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Background

« Transportation Network Companies (TNCs) are rapidly gaining market
share.

* Available in several cities in North America and are prevalent

transportation mode alternatives in large metropolitan areas.
In 2017, Uber had 375.5 million rides in North America (1)

« TNCs are redefining the way people travel, but are also causing new
transportation and energy problems that require immediate attention.
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TNC Are Experiencing Exponential Growth

No. of Uber drivers making at least 1 trip/month
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TNCs are Increasing Mobility — But at What Cost?

Ride-Hailing Apps Are Clogging New York's Streets

The city’s traffic woes owe in part to more people choosing private transit over
public.

TNC growth has added 976 million miles of driving to city
streets, citywide, since 2013.
-Schaller Consulting Report

Studies are increasingly clear: Uber and Lyft
congest cities Chicago Tribune

Evidence From Boston That Uber Is Making
Traffic Worse STREETSBLOG
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Research Motivation: Reducing Empty TNC Mileage

TNC services — empty vehicle miles

Cruising - Passenger Ride
for a ride (O-D)
LOG-IN OR RIDE PASSENGER PASSENGER
NEXT RIDE REQUEST PICK-UP a DROP-OFF
: p - 1

|

Example Cases: San Francisco (SFCTA, 2018) — INRIX data
47% of the increase in vehicle miles travelled from 2010 to 2016

I

Denver (Henao and Marshall, 2018) — Collected by driver data
41% empty miles share for a single Uber/Lyft driver in Denver

Austin (Komanduri et al., 2018) — RideAustin TX data
37% empty miles of total vehicle miles traveled (VMT)
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Empty VMT Scenarios

» Once the passenger is picked up and dropped off at their destination, the TNC
driver (assuming they are still in service) can do one of four things:

« Park in a close-by location and wait for the next trip request

« Accept another request and travel to pick up the next passenger

« Cruise around until they find another trip to serve

« Travel to a known demand pocket such as the airport or the central

business district (or a suggested high-demand location) while waiting to
be assigned to a customer

Department Name 6



Future Travel Demand Information: Impact on Empty VMT

« What if ride-hailing drivers received information on future demand?

— Hypothesis:
» Reduction of cruising without passengers & empty mileage
« Energy & environmental savings

— Assumption:

« Information on high future demand within next f minutes incentivizes drivers
to wait in place for next ride

— Method: Machine learning applications to forecast demand

— Constraints: Cap drivers waiting time  to 5—-20 minutes between rides

— Ride assignment: Next closest ride within ZIP code of recent rider drop-off
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Application — Data Sources

Travel info diffusion effects on vehicle empty mileage case studies

Trip-level analysis using 1 week data from: y
- RideAustin (Austin, TX, USA) A
o 28,586 trips, 16,930 drivers
«  DiDi Chuxing (Chengdu, Sichuan, China)
o 1,048,575 trips, 216,927 drivers
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0 1 2miles

. Legend
B rl ef Data iHeagll‘onap of Trips Destinations (1/1/2017-1/7/2017)
Overview . Trip Estimated | - &
Descriptive  p;ctance Dead heading | max _ s Chengdu g
Statistics . . 5\ | [0 selectedzip Coses 3071
(mi) Distance (mi) ol _ 1
. .| Mean 4.27 3.91 o o
Samote ™ | Median 2.81 2.31 e m |
Std. Dev. 4.12 3.12 o
DiDi Mean 1.96 1.52 sl i
Chuxing | Median 1.72 0.84 003 | R }
Sample Std- Dev 1 29 1 66 30.61)4 104.02 104‘.04 10:;.06 104.08 104.1 104.12 104.14¥0

lon

Shared Mobility, Ridehailing, and Emerging Transportation Trends - Session 1453

2019 Transportation Research Board Annual Meeting



TNC Demand Forecasting

Long Short-Term Memory (LSTM) network for demand prediction

Recurrent neural network architecture learning time series data with long time
spans and high dimensions

* 1-hour ahead prediction for RideAustin, 10-minute ahead prediction for DiDi
» Performance check based on RMSE and MAE
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Ride-hailing trip demand prediction results for Austin TX, Ride-hailing trip demand prediction results for Chengdu,
RideAustin 1 week data — Details in Hou et al. (2019) DiDi 1 week data — Details in Chao and Hou (2019)
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Drivers Waiting in Place — Heuristic Algorithm

Which drivers are more likely to wait in place after receiving future
travel d e m a n d i nfo? Algi?zjithm 1 Algorithm for determining trips’ destinations where information

provision is provided to ridesourcing drivers
1: Initialize: Import trip destinations i € I & zd; the zip codes of trip desti-
nations, PT.4,; the trips predicted at destination ¢ during time, day, and

Probability that a driver waits for a trip j to ij‘m;iw) Assume threstold @ and ruc € 0.1] vni
be generated at zd; of their last trip -1
destination i is binomially distributed with Do SR
maximum probability of success equal to a ldwf ——o
threshold a 11 end for
Xy =a- Pra;e PT,q,:: predicted trips at zone (from ML application)
max PT; max PT,: the max. number of trips predicted the following hour ¢

* 13+ random € [0,1]
 Driver of a trip where X;; > r;; waits in place for the next rider pickup
* X;; <1y trip i ineligible for the following trip-matching process
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Assignment - Heuristic

Determine next trip origin to assign driver who is waiting in place

Algorithm 2 Algorithm for minimizing deadheading while matching trips based

COﬂd |t| ons on information provision
o N t t : d . d t d h t Initialize: Import trip destinations i & trip origins j, zd; and zs; as zip codes
ext i p candidates a ere 1o of trip destinations and trip origins, and td;, ts; as time reaching destination
H . 7 and time of pick up at origin j.
temporal and spatial constraints o e B+ ol vt T <= b i

. . . gy s inD; = 100000, minA; = —1
« Candidate origin should be within ~ + forjesdo

haversine(i, j) = dhy;

the Same ZIP COde or grld Ce” as 6: if ts; > td; + d—’:"j— and szd; = zs; and ts; — (td; + d—}:;’-) < f then
the previous trip’s destination . aim
« Driver is willing to wait in place for . ond i
the next trip to arrive for less than ;™5 s 4h.. then
HY : minD; = tem,
a specific time threshold S 14: i
. .. . dif
- Trip’s origin k meets constraints & adfw
and minimizes deadheading i

distance, then it occurs next
Note:

Drop-off and pick-up times are not flexible
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Empty Mileage Reductions & Energy/Cost Savings

Application outputs: Average Trip-Level Savings

a. Deadheading Distance Distribution - RideAustin Data
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b. Waiting Time - RideAustin Data

]
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d. Waiting Time - DiDi Data

[ Waiting time (3=10min)
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VMT: 67.7% — 78% empty
VMT reduction/trip

Energy: drivers save 0.08 —
0.10 gallons/trip

Cost: cost savings 23 — 26
cents/trip

VMT: 55% — 59% empty
VMT reduction/trip

Energy: between 0.035 —
0.05 gallon per trip

Cost: drivers save 11 — 13
US cents/trip
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Sensitivity Results — Waiting Time Parameter Impact

Application outputs: Distribution of Trip-Level Savings

a. Deadheading Distance Savings - RideAustin Data b. Waiting Time - RideAustin Data
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c. Deadheading Distance Savings - DiDi Data d. Waiting Time - DiDi Data
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Sensitivity Results — Max Drivers Waiting Parameter Impact
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Scenario: Driver is willing to wait up to a threshold of  equal to 20 and 10 minutes
for the RideAustin and DiDi data, respectively

Application: Varying threshold a, where a denotes the maximum percent of drivers
that will be waiting based on the information received

Results: 20% and 25% threshold results in max savings for the regions examined
respectively, but heavily dependent on data
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Conclusions & Future Research

* Travel demand information diffusion can
help:
— Curb empty vehicle miles [up to 78% per trip]

— Reduce drivers operational costs, wear & tear,
energy consumption

— May require provisions for designated curb space
for ride-hailing vehicles

GAIA Open Dataset

Open Collaborative Innovative

- Extend application of the algorithmto ==
different datasets

LR
HTI n National Association of City Transportation Officials

» Explore variability in driver behavior and
impact on passenger wait time v b g o B o e

Mobility Companies New Tools to Manage Congestion,
Cut Greenhouse Gases and Reduce Crashes
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Thank you!

Questions?
ekontou@email.unc.edu




	Impacts of Travel Demand Information Diffusion on Reducing Empty Vehicle Miles Traveled by Ridesourcing Vehicles��Ria Kontou, Ph.D.�UNC Chapel Hill��Joint work with Venu Garikapati (NREL),� Yi Hou (NREL), and Chao Wang (UC Riverside) 
	Background

	TNC Are Experiencing Exponential Growth 
	TNCs are Increasing Mobility – But at What Cost? 

	Research Motivation: Reducing Empty TNC Mileage
	Empty VMT Scenarios
	Future Travel Demand Information: Impact on Empty VMT
	Application – Data Sources

	TNC Demand Forecasting
	Drivers Waiting in Place – Heuristic Algorithm
	Assignment - Heuristic
	Empty Mileage Reductions & Energy/Cost Savings

	Sensitivity Results – Waiting Time Parameter Impact
	Sensitivity Results – Max Drivers Waiting Parameter Impact
	Conclusions & Future Research

