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Abstract: In electric power systems, most state variables are not measured, or even measurable. The large-scale deployment of high-resolution measurement devices, as well as of high-speed, high-bandwidth communications networks, is
enabling the development of dynamic state estimators (DSEs), which can provide estimates of the state variables. In this poster, we present a hierarchical decentralized, robust DSE that has been developed by combining model-based and
data-driven methods. A two-level hierarchy is proposed, where the lower level consists of model-based DSEs. The state estimates sent from the lower level are received at the upper level, where they are filtered by a robust data-driven

DSE that relies on the Koopman operator-theoretic framework.
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Figure 1: Hybrid framework combining model-based and data-driven
methods for power system DSE.

Introduction and Motivation

Consider a discrete, time-invariant, nonlinear dynamical system:

Yie = hixi, (1)
x € X C R" is the state vector, f : R™ — E" is the discrete map, Yy € R™ is
the observation vector, and h: B™ — R™ is the observation function.

Assumption: F9 = span{d}{_; is a subset of the Koopman eigenfunctions,
Pix), such that x, h(x) € F9. Then, we have that:
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where v denotes the Koopman modes and p denotes the Koopman eigenvalues.
Notice that {d(x), v, 1} are estimated from measured data using the extended
dynamic mode decomposition (EDMD) algorithm.
Using (2), Surana and Banaszuk have shown that (1) can be put in the Kalman
filter form, as follows:

v=Azi g twier,  ye=YYz +ey, (3)

where A is a block diagonal matrix, Wy, and e, are the system and observation
error vector, respectively; and x;. = Yz,
= In the modeling for power system stability analysis and control, most of
the state variables are related to generators. For example, refer to the
synchronous generator model given by (4)—(12);
- w is measured locally, & is not measured, EL‘ and E}j are not measurable;
-« Model-based decentralized DSEs are adopted to get access to estimates of
state variables. Consequently, robustness to bad data/data dropouts is of
concern because the state estimates are transmitted via communication
links (see Fig. 1).
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Figure 2: Rotor speed estimation. Case A: Presence of impulsive
noise in the state estimate received from the lower level DSE.
Algebraic equations

0 = (Ry+ Re) Ta — [X{ + Xep| Ig — By + Vesin (8 — 0u4) (8)
0 = (Ry+ Re) Iq + (X + Xep) Ta — B + Vicos (5 — 0y, 9)
Vi = Rela — Xeplg + Visin (5 — 0y, (10)
Vi = Relg + Xepla + Vi cos (8 — 0y, (11)
Vi= Vi+ Vi (12)
Wariable Description Wariable  Description
B, B d @ State var. o Tgo  Time constant
Tgy Tgy Vi Gen. algebraic var. V,, 8, Metwork algebraic var
Vo Vi Rey Xep Metwork parameter
XL,X:“ Xy X4, Gen. parameter Erdy Tmee  Control input
H,D, R, W Constant

Robust Koopman Kalman Filter (GM-KKF)

Define (yp_1 = Zy — Zy_1. the error between the true value, zy, and the
predicted value, zy;_, which comes from the Kalman filter prediction step.
Using the abave definition and (3), we write the batch-mode regression:
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14 is an Identity matrix. Then, outliers are de_tectef] by applying the projection
statistics estimator on the point cloud Y = Yy, Uy for every filtering step
of the Kalman filter.
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Figure 4: Two-dimensional idealization of the projection statistics estimator. (Left) Compute
the median (+) of the point cloud (x). (Right) Project the paint cloud to all one-dimensional
directions defined by the component-wise median and that pass through the data points. At
the end, assign to each point the maximum of the corresponding standardized projections.
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Figure 3: Rotor speed estimation. Case B: Loss of communication
with the lower level DSE.
The projection statistics estimator is defined as:

£ v — median \'Ei'vl
i

PS; := max ] .
Ivi=17 4826 - megian 6]V — rneciiian €]

(14)
A PS; value is computed for each {ggk,gi‘k,,} pair and then used to compute
the weights, @;, of a modified Huber estimator, defined as:
@f (i3], <8,
plryl = T, fr ,ﬁ
@ (Blrs| — 387, otherwise.
Compared to the non-robust Koopman Kalman filter (KKF) in (3), the GM-KKF

shows faster convergence rate due to its batch-mode regression formulation
015
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Figure 5. Reet mean squared errer of the GM-KKF and of (3), whieh is termed KKF.

Conclusions: Power System Application

The upper level data-driven DSE:

« Is at least 3 times faster than the extended Kalman filter, which is a
commonly adopted model-based DSE
Presents high statistical efficiency when the errors do not follow the
Gaussian probability density function
Is able to suppress the effect of bad data and data dropouts; see Figs. 2
and 3.
This approach was tested on a large-scale synthetic power grid on footprint of
Texas. This system has 2,000 nodes and 544 synchronous generators. Numer-
ical results are shown in Figs. 2 and 3 for a specific generator state variable.
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