DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR

WATER-SUPPLY PAPER 287

SURFACE WATER SUPPLY OF THE UNITED STATES

1910

PART VII. LOWER MISSISSIPPI BASIN

PREPARED UNDER THE DIRECTION OF M. O. LEIGHTON

BY

W. B. FREEMAN AND J. G. MATHERS

WASHINGTON GOVERNMENT PRINTING OFFICE

1911

• • . . •

CONTENTS.

	Page.
Introduction	5
Authority for investigations	5
Scope of investigations	5
Publications	6
Definition of terms	10
Convenient equivalents	10
Explanation of data	12
Accuracy and reliability of field data and comparative results	13
Use of the data	15
Cooperative data	15
Cooperation and acknowledgments	16
Division of work	16
Gaging stations maintained in lower Mississippi River basin	17
White River drainage basin	20
Description	20
White River at Beaver, Ark	21
White River near Branson, Mo	22
White River near Lead Hill, Ark	23
White River near Cotter, Ark	24
White River at Walls Ferry, Ark	25
Buffalo River near Gilbert, Ark	25
North Fork River near Henderson, Ark	26
Little Red River near Pangburn, Ark	27
Arkansas River drainage basin	28
Description	28
Arkansas River at Granite, Colo	31
Arkansas River at Salida, Colo	33
Arkansas River at Canon City, Colo	35
Arkansas River at Pueblo, Colo	37
Arkansas River near Nepesta, Colo	40
Arkansas River at Holly, Colo	41
Twin Lakes Outlet near Twin Lakes, Colo	43
Clear Creek near Granite, Colo	44
Cottonwood Creek near Buena Vista, Colo	46
Chalk Creek near Buena Vista, Colo	47
Oil or Fourmile Creek near Canon City, Colo	47
Purgatory River drainage basin	48
Description	48
Purgatory River at Trinidad, Colo	49
Big Sandy Creek at Hugo, Colo	51
Big Sandy Creek at Kit Carson, Colo	53
Big Spring Creek near Arena, Colo	53

.

CONTENTS.

Arkansas River drainage basin—Continued.	Page.
Canadian River drainage basin	55
Description	55
Canadian River at Logan, N. Mex	56
Chico Rico Creek near Raton, N. Mex	58
Una del Gato Creek near Raton, N. Mex	58
Cimarron River at Ute Park, N. Mex	59
Rayado River at Abreu's ranch, near Cimarron, N. Mex	61
Mora River and La Cueva canal at La Cueva, N. Mex	64
Sapello River at Los Alamos, N. Mex	67
Ute Creek near Logan, N. Mex	70
Yazoo River drainage basin	72
Description	72
Tallahatchie River at Batesville, Miss	73
Tallahatchie River at Philipp, Miss	• 74
Yazoo River at Greenwood, Miss	76
Coldwater River at Savage, Miss	77
Yalobusha River at Grenada, Miss	79
Sunflower River near Ruleville, Miss	81
Sunflower River at Baird, Miss	82
Red River drainage basin	83
Description	83
Wichita River at Wichita Falls, Tex	84
Miscellaneous measurements in lower Mississippi River drainage basin	85
Index	87

ILLUSTRATIONS.

											Page.
PLATE	Ι.	Typical	gaging	stations:	Α,	For	bridge	measurement;	В,	For	
		wadin	g measu	rement							12
wading measurement II. Price penta-recording current meters											

ı

4

-

.

SURFACE WATER SUPPLY OF THE LOWER MISSISSIPPI BASIN, 1910.

By W. B. FREEMAN and J. G. MATHERS.

INTRODUCTION.

AUTHORITY FOR INVESTIGATIONS.

This volume contains results of measurements of the flow of certain streams in the United States. The work was performed by the water-resources branch of the United States Geological Survey, either independently or in cooperation with private or State organizations. The organic law of the Geological Survey (Stat. L., vol. 20, p. 394) contains the following paragraph:

Provided, That this officer [the Director] shall have the direction of the geological survey and the classification of public lands and examination of the geological structure, mineral resources, and products of the national domain.

As water is the most abundant and most valuable of the minerals the investigation of water resources is authorized under the provision for examining mineral resources. The work has been supported since the fiscal year ending June 30, 1895, by appropriations in successive sundry civil bills passed by Congress under the following item:

For gaging the streams and determining the water supply of the United States, and for the investigation of underground currents and artesian wells, and for the preparation of reports upon the best methods of utilizing the water resources.

The various appropriations that have been made for this purpose are as follows:

Annual appropriations for the fiscal year ending June 30-

1895	\$12,500
1896	20,000
1897 to 1900, inclusive	50,000
1901 to 1902, inclusive	
1903 to 1906, inclusive	
1907	
1908 to 1910, inclusive	
1911	

SCOPE OF INVESTIGATIONS.

These investigations are not complete nor do they include all streams that might be advantageously studied. The scope of the work is limited by the appropriations available. The field covered is the widest and the character of the work is believed to be the best possible under the controlling conditions. The work would undoubtedly have greater scientific importance and ultimately be of more practical value if the money now expended for wide areas were concentrated on a few small drainage basins, but such a course is impossible because general appropriations made by Congress are applicable to all parts of the country. Each part demands its proportionate share of the benefits.

It is essential that records of stream flow shall be kept during a period of years long enough to determine within reasonable limits the entire range of flow from the absolute maximum to the absolute minimum. The length of such a period manifestly differs for different streams. Experience has shown that the records for some streams should cover 5 to 10 years, and those for other streams 20 years or even more, the limit being determined by the relative importance of the stream and the interdependence of the results with other longtime records on adjacent streams.

In the performance of this work an effort is made to reach the highest degree of precision possible with a reasonable expenditure of time and a judicious expenditure of a small amount of money. In all engineering work there is a point beyond which refinement is needless and wasteful, and this statement applies with especial force to streamflow measurements. It is confidently believed that the stream-flow data presented in the publications of the Survey are in general sufficiently accurate for all practical purposes. Many of the records are, however, of insufficient length, owing to the unforeseen reduction of appropriations and consequent abandonment of stations. All persons are cautioned to exercise the greatest care in using such incomplete records.

Records have been obtained at nearly 2,000 different points in the United States. The surface water supply of small areas in Seward Peninsula and the Yukon-Tanana region, Alaska, and in Hawaii has also been investigated. During 1910 regular gaging stations were maintained by the Survey and cooperating organizations at about 1,100 points in the United States, and many discharge measurements were made at other points. Data were also obtained in regard to precipitation, evaporation, storage reservoirs, river profiles, and water power in many sections of the country and will be made available in the regular surface water-supply papers and in special papers from time to time.

PUBLICATIONS.

The data on stream flow collected by the United States Geological Survey have appeared in the annual reports, bulletins, and watersupply papers. Owing to natural processes of evolution and to changes in governmental requirements, the character of the work and the territory covered by these different publications have varied greatly. For the purpose of uniformity in the presentation of reports a general plan has been agreed upon by the United States Reclamation Service, the United States Forest Service, the United States Weather Bureau, and the United States Geological Survey, according to which the area of the United States has been divided into twelve parts, whose boundaries coincide with certain natural drainage lines. The areas so described are indicated by the following list of papers on surface water supply for 1910. The dividing line between the North Atlantic and South Atlantic drainage areas lies between York and James rivers.

Papers on surface water supply of the United States, 1910.

Part.	No.	Title.
I III IV VI VII VIII IX XI XII	281 282 283 284 285 286 287 288 289 290 291 292	North Atlantic coast. South Atlantic coast and eastern Gulf of Mexico. Ohio River basin. St. Lawrence River basin. Upper Mississippi River and Hudson Bay basins. Missouri River basin. Lower Mississippi River basin. Western Gulf of Mexico. Colorado River basin. Great Basin. Great Basin. California. North Pacific coast.

The following table gives the character of data regarding stream flow at regular stations to be found in the various publications of the United States Geological Survey, exclusive of special papers:

Stream-flow data in reports of the United States Geological Survey.

Report.	Character of data.	Year.
10th A., pt. 2 11th A., pt. 2	Descriptive information only Monthly discharge	1884 to Sept.,
		1890.
/1	do	1891.
13th A., pt. 3	Mean discharge in second-feet	1884 to Dec. 31, 1892.
14th A., pt. 2	Monthly discharge (long-time records, 1871 to 1893)	1888 to Dec. 31, 1893.
B. 131.	Descriptions, measurements, gage heights, and ratings Descriptive information only	
B. 140	Descriptions, measurements, gage heights, ratings, and monthly discharge (also many data covering earlier years).	1895.
W. S. 11.	Gage heights (also gage heights for earlier years)	1896.
18th A., pt. 4	Descriptions, measurements, ratings, and monthly discharge (also similar data for some earlier years).	1895 and 1896.
W. S. 15	Descriptions, measurements, and gage heights, eastern United States, eastern Mississippi River, and Missouri River above function with Kansas.	1897.
W. S. 16	Descriptions, measurements, and gage heights, western Missis- sippl River below junction of Missouri and Platte, and west- ern United States.	1897.

[A.=Annual Report; B.=Bulletin; W. S.=Water-Supply Paper.]

Stream-flow data in reports of the United States Geological Survey-Continued.

Report.	Character of data.	Year.
l9th A., pt. 4	Descriptions, measurements, ratings, and monthly discharge (also some long-time records).	1897.
W. S. 27	Measurements, ratings, and gage heights, eastern United States, eastern Mississippi River, and Missouri River.	1898.
W. S. 28	Measurements, ratings, and gage heights, Arkansas River and western United States.	1898.
20th A., pt. 4	. Monthly discharge (also for many earlier years)	1898.
W. S. 35 to 39 21st A., pt. 4	Descriptions, measurements, gage heights, and ratings Monthly discharge.	1899. 1899.
W. S. 47 to 52	Descriptions, measurements, gage heights, and ratings	1900.
22d A., pt. 4	. Monthly discharge	1900.
W. S. 65, 66	. Descriptions, measurements, gage heights, and ratings	1901.
W. S. 75.		1901.
	. Complete data	
W S 194 to 135	do	1903.
W. S. 201 to 214	. Complete data, except descriptions	1906.
W. S. 241 to 252	. Complete data.	1907-8.
	đo	
W. S. 281 to 292	do	1910.

NOTE .- No data regarding stream flow are given in the 15th and 17th annual reports.

The records at most of the stations discussed in these reports extend over a series of years. An index of the reports containing records prior to 1904 has been published in Water-Supply Paper 119.

The first table which follows gives, by years and drainage basins, the numbers of the papers on surface-water supply published from 1899 to 1909. Wherever the data for a drainage basin appear in two papers the number of one is placed in parentheses and the portion of the basin covered by that paper is indicated in the second table. For example, in 1904 the data for Missouri River were published in Water-Supply Papers 130 and 131, and the portion of the records contained in Water-Supply Paper 131, as indicated by the second table, is that relating to Platte and Kansas rivers.

Numbers of water-supply papers containing results of stream measurements, 1899-1910.

	1899 a	1900 8	1901	1902	1903
Atlantic coast and eastern Gulf of Mexico: New England rivers. Hudson River to Delaware River, inclusive Susquehanna River to York River, inclusive James River to Yadkin River, inclusive Sattee River to Pearl River, inclusive. St. Lawrence River. Hudson Bay. Mississippi River. Ohio River. Upper Mississippi River. Missouri River. Lower Mississippi River. Pacific coast and Great Basin: Colorado River. Great Basin. South Pacific coast to Klamath River, inclusive.	35 35 (35),36 36 36 (36,37) 37 37 (37),38 38,(39)	47 47, (48) 48 48 49 49 49, (50) 50 50 50 50 51 51	$\begin{array}{c} 65, 75\\ 65, 75\\ 65, 75\\ 65, 75\\ 65, 75\\ 65, 75\\ 65, 75\\ 66, 75\\ 66, 75\\ 66, 75\\ 66, 75\\ \left\{\begin{array}{c} (65), \\ (65), \\ 66, 75\\ 66, 75\\ 66, 75\\ 66, 75\\ 66, 75\\ 66, 75\\ 66, 75\\ \end{array}\right.$	82 32 (82),83 (82),83 (82),83 83 83 84 (83),84 84 84 85 85 85	97 97 97 (97),98 98 97 100 98,(99) 99 (98),99 99 (98),99 99 100 100 100

a Rating tables and index to Water-Supply Papers 35-39 contained in Water-Supply Paper 39. b Rating tables and index to Water-Supply Papers 47-52 and data on precipitation, wells, and irrigation in California and Utah contained in Water-Supply Paper 52.

LOWER MISSISSIPPI BASIN.

	1904	1905	1906	1907-8	1909	1910
Atlantic coast and eastern Guli of Mexico:		}				
New England rivers	124	165	201	241	261	281
clusive Susquehanna River to York River, in-	125	166	202	241	261	281
clusive	126	167	203	241	261	281
James River to Yadkin River, inclusive.	126	167	203	242	262	282
Santee River to Pearl River, inclusive	127	168	204	242	262	282
St. Lawrence River	129	170	206	244	264	284
Hudson Bay Mississippi River:		171	207	245	265	285
Ohio River	128	169	205	243	263	283
Upper Mississippi River	128, (130)	171	207	245	265	285
Missouri River	130 (131)	172	208	246	266	286
Lower Mississippi River Western Gulf of Mexico	(128), 131	(169), 173	(205), 209	247	267	287
Western Gulf of Mexico Pacific coast and Great Basin:	132	174	210	248	268	288
Colorado River	133, (134)	175, (177)	211, (213)	249, (251)	269, (271)	$\left\{\begin{array}{c}289\\(291)\end{array}\right.$
Great Basin	133, (134)	176, (177)	212, (213)	250, (251)	270, (271)	290, (291)
South Pacific coast to Klamath River,	104		010	051	071	
inclusive North Pacific coast			213 214	251 252	271 272	291 292
NOT HI F ACHIC COAST	130	(177),178	214	402	212	292

Numbers of water-supply papers containing results of stream measurements, 1899–1910— Continued.

Numbers of water-supply papers containing data covering portions of drainage basins.

No.	River basin.	Tributaries included.
No. 35 36 37 38 39 50 65 82 83 97 98 99 98 99 128 130 131 134 169 1777 205	James. Missouri. Colorado. Sacramento. Great Basin. Delaware. Ohio Missouri. Lower Mississippi. James. St. Ibawrence. Lower Mississippi. Lower Mississippi. Upper Mississippi. Upper Mississippi. Upper Mississippi. Colorado. Great Basin. Lower Mississippi. Lower Mississippi. Lower Mississippi. Colorado. Great Basin. North Pacific coast. Lower Mississippi.	Gallatin. Green, Gunnison, Grand above junction with Gunnison. Except Kings and Kern. Mohave. Wissahickon and Schuylkill. Scioto. Loup and Platte near Columbus, Nebr. All tributaries below junction with Platte. Yazoo. Lake Ontario, tributaries to St. Lawrence River proper. Yazoo. Do. Tributaries from the west. Ylatte, Kansas. Data near Yuma, Ariz., repeated. Susan, Owens, Mohave. Yazoo. Below junction with Gila. Susan Cowens, Mohave. Rogue, Umpqua, Siletz. Yazoo, Homochitto.
213 251	{Colorado Great Basin Colorado	Owens, Mohave.
271 291	Great Basin.	Yuma and Salton Sea stations repeated. Owens River basin,

The order of treatment of stations in any basin in these papers is downstream. The main stem of any river is determined by measuring or estimating the drainage area; that is, the headwater stream having the largest drainage area is considered the continuation of the main stream and local changes in name and lake surface are disregarded. Records for all stations from the source to the mouth of the main stem of the river are presented first, and records for the tributaries in regular order from source to mouth follow, all records in each tributary basin being given before those of the next basin below.

The exceptions to this rule occur in the records for Mississippi River, which are given in four parts, as indicated above, and in the record for large lakes, where it is simpler to take up the streams in regular order around the rim of the lake than to cross back and forth over the lake surface.

DEFINITION OF TERMS.

The volume of water flowing in a stream—the "run-off" or "discharge"—is expressed in various terms, each of which has become associated with a certain class of work. These terms may be divided into two groups: (1) Those which represent a rate of flow, as secondfeet, gallons per minute, miner's inches, and run-off in second-feet per square mile, and (2) those which represent the actual quantity of water, as run-off in depth in inches and acre-feet. The units used in this series of reports are second-feet, and feet per square mile, and run-off in inches, and acre-feet. They may be defined as follows:

"Second-foot" is an abbreviation for cubic foot per second and is the rate of discharge of water in a stream 1 foot wide, 1 foot deep, at a rate of 1 foot per second. It is generally used as a fundamental unit from which others are computed by the use of the factors given in the following table of equivalents:

"Second-feet per square mile" is the average number of cubic feet of water flowing per second from each square mile of area drained, on the assumption that the run-off is distributed uniformly both as regards time and area.

"Run-off in inches" is the depth to which the drainage area would be covered if all the water flowing from it in a given period were conserved and uniformly distributed on the surface. It is used for comparing run-off with rainfall, which is usually expressed in depth in inches.

"Acre-foot" is equivalent to 43,560 cubic feet, and is the quantity required to cover an acre to the depth of 1 foot. It is commonly used in connection with storage for irrigation work.

CONVENIENT EQUIVALENTS.

The following is a list of convenient equivalents for use in hydraulic computations:

1 second-foot equals 40 California miner's inches (law of Mar. 23, 1901).

1 second-foot equals 38.4 Colorado miner's inches.

10

1 second-foot equals 40 Arizona miner's inches.

1 second-foot equals 7.48 United States gallons per second; equals 448.8 gallons per minute; equals 646,272 gallons for one day.

1 second-foot equals 6.23 British imperial gallons per second.

1 second-foot for one year covers 1 square mile 1.131 feet or 13.572 inches deep.

1 second-foot for one year equals 31,536,000 cubic feet.

1 second-foot equals about 1 acre-inch per hour.

1 second-foot for one day covers 1 square mile 0.03719 inch deep.

1 second-foot for one 28-day month covers 1 square mile 1.041 inches deep.

1 second-foot for one 29-day month covers 1 square mile 1.079 inches deep.

1 second-foot for one 30-day month covers 1 square mile 1.116 inches deep.

1 second-foot for one 31-day month covers 1 square mile 1.153 inches deep.

1 second-foot for one day equals 1.983 acre-feet.

1 second-foot for one 28-day month equals 55.54 acre-feet.

1 second-foot for one 29-day month equals 57.52 acre-feet.

1 second-foot for one 30-day month equals 59.50 acre-feet.

1 second-foot for one 31-day month equals 61.49 acre-feet.

100 California miner's inches equals 18.7 United States gallons per second.

100 California miner's inches equals 96 Colorado miner's inches.

100 California miner's inches for one day equals 4.96 acre-feet.

100 Colorado miner's inches equals 2.60 second-feet.

100 Colorado miner's inches equals 19.5 United States gallons per second.

100 Colorado miner's inches equals 104 California miner's inches.

100 Colorado miner's inches for one day equals 5.17 acre-feet.

100 United States gallons per minute equals 0.223 second-foot.

100 United States gallons per minute for one day equals 0.442 acre-foot.

1,000,000 United States gallons per day equals 1.55 second-feet.

1,000,000 United States gallons equals 3.07 acre-feet.

1,000,000 cubic feet equals 22.95 acre-feet.

1 acre-foot equals 325,850 gallons.

1 inch deep on 1 square mile equals 2,323,200 cubic feet.

1 inch deep on 1 square mile equals 0.0737 second-foot per year.

1 foot equals 0.3048 meter.

1 mile equals 1.60935 kilometers.

1 mile equals 5,280 feet.

1 acre equals 0.4047 hectare.

1 acre equals 43,560 square feet.

1 acre equals 209 feet square, nearly.

1 square mile equals 2.59 square kilometers.

1 cubic foot equals 0.0283 cubic meter.

1 cubic foot equals 7.48 gallons.

1 cubic foot of water weighs 62.5 pounds.

1 cubic meter per minute equals 0.5886 second-foot.

1 horsepower equals 550 foot-pounds per second.

1 horsepower equals 76 kilogram-meters per second.

1 horsepower equals 746 watts.

1 horsepower equals 1 second-foot falling 8.80 feet.

13 horsepower equals about 1 kilowatt.

To calculate water power quickly: $\frac{\text{Sec.-ft.} \times \text{fall in feet}}{11}$ = net horsepower on water

wheel realizing 80 per cent of theoretical power.

EXPLANATION OF DATA.

For each drainage basin there is given a brief general description covering such items as area, source, tributaries, topography, geology, forestation, rainfall, irrigation, storage, power, and other interesting and important facts.

For each regular current-meter gaging station the following data, so far as available, are given: Description of station, list of discharge measurements, table of daily gage heights, table of daily discharges, table of monthly and yearly discharges and run-off. For stations located at weirs or dams the gage-height table is omitted.

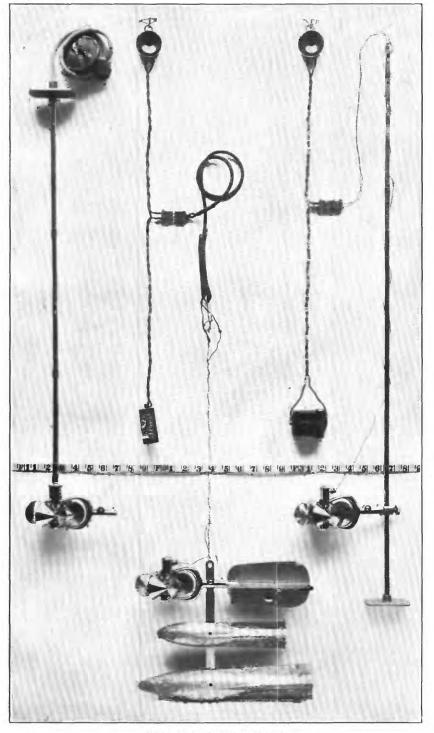
In addition to statements regarding the location and installation of current-meter stations, the descriptions give information in regard to any conditions which may affect the constancy of the relation of gage height to discharge, covering such points as ice, logging, shifting channels, and backwater; also information regarding diversions which decrease the total flow at the measuring section. Statements are also made regarding the accuracy and reliability of the data.

The discharge-measurement table gives the results of the discharge measurements made during the year, including the date, name of hydrographer, width and area of cross section, gage height, and discharge in second-feet.

The table of daily gage heights records the daily fluctuations of the surface of the river as found from the mean of the gage readings taken each day. At most stations the gage is read in the morning and in the evening. The gage height given in the table represents the elevation of the surface of the water above the zero of the gage. All gage heights affected by the presence of ice in the streams or by backwater from obstructions are published as recorded, with suitable tootnotes. The rating table is not applicable for such periods unless the proper corrections to the gage heights are known and applied. Attention is called to the fact that the zero of the gage is placed at an arbitrary datum and has no relation to zero flow or the bottom of the river. In general, the zero is located somewhat below the lowest known flow, so that negative readings shall not occur.

The discharge measurements and gage heights are the base data from which rating tables, daily discharge tables, and monthly discharge tables are computed.

The rating table gives, either directly or by interpolation, the discharge in second-feet corresponding to every stage of the river recorded during the period for which it is applicable. It is not published in this report, but can be determined from the daily gage


U. S. GEOLOGICAL SURVEY

A. FOR BRIDGE MEASUREMENT.

B. FOR WADING MEASUREMENT. TYPICAL GAGING STATIONS.

heights and daily discharges, for the purpose of verifying the published results as follows:

First plot the discharge measurements for the current and earlier years on cross-section paper with gage heights in feet as ordinates and discharge in second-feet as abscissas. Then tabulate a number of gage heights taken from the daily gage height table for the complete range of stage given and the corresponding discharges for the days selected from the daily discharge table and plot the values on cross-section paper. The last points plotted will define the rating curve used and will lie among the plotted discharge measurements. After drawing the rating curve, a table can be developed by scaling off the discharge in second-feet for each tenth foot of gage height. These values should be so adjusted that the first differences shall always be increasing or constant, except for known backwater conditions.

The table of daily discharges gives the discharges in second-feet corresponding to the observed gage heights as determined from the rating tables.

In the table of monthly discharge the column headed "Maximum" gives the mean flow, as determined from the rating table, for the day when the mean gage height was highest. As the gage height is the mean for the day, it does not indicate correctly the stage when the water surface was at crest height, and the corresponding discharge was consequently larger than given in the maximum column. Likewise in the column of "Minimum" the quantity given is the mean flow for the day when the mean gage height was lowest. The column headed "Mean" is the average flow in cubic feet for each second during the month. On this the computations for the remaining columns, which are defined on page 10, are based.

The field methods used in the collection of the data presented in this series of reports are described in the introductory sections of Water-Supply Papers 261 to 272, inclusive, "Surface water supply of the United States, 1909." Plate I shows typical gaging stations and indicates the method of suspending the current meter; Plate II shows the various types of current meters ¹ used in the work.

ACCURACY AND RELIABILITY OF FIELD DATA AND COMPARATIVE RESULTS.

The accuracy of stream-flow data depends primarily on the natural conditions at the gaging station and on the methods and care with which the data are collected. Errors of the first group depend on the

¹See Hoyt, J. C., and others, Use and care of the current meter as practiced by the United States Geol. Survey; Trans. Am. Soc. Civil Eng., vol. 66, 1910, p. 70.

degree of permanency of channel and of the relation of discharge to stage.

Errors of the second class are due, first, to errors in observation of stage; second, to errors in measurements of flow; and, third, to errors due to misinterpretation of stage and flow data.

Practically all discharge measurements made under fair conditions are well within 5 per cent of the true discharge at the time of observation. Inasmuch as the errors of meter measurements are largely compensating, the mean rating curve, when well defined, is much more accurate than the individual measurements. Numerous experiments made to test the accuracy of current-meter work show that it compares very favorably with the results from standard weirs and, owing to simplicity of methods, usually gives results that are much more reliable than those from stations at dams, where the coefficient may be uncertain and conditions of flow are complicated.

The work is, of course, dependent on the reliability of the gage observers. With comparatively few exceptions, the observers perform their work honestly. The records are, however, closely watched, and the cause of any discrepancy is investigated. It is obvious that one gage reading a day does not always give the mean height for that day. As an almost invariable rule, however, errors from this source are compensating and virtually negligible in the period of one month, although a single day's reading may, when taken by itself, be considerably in error.

An effort is made to visit every station at least once each year for the purpose of making a measurement to determine the constancy of conditions of flow since the last measurement made the preceding year and also to check the elevation of the gage. On account of lack of funds or for other causes some stations were not visited during the current year. If conditions of flow have been reasonably permanent up to the time of the last preceding measurement, it is considered best to publish estimates of discharge based on the latest verified rating curve rather than to omit them altogether, although it should be distinctly understood that such records are at times subject to considerable error. This is also true, although to a less degree, of the period of records since the date of the last measurement of the current year. As a rule, the accuracy notes are based on the assumption that the rating curve used is strictly applicable to the current year.

In order to give engineers and others information regarding the probable accuracy of the computed results, footnotes are added to the daily-discharge tables, stating the probable accuracy of the rating tables used, and an accuracy column is inserted in the monthlydischarge table. For the rating tables "well defined" indicates, in general, that the rating is probably accurate within 5 per cent; "fairly well defined," within 10 per cent; "poorly defined" or "approximate," within 15 to 25 per cent. These notes are very general and are based on the plotting of the individual measurements with reference to the mean rating curve.

The accuracy column in the monthly-discharge table does not apply to the maximum or minimum nor to any individual day, but to the monthly mean. It is based on the accuracy of the rating, the probable reliability of the observer, and knowledge of local conditions. In this column, A indicates that the mean monthly flow is probably accurate within 5 per cent; B, within 10 per cent; C, within 15 per cent; D, within 25 per cent. Special conditions are covered by footnotes.

USE OF THE DATA.

In general, the base data which are collected in the field each year by the Survey engineers are published, not only to comply with the law but also for the express purpose of giving to any engineer the opportunity of examining the computed results and of changing and adjusting them as may be seem best to him. Although it is believed that the rating tables and computed monthly discharges are as good as the base data up to and including the current year will warrant, it should always be borne in mind that the additional data collected at each station from year to year nearly always throw new light on data already collected and published and hence allow more or less improvement in the computed results of earlier years. It is therefore expected that the engineer who makes serious use of the figures presented in these papers will verify all ratings and make such adjustments for earlier years as may seem necessary. The work of compiling, studying, revising, and republishing data for different drainage basins for 5 or 10 year periods or more is carried on by the United States Geological Survey so far as the funds for such work are available.

The estimates in the table of month¹y discharge are so arranged as to give only a general idea of the conditions of flow at the station, and it is not expected that they will be used for other than preliminary estimates.

The daily discharges are published to allow a more detailed study of the variation in flow and to determine the periods of deficient flow.

COOPERATIVE DATA.

Cooperative data of various kinds and data regarding the run-off at many stations maintained wholly by private funds are incorporated in the surface-water supply reports of the United States Geological Survey. Many stations throughout the country are maintained for specific purposes by private parties, who supply the records gratuitously to the United States Geological Survey for publication. When such records are furnished by responsible parties and appear to be reasonably accurate, they are verified, so far as possible, and estimated values of accuracy are given. Records clearly worthless or misleading are not published. As it is, however, impossible to completely verify all such records furnished—because of lack of funds or for other causes—they are published for what they are worth, as they are of value as a matter of record and afford at least approximate information regarding stream flow at the particular localities. The Survey does not, however, assume any responsibility for inaccuracies found in such records, although most of them are believed to be reasonably good.

COOPERATION AND ACKNOWLEDGMENTS.

Special acknowledgment is due to the following persons: Mr. Charles W. Comstock, State engineer of Colorado, who has paid the gage observers at most of the stations in the Arkansas River basin in Colorado and has been of much assistance to the work in other ways.

The Territorial engineer of New Mexico, Mr. Vernon L. Sullivan, who has assisted in maintaining the gaging stations on the Canadian River basin in New Mexico by bearing at least half of the expense of carrying on this work and also by giving special attention to it.

Thanks are also due to the Central Land & Irrigation Co. for bearing the expense of records received in the Big Sandy River basin, and to the United States Forest Service for records furnished on the upper areas of the Arkansas River basin.

The Tallahatchie drainage commission bore the expenses of stations in the Yazoo River basin.

The State geologist of Arkansas, A. H. Purdue, maintained several stations in the White River basin, the results being published by the United States Geological Survey.

DIVISION OF WORK.

Field data in the Arkansas River basin in Colorado were collected under the direction of W. B. Freeman, district engineer, assisted by J. B. Stewart, G. H. Russell, G. J. Lyon, E. O. Christiansen, Thomas Grieve, and other assistants furnished by the State engineer of Colorado.

The field data for the Canadian River basin were collected under the direction of W. B. Freeman, district engineer, assisted by J. B. Stewart, C. D. Miller, and W.W. Mills. Mr.V. L. Sullivan, Territorial engineer, gave special attention to the New Mexico work.

The field data for the Yazoo River basin were collected by engineers of the Tallahatchie drainage commission.

The field data in the White River basin were collected by W. N. Gladson.

The rating curves were made by W. B. Freeman, M. R. Hall, G. C. Stevens, and J. G. Mathers. The computations were made by J. G. Mathers, H. D. Padgett, J. J. Phelan, J. B. Stewart, and A. H. Tuttle. The completed data were prepared for publication by J. G. Mathers. The manuscript was edited by Mrs. B. D. Wood.

GAGING STATIONS MAINTAINED IN THE LOWER MIS-SISSIPPI RIVER BASIN.

The following list comprises the gaging stations maintained in the lower Mississippi River drainage basin by the United States Geological Survey and cooperative parties. Data for these stations have been published in the reports listed on page 9. The stations are arranged by river basins, in downstream order, tributaries of main streams being indicated by indention:

Meramec River basin.

Meramec River near Meramec, Mo., 1903–1906.
Meramec River near Eureka, Mo., 1903–1906.
Meramec River (Station No. 1) at Fenton, Mo., 1903.
Meramec River (Station No. 2) below Fenton, Mo., 1903.
Meramec Spring near Meramec, Mo., 1903–1906.
Courtois Creek at Scotia, Mo., 1905–6.

White River basin.

White River at Beaver, Ark., 1909-10.

White River near Branson, Mo., 1909-10.

White River near Lead Hill, Ark., 1909-10.

White River near Cotter, Ark., 1909-10.

White River at Walls Ferry, Ark., 1909–10.

Buffalo River near Gilbert, Ark., 1909–10.

North Fork River near Henderson, Ark., 1909-10.

Greer Spring at Greer, Mo., 1904.

Little Red River near Pangburn, Ark., 1909-10.

Arkansas River basin.

Arkansas River, East Fork, near Leadville, Colo., 1890, 1903. Arkansas River at Granite, Colo., 1895, 1897–1899, 1901, 1910.

Arkansas River at Salida, Colo., 1895–1903, 1909–10.

Arkansas River at Canon City, Colo., 1888-1910.

Arkansas River near Rock Canyon, Colo., 1889.

Arkansas River above Pueblo, Colo., 1885-1887.

Arkansas River at Pueblo, Colo., 1894-1910.

Arkansas River near Nepesta, Colo., 1897-1903, 1910.

Arkansas River near Manzanola, Colo., 1898.

Arkansas River near Rocky Ford, Colo., 1897-1903.

8825°-wsp 287-11-2

Arkansas River at La Junta, Colo., 1889, 1893-1895, 1903, 1908.

- Arkansas River near Las Animas, Colo, 1898.
- Arkansas River near Prowers, Colo., 1900, 1901, 1903.
- Arkansas River near Amity canal head-gates, Colo., 1898-99.
- Arkansas River near Granada, 1898-1901, 1904.
- Arkansas River near Barton (Byron), Colo., 1893-94, 1901-2.
- Arkansas River at Holly, Colo., 1907–1910.
- Arkansas River near Syracuse, Kans., 1903-1906.
- Arkansas River near Coolidge, Kans., 1903.
- Arkansas River near Dodge, Kans., 1902-1906.
- Arkansas River near Hutchinson, Kans., 1895-1905.
- Arkansas River near Arkansas City, Kans., 1902-1906.
 - Arkansas River, Tennessee Fork, near Leadville, Colo., 1890, 1903.

Arkansas River, Lake Fork, near Arkansas Junction, Colo., 1903.

Arkansas River, Lake Fork, near Leadville, Colo., 1890.

- Lake Creek near Twin Lakes, Colo., 1899–1900.
- Twin Lakes outlet near Twin Lakes, Colo., 1910.
- Clear Creek near Granite, Colo., 1890, 1910.
- Cottonwood Creek near Buena Vista, Colo., 1910.
- Cottonwood Creek, Middle Fork, near Buena Vista, Colo., 1890.
- Cottonwood Creek, South Fork, near Buena Vista, Colo., 1890.
- Chalk Creek near Buena Vista, Colo., 1910.
- Grape Creek near Canon City, Colo., 1907-1909.
- Oil or Fourmile Creek near Canon City, Colo., 1910.
- Huerfano River near Undercliffe, Colo., 1908.
- Cucharas River at Walsenburg, Colo., 1907–8.
- Purgatory River at Trinidad, Colo., 1896-1899, 1905-1910.
- Purgatory River near Canon Entrance (Alfalfa), Colo., 1905-1907.
- Purgatory River near J. J. ranch, Colo., 1898.
- Purgatory River near Las Animas, Colo., 1889.
- Big Sandy Creek at Hugo, Colo., 1910.

Big Sandy Creek at Kit Carson, Colo., 1910.

- Big Spring Creek near Arena, Colo., 1910.
- Walnut River near Arkansas City, Kans., 1902-3.
- Arkansas River, Salt Fork, near Alva, Okla., 1904-5.
- Arkansas River, Salt Fork, near Tonkawa, Okla., 1903-1905.
- Medicine River near Kiowa, Kans., 1895–96.
- Cimarron River near Arkalon, Kans., 1895–96, 1903–1905.
- Cimarron River near Kenton, Okla., 1904-5.
- Cimarron River near Garrett, Okla., 1905-1907.
- Cimarron River near Waynoka, Okla., 1903-1905.

Verdigris River near Independence, Kans., 1904.

Verdigris River near Liberty, Kans., 1895-1903.

- Verdigris River near Catoosa, Okla., 1903-1905.
- Fall River near Fall River, Kans., 1904–5.
- Neosho River near Neosho Rapids, Kans., 1904.
- Neosho River near Iola, Kans., 1895-1903.
- Neosho River near Humboldt, Kans., 1904.
- Neosho River (or Grand River) near Fort Gibson, Okla., 1899, 1903-1905.
- Canadian River near Logan, N. Mex., 1905, 1909-10.
- Canadian River at Calvin, Okla., 1904-1908.
 - Chico Rico Creek near Raton, N. Mex., 1910.

Una del Gato Creek near Raton, N. Mex., 1910.

Arkansas River-Continued.

Canadian River-Continued.

Cimarron River at Ute Park, N. Mex., 1907-1910.

Cimarron River at Springer, N. Mex., 1907-1909.

Rayado River at Abreu's ranch, near Cimarron, N. Mex., 1909-10.

Rayado River near Springer, N. Mex., 1907-1909.

Mora River and La Cueva canal at La Cueva, N. Mex., 1903-1910.

Mora River near Weber, N. Mex., 1903-4.

Mora River near Watrous, N. Mex., 1894-1896.

Sapello River at Sapello, N. Mex., 1903-4.

Sapello Mill tailrace at Sapello, N. Mex., 1903-4.

Sapello River at Los Alamos, N. Mex., 1903-1910.

Manuelitos River near Sapello, N. Mex., 1903-4.

Ute Creek near Logan, N. Mex., 1904-1906, 1909-10.

Beaver Creek at Beaver, Okla., 1904-5.

North Fork of Canadian River near Woodward, Okla., 1903-1906.

North Fork of Canadian River near El Reno, Okla., 1902-1908.

North Fork of Canadian River near Oklahoma, Okla., 1899.

North Fork of Canadian River near Eufaula, Okla., 1899.

Arkansas River canals:

Oxford Farmers canal near Nepesta, Colo., 1903. Colorado-Kansas canal near Prowers, Colo., 1903. Keese ditch near Prowers, Colo., 1903.

Yazoo River basin.

Tallahatchie River at Batesville, Miss., 1906–1910. Tallahatchie River at Philipp, Miss., 1908–1910.

Yazoo River at Greenwood, Miss., 1908-1910.

Yazoo River at Yazoo City, Miss., 1900-1905.

Coldwater River at Savage, Miss., 1908–1910. Yalobusha River at Grenada, Miss., 1906, 1908–1910. Sunflower River at Ruleville, Miss., 1908–1910. Sunflower River at Baird, Miss., 1908–1910.

Homochitto River basin.

Homochitto River at Rosetta, Miss., 1906.

Red River basin.

Red River at Arthur City, Tex., 1905-6.
Red River, Salt Fork, at Mangum, Okla., 1905-6.
Turkey Creek at Olustee, Okla., 1905-1908.
Red River, North Fork, near Granite, Okla., 1903-1908.
Red River, North Fork, near Snyder, Okla., 1905-1908.
Red River, North Fork, near Headrick, Okla., 1905-1908.
Red River, Elm Fork, near Mangum, Okla., 1905-1908.
Elk Creek near Hobart, Okla., 1904-1908.
Otter Creek near Mountain Park, Okla., 1903-1908.
Horse Creek near Mountain Park, Okla., 1905-6.
Otter Creek, Dry Fork, near Mountain Park, Okla., 1905-6.
Wichita River near Anadarko, Okla., 1902-1908.
Ouachita River near Malvern, Ark., 1903-1905.
Ouachita River near Arkadelphia, Ark., 1905-6.

WHITE RIVER DRAINAGE BASIN.

DESCRIPTION.

White River rises in the Boston Mountains near the western border of Arkansas, nearly 50 miles south of the Arkansas-Missouri line, flows northward into Missouri, then bends southeastward and reenters Arkansas, continuing its general southeasterly course to the southeast corner of Arkansas County, where its channel divides, one part entering Arkansas River and the other Mississippi River. The natural discharge of White River is into the Mississippi. The length of the river from its source to its mouth is about 300 miles by general course, but the stream is very crooked, and, including the bends, it is probably not less than 400 miles long.

The important tributaries from the north are North Fork River, Black River, and Cache River; those from the south are Kings River, Buffalo River, and Red River.

The basin comprises 27,700 square miles, of which 10,000 square miles lie in Missouri and the remainder in northern and eastern Arkansas. Topographically, it consists of two parts—a highland area, 22,200 square miles in extent, lying west of the St. Louis, Iron Mountain & Southern Railway, and an area of lowlands, including 5,500 square miles, lying east of this railroad.

The topography of the highland portion of the basin is rough. The rocks are sandstone, limestone, and shale, lying horizontal. Through these the main stream and all its tributaries have cut ravines that range in depth from a few score feet to more than 1,200 feet. Elevations in the Boston Mountains exceed 2,000 feet above sea level. The elevation of the bed of White River ranges from 1,250 feet at the north base of the mountains to less than 250 feet at Batesville. Throughout the distance between these two points there are no falls and but a few rapids.

The lowland area of the basin is level, and stands only a few feet above the water of the river at average stage. It is cut by numerous sloughs which have been formed by the clogging of the streams and the partial filling of horseshoe lakes. Probably all of it is susceptible to drainage.

The entire area was originally forest covered, but a large proportion of the river bottoms and the level parts of the uplands is now under cultivation. The steep rock-covered slopes, which constitute a considerable part of the area, are still forest covered.

The records kept at the agricultural experiment station at Fayetteville from 1871 to 1907, inclusive, show that the annual rainfall at that place ranges from a minimum of 34.58 inches in 1871 to a maximum of 67.48 inches in 1905. The average for the 37 years was 45.609 inches. The rainfall at Fayetteville is probably fairly representative for that part of the basin that lies within the highland division.

The average snowfall is about 9 inches. Snow lies on the ground but a few days at most, and there is seldom ice enough on the ground to interfere with travel.

Irrigation has not been attempted in this basin, but it is practicable in a small way along the stream bottoms, where the water may be taken from the streams, and on a still smaller scale on the benches of the hill slopes, where water from springs may be stored.

As the valleys are narrow and the banks in most places high, there are many points along the streams where water could be stored without flooding much land. Such storage sites may be found along White River and all its highland tributaries. Numerous large springs of fine water occur throughout the highland area.

Buffalo River and that portion of White River above the mouth of Buffalo River can be utilized for logging or boating only during the rainy season. A series of Government dams above Batesville will, when completed, render White River navigable throughout the year as far up as the mouth of Buffalo River. In the lowland part of its course White River is navigable for small boats at all seasons.

A survey to determine the available water power along White River and its tributaries is now being conducted. The smaller of the numerous power sites can probably be made to furnish a few hundred horsepower and the larger ones several thousand horsepower.

WHITE RIVER AT BEAVER, ARK.

This station, which is located at the Missouri & North Arkansas Railroad bridge at Beaver, Ark., was established July 17, 1909, to obtain data for use in studying water power, water supply, flood control, storage, and navigation problems.

No important tributaries enter near the station.

The datum of the chain gage, which is fastened to the upstream guardrail of the bridge, has not been changed. Measurements at high water are made from this bridge; low-water measurements are made by wading.

The station is maintained under the direction of the State geologist of Arkansas and has not been visited by engineers of the United States Geological Survey since its establishment.

The following discharge measurement was made by W. N. Gladson:

May 24: Width, 182 feet; area of section, 1,330 square feet; gage height, 8.44 feet; discharge, 3,620 second-feet.

Daily gage height, in feet, of White River at Beaver, Ark., for 1910.

				-		-	-				•	
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	3.8 3.7 3.8 3.8 3.8 3.8	4. 0 4. 05 3. 9 3. 9 4. 0	8.05 6.8 6.3 5.95 5.55	6.2 5.45 5.25 4.95 5.15	4.65 4.55 4.45 4.35 4.3	6. 1 5. 95 5. 55 5. 35 5. 15	5.4 5.1 4.9 5.7 5.35	4.05 4.0 4.0 3.95 3.9	3.7 3.8 3.9 3.85 3.85 3.8	3.8 3.7 3.75 3.8 4.15	3.6 3.6 3.6 3.6 3.6 3.6	3.5 3.5 3.5 3.6 3.55
6 7 8 9 10	3.8 4.35 4.5 4.4 4.1	3.8 3.8 3.9 3.8 3.8 3.8	5. 35 5. 18 4. 95 4. 9 4. 95	5.9 6.65 6.25 5.9 6.6	4. 25 4. 25 4. 25 4. 25 4. 3	4, 95 4, 9 5, 2 5, 15 5, 65	5. 1 4. 75 4. 75 4. 9 5. 0	3. 9 4. 8 6. 5 6. 4 5. 5	4. 15 4. 3 4. 05 4. 15 4. 15	4.4 4.25 4.15 4.0 3.9	3.6 3.6 3.6 3.6 3.6 3.6	3.5 3.5 3.5 3.5 3.5 3.5
11 12 13 14 15	4. 05 4. 0 4. 3 4. 45 4. 35	3.9 3.7 3.8 3.7 3.7 3.7	4.8 4.7 4.65 4.6 4.55	6.35 6.6 9.25 7.45 7.45	4. 3 4. 2 4. 15 4. 05 4. 05	5.6 6.15 5.9 5.5 5.25	5, 55 11, 65 12, 7 9, 8 7, 55	5.55 5.15 5.2 4.85 4.7	4.0 4.0 3.9 3.8 3.75	3.8 3.8 4.05 4.4 4.5	3.5 3.5 5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.5 3.5 3.5 3.5 3.5 3.5
16 17 18 19 20	4.35 4.35 4.35 4.45 4.35	3.8 3.8 3.9 3.95 3.85	4. 45 4. 38 4. 3 4. 3 4. 22	7.6 7.7 7.3 6.7 6.4	6.5 18.85 12.25 8.95 7.75	5. 05 4. 85 4. 65 4. 55 4. 55	6. 65 6. 1 5. 7 5. 45 5. 25	4. 55 4. 65 4. 5 4. 45 4. 25	3.7 3.65 3.6 3.6 3.6 3.6	4. 15 4. 05 3. 95 3. 9 3. 9	3.5 3.5 3.5 3.5 3.5 3.5 5 5	3.5 3.5 3.5 3.5 3.5 3.5
21 22 23 24 25	4.35 4.35 4.35 4.35 4.2	4.25 4.5 4.7 4.9 5.08	4.2 4.15 4.1 4.1 4.0	6.05 5.85 5.55 5.35 5.3	7.056.87.658.258.2	4.7 4.6 4.5 4.65 4.55	5.05 4.85 4.75 4.65 4.5	4.2 4.2 4.2 4.15 4.05	3.6 3.6 3.55 3.5 3.5 3.5	3.9 3.8 3.8 3.8 3.8	3.5 3.5 3.5 3.5 3.5 3.5	3.5 3.4 3.4 3.4 3.4 3.4
26 27 28 29 30 31	4.3 4.15 4.2 4.0 4.1 4.0	5.25 6.3 7.8	4.0 4.0 4.0 3.95 4.15 5.3	5. 1 4. 95 4. 85 4. 8 4. 65	7.8 7.0 6.5 6.05 5.75 5.55	5.05 5.05 6.0 6.75 5.75	4. 4 4. 35 4. 25 4. 15 4. 2 4. 15	4.0 3.9 3.85 3.8 3.8 3.8 3.8 3.75	3.5 3.5 4.3 4.2 3.95	3.75 3.7 3.7 3.7 3.7 3.7 3.7	3.5 3.6 3.6 3.6 3.5	3.4 3.5 3.5 3.5 3.5 3.5

[Reno N. Lowe, observer.]

WHITE RIVER NEAR BRANSON, MO.

This station, which is located at the St. Louis, Iron Mountain & Southern Railway bridge near Branson, Mo., was established July 19, 1909, to obtain data for use in studying water power, water supply, flood control, storage, and navigation problems.

Turkey Creek enters the river on the right bank about 600 feet below the section.

The datum of the gage, which is fastened to the downstream guard rail of the bridge, has remained unchanged. At high water, measurements are made from this bridge; at low water they are made by wading.

This station is maintained under the direction of the State geologist of Arkansas and has not been visited by engineers of the United States Geological Survey since its establishment.

Daily gage height, in feet, of White River near Branson, Mo., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug	Sept.	Oct.	Nov.	Dec.
$ \begin{array}{c} 12\\ 23\\ 45\\ \end{array} $	2.95 2.95 2.95 2.9 3.0	3.0 3.0 3.0 2.9 2.8	7.35 7.15 6.6 5.7 5.55	2.6 4.2 3.9 3.85 3.8	2. 95 3. 0 2. 95 2. 55 2. 35	4.05 4.0 4.1 4.35 5.9	4. 2 4. 0 4. 0 4. 25 4. 45	3.3 3.2 3.0 3.0 3.0 3.0	2.25 2.5 3.15 3.05 2.9	2.55 2.5 2.6 2.7 3.1	2.4 2.45 2.4 2.4 2.35	2.22.22.22.22.22.22.22.2
6 7 8 9. 10	3.0 3.0 3.2 3.2 3.2	2.9 2.9 2.85 2.85 2.7	4. 55 4. 05 3. 8 3. 3 3. 35	4. 15 4. 05 4. 6 4. 45 4. 85	2.5 2.7 3.0 3.9 3.85	6.05 5.45 7.2 8.9 10.25	4. 15 4. 45 4. 35 3. 85 3. 55	2.85 2.85 3.45 5.1 6.5	3.6 3.6 3.5 3.3 3.2	4. 45 4. 9 5. 05 4. 6 3. 7	2.3 2.2 2.2 2.15 2.2	2.1 2.2 2.3 2.3 2.3 2.3
11 12 13 14 15	3. 15 3. 1 3. 12 3. 25 3. 4	2.8 2.8 2.75 2.7 2.6	4. 1 3. 6 3. 4 3. 3 3. 35	4.8 4.0 4.05 6.35 5.45	3.3 2.9 2.65 2.95 2.95 2.9	9.45 7.9 6.35 6.0 5.3	4.4 9.1 11.8 9.95 8.0	5.6 4.55 4.15 3.9 3.85	3.2 2.95 2.6 2.7 2.55	3.4 3.3 3.6 3.9 3.5	2.2 2.3 2.3 2.3 2.4	2.3 2.3 2.3 2.2 2.2 2.2
16 17 18 19 20	4.0	2.7 2.7 2.7 2.7 3.05	3.15 2.9 2.85 2.9 2.8	5.1 5.5 5.0 5.2 4.7	3.05 11.55 15.2 9.9 7.55	4.7 4.15 4.15 3.6 3.35	5. 95 5. 3 5. 0 4. 25 4. 0	3.8 3.7 3.05 3.35 3.6	2.5 2.4 2.5 2.5 2.5 2.45	3.3 3.1 3.0 3.0 3.0 3.0	2.4 2.4 2.3 2.3 2.3	2. 2 2. 1 2. 1 2. 1 2. 1 2. 1
21 22 23 24 25	3.5 3.4	3.9 5.05 5.8 5.9 4.8	2.8 2.5 2.3 2.3 2.35	4.35 3.85 3.55 3.2 3.35	6.4 6.0 5.4 5.35 6.25	3.5 3.4 3.45 3.35 3.1	3, 85 3, 75 3, 7 8, 7 3, 9 5	3.45 3.3 3.15 3.0 2.9	2.4 2.5 2.5 2.5 2.45	3. 15 2. 95 2. 65 2. 85 2. 8	$2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.25$	2.2 2.2 2.1 2.0 2.0
26	3.2 3.2 3.2	3.75 5.25 6.25	$2.35 \\ 2.4 \\ 2.3 \\ 2.3 \\ 2.4 \\ 2.3 \\ 2.4 \\ 2.3 \\ 2.3 \\ .4 \\ 2.3 \\ .4 \\ .4 \\ .4 \\ .4 \\ .4 \\ .4 \\ .4 \\ $	3. 05 3. 1 2. 95 3. 0 2. 95	6.7 6.55 5.7 5.0 4.65 4 3	8.4 3.5 3.8 4.75 5.05	8.5 8.3 8.0 2.9 2.95 3.35	2.9 2.85 2.7 2.6 2.6 2.35	2.4 2.65 3.0 2.85 2.6	2.8 2.85 2.7 2.55 2.5 2.5	2.3 2.3 2.3 2.3 2.3 2.3 	2.0 2.0 2.05 2.15 2.3 2.3

[J. A. Medley, observer.]

WHITE RIVER NEAR LEAD HILL, ARK.

This station, which is located at Bradley's ferry, 5 miles northeast of Lead Hill, Ark., was established October 1, 1909, to obtain data for use in studying water power, navigation, flood control, and storage problems.

Fishtrap Shoals are about 400 feet below the station.

The gage consists of two vertical sections on the right bank of the river about 100 feet below the ferry. Its datum has not been changed. Measurements are made from the ferryboat.

The station is maintained under the direction of the State geologist of Arkansas and has not been visited by engineers of the United States Geological Survey since its establishment.

The following measurement was made by W. N. Gladson:

May 17: Width, 370 feet; area of section, 2,140 square feet; gage height, 5.85 feet; discharge, 8,700 second-feet.

Daily gage height, in feet, of White River near Lead Hill, Ark., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	$1.9 \\ 1.9 \\ 1.8 \\ 1.7 \\ 1.8 \\ 1.7 \\ 1.8 $	2.0 2.0 1.9 1.9 1.9	6.4 6.8 6.1 5.35 4.8	2.25 2.6 3.2 3.0 3.0	2.6 2.5 2.4 2.3 2.2	3.7 3.6 3.4 3.2 3.85	3.9 3.6 3.15 3.2 3.55	$2.7 \\ 2.5 \\ 2.3 \\ 2.2 \\ 2.1$	1.7 2.0 2.3 2.7 2.5	1.9 2.0 2.0 2.4 2.6	1.7 1.7 1.7 1.6 1.6	1.4 1.4 1.3 1.3 1.3
6 7 8 9 10	1.4 1.8 1.8 1.9 1.9	1.9 1.8 1.8 1.8 1.8 1.7	4.45 4.05 3.8 3.6 3.7	3.6 4.0 4.1 4.45 4.2	2. 2 2. 3 2. 3 3. 2 3. 45	4.85 4.8 4.95 7.7 9.7	3.45 3.35 3.2 3.1 3.1	2.0 2.0 2.65 6.75	2.95 3.3 3.0 2.8 2.7	5.5 4.2 4.3 3.7 3.3	$ \begin{array}{r} 1.6 \\ 1.6 \\ 1.5 \\ 1$	$1.3 \\ 1.3 $
11 12 13 14 15	2.2 2.0 2.0 2.0 2.55	$ \begin{array}{r} 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.6 \\ \end{array} $	4.4 4.25 4.0 3.9 3.75	4.0 4.05 4.0 4.55 5.05	3.3 3.1 3.0 2.8 2.6	9.8 7.45 5.85 5.55 4.7	3.05 8.8 10.3 10.75 8.5	5.75 4.75 3.95 3.65 3.6	2.6 2.45 2.25 2.2 2.1	3.05 2.8 2.8 3.05 3.15	$ \begin{array}{r} 1.5 \\ 1$	$1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3$
16 17 18 19 20	2.95 3.1 3.1 2.9 2.8	$ \begin{array}{c} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.7 \\ 1.7 \end{array} $	3.55 3.4 3.15 3.0 2.9	4.6 4.75 4.8 4.7 4.6	2.85 5.2 13.2 12.5 7.75	4.2 4.0 3.7 3.45 3.2	6.35 5.75 5.7 4.75 4.1	3.3 3.1 3.55 3.3 3.05	2.0 1.9 1.8 1.8 1.7	2.75 2.65 2.5 2.3 2.2	1.5 1.4 1.4 1.4 1.4 1.4	1.3 1.3 1.3 1.3 1.3
21 22 23 24 25	2.7 2.6 2.6 2.5 2.5	2.0 2.45 3.0 3.2 3.15	2.8 2.7 2.6 2.5 2.4	4.25 3.95 3.7 3.5 3.3	6.65 5.3 4.8 4.5 4.6	3.1 3.0 3.0 2.9 2.7	3.65 3.3 3.2 3.3 3.2 3.3	2.8 2.95 2.55 2.45 2.4	$1.7 \\ 1.6 \\ 1.6 \\ 1.5 \\ 1.5 \\ 1.5$	2.2 2.4 2.3 2.2 2.1	1.4 1.4 1.4 1.4 1.4 1.4	1.3 1.3 1.3 1.3 1.3
26 27 28 29 30 31	2.4 2.3 2.2 2.2 2.1 2.0	3.35 5.05 6.1	2.4 2.3 2.2 2.2 2.2 2.2 2.15	3. 15 3. 0 2. 9 2. 8 2. 7	5.0 5.1 4.5 4.2 4.0 3.75	2.7^{+} 2.7 2.75 3.1 4.0	$\begin{array}{c} 3.2\\ 3.0\\ 2.75\\ 2.6\\ 2.5\\ 2.65\\ 2.65\end{array}$	2.25 2.1 2.0 2.0 1.9 1.8	1.5 1.9 1.85 2.2 2.0	2.0 1.9 1.8 1.8 1.8 1.8	1.4 1.4 1.4 1.4 1.4 1.4	1.3 1.3 1.3 1.3 1.3 1.3

[Jerry Upshaw, observer.]

WHITE RIVER NEAR COTTER, ARK.

This station, which is located at the St. Louis, Iron Mountain & Southern Railway bridge near Cotter, Ark., was established July 21, 1909, to obtain data for use in studying water power, water supply, flood control, storage, and navigation problems.

The station is about three-fourths of a mile below the mouth of Falling Ash Creek.

The datum of the gage, which is fastened to the upstream guardrail of the bridge, has remained unchanged. Measurements are made from the bridge, from a ferry about 500 feet above, or by wading.

This station is maintained under the direction of the State geologist of Arkansas, and has not been visited by engineers of the United States Geological Survey since its establishment.

Daily gage height, in feet, of White River near Cotter, Ark., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	2.152.32.352.352.352.35	2.4 2.3 2.3 2.3 2.3	7.557.57.66.856.2	2.5 2.55 3.05 3.9 3.75	3.25 3.15 3.05 2.9 2.85	4.85 4.55 4.4 4.4 4.6	5.15 5.05 4.5 4.25 4.25	3.5 3.6 3.45 3.2 3.0	2.65 2.45 2.8 3.4 3.7	2.65 2.65 5.1 3.95	2.5 2.5 2.5 2.4 2.4	2.0 2.0 2.0 1.9 1.9
6 7 8 9 10	2.35 2.3 2.25 2.25 2.35	$2.2 \\ 2.2 \\ 2.2 \\ 2.1 \\ 2.1 \\ 2.1$	5.7 5.25 4.95 4.7 4.5	3.75 4.5 4.85 5.3 5.25	2.85 2.85 2.75 3.15 3.9	4.95 5.65 6.1 9.2 10.95	$\begin{array}{r} 4.65\\ 4.6\\ 4.35\\ 4.1\\ 6.25\end{array}$	2.9 29 2.9 3.05 6.55	4.05 4.5 4.4 4.15 4.0	6.05 6.65 5.7 5.6 5.05	2.3 2.3 2.2 2.2 2.2 2.2	1.9 1.9 1.9 1.9 1.9
11 12 13 14 15	2.45 2.75 2.75 2.6 2.55	2.1 2.1 2.0 2.0 2.0 2.0	5.05 5.5 5.2 5.0 4.7	5.05 4.9 4.9 4.9 5.95	4. 15 3. 9 3. 7 3. 5 3. 3	10. 8 10. 1 8. 05 7. 15 6. 55	5.0 5.3 13.15 12.35 10.95	7.35 6.5 5.55 5.05 4.75	3.75 3.55 3.35 3.2 3.05	4.5 4.1 4.0 3.85 4.3	2.2 2.2 2.2 2.2 2.2 2.2 2.2	1.9 1.9 1.9 1.9 1.9
16 17 18 19 20	2.95 3.65 3.85 3.8 3.65	2.0 1.9 1.9 1.8 2.0	4.5 4.3 4.1 3.9 3.75	6.6 5.95 5.9 5.75 5.65	3.4 4.45 9.05 14.3 11.15	6.0 5.5 5.1 4.75 4.55	8.65 7.05 6.75 6.05 5.8	4. 45 4. 4 4. 35 4. 35 4. 15	2,85 2,8 2,65 2,6 2,55	4.3 3.9 3.65 3.55 3.35	2.1 2.1 2.1 2.1 2.1 2.0	1.9 1.9 1.9 1.9 1.9
21 22 23 24 25	3.5 3.3 3.2 3.1 3.0	2.05 2.4 3.1 3.85 3.95	3.7 3.45 3.3 3.2 3.05	5.45 4.95 4.55 4.45 4.3	8.1 7.05 6.4 6.0 5.75	4.35 4.15 4.0 3.85 3.65	5.3 4.75 4.6 4.6 4.6 4.6	4.0 3.9 3.85 3.65 3.45	2.4 2.35 2.3 2.2 2.2 2.2	3.2 3.1 3.35 3.4 3.15	2.0 2.0 2.0 2.0 2.0 2.0	1.9 1.8 1.8 1.8 1.8 1.8
26 27 28 29 30 31	2.9 2.9 2.8 2.7 2.6 2.6	4.1 5.95 7.4	2.95 2.9 2.8 2.7 2.55 2.5	4.1 3.9 3.7 3.5 3.3	6.35 6.3 6.1 5.55 5.3 5.3	3.6 3.6 3.6 3.75 4.3	4.45 4.35 4.0 3.75 3.55 3.5	3. 25 3. 05 3. 0 2. 85 2. 75 2. 7	2.2 2.6 2.75 2.6 3.1	3.0 2.95 2.75 2.55 2.5 2.5 2.5	2.0 2.0 2.0 2.0 2.0 2.0	1.8 1.8 1.8 1.8 1.8 1.8

[S. Butterfield, observer.]

WHITE RIVER AT WALLS FERRY, ARK.

This station, which is located at the Government dam at Walls Ferry, Ark., will furnish data necessary in studying water power, navigation, and flood control problems. The discharge of the stream will be computed from the records of the gage heights of the upper gage at the lock, considering the dam as a weir. Discharge measurements will be made in order to determine the proper coefficients to be used. The first measurement was made in November, 1909.

This station is maintained under the direction of the State geologist of Arkansas and has not been visited by engineers of the United States Geological Survey.

BUFFALO RIVER NEAR GILBERT, ARK.

This station, which is located at the Missouri & North Arkansas Railroad bridge near Gilbert, Ark., was established July 16, 1909, to obtain data for use in studying water power and storage problems.

Bear Creek is tributary to Buffalo River from the right bank about one-fourth mile above the station.

The datum of the chain gage, which is fastened to the upstream guardrail of the bridge, from which high-water measurements are also made, has not been changed. Low-water measurements are made by wading. Measurements of high water may be complicated by the flow from Bear Creek.

This station is maintained under the direction of the State geologist of Arkansas, and has not been visited by engineers of the United States Geological Survey since its establishment.

Discharge measurements of Buffalo River near Gilbert, Ark.; in 1910.

Date.	Hydrographer.	Width	Area of section.	Gage height.	Dis- charge.
May 23 Aug. 1	W. N. Gladsondo	Feet. 160 68	Sq. ft. 931 131	Feet. 7.1 2.97	Secft. 2,660 137

NOTE .- Measurements not made at regular section.

Daily gage height, in feet, of Buffalo River near Gilbert, Ark., for 1910.

*			L									
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	2.9 2.9 2.9 2.9 2.9 2.9	3.2 3.0 3.1 3.1 2.9	6.9 6.3 5.7 5.2 4.8	3.2 3.1 3.1 6.5 9.3	3.5 3.4 3.4 3.4 3.3	4.6 4.5 4.4 4.1 4.3	4.0 4.3 7.2 6.6 7.2	2.9 2.8 2.8 2.8 2.8 2.8	3.2 3.3 3.3 3.2 3.2 3.2	3.0 2.9 2.9 6.5 11.0	3.1 3.1 3.1 3.1 3.1 3.1	2.9 2.8 2.8 2.8 2.8 2.9
6 7 8 9. 10.	3.2 3.8 3.7 3.6 3.5	3.0 3.0 2.9 2.8 2.8	4.6 4.4 4.1 4.0 4.1	$8.1 \\ 6.6 \\ 5.8 \\ 5.3 \\ 5.2$	3.2 3.2 3.2 3.3 3.2	4.3 4.1 4.0 5.4 8.3	$\begin{array}{c} 6.2 \\ 5.4 \\ 4.9 \\ 4.4 \\ 4.3 \end{array}$	2.9 4.2 7.0 6.1 9.3	7.2 7.0 5.2 4.6 4.2	9.6 7.7 6.2 5.4 4.8	3.1 3.1 3.0 3.0 3.0	2.9 2.9 2.8 2.8 2.8 2.8
11 12 13 14 15	3.5 3.4 3.4 3.4 3.4 3.4	2.8 2.7 2.8 2.8 2.7	4.9 4.7 4.6 4.4 4.2	5.0 4.9 5.1 5.2 9.9	3.2 3.2 3.1 3.1 3.0	8.2 7.4 6.2 5.6 5.0	4.0 7.1 8.9 6.5 5.9	6.7 5.7 5.1 5.3 15.3	3.9 3.7 3.6 3.5 3.4	4.5 4.2 5.4 5.5 5.0	3.0 3.0 3.0 3.0 3.0 3.0	2.8 2.8 2.8 2.8 2.8 2.8
16 17 18 19 20	3.3 3.4 3.5 4.0 4.0	2.8 3.6 3.1 2.9 2.9	4.0 4.0 3.8 3.8 3.6	7.9 7.5 6.6 5.9 5.6	$11.25 \\18.3 \\11.4 \\8.3 \\7.2$	4.6 4.3 4.1 4.0 3.9	5.2 4.7 4.4 4.0 3.9	7.1 5.8 6.9 10.3 7.3	3.3 3.2 3.1 3.1 3.0	4.6 4.4 4.3 4.0 3.9	2.9 2.9 2.9 2.9 2.9 2.9	2.8 2.8 2.8 2.8 2.8 2.8
21. 22. 23. 24. 25.	4.2 4.0 3.9 3.8 3.6	2.9 3.0 3.3 3.9 4.1	3.5 3.5 3.3 3.3 3.3	5.0 4.9 4.7 4.4 4.2	6.6 6.0 3.9 10.3 8.1	3.8 3.6 3.5 3.5 4.0	3.7 3.5 3.5 4.0 4.0	6.3 5.5 4.9 4.5 4.2	3.0 2.9 3.1 3.1 3.0	3.8 3.7 3.6 3.5 3.4	2.9 2.9 2.9 2.9 2.9 2.9	2.8 2.8 2.8 2.8 2.8 2.8
26	3.6 3.5 3.4 3.3 3.2 3.2	4.0 7.9 8.4	3.4 3.3 3.2 3.1 3.1 3.2	4.2 4.0 3.9 3.8 3.6	7.6 6.9 6.1 5.6 5.2 4.9	3.9 4.4 4.3	3.7 3.5 3.3 3.1 3.1 3.0	4.0 3.8 3.6 3.5 3.4 3.2	2.9 3.1 3.1 3.1 3.0 	3.4 3.4 3.3 3.2 3.2 3.2	2.9 2.9 2.9 2.9 2.9 2.9	2.8 2.8 2.9 2.9 3.6

[Esther Williams, observer.]

NORTH FORK RIVER NEAR HENDERSON, ARK.

This station, which is located at Smith's ferry, near Henderson, Ark., was established July 23, 1909, to obtain data for use in studying water power, storage, and navigation problems.

Bayou Creek enters on the left bank about $1\frac{1}{4}$ miles above the station.

26

,

The gage consists of three vertical sections on the left bank near the ferry. Its datum has not been changed. Measurements are made from the ferryboat or by wading at low water.

This station is maintained under the direction of the State geologist of Arkansas and has not been visited by engineers of the United States Geological Survey since its establishment.

The following measurement was made by W. N. Gladson:

May 19: Width, 275 feet; area of section, 868 square feet; gage height, 1.95 feet; discharge, 1,110 second-feet.

Daily gage height, in feet, of North Fork River near Henderson, Ark., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} $	1.6 1.6 1.7 1.7 1.7	1.7 1.7 1.7 1.6 1.6	3.45 2.9 2.75 2.7 2.65	$1.7 \\ 1.65 \\ 1.6 \\ 1.65 \\ 1.8$	$1.9 \\ 1.8 \\ 1.8 \\ 1.7 \\ 1.6$		2.0 1.85 2.0 2.3 2.75	2.5 2.25 2.0 1.9 1 9	1.25 1.15 2.25 2.9 2.75	1.7 1.7 1.7 4.75 3.3	1.7 1.7 1.7 1.7 1.7 1.7	1.7 1.7 1.7 1.7 1.7 1.7
6 7 8 9 10	1 8 1.8 1.8 1.8 1.7	$1.55 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.6$	2.55 2.6 2.7 2.8 3.2	1.952.52.552.352.352.3	$1.85 \\ 1.9 \\ 1.85 \\ 1.8 \\ 1.8 \\ 1.85 \\ 1.8$	2.52.12.25.554.5	$2.9 \\ 2.7 \\ 2.55 \\ 2.35 \\ 4.6$	1.9 1.9 1.9 1.95 2.4	3.2 2.9 2.45 2.25 1.95	$\begin{array}{c} 6.1 \\ 5.65 \\ 3.5 \\ 3.2 \\ 2.6 \end{array}$	1.7 1.7 1.7 1.7 1.7	1.7 1.7 1.7 1.7 1.7
11 12 13 14 15	$1.7 \\ 1.7 \\ 1.7 \\ 1.65 \\ 1.65 $	$1.6 \\ 1.55 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.55 $	$3.45 \\ 2.95 \\ 2.8 \\ 2.75 \\ 2.6 \end{cases}$	2.2 2.3 2.6 3.1 3.45	1.9 2.0 1.9 1.8 1.95	3.65 3.45 3.0 3.0 2.45	3.4 4.7 5.4 4.0 3.95	2.55 2.15 2.0 2.0 1.95	1.9 1.8 1.7 1.65 1.45	2.2 2.0 2.0 2.15 2.0	1.7 1.7 1.7 1.7 1.7 1.7	1.7 1.7 1.7 1.7 1.7
16 17 18 19 20	1.7 1.75 1.8 1.7 1.7	$1.6 \\ 1.6 $	$2.5 \\ 2.4 \\ 2.3 \\ 2.2 \\ 2.15$	3.65 3.55 3.15 2.9 2.45	$2.4 \\ 2.35 \\ 2.15 \\ 1.95 \\ 1.9$	2.25 2.1 2.1 2.15 2.1	$\begin{array}{c} \textbf{3.25} \\ \textbf{4.3} \\ \textbf{3.55} \\ \textbf{2.9} \\ \textbf{2.7} \end{array}$	1.9 1.9 2.7 2.4 2.2	1.25 1.05 1.7 1.7 1.7 1.7	2.0 2.0 2.0 1.9 1.9	1.7 1.7 1.7 1.7 1.7 1.7	1.6 1.6 1.5 1.5
21 22 23 24 25	1.6 1.65 1.7 1.7 1.7	$1.5 \\ 1.5 \\ 1.6 \\ 1.65 \\ 1.7$	2.1 2.0 2.0 1.95 1.9	2.35 2.3 2.2 2.2 2.1	$1.9 \\ 1.9 \\ 1.9 \\ 1.8 \\ 1.8 \\ 1.8$	2.1 2.05 2.05 2.0 2.0 2.0	2.45 2.2 3.85 2.3 2.2	2.0 1.9 1.85 1.8 1.8	$1.7 \\ 1.65 \\ 1.6 \\ 1.65 \\ 1.7$	1.9 1.9 1.8 1.8 1.7	1.7 1.7 1.7 1.7 1.7	1.5 1.5 1.5 1.5 1.5
26 27 28 29 30 31	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.7 \\ 1.7 \\ 1.7$	1.7 4.35 4.0	1.9 1.8 1.7 1.7 1.8 1.8	2.1 2.1 2.0 1.95 1.9	1.8 1.9 1.9	2.0 2.0 2.0 2.0 2.0 2.0	2.05 2.0 2.0 1.95 2.4 2.7	$1.85 \\ 1.85 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.75 \\ 1.55$	1.7 1.75 1.95 2.0 1.8	1.7 1.7 1.7 1.7 1.7 1.7	1.7 1.7 1.7 1.7 1.7 1.7	$1.5 \\ 1.5 \\ 1.5 \\ 1.6 \\ 1.7 $

[F. S. Field, observer.]

LITTLE RED RIVER NEAR PANGBURN, ARK.

This station, which is located at Skillern's ferry, near Pangburn, Ark., was established July 15, 1909, to obtain data for use in studying water power, water supply, storage, and navigation problems.

Big Red Creek joins Little Red River about half a mile below the station.

This stream is used to considerable extent for running logs. Log jams above and below the station affect the gage for short periods. Ice rarely, if ever, forms on this stream.

The gage consists of three vertical sections on the right bank near the ferry. Its datum has not been changed. Measurements are made from a ferryboat or by wading at low water. This station is maintained under the direction of the State geologist of Arkansas and has not been visited by engineers of the United States Geological Survey since its establishment.

The following measurement was made by W. N. Gladson:

May 21: Width, 222 feet; area of section, 1,980 square feet; gage height, 8.1 feet; discharge, 3,380 second-feet.

Daily gage height, in feet, of Little Red River near Pangburn, Ark., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	3.1 3.1 3.0 3.0 3.1	3.7 3.6 3.4 3.3 3.2	16.4 11.4 9.2 7.9 7.1	3.5 3.3 3.5 4.1 6.7	3.7 3.5 3.4 3.3 3.2	6.2 5.3 4.5 4.8 4.7	3.9 4.1 9.6 10.5 12.4	3.13.02.92.72.6	2.8 2.8 2.8 2.9 2.9 2.9	2.5 2.6 2.5 2.5 2.4	2.7 2.7 2.6 2.6 2.6 2.6	2.3 2.3 2.3 2.3 2.3 2.3
6 7 8 9 10	3.4 6.4 6.3 5.7 5.4	3.0 3.0 3.1 3.0 3.0	6.5 6.1 5.6 5.3 5.1	24.3 16.0 12.6 9.4 7.5	3.1 3.1 2.9 2.9 2.8	4.5 4.3 4.6 5.4 12.0	9.3 7.5 6.4 5.5 4.7	2.6 2.5 2.6 2.8 4.1	2.8 2.7 2.6 3.7 3.3	32.1 38.5 25.9 8.9 7.3	2.5 2.5 2.4 2.4 2.4 2.4	2.4 2.4 2.3 2.3 2.3
11. 12. 13. 14. 15	5.1 4.9 4.8 5.1 5.5	2.9 2.9 2.8 2.8 2.7	6.6 8.6 7.3 6.5 6.0	$7.1 \\ 6.7 \\ 6.5 \\ 6.3 \\ 6.0$	2.8 2.7 2.7 2.6 2.6	18.516.411.98.76.8	4.4 9.1 7.4 7.3 7.1	6.6 5.3 4.4 4.5 4.8	2.8 2.8 2.7 2.6 2.5	6.3 5.8 5.4 5.2 5.5	2.5 2.4 2.4 2.3 2.3	2.3 2.3 2.3 2.3 2.3 2.3
16 17 18 19 20	5.4 5.2 5.1 5.4 7.5	2.7 2.8 2.8 2.9 2.8	5.6 5.2 4.8 4.5 4.3	14.0 14.2 11.8 9.4 8.0	2.9 4.6 20.1 13.6 9.8	5.9 5.4 4.8 4.3 4.0	6.7 6.0 5.5 5.0 4.4	5.6 6.0 5.2 4.8 4.6	2.4 2.4 2.3 2.3 2.2	5.3 4.9 4.5 4.1 3.8	2.3 2.4 2.4 2.4 2.4 2.3	2.3 2.3 2.3 2.3 2.3 2.2
21 22 23 24 25	7.16.35.85.45.1	2.8 2.8 3.0 3.9 4.8	4.3 4.2 4.4 4.7 4.5	7.0 6.4 5.9 5.4 4.9	8.4 7.8 14.7 22.45 25.4	3.8 3.6 3.5 3.5 3.8	4.0 3.6 3.4 3.3 8.1	6.0 5.2 4.7 4.4 3.8	2.2 2.1 2.1 2.1 2.1 2.1	3.6 3.5 3.4 3.3 3.2	2.3 2.3 2.3 2.3 2.3 2.3	2.2 2.5 2.5 2.4 2.4
26. 27. 28. 29. 30. 31.	4.8 4.6 4.5 4.2 4.0 3.8	5.2 10.8 24.4	4.3 4.1 4.0 3.8 3.7 3.9	4.5 4.4 4.2 4.0 3.9	$14.1 \\9.7 \\7.9 \\6.6 \\6.0 \\5.6$	3.6 3.5 3.8 4.9 4.5	6.4 5.0 4.5 4.0 3.6 3.3	3.4 3.4 3.6 3.3 3.1 3.0	2.0 2.0 2.2 2.3 2.4	3.1 3.0 2.9 2.9 2.8 2.8 2.8	2.3 2.3 2.4 2.4 2.4 2.4	2.4 2.4 2.5 3.5 6.7 7.8

[A. J. Stolz, observer.]

ARKANSAS RIVER DRAINAGE BASIN.

DESCRIPTION.

The western rim of the Arkansas basin is formed by three of the highest mountain ranges of Colorado—the Saguache, Sangre de Cristo, and Culebra, each having summits more than 14,000 feet in altitude. The melting of the almost perpetual snow that mantles the high peaks near the north end of this rim furnishes water for three small creeks, the East, Lake, and Tennessee forks, which unite near Leadville to form the Arkansas.

From the junction of the forks the river flows a little east of south for about 75 miles, then turns to the east and cuts through a canyon whose perpendicular walls attain elevations of more than 2,000 feet above the water's edge, emerging finally into the plains region near Canon City. From Canon City to the Colorado-Kansas State line its general course is eastward for about 200 miles. Entering Kansas the river runs for 140 miles by general course a little south of east; it then makes a bold curve to the north, forming what is known as the Great Bend, below which it flows southeastward across Oklahoma to its junction with the Mississippi in northeastern Arkansas. The entire length of the stream from source to mouth is about 1,500 miles and its drainage basin includes 177,500 square miles.

In its upper course the Arkansas is fed by numerous small streams, generally short, which lie wholly in or have their sources in the mountains. Those that head in the mountains and flow out onto the prairies are used more or less for irrigation. The most important of these tributaries are Greenhorn, Huerfano, Apishapa, and Purgatory rivers. The plains tributaries include Black Squirrel, Horse, Two Butte and Big Sandy creeks, Salt Fork, Cimarron, Verdigris, Grand, and Canadian rivers, and scores of smaller streams. The largest of these tributaries is Canadian River.

Above Pueblo, Colo., the drainage basin is as a whole mountainous, but toward the south the elevation decreases and the country is well marked by stream channels that trend in a general northeasterly direction. The streams on the north flow generally southward when they emerge from the mountains.

At the base of the mountains are the foothills, irregular and seared by canyons, and marked by disconnected mesas and buttes of different but moderate altitudes; beyond are great level plains, extending far to the east and constituting a portion of what was formerly known as the Great American Desert. East of the foothills and north of the river the topography is that typical of the Great Plains region, but to the south the surface of the plains is generally more accented. That part of the drainage basin that extends from the mountains to the Colorado-Kansas line embraces an area of about 25,000 square miles. Beyond this is the flat semiarid section of western Kansas, and then the more humid country in eastern Kansas, Oklahoma, and Arkansas.

The rocks exposed in the mountainous area present great variety, ranging from the metamorphic granites of Pikes Peak and the Royal Gorge of the Arkansas to the glacial drift in the upper valley of the Arkansas from Salida to Leadville and in the upper Grape Creek Range. Next to the granites the eruptive rocks are most common, and sedimentary rocks are found over wide areas.

In the plains region the principal rock exposures seen along the heavily eroded stream channels are shales, sandstone, and limestone in alternating layers. The soil cover, which is necessarily rather meager in the mountainous section, varies in the plains region from the upland sands and gravels of the mesas to the sandy loams and adobe clays of the river valleys. The adobe soils are very friable and dry and melt away rapidly under the action of water. Many of the dry intermittent channels, usually termed arroyos, are narrow and have high vertical walls, and are cut deeper by each succeeding flood. The vegetation is scanty, consisting of native grasses, sagebrush, chico, and cactus pads. The ranges have been very closely pastured; making conditions conducive to an excessive flood run-off.

Above Canon City the fall of the river is about 40 feet to the mile. The elevation at Canon City is 5,300 feet; at the Colorado-Kansas State line, 220 miles below, the elevation is 3,350 feet, making the average fall about 9 feet per mile. At the mouth the river has an elevation slightly exceeding 100 feet above sea level.

The drainage basin of Arkansas River contains about 1,000 square miles of merchantable timber land and considerably more than that amount of woodland; the rest, except for the considerable area under cultivation, may be classed as barren and sagebrush land.

The principal source of the water which the river bears to the plains is the precipitation along the crest of the high ranges. This is mainly in the form of snow, and amounts to 20 or 30 inches each year. From the foothills to Arkansas City the precipitation ranges from 12 to 35 inches, being 25 to 35 inches in the last 100 miles below Hutchinson. The natural storage in the basin is limited to a few mountain lakes of glacial origin.

The streams of this drainage area are subject to floods of two kinds—the annual spring floods caused by the melting of the snows in the headwater regions and floods caused by the violent storms, locally known as cloudbursts, in the foothills and plains regions. Occasionally, too, the river runs dry, and many of the tributaries are intermittent in character.

As altitudes within this basin range from 14,000 feet almost down to sea level, the climatic conditions vary greatly. In the mountainous sections the winters are severe, the snowfall is heavy, and the rivers have a thick ice cover for several months. As the altitude decreases the winters become milder.

About half a million acres of land are under irrigation on Arkansas River and its tributaries in Colorado, but beyond the Colorado line only a very few thousand acres are irrigated. The Garden City project of the United States Reclamation Service will eventually provide for the irrigation of probably 15,000 acres in the Arkansas Valley in western Kansas, principally by pumping the underflow.

Numerous reservoirs now in operation along the Arkansas, together with direct diversions for irrigation, provide for the use of the greater part of the flow of Arkansas River in Colorado. The largest reservoirs are in the system of the Great Plains Reservoir Co., on the north side of the river in the eastern part of the State. The reservoirs of this system are supplied by feeder canals, and have a combined capacity of almost 200,000 acre-feet. Other reservoirs now contemplated or under construction, on the tributaries of the Arkansas, will provide for the irrigation of a large additional area. These reservoirs are necessitated by the intermittent character of the streams upon which they are situated. The basin contains many excellent reservoir sites. The flood on the Arkansas in October, 1908, illustrates the possibility for additional storage in some of them.¹

On account of the use of water for irrigation in the open country, power development is necessarily confined to the upper reaches of the Arkansas and its tributaries. It seems probable that, with proper storage, about 100,000 horsepower can be developed. Somewhat over 5,000 horsepower is now being used.

The years of greatest average flow on the upper Arkansas since the beginning of measurements seem to have been 1891 and 1899. The flow in 1905 was also very high and that in 1906 and 1907 was nearly as great. The year of lowest flow is 1902, while 1908 is second.

ARKANSAS RIVER AT GRANITE, COLO.

This station, which was established April 6, 1910, by the State engineer of Colorado, by whom it is maintained, is located below the mouth of Lake Creek and above mouths of Lost Canon and Clear creeks. The discharge is affected by the Twin Lakes reservoir and by a flume used by a placer mine at Granite, taking water out of Lake Creek and returning it to the Arkansas below the station.

A Bristol automatic and a slope gage, both at the same datum, are located on the left bank of stream about 500 feet above the Denver & Rio Grande Railroad depot at Granite. Measurements are made from a car and cable, about one-third mile above the depot. The measuring section is good, as the bed of the stream consists of gravel and small bowlders and is permanent. Banks are composed chiefly of gravel and are not liable to overflow except at extreme high stages. Gage heights are affected by ice during the winter.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Apr. 7 May 6 28 Aug. 5 8 Sept. 19 ^b Oct. 28 ^b		77 74 71 72 66	Sq. ft. 82 203 180 108 119 65.9 58.5	Feet. 1. 70 3. 04 a 2. 83 2. 00 2. 25 1. 58 1. 32	Sec -ft. 150 1,033 804 267 355 116 74

Discharge measurements of Arkansas River at Granite, Colo., in 1910.

^a Twin Lakes stopped flowing during this measurement. Area and velocity would indicate that gage height was about 2.83. ^b By wading at various sections

¹ For report on this flood see Water-Supply Paper U. S. Geol. Survey No. 247, p. 35.

Daily gage height, in feet, of Arkansas River at Granite, Colo., for 1910.

Day.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5		2.6 2.65 2.75 2.95 2.95	3.65 3.5 3.5 3.5 3.5 3.5	3.1 3.1 3.05 3.05 3.0	2.252.22.152.051.85	2.6 2.6 2.1 1.6 1.6	$ 1.7 \\ 1.7 \\ 1.7 \\ 1.6 \\ 1.6 \\ 1.6 $	1.8 1.7 1.7 1.7 1.7	$1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.2$
6 7	1.8 1.75 1.85 2.0 2.05	3, 05 3, 05 2, 95 3, 1 3, 2	$3.45 \\ 3.4 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \end{cases}$	3.0 2.2 2.2 2.5 2.4	1.8 1.7 1.75 1.75 1.85	$1.55 \\ 1.5 \\ 1.45 \\ 1.5 \\ 1.5 \\ 1.45$	$1.6 \\ 1.6 \\ 1.55 \\ 1.6 \\ 1.3$	1.4 1.45 1.4 1.4 1.4	1.35 1.35 1.4 1.4 1.4
11 12 13 14 15	2.05 2.05 2.05 1.95 1.95	3.2 3.25 3.5 3.2 3.0	$3.2 \\ 3.1 \\ 3.1 \\ 3.1 \\ 3.1 \\ 3.1 \\ 3.1$	$2.25 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.2 \\ 2.2$	1.9 1.95 1.85 1.85 1.7	1.5 1.5 1.5 1.4 1.4	1.3 1.45 1.3 1.5 1.45	1.4 1.4 1.35 1.4 1.35	1.4 1.4 1.4
16 17 18 19 20	$1.9 \\ 1.9 \\ 1.9 \\ 1.95 \\ 2.6$	2.7 2.65 2.6 2.5 2.6	3.2 3.1 2.85 2.8 2.85 2.85	2.15 2.05 2.05 2.1 2.1	$1.65 \\ 1.65 \\ 1.80 \\ 1.85 \\ $	$1.55 \\ 1.6 \\ 1.65 \\ 1.6 \\ 1.$	$1.6 \\ 1.5 \\ 1.45 \\ 1.6 \\ 1.4$	$1.35 \\ 1.3 \\ 1.35 \\ 1.35 \\ 1.35 \\ 1.3$	
21 22	2.9 2.9 2.5 2.45 2.95	$2.65 \\ 3.25 \\ 3.2 \\ 3.1 \\ 3.05 $	$3.0 \\ 3.0 \\ 3.1 \\ 3.1 \\ 3.1 \\ 3.1$	2, 35 2, 35 2, 2 2, 1 2, 05	1.80 1.75 1.75 1.7 1.65	1.8 1.65 1.7 1.6 1.6	$1.65 \\ 1.9 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	$1.35 \\ 1.4 \\ 1.3 \\ 1.3 \\ 1.35 $	
26	2.75 2.3 3.0 2.2 2.4	2. 9 3. 05 3. 1 2. 95 3. 45 3. 65	3.1 3.2 3.1 3.05 3.05	2.0 1.95 2.0 2.25 2.5 2.2	$1.65 \\ 1.65 \\ 1.55 \\ 1.8 \\ 2.4 \\ 2.55$	1.9 2.15 1.8 1.6 1.7	1.4 1.35 1.35 1.35 1.35 1.35 1.45	1.4 1.4 1.35 1.35 1.35	

[Geo. Morrison, observer.]

Daily discharge, in second-feet, of Arkansas River at Granite, Colo., for 1910.

Day.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5		595 638 728 925 925	$1,745 \\ 1,550 \\ 1,55$	$1,090 \\ 1,090 \\ 1,035 \\ 1,035 \\ 980$	372 345 322 278 198	595 595 300 120 120	150 150 150 120 120	180 150 150 150 165	70 70 85 70 55
6 7 8 9 10	180 165 198 255 278	1,035 1,035 925 1,090 1,200	1,490 1,430 1,200 1,200 1,200	980 345 345 520 455	180 150 165 165 198	110 100 92 100 92	120 120 110 120 70	85 92 85 85 85	78 78 85 85 85
11 12 13 14 15	278 278 278 235 235	$1,200 \\ 1,255 \\ 1,550 \\ 1,200 \\ 980$	$1,200 \\ 1,090 \\ 1,090 \\ 1,090 \\ 1,090 \\ 1,090$	372 300 300 300 345	215 235 198 198 150	100 100 100 85 85	70 92 70 100 92	85 85 78 85 78	85 85 85
16 17 18 19 20	215 215 215 235 595	680 638 595 520 595	$1,200 \\ 1,090 \\ 822 \\ 775 \\ 822 \\ 82 \\ 8$	322 278 278 300 300	135 135 180 198 198	110 120 135 120 120	120 100 92 120 85	78 70 78 78 78 70	
21	870 870 520 488 925	$638 \\ 1,255 \\ 1,200 \\ 1,090 \\ 1,035$	980 980 1,090 1,090 1,090	428 428 345 300 278	180 165 165 150 135	180 135 150 120 120	135 215 85 85 85	78 85 70 70 78	
26	728 400 980 345 455	870 1,035 1,090 925 1,490 1,745	$1,090 \\ 1,200 \\ 1,090 \\ 1,035 \\ 1,035 \\ 1,035$	255 235 255 372 520 345	135 135 110 180 455 558	215 322 180 120 150	85 78 78 78 78 92	85 85 78 78 78	

Note.-These discharges were obtained from a rating curve which is well defined between 70 and 980 second-feet.

Monthly discharge of Arkansas River at Granite, Colo., for 1910.

-	D	ischarge in s		Run-off.		
Month.	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on drainage area.	Total in acre-feet.
Apr. 6–30 May	925	165	417	0.981	0.91	20,700
MayJune	$1,745 \\ 1,745$	520 775	$990 \\ 1,180$	2.33 2.78	$2.69 \\ 3.10$	60,900 70,200
July	1,090	$235 \\ 110$	475	1.12	$1.29 \\ .58$	29,200
August September October	595	85	166	. 391	.44	13,100 9,880
October November	215 180	70 70	• 105 • 93	.247 .219	$^{.29}_{.24}$	6,460 5,530
Dec. 1-13		70	78	.184	. 09	2,010
The period		•••••				218,000

[Drainage area, 425 square miles.]

ARKANSAS RIVER AT SALIDA, COLO.

A station was maintained on Arkansas River at Salida under the direction of the United States Geological Survey from 1895 to 1903.¹ The station was reestablished November 3, 1909, by the State engineer of Colorado, who placed a Bristol automatic gage with an auxiliary slope gage about a block below the concrete bridge on the road from town to the Denver & Rio Grande Railroad depot. The records furnish data concerning the amount of water available for irrigation.

The new and old stations bear the same relation to tributaries and diversions, but are at different sections.

The gage has no determined relation to the gage used in 1903. Discharge measurements are made from the concrete bridge.

On account of springs in the vicinity of the station, the channel is open throughout the winter months, making a very favorable location for the gage.

Date. Hydrographer.		section.	Gage height.	Dis- charge.
Jan. 19 <i>a</i> Feb. 26 <i>a</i> do. May 5 do. 25 do. Aug. 4 Grieve and Christiansen Sept. 18 <i>a</i> Thos. Grieve <i>a</i> Made by wading.	<i>Feet.</i> 66 66 81 83 69 68	Sq. feet. 104 100 226 259 140 103	<i>Feet.</i> 0.70 2.75 2.92 1.35 .76	Secfi. 221 226 1,270 1,600 478 267

Discharge measurements of Arkansas River at Salida, Colo., in 1910.

¹ For description see Water-Supply Paper U. S. Geol. Survey No. 99, p. 301. 8825°-WSP 287-11-----3

Daily gage height, in feet, of Arkansas River at Salida, Colo., for 1910. [Howard Snedden, observer.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	0.9 .9 .8 .75 .6	0.75 .7 .65 .6 .6	0.75 .8 .8 .85 .9	$1.3 \\ 1.45 \\ 1.45 \\ 1.35 \\ 1.25$	2.9 2.55 2.2 2.7 2.75	3, 55 3, 65 3, 9 3, 8 3 8	2.85 2.75 2.6 2.6 2.55	$1.35 \\ 1.3 \\ 1.25 \\ 1.35 \\ 1.5$	$1.5 \\ 1.85 \\ 1.85 \\ 1.25 \\ 1.15$	0.95 .7 .7 .65 .65	0.8 .75 .75 .75 .8	0.6 .6 .65 .5
6 7 8 9 10	. 55 . 55 . 7 . 7 . 7 . 75	.6 .65 .65 .6	.95 95 1.0 1.0 .8	1.1 1.05 1.05 1.2 1 3	2.8 2.85 2.9 3.0 3.35	4. 1 3. 8 3. 55 3. 35 3. 15	2.45 1.95 1.7 1.7 1.8	1.4 1.2 1.15 1.2 1.2	$1.05 \\ 1.0 \\ .95 \\ .9 \\ .55$.6 .65 .7 .8 .7	.8 .75 .75 .75 .75	.5 .55 .6 .6
11 12: 13 14 15	.75 .75 .65 .7 .75	.6 .65 .6 .7 .65	75 .75 .75 .75 .8	1.35 1.35 1.4 1.35 1.2	3. 55 3. 8 3. 85 3. 35 2. 95	3. 05 2. 95 3. 05 3. 2 3. 25	$1.65 \\ 1.5 \\ 1.5 \\ 1.4 \\ 1.55$	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.15$.4 .45 .45 .5 .45	.6 .65 .65 .65 .7	.7 .7 .75 .7 .75	.6 .55 .5 .45 .4
16 17 18 19 20	.8 .8 .7 .75 .7	.6 .6 .65 .65 .7	.8 .8 .85 .9 1.0	1.2 1.25 1.2 1.2 1.3	2.5 2.35 2.25 2.1 2.05	3. 35 3. 25 3. 0 3. 1 3. 15	$1.55 \\ 1.3 \\ 1.05 \\ 1.2 \\ 1.2$	1.0 1.0 1.1 1.25 1.3	.55 .6 .75 .95 .95	.75 .85 .75 .85 .8	.7 .65 .65 .7 .65	. 45 . 4
21 22 23 24 25	.75 .8 .8 .8 .8	.7 .7 .7 .7 .8	1.0 1.1 1.2 1.15 1.15	1.4 1.4 1.45 1.5 1.7	2.25 3.05 3.1 3.1 2.9	3. 0 2. 85 3. 05 3. 0 2. 95	1.4 1.4 1.3 1.25 1.2	1.2 1.15 1.25 1.2 1.1	1.0 1.15 .95 .95 .9	.75 1.2 .95 .8 .75	. 65 . 7 . 7 . 7 . 7	
26 27 28 29 30 31	.65 .65 .65 .75 .65 .7	. 75 . 65 . 65	$1.2 \\ 1.1 \\ 1.15 \\ 1.15 \\ 1.05 \\ 1.2$	2.0 2.3 2.6 3.25 3.15	2.75 2.75 3.0 3.4 3.95 3.9	2.9 2.95 2.95 2.85 2.8	$1.1 \\ .95 \\ 1.1 \\ 1.5 \\ 1.8 \\ 1.55$	1.1 1.1 1.15 .95 1.1 1.4	.85 1.25 1.25 .8 .95	.75 .7 .7 .7 .7 .7 .75	.7 .65 .6 .6 .6 .6	

Daily discharge, in second-feet, of Arkansas River at Salida, Colo., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	275 275 250 238 200	238 225 212 200 200	238 250 250 262 275	415 478 478 435 395	1.375 1,115 880 1,225 1,262	2,200 2,300 2,555 2,450 2,450	$1,535 \\1,445 \\1,315 \\1,315 \\1,272$	480 455 435 480 555	555 758 758 435 39 5	325 250 250 238 238	280 265 265 265 265 280	225 225 225 238 205
6 7 8 9 10	190 190 225 225 238	200 212 212 200 200	$292 \\ 292 \\ 310 \\ 310 \\ 250$	340 325 325 375 415	$1,310 \\ 1,360 \\ 1,410 \\ 1,450 \\ 1,820$	2,665 2,450 2,200 2,003 1,813	$1,190 \\ 822 \\ 665 \\ 665 \\ 725$	505 415 395 415 415	358 340 325 310 215	225 238 250 280 250	280 265 265 265 250	205 215 225 225 225
11 12 13 14 15	238 238 212 225 238	$200 \\ 212 \\ 200 \\ 225 \\ 212$	238 238 238 238 238 250	435 435 455 435 375	2,000 2,240 2,280 1,840 1,500	$1,718 \\ 1,625 \\ 1,718 \\ 1,860 \\ 1,908$	635 555 555 530 580	415 415 415 415 395	185 195 195 205 195	225 238 238 238 238 250	250 250 265 250 265	225 215 205 195 185
16 17 18 19 20	250 250 225 238 225	200 200 212 212 212 225	$250 \\ 250 \\ 262 \\ 275 \\ 310$	375 395 375 375 415	$1,160 \\ 1,070 \\ 1,010 \\ 920 \\ 900$	2,003 1,908 1,670 1,765 1,813	580 455 358 415 415	340 340 375 435 455	215 225 265 325 325	265 295 265 295 280	250 238 238 250 238	195 185 185 185 185
21 22 23 24 25	238 250 250 250 250	225 225 225 225 225 250	310 340 375 358 358	455 455 478 500 600	1,040 1,670 1,720 1,740 1,580	1,670 1,535 1,718 1,670 1,625	505 505 455 435 415	415 395 435 415 375	340 395 325 325 310	265 415 325 280 265	238 250 250 250 250	185 185 180 180 180
26 27 28 29 30 31	212 212 212 238 212 225	238 212 212	375 340 358 358 325 375	760 945 1,150 1,640 1,562	$1,445 \\1,445 \\1,670 \\2,050 \\2,608 \\2,255$	$1,580 \\ 1,625 \\ 1,625 \\ 1,535 \\ 1,490 \\ \cdots$	375 325 375 555 725 580	375 375 395 325 375 505	295 435 435 280 325	265 250 250 250 250 250 265	250 238 225 238 225 225	180 175 175 175 175 175 175

NOTE.—These discharges were obtained as follows: Jan. 1 to May 5, from a rating curve which is well defined between 225 and 1,080 second-feet. May 6 to 24, indirect method for shifting channels. May 25 to Dec. 17, from a rating curve which is well defined between 200 and 1,700 second-feet. Dec. 18 to 31, estimated.

Monthly discharge of	f Ar	kan s as River	at Salida,	Colo., for	<i>1910</i> .
----------------------	------	-----------------------	------------	------------	---------------

[Drainage area, 1,160 square miles.]

	D	ischarge in se		Run-off.		
Month.	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on drainage area.	Total in acre-feet.
January February March April May June June July September October November December	$\begin{array}{r} 250\\ 375\\ 1,640\\ 2,608\\ 2,665\\ 1,535\\ 555\\ 758\\ 415\\ 280\end{array}$	$190 \\ 200 \\ 238 \\ 325 \\ 880 \\ 1,490 \\ 325 \\ 325 \\ 185 \\ 22$	$\begin{array}{c} 232\\ 215\\ 295\\ 553\\ 1,530\\ 1,910\\ 686\\ 417\\ 341\\ 265\\ 253\\ 198\end{array}$	$\begin{array}{c} 0.200\\ .185\\ .254\\ .477\\ 1.32\\ 1.64\\ .591\\ .359\\ .294\\ .228\\ .218\\ .171\end{array}$	$\begin{array}{c} 0.23 \\ .19 \\ .29 \\ .53 \\ 1.52 \\ 1.83 \\ .68 \\ .41 \\ .33 \\ .26 \\ .24 \\ .20 \end{array}$	14, 300 11, 900 18, 100 32, 900 93, 900 115, 000 42, 200 20, 300 16, 300 15, 100 12, 200
The year	2,665		· 575	. 496	6.71	418,00

ARKANSAS RIVER AT CANON CITY, COLO.

This station, which was established April 17, 1889, is located at the mouth of the canyon, just below the suspension footbridge at Hot Springs Hotel, about $1\frac{1}{2}$ miles above the Denver & Rio Grande Railroad depot at Canon City, Colo.

The records at this point show the greater part of the run-off of the river and are valuable both for power and irrigation projects.

Grape Creek enters about one-eighth of a mile above the station and Oil Creek comes in about 5 miles below. The drainage area comprises about 3,000 square miles. North and South Canyon ditches divert water above the station, and their flow is not included in the run-off. No accurate records have been kept of the discharge in these canals, but the combined flow is from 50 to 100 second-feet during the irrigation season. Some water is also diverted for the irrigation of a few thousand acres on the upper Arkansas and its tributaries.

The flow of the river is affected by ice for three or four months during the winter season.

On October 4, 1895, a new rod gage was established on the left bank, opposite the original gage and at the same datum. This gage read 0.4 foot lower than the old gage at low stages, but at high water both gages read the same. This new gage was used until August 26, 1902, when another gage was established on the right bank at the datum of the original gage, though it is situated a short distance farther downstream. The present chain gage is a few feet upstream from the cable. In September, 1909, the State engineer established a Bristol self-recording gage near the location of the chain gage, but with a datum 2 feet higher. Both gages have been read since that time. Measurements are made from a cable, or by wading at low stages.

As the stream bed is rough it is difficult to obtain very accurate measurements at high stages. Moreover, the channel is subject to considerable shifting, which makes the estimates of daily discharge rather uncertain, especially after violent flood.

Discharge measurements of Arkansas River at Canon City, Colo., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Jan. 196 Feb. 23 26 Apr. 4 10 30 May 5 29 June 10 July 22 Aug. 3 12 177 Sept. 166 20 Oct. 1 20 Oct. 24	do	95 96 97 97 101 104 103 95 93 93 99 87 93 80 99 92	$\begin{array}{c} Sq. ft. \\ 132\\ 158\\ 159\\ 168\\ 180\\ 359\\ 286\\ 347\\ 336\\ 300\\ 158\\ 151\\ 122\\ 105\\ 107\\ 92\\ 121\\ 129\\ 107\\ 104\\ \end{array}$	$\begin{array}{c} Feet.\\ 3.9\\ 4.04\\ 4.0\\ 4.12\\ 5.82\\ 5.82\\ 5.82\\ 5.57\\ 5.28\\ 4.15\\ 4.15\\ 4.15\\ 3.71\\ 3.71\\ 3.62\\ 3.86\\ 3.83\\ 3.7\\ 3.7\end{array}$	$\begin{array}{c} Secft. \\ 406\\ 477\\ 611\\ 559\\ 2,200\\ 1,540\\ 2,110\\ 1,770\\ 1,500\\ 572\\ 453\\ 343\\ 360\\ 249\\ 345\\ 407\\ 345\\ 284\\ \end{array}$

a Discharge slightly affected by ice.

^b Made by wading. ^c Made from suspension bridge.

Daily gage height, in feet, of Arkansas River at Canon City, Colo., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	4.30 4.3 4.05 3.85 3.9	3.9 3.8 3.75 3.7 3.7	3.85 4.0 4.0 4.05 4.05	4.3 4.25 4.35 4.25 4.3	5.65 5.45 5.15 5.25 5.35	6.55 6.5 6.5 6.45 6.35	$5.1 \\ 5.1 \\ 5.05 \\ 5.0$	4.3 4.15 4.2 4.15 4.35	4. 25 4. 3 4. 3 4. 05 3. 8	3.8 3.7 3.5 3.5 3.4	3.6 3.85 3.8 3.8 3.8 3.8 3.85	3.55 3.5 3.5 3.55 3.55 3.5
6 7 8 9 10	3.7 3.65 3.8 3.95 4.05	3.75 3.85 3.95 3.75 3.8	4.3 4.3 4.3 4.3 4.3 4.15	4.1 4.05 4.1 4.1 4.15	5.3 5.3 5.4 5.4 5.65	6.2 6.05 5.85 5.65 5.6	4.9 4.75 4.3 4.3 4.3	4. 35 4. 05 3. 95 4. 3 4. 05	3.8 3.7 3.6 3.6 3.5	3.5 3.5 3.5 3.55 3.55 3.55	3.8 3.6 3.6 3.6 3.6 3.6	3.45 3.55 3.65 3.75 3.65
11 12 13 14 15	4.0 4.05 4.0 4.0 4.1	3.8 3.85 3.9 3.95 3.9	4. 05 4. 05 4. 00 4. 05 4. 05	4. 2 4. 25 4. 35 4. 55 4. 35	5.9 6.05 6.3 6.1 5.9	5.5 5.45 5.45 5.55 5.45	4.25 4.2 4.05 4.0 3.9	3.95 3.95 4.0 3.95 3.9	3.5 3.5 3.5 3.55 3.6	3.45 3.4 3.5 3.4 3.5	3.6 3.6 3.6 3.6 3.6 3.6	3.65 3.7 3.75 3.7 3.7 3.7
16 17 18 19 20	4.05 4.1 3.95 3.9 3.95	3.5 3.5 3.65 3.9 3.9	4.05 4.05 4.1 4.15 4.2	4.35 4.3 4.25 4.2 4.2	$5.55 \\ 5.35 \\ 5.3 \\ 5.1 \\ 5.1 \\ 5.1$	5.5 5.6 5.3 5.15 5.1	3.9 3.85 3.8 3.8 4.0	3.8 3.7 3.75 3.85 3.85	3.6 3.65 3.65 3.95 3.9	3.5 3.7 3.75 3.7 3.95	3.65 3.65 3.55 3.6 3.65	3.65 3.7 3.65 3.65 3.8
21 22 23 24 25	3.9 3.95 4.0 4.05 4.0	3.9 4.0 4.05 3.9 3.95	4.25 4.25 4.3 4.3 4.3	4.25 4.3 4.35 4.4 4.5	5.15 5.8 5.75 5.6 5.5	5.15 5.15 5.15 5.4 5.2	3.95 4.15 4.1 4.0 3.9	3.8 3.8 3.9 3.8	3.75 3.75 3.8 3.65 3.7	3.7 3.7 4.15 3.7 3.7	3.6 3.6 3.6 3.65 3.7	3.8 3.75 3.65 3.7 3.7
26 27 28 29 30 31	3.8 3.8 3.75 3.85 3.85 3.85 3.75	4.0 3.8 3.85	4. 25 4. 3 4. 2 4. 25 4. 15 4. 25	4.7 4.9 5.3 5.85 5.8	5.45 5.5 5.65 5.6 6.45 6.65	5.2 5.2 5.3 5.15 5.1	3.8 3.7 3.7 4.95 4.4 4.6	3.8 3.75 3.75 3.75 3.75 3.7 4.0	3.7 3.75 4.15 3.85 3.55	3.7 3.7 3.6 3.55 3.5	3.65 3.6 3.6 3.6 3.6 3.6	3.7 3.65 3.55 3.55 3.55 3.5

[S. R. McKissick, observer.]

NOTE.-Gage heights affected by ice, Jan. 1-19.

Daily discharge, in second-feet, of Arkansas River at Canon City, Colo., for 1910.

· · · · · · · · · · · · · · · · · · ·												
Day.	Jan.a	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	340 340 340 340 340 340	410 360 338 315 315	385 460 460 488 488	640 608 675 675 575	$\begin{array}{c} 1,920\\ 1,680\\ 1,360\\ 1,460\\ 1,570 \end{array}$	3,160 3,090 3.090 3,020 2,880	${}^{1,310}_{1,310}\\{}^{1,260}_{1,210}\\{}^{1,210}_{1,210}$	640 545 575 545 675	608 640 640 488 360	360 315 240 240 208	275 385 360 360 385	258 240 240 258 240
6 7 8 9 10	340 340 340 340 340 340	338 385 435 338 360	640 640 640 640 545	515 488 515 515 545	$\begin{array}{c} 1,520 \\ 1,520 \\ 1,620 \\ 1,620 \\ 1,620 \\ 1,920 \end{array}$	2,670 2,460 2,180 1,920 1,860	${ \begin{smallmatrix} 1,120\\ 982\\ 640\\ 640\\ 640\\ 640 \end{smallmatrix} }$	675 488 435 640 488	$360 \\ 315 \\ 275 \\ 275 \\ 240$	240 240 240 258 258	360 275 275 275 275 275	224 258 295 338 295
11. 12. 13. 14. 15.	340 340 340 340 340 340	360 385 410 435 410	488 488 460 488 488	575 608 675 822 675	2,250 2,460 2,810 2,530 2,250	$1,740 \\ 1,680 \\ 1,680 \\ 1,800 \\ 1,680 \\ 1,680$	608 575 488 460 410	435 435 460 435 410	240 240 240 258 275	224 208 240 208 240	275 275 275 275 275 275	295 315 338 315 315
16 17 18 19 20	340 340 340 410 435	240 240 295 410 410	488 488 515 545 575	675 640 608 575 575	$1,800 \\ 1,570 \\ 1,520 \\ 1,310 \\ 1,310 \\ 1,310 \end{cases}$	$\begin{array}{c} 1,740 \\ 1,860 \\ 1,520 \\ 1,360 \\ 1,310 \end{array}$	410 385 360 360 460	360 315 338 385 385	275 295 295 435 410	240 315 338 315 435	295 295 258 275 295	295 315 295 295 360
21. 22. 23. 24. 25.	410 435 460 488 460	410 460 488 410 435	608 608 640 640 640	608 640 675 710 785	1,360 2,120 2,050 1,860 1,740	${ \begin{array}{c} 1,360\\ 1,360\\ 1,360\\ 1,620\\ 1,620\\ 1,410 \end{array} } }$	435 545 515 460 410	360 360 360 410 360	338 338 360 295 315	315 315 545 315 315 315	275 275 275 295 315	360 338 295 315 315
26. 27. 28. 29. 30. 31.	360 360 338 385 385 385 338	460 360 385	608 640 575 608 545 608	940 1,120 1,520 2,180 2,120	$1,680 \\ 1,740 \\ 1,920 \\ 1,860 \\ 3,020 \\ 3,300$	$1,410 \\ 1,410 \\ 1,520 \\ 1,360 \\ 1,310 $	$360 \\ 315 \\ 315 \\ 1,160 \\ 710 \\ 860$	360 338 338 338 315 460	315 338 545 385 258	315 315 315 275 258 240	295 275 275 275 275 275	315 315 295 258 258 240

a 340 second-feet estimated mean per day Jan. 1 to 18.

NOTE.—These discharges are based on a rating curve which is fairly well defined between 250 and 2,400 second-feet. Discharge Jan. 1 to 18 estimated on account of ice.

Monthly discharge of Arkansas River at Canon City, Colo., for 1910.

	Discha	rge in second	Run-off	Accu-	
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January. February. March. April. May. June. July. August. September. October. November. December. December. The year.	$\begin{array}{c} 488\\ 640\\ 2,180\\ 3,300\\ 3,160\\ 1,310\\ 675\\ 640\\ 545\\ 385\\ 360\end{array}$	240 385 488 1, 310 1, 310 315 315 240 208 228 228 224	367 378 553 783 1,890 675 441 355 287 295 293 685	22,600 21,000 34,000 46,600 116,000 112,000 41,500 27,100 27,100 21,100 17,600 17,600 18,000 495,000	D. B. A. A. A. A. A. B. B. C.

ARKANSAS RIVER AT PUEBLO, COLO.

This station was established September 30, 1894, at the Santa Fe Avenue Bridge, Pueblo, Colo. On July 10, 1898, another gage was established on the east side of Main Street Bridge, which was used until March 3, 1900. Then a staff gage fastened to the retaining wall, a short distance below the Union Avenue Bridge, was used to July 14,

From July 14, 1902, until July 7, 1905, readings were taken at 1902. a rod gage, having a different datum, located just above this bridge. The present chain gage on the Main Street Bridge has been in use since July 7, 1905. Measurements are made from this bridge.

As this station is near the head of the principal irrigated portion of the Arkansas Valley and above the head gates of the larger canals, the data are especially valuable to water superintendents and the State water commissioners in making distribution of water to the canals below.

No important tributaries enter within several miles above the station. Fountain Creek enters just below, and the Huerfano, the most important tributary in that vicinity, comes in about 20 miles below.

At various points above this station water is diverted for the irrigation of about 70,000 acres of land. The diversion for the Pueblo water supply also takes out above. Additional filings for irrigation above this station on the Arkansas are impossible, except for storage on some of the minor tributaries.

Slush and flowing ice are usually found at this station during the winter months and sometimes the river is frozen over or affected by ice jams below, but the results are rarely influenced by ice conditions for more than two months during the year. As noted above, numerous changes have been made in the datum of the gage.

Very good measurements can be obtained at this point, although the channel sometimes shifts considerably during floods.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Jan. 20ª Feb. 23	do	75	Sq. ft. 147 147	Feet. 2.55 2.80	Secft. 478 b 444
25 Mar. 3 16¢ 22		114 150 69 150	178 228 104 164	2.65 2.88 2.24 2.55	575 835 351 556
31d Apr. 5 28			104 124 181 275	2.55 2.45 2.58 3.28	478 606 1,220
29 30 May 14	Lyon and Lamb. A. A. Weiland 	150 151 151	339 422 445	3.62 4.07 4.50	1,560 2,170 2,500
31 June 9 9 23	Bolster and Lyon	151 151 151 151	511 377 374	4.86 3.93 3.91	3,020 1,760 1,760
July 23 Aug. 16 Sept. 16	G. H. Russell	151 74 70 64	310 161 136 98	3.46 2.40 2.20 1.87	1,260 396 322 185
Oct. 4 Nov. 23	S. T. Harding Padgett and Miles	64 122	89 129	1.88 2.10	160 313

Discharge measurements of Arkansas River at Pueblo, Colo., in 1910.

a Made at Victoria Avenue Bridge. Ice along bank.

Discharge liable to error; meter froze.
Made at Victoria Avenue Bridge.
Made at Union Avenue Bridge.

				David	J. Cox	, observ	er.j					
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
12 23 34 55	4.25 3.0 2.9 2.6 2.8	2.6 2.5 2.45 2.4 2.4	2.5 2.55 2.65 2.65 2.7	2.6 2.6 2.85 2.75 2.65	3.9 3.75 3.65 3.35 3.6	5.05 4.9 4.75 4.7 4.6	3.6 3.45 3.4 3.4 3.4 3.35	2. 6 2. 6 2. 3 3. 85 3. 25	2.5 2.7 2.7 2.6 2.2	2.0 2.0 1.85 1.9 1.9	2.2 2.2 2.2 2.15 2.2	2.0 2.0 2.05 2.05 2.1
6 7 8 9 10	2.9 3.05 3.25 3.6 3.75	2.5 2.45 2.45 2.45 2.45 2.4	2.9 2.85 2.7 2.7 2.6	2.55 2.5 2.4 2.4 2.6	3.65 3.5 3.65 3.7 3.95	4.5 4.3 4.05 3.95 3.9	3.25 3.2 3.0 2.6 2.75	2.95 2.8 2.6 2.45 2.65	2.1 2.05 1.95 1.85 1.85	1.75 1.85 1.9 1.7 1.85	2.2 2.25 2.2 2.15 2.15	2.05 2.0 2.05 2.0 2.2
11 12 13 14 15	3.9 3.95 3.7 3.3 3.15	2.45 2.4 2.4 2.45 2.5	2.4 2.25 2.25 2.3 2.3	2.6 2.6 2.75 2.75 2.65	4.1 4.25 4.5 4.55 4.4	3.8 3.8 3.85 3.8 3.8 3.8	2.7 2.7 3.2 2.5 2.25	2.55 2.45 2.75 2.6 2.6 2.6	$ \begin{array}{r} 1.8 \\ 1.8 \\ 1.85 \\ 2.3 \\ 1.85 \\ 1.85 \\ \end{array} $	2.05 1.85 2.0 2.05 1.9	2. 15 2. 15 2. 1 2. 1 2. 15 2. 2	2.05 2.05 2.0 2.05 1.95
16 17 18 19 20	3. 1 3. 05 2. 85 2. 8 2. 7	2.35 2.1 2.3 2.35 2.5	2.3 2.3 2.3 2.25 2.45	2.55 2.5 2.7 2.55 2.6	3.9 3.7 3.55 3.55 3.55	3.9 4.1 3.8 3.5 3.4	2.3 2.3 2.25 2.2 2.3	2.35 2.0 2.2 1.95 2.1	1.9 1.8 1.9 1.9 2.3	$2.1 \\ 2.1 \\ 2.15 \\ 2.2 \\ 2.25$	2.3 2.25 2.25 2.25 2.25 2.25	1.9 1.85 2.0 2.05 1.9
21 22 23 24 25	2.6 2.7 2.7 2.8 2.8	2.5 2.5 2.6 2.7 2.65	2.6 2.6 2.65 2.7 2.65	2.65 2.75 2.75 2.75 2.85	3.6 3.95 4.15 4.0 3.9	3.45 3.5 3.5 3.5 3.65	2.2 2.3 2.4 2.35 2.3	2.4 2.25 2.15 2.15 2.2	$\begin{array}{c} 2.15 \\ 2.1 \\ 2.1 \\ 2.05 \\ 1.95 \end{array}$	2.25 2.3 2.35 2.3 2.35 2.35	2.25 2.15 2.1 2.1 2.05	2.0 2.2 2.05 2.1 2.15
26 27 28 29 30 31	2.652.62.552.552.62.55	2.8 2.5 2.55	2.62.72.62.62.62.62.5	3.0 3.15 3.3 3.6 4.1	3.85 3.7 3.8 4.1 4.4 4.95	3.65 3.6 3.65 3.7 3.6	2. 2 2. 1 2. 0 2. 95 4. 1 3. 0	2. 15 2. 15 2. 05 2. 05 2. 0 2. 0 2. 1	1.95 1.9 2.1 2.1 2.1 2.1	2.35 2.25 2.3 2.3 2.2 2.3 2.3	2.15 2.15 2.15 2.15 2.15 2.05	2.1 2.05 2.05 2.05 2.05 2.05 2.1

Daily gage height, in feet, of Arkansas River at Pueblo, Colo., for 1910.

[David I Cox observer]

NOTE.—Gage heights probably affected by ice Jan. 1 to 20. Ice may also have existed at times during December, but the gage heights were probably not materially changed thereby.

Daily discharge, in second-feet, of Arkansas River at Pueblo, Colo., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3	350 350 350 350 350 350	515 450 422 395 395	520 555 630 630 670	590 590 795 710 630	$1,740 \\ 1,560 \\ 1,460 \\ 1,140 \\ 1,400$	3,250 3,040 2,840 2,770 2,640	1,400 1,240 1,190 1,190 1,140	590 590 390 1, 860 1, 180	520 670 670 590 330	220 220 150 170 170	330 330 330 300 300 330	220 220 245 245 270
6 7 8 9 10	375 375 375 375 375 375	450 422 422 422 395	840 795 670 670 590	$555 \\ 520 \\ 455 \\ 455 \\ 590$	1,460 1,290 1,460 1,510 1,800	2,500 2,240 1,920 1,800 1,740	${ \begin{smallmatrix} 1,040\\990\\810\\515\\615 \end{smallmatrix} }$	885 750 590 488 630	270 245 195 150 150	110 150 170 90 150	330 360 330 300 300	245 220 245 220 330
11 12 13 14 15	400 400 400 400 400	422 395 395 422 450	455 360 360 390 422	590 590 710 710 630	$1,980 \\ 2,180 \\ 2,500 \\ 2,570 \\ 2,370$	$\begin{array}{c} 1,620\\ 1,620\\ 1,680\\ 1,620\\ 1,680\\ 1,680\end{array}$	580 580 990 450 315	555 488 710 590 590	130 130 150 390 150	245 150 220 245 170	300 300 270 300 330	245 245 220 245 195
16 17 18 19 20	450 450 450 450 480	368 240 340 368 450	390 390 390 360 487	555 520 670 555 590	$1,740 \\ 1,510 \\ 1,340 \\ 1,340 \\ 1,290$	$\begin{array}{c} 1,740\\ 1,980\\ 1,620\\ 1,290\\ 1,190 \end{array}$	340 340 315 290 340	422 220 330 195 270	170 130 170 170 390	270 270 300 330 360	390 360 360 360 360	170 150 220 220 195
21 22 23 24 25	515 580 580 650 650	450 450 515 580 548	590 590 630 670 630	630 710 710 710 710 795	$1,400 \\ 1,800 \\ 2,040 \\ 1,860 \\ 1,740$	1,240 1,290 1,290 1,290 1,290 1,460	290 340 395 368 340	455 360 300 300 330	300 270 270 245 195	360 390 422 390 422	360 300 270 270 245	220 330 245 270 300
26 27 28 29 30 31	548 515 515 482 515 482	650 450 482	590 670 590 590 590 590 520	930 1,080 1,230 1,560 2,180	$1,680 \\ 1,510 \\ 1,620 \\ 1,980 \\ 2,370 \\ 3,110$	$1,460 \\ 1,400 \\ 1,460 \\ 1,510 \\ 1,400 \\$	290 240 200 768 1, 980 810	300 300 245 245 220 270	195 170 270 270 270 270	422 360 390 390 330 390	300 300 300 300 245	270 245 245 245 245 245 270

NOTE .- These discharges were obtained as follows:

Jan. 1 to 20 estimated on account of ice.

Jan. 21 to Feb. 28 and May 1 to July 31 based on a rating curve which is well defined between 250 and 3,000 Mar. 1 to Aug. 30 based on a rating curve which is well defined between 250 and 2,700 second-feet. Aug. 1 to Dec. 31 based on a rating curve which is not well defined.

	Discha	rge in second	Run-off	Accu-	
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January . February . March . April . May . June . July . September . October . November . December .	$\begin{array}{c} 650\\ 840\\ 2,180\\ 3,110\\ 3,250\\ 1,980\\ 1,860\\ 670\\ 422\\ 390\end{array}$	$\begin{array}{c} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	$\begin{array}{r} 450\\ 433\\ 556\\ 752\\ 1,770\\ 1,820\\ 667\\ 505\\ 274\\ 272\\ 315\\ 240\\ \end{array}$	27, 700 24, 300 34, 200 44, 700 108, 000 108, 000 41, 000 31, 100 16, 300 16, 700 18, 700 14, 800	C. B. A. B. A. B. B. B. B. C.
The year	3,250	90	672	486,000	

Monthly discharge of Arkansas River at Pueblo, Colo., for 1910.

ARKANSAS RIVER NEAR NEPESTA, COLO.

This station, which is located at the dam of the Oxford Farmers Canal Co., about $1\frac{1}{2}$ miles above Nepesta, has been maintained at various times and was reestablished in 1909 by the State engineer, by whom it is maintained.

A vertical staff gage is spiked to a pile above upper face of dam near right bank. On August 23, 1910, a Bristol automatic gage was installed. Both gages are at the same datum. Measurements are made from the highway bridge seven-eighths of a mile below the dam during high water and by wading at low water.

The section is fair, the bed of the stream is sandy and shifting. Gage heights are affected by ice during winter.

Date.	Hydrographer.	Widh.	Area of section.	Gage height.	Dis- charge.
Jan. 24 Mar. 2 Apr. 9 30 Sept. 1 ^b	Thos. Grieve	159 152	Sq. feet. 338 175 398 384	Feet. a 8.30 .80 .60 1.50 .44	Secft. 1,070 574 422 1,680 90

Discharge measurements of Arkansas River near Nepesta, Colo., in 1910.

a Distance from top of cylindrical pier, right, upstream side, to water surface. b Made by wading.

Daily gage	height,	in feet,	of	' Arkansas	River	n ear	Nepesta,	Colo., f	or 1910.
------------	---------	----------	----	------------	-------	-------	----------	----------	----------

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec
1 2 3 4 5.		$ \begin{array}{r} 1.0 \\ 1$	0.7 .8 .9 1.0 .8	0.7 .7 .7 .9 .9	1.4 1.4 1.3 1.3 1.4	1.7 1.7 1.5 1.5 1.4	1.0 .9 .9 .9 .9	1.1 1.8 .7 1.7 2.8	0.45 .55 .55 .5 .4	0.0 .0 .0 .0 .25	0.7 .55 .75 .75 .75 .75	
6 7 8 9 10		.8 .8 .8 .7 .7	.8 .9 .9 .9	.7 .8 .6 .6	$1.4 \\ 1.1 \\ 1.2 \\ 1.25 \\ 1.25 \\ 1.2$	1.4 1.2 1.2 1.1 1.1	.7 .7 .5 .4	1.5 1.0 .7 2.0	.3 .5 .45 .4 .35	.0 .0 .0 .2 .0	.6 .45 .5 .4 .1	
11. 12. 13. 14. 15.		.7 .7 .7 .7 .7	.7 .6 .6 .6	.6 .6 .9 .9	$1.4 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.2$	1.1 1.2 1.1 1.25 1.3	1.7 .8 .8 .7 .9	.5 .7 2.0 2.0 1.0	.4 .4 .4 .5	.0 .05 .1 .0 .2	.0 .0 .4 .4	

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
16 17 18 19 20		0.7 .8 .8 .8 .8	0.6 .6 .6 .6	0.6 .4 .8 .7 .7	1.0 1.0 .8 .7 1.2	$1.25 \\ 1.3 \\ 1.25 \\ 1.2 \\ 1.05$	0.5 .6 .6 .6 .6	0.7 .6 1.4 .4 .5	0.5 .4 .4 .4 .9	0.0 .4 .45 .2 .3	0.5 .45 .45 .5 .75	
21 22 23 24 25 25		.8 .7 .7 1.0 1.0	.6 .6 .6 .7 .7	.7 .95 .9 .9 .9	$1.3 \\ 1.1 \\ 1.0 \\ .9 \\ 1.1$	$1.0 \\ 1.1 \\ 1.1 \\ 1.2 \\ 1.2$.6 .5 .4 .6 .6	.6 .6 .6 .6	.6 .6 .5 .5 .35	.75 .65 .75 .8 .75	.75 .6 .5 .4 .0	
26 27	0.9 .9 .9	1.0 .9 .8	.6 .6 .7 .7 .7	.9 .8 1.1 1.1 1.5	$1.25 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.4$	1.0 1.1 1.0 1.0 1.0	.6 .4 .4 .5 .5	.6 .8 .6 .65 .5 .4	.2 .15 .0 .0 .0	.75 .85 .95 .85 .75 .75	.0 .0 .0 .0 .0	

Daily gage height, in feet, of Arkansas River near Nepesta, Colo., for 1910-Continued.

ARKANSAS RIVER AT HOLLY, COLO.

This station, which was established October 15, 1907, is located at the pile highway bridge one-half mile southeast of Holly, Colo., about 4 miles above the Colorado-Kansas line.

As no important diversions are made between the two points, the data obtained at this station have special value as showing the amount of surface water passing from Colorado to Kansas.

The station is just above the mouth of Wild Horse Creek and about 1 mile below the mouth of Two Butte Creek. The drainage area is about 25,000 square miles.

As nearly half a million acres of land are under irrigation above this point, most of the ordinary flow of the stream is diverted during the irrigation season, while during the winter months it is used to fill up the numerous storage reservoirs in the basin. Except during periods of heavy flood, the flow at Holly consists chiefly of return waters. The stream flow is little affected by ice.

The gage heights here published have all been referred to the same datum, though a rod gage at a different datum was used during part of 1908. During high stages measurements are made from highway bridge and during low stages by wading at miscellaneous sections.

Fairly good measurements can be taken at this point, but in order to obtain accurate records of daily discharge it is necessary to take them frequently on account of the extremely shifting character of the channel.

Discharge measurements of Arkansas River near Holly, Colo., in 1910.

Date.	. Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Jan. 22 Feb. 28 Apr. 28 30 May 9 Aug. 6 Sept. 2	Thos. Grieve	238 60 30	$\begin{array}{c} Sq. \ feet. \\ 274 \\ 410 \\ 43 \\ 27 \\ 6.8 \\ 1,540 \\ 9.2 \end{array}$	Feet. 2.80 1.45 1.31 1.05 4.55	Secft. 684 1,050 54 32 6.6 5,290 7.5

Daily gage height, in feet, of Arkansas River at Holly, Colo., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	2.2 2.45 3.95 6.1 5.4	4.05 4.0 4.0 3.8 3.9	2.65 2.35 2.2 2.2 2.1	$1.4 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.35$	$1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$	$1.6 \\ 1.6 \\ 1.5 \\ 1.5 \\ 1.8 $	$1.1 \\ 1.2 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	6.35 3.6 3.15 3.1 3.0	$1.4 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.1$	1.1 1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1 1.1
6 7 8 9 10	5.65 5.7 5.65 5.35 5.15	3, 55 3, 45 3, 3 3, 2 3, 2 3, 2	$2.1 \\ 2.0 \\ 1.9 \\ 1.9 \\ 1.8$	$1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 $	$1.2 \\ 1.2 \\ 1.2 \\ 1.05 \\ 1.05 \\ 1.05$	$1.95 \\ 1.75 \\ 1.6 \\ 1.5 \\ 1.$.9 .9 .9 .9	4.2 3.55 3.15 2.65 2.5	$1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$	$1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$	1.1 1.1 1.1 1.1 1.1 1.1	$1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2$
11 12 13 14 15	5.5 5.45 5.2 4.9 4.35	3.1 3.05 3.0 2.95 2.9	$ 1.8 \\ 1.8 \\ 1.75 \\ 1.7 \\ 1.6 \\ $	$1.3 \\ 1.55 \\ 1.6 \\ 1.6 \\ 1.85$	$1.05 \\ $	$1.4 \\ 1.4 \\ 1.3 \\ 1.3 \\ 1.25$	$.9 \\ 1.0 \\ 2.15 \\ 1.7 \\ 1.5$	2.9 2.9 2.35 2.05 2.3	1.1 1.1 1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1 1.1	$1.2 \\ 1.2 $
16 17 18 19 20	5.6 5.4 5.45 5.25 4.8	2.8 2.8 2.65 2.6 2.95	$1.6 \\ 1.6 \\ 1.6 \\ 1.5 \\ 1.6 $	2.3 2.6 2.45 2.3 1.95	$1.05 \\ 1.05 \\ 1.05 \\ 1.05 \\ 1.05 \\ 1.05 \\ 1.05 \end{cases}$	$1.2 \\ 1.0 \\ .9 \\ 1.0 \\ 1.0$	$1.45 \\ 1.4 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	3.05 2.3 2.0 2.0 1.9	$1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$	$1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$	$1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$	$1.2 \\ 1.2 \\ 1.35 \\ 1.4 \\ 1.3$
21 22 23 24 25	4.75 4.75 4.85 4.75 4.85	2.75 2.7 2.8 2.8 2.8 2.8	$1.6 \\ 1.5 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	1.7 1.7 1.6 1.6	$1.05 \\ 1.35 \\ 1.6 \\ 2.25 \\ 2.1$	1.0 .9 .9 .9 1.0	1.0 1.0 1.0 1.0 1.0	$1.8 \\ 1.8 \\ 1.65 \\ 1.45 \\ 1.3$	1.1 1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1 1.1	$ \begin{array}{c} 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\end{array} $	$ \begin{array}{c} 1.3 \\ 1.3 $
26 27 28 29 30 31	5.05 4.85 4.95 4.55 4.45 4.25	2.75 3.0 2.85	1.4 1.4 1.3 1.3 1.4 1.4	1.5 1.5 1.4 1.3 1.3	$\begin{array}{c} 2.0 \\ 2.0 \\ 2.0 \\ 1.95 \\ 1.7 \\ 1.6 \end{array}$	1.0 1.0 1.0 1.0 1.0	.9 .9 .9 .8 .8 2.1	$1.3 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.35 \\ 1.4 \\ 1.35 \\ 1.4$	1.1 1.1 1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1 1.1 1.1	$1.35 \\ 1.3 \\ 1.35 \\ 1.3 \\ 1.$

[S. W. Jones, observer.]

Note.-Gage heights Jan. 1 to Feb. 15 affected by ice.

Daily discharge, in second-feet, of Arkansas River at Holly, Colo., for 1910.

Day.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5		838 550 437 437 369	46 29 29 29 29 38	29 17 17 17 17 17	100 100 69 69 186	8 17 2 2 2	12,000 2,480 1,560 1,470 1,310	46 29 17 8 8	8 8 8 8 8 8 8 8 8	8 8 8 8 8	8 8 8 8 8
6 7 8 9 10	·····	369 304 241 241 186	29 29 29 29 29 29	17 17 17 5 5	$272 \\ 162 \\ 100 \\ 69 \\ 69 \\ 69$	0 0 0 0	4,140 2,360 1,560 838 675	80 80 80 80 80 80 80 80 80	80 90 90 90	8 8 8 8	8 17 29 17 17
11 12 13 14 15	· · · · · · · · · · · · · · · · · · ·	186 186 162 139 100	$29 \\ 84 \\ 100 \\ 100 \\ 214$	5 5 5 5	46 46 29 29 23	0 2 403 139 69	${ \begin{array}{c} 1,160\\ 1,160\\ 549\\ 336\\ 509 \end{array} }$	8 8 8 8	8 8 8 8 8	8 8 8 8	17 17 17 17 17
16 17 18 19 20	1,020 1,020 838 780 1,240	100 100 100 69 100	509 780 632 509 272	5 5 5 5 5	17 2 0 2 2	58 46 2 2 2	$1,390 \\ 509 \\ 304 \\ 304 \\ 241$	8 8 8 8	8 8 8 8 8	8 8 8 8	17 17 38 46 29
21 22 23 24 25	958 895 1,020 1,020 1,020	$100 \\ 69 \\ 46 \\ 46 \\ 46 \\ 46$	139 139 139 100 100	5 38 100 473 369	2 0 0 0 2	2 2 2 2 2 2	186 186 120 58 29	8 8 8 8	8 8 8 8	8 8 8 8	29 29 29 29 29
26	958 1,310 1,090	46 46 29 29 46 46	69 69 46 29 29	304 304 272 139 100	2 2 2 2 2 2	0 0 0 0 369	29 29 46 46 38 46	8 8 8 8	8 8 8 8 8 8 8 8 8	8 8 8 8	38 29 38 29 29 29 29

Note.--These discharges were obtained from a rating curve which is well defined below 5,500 second-feet.

M-r0	Discha	rge in second	Run-off	Accu-	
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
Feb. 16-28 March April May June July August September October November December	$473 \\ 272 \\ 403 \\ 12,000 \\ 46$	780 29 29 5 0 0 29 8 8 8 8 8	$1,010 \\ 186 \\ 147 \\ 84.4 \\ 50.2 \\ 36.5 \\ 1,150 \\ 10.3 \\ 8.0 \\ 8.0 \\ 22.5$	$\begin{array}{c} 26,000\\ 11,400\\ 8,750\\ 5,190\\ 2,990\\ 2,240\\ 70,700\\ 613\\ 492\\ 476\\ 1,380\end{array}$	B. B. B. B. C. C. D. D. D.
The period				130,000	

Monthly discharge of Arkansas River at Holly, Colo., for 1910.

NOTE.—During the period Jan. 1 to Feb. 15, 1910, the gage heights were distorted by ice to such an extent that no estimates for this period have been made.

TWIN LAKES OUTLET NEAR TWIN LAKES, COLO.

This station was established August 6, 1910, by the State engineer, by whom it is maintained.

A Bristol automatic gage is located at the timber rating flumehalf a mile below the outlet of Twin Lakes. The flume is of trapezoidal section.

Discharge measurements of Twin Lakes Outlet near Twin Lakes, Colo., in 1910.

Date.	· Hydrographer.	Area of section.	Gage height.	Dis- charge.	
May 5 26 Aug. 19	A. A. Weiland Thos. Grieve. A. A. Weiland	Sq. ft. 133 125 37	Feet. 5.13 4.85 1.65	Secft. 627 548 76	

Daily gage height, in feet, of Twin Lakes Outlet near Twin Lakes, Colo., for 1910.

Day.	Day. Aug.		Day.	Aug.	Sept.
1 2 3		$4.55 \\ 4.5 \\ 2.2$	16 17 18	$0.1 \\ .3 \\ 1.25$	0.85 .8 1.3
4 5		$^{.4}_{.35}$	19 20	$1.55 \\ 1.5$.75 .7
6 7 8 9. 10	$egin{array}{c} 0.15 \ .1 \ .6 \ .9 \ 1.2 \end{array}$.3 .2 .25 .2 .2 .2	21 22 23 24 25	$1.2 \\ 1.25 \\ .95 \\ .8 \\ .75$	1.7 .75 1.4 .8 .8
11 12 13 14 15	1.6 1.25 1.25 1.15 .1	.2 . 15 . 3 . 05 . 35	26	.65 .8 .15 1.90 3.9 4.45	• 1.6

Daily discharge, in second-feet, of Twin Lakes Outlet near Twin Lakes, Colo., for 1910.

Day.	Aug.	Sept.	Day.	Aug.	Sept.
1 2 4 5 6 7 8 9 10.	4 3 18	487 477 120 11 10 8 5 6 5 5	16 17 18 19 20 21 22 23 24 25	3 8 49 68 65 46 49 32 26 24	28 26 52 24 22 22 24 58 26 26 26
10		5 4 8 2 10	26	20 26 4 94 357 467	72

NOTE.-These estimates were furnished by the State engineer of Colorado.

Monthly discharge of Twin Lakes Outlet near Twin Lakes, Colo., for 1910.

Month.	Discha	Run-off (total in		
MUILAI.	Maximum.	Minimum.	Mean.	(total in acre-feet).
Aug. 6-31 Sept. 1-26	467 487	3 2	63.7 59.3	3,280 3,060

CLEAR CREEK NEAR GRANITE, COLO.

This station was established May 27, 1910, by the State engineer and is maintained by him.

A Bristol automatic gage is located at the rectangular concrete rating flume one-fourth mile below the reservoir outlet.

Discharge measurements of Clear Creek near Granite, Colo., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
May 5 22 June 12	A. A. Weiland Thos. Grieve A. A. Weiland	Feet. 20 20 20	Sq. ft. 10.2 28.5 32.2	Feet. a 0.62 1.40 1.58	Secft. 30.6 22.5 27.1

^a Gage height may be in error.

44

LOWER MISSISSIPPI BASIN.

Day.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.				
1 2 3 4 5		1.45 1.5 1.5 1.55 1.55 1.5	1.45 1.45 1.35 1.3 1.3	0.0 .1 .25 .25 .2 .2	$0.2 \\ .25 \\ .25 \\ .2 \\ .2 \\ .2 \\ .2$	0.2 .2 .15 .2 .15	0.25 .25 .25 .25 .25				
6 7 8 9 10		1.5 1.55 1.5 1.55 1.55 1.5	$1.2 \\ 1.2 \\ 1.1 \\ 1.0 \\ .85$.0 .0 .2 .3 .3	.2 .25 .3 .3 .3	. 25 . 25 . 25 . 2 . 2	.25 .25 .25 .2 .2				
11 12 13 14 15		1.5 1.5 1.5 1.5 1.5	.75 .7 .65 .65 .65	.3 .3 .2 .0	.3 .25 .25 .3 .25	$2 \\ 2 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 2$.25 .25 .2 .2 .2				
16 17 18 19 20		$1.5 \\ 1.5 $.6 .6 .55 .6	.0 .05 .25 .2	.3 .25 .25 .2	.2 .2 .2 .2 .2	$ \begin{array}{r} 2.2 \\ 2.25 \\ 2.25 \\ 2.2 \\ .25 \\ .2 \end{array} $				
21 22 23 24 25		1.5 1.5 1.5 1.45 1.45	.6 .55 .45 .45	.2 .2 .2 .2 .2	.2 .2 .2 .3 .3	.25 .25 .25 .2 .2	$\begin{array}{c} .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\end{array}$				
26	1.35 1.35	1.4 1.4 1.4 1.4 1.35	.4 .45 .5 .2 .0	.25 .25 .2 .2 .2 .2 .2 .2	.35 .3 .35 .3 .2	.2 .25 .25 .25 .25 .2 .2	.2 .2 .2 .2 .2 .2				

Daily gage height, in feet, of Clear Creek near Granite, Colo., for 1910.

Daily discharge, in second-feet, of Clear Creek near Granite, Colo., for 1910.

Day.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.
1 2		238 250 250 263 290	238 238 212 200 200	0 2 8 8 5	5 8 8 5 5	5 5 4 5 4	8 8 8 8 8
6 7 8 9 10		250 263 250 263 250	176 176 152 128 96	0 0 5 11 11	5 8 11 11 11	8 8 5 5	8 8 5 5
11 12 13 14 15		250 250 250 250 250 250	76 66 57 57 57	11 11 11 5 0	11 8 8 11 8	5 5 8 8	8 8 5 5 8
16 17 18 19 20		250 250 250 250 250	48 48 48 40 48	0 0 1 8 5	11 11 8 8 5	5 5 5 5 5	5 5 8 8 5
21		250 250 250 238 238	48 57 40 26 26	5 5 5 5 5	5 5 11 11	8 8 5 5	5 5 5 5 5
26	212 212 212 212 212 212 225	225 225 225 225 225 212	20 20 26 32 5 0	8 5 5 5 5	16 11 16 11 5	5 8 8 5 5	5 5 5 5 5

NOTE.-These discharges were furnished by the State engineer of Colorado.

•

	Discha	Run-off		
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).
May 27-31. June. July . August . September . October . November .	263 238 11 11 8	$212 \\ 212 \\ 0 \\ 0 \\ . 5 \\ 4 \\ 5$	$215 \\ 246 \\ 85.8 \\ 5.3 \\ 8.7 \\ 6.1 \\ 6.3$	$\begin{array}{c} 2,130\\ 14,600\\ 5,280\\ 326\\ 518\\ 375\\ 375\end{array}$
The period				23,600

Monthly discharge of Clear Creek near Granite, Colo., for 1910.

COTTONWOOD CREEK NEAR BUENA VISTA, COLO.

This station, which was established September 23, 1910, is located 7 miles west of Buena Vista, $1\frac{1}{2}$ miles west of Hot Springs Hotel, 1 mile below the junction of South and Middle forks, and 5 miles below the junction with North Fork. It is above all diversions.

The gage is a vertical rod fastened on the left bank 100 feet downstream from the Hot Springs tunnel.

Measurements are made by wading at various sections.

The bed of the stream is rocky with some gravel and fairly permanent.

Discharge measurements of Cottonwood Creek near Buena Vista, Colo., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Sept. 23 Oct. 24 Nov. 19 Dec. 28	G. H. Russeli S. T. Harding. G. H. Russell. do.	Feet. 22 24 24 20.5	Sq.ft. 28 21 22 26	<i>Feet</i> . 1.33 1.28 1.23 1.15	Secft. 37 33 32 21

Daily gage height, in feet, of Cottonwood Creek near Buena Vista, Colo., for 1910.

[U.	А.	mack,	observer.j	

Day.	Sept.	Oct.	Nov.	Dec.	Day.	Sept.	Oct.	Nov.	Dec.
1			1.35	1.20	16 17			1.20	
3 4 5					18 19 20				1. 25
6 7 8					21 22 23				
9 10	•••••	•••••			24 25	••••		· 1.20	
11 12 13 14	•••••				26 27 28 29.				1.15
15					30 81	1.25	· · · · · · · · · · · · · · · · · · ·		

CHALK CREEK NEAR BUENA VISTA, COLO.

This station, which was established September 6, 1910, is located near Heywood Hot Springs, about 11 miles southwest of Buena Vista, Colo. It is below all tributaries and above all ditches except two.

A vertical rod gage is located on the right bank about 1,000 feet below the New Heywood Hotel and directly in front of the old hotel. Measurements are made by wading at various sections.

The bed of the creek is of bowlders and very rough but fairly permanent.

The discharge is affected by ice for about four months each year.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Sept. 24 Oct. 24 Nov. 19 Dec. 29	G. H. Russell S. T. Harding. G. H. Russell	Feet. 26.5 25 22 19	Sq. ft. 21 18 16 17	Feet. 0.44 .38 .32 .26	Secft. 39 31 29 20

Discharge measurements of Chalk Creek near Buena Vista, Colo., in 1910.

Daily gage height, in feet, of Chalk Creek near Buena Vista, Colo., for 1910.

Day.	Sept.	Oct.	Nov.	Dec.	Day.	Sept.	Oct.	Nov.	Dec.
1 2 3					16 17 18				
45 6 7	0. 45	0.40			19 20 21 22.				0.35
8 9 10			0.40		23 24 25	0.45		· · · · · · · · · · · · · · · · · · ·	·····
11 12					26. 27.			.30	.
13 14 15					28 29 30 31	. 45	 		. 35 . 26

[C. A. Mack and H. C. Hayes, observers.]

OIL OR FOURMILE CREEK NEAR CANON CITY, COLO.

This station, which was established April 12, 1910, is located 2 miles from Canon City, Colo., on the highway bridge about 200 feet from the main line of the Denver & Rio Grande Railroad.

The station is maintained by the State engineer of Colorado, who furnishes the records to the United States Geological Survey.

High-water measurements are made from the highway bridge and low-water measurements are made by wading at the same section.

A staff gage is attached to a pile on the downstream side of the right abutment of the highway bridge. The datum of the gage has not been changed.

On account of the shifting character of the channel and the absence of data the results at this station have not been entirely satisfactory.

Discharge measurements of Oil or Fourmile Creek near Canon City, Colo., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Apr. 12 Sept 20 Oct. 31	Thos, Grievedodo.	Feet. 37 26 28	Sq. ft. 9.5 9.7 18.8	Feet. 0.65 .22 .10	Secft. 21.3 27.9 50.7

Note.-Wading at various sections.

Daily gage height, in feet, of Oil or Fourmile Creek near Canon City, Colo., for 1910.

Day.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.
1		0.75 .9 .85 .9 .95	0.7 .7 .8 .7 .7	0.3 .3 .3 .3 .3	$0.5 \\ 1.0 \\ .5 \\ 1.5 \\ 1.0 \\$	0.5 .4 .4 .4 .4	0.5 .5 .5 .5
6 7 8 9 10		.8 .8 .8 .8	.65 .65 .5 .5 .5	.2 .2 .2 .2 .2	1.0 1.0 1.0 1.0 1.0	.4 .4 .3 .3 .3	.5 .5 .5 .5 .6
11 12 13. 14. 15.	· · · · · · · · · · · · · · · · · · ·	.8 .85 .9 .95 .9	.4 .5 .6 .45	.2 .2 .2 .2 .2 .25	$1.0 \\ 1.0 \\ 1.0 \\ .7 \\ .7 \\ .7$.6 .6 .6 .6 .6
16	0.8 .9 .9 .9	. 8 . 75 . 75 . 7 . 7	.4 .4 .4 .4 .4	.3 .2 .3 .3 .3	.8 .7 1.0 .8	.3 .3 .7 .7 .7	
21	.95 .95 1.0 1.0 .85	.9 .9 .9 .95 .85	.3 .2 .25 .2 .35	.3 .2 .2 .2 .3	.95 .85 .85 .85 .8	.7 .7 .6 .6	
26	.85 .75 .85 .85 .85	. 75 . 9 . 8 . 8 . 7 . 7	.3 .3 .3 .3 .3 .3	.3 .3 .4 1.25 1.75 .5	.8 .75 .5 .5 .5 .5	.7 .7 .6 .5 .5	

PURGATORY RIVER DRAINAGE BASIN.

DESCRIPTION.

Purgatory ¹ River, the principal tributary of Arkansas River in Colorado, rises in the Culebra Mountains and flows northeastward across the plains for a distance of 165 miles. In the spring the chan nel carries a moderate volume of water, but as summer approaches the amount is greatly diminished by irrigation and natural conditions until the channel is practically dry. The volume of water contributed to the Arkansas is so small that it has no appreciable effect on the

48

¹ This stream is often termed Las Animas, especially along its lower course, and sometimes it is called Picket Wire. It is sometimes spelled Purgatoire.

discharge of that river except at times of excessive rainfall, when it may discharge a large volume for a short time.

The drainage basin of Purgatory River is long and narrow. The total area is 3,400 square miles. The 742 square miles lying above Trinidad are mountainous and the surface is much broken by stream channels, which are normally dry. The lower basin is foothill country, merging into rough plains farther east. Drainage lines are well defined throughout part of the area. For 60 miles of its length, commencing 25 miles below Trinidad, Purgatory River flows in a deep canyon. Many small tributary canyons enter at various angles to the main channel.

In the mountainous portion the Weather Bureau records at Clearview for 15 years give a mean annual rainfall of 23 inches; at Trinidad, 10 years' record, 17 inches. The plains drainage has approximately a mean annual precipitation of 12 inches.

No storage is practiced on this stream. No power has been developed, and because of the abundance of coal in the vicinity of Trinidad it is doubtful if power development would be feasible, even under very favorable circumstances.

The basin contains about 100 square miles of merchantable timber land and a small amount of woodland, all of which is included in the Las Animas National Forest.

Some 20,000 acres of land are now being irrigated along Purgatory River.

PURGATORY RIVER AT TRINIDAD, COLO.

This station has been maintained at the Animas Street Bridge, Trinidad, Colo., from May 1, 1896, to July 31, 1899; from August 25, 1905, to December 31, 1905; from November 7, 1906, to March 10, 1907; and from October 14, 1907, to date.

The records furnish information as to flood discharge and are valuable also for irrigation projects.

The South Fork joins the upper Purgatory about 14 miles above Trinidad. Chaquaqua River, the first important tributary below, enters about 60 miles below Trinidad. Considerable water is being diverted for irrigation above the station and some below.

The flow at this point is affected to some extent by ice, though the winter discharge is usually small.

The datum of the present chain gage, which has been used since August 25, 1905, is 1.70 feet below the datum of the old rod gage formerly used. The chain gage is located on the upstream side of the Animas Street Bridge.

Low-water measurements are usually made by wading. Measurements at higher stages are made from the bridge, where conditions are not favorable. The stream bed is shifting in character.

8825°-wsp 287-11---4

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Jan. 26 Feb. 8 Mar. 2 3 Apr. 29 June 23 July 26 Aug. 4 16 Oct. 4 23	G. H. Russell	Feet. 18 25 11 11 12 56 48 32 27 23 32 29 32	Sq. ft. 10 25 12 12 12 12 14 14 14 15 55 35 17 17 18 10 17	$\begin{array}{c} \textit{Feet.} \\ 3.35 \\ a3.90 \\ a5.10 \\ a5.10 \\ a5.10 \\ a5.30 \\ 4.70 \\ 4.28 \\ 3.81 \\ 3.20 \\ 3.52 \\ 3.55 \\ 3.55 \\ 3.25 \\ 3.50 \end{array}$	Secft. 9.4 10.7 27 26.5 40 306 150 68 22 48 33 9.7 25.5

Discharge measurements of Purgatory River at Trinidad, Colo., in 1910.

^a Gage heights distorted by backwater from temporary dam below.

NOTE.-Measurements made at various sections.

Daily gage height, in feet, of Purgatory River at Trinidad, Colo., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	4.8 3.85 3.55 3.55 3.55 3.5	3.55 3.55 3.5 3.5 3.5 3.7	5.35 5.35 5.45 5.4 5.4 5.4	5.35 5.35 5.4 5.4 5.5	4.65 4.6 4.45 4.45 4.55	4.5 4.55 4.5 4.5 4.5 4.45	3.7 3.7 3.7 3.7 3.6	3.9 3.6 3.5 3.55 3.7	3.7 3.65 3.6 3.5 3.5	3.25 3.25 3.25 3.25 3.25 3.25 3.2	3.4 3.4 3.4 3.4 3.4 3.4 3.4	3.35 3.35 3.35
6 7 8 9 10	3.45 3.5 3.45 3.5 3.5 3.5	3.65 3.7 3.7 3.65 3.65	5. 4 5. 35 5. 35 5. 35 5. 35 5. 35	5.35 5.3 5.3 5.3 5.4	4.6 4.6 4.55 4.5 4.6	4.4 4.45 4.4 4.35 4.3	3.5 3.45 3.45 3.35 3.35 3.35	3.7 3.7 3.7 3.85 4.0	3.5 3.5 3.45 3.45 3.45	3.2 3.2 3.15 3.15 3.15 3.15	3.4 3.4 3.4 3.4 3.4 3.4	
11 12 13 14 15	3.5 3.55 3.35 3.35 3.5	3.7 3.75 3.75 3.75 3.75 3.75	5.35 5.35 5.35 5.35 5.35 5.35	5.4 5.4 4.75 4.7 4.5	4.6 4.6 4.75 4.95 4.85	4. 25 4. 25 4. 2 4. 2 4. 2 4. 15	3.35 3.95 3.85 3.75 3.55	4.2 4.2 3.95 4.35 3.75	3.4 3.35 3.45 3.45 3.4	3. 15 3. 1 3. 1 3. 1 3. 1 3. 1	3.4 3.35 3.35 3.35 3.35 3.35	
16 17 18 19 20	3.6 3.6 3.55 3.6 3.6 3.6	$\begin{array}{c} 3.\ 75\ 3.\ 6\ 3.\ 55\ 3.\ 6\ 3.\ 55\ 3.\ 55\ \end{array}$	5. 4 5. 4 5. 4 5. 4 5. 4 5. 4	4. 5 4. 35 4. 3 4. 35 4. 45	4.7 4.7 4.5 4.5 4.45	4. 15 4. 1 4. 05 4. 05 4. 05	3.35 3.3 3.2 3.1 3.65	4.75 3.35 3.8 3.65 3.4	3.65 3.4 3.4 3.45 3.5	3. 1 3. 1 3. 1 3. 4 3. 55	3.35 3.35 3.35 3.35 3.35 3.35	·····
21 22 23, 24 25	3.6 3.6 3.6 3.5 3.5 3.55	3.55 3.55 3.6 3.45 3.5	5.4 5.45 5.5 5.5 5.5	4.65 4.5 4.35 4.35 4.4	4. 4 4. 45 4. 5 4. 45 4. 5	4.0 3.9 3.8 3.8 3.8 3.8	3.95 3.95 3.3 4.85 3.25	3, 35 3, 35 3, 7 3, 65 3, 7	3.65 3.5 3.4 3.4 3.4 3.4	3.5 3.5 3.5 3.5 3.5 3.5	3.35 3.35 3.35 3.4 3.4	
26 27 28 29 30 31	3.5 3.55 3.5 3.55 3.55 3.55 3.55	3.5 3.5 3.5	5.5 5.5 5.4 5.35 5.35 5.3	4.4 4.45 4.6 4.8 4.7	4. 45 4. 4 4. 4 4. 4 4. 5 4. 45	3.8 3.75 3.7 4.1 3.75	3.2 3.15 3.2 3.4 5.0 5.0	3.7 3.65 3.8 3.7 3.7 3.7	3.35 3.3 3.25 3.2 3.2 3.2	3.5 3.5 3.45 3.45 3.4 3.4 3.4	3. 4 3. 4 3. 35 3. 35 3. 35 3. 35	

[H. D. Albertson, observer.]

NOTE.—Discharge affected by ice at times during January, February, and December. Gage heights Feb. 8-Mar. 18 distorted by construction and removal of cofferdams immediately below the gage.

Daily discharge, in t	second-feet, of Put	rgatory River at I	Frinidad, Colo., for 1910.
-----------------------	---------------------	--------------------	----------------------------

Day.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	40 40 40 40 40	280 260 210 210 242	225 242 225 225 210	56 56 56 56 56 46	115 62 48 55 75	50 44 39 29 29	10 10 10 10 8	20 20 20 20 20 20	16 16 16
6 7 8 9 10	40 40 40 40 40	260 260 242 225 260	195 210 195 180 165	35 30 23 23	75 70 92 120	29 29 24 24 24 24	8 8 6 6 6	20 20 20 20 20	
11 12 13 14 15	40 40 320 300 225	260 260 320 408 362	154 154 142 142 131	23 107 92 75 47	160 160 100 195 62	20 16 24 24 20	6 4 4 4 4	20 16 16 16 16	
16 17 18 19 20	225 180 165 180 210	$300 \\ 300 \\ 225 \\ 225 \\ 210$	131 120 109 109 109	30 24 16 10 55	338 16 65 44 20	44 20 20 24 29	4 4 20 34	16 16 16 16 16	
21 22 23 24 25	280 225 180 180 195	195 210 225 210 225	98 80 65 65 65	129 129 28 460 26	16 16 50 44 50	44 29 20 20 20	29 29 29 29 29	16 16 16 20 20	· · · · · · · · · · · · · ·
26	195 210 260 340 300	210 195 195 195 225 210	65 58 50 120 58	22 16 19 37 515 515	50 44 65 50 50 50	16 13 10 8 8	29 29 24 24 20 20	20 20 16 16 16	

NOTE.—These discharges were obtained as follows: Apr. 1–12, estimated; Apr. 13–June 23 and Aug. 16–Dec. 3, from a rating curve which is fairly well defined; July 1–Aug. 15, indirect method for shifting channels.

Monthly discharge of Purgatory River at Trinidad, Colo., for 1910.

	Discha	Run-off	Accu-		
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January February March April May June June July August. September October November December	408 242 515 338 50 34 20	195 50 10 16 8 4 16	a 10 a 10 a 35 155 246 137 89.9 78.3 25.0 14.9 18.0	$\begin{array}{c} 615\\ 555\\ 2, 150\\ 9, 220\\ 15, 100\\ 8, 150\\ 5, 530\\ 4, 810\\ 1, 490\\ 916\\ 107\end{array}$	D. D. D. D. B. B. C. C. C. C.
The year				48,600	

a Estimated on account of backwater from construction work below the station.

BIG SANDY CREEK AT HUGO, COLO.

This station, which was established April 10, 1910, is located at the highway bridge half a mile south of Hugo, a town on the Union Pacific Railroad in eastern Colorado.

The gage is a vertical rod attached to highway bridge.

Measurements are made from the bridge to which gage is attached, or, during low stages, by wading at various sections.

The bed is sandy and very shifting. The channel is usually dry during the winter months.

Discharge measurements of	of Bi	g Sandy	Creek at	Hugo,	Colo.,	in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Apr. 10 July 29 30 30 30 31 31 Nov. 27	G. H. Russell C. E. Turner. do. do. do. do. do. do. W. B. Freeman.	88 68 148 115 130	Sg. ft. 6.8 26 44 48 191 45 75	Feet. 2.44 2.75 2.95 2.98 4.2 3.02 3.4	Secft. 8.5 46 88 108 543 108 180 a 0.2

a Estimated.

Daily gage height, in feet, and discharge, in second-feet, of Big Sandy Creek at Hugo, Colo., for 1910.

	A	p r.	Ma	ay.	Ju	ly.	Aı	ıg.	Se	pt.	0	ct.
Day.	Gage height.	Dis- charge.	Gage height.	Dis- charge.	Gage height.	Dis- charge.	Gage height.	Dis- charge.	Gage height.	Dis- charge.	Gage height.	Dis- charge.
1 2 3 4 5			2.5 2.5 2.4	13 13 5			2.8 2.55 2.55	$53 \\ 20 \\ 4 \\ 4 \\ 20$		0.5 0.5 1.0		0.5 0.5 0.5 0.5 0.5
6 7 8 9 10								80 26 3 2 1		1.5 1 1 1 1		0.5 0.5 0.5 0.5
11 12 13 14 15	2.4 2.4 2.6 2.7 2.7	5 26 39 39						0.5				0.5 0.5 0.5 0.5 0.5
16 17 18 19 20	2.7 2.6 2.6 2.6 2.5	39 26 26 26 13						1 0.5		0.5 0.5 0.5 0.5		0.5 0.5 0.5 0.5 0.5
21 22 23 24 25	2.5 2.5 2.4	13 13 5			2.35 2.5		· · · · · · · · · · · · · · · · · · ·			0.5 0.5 0.5 0.5 0.5	· · · · · · · · · · · · · · · · · · ·	0.5 0.5 0.5 0.5 0.5
26 27 28 29 30 31			· · · · · · · · · · · · · · · · · · ·			20 236 150			•••••	0.5 0.5 0.5 0.5 0.5	· · · · · · · · · · · · · · · · · · ·	0.5 0.5 0.5 0.5 0.5 0.5

[C. E. Turner, observer.]

NOTE.—These discharges were obtained from a rating curve which is fairly well defined. Discharges estimated for days when gage was not read. The creek was dry on days between Apr. 24 and Oct. 31 for which no discharges are given.

.

BIG SANDY CREEK AT KIT CARSON, COLO.

This station, which was established April 15, 1910, is located at the highway bridge 1 mile above Kit Carson and the same distance above the mouth of Wildhorse Creek.

A vertical rod gage is attached to the highway bridge. Measurements are made from the bridge to which gage is attached and by wading at various sections.

The channel is sandy and shifting and is dry during a greater part of the year.

Discharge measurements of Big Sandy Creek at Kit Carson, Colo., in 1910.

Date.	Hydrographer.	Width.	Area of action.	Gage height.	Dis- charge.
May 19 June 16 July 31 Aug. 5 6 Nov. 27	G. H. Russell	315 320	216 223	2.14 2.18	Secft. (a) (a) (a) 430 454 (a)

a Dry.

Daily gage height, in feet, of Big Sandy Creek at Kit Carson, Colo., for 1910.

Day.	Apr.	Aug.	Day.	Apr.	Aug.
1 2 3 4 6 7		$\begin{array}{c} 0.95 \\ 1.45 \\ 1.3 \\ 1.15 \\ 2.35 \\ 2.05 \\ 1.5 \end{array}$	16 17 18 19 20 21 22	$1.40 \\ 1.6 \\ 1.45 \\ 1.4 \\ 1.35 \\ 1.$	
89 9		1.3 1.3 1.25 1.15 .95	23. 24. 25. 26. 27.	1.3 1.2 1.0	
13 14 15			28 29 30 31		

[Cyrus Platner, observer.]

NOTE.-Dry from Apr. 11 to 14, 26 to July 31, Aug. 13 to Dec. 31.

BIG SPRING CREEK NEAR ARENA, COLO.

This station, which was established April 11, 1910, about 2 miles south of Arena and about 7 miles from Kit Carson, stations on the Kansas City & Denver branch of the Union Pacific Railroad, is about 3 miles above the mouth of the creek and is below all tributaries.

The gage is a vertical rod fastened to the left bank. Measurements of discharge are made by wading near the gage. The channel at moderate stages is crooked and made up of a series of holes and riffles. At high stages the water overflows both banks and spreads over a wide.flat valley. The stream bed is of clay and sand.

The gage is at a pool and, therefore, when there is no flow the reading varies owing to evaporation. The gage was read from April 11 to November 5, but as no discharge measurements were made the readings are of little value. From the observer's notes as to dry periods, and estimates of the few observed floods on this stream the flow for the following periods is estimated by C. E. Turner:

June 15 to July 9, no flow. July 31 to August 1, 100 second-feet, mean for the 2 days. August 2 to August 18, 7.35 second-feet, mean for the 17 days. August 19 to September 19, no flow. September 20 to September 29, 10 second-feet, mean for the 10 days. September 30 to November 5, no flow.

The total run-off for above periods is 850 acre-feet. The flow for periods April 11 to June 14 and July 9 to 30 have not been estimated, but it is probable if there was any flow it was very small.

Daily gage height, in feet, of Big Spring Creek near Arena, Colo., for 1910.

Day.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.
1		1.4 1.4 1.4	1.4 1.4 1.4 1.4 1.4	1.2 1.2 1.2 1.2	$1.5 \\ 1.45 \\ 1.4 \\ 1.4 \\ 1.55$	$1.2 \\ 1.2 $	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	1.5 1.5 1.5 1.5 1.5 1.5
6 7 8 9 10		$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	1.2 1.2 1.2 1.2 1.4	$2.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 $	$1.2 \\ 1.2 $	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	
11 12 13 14 15	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	1.4 1.4 1.4 	1.4 1.4 	$1.3 \\ 1.25 \\ 1.3$	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$	$1.4 \\ 1.4 \\ 1.4 \\ 1.5 \\ 1.5 \\ 1.5$	
16 17 18 19 20	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	1.4 1.4 1.4	1.3 1.3	1.4 1.4 \dots 1.3	$1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2$	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3$	$1.5 \\ 1.5 $	
21	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	1.4 1.4 1.4 1.4 1.4 1.4	1.3 1.3 1.2	1.3 1.3 1.3	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$	$1.3 \\ 1.3 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \end{cases}$	$1.5 \\ 1.5 $	· · · · · · · · · · · · · · · · · · ·
26	1.4 1.4 1.4 1.4	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4$	1.2 1.2 1.2	1.3 1.3 1.5	$1.2 \\ 1.2 $	$1.7 \\ 1.7 \\ 1.6 \\ 1.5 \\ 1.4 \\ \cdots \\ \cdot$	$1.5 \\ 1.5 $	

[W. E. Misner and James Cook, observers.]

54

LOWER MISSISSIPPI BASIN.

CANADIAN RIVER DRAINAGE BASIN.

DESCRIPTION.

Canadian River (frequently called Red River in New Mexico) rises in the Cimarron Mountains in Colfax County, N. Mex., flows southward across Mora and San Miguel counties, then turns and flows eastward across northern Texas and through Oklahoma, uniting with Arkansas River about 80 miles above Fort Smith, Ark. The total length of the river from Raton Pass, N. Mex., to the mouth is about 750 miles. Altitudes within the basin range from about 9,000 feet at the head to 460 feet at the mouth. Some of the highest peaks in the Cimarron Range are more than 12,000 feet in elevation.

Cimarron, Mora, and Sapello rivers and Ute Creek, all in New Mexico, are the principal perennial tributaries, but many of the intermittent tributaries, such as the Sweetwater, carry large quantities of flood water. The total drainage area of the river in New Mexico is about 13,000 square miles. The North Fork of the Cimarron (frequently called Beaver Creek at its head) is the most important of the lower tributaries. Its drainage area lies just south of the Cimarron (Dry). Along the headwaters of the Canadian in New Mexico is a considerable area of timberland and woodland, and the drainage area in eastern Oklahoma is also wooded. The remainder of the area in New Mexico, Texas, and Oklahoma consists of dry plains.

The annual precipitation ranges from 20 inches or more in the mountainous sections to 12 inches or less on the plains of New Mexico and Texas; in Oklahoma the range is from 20 inches in the western part to 35 inches near the mouth of the stream. Except along the lower course the run-off is very uncertain and the river bed is frequently dry for long periods; at other times it carries very disastrous floods. The winters along this stream are mild, and the stream flow is rarely affected by ice, except at the higher altitudes.

Many tracts of land are irrigated along the upper Canadian and tributaries, although the aggregate area is only a few thousand acres; the number and acreage of these tracts are, however, rapidly being increased. Good storage sites are afforded by a number of natural lakes and basins, and reservoirs will eventually be constructed on the Cimarron, Vermejo, Ute Creek, Sapello, Mora, and other tributaries, which will provide for the irrigation of hundreds of thousands of acres.

Owing to the intermittent character of the stream, opportunities for water-power development are not very good except on the upper reaches of the mountain streams, but these opportunities will be somewhat increased by storage reservoirs. It may eventually be possible to develop commercially over 25,000 horsepower in New Mexico. At present no important water-power plants are in operation.

CANADIAN RIVER AT LOGAN, N. MEX.

This station, which was reestablished December 22, 1908, for the purpose of determining the amount of water available for storage and irrigation, is located at the Chicago, Rock Island & Pacific Railway bridge, 1 mile south of the depot at Logan, N. Mex. It is near the location of the bridge and gage used by the United States Reclamation Service from June 29, 1904, to February 26, 1905, which were washed out by flood, but the oresent gage has no determined relation to that gage.

The station is about 5 miles below the mouth of Ute Creek and 3 miles above the mouth of Arroyo Largo. The drainage area is about 12,000 square miles.

The stream flow is not affected by ice and very little by artificial control above. The extremely shifting nature of the stream bed makes it necessary to obtain a large number of discharge measurements in order to obtain the best results. It is usually difficult to make discharge measurements at higher stages on account of the sudden rise and equally rapid subsidence of the river during floods. High-water measurements must be made by floats, because of a large amount of drift in the river. Low-water measurements are made by wading, and those at ordinary stages from a cable 450 feet upstream from the railroad bridge, which is 140 feet high.

Numerous rod gages, secured to old piling under the bridge, were used during 1909, but all gage readings have been referred to the datum of the two-railroad gages, which are at the same datum and are painted on the third concrete pier from each bank. On August 5, 1910, a Friez automatic gage was installed about three-fourths of a mile above the old gage. The datum of the Friez gage bears no relation to that of the rod gage.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Jan. 31 Mar. 15 May 7 June 18 18 A ug. 24 Oct. 14 Dec. 21	G. H. Russell	86 115 275 249 137 8	Sq. feet. 77 113 144 239 227 111 2.5	Feet. 3.45 4.28 4.10 3.98 a 3.75 a 3.8	Secft. 107 134 323 612 540 230 1.8 b 5

Discharge measurements of Canadian River at Logan, N. Mex., in 1910.

^a From automatic gage.

Daily gage height, in feet, of Canadian River at Logan, N. Mex., for 1910.

[I.	F.	Romine,	0	bserver.]
-----	----	---------	---	-----------

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	4. 35 4. 95 5. 25 5. 35 5. 25	3. 25 3. 25 3. 25 3. 25 3. 25 3. 25	3. 05 3. 05 3. 05 3. 05 3. 05 3. 1	3.4 3.7 3.8 3.8	4.1 4.4 4.4 4.4 4.4	3.8 3.8 3.95 4.15 4.5	2.6 3.3 4.0 3.05 2.9		$ \begin{array}{c} 6.45 \\ 6.45 \\ 6.35 \end{array} $	4.5 4.6 4.5 4.2 4.1	4.1 4.1 4.0 4.0 4.0	3.8 3.8 3.8 3.8 3.8 3.8
6 7 8 9 10	5. 05 5. 05 5. 05 4. 95 4. 95	3. 25 3. 15 3. 15 3. 20 3. 2	3.1 3.1 3.15 3.15 3.2	3.8 3.8 3.8 2.9 2.9	4.4 4.3 3.9 3.6 3.6	4.8 4.2 3.8 3.7 3.6	2.9 2.9 3.3 4.2 4.85	7.2 7.4 7.15 7.3 8.3	6.25 6.1 6.0 5.9 5.8	4. 0 3. 8 3. 8 3. 8 3. 75	4.0 4.0 4.0 4.0 4.0	3.8 3.8 3.8 3.8 3.8 3.8
11 12 13 14 15	5.05	3. 25 3. 25 3. 25 3. 25 3. 35	3.25 3.25 3.35 3.45	2.9 3.6 3.6 3.6 3.6 3.6	3.6 3.5 3.6 3.8 3.6	3.4 3.4 3.1 3.0 6.8	4.0 3.8 3.5 3.5 3.35	7.6 8.15 7.15 9.5 8.9	5.7 5.6 5.6 5.6 5.6	3.85 3.85 3.8 3.75 3.8	4.0 4.0 4.0 4.0 4.0	3.8 3.8 3.8 3.8 3.8 3.8
16 17 18 19 20	$5.05 \\ 5.05 \\ 5.15 $	3. 35 3. 35 3. 35 3. 25 3. 25		3.6 3.4 3.4 3.4 3.6	3.5 3.7 3.9 3.6 3.5	7.6 4.1 3.8 3.8 3.7	2.4 3.15 2.9 2.9 2.8	7.6 6.9 9.5 7.7	5.65 	3.8 3.8 3.8 3.8 3.8 3.8	4.0 4.0 4.0 4.0 4.0 4.0	3.8 3.8 3.8 3.8 3.8 3.8
21 22 23 24 25	5.05 4.95 4.95 4.95 4.65	3.2 3.15 3.1 3.1 3.1 3.1		3.6 3.9 3.9 3.9 4.0	3.5 3.5 3.4 3.4 3.3	3.05 2.9 2.55 2.5 2.5 2.5	2.6 2.2 1.9 1.9 3.0		 3. 9 3. 9	3.8 3.8 3.75 3.75 3.75	4.0 4.0 4.0 4.0 4.0	3.8 3.8 3.8 3.8 3.8 3.8
26 27 28 29 30 31	4. 45 4. 2 4. 05 3. 85 3. 75 3. 3			4.0 3.9 4.0 3.85 3.85	3, 3 3, 3 3, 3 3, 3 3, 55 3, 65	2.65 2.8 2.8 2.9 2.65	2.9 2.8 2.35 2.9 2.9 6.0		3.8 3.8 3.8 5.2 4.9	3.83.94.14.24.24.24.2	3.9 3.8 3.8 3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

NOTE.—Gage out Mar. 15–Apr. 2 and June 15–17. Gage heights recorded from railroad gage June 15–17. Gage heights after July 31 were taken on automatic gage and are not comparable with those previous to that date.

Daily discharge, in second-feet, of Canadian River at Logan, N. Mex., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.
1 2 3 4 5	352 805 1,180 1,340 1,180	76 76 76 76 76 76	48 48 48 48 55	100 100 155 178 178	260 375 375 375 375 375	178 178 216 278 425	80 220 540 160 130
6 7	920 920 920 805 805	76 62 62 69 69	55 55 62 69	$178 \\ 178 \\ 178 \\ 32 \\ 32 \\ 32$	375 330 202 135 1 35	650 295 178 155 135	130 130 220 710 1,640
11. 12. 13. 14. 15.	920 920 920 980 1,180	76 76 76 76 92	76 76 92 108	$32 \\ 135 \\ 135 \\ 135 \\ 135 \\ 135 \\ 135 \end{cases}$	135 116 135 178 135	$100 \\ 100 \\ 55 \\ 42 \\ 6,550$	540 410 280 280 235
16 17 18 19 20	$1,180 \\ 920 \\ 920 \\ 1,040 \\ 1,040 \\ 1,040 \end{cases}$	92 92 92 76 76		135 100 100 100 135	116 155 202 135 116	10,800 620 420 420 370	53 185 130 130 110
21 22	920 805 805 805 525	69 62 55 55 55		135 202 202 202 202 230	116 116 100 100 84	300 130 75 65 65	80 30 10 10 150
26	$400 \\ 295 \\ 245 \\ .190 \\ 166 \\ 84$	48 48 48		230 202 230 190 190	84 84 84 126 145	90 115 115 130 90	130 110 47 130 130 3,400

Note.-These discharges are based on a rating curve which is well defined.

I

Month.	Discha	rge in second	l-feet.	Run-off	Accu-
Montu.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January Pebruary Mar. 1–14 April May June June	- 92 - 108 - 230 - 375 - 10,800 - 3,400	84 48 48 32 84 42 10	790 70.8 64.4 149 177 778 340	48,600 3,930 1,790 8,870 10,900 46,300 20,900	A. A. A. A. B. C.
The period	· · · · · · · · · · · · · · · · · · ·	·····		141,000	

Monthly discharge of Canadian River at Logan, N. Mex., for 1910.

Note.—Sufficient measurements, referred to the Friez gage, have not been obtained to make estimates after July.

CHICO RICO CREEK NEAR RATON, N. MEX.

This station, which was established July 29, 1910, is located on the St. Louis, Rocky Mountain & Pacific Railway bridge, 10 miles southeast of Raton, N. Mex.

A Friez automatic gage is secured to the bridge, and measurements are made by wading at low stages and from the bridge at high stages.

Discharge measurements of Chico Rico Creek near Raton, N. Mex., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Aug. 26 Oct. 7	W. W. Mills. G. H. Russell.	Feet. 8.8 1.6	Sq. ft. 4. 4 . 36	Feet. 1.60 1.54	Secft. 1.6 .4

Daily gage height, in feet, of Chico Rico River near Raton, N. Mex., for 1910. [Jay Walrath, observer.]

Day.	Jul y .	Aug.	Sept.	Oct.	Nov.	Dec.	Day.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ \end{array} $		1.4 2.0 1.5 2.4 2.7	$1.65 \\ 1.65 \\ 1.6 \\ 1.$	$1.55 \\ $	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6$	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6$	16 17 18 19 20		$1.6 \\ 1.6 $	$1.55 \\ 1.55 \\ 1.6 \\ 1.$	$1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 $	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6$	$1.6 \\ 1.6 $
6 7 8 9 10		$1.9 \\ 1.85 \\ 1.8$	$1.6 \\ 1.6 $	$1.55 \\ $	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6$	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6$	21 22 23 24 25		$1.6 \\ 1.6 \\ 1.7 \\ 1.65 \\ 1.65 \\ 1.65$	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 $	$1.5 \\ 1.55 \\ 1$	$1.6 \\ 1.6 $	$1.6 \\ 1.6 $
11 12 13 14 15		1.9 2.0 1.85 2.0 1.7	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.55$	$1.55 \\ $	$1.6 \\ 1.6 $	$1.6 \\ 1.6 $	26 27 28 29 30 31	1.6	$1.65 \\ 1.6 \\ 1.65 \\ 1.65 \\ 1.65 \\ 1.6 \\ $	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\$	$1.55 \\ 1.55 \\ 1.55 \\ 1.6 \\ 1$	$1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\$	$1.6 \\ 1.6 $

UNA DEL GATO CREEK NEAR RATON, N. MEX.

This station was established May 3, 1910, at a point three-fourths of a mile above the St. Louis, Rocky Mountain & Pacific Railway bridge, 2 miles above A. J. Meloche's ranch and 18 miles east of Raton, N. Mex. A Friez automatic gage is attached to a tree on the left bank. Measurements are made by wading.

Discharge measurements of Una del Gato Creek near Raton, N. Mex., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
May 3 Aug. 26 Oct. 8	J. B. Stewart . W. W. Mills. G. H. Russell	Fcet. 9.4	Sq. ft. 2.2 1.4	Feet. 0.90 .8 .75	Secft. 2.0 .3 a.3

^a Estimated.

Daily gage height, in feet, of Una del Gato Creek near Raton, N. Mex., for 1910.

Day.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.
1 2	0.9	0.85 .85 .85 .9 .85	$0.95 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	0.8 .8 .95 .95 .95 .9	0.8 .8 .8 .8	0.75 .8 .8 .8 .8	0.8 .8 .8 .8 .8
6	.85 .8 .8 .8 .8 .8	. 85 . 85 . 85 . 85 . 85 . 85	1.0 1.0 1.0 1.0 1.0 1.0	.8 .8 .8 .8 1.05	.8 .8 .8 .8	.8 .8 .8 .8	.8 .8 .8 .8
11 12 13 14	.75 .75 .8 .75 .75 .7	.85 .8 .8 .8 .8 .8	$1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	$.95 \\ 1.0 \\ .8 \\ 1.1 \\ .95$.8 .8 .8 .8	.8 .8 .8 .8	.8 .8 .8 .8
16 17 18 19 20	.7 .7 .7 .7 .7	. 8 . 8 . 85 . 85 . 85	1.0 .9 .9 .9 .9	.9 .8 .8 .8 .8	.8 .8 1.0 .8 .75 .75 .75	.8 .8 .8 .8	.8 .8 .8 .8 .85
21	$.75 \\ 1.05 \\ 1.1 \\ 1.15 \\ 1.$.85 .85 .9 .95 .95	.9 .9 .9 .9 .9	.8 .8 .8 .85 .85	.75 .18 .75 .75 .75	.85 .8 .8 .8 .8	.9 .9 .9 .9 .9
26 27	$1.1 \\ 1.05 \\ 1.05 \\ .95 \\ .9 \\ .85$.95 .95 .95 .95 .95	.85 .85 .85 1.0 .8 .8	.8 .75 .8 .8 .8 .8	.75 .75 .75 .75 .75 .75	.8 .75 .75 .8 .8 .8	.8 .85 .8 .8 .8 .8

[A. J. Meloche and W. J. Butt, observers.]

NOTE.-The stream was frozen during December.

CIMARRON RIVER AT UTE PARK, N. MEX.

This station, which was established July 14, 1907, to determine the amount of water available for storage and irrigation, is located at the highway bridge 300 feet north of the railway station at Ute Park, N. Mex., the terminus of the St. Louis, Rocky Mountain & Pacific Railway. It has been maintained in cooperation with the Territorial engineer of New Mexico.

The station is one-half mile below the mouth of Ute Creek and is below most of the mountain tributaries except the Rayado, which enters several miles below. The drainage area above the station is over 200 square miles. Very little water is diverted above this point, but most of the normal flow of the stream is used for irrigation in the valley below.

The Eagles Nest reservoir site, which has a capacity of over 100,000 acre-feet, is situated in the canyon a few miles upstream from this station and is capable of storing the entire run-off.

Ice is found on this stream during the winter months, but usually has very little effect on the open-channel flow.

The datum of the rod gage has remained constant since the station was established. In September, 1909, a Friez automatic gage was installed at the same location and datum. High-water measurements are made at the bridge and low-water measurements by wading. The stream bed is fairly permanent, but it is rather rough, making high-water measurements somewhat inaccurate. Results, however, should be very good.

Discharge measurements of Cimarron River at Ute Park, N. Mex., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Jan. 27 27 Mar. 5 May 4 June 14 July 27 Aug. 28 Oct. 3	G. H. Russell do do do J. B. Stewart do	$16.5 \\ 19 \\ 31 \\ 22.5 \\ 15.5 \\ 19.1 \\ 20.5$	$\begin{array}{c} Sq. ft.\\ 23. 2\\ 23. 2\\ 34\\ 41\\ 15\\ 7. 6\\ 9. 0\\ 15. 1\\ 9. 5\end{array}$	Feet. 0.48 .45 .60 .98 .47 .20 .35 .35 .30	Secft. 23.2 22.4 44.0 136 17.0 3.9 8.2 8.3 4.4

Daily gage height, in feet, of Cimarron River at Ute Park, N. Mex., for 1910. [Mrs. R. P. Woodward, observer.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	0.45 .8 .6 .55 .55	0.4 .35 .35 .35 .35 .35	0.4 .4 .55 .6 .7	0.85 .8 .7 .7 .65	.10	0.55 .5 .5 .5 .5 .45	0.35 .3 .3 .3 .3	0.2 .2 .3 .35 .4	0.4 .35 .35 .35 .35 .35	0.25 .25 .25 .25 .25 .25 .2	0.4 .4 .4 .4 .4	0.3 .4 .55 .45 .15
6 7 8 9 10	.55 .55 .55 .55 .55	.4 .35 .35 .35	$1.0 \\ 1.05 \\ 1.0 \\ .85 \\ .75$.7 .7 .8 .8	.9 .85 .8 .75 .75	.45 .4 .35 .35	.25 .25 .25 .25 .25 .25	.35 .3 .3 .35 .35	.35 .35 .35 .35 .35	$.25 \\ .25 \\ .25 \\ .3 \\ .3 \\ .3$.4 .4 .35 .35 .35	. 15 . 15 . 2 . 25 . 35
11 12 13 14 15	.55 .55 .55 .55 .4	.35 .35 .35 .4 .35	.8 .7 .75 .75 .7	.9 .85 .9	.75 .75 .75 .75 .8	.35 .3 .3 .5 .55	.35 .35 .4 .35 .35	.4 .45 .4 .45 .4	.3 .3 .3 .35	.3 .3 .3 .3 .3	.4 .35 .5 .5 .45	.35 .35 .3 .3 .3
16 17 18 19 20	.4 .35 .4 .4	.25 .25 .25 .3 .3	.7 .7 .75 .8 .85	.85 .9 .95 1.0 1.05		.5 .45 .45 .4 .4	.35 .35 .35 .35 .35 .35	.4 .4 .4 .4	.4 .35 .35 .35 .35	.3 .35 .4 .45 .45	.55 .45 .45 .4 .4 .4	.35 .3 .3 .3 .3
21 22 23 24 25	.4 .4 .4 .4 .4	.3 .35 .45 .45	.85 .9 .9 .95 .9	1.05 1.05 1.05 1.0 1.0 1.15		.4 .35 .35 .35 .4	.35 .3 .25 .3 .3	.4 .4 .45 .45 .45	.35 .35 .35 .3 .3	.4 .4 .45 .4 .4	.35 .4 .35 .4 .4 .4	.3 .3 .3 .35 .35
26 27 28 29 30 31	.35 .35 .4 .4 .4 .4 .4	.35 .35 .35	.9 .85 .9 .8 .85 .85	1.15 1.15 1.15 1.30 1.20		.4 .4 .4 .35	$ \begin{array}{r} .3 \\ .2 \\ .15 \\ .25 \\ .25 \\ .25 \\ .25 \\ $.4 .35 .35 .35 .35 .35 .4	.3 .25 .25 .3 .3	.4 .4 .4 .4 .4 .4 .4	.4 .35 .35 .25 .25	.35 .35 .35 .35 .35 .35 .35

NOTE.-Affected by ice Jan. 1-14 and Dec. 17-31.

60

Daily discharge, in second-fe	t, of Cimarron	River at Ute Parl	c, N. Mex., for 1910.
-------------------------------	----------------	-------------------	-----------------------

			~						<u> </u>			
Day.	o Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	16 16 16 16 16	16 13 13 13 13	16 16 36 44 64	101 88 64 64 54	125 112	31 25 25 25 25 20	8.4 5.8 5.8 5.8 5.8	3.3 3.3 5.8 8.4 11	11 8.4 8.4 8.4 8.4	4.6 4.6 4.6 4.6 3.3	11 /1 11 11 11	$5.8 \\ 11 \\ 26 \\ 16 \\ 2.8 \end{cases}$
6 7 8 9 10	16 16 16 16 16	16 16 13 13 13	141 154 141 101 76	64 64 88 88	100 87 75 65 65	20 15 16 12 12	4.6 4.6 4.6 4.6 4.6	8.4 5.8 5.8 8.4 8.4	8.4 8.4 8.4 8.4 8.4	4.6 4.6 5.8 5.8	11 11 8.4 8.4 8.4	2.8 2.8 3.3 4.6 8.4
11 12 13 14 15	16 16 16 16 16	13 13 13 16 13	88 64 76 76 64	114 101 114 110 106	65 66 66 66 78	12 9.5 10 27 26	8.4 8.4 11 8.4 8.4	11 16 11 16 11	5.8 5.8 8.4 5.8 8.4	5.8 5.8 5.8 5.8 5.8 5.8	11 8.4 20 20 16	8.4 8.4 5.8 5.8 5.8
16. 17. 18. 19. 20.	16 16 13 16 16	8 8 10 10	64 64 76 88 101	101 114 128 141 154		20 16 16 11 11	8.4 8.4 8.4 8.4 8.4	11 11 11 11 11 11 -	11 8.4 8.4 8.4 8.4	5.8 8.4 11 16 16	26 16 16 11 11	8.4 8 8 8 8
21 22 23 24 25	16 16 16 16 16	10 10 13 22 22	101 114 114 128 114	154 154 154 141 182	· · · · · · · · · · · · · · · · · · ·	11 8.4 8.4 8.4 11	8.4 5.8 4.6 5.8 5.8	11 11 16 16 11	8.4 8.4 5.8 5.8	11 11 16 11 11	8.4 11 8.4 11 11	8 8 8 8
26	13 13 16 16 16 16	13 13 13 	114 101 114 88 101 101	182 182 182 226 197	24 31 31	11 11 11 11 8.4	5.8 3.3 2.8 2.8 4.6 4.6	11 8.4 8.4 8.4 8.4 11	5.8 4.6 4.6 5.8 5.8	11 11 11 11 11 11 11	11 8.4 8.4 4.6 4.6	8 8 8 8 8

Note.—These discharges were obtained as follows: Jan. 1-14, estimated on account of ice conditions; Jan. 15-May 4, from a rating curve which is fairly well defined; May 5-June 14, indirect method for shifting channels; June 15-Dec. 17, from a rating curve which is fairly well defined; Dec. 17-31, estimated on account of ice conditions.

1	Discha	rge in second	Run-off	Accu-	
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January. February. March April. May. June. June. July. August. September. October. November. December.	16 154 226 125 31 11 16 11	13 8 16 54 24 2.8 3.3 4.6 3.3 4.6 3.3 4.6 3.3 6 2.8	$\begin{array}{c} 15.7\\ 13.1\\ 88.4\\ 122\\ 70.4\\ 15.3\\ 6.30\\ 9.97\\ 7.63\\ 8.36\\ 11.5\\ 7.94 \end{array}$	965 728 5,440 7,260 2,100 910 387 613 454 514 684 454	D. B. B. B. B. B. B. B. B. B.
The period				20, 500	

Monthly discharge of Cimarron River at Ute Park, N. Mex., for 1910.

RAYADO RIVER AT ABREU'S RANCH, NEAR CIMARRON, N. MEX.

This station, which was established during the first part of 1908 as a temporary station by the New Mexico Hydrographic Survey to determine the amount of water available for irrigation, is located three-fourths of a mile upstream from Abreu's ranch, which is 20 miles west of Springer and 12 miles southwest of Cimarron, the two nearest railroad points. Daily gage readings were taken during 1909 by the Territorial survey. In October, 1909, when the United States Geological Survey abandoned the station on the Rayado at Miami ranch, near Springer, it took over the station at Abreu's ranch.

The station is now maintained in cooperation with the Territorial engineer of New Mexico.

The river receives no tributaries for several miles above or below the station, and the station is above all irrigation diversions.

The datum and location of the gage has remained constant during the maintenance of the station. On November 27, 1909, a chain gage was installed at the same location and datum as the rod gage.

Measurements of discharge are made by wading in the vicinity of the gage or from a foot log about 100 yards upstream. Fair results should be obtained. Thin ice is sometimes found at the station during the winter months.

Discharge measurements of Rayado River at Abreu's ranch, near Cimarron, N. Mex., in 1908 and 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
1908. June 17 19 24 26 29 Aug. 10 Oct. 31	R. L. Cooperdo. do. do. do. do. do. do.	23 23 23	Sq. ft. 9.7 9.2 8.0 9.8 29.1 11.7 7.3	Feet. 1.30 1.25 1.30 2.20 1.25 1.15	Secft. 7.8 7.3 5.1 7.4 a 103 6.1 3.0
1910. Jan. 28 Mar. 4 May 4 June 14 27 Aug. 29	G. H. Russell	$13 \\ 13 \\ 13 \\ 14.8 \\ 13 \\ 12.5 \\ 16.6$	13 8 18.8 8.4 5.0 5.0	$\begin{array}{c} 1.32\\ 1.35\\ 1.35\\ 1.78\\ 1.35\\ 1.25\\ 1.25\\ 1.25\\ 1.25\\ \end{array}$	13 7.8 7.7 49 8.3 3.6 3.0

a Measured at Abreu's footbridge; 19.8 second-feet were being diverted between the gage and the point of measurement, making a total discharge of 123 second-feet past the gage.

NOTE.—The measurements for 1908 published here were inadvertently omitted from Water-Supply Paper 247.

Daily gage height, in feet, of Rayado River at Abreu's ranch, near Cimarron, N. Mex., for 1910.

(Robert Parker. observer.)

Day.	Jan.	Feb.	Apr.	May.	June.	July.	Aug.
1 2	1.40 1.38	$1.32 \\ 1.32$	1.15			1.25	1.4
3 4 5.	$1.28 \\ 1.29 \\ 1.30$	$1.35 \\ 1.33 \\ 1.33$	$1.35 \\ 1.25 \\ 1.0$	1.8 1.7		1.2	1.3 1.35
6	1.29	1.15	1.4	1.7		1.2	1.3
7 8 9	1.29 1.29 1.40	$1.20 \\ 1.28 \\ 1.16$	$1.1 \\ 1.3 \\ 1.3$	1.45 1.45 1.4			1.3
10	1.42	1.30	1.5	1.4		1.2	1.7
11 12 13	$1.60 \\ 1.62 \\ 1.32$	$1.20 \\ 1.21 \\ 1.30$	$1.35 \\ 1.45 \\ 1.55$	$1.5 \\ 1.45 \\ 1.25$	• • • • • • • • • • • • • • • • • • •	1.25	1.45
14 15	1.34 1.34	1.25 1.16	1.55	1.2 1.2	1.35	1.25	1.3

62

Day.	Jan.	Feb.	Apr.	May.	June.	July.	Aug.
6	1.35	1.17	1.55	1.1	1.35	1.2	
7	1.28 1.35	$1.12 \\ 1.13$	$1.6 \\ 1.6$	$1.1 \\ .85$	1.35	1.2	1.2
9	$1.35 \\ 1.43$	$1.10 \\ 1.15$.9	1.3	1.3	1.2
1	1.30	1.19		.9			1.2
2	1.37	1.09		.7 .65	1.3	1.3	1.2
4	1.36 1.36				1.3	1.35	
6	1.30			· · · · · · · · · · · · · · · · · · ·	1.25	1.3	
7	1.38 1.32			••••••	1.2		
	1.35					$1.3 \\ 1.3$	
)	1.30				1.0	1.0	

Daily gage height, in feet, of Rayado River at Abreu's ranch, near Cimarron, N. Mex., for 1910—Continued.

NOTE.-Gage heights for January and February somewhat affected by ice.

Daily discharge, in second-feet, of Rayado River at Abreu's ranch, near Cimarron, N. Mex., for 1910.

Day.	Jan.	Feb.	Apr.	May.	June.	July.	Aug.
5-	U CARA	2000				·	0-
1	12	13	1.0			4.2	11
2	11	13	1.7			3.3	8
3	10	15	8			1.7	5
4	10	14	3.3	52		1.7	8
ð	10	14	0	39		1.7	6.5
6	10	4	11	39		1.7	5
7	10	6	4	14		1.7	5
8	10	10	5	14		1.7	5
9 10	10	4	5	11 11		1.7	22 39
	10	12	18			1.7	
11	10	6	8	18.		2.5	16
12	10	6	16	14		3.3	10
13	13	12	23	3.3 1.7		3.3 3.3	5
15	14 14		23 16	1.7	8	2.5	5
					-	1	
16	15	4	23	.4	8	1.7	4.2 3.3 3.3
17 18	10 15	3	28 28	.4	8 8	1.7 1.7	3.3
18 19	15	2	28	0	6.5	5	3.3
20	15	1 3		Ő	5	5	3.3
	10	-		-	-	-	3.3
21	12	52		0	5 5	5 5	3.3
23	14	2	•••••	0 0	5	6.5	3.3
24	14			U	5	8	3
25.	14				4.2	6.5	3
26	14				3.3	5	3
27	14				2.5	5	
28	13				1.7	5	
29	15				3.4	5	3
30	12				5	5	3
31	9					5	3
		۱	l	,	1		'

NOTE.—These discharges were obtained as follows: Jan. 1–Feb. 22, estimated on the basis of one measurement made during the period. Apr. 1–May 17 and June 14–Aug. 31, from a rating curve which is well defined. May 18–22, estimated. Discharges for days when gage was not read, interpolated.

Monthly discharge of Rayado River at Abreu's ranch, near Cimarron, N. Mex., for 1910.

	Discha	Run-off	Accu-		
Month.	Maximum.	Minimum.	Mean.	(total in acre-ieet).	racy.
January. Feb. 1-22 Apr. 1-18. May 4-23 June 14-30. July August.	28 52 8 8	0 0 1.7 1.7 3	$12.2 \\ 7.5 \\ 12.1 \\ 11.0 \\ 5.38 \\ 3.61 \\ 6.68$	750 327 432 436 182 222 411	D. D. B. C. C. C. C.

MORA RIVER AND LA CUEVA CANAL AT LA CUEVA, N. MEX.

This station, which was established August 25, 1903, primarily to determine the amount of water available for storage, is located at the wagon bridge at La Cueva, N. Mex., in the Mora land grant, 26 miles north of Las Vegas, N. Mex. Since July, 1907, the records have been obtained in cooperation with the Territorial engineer of New Mexico.

The station is a few miles above the mouth of the Cebolla and a short distance downstream from the intake of La Cueva Canal, and just below the canal wasteway. This canal carries water for irrigation, and during the nonirrigating season it is used as a feeder for a reservoir below.

The canal rod gage is located at a footbridge below the wasteway, just north of the gaging station on the river. The datum of the canal gage has remained constant, and gage readings have been taken continuously since the station was established whenever there was any water in the canal. Apparent discrepancies in the gagings of the canal are accounted for by the fact that the bed of the canal occasionally contains a considerable deposit of silt, which is cleaned out at intervals.

A little water is diverted above the station for irrigation in addition to that taken out by La Cueva canal, and considerable land is irrigated below the station. By developing the available storage at reservoir sites in that locality it will be possible to utilize the entire flow of the stream for irrigation.

The original gage was washed out in the flood of September 29, 1904, and was replaced by another at practically the same section on April 29, 1905. The datum of this staff gage, which is still in use, is 1.32 feet above that of the original gage.

Fair measurements can be made by wading at low stages; highwater measurements must be corrected for the skew of the bridge. The channel is subjected to some shifting, but fair results should be obtained by making frequent measurements at the higher stages.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Feb. 6 ^a Mar. 7 Apr. 26 June 12 Aug. 12 30 Oct. 21 Nov. 30	G. H. Russell. Russell and Strong. do. J. B. Stewart. do. W. W. Mills. G. H. Russell. C. B. Digby.	$19 \\ 19 \\ 33.5 \\ 10.5 \\ 18 \\ 14.6$	Sq.ft. 14.6 14.7 40 3.5 8.5 4.6 7.3 5.6	$\begin{array}{c} \textit{Feet.} \\ 1.00 \\ 1.02 \\ 1.02 \\ 1.80 \\ .62 \\ 1.15 \\ .70 \\ .91 \\ .60 \end{array}$	Secft. 17 20.3 20.5 115 5.3 23.5 3.8 8.75 1.85

Discharge measurements of Mora River at La Cueva, N. Mex., in 1910.

^a Ice along edges of stream.

[Hugh Loudon, observer.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5		0.9 .9 1.1 	0.8 .8 .85 .9 1.0	$1.05 \\ 1.0 \\ 1.0 \\ .95 \\ .9$	1.8 1.7 1.7 1.6 1.6 1.6	$1.2 \\ 1.0 \\ 1.0 \\ 1.05 \\ 1.0$	0.6 .6 .6 .55	1.4 1.1 .9 1.85 1.3	0.55 .55 .6 .6 .6	0.65 .7 .85 .6 .85	0.9 .9 .95 .9 .95	0.9 .9 .6 .75 .7
6 7 8 9 10		1.0 	1.0 1.0 1.0 1.0 1.0	.9 .85 .9 .9 1.15	$1.5 \\ 1.5 \\ 1.45 \\ 1.4 \\ 1.5 \\ 1.5$	$ \begin{array}{r} 1.0 \\ 1.0 \\ .8 \\ .7 \\ .65 \end{array} $.6 .55 .55 .5	1.0 1.0 1.0 .9 1.0	.55 .6 .6 .6	.65 .75 .7 .6 .75	.95 .95 .9 .6 .6	.55 .55 .55 .6 .9
11 12 13 14 15	0.95	.95 1.1 1.0 .85 .75	$1.0 \\ 1.0 \\ 1.1 \\ 1.0 \\ 1.0 \\ 1.0$	$1.15 \\ 1.25 \\ 1.6 \\ 1.$	1.4 1.4 1.5 1.5 1.5	.6 .6 .65 .7 1.2	.5 .5 .65 .5	1.0 1.15 1.1 1.0 1.0	.6 .55 .85 .9	.8 .5 .8 .85 .85	.6 .6 .6 .9	.55 .55 .9 .9
16 17 18 19 20	1.0 1.05 1.0	1.0	$1.0 \\ 1.0 \\ 1.0 \\ .95 \\ 1.15$	$1.5 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.75$	$1.4 \\ 1.4 \\ 1.35 \\ 1.35 \\ 1.25$.95 .85 .75 .75 .75	.5 .5 .5 .5	.95 1.2 1.2 1.2 1.2 .95	.9 .65 .65 .65 .6	.5 .9 .8 .7 .65	.7 .65 .9 .85 .7	.6 .8 .5 .5
21 22 23 24 25	1.0 1.0 1.0	. 95 . 95 . 9 . 85	$1.05 \\ 1.0 \\ 1.1 \\ 1.15 \\ 1.2$	$1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.7 \\ 1.7$	$1.25 \\ 1.3 \\ 1.3 \\ 1.1 \\ 1.1 \\ 1.1$.75 .7 .6 .6 .6	.5 .5 .5 .6	$1.0 \\ 1.0 \\ 1.0 \\ .8 \\ .7$.6 .9 .7 .6 .8	.6 .7 .7 .7 .6	.9 .7 .6 .9	· · · · · · · · · · · · · · · · · · ·
26	$ \begin{array}{c} 1.1 \\ 1.2 \\ 1.0 \\ .8 \\ \end{array} $.9 .9 .9	$1.2 \\ 1.15 \\ 1.0 \\ 1.0 \\ 1.1 \\ .95$	$1.8 \\ 1.85 \\ 1.9 \\ 1.9 \\ 1.85 \\ \dots$	$1.1 \\ 1.0 \\ 1.05 \\ 1.1 \\ 1.1 \\ 1.0$.95 .95 1.0 .8 .65	$ \begin{array}{c c} .5\\.45\\.45\\.5\\2.5\\1.6\end{array} $.7 .7 .75 .75 .7 .55	.85 .85 .9 .65 .65	.9 .9 .95 .95 .95 .95	.65 .55 .6 .85 .6	

NOTE.-Ice conditions Jan. 1-13, Feb. 3-8, 16-20, and Dec. 18-31.

Daily discharge, in second-feet, of Mora River at La Cueva, N. Mex., for 1910.

-			-	• -								
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	10 10 10 10 10	$ \begin{array}{r} 11 \\ 11 \\ 12 \\ 14 \\ 16 \end{array} $	8 8 10 12 18	28 24 24 21 19	115 102 102 90 90	46 28 28 32 28	2 2 2 2 1	47 20 9 94 34	$0.8 \\ .8 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$	2.1 3 7 1.2 7	9 9 12 9 12	9 9 1.2 .8 3
6 7 8 9 10	10 10 10 10 10	17 15 15 15 18	18 18 19 19 19	19 16 19 19 39	78 78 72 66 78	$ \begin{array}{r} 28 \\ 28 \\ 14 \\ 9 \\ 6 \end{array} $	$21 \\ 1 \\ 1 \\ .5 \\ 1$	14 14 14 9 14	$ \begin{array}{r} .8 \\ 1.2 \\ 1$	2.1 4 3 1.2 4	$12 \\ 12 \\ 9 \\ 1.2 \\ 1.2 \\ 1.2$.8 .8 1.2 9
11 12 13 14 15	10 10 10 11 11	15 24 18 10 6	20 20 27 20 20	39 48 87 87 87	66 66 78 78 78	5 5 7 9 44	$1\\1\\3\\.5\\.5$	14 23 20 14 14	1.2 1.2 .8 7 9	5 5 7 7	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 9$.8 .8 9 .5
16 17 18 19 20	14 14 18 15 15	6 6 8 10 12	20 21 21 18 33	75 89 89 89 108	66 66 61 61 51	$ \begin{array}{r} 23 \\ 16 \\ 10 \\ 10 \\ 8 \end{array} $.5 .5 .5 .5	12 26 26 26 12	$9 \\ 2.1 \\ 2.1 \\ 2.1 \\ 1.2$.5 9 5 3 2.1	$ \begin{array}{c} 3 \\ 2.1 \\ 9 \\ 7 \\ 3 \end{array} $	$1.2 \\ 5 \\ .5 \\ .5 \\ 1$
21 22 23 24 25	21 15 15 15 15	15 15 12 10 10	25 22 29 33 39	114 114 114 114 102	51 56 36 36	9 7 3 3 3	.5 .5 .5 1.5	14 14 14 5 3	1.2 9 3 1.2 5	1.2 3 3 1.2	9 3 1.2 1.2 9	1 1 1 1
26 27 28 29 30 31	$22 \\ 22 \\ 29 \\ 16 \\ 6 \\ 10$	12 12 12 	39 35 23 23 32 21	$115 \\ 122 \\ 128 \\ 128 \\ 122 \\ 122 \\ \dots$	36 28 32 36 36 28	$20 \\ 20 \\ 22 \\ 10 \\ 4$	0 0 0 186 68	3 3 4 3 .8	7 7 9 2.1 2.1	9 9 12 12 12 12 12 12	2.1 .8 1.2 7 1.2	1 1 1 1 1

Note.—These discharges were obtained as follows: Jan. 1-13, Feb. 3-5, 16-20, and Dec. 20-31, estimated on account of ice. Jan. 14-Feb. 2 indirect method for shifting channels. Feb. 6-Mar. 7, based on a rating curve which is not well defined. Mar. 8-Apr. 26, indirect method for shifting channels. Apr. 27-June 12, based on a rating curve which is not well defined. June 13-Aug. 2, indirect method for shifting channels. Aug. 3-Dec. 19, based on a rating curve which is not well defined. Discharges interpolated for all other days for which no gage heights are given.

8825°-wsp 287-11-5

•

	Discha	rge in second	Run-off (total in	Accu-	
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January. February. March April. May. June. July August. September October. November. December.	$\begin{array}{c} 24\\ 39\\ 128\\ 115\\ 46\\ 186\\ 94\\ 9\\ 12\\ 12\\ 12\\ 12\end{array}$	8 16 28 3 0 .8 .8 .5 .8 .8	13. 4 12. 8 22. 3 73. 3 63. 6 16. 2 9. 05 16. 9 3. 10 5. 04 5. 33 2. 76	$\begin{array}{c} 824\\711\\1,370\\4,360\\964\\556\\1,040\\184\\310\\317\\170\end{array}$	
The year	186	0	20.3	14,700	

Monthly discharge of Mora River at La Cueva, N. Mex., for 1910.

Discharge measurements of La Cueva canal at La Cueva, N. Mex., in 1910.

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Apr. 26 June 12 Aug. 30 Oct. 21 Nov. 30	J. B. Stewart	 Feet. 8.8 8.0 7.1 6.7 8.0	Sq. ft. 7.6 7.3 4.3 4.0 8.8	Feet. 1.18 .86 .60 .43 .60	Secft. 7.6 8.5 7.1 1.5 8.1

Daily gage height, in feet, of La Cueva canal at La Cueva, N. Mex., for 1910.

[Hugh Loudon, observer.]

Day.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5		0.65 .7 .7 .7 .2	0.95 .75 1.1 .85 .9	$1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.25$	1.3 1.2 1.2 1.0 1.2	0.9 .8 .8 .75 .6	1.0	0.65 .65 .8 1.05 1.1	$1.05 \\ 1.05 \\ .5 \\ 1.0 \\ .45$	·····	0.15 .3 .55 .6 .75
6 7 8 9 10	 	.4 .75 .75 .75 .6	$1.05 \\ 1.15 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.0$	$1.2 \\ 1.4 \\ 1.35 \\ 1.4$	1.1 1.0 1.0 .9 .9	.6 .5 .45 .4 .65	1.0 1.0 .95 1.2 1.0	1.0 1.2 1.15 1.1 1.05	1.1 .7 .8 .95 .7	0.6 .6	.6 .55 .5 .5 .05
11 12 13 14 15		.7 .65 .6 1.05	1.15 1.2 1.15 1.0 1.1	1.35 1.4 1.45 1.35 1.2	.8 .95 .95 .9 .85	.5 .6 1.15 .65 .6	$ \begin{array}{c} 1.2\\ 1.05\\ 1.0\\ 1.0\\ 1.0\\ 1.0 \end{array} $	1.05 1.15 .9 .75 .75	.3 .8 .5 .45 .45	.6 .6 .6 .2	.5 .5
16 17 18 19 20	· · · · · · · · · · · · · · · · · · ·	1.0 .75 .8 .8 .2	1.0 1.15 1.1 1.1 1.3	1.15 .9 1.1 1.1 1.1	.9 1.0 .95 .9 .85	.6 .7 .5 .5 .5	1.0 .5 .9 .3 1.1	.55 1.10 .95 1.15 1.10	.8 .6 .6 1.2 1.1	.65 .65 .3 .3 .6	.5 .2 .5 .5
21	.45 .4 .4 .4 .4	.85 .8 .8 1.15 .9	1.1 1.05 1.3 1.25 1.25	1.1 1.15 1.2 1.1 1.15	. 25 . 9 . 8 . 75 . 85	.6 .6 .6 .7 .7	1.1 .7 .7 1.15 1.0	.95 .4 1.0 .7 1.0	.75 1.15 1.1 1.15 .8	.05 .6 .6 .6 .1	
26		.9 1.15 .95 1.1 1.15 .95	$1.25 \\ 1.3 \\ 1.35 \\ 1.25 \\ 1.25 \\ 1.25 \\ \dots$	$1.15 \\1.15 \\1.25 \\1.25 \\1.25 \\1.2 \\1.2 \\1.15 \\$	$1.1 \\ 1.3 \\ 1.2 \\ 1.1 \\ \dots \dots$.6 .5 .45 .4	1.0 .75 1.0 .75 .6 .7	.7 .7 .6 1.0 1.0		.6 .6 .25 .65	

NOTE.--No record for January. Ice Dec. 20-31. Canal was dry on all other days for which no gage heights are given.

Daily discharge, in second-feet, of La	Cueva canal at La	Cueva. N.	Mex., for 1	910 .
--	-------------------	-----------	-------------	--------------

Day.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	0.5 0 0 0 0	2.5 3 3 3 0	5.0 2.8 7.0 3.5 4.3	10.0 8.5 9.0 9.0 10.0	15 13 13 10 14	10 8 8 8 6	0 0 13 0 0	8 8 9 14 15	$10 \\ 10 \\ 2.5 \\ 9 \\ 2$	0 0 0 0 0	2.5 4 7.5 8 8
6 7 8 9 10	0 0 0 0	.5 3.5 3.5 3.5 1.8	6.0 7.5 8.2 8.2 7.5	9 13 12 13 14	12 13 13 8 8	6 4.5 4.0 3.2 6.5	13 13 12 17 13	13 17 16 15 13	10 5 6 8 5	0 0 6 6	8 7.5 7 2
11. 12. 13. 14. 15.	0 0 4.2 1.5 7.0	2.8 2.3 0 1.8 6.8	7.5 8.0 7.5 5.5 6.5	13 14 15 13 11	8 10 10 9 9	$4.5 \\ 6 \\ 15 \\ 6.5 \\ 6$	17 14 13 13 13	13 14 10 9 9	$ \begin{array}{c} 1 \\ 6 \\ 2.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ \end{array} $	6 6 6 2	7 7 0 7 7
16 17 18 19 20	0 0 0 0	6.0 3.0 3.5 3.5 0	5.5 7.3 6.5 6.5 9.5	10 6 10 10 10	10 11 10 10 9	6 7.5 5 5 5	13 5 11 3 15	4 13 9 13 12	5 3 11 10	7 7 3 7	7 3 7 7 5
21 22 23 24 25	0 1.1 1.0 1.0 1.0	4.2 3.5 3.5 8.0 4.5	6.5 6.0 9.5 8.5 8.5	10 11 12 10 11	1 10 8 8 9	6 6 7.5 7.5	15 8 8 15 14	9 2 10 5 10	4.5 10 11 11 6	1 7.5 7.5 7.5 2	5 5 5 5 5
26. 27. 28. 29. 30. 31.	1.0 1.0 1.0	4.5 7.8 5.0 7.0 7.8 5.0	8.5 9.5 10.5 9.0 9.0	11 11 14 14 12 11	14 18 0 16 14	6 5 4 3.5 0 0	14 9 14 9 7 8	5 5 4 9 9	0 0 0 0 0	8 8 3.5 8.5	5 5 5 5 5 5 5 5 5

NOTE .- These discharges were obtained by the indirect method for shifting channels.

Monthly discharge of La Cueva canal at La Cueva, N. Mex., for 1910.

	Discha	rge in second	Run-off	Accu-		
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.	
February March	8 10. 5 15 18 15 17 17 17 11 8. 5 8	0 0 2.8 6 0 0 0 2 2 0 0 0 0	$\begin{array}{c} 0.72\\ 3.70\\ 7.19\\ 11.2\\ 10.4\\ 5.88\\ 10.3\\ 10.1\\ 4.98\\ 4.22\\ 5.37\\ \end{array}$	40 228 428 689 619 362 633 601 306 251 330 4,490	C. C	

SAPELLO RIVER AT LOS ALAMOS, N. MEX.

This station, which was established August 22, 1903, to determine the amount of water available for diversion into the San Guijuella Reservoir for the Las Vegas project, is located about 100 yards upstream from the post office and general store at Los Alamos, N. Mex., 13 miles north of Las Vegas, the nearest railroad point.

The proposed reservoir lies about 6 miles northwest of Las Vegas, has a storage capacity of about 40,000 acre-feet, is to be filled from the Gallinas, Sapello, and other streams in that vicinity, and is to be used for the irrigation of 10,000 acres of land. The station is situated about 4 miles below the mouth of the Manuelitos and a few miles above the junction of the Sapello with Mora River. A considerable portion of the normal flow of the stream is diverted for irrigation above the station.

The original gage was destroyed by a flood on September 29, 1904, and was replaced in April, 1905, by the present chain gage 400 feet upstream and at a different datum. Results for short periods during the winter season are sometimes affected by ice on this stream.

The channel is somewhat shifting in character, and on account of the inadequacy of discharge measurements, especially at the higher stages, results have not been entirely satisfactory. Discharge measurements are made from cable during high stages and by wading at miscellaneous sections during low stages. The cable is located about 200 feet above chain gage.

Discharge measurements	ij si	грешо	niver	ut Los	Aumos,	18.	mex., in 1910	<i>)</i> .

Dischange maggingements of Samelle Diver at Los Alamos N

Date.	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Feb. 6 Mar. 7 Apr. 25 June 12 Aug. 12 30 Oct. 21 Nov. 30	G. H. Russell. Russell and Strong. J. B. Stewart. do. 	$9.5 \\ 12.8 \\ 9 \\ 7.5 \\ 12.4 \\ 6.0$	$\begin{array}{c} Sq.ft.\\ 3.1\\ 4.2\\ 5.5\\ 2.8\\ 1.6\\ 3.0\\ 1.5\\ 2.28\end{array}$	$\begin{array}{c} Feet. \\ -0.08 \\04 \\ +.10 \\20 \\10 \\15 \\20 \end{array}$	$\begin{array}{c} \textit{Secft.} \\ 1.6 \\ 2.3 \\ 7.4 \\ 1.2 \\ 3.1 \\ 1.6 \\ .75 \\ 1.27 \\ \end{array}$

Daily gage height, in feet, of Sapello River at Los Alamos, N. Mex., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1 2 3 4 5	1	-0.1 1 1 1 1	$\begin{array}{r} -0.15 \\15 \\15 \\15 \\15 \\15 \end{array}$	0.0 0 0 05	0.1 .1 .1 .1 .1	0.05 05 05 05 05 1	$ \begin{array}{r} -0.2 \\2 \\2 \\2 \\2 \\2 \\2 \\2 \\ \end{array} $		1	-0.2 2 2 2 2 2	-0.1 1 1 1 1	$-0.2 \\2 \\2 \\15 \\1$
6 7 8 9. 10.	05	1 1 1 1 1	15 0 1 1 1	05 05 0 0 0	.1 .1 .1 .1	1 1 2 2	$\begin{vmatrix} - & .2 \\ - & .2 \\ - & .2 \\ - & .2 \\ - & .2 \\ - & .1 \end{vmatrix}$		2	2 2 2 2 2 2	1 15 2 15 15	1 1 1 1 1
11 12 13 14. 15		1 1 1 1 1	1 1 1 1 1	${0 \\ 0 \\ 0 \\ .1 \\ .2$.1 .1 .1 .1 0	2 2 0 0 .75	$\begin{vmatrix} - & .1 \\ - & .2 \\ - & .2 \\ - & .2 \\ - & . $		2 2 2 15 1	2 2 2 2 2 2	15 15 15 15 15 15	1 1 1 1 1
16. 17. 18. 19. 20.		1 1 1 1 2	1 1 1 1 1	.3 .2 .2 .2 .2	0 0 .05 .05 .05	1 2 2 2 2 2	· · · · · · · · · · · · · · · · · · ·	-2.2 1.35 .15 0	15 2 2 2 2 2 2	$ \begin{bmatrix} - & .2 \\ - & .2 \\ - & .2 \\ - & .15 \\ - & .15 \end{bmatrix} $	15 2 2 2	1 1 1 1 1

[William Frank, observer.]

Dail	ly gage heigh	t, in f	eet, of	[•] Sapello	River a	t Los	Alamos, N.	Mex., fe	or 1917—Contd.
------	---------------	---------	---------	----------------------	---------	-------	------------	----------	----------------

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct,	Nov.	Dec.
21 22 23 24 25		15	-0.1 1 1 1 1	0.2 .2 .2 .2 .2 .1	0.05 0 0 0 0	0.2 2 2 2 2		Ó	-0.15 05 1 2 2	15	2 2 2	-0.05 05 05 05 05 05
26. 27. 28. 29. 30. 31.	1 1 1 1	15 15 15 	.05 0 0 0 0 0	.1 .1 .1 .1 .1	0 0 05 05 05	2 2 2 2 2 2	 .	1 .05	2 2	$\begin{array}{r}15 \\15 \\15 \\15 \\15 \\15 \\15 \\15 \end{array}$	2 2 2 2	$\begin{array}{c}05 \\05 \\1 \\1 \\1 \\1 \\1 \end{array}$

Daily discharge, in second-feet, of Supello River at Los Alamos, N. Mex., for 1910.

Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
$1.5 \\ 1.5 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4$	$1.5 \\ 1.5 $	1.0 1.0 1.0 1.0 1.0	3.2 3.2 3.2 3.2 2.4	7.4 7.4 7.4 7.4 7.4 7.4	3.8 3.8 3.8 3.8 2.8	$1.2 \\ 1.2 $		1.5 1.5 .6 1.0 1.5	0.6 .6 .6 .6	$1.5 \\ 1.5 $	$1.2 \\ 1.2 \\ 1.2 \\ 2.0 \\ 2.8$
2.4 2.4 2.4 3.2 3.2	$1.5 \\ 1.5 $	1.0 3.2 6.3 1.5 1.5	2.4 2.4 3.2 3.2 3.2 3.2	7.4 7.4 7.4 7.4 7.4	$2.8 \\ 2.8 \\ 2.8 \\ 1.2 \\ 1.2$	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 2.8$	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 1.5 \\ .6 \\ .6 \\ .6 \\ .6 \\ \end{array} $.6 .6 .6 .6	$ \begin{array}{r} 1.5 \\ 1.0 \\ .6 \\ 1.0 \\ 1.0 \\ \end{array} $	2.8 2.8 2.8 2.8 2.8 2.8
3.2 3.2 3.2 3.2 3.2 3.2	$1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{cases}$	$ \begin{array}{r} 1.5 \\ 1$	3.2 3.2 3.2 6.3 10.2	7.4 7.4 7.4 7.4 4.9	$ \begin{array}{c c} 1.2 \\ 1.2 \\ 4.9 \\ 4.9 \\ 46 \\ \end{array} $	2.8 1.2 1.2	2.8 2.8 2.8 2.8 2.8	$ \begin{array}{r} .6 \\ .6 \\ 1.0 \\ 1.5 \end{array} $.6 .6 .6 .6	$1.0 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.0$	$2.8 \\ 2.8 $
$2.4 \\ 1.5 $	$1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ .6$	$1.5 \\ 1.5 $	14.8 10.7 10.7 10.7 10.7	$\begin{array}{r} 4.9 \\ 4.9 \\ 6.2 \\ 6.2 \\ 6.2 \\ 6.2 \end{array}$	$\begin{array}{c c} 2.8 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \end{array}$		$1.2 \\ 1.2 \\ 112 \\ 8.2 \\ 3.2$	1.0 .6 .6 .6 .6	.6 .6 1.0 1.0	$2.0 \\ 2.0 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$	2.8 2.8 2.8 2.8 2.8 2.8
$1.5 \\ 1.5 $	$1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	$1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{cases}$	10.7 10.7 10.7 10.7 7.4	6.2 4.9 4.9 4 9 4.9	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$		3.2 3.2 14.8 3.2 1.5	1.0 2.4 1.5 .6 .6	$1.0 \\ 1.0 \\ .6 \\ 1.0 \\ 1.0 \\ 1.0$	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$	3.8 3.8 3.8 3.8 3.8
$1.5 \\ 1.5 $	1.0 1.0 1.0	4.8 3.2 3.2 3.2 3.2 3.2 3.2 3.2	7.4 7.4 7.4 7.4 7.4 7.4	4.9 4.9 4.9 3.8 3.8 3.8 3.8	$\begin{array}{c c} 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ \dots \end{array}$		$ \begin{array}{r} 1.5 \\ 1.5 \\ 4.8 \\ 1.5 \\ 1$.6 .6 .6 .6 .6	$1.0 \\ 1.0 $	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ \dots \dots$	2.8 2.8 2.8 2.8 2.8 2.8
	$\begin{array}{c} 1.55\\ 1.22\\ 2.44\\ 2.22\\ 3.22\\ 2.22\\ 3.3\\ 3.22\\ 2.2\\ 3.3\\ 3.3$	$\begin{array}{c} 1.5 & 1.5 \\ 1.5 & 1.5 \\ 1.5 & 1.5 \\ 2.4 & 1.5 \\ 2.4 & 1.5 \\ 2.4 & 1.5 \\ 2.4 & 1.5 \\ 2.4 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 3.2 & 1.5 \\ 1.5 & 1.5 \\ 1.5 & 1.5 \\ 1.5 & 1.5 \\ 1.5 & 1.6 \\ 1.5 & 1.0 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

NOTE.—These discharges are based on curves applicable as follows: Jan. 1-Apr. 16 and Aug. 18-Dec. 31, fairly well defined; Apr. 17-Aug. 17, fairly well defined.

Monthly discharge of Sapello River at Los Alamos, N. Mex., for 1910.

N. A	Discha	rge in second	-feet.	Run-off (total in	Accu
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January. February. March April May. June. July (1-13). August (12–31). September. October. November.	1.5 6.3 14.8 7.4 46 2.8 112 2.4 1 2	$1.5 \\ .6 \\ 1 \\ 2.4 \\ 3.8 \\ 1.2 \\ 1.2 \\ .6 \\ .6 \\ .6$	$\begin{array}{c} 2.09\\ 1.32\\ 2\\ 6.68\\ 6.09\\ 3.55\\ 1.45\\ 8.76\\ .89\\ .75\\ 1.32\end{array}$	129 73 123 397 374 211 37 348 53 46 79	B. C. B. B. B. B. B. C. C. C.
December		1.2	2.85	<u> </u>	с.

`

UTE CREEK NEAR LOGAN, N. MEX.

This station, which was reestablished April 13, 1909, to obtain records of the flow available for storage and irrigation, is located 7 miles northwest of Logan, N. Mex., 4 miles above the mouth of Ute Creek and 100 yards northwest of the old Martínez house. The station is maintained in cooperation with the Territorial engineer of New Mexico.

No important tributaries enter Ute Creek below the station or for several miles above. The stream is intermittent in character and most of the run-off water is derived from heavy rains on the basin. A little water is diverted for irrigation above the station, but storage is necessary in order to utilize any considerable proportion of the flow for that purpose. Several reservoir sites are located in that vicinity, the best known of which is probably the Ute Creek reservoir site, a few miles above the gaging station.

Measurements are made by wading near the gage. Estimates of flood discharge have been made by Kutter's formula. To obtain good results it will be necessary to install a cable in the vicinity of the gage. The stream bed is very shifting in character and the creek is subject to sudden rises, so that results obtained will at best be only moderately accurate.

The location and datum of the inclined rod gage has remained constant and is the same as that used by the United States Reclamation Service from August 12, 1904, to June 30, 1906.

in the second	Hydrographer.	Width.	Area of section.	Gage height.	Dis- charge.
Jan. 31 Mar. 15 May 7 June 17 Aug. 1 3 24 Oct. 14 Dec. 20	G. H. Russell	58 42 24	51 18.6 9.2		$\begin{array}{c} Secft.\\ 0.23\\ a.1\\ 0\\ 177\\ 31.8\\ 10.2\\ a.1\\ a.1 \end{array}$

Discharge measurements of Ute Creek near Logan, N. Mex., in 1910.

a Estimated.

NOTE .- Measurements made by wading at various sections.

			10		, 0.5501 (
Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.
1. 2. 3. 4. 5.	0.55 .55 .5 3.6	0.4 .4 .4 .4 .4	0.2 .2 .2 .2 .2 .2	0.2 .2 .2 .2 .2 .2	0.2 .2 .2 .2 .2 .2	0.2 .2 .2 .2 .2 .2	$1.0 \\ .9 \\ 1.6 \\ 1.25 \\ 1.4$	2.53.252.64.051.6	0.4 .85 1.05 .65 .7	0.2
6 7 8 9 10	3.15 2.2 .95 .6 .6	.3 .3 .3 .3	.2 .2 .2 .2 .2 .2	.2 .2 .2 .2 .2	$ \begin{array}{c} 22 \\ 22 \\ $.2 .2 .2 .2 .2	$2.1 \\ 1.6 \\ 1.6 \\ 2.6 \\ 6.2$	$1.2 \\ 1.2 \\ 1.1 \\ .95 \\ 4.4$.75 .8 .8 .8 .8	
11 12 13 14 15	.6 .6 .6 .6	.3 .3 .4 .4 .4	.2 .2 .2 .2 .2	.2 .2 .2 .2 .2	$ \begin{array}{c} .2 \\ .2 \\ $.2 .5 .5 .5	5.5 5.0 4.5 4.0 4.05	$1.8 \\ 3.0 \\ 1.3 \\ 1.5 \\ 1.5 \\ 1.5$.2 .2 .2 .2 .2	
16 17 18 19 20	.4 .4 .4 .4 .4	.4 .4 .4 .4 .2	.2 .2 .2 .2 .2	.2 .2 .2 .2 .2	.2 .2 .2 .2 .2	.5 .5 .5 .5	$3.45 \\ 1.4 \\ 1.3 \\ 1.25 \\ 1.2$	1.0 2.0 4.9 2.7 1.8	.2 .2 .2 .2 .2	
21 22 23 24 25	.4 .4 .4 .4 .4	.2 .2 .2 .2 .2 .2	.2 .2 .2 .2 .2	.2 .2 .2 .2 .2	$ \begin{array}{c} .2 \\ .2 \\ $.5 .5 .5 .5	1.2 .9 .8 .5 .4	$1.2 \\ 1.3 \\ 1.1 \\ 1.35 \\ 1.15$.2 .2 .2 .2 .2	
26	.4 .4 .4 .4 .4 .4	.2 .2 .2 .2	$ \begin{array}{c} .2 \\ .2 \\ $	$ \begin{array}{r} .2 \\ .2 \\ $.2 .2 .2 .2 .2 .2	1.4 1.1 1.05 1.0 1.0	.3 .3 .35 .35 1.0 3.65	1.05 .7 .4 .4 .4 .4 .4	.2 .2 .2 .2 .2 .2	

Daily gage height, in feet, of Ute Creek near Logan, N. Mex., for 1910. [Eligio Martinez, observer.]

NOTE.-Observer reported the creek dry after Oct. 2.

Daily discharge, in second-feet, of Ute Creek near Logan, N. Mex., for 1910.

· · · · · · · · · · · · · · · · · · ·												
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	$2 \\ 3 \\ 3 \\ 2 \\ 1,590$	0.2 .2 .2 .2 .2	0.1 .1 .1 .1 .1	0 0 0 0	0 0 0 0	0 0 0 0	$21 \\ 13 \\ 136 \\ 58 \\ 88$	$560 \\ 1,210 \\ 640 \\ 2,120 \\ 100$	0 0 6 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0
6 7 8 9 10	$1,120 \\ 360 \\ 8 \\ 4 \\ 4 \\ 4$.1 .1 .1 .1	.1 .1 .1 .1	0 0 0 0	0 0 0 0	0 0 0 0	310 136 136 640 6, 280	$24 \\ 24 \\ 13 \\ 6 \\ 2,710$	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
11 12 13 14 15	4 4 4 4 4	.1 .2 .2 .2	.1 .1 .1 .1	0 0 0 0	0 0 0 0	0 0 0 0	4,700 3,700 2,800 2,050 2,120	120 980 22 42 42	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
16 17 18 19 20	.2 .2 .2 .2 .2 .2	.2 .2 .2 .2 .1	.1 .1 .1 .1	0 0 0 0	0 0 0 0	0 0 0 0	1, 420 88 67 58 49	4 200 3,530 720 84	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
21 22 23 24 25	.2 .2 .2 .2 .2 .2	.1 .1 .1 .1	.1 .1 .1 .1 .1	0 0 0 0	0 0 0 0	0 0 0 0	49 13 8 .2 0	6 9 2 8 4	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
26 27 28 29 30 31	.2 .2 .2 .2 .2 .2 .2	.1 .1 .1	.1 .1 .1 .1 .1 .1	0 0 0 0	0 0 0 0 0 0	88 33 27 21 21 21	$0\\0\\0\\21\\1,640$	2 0 0 0 - 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0

NOTE.—These discharges were obtained as follows: Jan. 1-31, based on a rating curve which is well defined; Feb. 1-June 25, estimated from hydrographer's notes; June 26-July 30, based on a rating curve which is fairly well defined; July 31-Sept. 3, indirect method for shifting channels. There may have been some flow at times during the periods for which zero flow is given, but if so, it was practically negligible.

,	Discha	rge in second	-feet.	Run-off	Accu-
Month.	Maximum.	Minimum.	Mean.	(total in acre-feet).	racy.
January. February. March. A pril. May. June. June. July. August. September. October. November. December. December.	$\begin{array}{c} & .2 \\ & .1 \\ & 0 \\ & 0 \\ & 88 \\ 6,280 \\ 3,530 \\ & 6 \\ & 0 \end{array}$	$\begin{array}{c} 0.2\\ .1\\ .1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$101 \\ .14 \\ .10 \\ 0 \\ 6.33 \\ 858 \\ 425 \\ .20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 6,210\\ 8\\ 6\\ 0\\ 0\\ 377\\ 52,800\\ 26,100\\ 12\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}$	B. C. C. B. B. B. C.
The year	6, 280	0	118	85,500	

Monthly discharge of Ute Creek near Logan, N. Mex., for 1910.

YAZOO RIVER DRAINAGE BASIN.

DESCRIPTION.

Yazoo River is formed by the union of Tallahatchie and Yalobusha rivers just above Greenwood, Miss., whence it flows southward and southwestward to its junction with the Mississippi at Vicksburg.

Tallahatchie River and its large tributary Coldwater River rise in the northern part of Mississippi. Yokona River, also an important tributary of the Tallahatchie, comes in from the east just above the mouth of the Coldwater. Yalobusha River rises in the northern part of the State, farther east than the other tributaries. Sunflower River, which empties into the Yazoo about 20 miles above Vicksburg, drains a narrow basin along the upper western border of the State which is cut off from Mississippi River by the levees.

The drainage area may be divided into two distinct parts, the delta and the hill lands. The delta comprises a strip of land east of the Mississippi extending from the State line on the north to Vicksburg on the south, about 60 miles wide at the center and decreasing in width to about 5 miles at either end. The hill lands comprise the portion of the drainage area located to the east of the delta. The entire delta is traversed by many small streams and bayous and contains numerous so-called lakes, which are really old river channels. During high-water periods the natural channels carry water from one stream to another, and large areas are covered by overflow water.

Except for the land that has been cleared for cultivation—at present a relatively small amount—the drainage area is forested. The mean annual precipitation is about 50 inches. Yazoo River is navigable for its entire length, and most of the larger tributaries are navigable for small boats. The tributaries are used to some extent for logging.

The data collected in the drainage basin are of value for drainage and navigation problems. The Tallahatchie drainage commission is engaged in a drainage project in the upper portion of the basin.

TALLAHATCHIE RIVER AT BATESVILLE, MISS.

This station, which is located at the county highway bridge 1 mile west of Batesville and about 2 miles below the crossing of the Illinois Central Railroad, was established on June 15, 1906. The record has been continuous since that time except for a break from August 1 to September 19, 1906. The station is now maintained in connection with the Tallahatchie drainage commission.

The ground on the right bank is low for a mile or more, but the road has been raised above high water except at a number of bridged openings.

Discharge measurements can be conveniently made at all stages, and the relation between gage heights and discharge should be fairly constant. A chain gage attached to the bridge is used, the datum of which has remained the same.

Discharge measurements of Tallahatchie River at Batesville, Miss., in 1910. [By engineers of the Tallahatchie drainage commission.]

Date.	Width.	Area of section.	Gage height.	Dis- charge.	Date.	Width.	Area of section.	Gage height.	Dis- charge.
Mar. 1 Apr. 18 19		Sq. ft. 2,140 1,460 1,610	Feet. 14.04 9.44 9.98	Secft. 5,600 3,500 4,030	Apr. 20 21		Sq. ft. 1,700 1,780	<i>Feet</i> . 10.54 11.17	Secft. 4,300 4,830

Daily gage height, in feet, of Tallahatchie River at Batesville, Miss., for 1910. [J. S. Goff, observer.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	4.4 4.2 3.9 3.7 6.0	4.9 4.8 5.0 5.2 4.7	14.1 13.3 12.3 11.4 10.6	3.9. 3.9 3.9 3.8 3.8 3.9	4.6 4.4 4.1 4.0 3.8	8.5 6.9 4.8 4.2 4.5	4.5 5.7 7.7 7.9 7.9	4.1 3.9 3.9 3.7 3.6	3.3 3.7 3.6 3.4 3.2	2.4 2.4 2.4 2.4 2.4 2.6	2.4 2.4 2.4 2.5 2.5	2.8 2.8 2.8 2.8 2.8 2.8
6 7 8 9 10	12. 1 10. 9 9. 1 8. 8 8. 4	4.6 4.6 4.6 4.4 4.3	9.7 8.9 8.0 7.4 6.6	3.8 3.9 4.0 4.1 3.8	3.7 3.7 3.6 3.5 3.4	4.0 3.7 3.6 4.0 11.6	7.7 7.9 12.6 14.4 14.6	$3.5 \\ 4.0 \\ 4.8 \\ 4.1 \\ 4.5$	3.0 3.0 3.0 3.0 3.0 3.0	2.4 2.5 2.7 3.0 2.8	2.5 2.5 2.5 2.5 2.5 2.5	3.5 3.2 3.9 3.2 3.2 3.2
11 12 13 14 15	8.6 9.3 9.2 9.1 9.7	4.2 4.1 4.1 4.0 4.1	5.7 5.3 5.0 4.8 4.7	3.7 3.6 3.5 3.4 9.2	3.4 3.4 3.3 3.2 3.2	9.5 8.9 8.7 8.6 8.6	16.3 17.1 16.6 15.9 15.1	$\begin{array}{r} 4.3 \\ 3.9 \\ 4.0 \\ 4.2 \\ 3.8 \end{array}$	3.0 2.9 2.8 2.8 2.7	2.7 2.8 2.7 2.7 2.7	2.5 2.5 2.5 2.5 2.5 2.5	3.2 3.2 3.1 3.0 2.8
16 17 18 19 20	9.3 9.1 8.4 8.2 8.0	4.7 5.2 6.1 7.2 7.4	4.6 4.4 4.3 4.2 4.1	8.7 9.3 9.4 9.8 10.3	3.1 4.0 3.4 3.3 4.9	8.9 8.5 8.1 8.6 8.6	14.2 13.2 13.8 14.6 12.7	3.6 3.5 3.4 3.3 4.0	$2.7 \\ 2.7 \\ 2.7 \\ 2.6 \\ 2.6$	3.0 2.8 2.7 2.8 2.7	2.5 2.4 2.4 2.4 2.4 2.4	2.8 2.8 2.7 2.7 2.7 2.7
21 22 23 24 25	9.5 8.4 8.3 8.3 8.4	$10.7 \\ 11.1 \\ 11.3 \\ 11.5 \\ 11.9$	4.1 4.0 4.0 3.9 3.9	11.0 11.6 12.0 11.9 11.4	6.1 7.1 7.6 8.0 9.5	$\begin{array}{c} 6.5 \\ 4.6 \\ 4.5 \\ 4.0 \\ 3.9 \end{array}$	10.9 9.5 7.7 7.0 12.6	$6.2 \\ 3.3 \\ 3.2 \\ 4.6 \\ 4.5$	2.6 2.5 2.5 2.5 2.5	2.7 2.7 2.6 2.6 2.5	2.4 2.4 2.4 2.4 2.4 2.4	2.7 2.6 3.1 3.3 3.3
26. 27. 28. 29. 30. 31.	8.5 8.4 8.2 8.0 7.6 7.3	12.8 13.9 14.5	3.9 3.8 3.9 3.9 3.9 3.9 3.9	10.7 8.9 7.0 6.4 4.9	8.6 8.7 9.0 9.1 9.2 9.1	4.3 4.4 4.5 4.9 4.4	10.4 8.1 5.7 4.8 4.4 4.2	4.0 3.5 3.7 3.9 3.8 3.5	2.4 2.5 2.6 2.4 2.4	2.5 2.5 2.4 2.4 2.4 2.4 2.4	2.4 2.5 2.5 2.5 2.5 2.5	3.3 3.3 3.4 4.8 5.7 5.4

· Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5		1,290 1,250 1,320 1,400 1,210	7,390 6,550 5,640 4,900 4,320	919 919 919 883 919	1,170 1,100 991 955 883	2,970 2,140 1,250 1,030 1,140	$1,140 \\ 1,600 \\ 2,540 \\ 2,650 \\ 2,650 \\ 2,650$	991 919 919 849 815	713 849 815 747 679	425 425 425 425 425 485	425 425 425 455 455 455	549 549 549 549 549 549
6 7 8 9 10	$4,530 \\ 3,320 \\ 3,140$	1,170 1,170 1,170 1,100 1,060	3,700 3,200 2,700 2,390 2,000	883 919 955 991 883	849 849 815 781 747	955 849 815 955 5,060	2,540 2,650 5,910 7,720 7,950	781 955 1,250 991 1,140	613 613 613 613 613 613	425 455 517 613 549	455 455 455 455 455	· 781 679 919 679 679
11 12 13 14 15	$3,440 \\ 3,380$	1,030 991 991 955 991	$\substack{1,600\\1,440\\1,320\\1,250\\1,210}$	849 815 781 747 3,380	747 747 713 679 679	3,570 3,200 3,080 3,020 3,020 3,020	10,200 11,400 10,700 9,620 8,550	1,060 919 955 1,030 883	613 581 549 549 517	517 549 517 517 517	455 455 455 455 455	679 679 645 613 549
16 17 18 19 20	2.920	$\substack{1,210\\1,400\\1,770\\2,290\\2,390}$	1,170 1,100 1,060 1,030 991	3,080 3,440 3,500 3,760 4,110	645 955 747 713 1,290	3,200 2,970 2,750 3,020 3,020	7,500 6,460 7,060 7,950 6,000	815 781 747 713 955	517 517 517 485 485	613 549 517 549 517	455 425 425 425 425 425	549 549 517 517 517
21 22 23 24 25	3,570 2,920 2,860 2,860 2,920	4,390 4,680 4,820 4,980 5,300	991 955 955 919 919	4,600 5,060 5,390 5,300 4,900	$1,770 \\ 2,240 \\ 2,490 \\ 2,700 \\ 3,570$	1,950 1,170 1,140 955 919	4,530 3,570 2,540 2,190 5,910	1,820 713 679 1,170 1,140	485 455 455 455 455	517 517 485 485 455	425 425 425 425 425 425	517 485 645 713 713
26 27 28 29 30 31	2,920 2,800 2,700 2,490	6,090 7,170 7,830	919 883 919 919 919 919 919	4,390 3,200 2,190 1,910 1,290	3,020 3,080 3,260 3,320 3,380 3,380 3,320	1,060 1,100 1,140 1,290 1,100	$\substack{4,180\\2,750\\1,600\\1,250\\1,100\\1,030}$	955 781 849 919 883 781	425 455 485 425 425	455 455 425 425 425 425 425	425 455 455 455 455	713 713 747 1,250 1,600 1,480

Daily discharge, in second-feet, of Tallahatchie River at Batesville, Miss., for 1910.

NOTE.-These discharges were obtained from a rating curve which is well defined.

Monthly discharge of Tallahatchie River at Batesville, Miss., for 1910.

	Disch	Discharge in second-feet.					
Month	Miximum.	Minimum.	Mean.	racy.			
January February. March. April. May. June. June. July August. September. October. November. December.		849 955 883 747 645 815 1,030 679 425 425 425 425 425 425	$\begin{array}{c} 2,850\\ 2,550\\ 2,100\\ 2,400\\ 1,590\\ 4,950\\ 941\\ 557\\ 490\\ 442\\ 706\end{array}$	A. A. A. A. A. A. A. A. A. B. B. A.			
The year	. 11,400	425	1,800				

TALLAHATCHIE RIVER AT PHILIPP, MISS.

This station is located at the Yazoo & Mississippi Valley Railroad bridge at Philipp. It was established September 6, 1908, for the purpose of obtaining run-off data in connection with the work of the Tallahatchie drainage commission.

The stream above the station will at times overflow the surrounding country for a distance of several miles on either side. The overflow, however, with small exceptions, is intercepted by the railroad embankment and is made to flow in the main channel at the gaging station, and a few trestled openings in the railroad embankment. Variations in the relative stage of the river below the station will probably so affect the slope as to disturb the relation between gage heights and discharge. Judging by the plotting of the discharge measurements so far made, this disturbance does not appear to be great.

The datum of the gage, which is a vertical staff, is mean sea level; the gage readings therefore represent elevations above sea level. Measurements are made from the downstream side of the railway bridge.

Discharge measurements of Tallahatchie River at Philipp, Miss., in 1910. [By engineers of the Tallahatchie drainage commission.]

Date.	Width.	Area of section.	Gage height.	Dis- charge.
Mar. 4 10	Feet. 240 275	Sq. ft. 4,370 5,030	<i>Feet</i> . 120.4 130.7	Secft. 9,650 10,900

Daily gage height, in feet, of Tallahatchie River at Philipp, Miss., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1 2 3 4 5	123. 6 123. 5 123. 2 122. 7 122. 0	129. 2 129. 0 128. 9 128. 4 127. 9	119.1120.2120.3120.4120.5	116.5 116.2 116.0 115.8 115.8	130.0 130.2 130.3 130.3 130.3	128.0 128.0 127.9 127.7 127.9	124.0123.5123.5124.0124.6	133. 7 133. 5 133. 0 132. 6 132. 0	115.5 115.3 114.9 114.6 114.6	112.5 112.5 112.4 112.4 112.4 112.4	112. 4 112. 3 112. 3 112. 2 112. 2	112. 1 112. 2 112. 2 112. 3 112. 6
6 7 8 9 10	122.0 122.9 124.0 125.0 125.8	127.3 126.3 125.0 123.5 122.0	120. 9 130. 0 130. 4 130. 6 130. 7	115. 9 116. 6 117. 2 117. 7 118. 1	130. 2 129. 8 129. 2 128. 4 127. 0	$126.0 \\ 124.6 \\ 123.3 \\ 121.4 \\ 121.7$	$125.5 \\ 126.5 \\ 127.3 \\ 128.3 \\ 129.0$	131.5 130.8 129.8 128.8 127.5	114.7 114.7 114.8 115.0 115.1	112.5 113.0 114.4 114.8 115.0	112. 2 112. 2 112. 2 112. 2 112. 2 112. 2	112.9 113.2 113.6 113.5 113.5
11. 12. 13. 14. 15.	$126. 4 \\ 126. 7 \\ 127. 0 \\ 127. 5 \\ 127. 6$	120. 9 119. 7 118. 7 118. 0 117. 6	130. 8 130. 8 130. 8 130. 8 130. 8 130. 6	118.3 118.3 117.6 117.3 117.6	125.4 123.6 121.5 119.9 118.5	$122. 3 \\ 122. 3 \\ 123. 0 \\ 123. 5 \\ 124. 0$	$129.7 \\ 130.5 \\ 131.3 \\ 132.0 \\ 132.6$	126.0 124.4 122.9 121.4 120.0	115.0 114.7 114.4 114.1 113.7	115.2 115.1 115.0 114.7 115.0	112. 2 112. 2 112. 2 112. 2 112. 2 112. 2	113.4 113.3 113.3 113.2 113.2
16 17 18 19 20	$127.7 \\ 127.8 \\ 128.0 \\ 128.0 \\ 128.2$	117.1 117.6 118.8 118.8 118.9	130.5 130.3 130.0 129.5 129.0	$120. \ 4 \\ 123. \ 0 \\ 124. \ 7 \\ 125. \ 7 \\ 126. \ 5 \\$	117.4 116.8 116.6 117.2 117.7	$124.5 \\ 124.7 \\ 125.0 \\ 125.4 \\ 125.6 \\$	133.0 133.4 133.6 133.8 133.9	118.8 117.9 117.4 116.8 116.3	113.5 113.3 113.1 113.0 113.0	114.6 114.9 114.5 114.1 114.6	112. 2 112. 2 112. 2 112. 2 112. 2 112. 1	113.1 113.0 112.8 112.7 112.6
21 22 23 24 25	128.6 128.7 128.9 129.0 129.1	118.9 119.1 119.2 119.3 119.5	$128.0 \\ 127.0 \\ 125.7 \\ 124.0 \\ 122.5$	127.0 127.5 127.9 128.3 128.5	118.9 121.2 122.5 123.7 124.8	$\begin{array}{c} 125.8\\ 126.3\\ 126.5\\ 126.7\\ 127.0 \end{array}$	134.0 134.1 134.2 134.3 134.3	116.0 117.5 118.5 118.4 118.8	112.9 112.9 112.8 112.8 112.8 112.8	115.0 114.8 114.5 114.2 113.6	112. 1 112. 1 112. 1 112. 1 112. 1 112. 1	112.6 112.5 112.5 113.1 113.7
26	$129. 2 \\ 129. 3 \\ 129. 4 \\ 129. 5 \\ 129. 4 \\ 129. 3$	119.6 119.8 119.9	$\begin{array}{c} 121.0\\ 119.5\\ 118.6\\ 117.8\\ 117.3\\ 116.7 \end{array}$	128.9 129.0 129.4 129.6 129.9	125.8 126.9 127.1 127.5 127.7 127.9	126. 4 125. 8 125. 5 125. 4 124. 6	134.3 134.3 134.2 134.0 133.9 133.8	118.9 118.2 117.4 116.5 115.7 115.5	112.7 112.7 112.6 112.5 112.5	$113.2 \\113.0 \\112.8 \\112.6 \\112.5 \\112.4$	112.1 112.1 112.1 112.1 112.1 112.1	114.1 114.2 114.3 114.5 114.8 114.8 115.9

[J. P. Mahoney, observer.]

Daily discharge, in second-feet, of Tallahatchie River at Philipp, Miss., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	5,620	9,520 9,400 9,340 9,040 8,740	$\begin{array}{r} 3,510 \\ 4,120 \\ 4,180 \\ 4,240 \\ 4,300 \end{array}$	2,140 2,060	$10,000 \\ 10,100 \\ 10,200 \\ 1$	8,800 8,800 8,740 8,620 8,740	6,100 6,100 6,400	$13,500 \\ 13,200 \\ 12,500 \\ 12,000 \\ 11,400$	$1,880 \\ 1,800 \\ 1,660 \\ 1,50 \\ 1,500$	1,030 1,030 1,010 1,010 1,010 1,010	1,010 990 990 972 972	956 972 972 990 1,050
6 7 8 9 10	5. 740		4,540 10,000 10,200 10,400 10,400	2,020 2,300 2,570 2,800 2,990	10,100 9,880 9,520 9,040 8,200	$\begin{array}{c} 7,600 \\ 6,760 \\ 5,980 \\ 4,840 \\ 5,020 \end{array}$		$11,000 \\ 10,500 \\ 9,880 \\ 9,280 \\ 8,500$	$1.600 \\ 1,600 \\ 1,630 \\ 1,700 \\ 1,740$	$\begin{array}{c} 1,030\\ 1,130\\ 1,500\\ 1,630\\ 1,700 \end{array}$	972 972 972 972 972 972	1,110 1,170 1,270 1,250 1,250
11 12 13 14 15	7,840 8,020 8,200 8,500 8,500 8,560	3,840 3,300 2,940	$\begin{array}{c} 10,500\\ 10,500\\ 10,500\\ 10,500\\ 10,500\\ 10,400 \end{array}$	$3,100 \\ 3,100 \\ 2,750 \\ 2,620 \\ 2,750 \\ 2,750 $	7,240 6,160 4,900 3,950 3,200		9,820 10,300 10,800 11,400 12,000	$\begin{array}{c} 7,600\\ 6,640\\ 5,740\\ 4.840\\ 4,000 \end{array}$	$1,700 \\ 1,600 \\ 1,500 \\ 1,410 \\ 1,300$	$1.770 \\ 1,740 \\ 1.700 \\ 1,600 \\ 1,70$	972 972 972 972 972 972	1,220 1.200 1,200 1,170 1,170 1,170
16 17 18 19 20	8 680	2,750	10,300 10,200 10,000 9,700 9,400	4,240 5,800 6,820 7,420 7,900	$\begin{array}{c} 2,660 \\ 2,390 \\ 2,300 \\ 2,570 \\ 2,800 \end{array}$	6,700 6,820 7,000 7,240 7,360	$12,500 \\ 13,000 \\ 13,400 \\ 13,700 \\ 13,900$	3,360 2,890 2,660 2,390 2,180	$1,250 \\ 1,200 \\ 1,150 \\ 1,13$	${}^{1,560}_{1,660}_{1,530}_{1,410}_{1,560}$	972 972 972 972 972 956	1,150 1,130 1,090 1,070 1,050
21 22 23 24 25	9,160 9,220 9,340 9,400 9,460	3,410 3,510 3,570 3,620 3,730	$\begin{array}{r} 8,800\\ 8,200\\ 7,420\\ 6,400\\ 5,500 \end{array}$	8,200 8,500 8,740 8,980 9,100	$\begin{array}{c} 3,410 \\ 4,720 \\ 5,500 \\ 6,220 \\ 6,880 \end{array}$	7,780 7,900 8,020	$14,100 \\ 14,300 \\ 14,500 \\ 14,800 \\ 1$	2,060 2,700 3,200 3,150 3.360	$1,110 \\ 1,110 \\ 1,090 \\ 1,090 \\ 1,090$	$1,700 \\ 1,630 \\ 1,530 \\ 1,440 \\ 1,270$	956 956 956 956 956	1,050 1,030 1,030 1,150 1,300
26 27 28 29 30 31	9,580 9,640 9,700 9,640	3,780 3,890 3,950		9,340 9,400 9,640 9,760 9,940	$\begin{array}{c} 7,480\\ 8,140\\ 8,260\\ 8,500\\ 8,620\\ 8,620\\ 8,740 \end{array}$	7,480 7,300 7,240 6,760	$14,800 \\ 14,800 \\ 14,500 \\ 14,100 \\ 13,900 \\ 13,700 \\ 1$	3,410 3,040 2,660 2,260 1,940 1,880	1.070 1,070 1,050 1,030 1,030	$1,170 \\ 1,130 \\ 1,090 \\ 1,050 \\ 1,030 \\ 1,010$	956 956 956 956 956	$1,410 \\ 1,440 \\ 1,470 \\ 1,530 \\ 1,630 \\ 2,020$

Note.—These discharges were obtained from a rating curve which is fairly well defined between 1,100 and 9,400 second-feet. Above 9,400 second-feet the rating is only approximate, as the stage of the river below causes much variation in slope and the higher measurements include large amounts of overflow which was very roughly measured.

Monthly discharge of Tallahatchie River at Philipp, Miss., for 1910.

X . 1	Discha	Discharge in second-feet.					
Month.	Maximum.	Minimum.	Mean.	Accu- racy.			
January February. March April May June July August September October November December	$\begin{array}{r} 9,520\\ 10.500\\ 9,940\\ 10,200\\ 8,800\\ 14,800\\ 13,500\\ 1,880\\ 1.770\\ 1,010\end{array}$	5.200 2.520 2.340 1.980 2.300 4.840 6.100 1.880 1.030 1.030 1.010 956 956	$\begin{array}{c} 8,060\\ 5,100\\ 7,210\\ 5,370\\ 6,840\\ 7,140\\ 11,400\\ 5,930\\ 1,360\\ 1,370\\ 969\\ 91,210\end{array}$	A. A. A. A. A. B. A. A. B. B. B. B.			
The year	14,800	956	5,180				

YAZOO RIVER AT GREENWOOD, MISS.

This station, which is located at the highway bridge at Greenwood, a point about 1 mile below the junction of Yalobusha River, was established July 15, 1908, for the purpose of obtaining general run-off data applicable to navigation and drainage problems, and is maintained in cooperation with the Tallahatchie drainage commission. There are no artificial diversions of water above the station, and all natural diversions return to river above unless at extreme floods some overflow water may be lost to Sunflower River. The conditions at the station are favorable for accurate discharge measurements at all stages, but it is expected that the relation between gage heights and discharges will be greatly disturbed by changes in slope of Yazoo River, caused by varying stages of Mississippi River.

The chain gage is fastened to the downstream handrail of the bridge. Its datum is mean sea level and has not been changed. Discharge measurements are made from this bridge. The United States Weather Bureau has maintained a gage here since November 1, 1904, the datum of which was 92.5 feet above sea level.

Daily gage height,	in feet. of	' Yazoo	River at	Greenwood,	Miss.,	for	1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	103.73 103.53 103.29 102.93 102.54	111.03 110.58 110.14 109.70 109.20	$113.90 \\114.12 \\114.29 \\114.42 \\114.55$	98.69 98.13 97.75 97.46 97.29	108.69 108.73 108.77 108.85 108.91	108.99 108.73 108.35 107.95 107.74	106. 42 106. 28 106. 13 106. 55 107. 14	117.85 117.64 117.09 116.49 115.89	97.04 96.80 96.48 96.13 95.88	93. 93 93. 85 93. 81 93. 76 93. 75	93. 93 93. 84 93. 77 93. 73 93. 72	93.56 93.56 93.56 93.61 93.70
6 7 8 9 10	103.09 105.45 106.73 107.10 107.46	$\begin{array}{c} 108.67\\ 107.99\\ 107.14\\ 106.11\\ 104.96 \end{array}$	$\begin{array}{c} 114.\ 63\\ 114.\ 67\\ 114.\ 59\\ 114.\ 40\\ 114.\ 05 \end{array}$	97. 19 97. 27 97. 54 97. 94 98. 28	$\begin{array}{c} 108.89\\ 108.80\\ 108.58\\ 108.16\\ 107.56 \end{array}$	107.46 106.86 105.99 104.91 103.93	$\begin{array}{c} 108.21\\ 109.31\\ 110.22\\ 110.99\\ 111.71 \end{array}$	$115.28\\114.62\\114.02\\113.25\\112.42$	95. 90 96. 06 96. 00 95. 93 95. 89	94.08 96.13 97.88 97.89 97.23	93.70 93.70 93.70 93.70 93.70 93.70	93. 91 94. 22 94. 88 95. 10 94. 96
$\begin{array}{c} 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ \end{array}$	$\begin{array}{c} 107.\ 89\\ 108.\ 25\\ 108.\ 44\\ 108.\ 46\\ 108.\ 36 \end{array}$	103. 80 102. 66 101. 55 100. 61 99. 78	113.62 113.16 112.74 112.31 112.94	98.56 98.71 98.63 98.39 98.26	$\begin{array}{c} 106.\ 68\\ 105.\ 51\\ 104.\ 14\\ 102.\ 70\\ 101.\ 24 \end{array}$	$\begin{array}{c} 103.\ 84\\ 104.\ 73\\ 105.\ 23\\ 105.\ 48\\ 105.\ 64 \end{array}$	112.59 113.66 114.83 115.92 116.87	111. 40 110. 31 109. 09 107. 58 106. 07	95, 88 95, 82 95, 64 95, 39 95, 12	96. 84 96. 56 96. 56 97. 34 98. 53	93. 68 93. 66 93. 66 93. 65 93. 62	94.91 94.80 94.67 94.57 94.53
16 17 18 19 20	108. 29 108. 19 108. 06 107. 98 108. 38	99.07 100.95 106.05 107.79 108.08	111.61 111.29 110.97 110.61 110.18	$\begin{array}{c} 100.06\\ 102.96\\ 105.16\\ 106.60\\ 107.60 \end{array}$	99.96 98.96 98.11 97.75 97.94	$\begin{array}{c} 105.\ 77\\ 105.\ 75\\ 105.\ 65\\ 105.\ 61\\ 106.\ 70 \end{array}$	117.55 118.04 118.49 118.94 119.21	104.64 103.32 102.05 100.76 99.62	94.85 94.66 94.52 94.40 94.30	98. 63 98. 00 97. 29 96. 59 96. 07	93.61 93.60 93.58 93.56 93.54	94.46 94.36 94.27 94.14 94.06
21 22 23 24 25	110, 69 111, 93 111, 98 111, 88 111, 88 111, 95	108. 83 110. 39 111. 29 111. 87 112. 40	$\begin{array}{c} 109.\ 69\\ 109.\ 03\\ 108.\ 17\\ 107.\ 14\\ 105.\ 92 \end{array}$	$\begin{array}{c} 108.32\\ 108.74\\ 108.92\\ 108.91\\ 108.84 \end{array}$	$\begin{array}{r} 98.74 \\ 101.34 \\ 104.24 \\ 105.53 \\ 106.34 \end{array}$	107.50 107.64 107.78 107.75 107.49	119.28 119.29 119.28 119.18 119.02	$\begin{array}{c} 100.16\\ 101.41\\ 101.43\\ 101.08\\ 100.86 \end{array}$	94. 20 94. 14 94. 09 94. 03 93. 99	95. 94 95. 94 95. 84 95. 60 95. 25	93. 54 93. 52 93. 50 93. 50 93. 50 93. 50	93. 96 93. 90 94. 30 95. 55 96. 88
26 27 28 29 30 31	112.08 112.18 112.23 112.17 111.93 111.51	112.79 113.14 113.53	104. 69 103. 43 102. 20 101. 13 100. 20 99. 39	$\begin{array}{c} 108.74\\ 108.65\\ 108.61\\ 108.62\\ 108.65\\ \ldots\end{array}$	$\begin{array}{c} 107.23\\ 107.97\\ 108.60\\ 109.08\\ 109.22\\ 109.20 \end{array}$	107.25 107.13 106.97 106.73 106.41	119.08 119.04 118.76 118.42 118.09 117.83	100.73 100.28 99.60 98.90 98.05 97.41	94.00 94.01 94.04 94.01 93.97	94.91 94.65 94.46 94.24 94.09 94.01	93. 50 93. 55 93. 54 93. 54 93. 54 93. 54	97.24 97.06 97.02 96.85 96.81 96.98

[W. T. Davis, observer.]

COLDWATER RIVER AT SAVAGE, MISS.

This station is located at the Yazoo & Mississippi Valley Railroad bridge at Savage, about 5 miles below the place where the river leaves the hills and enters the delta. It was established July 1, 1908, for the purpose of determining the amount of water entering the delta from the foothills and is maintained in cooperation with the Tallahatchie drainage commission. Although there are large overflow areas along the banks of the river, the flow is practically confined by the railroad embankments to the channel under the bridge and can be conveniently measured at all stages.

The gage, which consists of two vertical sections just below the bridge, is set on sea-level datum so as to read actual elevations. Measurements are made from the downstream side of the bridge.

The following discharge measurement was made by engineers of the Tallahatchie drainage commission:

February 25: Width, 280 feet; area of section, 3,600 square feet; gage height, 184.34 feet; discharge, 6,400 second-feet.

Day.	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1 2 3 4 5	174. 7 170. 3 169. 2 169. 0 168. 8	$171.\ 1\\169.\ 9\\169.\ 0\\168.\ 5\\168.\ 2$	184. 7 184. 8 184. 8 184. 7 184. 3	$167.0 \\ 167.2 \\ 168.6 \\ 169.9 \\ 171.5$	170. 0 169. 5 168. 7 169. 5 167. 7	178.0 174.3 171.4 169.3 168.3	171.9 174.5 176.4 177.3 178.4	180. 8 169. 3 174. 2 171. 4 171. 0	166. 6 168. 7 168. 7 170. 0 171. 4	166. 0 166. 0 166. 0 166. 0 166. 0	166. 1 166. 1 166. 1 166. 1 166. 1	$169.2 \\ 169.1 \\ 168.3 \\ 168.0 \\ 167.0$
6 7 8 9 10	176. 4 179. 8 181. 3 182. 9 184. 2	$\begin{array}{c} 168.2\\ 168.0\\ 167.9\\ 167.8\\ 167.5 \end{array}$	183. 8 183. 0 182. 2 180. 6 178. 6	173. 7 173. 8 173. 3 172. 0 169. 7	$\begin{array}{c} 167.4\\ 167.3\\ 167.3\\ 167.0\\ 167.0\\ 167.0 \end{array}$	$169.3 \\171.3 \\171.5 \\170.0 \\171.3$	180.3 181.0 182.0 182.6 183.9	171. 0 168. 9 168. 4 168. 0 168. 0	$172.3 \\ 170.8 \\ 168.8 \\ 167.3 \\ 166.7$	166. 4 169. 7 170. 3 170. 0 169. 8	$\begin{array}{c} 166.\ 1\\ 166.\ 1\\ 166.\ 1\\ 166.\ 1\\ 166.\ 1\\ 166.\ 1\end{array}$	$166.5 \\ 166.7 \\ 166.7 \\ 167.0 \\ 167.0 \\ 167.0 \\ 167.0 \\ 167.0 \\ 167.0 \\ 167.0 \\ 167.0 \\ 167.0 \\ 167.0 \\ 10$
11 12 13 14 15	184. 4 184. 4 183. 7 183. 3 183. 0	167.5 167.5 167.9 167.7 167.9	176.5 174.1 172.0 171.3 170.0	169.5 168.8 168.5 168.6 174.9	$\begin{array}{c} 166.9\\ 166.8\\ 166.8\\ 166.8\\ 166.6\end{array}$	176.7 177.5 179.9 181.0 181.7	182, 8 182, 4 182, 0 181, 8 181, 6	168. 0 169. 4 168. 9 169. 8 169. 6	167.3 167.0 164.6 162.3 161.1	$\begin{array}{c} 168.2 \\ 168.5 \\ 166.9 \\ 169.0 \\ 170.0 \end{array}$	$166.1 \\ 166.$	$\begin{array}{c} 166.8\\ 166.7\\ 166.6\\ 166.6\\ 166.6\\ 166.6\end{array}$
16 17 18 19 20	$182.3 \\181.5 \\181.2 \\181.2 \\181.2 \\180.8$	168.0 169.1 172.4 173.6 174.2	169.0 168.5 168.1 167.9 167.8	182.0 186.1 187.0 186.7 186.0	166. 6 166. 8 167. 4 167. 5 168. 0	182.0 181.7 180.9 179.2 181.0	181.4 181.1 181.0 180.7 179.9	$\begin{array}{c} 168.3\\ 167.2\\ 166.9\\ 166.7\\ 166.5 \end{array}$	161. 1 161. 0 166. 0 166. 0 166. 0	171.8 173.3 172.3 170.0 169.7	$\begin{array}{c} 166.\ 1\\ 166.\ 1\\ 166.\ 1\\ 166.\ 1\\ 166.\ 1\\ 166.\ 1\end{array}$	$\begin{array}{c} 166.\ 6\\ 166.\ 6\\ 166.\ 6\\ 166.\ 6\\ 166.\ 5\end{array}$
21 22 23 24 25	181. 2 181. 4 181. 8 182. 3 182. 4	178.6 180.8 182.0 183.6 184.3	$\begin{array}{r} 167.8\\ 167.5\\ 167.5\\ 167.6\\ 167.6\\ 167.5 \end{array}$	185. 8 184. 7 184. 0 182. 5 182. 0	170.3 173.3 175.0 176.4 177.8	180.6 179.8 178.8 174.1 173.4	178.9 177.6 174.8 174.0 170.2	167. 1 167. 3 168. 5 167. 9 1 67. 0	$\begin{array}{c} 166.0\\ 166.0\\ 166.0\\ 166.0\\ 166.0\\ 166.0 \end{array}$	$\begin{array}{c} 167.0\\ 166.8\\ 166.7\\ 166.5\\ 166.3 \end{array}$	166. 1 166. 1 166. 1 166. 1 166. 1	$\begin{array}{c} 166.5\\ 166.5\\ 166.5\\ 166.6\\ 166.6\\ 166.6 \end{array}$
26 27 28 29 30 31	$182.2 \\181.5 \\180.0 \\177.9 \\174.9 \\172.7$	184.3 184.2 184.5	$\begin{array}{c} 167.4\\ 167.3\\ 167.2\\ 167.0\\ 167.0\\ 167.0\\ 166.9 \end{array}$	180.5 178.4 176.3 173.8 •175.0	$179. 4 \\180. 0 \\180. 4 \\180. 7 \\180. 6 \\180. 0$	172.5 172.2 171.0 169.8 169.7	172.5 178.3 183.2 183.6 183.2 183.2 182.0	$\begin{array}{c} 169.\ 0\\ 170.\ 9\\ 169.\ 4\\ 168.\ 6\\ 167.\ 5\\ 166.\ 8 \end{array}$	166.0 166.0 166.0 166.0 166.0	$\begin{array}{c} 166.3\\ 166.4\\ 166.2\\ 166.2\\ 166.1\\ 166.1 \end{array}$	$\begin{array}{c} 166.1\\ 166.1\\ 166.4\\ 166.5\\ 166.5\\ \end{array}$	$\begin{array}{c} 166.\ 6\\ 166.\ 5\\ 167.\ 8\\ 167.\ 8\\ 167.\ 8\\ 170.\ 5\\ 172.\ 0 \end{array}$

Daily gage height, in feet, of Coldwater River at Savage, Miss., for 1910.

[David J. Hill, observer.]

Da	ilv	discharge.	in	second-feet,	of	Coldwater	River	at	Savage.	Miss	for	1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	$1,240 \\ 515 \\ 400 \\ 380 \\ 364$	607 471 380 340 316	8,630 8,870 8,870 8,630 7,920	230 244 348 471 C57	482 430 356 430 279	2, 180 1, 150 644 410 324	711 1, 190 1, 680 1, 940 2, 320	3,390 410 1,130 644 595	206 356 356 482 644	170 170 170 170 170 170	176 176 176 176 176 176	400 390 324 300 230
6 7 8 9 10	2,910	316 300 293 286 265	6,970 5,450 4,350 3,290 2,400	1,020 1,040 945 725 450	258 251 251 230 230	410 631 657 482 631	3, 140 3, 500 4, 180 4, 800 7, 160	595 372 332 300 300	771 571 364 251 212	194 450 515 482 460	176 176 176 176 176 176	200 212 212 230 230
11 12 13 14 15	8, 110 8, 110 6, 780 6, 020 5, 450	265 265 293 279 293	$1,700 \\ 1,110 \\ 725 \\ 631 \\ 482$	430 364 340 348 1,290	224 218 218 218 218 206	1,760 2,010 2,960 3,500 3,940	5,100 4,550 4,180 4,020 3,880	300 420 372 460 440	251 230 104 36 21	316 340 224 380 482	176 176 176 176 176 176	218 212 206 206 206
16 17 18 19 20	2 000	300 390 787 1,000 1,130	308 293	4, 180 11, 300 13, 000 12, 500 11, 200	206 218 258 265 300	4, 180 3, 940 3, 440 2, 640 3, 500	3, 740 3, 560 3, 500 3, 340 2, 960	324 244 224 212 200	21 20 170 170 170	697 945 771 482 450	176 176 176 176 176	206 206 206 206 206 200
21 22 23 24 25	3,620 3,740 4,020 4,440 4,550	2,400 3,390 4,180 6,590 7,920	286 265 265 272 265	10, 800 8, 680 7, 350 4, 660 4, 180	515 945 1, 310 1, 680 2, 110	3,290 2,910 2,480 1,110 964	2,520 2,040 1,260 1,080 504	237 251 340 293 230	170 170 170 170 170 170	230 218 212 200 188	176 176 176 176 176 176	200 200 200 206 206
26. 27. 28. 29. 30. 31.	3 800	7,920 7,730 8,300	258 251 244 230 230 224	3, 240 2, 320 1, 650 1, 040 1, 310	2,730 3,000 3,190 3,340 3,290 3,000	803 755 595 460 450	803 2, 280 5, 830 6, 590 5, 830 4, 180	380 583 420 348 265 218	170 170 170 170 170 170	188 194 182 182 176 176	176 176 194 200 200	206 200 286 286 548 725

NOTE.—These discharges were obtained from a rating curve which is fairly well defined between 380 and 5,450 second-feet. Below 380 second-feet the curve is an approximate extension.

Monthly	discharge	of	`Coldwater	River	at	Savage,	Miss.,	for	1910.

	Discha	rge in second	-feet.	Accu-
Month.	Maximum.	Minimum.	Mean.	racy.
January February March April May June June July August. September October November December.	8, 300 8, 870 13, 000 3, 340 4, 180 7, 160 3, 390 771 945 200	364 265 224 230 206 324 504 200 20 170 176 200	3,650 2,040 2,400 3,540 988 1,770 3,300 478 237 328 178 260	B. B. B. B. B. B. B. B. B. B. B. B. B. B
The year	13,000	20	1,600	

YALOBUSHA RIVER AT GRENADA, MISS.

This station, which was established June 14, 1906, for the purpose of obtaining general run-off data, is located in the western part of Grenada at the county highway bridge, about one-half mile from the depot and the same distance below the crossing of the Illinois Central Railroad. It is below the mouth of Bataupan Bogue, which comes in a short distance above the railroad bridge. The gage chain was stolen a second time on November 2, 1906, and the station was temporarily abandoned. On July 7, 1908, the station was again established in connection with the Tallahatchie drainage commission, using the same gage datum as formerly. The gage is located on the bridge.

The left bank is not liable to overflow. The ground on the right bank is low for a long distance, but is crossed by the public highway embankment, which is above high water except at a few bridged openings.

Conditions are favorable for accurate discharge measurements, which are made from the bridge. It is probable that the station rating will be somewhat affected by backwater from Yazoo River and also by shifting of the stream bed.

The following measurement was made by engineers of the Tallahatchie drainage commission:

February 28: Width, 160 feet; area of section, 2,420 square feet; gage height, 19.52 feet; discharge, 7,320 second-feet.

Daily gage height, in feet, of Yalobusha River at Grenada, Miss., for 1910.

Day.	Jan.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	3.0 4.1 6.4 9.4 11.0		1.9 1.9 1.9 1.9 2.05	1.75 1.7 1.7 1.9 1.75	5.0 3.8 2.5 2.2 3.1	7.9 7.8 13.0 13.3 13.4	3.0 2.9 2.8 2.7 2.45	1.75 1.7 1.65 1.65 1.8	1.45 1.4 1.35 1.3 1.3	$1.5 \\ 1.5 \\ 1.5 \\ 1.6 \\ 1.65$	$1.5 \\ 1.5 $
6 7 8 9 10			2.3 2.3 2.2 2.05 2.0	$1.7 \\ 1.65 \\ 1.65 \\ 1.6 \\ 1.$	2.4 2.0 2.0 2.0 7.3	21.0 23.4 24.5 25.7 25.1	2.25 6.0 6.0 5.2 4.2	2. 1 2. 05 2. 0 1. 95 1. 9	7.5 8.5 4.8 3.7 3.0	1.6 1.55 1.5 1.5 1.5 1.5	1.8 2.0 2.4 2.5 2.5
11 12 13 14 15		3.4 3.4 3.3	2.0 1.95 2.0 1.95 4.0	1.55 1.5 1.45 1.4 1.4	12.1 11.1 9.8 8.3 7.0	24.3 23.6 22.7 22.0 21.0	4.0 3.8 3.4 3.1 2.9	1.85 1.8 1.75 1.7 1.6	$2.5 \\ 2.1 \\ 6.0 \\ 5.8 \\ 4.2$	1.5 1.5 1.5 1.5 1.5	2.35 2.25 2.1 2.05 2.0
16 17 18 19 20		3.0 2.8 2.65 2.55 2.45	9.1 11.1 10.1 9.0 7.4	1.4 1.5 1.9 1.9 2.95	5.8 4.5 3.8 3.5 10.0	19.5 17.7 17.0 16.3 13.3	2.65 2.4 2.3 2.2 2.2	1.5 1.4 1.35 1.3 1.25	3.1 2.9 2.6 2.3 2.3	1, 45 1, 45 1, 45 1, 45 1, 45	1.95 1.85 1.75 1.7 1.65
2122232324252521		2.4 2.35 2.3 2.2 2.15	$\begin{array}{c} 6.4 \\ 5.0 \\ 4.1 \\ 3.4 \\ 3.0 \end{array}$	6.9 11.9 12.8 12.8 12.8 15.1	12.3 8.3 5.8 5.3 6.0	7.8 5.4 4.2 5.0 9.8	7.0 5.0 5.0 5.0 4.4	1.2 1.15 1.15 1.15 1.15 1.15	2.8 2.2 1.8 1.7 1.6	1.45 1.45 1.45 1.45 1.45 1.45	5.1 7.8 7.7 7.5 7.0
26 27 28 29 30 31		2.1 2.05 2.05 1.95 1.9	2.6 2.35 2.05 1.95 1.85	14.4 11.6 9.7 8.3 7.1 6.0	7.5 5.4 6.3 7.4 7.8	8.9 7.1 5.4 4.6 3.9 3.4	3.2 2.9 2.3 2.05 1.9 1.8	$1.15 \\ 1.15 \\ 1.3 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ \dots \dots$	$1.5 \\ 1.5 $	$1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ \dots \dots$	$\begin{array}{c} 6.5 \\ 5.9 \\ 5.1 \\ 4.4 \\ 4.4 \\ 7.1 \end{array}$

[W. L. Hamby, observer.]

Dailu	discharae.	in second-fee	t. of	Yalobusha	River at	Grenada.	Miss., for 1910.
Lavey	abbendinge,	000000000000000000000000000000000000000		T aroo aona	Teres and	Groudday,	

Day.	Jan.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3	465 780 1,630		190 190 190	160 150 150	1, 100 690 340	2,300 2,250 5,100	465 440 415	160 150 140	102 95 88	110 110 110	110 110 110
4 5	3, 120 4, 000		190 228	190 160	265 490	$5,260 \\ 5,320$	390 328	140 170	80 80	130 140	110 110
6 7 8 9 10	4,600		290 290 265 228 215	150 140 140 130 130	$315 \\ 215 \\ 215 \\ 215 \\ 2,020$	10,900 14,100 15,800 17,600 16,700	278 1, 470 1, 470 1, 160 815	240 228 215 202 190	$2,100 \\ 2,620 \\ 1,020 \\ 660 \\ 465$	130 120 110 110 110 110	170 215 315 340 340
$\begin{array}{c} 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ \end{array}$			215 202 215 202 750	120 110 102 95 95	4,600 4,060 3,340 2,520 1,880	$\begin{array}{c} 15,400\\ 14,400\\ 13,100\\ 12,100\\ 10,900 \end{array}$	750 690 570 490 440	180 170 160 150 130	340 240 1, 470 1, 390 815	110 110 110 110 110 110	302 278 240 228 215
16 17 18 19 20		465 415 378 352 328	2,960 4,060 3,500 2,900 2,060	95 110 190 190 452	${ \begin{smallmatrix} 1, 390 \\ 920 \\ 690 \\ 600 \\ 3, 450 \end{smallmatrix} }$	9,260 7,790 7,340 6,920 5,260	378 315 290 265 265	110 95 88 80 72	490 440 365 290 290	102 102 102 102 102 102	202 180 160 150 140
21 22 23 24		315 302 290 265 252	$1,630 \\ 1,100 \\ 780 \\ 570 \\ 465$	$\begin{array}{c} 1,840\\ 4,500\\ 4,990\\ 4,990\\ 6,260\end{array}$	4,720 2,520 1,390 1,200 1,470	$2,250 \\ 1,240 \\ 815 \\ 1,100 \\ 3,340$	$1,880 \\ 1,100 \\ 1,100 \\ 1,100 \\ 1,100 \\ 885$	65 60 60 60 60	415 265 170 150 130	$\begin{array}{r} 102 \\ 102 \\ 102 \\ 102 \\ 0. 102 \\ 102 \end{array}$	$1,130 \\ 2,250 \\ 2,200 \\ 2,100 \\ 1,880$
26		240 240 228 228 202 190	365 302 228 202 180	5,870 4,330 3,280 2,520 1,920 1,470	2,100 1,240 1,590 2,060 2,250	$2,840 \\ 1,920 \\ 1,240 \\ 955 \\ 720 \\ 570$	515 440 290 228 190 170	60 60 80 110 110	110 110 110 110 110 110	110 110 110 110 110 110	1,670 1,430 1,130 885 885 1,920

NOTE.-These discharges were obtained from a rating curve which is fairly well defined.

Monthly discharge of Yalobusha River at Grenada, Miss., for 1910.

Mandh	Discha	Accu-		
Month.	Maximum.	Minimum.	Mean.	racy.
Jan. 1–8. Mar. 13–31. A pril. May June July August. September October October November. December.	6,260 4,720 17,600 1,880 240	465 190 180 95 215 570 170 60 80 102 110	$\begin{array}{c} 3,170\\ 335\\ 839\\ 1,450\\ 1,660\\ 6,930\\ 632\\ 126\\ 491\\ 110\\ 694\end{array}$	A. B. A. A. A. B. C. B. C. B.

SUNFLOWER RIVER NEAR RULEVILLE, MISS.

This station, which was established June 15, 1908, and is maintained in cooperation with the Tallahatchie drainage commission, is located at the new iron wagon bridge 3 miles southwest of Ruleville, Miss. The gage was not installed until early in October, 1908, and readings were then intermittent until the end of 1908.

The drainage area above the station is very flat and is cut by a number of small tributaries and bayous. The river at the station

8825°-wsp 287-11---6

and below has a very small amount of slope, making the current too sluggish for measurements at times. The amount of slope and consequently of velocity varies greatly with the stage of Mississippi River, making it impossible to rate the station in the usual way by basing daily discharges upon the daily gage heights.

As the gage, which consists of two vertical sections below the bridge, is set to sea-level datum, the gage readings are actual elevations above the sea. Measurements are made from the downstream side of the bridge.

Daily gage height, in feet, of Sunflower River near Ruleville, Miss., for 1910.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	100. 50 100. 15 99. 65 99. 35 100. 00	99.70 99.60 99.62 99.52 99.42	104. 45 104. 68 104. 75 104. 55 104. 35	98.60 98.60 98.60 98.60 99.15	99.52 99.42 99.32 99.22 99.12	99. 62 99. 48 99. 25 99. 48 98. 88	$\begin{array}{c} 100.\ 00\\ 100.\ 50\\ 102.\ 50\\ 104.\ 35\\ 105\ 55 \end{array}$	99.38 99.28 99.18 98.95 98.78	98.00 98.00 98.00 98.00 98.00 98.00	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00
6 7 8 9 10	104.00 108.10 109.75 109.38 108.10	99. 32 99. 22 99. 12 98. 00 98. 00	104. 10 103. 60 103. 25 102. 45 101. 60	100. 35 100. 75 100. 80 100. 65 100. 55	98. 95 98. 78 98. 62 98. 52 98. 42	98.78 98.68 98.58 98.48 98.38	106, 50 107, 85 109, 60 109, 90 109, 50	98. 58 98. 48 98. 38 98. 28 98. 18	98.00 98.00 98.00 98.00 98.00 98.00	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00
11 12 13 14 15	106. 70 105. 85 104. 70 103. 30 102. 80	98.00 98.05 98.25 98.38 98.42	100. 60 100. 25 100. 05 99. 48 99. 82	100.50 100.50 100.50 100.50 102.65	98.32 98.22 98.12 98.00 98.00	98. 28 98. 32 98. 42 98. 52 98. 65	109. 10 108. 15 107. 20 106. 30 106. 00	98. 05 98. 00 98. 00 98. 00 98. 00 98. 00	98.00 98.00 97.95 97.75 97.55	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00
16 17 18 19 20	102.05 101.35 100.60 100.60 101.50	98. 52 98. 60 98. 60 98. 80 99. 60	99.72 99.62 99.52 99.45 99.38	106.00 107.90 107.95 107.25 106.20	98.00 98.00 98.00 98.22 98.35	98.78 98.95 99.00 99.10 99.35	106.00 105.60 104.75 103.75 102.85	98.00 98.00 98.00 98.00 98.00 98.00	97.50 97.50 97.38 97.28 97.18	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00
$\begin{array}{c} 21. \\ 22. \\ 23. \\ 24. \\ 25. \end{array}$	103. 35 104. 15 104. 30 104. 30 104. 30	$\begin{array}{c} 100.\ 65\\ 102.\ 00\\ 103.\ 90\\ 104.\ 85\\ 104.\ 85\end{array}$	99. 28 99. 18 99. 05 98. 92 98. 82	104. 80 103. 85 103. 05 102. 25 101. 10	98. 48 98. 90 99. 50 99. 90 100. 35	99. 40 99. 32 99. 22 99. 12 99. 10	102. 10 101. 45 100. 90 100. 72 100. 58	98. 00 98. 00 98. 00 98. 00 98. 00 98. 00	97. 05 97. 00 97. 00 97. 00 97. 00	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00 97.00
26 27 28 29 30 31	103 90 102.75 101.90 101.30 100.45 99.70	104.65 104.40 104.40	98. 72 98. 62 98. 60 98. 60 98. 60 98. 60	100. 25 100. 05 99. 85 99. 72 99. 62	100. 80 100. 85 100. 60 100. 35 100. 10 99. 75	99.35 99.55 99.75 99.42 99.75	100. 42 100 32 100. 22 99. 95 99. 58 99. 48	98.00 98.00 98.00 98.00 98.00 98.00 98.00	97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00	97.00 97.00 97.00 97.00 97.00 97.00 97.00

[W. E. McMathe, observer.]

SUNFLOWER RIVER AT BAIRD, MISS.

This station, which is located at the Southern Railway bridge, one-half mile west of Baird, Miss., was established June 16, 1908, but the gage was not put in until October 4, 1908. It is maintained in cooperation with the Tallahatchie drainage commission.

Owing to the great variation in height of the outlet of Sunflower River into the Mississippi through the lower portion of Yazoo River and consequently in the slope of Sunflower River, there is no relation whatever between gage heights and discharge at this station. As the gage, which consists of two vertical sections above the bridge, is set on a sea-level datum, the readings are elevations above sea level. Measurements are from the downstream side of the bridge.

The United States Army engineers have maintained a gage at this station for a portion of the time, and the gage heights prior to October 4, 1908, are from their records corrected to the sea-level datum of the new gage.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	86.5	90.0	94.1	86.8	86.9	86.0	84.8	86.0	83.3	82.6	82.6	82.6
2	86.1	89.3	93.9	86.3	86.5	85.7	85.5	85.8	83.2	82.6	82.6	82.6
3	85.5	88.6	93.7	85.7	85.9	85.3	86.5	85.7	83.2	82.6	82.6	82.6
4	85.4	88.2	93.4	85.2	85.6	85.0	87.4	85.6	83.1	82.6	82.6	82.7
5	85.3	88.0	93.0	84.8	85.0	84.9	89.8	85.4	83.1	82.6	82.6	82.7
6	87.8	87.6	92.4	84.5	84.8	84.9	91.4	85.4	83.1	82.6	82.6	82.7
7	89.6 92.0	87.3	91.8	84.3 84.3	84.6	84.6	92.6 93.7	85.3 85.2	83.2 83.1	82.8 82.8	82.6 82.6	82.7 82.7
8 9	92.0 93.3	87.1 87 0	91.1 905	84. 3	84.5 84.4	84.4 84.2	93.7	85.0	83.0	82. 7	82.6	82.7
10	93.8	86.7	89.9	84.5	84.1	84.2	94.9	85.0	83.0	82.7	82.6	82.7
11	94.0	86.5	89.4	84.5	84.1	84.1	94.9	84.8	82.9	82.7	82.6	82.7
12	93.7	86.3	89.0	84.5	84.0	85.0	94.8	84.6	82.9	82.7	S2. 6	82.7
13	93.4	85.6	88.6	84.4	84.0	85.1	94.7	84.5	82.9	82.7	82.6	82.7
14 15	93.0 92.3	85.3 85.2	88.3 88.0	84.3 84.4	83.7 83.6	85.3 85.5	94.3 93.9	84.3 84.1	82.8 82.8	82.7 82.8	82.6 82.6	82.7 82.6
16	91.5	85.0	88.0	86.8	83.5	85.3	93.4	84.0	82.8	82.8	82.6	82.6
17 18	90.8 90.1	86.9 89.6	87.9 87.9	90.4 92.5	83.4 83.4	85.1 84.8	94.8 92.1	83.9 83.8	82.8 82.8	82.8 82.8	82.6 82.6	82.6 82.6
19	89.5	90.8	87.8	93.4	83.4	84.5	91.4	83.6	82.8	82.8	82.6	82.6
20	89.0	91.1	87.8	93.5	83.5	84.4	90.7	83.6	82.8	82.8	82.6	82.6
21	91.5	92.0	87.8	93.5	84.0	84.3	89.9	83.5	82.8	82.8	82.6	82.6
22	92.8	93.0	87.9	93.1	84.7	84.2	89.3	83.4	82.7	82.7	82.6	82.6
23	93.7	94.0	88.0	92.7	84.8	84.1	88.6	83.3	82.7	82.7	82.6	82.8
24 25	94.0 94.0	94.5 94.9	88.1 88.1	92. 1 91. 5	85.1 85.5	84.0 84.3	88.0 87.5	83.4 83.5	82.7 82.7	82.7 82.6	82.6 82.6	82.8 82.8
40	94.0	94.9	88. I	91. 0	85.5	84.0	81.9	00.0	02.1	82.0	02.0	02.0
26	93.7	94.8	88.1	90.7	86.1	84.4	86.9	83.6	82.7	82.6	82.6	82.8
27	93.3	94.6	88.1	89.9	86.7	84. 2 84. 4	86.5 86.2	83.6	82.7	82.6	82.6	82.8
28 29	92.7 92.0	94.6	88.1 87.9	89.0 88.0	86.9 86.8	84.4 84.4	86. 2 85. 9	83.5 83.5	82.7 82.7	82.7 82.7	82.6 82.6	82.8 82.8
30	91.3		87.7	87.5	86.8	84.4	85.6	83.4	82.7	82.6	82.6	83.0
31	90.6		87.3		86.4		85.3	83.3		82.6		83.0
	۱	1		1		1		}	1			}

[H. V. Finch, observer.]

RED RIVER DRAINAGE BASIN.

DESCRIPTION.

Red River is formed by several forks, all of which have their sources in northern Texas, and takes a general easterly direction along the northern boundary of Texas, and then turns toward the southeast, flows through a low swampy region in Louisiana, and enters the Mississippi not far from the southern boundary of the State of Mississippi.

North Fork and Salt Fork rise in the Panhandle of Texas and flow in a general southeasterly direction across the southwest corner of Oklahoma, uniting with Prairie Dog Fork a short distance above Vernon, Tex. Elm Fork, rising in the same locality, joins North Fork 50 or 75 miles above its mouth. The flow ceases entirely in the late summer and fall in ordinary dry years, and most of the runoff from the basin is flood water from heavy rains. The drainage area consists of dry, semiarid plains varied by sand hills in some portions. The underlying rocks are sandstone, limestone, and gypsum in the upper portion, and granite where the streams pass through the Wichita Mountains.

Wichita River rises in Dickens County, flows northeastward, and joins the Red in Clay County.

Washita River rises in northern Texas, crosses southern Oklahoma and flows into Red River in the southern part of that State, about 10 miles from Denison, Tex.

Sulphur Fork of Red River rises in Hunt and Fanning counties, Tex., flows eastward, forming the boundary between Delta, Red River, and Bowie counties on the north, and Hopkins, Franklin, Titus, Morris, and Cass counties on the south, and joins Red River about 7 miles north of the Louisiana boundary line. The flow of this fork is exceedingly variable; during dry summers it ceases entirely, but enough water always remains standing in pools to water stock; during or immediately after protracted or unusually heavy rains the river becomes very wide and deep, floods its bottoms, and often occasions considerable loss of stock and damage to planters and to the railroads.

WICHITA RIVER AT WICHITA FALLS, TEX.

This station, which is located at the Fort Worth & Denver City Railway bridge at Wichita Falls, Tex., was established in September, 1910, and gage-height observations were begun on October 1, 1910. A standard chain gage was installed on this bridge by R. A. Thompson, chief engineer of the Wichita Falls & Northwestern Railway. Wichita River at this point has a sandy bottom, which shifts from time to time.

Date.	Hydrographer.	Gage height.	Dis- charge.
Oct. 21 22 24 Nov. 24	J. D. Metcalfedo	Feet. 5.00 4.00 2.40 1.40	Secft. 1,770 809 195 15

Discharge measurements of Wichita River at Wichita Falls, Tex., in 1910.

Daily gage height, in feet, of Wichita River at Wichita Falls, Tex., for 1910.

day.	Oct.	Nov.	Dec.	Day.	Oct.	Nov.	Dec.	Day.	Oct.	Nov.	Dec.
1 2 3 4 5	1.1 1.1 1.0 1.0 1.0	$1.4 \\ 1.4 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3$	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 $	$\begin{array}{c} 11 \\ 12 \\ 13 \\ 11 \\ 15 \\ 15 \\ \end{array}$	1.1 1.1 1.1 1.1 1.1	$1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2$	$1.1 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.3$	21 22 23 24 25	5.0 4.1 3.4 2.5 2.2	$1.5 \\ 1.5 \\ 1.5 \\ 1.4 \\ 1.3$	$1.6 \\ 1.6 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5$
6 7 8 9 10	$1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.1 \\ 1.1$	$1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2$	$1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$	16 17 18 19 20	$1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.6$	$1.4 \\ 1.4 \\ 2.2 \\ 2.0 \\ 1.8$	$1.3 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6$	26 27 28 29 30 31	$2.0 \\ 1.8 \\ 1.6 \\ 1.5 \\ 1.4 \\ 1.4 \\ 1.4$	$1.3 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ \dots$	1.4 1.4 1.3 1.3 1.3 1.2

MISCELLANEOUS MEASUREMENTS IN LOWER MISSIS-SIPPI RIVER DRAINAGE BASIN.

The following miscellaneous discharge measurements were made in the lower Mississippi River drainage basin during 1910:

Date.	Stream.	Tributary to—	Locality.	Gage height.	Dis- charge.
Oct. 26	River.		Leadville, Colo		Secft. 10.6
Aug. 30 Jan. 23 June 23	do				286 635 550
Oct. 26	Tennessee Fork of Ar- kansas River.	Arkansas River	Leadville, Colo		6.6
26 May 5	River.	do	do Twin Lakes, Colo		9.0 116
July 19 June 12	do Clear Creek	do do	Geibfried's ranch. Colo.		69 236
Sept. 23	Middle Cottonwood Creek.	Cottonwood Creek	1 mile above junction with South Fork near Buena Vista, Colo.	•••••	22.6
Feb. 26 Apr. 5	do	Arkansas River	Canon City, Colo		38 46
30 July 23 Aug. 11	do do dodo	do	do		124 22 23
17 Sept. 17 Oct. 4	do	do	do	1.32	20 28 25
28 Nov. 24	do	do	do do		25 15
May 31 31		do	Headgate Long Gulch Ditch, Colo. End of Garden Park,	1	15 16.5
Apr. 12	do	do	Colo. At mouth, Colo		21
Sept. 10 Oct. 31 Apr. 2	do. do. 		do		28 51 10.9
Mar. 3	North Cheyenne Creek	Fountain Creek	Fourmile Creek, Colo. Colorado Springs, Colo		a 7
Apr. 22 Dec. 17 Oct. 5	St. Charles River Canadian River Rayado River	do	Lime, Colo Maxwell City, N. Mex 6 miles above station at	1	$ \begin{array}{r} 148 \\ b 2.5 \\ 2.4 \end{array} $
	•		Abreu's ranch near Cimarron, N. Mex.		
Oct. 22 Dec. 20	Savoya River Carrizo Creek	Mora River Ute Creek	La Cueva, Ń. Mex Albert, N. Mex		a 1.0 b.25

Miscellaneous measurements in lower Mississippi River basin in 1910.

a Estimated. ^b Estimated. Ice conditions. ^c Distance of water surface from reference mark, which is lower end of outside, downward projecting point of rock near the upstream end of a vertical rock bank, about 200 yards below the forks of the river.

• •

٠

INDEX.

А.	Dago
Accuracy of discharge measurements, degree	Page.
	13-15
of Acknowledgments to those aiding	13-13
Acre-foot, definition of	10
Albert, N. Mex.,	10
Carrizo Creek near:	
	85
discharge Appropriations, amount of	80 5
	9
Arena, Colo., Big Spring Creek near	
Big Spring Creek near:	F0 F4
description	
discharge	54
gage heights	54
Arkansas River basin, description of	28-31
Arkansas River at or near-	
Boone, Colo.:	
discharge	85
Canon City, Colo.:	
description	
discharge	36
discharge, daily	37
discharge, monthly	37
gage heights	36
Granite, Colo.:	
description	31
discharge	31
discharge, daily	32
discharge, monthly	33
gage heights	32
Holly, Colo.:	
description	41
discharge	41
discharge, daily	42
discharge, monthly	43
gage heights	42
La Junta, Colo.:	
discharge	85
Nepesta, Colo.:	
description	40
discharge	40
gage heights	40-41
Pueblo, Colo.:	
description	
discharge	38
discharge, daily	39
discharge, monthly	40 39
Salida, Colo.:	98
description	33
discharge	33
discharge, daily	34
discharge, monthly	35
gage heights	34
Authority for investigations	5

В.	_
	Page.
Baird, Miss.,	
Sunflower River at: •	
description	
gage heights	82
Batesville, Miss.,	
Tallahatchie River at:	=0
description	73
disoharge	73
discharge, daily	74
discharge, monthly	74
gage heights	73
Beaver, Ark.,	
White River at:	01
description	21
discharge	21
gage heights	22
Big Sandy Creek at-	
Hugo, Colo.:	
description	
discharge	52
gage heights	52
Kit Carson, Colo.:	
description	53
discharge	53
gage heights	53
Big Spring Creek near-	
Arena, Colo.:	
description	
discharge	54
gage heights	54
Boone, Colo.,	
Arkansas River near:	
discharge	85
Branson, Mo.,	
White River near:	
description	22
gage heights	23
Buena Vista, Colo.,	
Chalk Creek near:	
description	47
discharge	47
gage heights	47
Cottonwood Creek near:	10
description	46
discharge	46
gage heights	46
Middle Cottonwood Creek near:	85
discharge	66
Buffalo River near-	
Gilbert, Ark.:	25-94
description	20-20 26
discharge	26 26
gage heights	⊿0

с.	Dago
Canadian River basin, description of	Page. 55
Canadian River at—	
Logan, N. Mex.:	
description	56
discharge discharge, daily	$\frac{56}{57}$
discharge, monthly	58
gage heights	57
Maxwell City, N. Mex.:	
discharge	85
Canon City, Colo., Arkansas River at:	
description	35-36
discharge	36
discharge, daily	37
discharge, monthly	37
gage heights	36
Fourmile Creek near:	
See Oil Creek under this head. Grape Creek near:	
discharge	85
gage heights	85
Oil Creek near:	
description	
discharge	
gage heights	48
Carrizo Creek near Albert, N. Mex.:	
discharge	85
Central Land & Irrigation Co., assistance of	16
Chalk Creek near—	
Buena Vista, Colo.:	
description	47
discharge	47 47
gage heights Chico Rico Creek near—	47
Raton, N. Mex.:	
description	58
discharge	58
gage heights	58
Christiansen, E. O., work of	16
Cimarron, N. Mex.,	
Rayado River near:	61-62
description discharge	62
discharge, daily	63
discharge, monthly	63
gage heights	62 - 63
Cimarron River at—	
Ute Park, N. Mex.:	-
description discharge	5960 60
discharge, daily	61
discharge, monthly	60
gage neights	61
Clear Creek near—	
Granite, Colo.: description	44
discharge	
discharge, daily	45
discharge, monthly	46
gage heights Coldwater River at—	45
Savage, Miss.:	
description	77-78
discharge	78

Coldwater River at-Continued.	
	Page.
discharge, daily	79
discharge, monthly	79
gage heights	78
Colorado Springs, Colo., North Cheyenne Creek near:	
discharge	85
Comstock, C. W., assistance of	16
Cooperation, credit for	
Cooperative data, use of	
Cotter, Ark.,	
White River near:	
description	24
gage heights	25
Cottonwood Creek near— Buena Vista, Colo.:	
description	46
discharge	46
gage heights	46
Current meters, views of	12
Current-meter stations, views of	12
D.	
Data, explanation of	12-13
field methods used in collection of	14
Data on stream flow in publications of United	
States Geological Survey, charac-	
ter of	6-10
Definition of terms.	10 10
Discharge, definition of Discharge measurements, accuracy of	
nature of	
Drainage basins, list of.	
Е.	
East Fork of Arkansas River near-	
Leadville, Colo.: discharge	85
East Fourmile Creek, discharge of	85
Equivalents, list of	
F.	
F. Fourmile Creek near-	
Canon City, Colo.:	
description	4748
discharge	
gage heights	48
Freeman, W. B., work of	16,17
G.	
Gage heights, readings of	12
Gaging stations, views of	12
Garden Park, Colo.,	
Fourmile or Oil Creek near:	
discharge	85
Gilbert, Ark., Buffalo River near:	
description	25-26
discharge	26
gage heights	26
Gladson, W. N., work of Granite, Colo.,	17
Arkansas River at:	
description	31
discharge	31
discharge, daily	32 33
discharge, monthly gage heights	32
0-0	

~

America Cala Continued	
Granite, Colo.—Continued. Clear Creek near:	Page.
description	1 age. 44
discharge	44
discharge, daily	45
discharge, monthly	46
gage heights	45
Grape Creek near-	
Canon City, Colo.:	
discharge	85
Greenwood, Miss.,	
Yazoo River at:	
description	76-77
gage heights	77
Grenada, Miss.,	
Yalobusha River at:	
description	
discharge	80
discharge, daily	81
discharge, monthly	81
gage heights	80
Grieve, Thomas, work of	16
H.	
Hall, M. R., work of	17
Henderson, Ark.,	
North Fork River near:	
description	26 - 27
discharge	27
gage heights	27
Holly, Colo.,	
Arkansas River at:	
description	41
discharge	41
discharge, daily	42
discharge, monthly	43
gage heights	42
Hugo, Colo.,	
Big Sandy Creek at:	
description	
discharge	52
gage heights	. 52
Ι.	
Investigations, authority for	5
scope of	5-6
-	
L. La Cueva, N. Mex.,	
La Cueva canal at:	
description	64
discharge	66
discharge, daily	67
discharge, monthly	67
gage heights	66
Mora River at:	
description	64
discharge	64
discharge, daily	65
discharge, monthly	66
gage heights	65
Savoya River at:	
discharge	85
La Cueva canal at-	
La Cueva, N. Mex.:	
description	64
discharge	66

La Cueva canal at-Continued.	
La Cueva, N. MexContinued.	Page.
discharge, daily	67
discharge, monthly	67
gage heights	66
La Junta, Colo.,	
Arkansas River near:	
discharge	85
Lake Fork of Arkansas River near—	
Leadville, Colo.:	
discharge	85
Lead Hill, Ark.,	
White River near:	
description	23
discharge	23
gage heights	24
Leadville, Colo.,	
East Fork of Arkansas River near:	
discharge	85
Lake Fork of Arkansas River near:	0.5
discharge	85
Tennessee Fork of Arkansas River near:	0"
discharge	85
Lime, Colo.,	
St. Charles River near:	85
discharge	89
Little Red River near—	
Pangburn, Ark.:	07 00
description	27-28
discharge	28 28
gage heights	28
Logan, N. Mex.,	
Canadian River at:	E.C.
description	56 56
discharge	50 57
discharge, daily	57
discharge, monthly gage heights	58
Ute Creek near:	90
description	70
discharge	70
discharge, daily	71
discharge, monthly	72
gage heights	71
Los Alamos, N. Mex.,	
Sapello River at:	
description	67-68
discharge	68
discharge, daily	69
discharge, monthly	6 9
gage heights	6869
Lyon, G. J., work of	16
М.	
Mathers, J. G., work of	17
Maxwell City, N. Mex.,	
Canadian River near:	
discharge	85
Middle Cottonwood Creek near-	
Buena Vista, Colo.:	
discharge	85
Miller, C. D., work of	16
Mills, W. W., work of	1 6
Miscellaneous measurements in lower Missis-	
sippi River basin, records of	85

•

INDEX.

Mora River at—	
La Cueva, N. Mex.:	Page.
description	64
discharge	64
discharge, daily	6 5
discharge, monthly	66
gage heights	65
N.	
Nepesta, Colo.,	
Arkansas River near:	
description	40
discharge	40
gage heights	40-41
North Cheyenne Creek near-	
Colorado Springs, Colo.:	
discharge	85
North Fork River near-	
Henderson, Ark .:	
description	26 - 27
discharge	27
gage heights	27
O. Oil Creek near—	
Canon City, Colo.:	
description	47-48
discharge	48
gage heights	48
	10
Р.	
Padgett, H. D., work of	17
Pangburn, Ark.,	
Little Red River near:	
description	27 - 28
discharge	28
gage heights	28
Phelan, J. J., work of	17
Philipp, Miss.,	
Tallahatchie River at:	
description	74-75
discharge	75
discharge, daily	76
discharge, monthly	76
gage heights	75
Price meters, views of	12
Publications, lists of	7-9
Publications, data on stream flow in	6-10
Pueblo, Colo.,	
Arkansas River at:	
description	37-38
discharge	38
discharge, daily	39
discharge, monthly	40
gage heights	39
Purdue, A. H., assistance of	16
Purgatory River basin, description of	4849
Purgatory River at	
Trinidad, Colo.:	
description	49
discharge	50
discharge, daily	51
discharge, monthly	51
gage heights	50
R.	
Rating curves and tables, accuracy of	14
construction of.	12-13

Raton, N. Mex.,	
Chico Rico Creek near:	Page.
description	58
discharge	58
gage heights	58
Una del Gato Creek near:	
description	58-59
discharge	59
gage heights	
Rayado River near-	
Cimarron, N. Mex .:	
description	61-62
discharge	
discharge, daily	
discharge, monthly	
gage heights	
Red River basin, description of	
Red River. See Canadian River.	
Ruleville, Miss.,	
Sunflower River near:	
description	82-83
gage heights.	
Run-off, definition of	
Russell, G. H., work of.	

s.

St. Charles Miver near-	
Lime, Colo.:	
discharge	85
Salida, Colo.,	
Arkansas River at:	
description	33
discharge	33
discharge, daily	34
discharge, monthly	35
gage heights	34
Sapello River at—	
Los Alamos, N. Mex.:	
description	67-68
discharge	68
discharge, daily	69
discharge, monthly	69
gage heights	68-69
Savage, Miss.,	
Coldwater River at:	
description	77-78
discharge	78
discharge, daily	79
discharge, monthly	79
gage heights	78
Savoya River near—	
La Cueva, N. Mex.:	
discharge	85
Second-foot, definition of	10
Stevens, G. C., work of	17
Stewart, J. B., work of	
Stream measurement, accuracy of	
Sullivan, V. L., assistance of	16
Sunflower River at or near—	
Baird, Miss.:	
description	81-82
gage heights	82
Ruleville, Miss.:	
description	
gage heights	83

90

	Page.
Tables, explanation of	12 - 13
Tallahatchie drainage commission, assistance	
of	16
Tallahatchie River at—	
Batesville, Miss.:	
description	73
discharge	73
discharge, daily	74
discharge, monthly	74
gage heights	73
Philipp, Miss.:	
description	74-75
discharge	75
discharge, daily	76
discharge, monthly	76
gage heights.	75
Tennessee Fork of Arkansas River near-	
Leadville, Colo.:	
discharge	85
Terms, definitions of	10
Trinidad, Colo.,	10
Purgatory River at:	
description	49
-	49 50
discharge	50 51
discharge, daily discharge, monthly	51 51
gene heighte	50
gage heights Tuttle, A. H., work of	17
Twin Lakes, Colo.,	17
Lake Creek near:	
	85
discharge Twin Lakes outlet near:	80
	43
description	43 43
discharge	40 44
discharge, daily	44 44
discharge, monthly	
gage heights	43
Twin Lakes outlet near-	
Twin Lakes, Colo.:	40
description	43
discharge	43
discharge, daily	44
discharge, monthly	44
gage heights	43

.

υ.

Una del Gato Creek near—	
Raton, N. Mex.:	
description	58-59
discharge	59
gage heights	59
Ute Creek near-	
Logan, Colo.:	
description	70
discharge	70
discharge, daily	71

Ute Creek near-Continued.	Page.
Logan Colo.—Continued.	•
discharge, monthly	72
gage heights	71
Ute Park, N. Mex.,	
Cimarron River at:	
description	5960
discharge	60
discharge, daily	61
discharge, monthly	60
gage heights	61
. W.	
Walls Ferry, Ark.,	
White River near:	
description	25
White River basin, description of	20-21
White River at or near—	
Beaver, Ark.:	
description	21
discharge	21
gage heights	22
Branson, Mo.:	
description	22
gage heights	23
Cotter, Ark.:	~0
description	24
gage heights	25
Lead Hill, Ark.:	-40
description	23
discharge	23
gage heights	20
Walls Ferry, Ark	41
description	25
Wichita Falls, Tex.,	40
Wichita River at:	
description	84
discharge	84
gage heights	85
Wichita River at—	00
Wichita Falls, Tex.:	
description	84
discharge	84
gage heights	85
Wood, Mrs. B. D., work of.	17
Y.	
Yalobusha River at—	
Grenada, Miss.:	70.00
description	
discharge	80
discharge, daily	81
discharge, monthly	81
gage heights.	80
Yazoo River basin, description of	724

9	1

O

Yazoo River at-Greenwood, Miss.:

• • . .

. . •

. . ٦ .

. . . . · · .

• • •