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Abstract  —  The PV Reliability Performance Model (PV-RPM) 
tool is used to simulate the cost and energy impacts of component 
faults and failures for a hypothetical PV system. This model, 
originally developed by Sandia National Laboratories, is a new 
feature in the National Renewable Energy Laboratory’s System 
Advisor Model (SAM), which performs stochastic analysis 
sampling of probability distributions for faults, failures, and 
repairs. One PV system was created for this analysis to be 
representative of a portfolio of maintenance data maintained by 
Sandia National Laboratories. Fault, failure, and repair 
distributions from this system are varied from current baseline 
conditions to simulate different reliability and repair scenarios 
and resulting energy and cost impacts. Results highlight ways to 
express the uncertainty around PV system performance when 
considering the probabilistic behavior of components in the 
system, and ways the PV-RPM model can be used to explore 
different failure and repair scenarios.  

I. INTRODUCTION 

Sandia National Laboratories (SNL) has been collecting 
maintenance data from operational PV systems to work with 
industry partners to better understand and characterize how 
component events are impacting system performance [1]. SNL 
worked with the National Renewable Energy Laboratory 
(NREL) using the SNL reliability dataset in the development of 
O&M cost budgets for new PV systems in the PV O&M Cost 
Model [2], and in the PV Reliability Performance Model (PV-
RPM) in the System Advisor Model (SAM) to perform 
probabilistic simulations of lifetime performance based on fault 
and failure distributions [3,4,5]. These tools allow for many 
different types of planning scenarios for new or existing PV 
systems, considering different component failure rates and 
maintenance scheduling scenarios, and modeled scenarios, 
using an existing system’s fault/failure and repair distributions 
to evaluate the uncertainty in energy production based on how 
the system is currently performing. The PV-RPM tool allows 
one to analyze not only the reduction in power due to a failed 
component, but also the cost to repair the component, which are 
then used as inputs in a SAM simulation so that the effect of 
both the reduced power and the repair cost are included in the 
calculated levelized cost of energy (LCOE). 

We used the PV-RPM tool to conduct hypothetical reliability 
scenario analysis utilizing existing fault/failure and repair 
distributions from the SNL reliability dataset for a fictitious 305 
kWDC system. This system is meant to represent a system within 
Portfolio D, which consists exclusively of distributed 
generation (DG) as compared to other data portfolios managed 
by SNL (Table 1). We use this system to establish a baseline in 

terms of estimated performance (energy, O&M costs, and 
LCOE) considering a selection of existing failure and repair 
rates. We then vary fault and failure distributions and different 
repair scenarios to compare to the baseline scenario.  

II. PORTFOLIO AND DATASET 

The SNL portfolio has a total capacity of 780 MWDC with a 
total of 144 systems. Currently, 56% (109 out of the 189 PV 
systems) have maintenance data recorded against specific 
components. This represents around 510 MWDC out of the total 
780 MWDC in the portfolio. The data collection range varies for 
each portfolio as shown in Table I. 

Fig. 1 presents the total number of both faults and failures 

collected by SNL within all portfolios. The data is sorted by the 
component with the most events in the database, to those that 
have the fewest catalogued events.  

The 305 kWDC system used in this analysis is representative 
of Portfolio D, which is characterized in Fig. 2 as a function of 
the percentage of events (both faults and failures) that cover the 
data collection timeframe of 2013 to 2017. An “event” is any 

 
 

Fig. 1.  Summary of number of events (faults and failures) across 
all portfolios 

TABLE I 
CURRENT PORTFOLIO SUMMARY 

Portfolio Comm. year 
Data 

collection 
range 

# of 
systems MWDC % 

DG 

% 
utility 
scale 

A 2003 2003-2008 1 3.5 0 100 
B 2008-2009 2012-2014 2 1.75 100 0 
C 2008-2016 2015-2016 180 578 3.4 96 
D 2010-2017 2013-2017 61 25.6 100 0 

Comm. – commissioning 



2 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

fault or failure that triggers a trouble ticket in the computerized 
maintenance management software. Inverters make up about 
half of all events within Portfolio D, followed by grid issues 
(external to the PV system). Combiner issues are next, then 
followed by environmental impacts, AC meter, string and 
finally weather station outages. 

Previous work [1] analyzed the failure information in these 

datasets to fit statistical distributions to the failure and repair 
times of components in these datasets. 

III. BASELINE SCENARIO 

To conduct the analysis at hand, we first established a 
baseline scenario, representing current reliability and repair 
information, for comparison against our hypothetical reliability 
scenarios. In SAM, we created a fictitious system design 
representing a 305 kWDC ground mount system from Portfolio 
D of the maintenance data. We populated this simulation with 
system cost data corresponding to a commercial system in the 
“U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017”, 
with a total installed cost of $1.84/WDC and an assumed inverter 
replacement at 10¢/WDC in year 15 [6]. For the financial model, 
we used the Single Owner model within SAM, using mostly its 
default inputs, and examining the system over a 20-year 
lifetime. 1   

We then set up a stochastic component reliability analysis in 
the PV-RPM tool within SAM to run on our representative PV 
system. We modeled failures for only the top three components 
with the most failures from Fig. 2: inverters, DC combiners, and 
the grid. All other components were assumed not to fail, which 
will artificially lower final LCOEs. For each component, we 
selected representative failure distributions and their 
corresponding repair distributions from Appendix A of [1]. 
Three common failure modes were selected for the inverters: 
fan failures, power cycling failures, and insulated gate bipolar 
transistor (IGBT) failures. Only two failure modes were 
available for the grid and one for DC combiners, so all of those 

                                                           
1 The SAM file and PV-RPM scripts used for this analysis will 
be posted on the SAM website at https://sam.nrel.gov/pvrpm 

failure distributions were used for their respective components. 
Table II shows the selected failure and repair distributions for 
each component. Note that although sub-components are 
replaced, none of these failure distributions model the end-of-
life failure and total replacement of the entire inverter, so the 
assumed total inverter replacement in year 15 remained in our 
simulation, consistent with the inverter lifetime estimate used 
in [6]. 

Finally, repair costs, repair labor time, and labor rates for 
each failure type were taken from the spreadsheet O&M cost 
model associated with [7] and entered into the PV-RPM tool 
within SAM. These costs and repair times are shown with their 
corresponding failure mode in Table II. 

With our baseline scenario completed with a system design, 
system costs, representative failure and repair distributions, and 
associated repair cost information, we ran 50 stochastic 
realizations of this hypothetical scenario to establish our 
baseline LCOE range. 

In addition to our baseline scenario, we ran the baseline 
system in a deterministic manner assuming no component 
failures whatsoever throughout the lifetime of the system. This 
demonstrates the lower limit for the improvement that our 
assumed reliability and repair scenarios can provide. Assuming 
a 20-year system lifetime, the no-failure LCOE of this system 
is 9.50¢/kWh.  

IV. RELIABILITY AND REPAIR SCENARIOS 

After establishing our baseline scenario, we simulated 
several different reliability and repair scenarios. These 
scenarios fall into three different categories: 1) improved 
reliability scenarios, where we extend the time to failure as a 
proxy for improved component reliability, 2) improved repair 
scenarios, where we shorten the time to repair, and 3) an 
improved inverter lifetime scenario, where we lengthen the 
assumed lifetime of the inverter, versus improving reliability of 
the non-fatal failure modes we chose to model.  

For the improved reliability scenarios, we first explored an 
“attainable” improvement where it takes components 20% 
longer to fail. We accomplished this, after sampling the original 
failure distributions, by multiplying the sampled failure time for 
each component by 1.2 (applied evenly across all failure 
modes), thereby shifting the entire sample set 20% to the right. 
We did this for each component type individually, leaving the 
other components using their baseline failure distributions, as 
well as for all three components simultaneously, to allow us to 
explore the relative impact of different component failures. We 
also explored a more ambitious reliability improvement, where 
we doubled the time it took components to fail, again for each 
component individually and then for all three simultaneously. 

For the improved repair scenarios, we performed a similar 
shift, but in the opposite direction. We explored a regime where 
time to repair is cut in half by multiplying each sampled repair 
time by 0.5. This could represent some combination of faster 
failure identification and shorter lead times on repairs.  

 
 

Fig. 2.  Component event percentages for Portfolio D 
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TABLE II 
FAILURE AND REPAIR DISTRIBUTIONS AND ASSOCIATED COSTS 

Failure Mode Failure 
Distribution 

Repair 
Distribution Repair Labor Hrs Material 

Cost Total Cost 

DC Combiner Failure: 
Unknown Cause 

Weibull 
Shape: 0.51 
Scale: 1200000 

Lognormal-n 
Mean: -0.98 
Std: 2.07 

Replace MC 
connector lead to 
combiner 

0.1 $20  $22.40 

Inverter Failure: Fans 
Weibull 
Shape: 12.34901 
Scale: 273.5486 

Lognormal 
Mean: 3.86093 
Std: 11.9357 

Replace inverter fan 
motor 1 $120  $144.04 

Inverter Failure: Power 
Cycling 

Weibull 
Shape: 3.09197 
Scale: 418.1346 

Lognormal 
Mean: 4.73865 
Std: 4.41415 

Reboot for unknown 
error 0.25 $0    $6.01 

Inverter Failure: IGBT 
Matrix 

Weibull 
Shape: 111.0869 
Scale: 1693.973 

Lognormal 
Mean: 1.5026 
Std: 2.17808 

Replace IGBT matrix 4 $20,000  $20,096.16 

Grid Failure: Unknown 
Lognormal-n 
Mean: 3.62 
Std: 1.7 

Weibull 
Shape: 1.07 
Scale: 0.16 

Utility side 0 $0 $0.00 

Grid Failure: Recloser Trip 
Weibull 
Shape: 1.36296 
Scale: 332.93 

Lognormal-n 
Mean: -1.72747 
Std: 1.16951 

Utility side 0 $0    $0.00 

For the improved inverter lifetime scenario, we ran the 
baseline scenario, with all its component and repair 
distributions exactly the same as before, except we removed the 
cost of replacing the inverter in year 15. This assumes that the 
smaller, non-fatal inverter sub-component failures still occur 
throughout the system lifetime, but the fatal failure of the entire 
inverter requiring full replacement is pushed past the end of the 
assumed system lifetime, in this case 20 years. This allows us 
to compare the effect of improving inverter lifetime to 
improving the occurrence of the three non-fatal failures that we 
examined for inverters (fans, power cycling, and IGBT). 

In total, we ran 12 different reliability and repair 
combinations and 1 inverter lifetime scenario stochastically in 
PV-RPM in SAM, with 50 stochastic realizations for each 
reliability/repair scenario. The PV-RPM model in SAM 
calculates a variety of output statistics [4], but in this analysis 
we will focus on the LCOE of the system, documented in [8], 
since this metric accounts for both system performance and 
system costs. We present the average LCOE for each batch of 
stochastic simulations as the main metric, but because the 
simulations are stochastic, we also provide some information 
on the range of LCOEs calculated across those 50 simulations. 
In this analysis, we use the 90th and 10th percentiles to illustrate 
the range of stochastic results. We determine each percentile 
empirically by sorting the LCOE results of all 50 simulations 
and choosing the points corresponding to the desired percentile. 
Together, these percentiles show the LCOE range containing 
80% of the simulations.  

IV. ANALYSIS & RESULTS 

 Fig. 3 presents a summary of the reliability and repair 
scenarios we examined. The average LCOE and 90th and 10th  

percentile LCOEs for the baseline scenario are plotted as dash-
dot lines, labelled on the right. The purple diamonds show the 
average LCOE of the scenarios where time to failure is 
increased by 20%, the green circles show the average LCOE of 
the scenarios where time to failure is doubled, and the blue 
circles show the average LCOE of the scenarios where time to 
repair is cut in half. The different series are grouped together 
along the x-axis according to which component distribution was 
varied from the baseline in that simulation: the DC combiner 
only, the inverter only, the grid only, or all three components 
combined. The error bars around each point show the 10th 
percentile of the stochastic simulations on the lower end and the 
90th percentile of the stochastic simulations on the upper end. 
The dashed lines toward the bottom of the plot, labelled on the 
left side, show 1) the average LCOE of the 50 simulations 
where the baseline scenario was run without any inverter 
replacement costs, and 2) the LCOE of the baseline system with 
no component failures whatsoever. 

As one can see in Fig. 3, varying the failure or repair times 
for the DC combiners yields almost no improvement compared 
to the baseline scenario. This is an expected result: since we 
assumed two strings per combiner in our system, a failed DC 
combiner has the smallest effect on the power production of the 
system, versus an inverter or the grid which prevents power 
delivery from a much larger portion of the system. As you can 
see from Table II, the cost of repairing this DC combiner failure 
is also fairly low, so that the repair costs likewise have a small 
impact on LCOE.  

Failures of the grid, on the other hand, prevent power delivery 
from the entire system. Even though they have a large effect 
when they are happening, the grid failure and repair scenarios 
only move the LCOE by a maximum of 0.05 ¢/kWh in this 
hypothetical scenario. 
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Fig. 3.  Effect on LCOE of increased time to failure or decreased time to repair for the DC combiner, Inverter, Grid, or all three components 
combined, with baseline scenario lines for reference 

This results jointly from the facts that 1) grid failures do not 
cost the system operator anything to fix, so reducing the number 
of grid failures doesn’t affect LCOE from a repair costs 
perspective, and 2) although grid failures are one of the top 
three most frequent failure types, their base repair distributions 
from representative systems in Portfolio D indicate that they are 
not of a very long duration, so they do not have a large effect 
on the power production of the system. The latter conclusion is 
further supported by the fact that reducing grid repair time has 
a smaller effect than reducing the number of grid failures.  

The inverter reliability and repair scenarios have the largest 
effect of any single component on the system, showing average 
LCOE reductions ranging from 0.04 - 0.09 ¢/kWh in this 
hypothetical scenario. Interestingly, for this component, 
shortening repair time by 50% has a larger effect than 
increasing time to failure by 20%, and almost as large of an 
effect as doubling time to failure. However, despite the fact that 
the average number of inverter failures is halved in the doubled-
time-to-failure scenario (decreasing from 28 to 14 failures over 
the lifetime), this scenario still represents only about a 1% 
reduction in LCOE for this combination of failure modes. This 
is partially due to the fact that the IGBT failure- the most 
expensive to fix- was rarely triggered in these scenarios due to 
the formulation of the PV-RPM model; only the earliest failure 

mode occurs (in this case, either the fan or power cycling 
failure), then all failure modes are re-sampled. Future work 
allowing multiple failure modes to occur in the model before all 
are reset could lead to very different results. However, in this 
hypothetical scenario, even eliminating all failures from the 
system only results in an LCOE reduction of 0.28 ¢/kWh, or 
~3%. So, doubling the time to failure for inverters alone bridges 
about 1/3 of the gap in LCOE attributable to component failures 
in this scenario. 

As expected, applying the improved reliability and repair 
scenarios to all three components has a larger effect on LCOE 
than applying them only to a single component. However, Fig. 
3 demonstrates that it is not a purely additive effect; this is 
expected because of where the failures occur in time, and the 
fact that the ability of the upstream components to deliver 
power is still dependent on the operational state of the 
downstream components. For example, if a DC combiner is 
operational, but the grid is not, it negates the operational state 
of the DC combiner, not allowing that improved reliability to 
pass through to LCOE. 

A very interesting result is that in this scenario, simply 
improving the lifetime of the inverter so that it does not need to 
be fully replaced during the lifetime of the system has a bigger 
effect than doubling the time to failure for all the non-fatal 
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component failures considered here, and almost as large of an 
effect as removing all component failures for this system. This 
suggests a continued need for research to improve total inverter 
lifetime, along with some examination of the interaction that 
these non-fatal failures have with that total lifetime. 

Again, these numbers, and the LCOE gap, are specific to this 
analysis and could change if one considered additional or 
different components or failure/repair distributions. This points 
strongly to the need for more comprehensive failure data 
collection, to help the industry better understand actual failure 
distributions for a larger collection of systems and failure 
modes. However, a total possible LCOE reduction of 0.28 
¢/kWh in this scenario is within reason- the U.S. Department of 
Energy’s SunShot 2030 Goals aim for a 0.7 ¢/kWh reduction in 
LCOE due to lowered O&M costs considering all failure modes 
for all components, not just these six failure modes for three 
components [9]. Further research into component reliability 
will allow industry to identify the best paths forward to achieve 
the full 0.7 ¢/kWh LCOE reduction via O&M costs. 

IV. CONCLUSIONS 

This paper demonstrates an example of the type of analysis 
that one can conduct using the PV-RPM model in SAM. 
Consistent with current industry experience, improvements in 
inverter non-fatal failures has the largest effect on LCOE of the 
three components that were examined here (DC combiners, 
inverters, and the grid) using the distributions identified in this 
analysis. However, improving the overall inverter lifetime to 
last beyond the LCOE analysis period had a larger effect than 
improved reliability or repair times for any component, or all 
three components combined, pointing to the need for further 
research and development on inverter lifetime reliability. 

The overall improvement to LCOE achieved by any of the 
examined reliability or repair distributions was fairly small in 
this hypothetical analysis (about 1%), but this is to be expected 
given that the total possible reduction in LCOE by eliminating 
all system failures is only 3% in this analysis. This is not 
entirely inconsistent with other literature on the subject [9], but 
is nonetheless specific to this analysis. Assuming different 
failure/repair distributions or repair costs, modeling more 
system component failures, or modifying the PV-RPM model 
to better represent partial failures has the potential to change 
these results dramatically. This indicates that further data 
collection and analysis on system and component reliability is 
needed to achieve SunShot O&M cost reduction goals in O&M. 
Future work should explore different combinations of failure 
and repair distributions, more components, and possible 
improvements to PV-RPM in SAM. 

System operators can utilize the new PV-RPM feature in 
SAM using their own datasets to develop and analyze O&M 
scenarios, and adjust component event probabilities based on 
assumed or known behavior. Models can provide data-driven 

support for O&M cost reduction strategies and can be adjusted 
to account for changes in reliability. 
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