70% of the TNC trip demand). Given a set of inputs, this model 
predicts the TNC trip demand at the ZIP Code level for the coming hour. To assess the predictive 
capability of the LSTM model, two baseline models namely Instantaneous Trip Demand and 
Historical Average, were developed. The LSTM outperformed the two baseline methods in terms 
of prediction accuracy, and performed extremely well in predicting the TNC trip demand for the 
coming hour across multiple ZIP Codes in Austin. The results show that LSTM predicts TNC trip 
demand with a mean absolute error (MAE) of 7.2 trips per hour, reducing the MAE by 37% and 
24% compared to the historical average and instantaneous trip demand methods. Further 
examination of the predictions of LSTM in different ZIP Codes under a variety of conditions (i.e., 
peak hour, non-peak hour, weekdays, and weekends) reveals that LSTM is able to capture the trip 
demand variations not only in normal peak and off-peak hours, but also for special events and 
aberrant demand patterns. While the model predicts TNC trip demand well for most of the zones 
considered for analysis, it does not perform as well in predicting TNC trip demand at the Austin 
Airport. This is most likely because the TNC trip demand pattern for the airport is motivated by 
factors that are different from the rest of the zones (plane arrival/departure times, distance of the 
airport to various zones in the city, transit accessibility and timings). Developing TNC demand 
predictions models for special generator zones such as airports remains a direction for further 
exploration and future research. 
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