

Rolling Element Bearing Dynamics in Wind Turbines

Yi Guo and Jonathan Keller

National Renewable Energy Laboratory

American Society of Mechanical Engineers International Design Engineering Technical Conferences Meeting Quebec City, Canada August 29, 2018

NREL/PR-5000-72185

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Wind Turbine Drivetrain Reliability Challenges

- Predominant drivetrain failure modes are:
 - Not accounted for in design standards
 - Not attributable to material deficiencies or quality control
 - Complex and independent of the component supplier

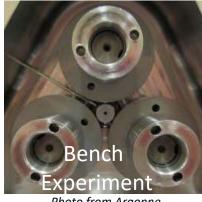
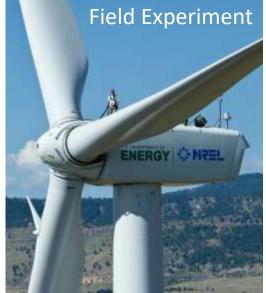
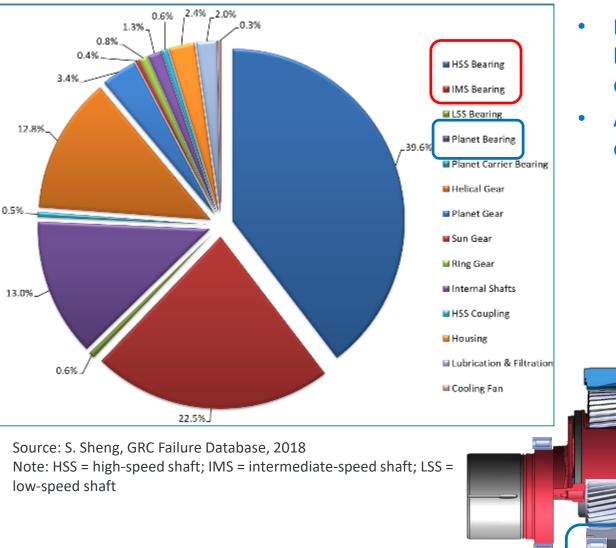



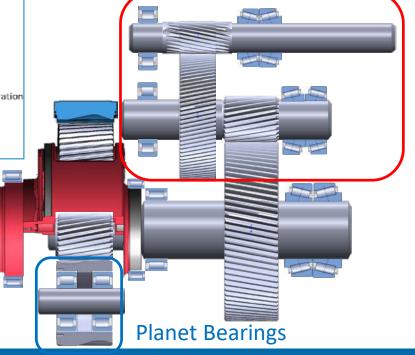
Photo from Argonne National Laboratory

Photo by Mark McDade, National Renewable Energy Laboratory (NREL) 40432


• Conduct testing and analysis to enable:

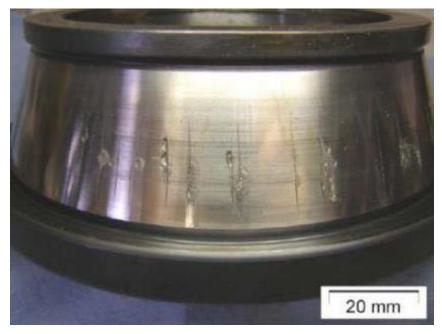
Improvement of inherent reliability

Photo by Dennis Schroeder, NREL 21864


- Increase of availability with less effort and drama
- Reduction in wind plant operation and maintenance costs.

Most Frequent Failures

- High & intermediate speed stage bearings contribute 62% of total drivetrain failures.
- A planet bearing failure is more costly.



Uptower Experiment Objectives

What turbine operations and grid conditions result in critical contact conditions for high-speed shaft and main bearings?

Gearbox Bearing Axial Cracking

Errichello, R., S. Sheng, J. Keller, and A. Greco. 2012. *Wind Turbine Tribology Seminar–A Recap.* U.S. Department of Energy Wind and Water Power Program. Photo from Jurgen Gegner, SKF.

Main Bearing Failure

Brake, D. "WTG SRB Main Bearing Failures." Paper presented at the 2013 UVIG Wind Turbine/Plant Operations & Maintenance Users Group Meeting.

Load impacts on component reliability addressed properly?

Gearbox Instrumentation^[1]

- Winergy PEAB 4410.4 gearbox and SKF cylindrical roller bearings
 - Instrumentation focused on high-speed shaft, bearings, and lubricant
 - Shaft speed
 - Cage speed Sliding
 - Roller speed
 - Shaft torque and bending
 - Stray current
 - Bearing temperatures
 - Air temperature and humidity
 - Lubricant temperatures and moisture content
 - LogiLube and Poseidon lubricant monitoring and routine oil samples
 - SKF IMx-8 system.

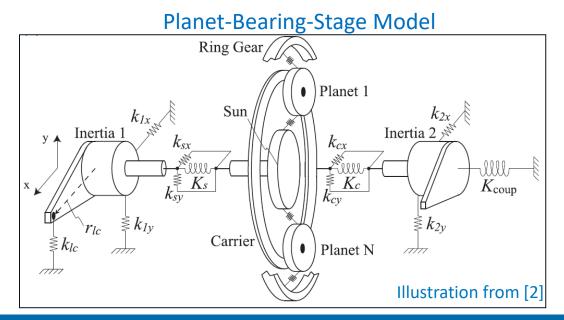
Photo by Mark McDade, NREL 49050

Modeling of Bearing Loads & Stresses

- Transmission error
- Bearing clearance
- Nontorque loads
- o Gravity

Motion

- Failure modes, such as planet bearing fatigue, can be included
- Validation on loads will be performed during DRC 1.5 uptower testing.

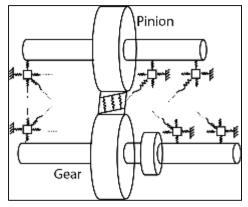

Dynamic terms

Nonlinear, Time-Dependent Equations of

Gear mesh stiffness

PCL nonlinearity

 $\mathbf{M}\ddot{\mathbf{q}} + \mathbf{D}\dot{\mathbf{q}} + \left\lceil \mathbf{K}(\mathbf{q}, t) + \mathbf{B} \right\rceil \mathbf{q} = \mathbf{f}(\mathbf{q}, t)$



High-Speed-Shaft Model

Applied torque &

surface mods.

Bearing stiffness

Different modules used to reduce computation time

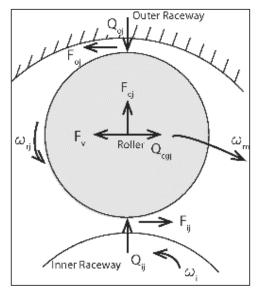
Turbine Load Model

Drivetrain Load

Stress Model

Roller Sliding

Model


Component

Degradation Model

Model Development: Roller Dynamics

- Roller dynamics model (analytical) based on: Turbine Load Model
 - Harris roller dynamics model [3,4]
- Lubricant hydrodynamics model based on:
 - Bercea cage friction model [5]
 - Dowson and Higginson lubricant model [6]

Force balance of a single roller

$$Q_{ij} - Q_{oj} + F_{cj} = 0 (1)$$

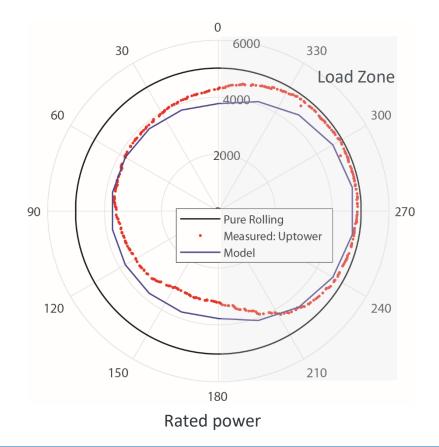
$$F_{ij} - F_{oj} + F_{v} - Q_{cgj} = 0$$
 (2)

$$M_{ij} - M_{oj} + \frac{1}{2}\mu_{cg}DQ_{cgj} = F\omega_m \frac{d\omega_{rj}}{d\psi}$$
(3)

$$\sum_{j=1}^{Z} Q_{ij} \cos \psi_j - F_r = 0 \tag{4}$$

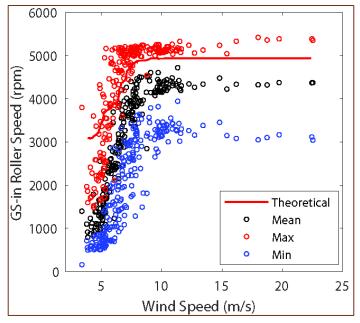
$$d_m \sum_{j=1}^{z} Q_{cgj} - D_{cr} F_{cl} = 0$$
 (5)

Drivetrain Load Stress Model


Roller Sliding

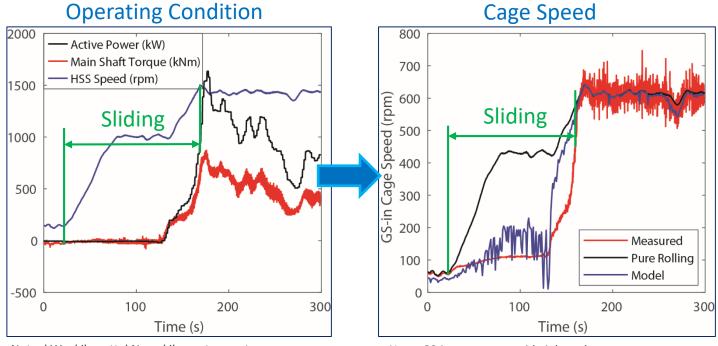
Model

Component Degradation Model


Model Validation: Roller Speed Zone

- Good agreement between model & experiments
- Outside the load zone, the roller speed is less than its theoretical value for pure rolling conditions.

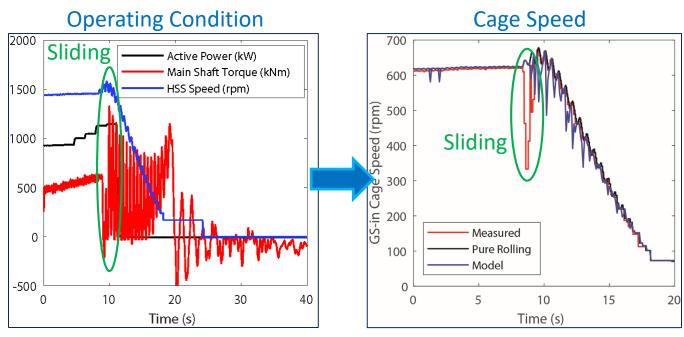
Roller Speed Statistics


- Good correlation between model and experimental results
- Roller speed less than theoretical at low wind speed
 - Indicates significant roller sliding

Note: GS-in = inboard generator side; rpm = revolutions per minute; m/s = meters per second

Roller Sliding During Startup

- Significant sliding present between 110 & 220 seconds
 - Related to controller settings
- Sliding occurred because of high speed with no load
 - Roller/raceway wear could occur.

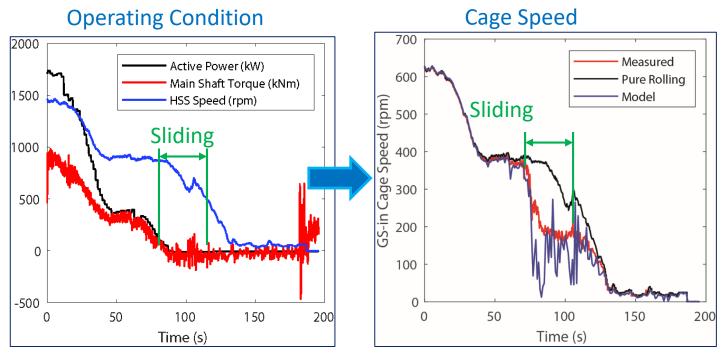


Note: kW = kilowatt; kNm = kilonewton-meter

Note: GS-in = generator side inboard

Roller Sliding During Emergency Stop

- No significant sliding occurred
 - Limited roller sliding present only when braking started
- Strong impact loading initiated by the braking
- Maximum torque exceeded 169% of rated.



Note: kW = kilowatt; kNm = kilonewton-meter

Note: GS-in = generator side inboard

Roller Sliding During Normal Stop

- Sliding occurs when generator disconnected at 75 seconds
- High sliding risks under high-speed & low to zero load.

Note: kW = kilowatt; kNm = kilonewton-meter

Note: GS-in = generator side inboard

Conclusions

- Unique experimental results on bearing roller and cage speed presented
- Analytic model for calculating bearing speed described
 - Model validated through uptower experiments
- Bearing speed affected by drivetrain load and speed
- Bearing sliding widely present during regular turbine operations
- Significant sliding occurs during transient events
 - Can lead to bearing failures or shortened life
 - Risks of sliding-induced failures to be quantified in the future.

Acknowledgments

This work was funded by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory and cooperative research and development agreement 17-694 with Flender Corporation, and 16-608 SKF GmbH. Funding for this work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office.

Contacts:

yi.guo@nrel.gov jonathan.keller@nrel.gov

References

- [1] J. Keller and S. Lambert. *Gearbox Instrumentation for the Investigation of Bearing Axial Cracking* (Technical Report). NREL/TP-5000-70639. National Renewable Energy Laboratory, Golden, CO (US). https://www.nrel.gov/docs/fy18osti/70639.pdf, 2018
- [2] T. M. Ericson & R. G. Parker, *Natural Frequency Clusters in Planetary Gear Vibration*. J. Vib. Acoust 135(6), 061002, 2013
- [3] T. A. Harris, *An analytical method to predict skidding in high speed roller bearing*, ASLE Transaction, 1966
- [4] T. A. Harris and M. H. Mindel, Rolling element bearing dynamics, Wear, 1972
- [5] I. Bercea, et al. *Simulating roller cage pocket friction in a tapered roller bearing*, European J. Mech. Eng., 1997
- [6] D. Dowson & G. R. Higginson, "*The effect of material properties on the lubrication of elastic rollers*", Journal of Mech. Eng. Sci., 1960