

Prepared in cooperation with the City of Wichita, Kansas

Model Documentation for Relations Between Continuous Real-Time and Discrete Water-Quality Constituents in Cheney Reservoir near Cheney, Kansas, 2001–2009

Open-File Report 2013–1123

U.S. Department of the Interior U.S. Geological Survey

Model Documentation for Relations Between Continuous Real-Time and Discrete Water-Quality Constituents in Cheney Reservoir near Cheney, Kansas, 2001–2009

By Mandy L. Stone, Jennifer L. Graham, and Jackline W. Gatotho

Prepared in cooperation with the City of Wichita, Kansas

Open-File Report 2013–1123

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

SALLY JEWELL, Secretary

U.S. Geological Survey

Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2013

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Stone, M.L., Graham, J.L., and Gatotho, J.W., 2013, Model documentation for relations between continuous real-time and discrete water-quality constituents in Cheney Reservoir near Cheney, Kansas, 2001–2009: U.S. Geological Survey Open-File Report 2013–1123, 100 p., http://pubs.usgs.gov/of/2013/1123/.

Contents

Abstract	1
Introduction	1
Purpose and Scope	2
Description of Study Area	2
Methods	
Continuous Water-Quality Monitoring	2
Discrete Water-Quality Samples	3
Development of Linear Regression Models to Compute Constituent Concentrations	4
Development of Logistic Regression Models for Geosmin and Microcystin	5
Calculation of Conversion Factors for Turbidity Sensors	
Quality Assurance and Quality Control	6
Results of Linear Regression Analysis for Selected Constituents	7
Results of Multiple Logistic Regression Analysis for Geosmin and Microcystin	86
Turbidity, YSI Model 6026 and 6136 Sensors	86
Summary	98
References Cited	99

Figures

1.	Map showing location of continuous real-time water-quality monitoring station in Cheney Reservoir and land use in the Cheney Reservoir watershed
2.	S+® output of regression model development using specific conductance (SC) as an explanatory variable for dissolved solids (DS) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009
3.	S+® output graphs from simple linear regression analysis showing specific conductance (SC) compared to dissolved solids (DS) concentrations, computed compared to actual DS concentrations, computed DS concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
4.	S+® output of regression model development using specific conductance as an explanatory variable for sodium concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009
5.	S+® output graphs from simple linear regression analysis showing specific conductance (SC) compared to sodium (NA) concentrations, computed compared to actual NA concentrations, computed NA concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
6.	S+® output of regression model development using reservoir elevation (ELV) and specific conductance (SC) as explanatory variables for chloride (CL) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009

7.	S+® output graphs from simple linear regression analysis using reservoir elevation (ELV) and specific conductance (SC) as explanatory variables for chloride (CL) showing computed compared to actual CL concentrations, computed CL concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	59
8.	S+® output of regression model development using specific conductance (SC) as an explanatory variable for magnesium (MG) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009	60
9.	S+® output graphs from simple linear regression analysis showing log-transformed specific conductance (SC) compared to magnesium (MG) concentrations, computed compared to actual MG concentrations, computed MG concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	61
10.	S+® output of regression model development using turbidity (TBY, YSI model 6026 sensor) and fluorescence (CHL) as explanatory variables for total suspended solids (TSS) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009	
11.	S+® output graphs from simple linear regression analysis using turbidity (TBY, YSI model 6026 sensor) and fluorescence (CHL) as explanatory variables for total suspended solids (TSS) showing computed compared to actual TSS concentrations, computed log-transformed TSS concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central	63
12.	S+® output of regression model development using turbidity (TBY, YSI model 6026 sensor) as an explanatory variable for suspended sediment concentrations (SSC) for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009	
13.	S+ [®] output graphs from simple linear regression analysis showing turbidity (TBY, YSI model 6026 sensor) compared to suspended-solids concentration (SSC) data, computed compared to actual SSC, comparison of estimated SSC and regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	65
14.	S+® output of regression model development using turbidity (TBY, YSI model 6026 sensor), dissolved oxygen (DO), and water temperature (T) as explanatory variables for total Kjeldahl nitrogen (TKN) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009	
15.	S+® output graphs from simple linear regression analysis using turbidity (TBY, YSI model 6026 sensor), dissolved oxygen (DO), and water temperature (T) as explanatory variables for total Kjeldahl nitrogen (TKN) showing computed compared to actual TKN concentrations, computed TKN concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	

16.	S+® output of linear regression model development of pH (PH) and specific conductance (SC) as explanatory variables for nitrate plus nitrite (NO3NO2) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009
17.	S+ [®] output graphs from simple linear regression analysis using pH (PH) and specific conductance (SC) as explanatory variables for nitrate plus nitrite (NO3NO2) showing computed compared to actual NO3NO2 concentrations, computed log-transformed NO3NO2 concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
18.	S+® output of regression model development using season (SIN and COS) and turbidity (TBY, YSI model 6026 sensor) as explanatory variables for total phosphorus (TP) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 200970
19.	S+® output graphs from simple linear regression analysis using season (SIN and COS) and turbidity (TBY, YSI model 6026 sensor) as explanatory variables for total phosphorus (TP) showing computed compared to actual TP concentrations, computed log-transformed TP concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200971
20.	S+® output of regression model development using turbidity (TBY, YSI model 6026 sensor), water temperature (T), and fluorescence (CHL) as explanatory variables for orthophosphate (OP) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 200972
21.	S+® output graphs from simple linear regression analysis using turbidity (TBY, YSI model 6026 sensor), water temperature (T), and fluorescence (CHL) as explanatory variables for orthophosphate (OP) showing computed compared to actual OP concentrations, computed log-transformed OP concentrations and regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
22.	S+® output of regression model development using dissolved oxygen (DO), specific conductance (SC), and fluorescence (CHL) as explanatory variables for dissolved phosphorus (DP) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 200974
23.	S+® output graphs from simple linear regression analysis using dissolved oxygen (DO), specific conductance (SC), and fluorescence (CHL) as explanatory variables for dissolved phosphorus (DP) showing computed compared to actual DP concentrations, computed log-transformed DP concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
24.	S+ [®] output of regression model development using reservoir elevation (ELV), water temperature (T), and fluorescence (CHL) as explanatory variables for chlorophyll- <i>a</i> (CHLA) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009
25.	S+ [®] output graphs from simple linear regression analysis using reservoir elevation (ELV), water temperature (T), and fluorescence (CHL) as explanatory variables for chlorophyll- <i>a</i> (CHLA) showing computed compared to actual CHLA concentrations, computed CHLA concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200977

26.	S+® output of regression model development using reservoir elevation (ELV), turbidity (TBY, YSI model 6026 sensor), and water temperature (T) as explanatory variables for actinomycetes bacteria (ACT) densities for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 200978
27.	S+® output graphs from simple linear regression analysis using reservoir elevation (ELV), turbidity (TBY, YSI model 6026 sensor), and water temperature (T) as explanatory variables for actinomycetes bacteria (ACT) showing computed compared to actual ACT concentrations, computed log-transformed ACT concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
28.	water temperature (T) as explanatory variables for <i>Anabaena</i> spp. (ANA) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 200980
29.	S+® output graphs from simple linear regression analysis using reservoir elevation (ELV) and water temperature (T) as explanatory variables for <i>Anabaena</i> spp. (ANA) showing computed compared to actual ANA concentrations, computed log-transformed ANA concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200987
30.	S+® output of regression model development using turbidity (TBY, YSI model 6026 sensor) and pH (PH) as explanatory variables for geosmin (GEO) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009
31.	model 6026 sensor) and pH (PH) as explanatory variables for geosmin (GEO) showing computed compared to actual GEO concentrations, computed log-transformed GEO concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200983
32.	S+® output of regression model development using season (SIN and COS) and fluorescence (CHL) as explanatory variables for microcystin (MC) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009
33.	S+® output graphs from simple linear regression analysis using season (SIN and COS) and fluorescence (CHL) as explanatory variables for microcystin (MC) showing computed compared to actual MC concentrations, computed log-transformed MC concentrations compared to regression residuals, and standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200985
34.	
35.	SigmaPlot® output results of multiple logistic regression analysis using season (SIN and COS), fluorescence (CHL), and microcystin (MC) data
36.	model 6136 (YSI6136) turbidity sensor values at Cheney Reservoir near Cheney,
	Kansas (site 07144790), September 2006 through September 201096

Tables

1.	Christensen and others (2006), updated, best updated, and new linear regression models and summary statistics for continuous concentration computations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
2.	Dissolved solids linear regression dataset using specific conductance as the explanatory variable for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
3.	Sodium linear regression dataset using specific conductance as the explanatory variable for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
4.	Chloride linear regression dataset using reservoir elevation and specific conductance as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200914
5.	Magnesium linear regression dataset using specific conductance as the explanatory variable for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200917
6.	Total suspended solids linear regression dataset using turbidity and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
7.	Suspended-sediment concentration linear regression dataset using turbidity as the explanatory variable for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200921
8.	Total Kjeldahl nitrogen linear regression dataset using turbidity, dissolved oxygen, and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200924
9.	Nitrate plus nitrite linear regression dataset using pH and specific conductance as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
10.	Total phosphorus linear regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
11.	Orthophosphate linear regression dataset using turbidity, water temperature, and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
12.	Dissolved phosphorus linear regression dataset using dissolved oxygen, specific conductance, and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
13.	Chlorophyll- <i>a</i> linear regression dataset using reservoir elevation, water temperature, and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009
14.	Actinomycetes bacteria linear regression dataset using reservoir elevation, turbidity, and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200942
15.	Anabaena spp. linear regression dataset using reservoir elevation and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 200945

viii		

16.	Geosmin linear regression dataset using turbidity and pH as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	48
17.	Microcystin linear regression dataset using seasonal data and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	51
18.	Best fit multiple logistic regression models and summary statistics for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	87
19.	Geosmin logistic regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	88
20.	Microcystin logistic regression dataset using seasonal data and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009	91
22.	Updated Christensen and others (2006) linear regression models for Cheney Reservoir near Cheney, Kansas (site 07144790)	
21.	Summary statistics for data used in turbidity sensor linear regression analyses for Cheney Reservoir near Cheney, Kansas (site 07144790), September 2006 through September 2010	97
23.	Updated new linear regression models for Cheney Reservoir near Cheney, Kansas (site 07144790)	98
24.	Updated new logistic regression model for Cheney Reservoir near Cheney, Kansas (site 07144790)	98

Conversion Factors

SI to Inch/Pound

Multiply	Ву	To obtain		
	Length			
centimeter (cm)	0.03281	foot (ft)		
meter (m)	3.281	foot (ft)		
mile (mi)	1.609	kilometer (km)		
micrometer (µm)	0.001	millimeter (mm)		
nanometer (nm)	0.000001	millimeter (mm)		
	Area			
square mile (mi ²)	2.590	square kilometer (km ²)		
square meter (m ²)	10.76	square feet (ft ²)		
	Volume			
milliliter (mL)	0.0338	ounce, fluid (oz)		
	Flow rate			
milligram per liter (mg/L)	1	parts per million (ppm)		
microgram per liter (µg/L)	1	parts per billion (ppb)		
	Mass			
milligram (mg)	0.001	gram (g)		
microgram (µg)	0.0.000001	gram (g)		
ton per year (ton/yr)	0.9072	metric ton per year		

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32

Vertical coordinate information is referenced to the North American Vertical Datum of 1929 (NAVD 29).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (μ S/cm at 25°C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (μ g/L).

Abbreviations

10	first quartile
30	third quartile
adjr2	adjusted R ²
cooksD	Cook's distance
Ср	Mallow's C_p
Df	degrees of freedom
dfits	change in fitted values
F-statistic	ratio of the mean square of the regression to the estimated variance
F Value	explained variance divided by unexplained variance
Max	maximum
Mean Sq	mean square
Min	minimum
Nvars	number of explanatory variables
press	prediction error sum of squares
Pr(F)	probability value of an F-test
Pr(> t)	probability of observing a test statistic that follows a Student's <i>t</i> distribution if the null hypothesis is supported
p-value	probability of observing a test statistic that is as extreme or more extreme than currently observed assuming that the null hypothesis is true
resids	residuals
Std. Error	standard error
Stderr	standard error
stnd.res	standardized residuals
stud.res	studentized residuals
Sum of Sq	sum of squares
t value	coefficient divided by its standard error
yhat	predicted values

Model Documentation for Relations Between Continuous Real-Time and Discrete Water-Quality Constituents in Cheney Reservoir near Cheney, Kansas, 2001–2009

By Mandy L. Stone, Jennifer L. Graham, and Jackline W. Gatotho

Abstract

Cheney Reservoir, located in south-central Kansas, is one of the primary water supplies for the city of Wichita, Kansas. The U.S. Geological Survey has operated a continuous realtime water-quality monitoring station in Cheney Reservoir since 2001; continuously measured physicochemical properties include specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence (wavelength range 650 to 700 nanometers; estimate of total chlorophyll), and reservoir elevation. Discrete water-quality samples were collected during 2001 through 2009 and analyzed for sediment, nutrients, taste-and-odor compounds, cyanotoxins, phytoplankton community composition, actinomycetes bacteria, and other water-quality measures. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physicochemical properties to compute concentrations of constituents that are not easily measured in real time. The water-quality information in this report is important to the city of Wichita because it allows quantification and characterization of potential constituents of concern in Cheney Reservoir.

This report updates linear regression models published in 2006 that were based on data collected during 2001 through 2003. The update uses discrete and continuous data collected during May 2001 through December 2009. Updated models to compute dissolved solids, sodium, chloride, and suspended solids were similar to previously published models. However, several other updated models changed substantially from previously published models. In addition to updating relations that were previously developed, models also were developed for four new constituents, including magnesium, dissolved phosphorus, actinomycetes bacteria, and the cyanotoxin microcystin. In addition, a conversion factor of 0.74 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI model 6136 sensor at the Cheney Reservoir site.

Because a high percentage of geosmin and microcystin data were below analytical detection thresholds (censored data), multiple logistic regression was used to develop models that best explained the probability of geosmin and microcystin concentrations exceeding relevant thresholds. The geosmin and microcystin models are particularly important because geosmin is a taste-and-odor compound and microcystin is a cyanotoxin.

Introduction

The Bureau of Reclamation, U.S. Department of the Interior, constructed Cheney Reservoir (fig. 1) between 1962 and 1965. Cheney Reservoir, located in south-central Kansas, was constructed to provide a municipal water supply for the city of Wichita, Kansas, downstream flood control, wildlife habitat, and recreational areas. Water from Cheney Reservoir contributed between 51 and 69 percent of Wichita's water supply during 1995 through 2010 (Ziegler and others, 2010). Because of population growth and urban development, watersupply needs and reliance on Cheney Reservoir will continue to increase.

The U.S. Geological Survey, in cooperation with the city of Wichita, has continuously monitored water-quality in Cheney Reservoir (USGS site 07144790; fig. 1) since April 2001. Continuously monitored water-quality physicochemical properties that have been measured in Cheney Reservoir since 2001 include specific conductance, pH, water temperature, dissolved oxygen, turbidity, and fluorescence at a wavelength range from 650 to 700 nanometers. When measured at this wavelength, fluorescence may provide an estimate of total chlorophyll concentration. Discrete water-quality samples collected during 2001 through 2003 were used to develop regression models and establish relations between continuously monitored water-quality physicochemical properties and discretely monitored water-quality constituents (Christensen and others, 2006). Numerous discrete water-quality samples have been collected since the 2006 models were published and the relations between continuously monitored water-quality physicochemical properties and water-quality constituents need to be updated.

Purpose and Scope

The purpose of this report is to update and document regression models that establish relations between continuous and discrete water-quality data collected from Cheney Reservoir near Cheney, Kansas (USGS station 07144790; fig. 1). Linear regression models for 12 water-quality constituents, including suspended solids and sediment, dissolved solids and major ions, nutrient species, chlorophyll-a, taste-andodor compounds, and taste-and-odor cyanotoxin producers, originally were published by Christensen and others (2006) using data collected during 2001 through 2003. In this report, the linear regression models published in 2006 are updated using data collected through 2009, and additional models are developed for magnesium, dissolved phosphorus, actinomycetes bacteria, and the cyanotoxin microcystin. Because the necessary assumptions for using linear approaches were not met with geosmin, a taste-and-odor coupound, and microcystin data, new logistic regression models are developed for these constituents to estimate the probability of concentrations to exceed relevant thresholds. These models are useful for evaluating how computed concentrations of water-quality constituents compare with water-quality criteria, characterizing changes in water-quality conditions through time, characterizing potentially harmful cyanobacterial bloom events, and indicating changes in water-quality conditions that may affect drinking-water treatment processes. The water-quality information in this report is important to the city of Wichita because it allows quantification and characterization of potential constituents of concern in Cheney Reservoir.

Description of Study Area

The Cheney Reservoir watershed is located in southcentral Kansas (fig. 1) and has a contributing drainage area of 933 square miles (mi²). Land use in the Cheney Reservoir watershed predominately is rural (fig. 1); less than 1 percent of the land use in the watershed is classified as urban. All agricultural crops, including wheat, comprise about 51 percent of land use. About 26 percent of the Cheney Reservoir watershed is grassland and about 18 percent is conservation reserve program (CRP) land (Peterson and others, 2005).

Cheney Reservoir (fig. 1) is a eutrophic impoundment constructed by the Bureau of Reclamation, U.S. Department of the Interior, between 1962 and 1965 to provide downstream flood control, wildlife habitat, recreation, and a municipal water supply for the city of Wichita, Kansas. The North Fork Ninnescah River is the largest tributary to Cheney Reservoir and contributes about 70 percent of the inflow (Christensen and others, 2006). Cheney Reservoir has a mean depth of 16 feet (ft), a maximum depth of 43 ft, and a surface area of about 12 mi². Thermal and chemical stratification rarely occur in Cheney Reservoir primarily because of the relatively shallow depths and persistent winds (Smith and others, 2002). The city of Wichita's population in 2011 was 384,445 people (State of Kansas, 2012). The city of Wichita currently (2013) takes about 60 percent of its water supply from Cheney Reservoir (Shelly Bloesser, city of Wichita, written commun., June 6, 2012). Objectionable tastes and odors have been a problem in the finished drinking water from Cheney Reservoir since 1990. Cheney Reservoir is listed as an impaired waterway under section 303(d) of the 1972 Clean Water Act. Siltation is listed as an impairment to water supply and eutrophication and pH are listed as impairments to aquatic life in Cheney Reservoir (Kansas Department of Health and Environment, 2012).

Methods

Continuous and discrete water-quality data were collected at one site in Cheney Reservoir (fig. 1; USGS station 07144790, Cheney Re nr Cheney, Kansas) located near the city of Wichita's drinking-water intake by the dam. Water quality has been measured continuously at this site since April 2001; discrete water-quality samples have been routinely collected since May 2001. Continuous and discrete water-quality data collected by the USGS at the Cheney Reservoir site from May 2001 through December 2009 were used to develop sitespecific regression models.

Continuous Water-Quality Monitoring

The reservoir site was equipped with a YSI 6600 Extended Deployment System water-quality monitor that measured specific conductance, pH, water temperature, dissolved oxygen (YSI Clark cell or optical dissolved oxygen sensors), turbidity [YSI model 6026 (YSI₆₀₂₆) and 6136 (YSI₆₁₃₆) turbidity sensors], and fluorescence (YSI model 6025 sensor; wavelength range 650 to 700 nanometers; estimate of total chlorophyll). The YSI Clark cell dissolved-oxygen sensor was used from April 2001 through January 2007 and was replaced by the YSI optical dissolved-oxygen sensor in February 2007. YSI6026 turbidity sensors were used from April 2001 through December 2010 and YSI₆₁₃₆ turbidity sensors were added in September 2006. Reservoir elevation was measured using a Design Analysis H-350 nonsubmersible pressure transducer and H-355 gas system. The monitor and pressure transducer were maintained in accordance with standard USGS procedures (Wilde and Radke, 1998; Wagner and others, 2006; Sauer and Turnipseed, 2010). Continuous water-quality data were recorded hourly and are available on the USGS website at http://waterdata.usgs.gov/ks/nwis.

Sensor maxima were not exceeded for any of the physicochemical properties measured, with the exception of one fluorescence measurement [409 micrograms per liter (μ g/L); sensor maxima = 400 μ g/L] on August 11, 2003. Continuous

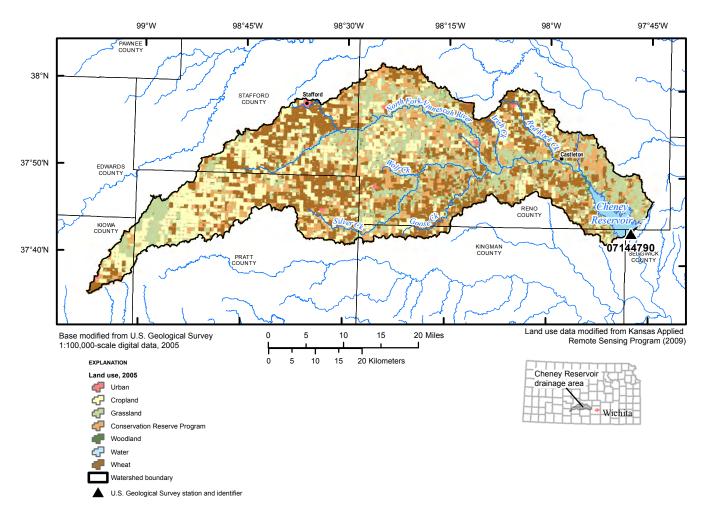


Figure 1. Location of continuous real-time water-quality monitoring station in Cheney Reservoir and land use in the Cheney Reservoir watershed.

data during the study period generally required corrections of less than 10 percent, which classifies the data quality rating as good according to established guidelines (Wagner and others, 2006). Time-series measurements occasionally were missing or deleted from the dataset because of equipment malfunction, excessive fouling caused by environmental conditions, or temporary removal of the sensors because of ice on the reservoir. During 2001 through 2009, approximately 6 percent of the water temperature, specific conductance, and pH records, 9 percent of the turbidity record, and 8 percent of the dissolved oxygen and fluorescence records were missing or deleted, largely because of sensor removal during ice cover.

Discrete Water-Quality Samples

Discrete water-quality samples collected during May 2001 through July 2004 were collected near the surface using a Teflon Kemmerer bottle or a weighted bottle sampler with a 1-liter Teflon bottle following USGS methods

(U.S. Geological Survey, variously dated); these samples were not depth integrated. Starting in August 2004 discrete water-quality samples were collected as integrated photic-zone (depth at which light is approximately 1 percent of that at the surface) samples using a double check-valve bailer (Lane and others, 2003); these samples were depth integrated. Vertical profiles collected in Cheney Reservoir indicate that thermal stratification rarely occurs and water-quality conditions typically are uniform throughout the water column. Water-quality results collected before and after the sampling procedure change in summer 2004 were similar. All water samples were analyzed for dissolved solids, major ions (sodium, chloride, and magnesium), suspended solids and sediment, nutrients (total Kjeldahl nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and dissolved phosphorus), chlorophyll-a, phytoplankton community composition, and the taste-and-odor causing compounds geosmin and 2-methylisoborneol (MIB). Starting in 2005, all samples also were analyzed for actinomycetes bacteria (added April) and the cyanotoxin microcystin (added June).

Dissolved and suspended solids, major ions, and nutrients (except for total Kjeldahl nitrogen) were analyzed by the Wichita Municipal Water and Wastewater Laboratory in Wichita, Kansas, according to standard methods (American Public Health Association and others, 1995); selected replicate samples were sent to the USGS National Water Quality Laboratory (NWQL) in Lakewood, Colorado and analyzed according to methods presented in Fishman and Friedman (1989). Total Kjeldhal nitrogen (ammonia plus organic nitrogen) was analyzed by the NWQL using methods presented in Patton and Truitt (2000). Chlorophyll-a also was analyzed by the NWQL. During April 2001 through September 2004, chlorophyll-a was analyzed by high-performance liquid-chromatography; during October 2005 through December 2009, chlorophyll-a was analyzed using fluorometric methods (Arar and Collins, 1997). Suspended sediment was analyzed at the USGS Iowa Sediment Laboratory in Iowa City, Iowa according to methods described in Guy (1969). Actinomycetes bacteria were analyzed by the USGS Ohio Water Science Center Microbiology Laboratory in Columbus, Ohio, using standard plate counts (American Public Health Association, American Water Works Association, and Water Environment Federation, 2012) and reported in colonies per milliliter.

Phytoplankton samples (preserved with a 9:1 Lugol's iodine:acetic acid solution) were analyzed for taxonomic identification and enumeration by BSA Environmental Services, Inc., Beachwood, Ohio. Phytoplankton were enumerated to the lowest possible taxonomic level using membrane-filtered slides (McNabb, 1960). A minimum of 400 natural units (colonies, filaments, and unicells) were counted from each sample; in accordance with Lund and others (1958), counting 400 natural units provides accuracy within 90-percent confidence limits. In addition, an entire strip of the filter was counted at high magnification (usually 630 X) along with one-half of the filter at a lower magnification (usually 400 X) to ensure complete species reporting.

Throughout the course of the study, Montgomery Watson Laboratories, Pasadena, California (2001–2003), the USGS Organic Geochemistry Research Laboratory (OGRL), Lawrence, Kansas (2003–2007), and Engineering Performance Solutions (EPS), LLC, Gainesville, Florida (2007–2009) provided analyses for taste-and-odor compounds. All laboratories used solid phase microextraction gas chromatography/mass spectrometry for analysis of taste-and-odor compounds and generally followed USGS methods (Zimmerman and others, 2002). Each time laboratories were changed, an among-laboratory comparison was conducted before the change was made.

Total microcystin was analyzed by the USGS OGRL. Total microcystin concentration includes particulate and dissolved phase microcystin. All samples were lysed by three sequential freeze-thaw cycles and filtered using 0.7-micrometer (μ m) glass-fiber filters before analysis (Loftin and others, 2008). Abraxis[®] enzyme-linked immunosorbent assays (ELISA) were used to measure microcystin (congener independent).

Development of Linear Regression Models to Compute Constituent Concentrations

Models were developed using simple linear (ordinary least squares) regression analyses (Helsel and Hirsch, 2002) to relate discrete sample concentrations or densities of waterquality constituents to continuously measured water-quality physicochemical properties (Rasmussen and others, 2008). The methods used for the development of these models and quantifying uncertainty are described in detail in Rasmussen and others (2009). All data for this report were analyzed using TIBCO Spotfire S+[®] 8.1 for Windows[®] statistical software (TIBCO Software, Inc., 2008).

Original models were developed from datasets containing 16 to 33 discrete samples. Models were developed in this report from datasets containing 93 to 125 discrete samples. All continuously measured physicochemical properties and seasonal components (sine and cosine variables) were tested for significance for each response variable. Concomitant insitu continuous measurements were used to correspond with discrete measurements as described in Rasmussen and others (2009).

Outliers were identified and removed as described in Rasmussen and others (2009). Data points in discrete samples were removed from the model dataset when they were extreme outliers on bivariate plots of actual compared to computed concentrations and when there were identifiable issues with laboratory analyses. For example, data points where an orthophosphate concentration was higher than the concomitant dissolved phosphorus concentration were considered outliers. On average, approximately 2 percent of the discrete-sample data were extreme outliers on bivariate plots and 9 percent of the discrete-sample data had orthophosphate concentrations that were larger than the concomitant dissolved phosphorus concentrations and were removed from linear regression models.

Linear regression models were evaluated based on diagnostic statistics (R^2 , coefficient of determination; Mallow's C_n; RMSE, root mean square error; PRESS, prediction error sum of squares), patterns in residual plots, and the range and distribution of discrete and continuous data (Helsel and Hirsch, 2002). The best model for each constituent was selected to maximize the amount of variance in the response variable explained by the model (multiple R^2 for models with one explanatory variable and adjusted R^2 for models with more than one explanatory variable), maximize fit to the data (Mallow's C_p), and minimize heteroscedasticity (irregular scatter) in the residual plots and uncertainty associated with computed values (RMSE and PRESS). Model simplicity also was considered for model selection because as more variables are included the likelihood that the variability of the system is not described by the sampling dataset increases. Significant (p-value less than 0.05) additional explanatory variables were included in final models when retaining them increased the amount of variance explained by the model by 10 percent or

more, decreased Mallow's C_p , and minimized heteroscedasticity in residual plots. Models for all constituents with previously published (Christensen and others, 2006) models were updated. Models were considered suitable to use for constituent concentration computations if the amount of variance explained by the models (R^2) was 0.40 or greater.

Mean square error (*MSE*) and *RMSE* were calculated for each model to assess the variance between predicted and observed values (Helsel and Hirsch, 2002). The model standard percentage error (*MSPE*) was calculated as a percentage of the *RMSE* (Hardison, 1969). Because transformation of estimates back into original units results in a low biased estimate (Helsel and Hirsch, 2002), a bias correction factor (*BCF*) was calculated for models with logarithmically transformed response variables (Duan, 1983).

Development of Logistic Regression Models for Geosmin and Microcystin

Geosmin and microcystin were commonly detected compounds in Cheney Reservoir during May 2001 through December 2009. However, 60 percent of geosmin samples and 53 percent of microcystin samples were below analytical detection thresholds. Because of the high percentage of censored values, ordinary least squares regression is not an appropriate modeling technique for these constituents (Helsel and Hirsch, 2002). Multiple logistic regression was used to develop models to identify factors that best explained the probability of geosmin and microcystin concentrations exceeding relevant thresholds.

Logistic regression models the probability of the response variable being in one of two categorical response groups (for example, 0 equals a negative response and 1 equals a positive response). Logistic regression transforms estimated probabilities into a continuous response variable, with possible values ranging from negative to positive infinity. The transformed response variable can then be modeled as a linear function of one or more explanatory variables in a logistic regression (Helsel and Hirsch, 2002). The logistic regression equation can be expressed as:

 $ln\left(\frac{p}{1-p}\right) = b0 + bX \tag{1}$

where:

ln

is the natural logarithm,

 $(\frac{p}{1-p})$ is the odds ratio, with p equal to the probability of a 1 (positive) response, b0 is the intercept,

X is a vector of k explanatory variables, and

bX includes the slope coefficients for each explanatory variable so that $bX=b1X_1+b_2X_2...b_kXk.$ In this form, the logistic regression models the probability of obtaining a 1 (positive) response (Helsel and Hirsch, 2002; Systat Software, Inc., 2009). Model output is the natural logarithm of the odds ratio. The natural logarithm of the odds ratio can be converted into a probability using the following equation:

$$p = e^{b0 + bX} / [1 + e^{b0 + bX}]$$
(2)

where:

р	is the probability of a response of 1,
e	is the base of the natural logarithm
	(approximately equal to 2.71828),
b0	is the intercept,
Х	is a vector of k explanatory variables, and
bΧ	includes the slope coefficients for
	each explanatory variable so that
	$bX=b1X_1+b_2X_2\dots b_kXk.$

For Cheney Reservoir model development, the response variable was based on a category assigned to constituent concentrations in which a value of 1 was assigned to concentrations greater than or equal to the human detection threshold for geosmin (0.005 μ g/L; Taylor and others, 2005) and greater than or equal to the analytical detection threshold for microcystin (0.01 μ g/L) and 0 was assigned to concentrations below these thresholds. Explanatory variables selected as inputs to the multiple logistic regression analyses were those physicochemical properties that were used in the linear models for other constituents: specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence (wavelength range 650 to 700 nanometers; estimate of total chlorophyll), and reservoir elevation. Seasonal components (sine and cosine variables) were used as explanatory variables in the models to determine if seasonal changes affected the model. All combinations of physicochemical properties and a seasonal component were evaluated to determine which combinations produced the best models.

Logistic model equations were developed using the multiple logistic regression routine in SigmaPlot[®] version 11.0 (Systat Software, Inc., 2008). Continuous water-quality physicochemical properties initially were evaluated individually using the variance inflation factor (VIF, Systat Software, Inc., 2008) and then the Wald Statistic *p*-value (Menard, 2002). All combinations of selected initial parameters were evaluated and the best final model was selected based on statistical tests in the following order: variance inflation factor, Wald Statistic *p*-value, Pearson Chi-Square Statistic, Likelihood Ratio Test statistic, -2 log likelihood statistic, and Hosmer-Lemeshow *p*-value (Hosmer and others, 2013).

The VIF measures multicollinearity by quantifying the inflation of the standard error of each regression coefficient for an independent variable because of redundant information in other independent variables. Physicochemical properties were

selected for model development when their VIF was closest to 1 because a VIF value of 1 indicates no redundant information in the other independent variable. The Wald Statistic is the regression coefficient divided by the standard error and its *p*-value is the probability of being wrong in concluding that there is a true association between the variables. Physicochemical properties were selected for model development when their Wald Statistic p-value was less than 0.05. The Pearson Chi-Square statistic is the sum of the squared Pearson residuals and is a measure of the agreement between the observed and predicted values of the dependent variable. Goodness of fit is greater at lower Pearson Chi-Square statistic values. Larger Pearson Chi-Square statistic values indicate a poor agreement between the logistic regression equation and the data. Models with smaller Pearson Chi-Square statistic values were retained for final model selection. The Likelihood Ratio Test statistic is derived from the sum of the squared deviance residuals and indicates how well the logistic regression equation fits the data by comparing the likelihood of obtaining observations if the independent variables had no effect on the dependent variable with the likelihood of obtaining the observations if the independent variables had an effect on the dependent variables. A larger Likelihood Ratio Test statistic value indicates a good fit between the model equation and the data. Models with larger Likelihood Ratio Test statistic values were retained for final model selection. The -2 log likelihood statistic is a measure of the goodness of fit between the actual observations and the predicted probabilities. Models with a -2 log likelihood value that were closer to 0 were retained for final model selection because values closer to 0 reflect a better fit of the model to the data. The Hosmer-Lemsow p-value indicates how well the logistic regression equation fits the data by comparing the number of observations with each outcome to the number expected based on the logistic equation, and tests the null hypothesis that the logistic equation describes the data. Smaller Hosmer-Lemsow p-values indicate a poor fit of the model equation to the data. Models with Hosmer-Lemsow *p*-values that were greater than 0.2 were retained for final model selection (Systat Software, Inc., 2008).

After the best model was selected, the threshold probability for positive classification (TPPC) for the model was adjusted based on the fraction of positive observed geosmin or microcystin values to make the model more conservative (more likely to overestimate geosmin or microcystin presence) by guarding more strongly against false negatives. The regression then used the newly adjusted thresholds, which changed the number of predictions for positive and reference responses, but the model constants and other statistical outputs remained the same.

Calculation of Conversion Factors for Turbidity Sensors

All models in this report were developed using YSI_{6026} turbidity sensors; however, turbidity sensors were updated from YSI_{6026} to YSI_{6136} in January 2011. YSI_{6136} turbidity sensors were operated alongside the YSI_{6026} turbidity sensors during September 2006 through December 2010. Because of the change in turbidity sensor instrumentation, 4 years of concurrent YSI6026 and YSI6136 hourly turbidity measurements (September 2006 through September 2010) were used to develop a site-specific conversion factor. Ordinary least squares regression analyses were performed on the concurrent turbidity measurements to aid in conversion factor selection (Helsel and Hirsch, 2002). A median conversion factor was calculated as the ratio of the YSI6136 sensor value to the YSI6026 sensor value because the median was less likely to be affected by outliers (Rasmussen and others, 2009). The conversion factor was then applied to YSI6026-based models without additional modification so the models developed in this report can be used with turbidity data collected by either sensor.

Quality Assurance and Quality Control

Quality-assurance and quality-control (QA/QC) samples were collected to evaluate variability in sample collection and processing techniques and among-laboratory variability in analytical techniques. About 8 percent of discrete waterquality samples were QA/QC samples. Approximately 180 sequential replicate constituent pairs were collected during 2001 through 2009. Relative percentage difference (RPD) was used to evaluate differences in analyte concentrations detected in replicate water samples. The RPD was calculated using the following equation:

$$RPD = \left[\left| A - B \right| / \left(\frac{A + B}{2} \right) \right] x 100$$
(3)

where *A* and *B* are concentrations in each replicate pair. Replicate pairs with an RPD within 10 percent were considered acceptable for inorganic constituents (Ziegler and Combs, 1997) and replicate pairs with an RPD within 20 percent were considered acceptable for nutrient and organic constituents. The median RPD between all constituent replicate pairs was less than their respective acceptability limits. All inorganic constituent replicate pairs had median RPDs that were less than 5, except for suspended sediment (9 percent). All nutrient and organic constituent replicate pairs had median RPDs that were less than 10 except for total phosphorus (16 percent), dissolved phosphorus (17 percent), and geosmin (11 percent). Larger RPDs generally resulted when the values were near the laboratory reporting level.

A comparison of taste-and-odor analysis by Montgomery Watson (analytical detection threshold= $0.003 \ \mu g/L$) and the

OGRL (analytical detection threshold= $0.005 \ \mu g/L$) was done on 8 laboratory split-replicate samples and detection frequencies of geosmin were identical between the two laboratories. The RPDs in samples with detections by both laboratories ranged from 4 to 34 percent for geosmin (median: 12 percent; number of pairs=8). The absolute difference in geosmin concentrations between replicate pairs was 0.01 $\mu g/L$ or less (median: less than 0.002 $\mu g/L$; number of pairs=13).

A comparison of taste-and-odor analysis by EPS (analytical detection threshold= $0.002 \ \mu g/L$) and the OGRL was done on 21 laboratory split-replicate samples. Geosmin was detected in 33 percent of the samples analyzed by EPS and 14 percent of the samples analyzed by the OGRL. Detections by EPS and not the OGRL only occurred when geosmin concentrations were less than the OGRL analytical method threshold but above the EPS analytical method detection threshold (between 0.002 and 0.005 $\mu g/L$). Three samples had geosmin detections by both laboratories; RPDs for these samples were 4, 18, and 54 percent. The absolute difference in geosmin concentrations between replicate pairs ranged from 0.004 to 0.006 $\mu g/L$.

Results of Linear Regression Analysis for Selected Constituents

Relations between in-situ continuous measurements and discrete constituents were developed and evaluated using ordinary least squares regression. Linear regression models for seven constituents developed from data collected during 2001 through 2003 (Christensen and others, 2006) were successfully updated to use for constituent concentration computations. The successfully updated models were for dissolved solids, sodium, chloride, suspended-sediment concentration, total phosphorus, orthophosphate, and chlorophyll-a. The linear regression models for five previously published (Christensen and others, 2006) models could not be successfully updated for computing constituent concentrations because they did not meet model selection criteria (R^2 values greater than 0.40). However, the best possible models were developed for these constituents, which included total suspended solids, total Kjeldahl nitrogen, nitrate plus nitrite, Anabaena spp. (a cyanobacterial genus known to have toxin and taste-and-odor producing strains), and geosmin. New linear regression models were developed for four additional constituents not described in Christensen and others (2006) and included magnesium, dissolved phosphorus, actinomycetes bacteria, and microcystin. Updated, best updated, and newly developed models were developed from data collected during 2001 through 2009. Models are shown in table 1. Best updated models with R^2 values less than 0.40 are shown for comparative purposes, even though the R^2 values did not meet the requisite criteria. Model datasets are presented in tables 2-17 and model S+® statistical output is presented in figures 2–33.

Specific conductance was the single explanatory variable for dissolved solids and most other major ions. Dissolved solids, sodium, chloride, and magnesium were strongly positively correlated with specific conductance. Specific conductance also was an explanatory variable for dissolved phosphorus. Turbidity was an explanatory variable for total phosphorus, orthophosphate, and actinomycetes bacteria. Dissolved oxygen was an explanatory variable for total Kjeldahl nitrogen and dissolved phosphorus. Reservoir elevation was an explanatory variable for chloride, chlorophyll-a, and actinomycetes bacteria. Fluorescence was an explanatory variable for total suspended solids, orthophosphate, dissolved phosphorus, chlorophyll-a, and microcystin. Water temperature was an explanatory variable for total Kjeldahl nitrogen, orthophosphate, chlorophyll-a, and actinomycetes bacteria. Total phosphorus and microcystin models included a seasonal component.

Magnesium, dissolved phosphorus, actinomycetes bacteria, and microcystin (table 1) models were newly developed for this report. Additional data collection collected throughout a wider range of hydrological conditions facilitated the development of these models. The actinomycetes bacteria and microcystin models are particularly important because actinomycetes bacteria may be related to taste-and-odor occurrences and microcystin is a cyanotoxin.

Updated dissolved solids, sodium, chloride, and suspended solids model forms were similar to original (Christensen and others, 2006) models (table 1). The amount of variance explained in the original and updated dissolved solids models was the same. Fourteen percent less variance was explained by the updated sodium model and 9 percent more variance was explained by the updated chloride model.

The model form for five constituents is different in the updated models than in the original (Christensen and others, 2006) models (table 1). The updated models that changed substantially were for constituents that are affected by biological processes. The updated total phosphorus model includes a seasonal component instead of temperature and 8 percent less variance is explained by the updated model (table 1). The updated orthophosphate model form includes turbidity, water temperature, and fluorescence likely because orthophosphate concentrations are largely controlled by algal uptake (Wetzel, 2001). Thirteen percent more variance is explained by the updated orthophosphate model than the original model (table 1).

The updated chlorophyll-*a* model changed from the original form and includes reservoir elevation, water temperature, and fluorescence; increased reservoir elevation is related to decreases in fluorescence because there is less time for development of substantial biomass when water residence times are shorter (reservoir elevation is one indicator of water residence time), higher water temperature allows for more growth in the summer (Wetzel, 2001), and fluorescence is an estimate of chlorophyll. Two percent more variance is explained by the updated chlorophyll-*a* model than the original model (table 1).

Table 1. Christensen and others (2006), updated, best updated, and new linear regression models and summary statistics for continuous concentration computations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

 $[R^2$, coefficient of determination; *MSE*, mean square error; *RMSE*, root mean square error; *MSPE*, model standard percentage error; %, percent; ±, plus or minus; *n*, number of discrete samples; mg/L, milligrams per liter; SC, specific conductance in microsiemens per centimeter at 25 degrees Celsius; ELV, reservoir elevation in feet above from National Geodetic Vertical Datum of 1929; log, log₁₀; TBY₆₀₂₆, turbidity from YSI sensor model 6026 in formazin nephelometric units; <, less than; CHL, fluorescence at a wavelength of 650 to 700 nanometers; DO, dissolved oxygen in milligrams per liter; pH, pH in standard units; T, water temperature in degrees Celsius; sin, sine; D, day of year; cos, cosine; μ/L , micrograms per liter; col/mL, colonies per milliliter; $\mu m^3/mL$, micrometers cubed per milliliter; E, exponential]

				RMSE		<i>MSPE</i> (lower)	Bias	90% prediction interval, in ± %		Discrete data			
Model		R² adjusted	MSE		<i>MSPE</i> (upper)		correction factor (Duan, 1983)		п	Range of values in variable measure- ments	Mean	Median	Standard deviation
				Dis	ssolved soli	ds (DS), in	mg/L						
				Ch	nristensen a	nd others (2	2006)						
DS = 0.5500(SC) - 8.59	0.81	0.80	0.5700	0.7550	0.2	-0.2	1.00	41	19	DS: 414–501	446	438	25.5
										SC: 761–911	826	812	40.4
					Upo	lated							
DS = 0.5093(SC) + 28.38	0.80	0.80	144.5	12.02	2.7	-2.7	1.00	39	120	DS: 371–509	442	440	26.6
										SC: 728–940	812	807	46.7
					Sodium (I	la), in mg/l							
				Ch	ristensen a	nd others (2	2006)						
Na = 0.1815(SC) - 48.97	0.88	0.87	8.341	2.888	2.9	-2.9	1.00	41	19	Na: 87.5–116	101	101	8.08
										SC: 761–911	827	812	41.8
					Upo	lated							
Na = 0.1636(SC) - 32.80	0.74	0.74	20.26	4.501	4.5	-4.5	1.00	39	119	Na: 80.1–124	100	100	8.84
										SC: 728–940	814	808	46.6
						(CI), mg/L							
					ristensen a								
Cl = 0.2600(SC) - 72.41	0.61	0.59	78.80	8.877	6.3	-6.3	1.00	41	19	Cl: 116–162	142	144	13.9
										SC: 761–911	827	812	41.8
						lated							
Cl = -3.0417(ELV-1,400) + 0.2009(SC) +	0.70	0.69	55.37	7.441	5.5	-5.5	1.00	39	120	Cl: 105–166	135	136	13.5
37.19										ELV: 1,418–1,425	1,422	1,422	1.19
					-					SC: 728–940	813	809	47.0
					Magnesium		g/L						
						ew							
Mg = 28.68log(SC) - 69.80	0.59	0.59	0.3541	0.5951	4.4	-4.4	1.00	39	122	Mg: 11.4–15.5	13.6	13.6	0.93
										SC: 728–940	813	808	46.6
					suspended								
		0	0		ristensen a								e
$TSS = 0.2125(TBY_{6026}) + 2.8474$	0.42	0.39	8.509	2.9170	43.7	-43.7	1.00	41	19	TSS: <4–12	6.68	6.00	3.73
										TBY ₆₀₂₆ : 1.6–40	18.1	18.0	11.4

Table 1. Christensen and others (2006), updated, best updated, and new linear regression models and summary statistics for continuous concentration computations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

 $[R^2$, coefficient of determination; *MSE*, mean square error; *RMSE*, root mean square error; *MSPE*, model standard percentage error; %, percent; ±, plus or minus; *n*, number of discrete samples; mg/L, milligrams per liter; SC, specific conductance in microsiemens per centimeter at 25 degrees Celsius; ELV, reservoir elevation in feet above from National Geodetic Vertical Datum of 1929; log, \log_{10} ; TBY₆₀₂₆, turbidity from YSI sensor model 6026 in formazin nephelometric units; <, less than; CHL, fluorescence at a wavelength of 650 to 700 nanometers; DO, dissolved oxygen in milligrams per liter; pH, pH in standard units; T, water temperature in degrees Celsius; sin, sine; D, day of year; cos, cosine; μ/L , micrograms per liter; col/mL, colonies per milliliter; μ m³/mL, micrometers cubed per milliliter; E, exponential]

							Bias	90 %		Discre	ete data		
Model	Multiple R ²	R² adjusted	MSE	RMSE	<i>MSPE</i> (upper)	<i>MSPE</i> (lower)	correction factor (Duan, 1983)	prediction interval, in ± %	n	Range of values in variable measure- ments	Mean	Median	Standard deviation
					Best u	pdated ¹							
$log(TSS) = 0.4807log(TBY_{6026}) +$	0.22	0.21	0.0661	0.2571	80.8	44.7	1.15	45	121	TSS: <4.00-38.0	9.32	8.00	5.48
$0.3030\log(CHL) + 0.0215^{1}$										TBY ₆₀₂₆ : 1.60–42.0	18	18	8.73
										CHL: 2.00-49.4	11.2	8.10	7.83
			Sı	ıspended-s	ediment co	ncentration	n (SSC), in mg/L						
				Ch	ristensen a	nd others (2	2006)						
$log(SSC) = 0.5966log(TBY_{6026}) + 0.3610$	0.69	0.67	0.0246	0.1570	43.5	30.3	1.06	44	17	SSC: 3–25	13	13	6.72
										TBY ₆₀₂₆ : 1.6–40	19	18	11.5
					Upo	dated							
$SSC = 0.6304(TBY_{6026}) + 2.9310$	0.66	0.65	17.08	4.133	28.1	-28.1	1.00	39	119	SSC: 2–36	15	14	7.03
										TBY ₆₀₂₆ : 1.6–48	19	18	9.05
				Total K	jeldahl Nitr	ogen (TKN), in mg/L						
				Ch	ristensen a	nd others (2	2006)						
$TKN = 0.0085(TBY_{6026}) + 0.7039log(DO) +$	0.66	0.59	0.0331	0.1818	23.6	-23.6	1.00	41	20	TKN: 0.46-1.40	0.77	0.63	0.28
0.6577(pH) -5.5840										TBY ₆₀₂₆ : 1.6–40	18	18	11.4
										DO: 5.9–17.4	9.2	8.2	3.10
										pH: 8.0–9.0	8.4	8.4	0.26
						pdated ¹							
$TKN = 0.0045(TBY_{6026}) + 0.0608(DO) +$	0.33	0.31	0.0162	0.1271	17.4	-17.4	1.00	39	122	TKN: 0.34–1.40	0.73	0.72	0.15
$0.0197(T) - 0.2437^{1}$										TBY ₆₀₂₆ : 1.6–48	19	18	9.09
										DO: 4.3–16.4	9.0	8.3	2.81
										T: 0.3–28.6	17.5	21.1	8.82
				Nitrat	e plus nitrit	e (NO ₃ NO ₂)	, in mg/L						
				Ch	ristensen a	nd others (2	2006)						
$log(NO_3NO_2) = -2.500log(DO) +$	0.56	0.55	0.1037	0.3220	110	52.4	1.31	56	19	NO ₃ NO ₂ : <0.02–0.36	0.08	0.04	0.10
$0.7094\log(\text{TBY}_{6026}) - 0.0014(\text{T})^2 + 0.9793$										DO: 5.9-17.4	9.3	8.3	3.14
										TBY ₆₀₂₆ : 1.6–40	18.0	17.5	11.7
										T: 0.6–27.9	20.5	24.9	9.39
					Best u	pdated ¹							
$\log(NO_3NO_2) = -0.5585(pH) - 0.0026(SC)$	0.15	0.14	0.1999	0.4471	180	64.3	1.55	61	122	NO ₃ NO ₂ : <0.02–0.97	0.20	0.15	0.17
$+5.8934^{1}$										pH: 7.7–8.9	8.4	8.4	0.22
										SC: 728-940	813	808	46.8

Table 1. Christensen and others (2006), updated, best updated, and new linear regression models and summary statistics for continuous concentration computations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

 $[R^2$, coefficient of determination; *MSE*, mean square error; *RMSE*, root mean square error; *MSPE*, model standard percentage error; %, percent; ±, plus or minus; *n*, number of discrete samples; mg/L, milligrams per liter; SC, specific conductance in microsiemens per centimeter at 25 degrees Celsius; ELV, reservoir elevation in feet above from National Geodetic Vertical Datum of 1929; log, log₁₀; TBY₆₀₂₆, turbidity from YSI sensor model 6026 in formazin nephelometric units; <, less than; CHL, fluorescence at a wavelength of 650 to 700 nanometers; DO, dissolved oxygen in milligrams per liter; pH, pH in standard units; T, water temperature in degrees Celsius; sin, sine; D, day of year; cos, cosine; μ/L , micrograms per liter; col/mL, colonies per milliliter; $\mu m^3/mL$, micrometers cubed per milliliter; E, exponential]

							Bias	90%		Discr	ete data		
Model	Multiple <i>R</i> ²	R² adjusted	MSE	RMSE	<i>MSPE</i> (upper)	<i>MSPE</i> (lower)	correction factor (Duan, 1983)	prediction interval, in ± %	n	Range of values in variable measure- ments	Mean	Median	Standard deviation
				T	otal phosph	orus (TP), n	ıg/L						
				Ch	iristensen a	nd others (2	2006)						
$TP = 0.0022(T) + 0.0010(TBY_{6026}) + 0.0218$	0.77	0.76	0.0004	0.0200	22.2	-22.2	1.00	41	33	TP: <0.03-0.15	0.09	0.08	0.03
										TBY ₆₀₂₆ : 1.6–40	18	18	11.4
										T: 0.6–27.9	20.5	24.8	9.12
					Upo	lated							
$\log(TP) = -0.0633\sin(2\pi D/365)$	0.69	0.68	0.0186	0.1364	36.9	27.0	1.05	41	109	TP: <0.03-0.23	0.09	0.09	0.04
- 0.1357cos(2πD/365) + 0.4390log(TBY ₆₀₂₆) - 1.6626										TBY ₆₀₂₆ : 1.6–48	19	18	9.33
				Or	thophospha	te (OP), in	mg/L						
				Ch	ristensen a	nd others (2							
$log(OP) = 1.0100log(TBY_{6026}) - 2.7600$	0.53	0.52	0.1218	0.3490	123	55.2	1.44	48	33	OP: <0.01-0.09	0.04	0.04	0.02
										TBY ₆₀₂₆ : 1.6–40	18	18	11.4
						lated						_	
$\log(OP) = 0.4942\log(TBY_{6026}) + 0.0189(T) -$	0.66	0.65	0.0709	0.2662	84.6	45.8	1.18	46	113	OP: <0.01-0.09	0.03	0.03	0.02
0.5408log(CHL) - 2.0430										TBY ₆₀₂₆ : 1.6–48	18	18	9.27
										T: 0.3–28.6	16.9	19.2	9.01
										CHL: 2.0–49.4	11.0	8.0	7.75
				Disso	lved phosp	10rus (DP),	in mg/L						
						ew							
log(DP) = -0.8764log(DO) - 0.0019(SC) -	0.59	0.57	0.0423	0.2056	60.5	37.7	1.10	43	109	DP: <0.03-0.16	0.05	0.05	0.03
0.0137(CHL) + 1.0851										DO: 4.3–16.4	9.1	8.4	2.86
										SC: 728–913	813	808	45.1
										CHL: 2.0–31.2	10.8	8.0	6.93
					hlorophyll-		-						
					ristensen a								
$\log(\text{CHLA}) = 0.0145(\text{TBY}_{6026}) + 0.00020000000000000000000000000000000$	0.49	0.44	0.0256	0.1599	44.5	30.8	1.06	43	26	CHLA: 1.9–25.6	8.1	7.2	4.48
0.9872log(DO) - 0.2902										TBY ₆₀₂₆ : 1.6–36	11	5.4	10.1
										DO: 5.9–18.2	10.5	11.7	2.95
					1	lated							
CHLA = -1.9656(ELV-1,400) + 0.3204(T) +	0.51	0.49	38.73	6.223	48.6	-48.6	1.00	39	117	CHLA: 0.8-47.2	12.8	11.1	8.75
0.8463(CHL) + 40.25										ELV: 1,418–1,425	1,421	1,422	1.24
										T: 0.3–28.6	16.8	20.2	8.97
										CHL: 0.2-49.4	11.1	8.1	7.9

Table 1. Christensen and others (2006), updated, best updated, and new linear regression models and summary statistics for continuous concentration computations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

 $[R^2$, coefficient of determination; *MSE*, mean square error; *RMSE*, root mean square error; *MSPE*, model standard percentage error; %, percent; ±, plus or minus; *n*, number of discrete samples; mg/L, milligrams per liter; SC, specific conductance in microsiemens per centimeter at 25 degrees Celsius; ELV, reservoir elevation in feet above from National Geodetic Vertical Datum of 1929; log, log₁₀; TBY₆₀₂₆, turbidity from YSI sensor model 6026 in formazin nephelometric units; <, less than; CHL, fluorescence at a wavelength of 650 to 700 nanometers; DO, dissolved oxygen in milligrams per liter; pH, pH in standard units; T, water temperature in degrees Celsius; sin, sine; D, day of year; cos, cosine; μ/L , micrograms per liter; col/mL, colonies per milliliter; μ m³/mL, micrometers cubed per milliliter; E, exponential]

							Bias	90%		Disc	rete data		
Model	Multiple R ²	R ² adjusted	MSE	RMSE	<i>MSPE</i> (upper)	<i>MSPE</i> (lower)	correction factor (Duan, 1983)	prediction interval, in ± %	n	Range of values in variable measure- ments	Mean	Median	Standard deviation
				Actinor	nycetes bac	teria (ACT)	, in col/mL						
					N	lew							
log(ACT) = 11.06log(ELV - 1,400) +	0.61	0.59	0.0913	0.3021	100	50.1	1.23	48	93	ACT: <1.0-63.0	9.4	7.0	11.0
$0.9924\log(\text{TBY}_{6026}) - 0.0163(\text{T}) - 14.93$										TBY ₆₀₂₆ : 2.7–48	19	18	8.54
										ELV: 1,418-1,425	1,422	1,422	1.27
										T: 0.7–27.9	17.4	20.2	8.48
				Aı	nabaena spp	. (ANA), μn	n³/mL						
				Cł	nristensen a	nd others (2	2006)						
$(ANA)E^5 = 4.36(TBY_{6026}) - 7.01$	0.47	0.44	2,200	46.90	0.00	-0.00	1.00	42	16	ANA: 48,300– 22,700,000	4,063,550	1,560,000	6,242,490
										TBY ₆₀₂₆ : 1.6–35	11	5.9	9.91
					Best ι	Ipdated ¹							
log(ANA) = -25.81log(ELV - 1,400) +	0.37	0.36	2.6212	1.6190	4,059	97.6	98.3	3,845	114	ANA: 0–708,775	22,443	171	76,899
$0.1203(T) + 34.49^{1}$										ELV: 1,418–1,425	1,422	1,422	1.20
										T: 0.3–28.6	16.6	18.7	9.17
					Geosmin (GEO), in µg,	/L						
				Cł	nristensen a	nd others (2							
$log(GEO) = -1.0664log(TBY_{6026}) -$	0.71	0.67	0.0471	0.2170	64.8	39.3	1.12	47	18	GEO: <0.003-0.06	0.06	0.01	0.02
0.0097(SC) + 7.2310										TBY ₆₀₂₆ : 1.6–36	11	5.9	9.41
										SC: 792–911	860	876	37.9
						ipdated ¹							
$\log(\text{GEO}) = -0.6356\log(\text{TBY}_{6026}) +$	0.22	0.21	0.2263	0.4757	199	66.6	2.37	93	127	GEO: <0.002-0.11	0.01	0.00	0.01
0.6115(pH) - 7.0015 ¹										TBY ₆₀₂₆ : 1.6–48	18	18	9.04
										pH: 7.7–8.9	8.4	8.4	0.22
					Microcystin		g/L						
						ew							
$\log(MC) = -0.5916\sin(2\pi D/365) - 0.2244 + (2 D/265) + 0.95744 + (2 D$	0.48	0.46	0.1877	0.4333	171	63.1	1.63	64	94	MC: <0.10-3.80	0.43	0.05	0.82
0.3244cos(2πD/365) + 0.8574log(CHL) - 1.8153										CHL: 3.1–49.4	11.5	8.5	7.99

¹ Best updated model did not meet selection criteria and should not be used to compute constituent concentrations.

Table 2.Dissolved solids linear regression dataset using specific conductance as the explanatory variable for Cheney Reservoir nearCheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Specific conductance, in µS/cm at 25°C	Dissolved solids, in mg/L	Date	Time, in hhmm	Specific conductance, in µS/cm at 25°C	Dissolved solid in mg/L
May 3, 2001	1055	789	421	May 31, 2007	1020	754	450
lune 4, 2001	1030	809	454	June 13, 2007	1140	728	398
une 22, 2001	1155	756	417	June 25, 2007	1000	739	406
uly 24, 2001	1055	776	414	July 9, 2007	0950	732	402
August 29, 2001	1125	799	421	July 23, 2007	1020	732	410
Aay 15, 2002	1115	913	492	August 7, 2007	0930	748	422
une 19, 2002	0955	814	438	August 15, 2007	0955	746	394
August 7, 2002	1000	863	436	August 28, 2007	1055	765	406
September 4, 2002	1015	863	435	September 12, 2007	1025	776	434
September 25, 2002	1010	842	444	September 24, 2007	1025	779	422
anuary 23, 2003	1055	879	474	October 15, 2007	1005	792	423
February 10, 2003	1250	891	501	October 29, 2007	1045	792	438
March 3, 2003	1025	885	483	November 13, 2007	1040	806	439
une 17, 2003	1025	792	438	December 19, 2007	11040	837	443
	0905	802	444	,		866	463
une 20, 2003		802 806	444	February 11, 2008	1100 1105	869	463
uly 7, 2003	0940			February 14, 2008			
uly 17, 2003	1155	797	429	February 15, 2008	1025	867	461
uly 28, 2003	1150	799	431	March 10, 2008	1125	864	471
Aarch 10, 2004	1115	806	436	April 1, 2008	0955	861	475
pril 8, 2004	1015	801	437	March 16, 2008 ¹	1140	864	326
May 5, 2004	1115	825	471	April 29, 2008	1035	861	463
une 3, 2004	1000	838	464	May 13, 2008	1020	853	460
uly 15, 2004	0950	760	407	June 3, 2008	0945	812	446
August 12, 2004	0915	738	424	June 18, 2008	0920	802	427
August 27, 2004	1115	743	407	June 25, 2008	1155	806	436
September 9, 2004	0935	751	404	July 7, 2008	1035	796	427
ebruary 2, 2005	1035	827	452	July 21, 2008	1050	804	428
Iarch 16, 2005	1015	841	471	July 28, 2008	0955	797	427
April 13, 2005	1000	868	478	August 4, 2008	1020	802	423
May 4, 2005	1120	884	487	August 18, 2008	0945	808	444
May 16, 2005	0955	885	488	September 2, 2008	1000	808	440
une 1, 2005	1020	890	481	September 17, 2008	1000	778	422
une 15, 2005	0945	850	470	October 1, 2008	1055	781	440
une 29, 2005	1000	804	432	October 15, 2008	1150	752	388
uly 13, 2005	0920	739	387	November 4, 2008	0950	784	432
uly 27, 2005	0850	745	417	December 2, 2008	0950	805	443
August 10, 2005	0855	753	420	January 6, 2009	1010	842	469
August 30, 2005	0945	733	371	January 20, 2009	1010	836	461
September 7, 2005	1030	730	388	February 2, 2009	1010	837	442
Detober 13, 2005	1030	745	408	February 18, 2009	1010	819	446
	1005	751	457		1010	825	458
October 27, 2005	1005	792	457	February 25, 2009 March 3, 2009	1050	825 843	458 457
anuary 11, 2006				March 3, 2009			
Aarch 1, 2006	1105	820 822	439	March 9, 2009	1050	841	462
March 29, 2006	1005	833	462	March 16, 2009	1100	841	457
April 25, 2006	1245	857	469	March 25, 2009	1020	847	460
fay 17, 2006	1055	845	473	April 8, 2009	1010	848	461
1ay 31, 2006	1140	849	438	April 29, 2009	1030	842	464
une 14, 2006	1045	852	461	May 27, 2009	1140	765	421
une 28, 2006	0955	845	456	June 9, 2009	1100	768	421
uly 13, 2006	0940	859	456	June 23, 2009	1045	772	427
uly 26, 2006	1115	847	467	July 7, 2009	1100	759	412
ugust 10, 2006	1005	844	457	July 21, 2009	1020	763	412
ugust 22, 2006	1000	837	483	August 5, 2009	1030	773	420
eptember 6, 2006	1020	830	461	August 24, 2009	1000	778	418
eptember 20, 2006	1015	840	454	September 2, 2009	1030	785	426
October 11, 2006	0950	854	470	September 16, 2009	1030	773	428
October 25, 2006	0945	866	478	October 5, 2009	1100	773	411
December 12, 2006	1115	907	487	October 19, 2009	1100	781	422
February 7, 2007 ¹	1115	822	517	November 23, 2009	1100	803	421
Aarch 7, 2007	1115	940	509	December 16, 2009	1140	838	434
April 9, 2007	1045	884	477				
-r-11 /, 2001	0940	004	450	Data point removed	i irom final	analysis because it was a	in extreme outlie

Table 3.Sodium linear regression dataset using specific conductance as the explanatory variable for Cheney Reservoir near Cheney,Kansas (site 07144790), south-central Kansas, 2001 through 2009.

May 3, 2001 1035 789 90.1 May 31, 2007 1120 754 June 4, 2001 1135 756 87.5 June 23, 2007 1100 728 June 22, 2001 1155 756 87.5 June 23, 2007 1000 732 Jugual 22, 2001 1125 799 97.4 July 23, 2007 1020 732 Jugual 22, 2001 1115 813 116 Auguat 7, 2007 0055 746 Jugual 7, 2002 0955 814 98.7 Auguat 7, 2007 1025 776 September 4, 2002 1015 863 102 September 12, 2007 1045 792 Janaury 23, 2003 1655 879 112 October 15, 2007 1040 806 1 June 20, 2003 1625 885 109 November 13, 2007 1040 806 1 Jule 72, 2003 1045 792 93.8 December 19, 2007 1100 837 June 73, 2003 1045 792 <td< th=""><th>Date</th><th>Time, in hhmm</th><th>Specific conductance, in µS/cm at 25°C</th><th>Sodium, in mg/L</th><th>Date</th><th>Time, in hhmm</th><th>Specific conductance, in µS/cm at 25°C</th><th>Sodium, in mg/L</th></td<>	Date	Time, in hhmm	Specific conductance, in µS/cm at 25°C	Sodium, in mg/L	Date	Time, in hhmm	Specific conductance, in µS/cm at 25°C	Sodium, in mg/L
mine 4, 2001 1030 809 95.2 June 12, 2007 1140 728 uig 22, 2001 1055 756 87, 5 June 23, 2007 1020 732 uig 24, 2001 1125 776 90.2 July 23, 2007 1020 732 May 15, 2002 1115 913 116 August 7, 2007 1025 766 September 4, 2001 1015 863 106 August 72, 2007 1025 776 September 4, 2001 1015 863 106 August 72, 2007 1025 776 September 4, 2001 1010 842 107 September 42, 2007 1025 779 September 4, 2003 1025 885 109 November 13, 2007 1040 806 1 uig 12, 2003 1045 792 93.8 December 19, 2007 1100 837 1 uig 12, 2003 1150 799 104 Herbraury 11, 2008 1106 866 1 uig 17, 2003 0490	May 3, 2001		•		May 31, 2007		•	89.2
uip 24, 2001 1055 776 90.2 July 32, 2007 1020 732 uip 15, 2002 1115 913 116 August 7, 2007 0730 748 uip 15, 2002 1015 913 116 August 7, 2007 1025 765 uip 15, 2002 1010 863 106 August 72, 2007 1025 776 eptember 4, 2003 1055 863 106 September 24, 2007 1025 776 eptember 25, 2002 1010 842 107 September 24, 2007 1025 779 ebtanary 25, 2003 1025 887 112 October 29, 2007 1040 806 1 uip 7, 2003 0905 802 94.4 February 14, 2008 1105 869 1 uip 7, 2003 0905 801 94.0 April 16, 2008 1025 867 1 uip 7, 2003 1055 801 94.0 April 16, 2008 1025 864 1 uip 7, 2004 1015		1030	809	95.2	June 13, 2007	1140	728	87.3
vagust 2, 2001 1125 799 97,4 July 23, 2007 1020 732 mar 19, 2002 0955 814 98,7 August 15, 2007 0955 746 ungot 7, 2002 1010 863 106 August 12, 2007 1025 776 sprember 4, 2002 1010 842 107 September 23, 2007 1045 792 amary 23, 2003 1055 879 112 October 13, 2007 1046 792 darch 3, 2003 1055 885 100 November 13, 2007 1040 866 1 up 17, 2003 1055 797 104 February 14, 2008 1105 866 1 up 17, 2003 1155 797 104 February 14, 2008 1055 861 1 up 24, 2004 1115 801 99.0 April 12, 2008 1035 861 1 up 24, 2004 1115 801 99.0 April 12, 2008 1035 861 1 up 24, 2004	une 22, 2001	1155	756	87.5	June 25, 2007	1000	739	85.7
Apr. 15. 2002 1115 913 116 August 7. 2007 0930 748 unge 19, 2002 1000 863 106 August 28, 2007 1055 765 september 4, 2000 1015 863 106 August 72, 2007 1025 776 september 4, 2000 1015 863 102 September 4, 2007 1025 779 september 4, 2003 1055 885 109 November 3, 2007 1046 806 1 ander 3, 2003 1045 792 93.8 December 19, 2007 1100 866 1 ulp 7, 2003 0940 806 99.9 February 14, 2008 1105 869 1 ulp 22, 2003 1155 797 104 February 14, 2008 1105 864 1 ulp 7, 2003 0940 806 94.9 February 14, 2008 1015 864 1 ulp 7, 2003 1015 801 94.0 April 1, 2008 1035 864 1	uly 24, 2001	1055	776	90.2	July 9, 2007	0950		86.2
Apr. 15. 2002 1115 913 116 August 7. 2007 0930 748 unge 19, 2002 1000 863 106 August 28, 2007 1055 765 september 4, 2000 1015 863 106 August 72, 2007 1025 776 september 4, 2000 1015 863 102 September 4, 2007 1025 779 september 4, 2003 1055 885 109 November 3, 2007 1046 806 1 ander 3, 2003 1045 792 93.8 December 19, 2007 1100 866 1 ulp 7, 2003 0940 806 99.9 February 14, 2008 1105 869 1 ulp 22, 2003 1155 797 104 February 14, 2008 1105 864 1 ulp 7, 2003 0940 806 94.9 February 14, 2008 1015 864 1 ulp 7, 2003 1015 801 94.0 April 1, 2008 1035 864 1	•	1125	799	97.4		1020		85.6
une 19, 2002 0955 814 98.7 August 15, 2007 0955 746 vegater. 7, 2002 1015 863 106 August 22, 2007 1025 776 september 23, 2003 1055 879 112 October 15, 2007 1005 772 atach 3, 2003 1055 879 112 October 19, 2007 1044 872 atach 3, 2003 1045 782 94.8 December 19, 2007 1045 792 une 17, 2003 1045 797 104 February 11, 2008 1100 866 1 uhy 17, 2003 1155 797 104 February 15, 2008 1025 867 1 uhy 17, 2003 1155 797 104 February 15, 2008 1025 867 1 uhy 17, 2004 1015 801 04 April 1, 2008 1035 861 1 uhy 15, 2004 1015 801 04 April 1, 2008 1035 861 1 uhy 15, 2004	0		913					87.3
Vagust 7, 2002 1000 863 106 August 22, 2007 1025 765 september 23, 2002 1010 842 107 September 12, 2007 1025 776 september 23, 2003 1055 879 112 October 15, 2007 1045 792 sehrary 10, 2003 1250 891 112 October 29, 2007 1040 806 1 une 17, 2003 1045 792 93.8 December 13, 2007 1040 806 1 ung 12, 2003 1955 797 104 February 14, 2008 1055 809 1 uly 17, 2003 1155 797 104 February 14, 2008 1025 864 1 uly 17, 2003 1155 807 100 866 1 146rch 10, 2008 1025 861 1 uly 15, 2004 1015 861 140 April 29, 2008 1035 861 1 uly 15, 2004 1050 760 89.3 June 3, 2008 1020	· ·							88.2
Spitember 2, 2002 1015 863 102 September 24, 2007 1025 776 amany 23, 2003 1055 879 112 October 15, 2007 1045 792 signember 23, 2003 1055 879 112 October 15, 2007 1040 806 1 me 17, 2003 1045 792 93.8 December 13, 2007 1040 806 1 une 20, 2003 0405 802 94.4 February 14, 2008 1105 866 1 uly 7, 2003 1155 797 104 February 15, 2008 11025 867 1 uly 28, 2003 1150 799 101 March 10, 2008 1125 864 1 uly 34, 5, 2004 1015 801 99.0 April 16, 2008 1140 864 1 uly 15, 2004 1015 801 99.0 April 16, 2008 1035 861 1 uly 15, 2004 1015 801 99.0 April 16, 2008 1035 861	· · · · · · · · · · · · · · · · · · ·				.			89.8
September 25, 2002 1010 842 107 September 24, 2007 1025 779 anawor 33, 2003 1055 879 112 October 29, 2007 1045 792 atterh 3, 2003 1025 885 109 November 13, 2007 1040 866 1 unc 17, 2003 1045 792 93.8 December 19, 2007 1100 866 1 unc 17, 2003 1045 797 1044 February 14, 2008 1105 869 1 uly 17, 2003 1155 797 1044 February 14, 2008 1025 864 1 uly 28, 2003 1150 799 101 March 10, 2008 1125 864 1 uly 28, 2003 1150 890 April 29, 2008 1020 853 1 uly 15, 2004 1015 825 107 April 29, 2008 1020 853 1 uly 15, 2004 1005 760 89.3 Lune 3, 2008 1020 842					· ·			95.5
nimary 32, 2003 1055 879 112 October 15, 2007 1005 792 darch 3, 2003 125 885 100 November 13, 2007 1045 792 darch 3, 2003 1045 792 93.8 December 19, 2007 1100 887 1 une 17, 2003 0940 806 99.9 February 11, 2008 1105 866 1 uly 7, 2003 1155 797 104 February 14, 2008 1025 867 1 uly 28, 2003 1155 797 104 Apriury 15, 2008 1025 867 1 uly 28, 2003 1155 797 104 April 1, 2008 1025 861 1 uly 28, 2004 1015 801 99.0 April 16, 2008 1035 861 1 une 3, 2004 0055 760 89.3 June 3, 2008 0925 812 vagus 12, 2004 015 778 87.9 June 18, 2008 0945 812 vagus 12,	*				* ·			97.8
ehrung 10, 2003 12.50 891 112 October 39, 2007 1040 806 1 une 17, 2003 1045 792 93.8 December 19, 2007 1100 837 une 20, 2003 0905 802 94.4 February 11, 2008 1105 866 1 uly 17, 2003 0145 797 104 February 15, 2008 1025 867 1 uly 17, 2003 1155 797 104 February 15, 2008 1025 864 1 uly 17, 2003 1155 797 104 April 1, 2008 0455 861 1 uly 15, 2004 1115 806 104 April 29, 2008 1135 864 1 uly 15, 2004 1050 883 90.5 May 13, 2008 1020 853 1 uly 15, 2004 0950 760 89.3 June 2, 2008 1155 806 uly 15, 2004 0915 751 96.2 July 7, 2008 1035 804 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>98.7</td>								98.7
Jacch 3, 2003 1025 885 109 November 13, 2007 1040 806 1 une 17, 2003 0905 802 94.4 February 11, 2008 1100 866 1 une 20, 2003 0905 802 94.4 February 14, 2008 1105 866 1 uly 7, 2003 1155 797 104 February 14, 2008 1125 867 1 uly 28, 2003 1155 797 104 Aptruny 15, 2008 1025 867 1 uly 17, 2004 1015 801 99.0 April 16, 2008 1043 864 1 ung 5, 2004 1015 801 99.0 April 16, 2008 1035 861 1 ung 12, 2004 0915 738 87.9 June 18, 2008 0945 812 uggus 12, 2004 0915 738 87.9 June 18, 2008 1035 796 ung 15, 2004 0935 751 96.2 July 7, 2008 1035 796					,			98.3
une 17, 2003 1045 792 93.8 December 19, 2007 1100 837 uip 7, 2003 0940 806 99.9 February 14, 2008 1105 866 1 uiy 17, 2003 1155 797 104 February 15, 2008 1025 867 1 uiy 12, 2003 1150 797 101 March 10, 2008 1025 864 1 darch 10, 2004 1115 806 104 April 1, 2008 0055 861 1 day 5, 2004 1115 825 107 April 29, 2008 1035 864 1 uiy 15, 2044 0905 760 89.3 June 3, 2008 0425 812 uigust 12, 2040 0915 781 96.2 July 7, 2008 1035 876 uigust 12, 2040 0915 781 96.2 July 7, 2008 1035 876 uigust 12, 2004 0935 751 96.2 July 7, 2008 1035 876 uigust 2, 2005 1	, , , , , , , , , , , , , , , , , , ,							100
une 20, 2003 0905 802 94.4 February 11, 2008 1100 866 1 uly 17, 2003 1155 797 104 February 15, 2008 1105 866 1 uly 28, 2003 1150 799 101 March 10, 2008 1125 864 1 uly 28, 2004 1015 801 99.0 April 16, 2008 1035 861 1 uly 34, 5, 2004 1015 801 99.0 April 16, 2008 1035 861 1 une 3, 2004 1000 838 96.5 May 13, 2008 0945 812 vagust 12, 2004 0915 738 87.9 June 18, 2008 0945 812 vagust 27, 2004 0915 751 96.2 July 7, 2008 1035 786 eptember 9, 2004 0355 751 96.2 July 7, 2008 1030 804 1 vagust 27, 2005 1035 887 102 July 21, 2008 1035 781 vagust 2,	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			97.5
uly 7, 2003 0940 806 99.9 February 14, 2008 1105 869 1 uly 17, 2003 1155 797 104 February 15, 2008 1025 864 1 darch 10, 2004 1115 806 104 April 1, 2008 1025 864 1 day 5, 2004 1115 806 104 April 16, 2008 1125 864 1 day 5, 2004 1015 801 99.0 April 29, 2008 1035 861 1 ups 1, 2, 2004 0905 760 89.3 June 3, 2008 0920 802 ugus 12, 2004 0915 738 87.9 June 18, 2008 0920 802 ugus 12, 2004 1115 743 99.3 June 25, 2008 1055 806 uugus 12, 2004 1015 841 104 July 21, 2008 1050 804 1 darch 16, 2005 1015 841 104 July 23, 2008 1095 808 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>105</td></td<>								105
uý 17.2003 1155 797 104 February 15.2008 1025 867 1 uý 28.203 1150 799 101 March 10.2008 1125 864 1 uý 28.203 1150 806 104 April 1, 2008 0955 861 1 ugy 5.2004 1115 805 107 April 16, 2008 1035 861 1 uns 3.2004 1000 838 96.5 May 13, 2008 0945 812 1 ugus 12, 2004 0915 738 87.9 June 18, 2008 0945 812 1 ugus 12, 2004 0915 738 87.9 June 25, 2008 1035 796 eichuary 2, 2005 1035 827 102 July 7, 2008 1035 796 urgus 12, 2004 1035 844 104 July 28, 2008 0925 797 104 urgus 12, 2005 1000 868 109 Augus 18, 2008 1000 802 144	· · · · · · · · · · · · · · · · · · ·				2 · ·			103
uij 28, 2003 1150 799 101 March 10, 2004 1115 864 1 upril 8, 2004 1015 801 99,0 April 16, 2008 1140 864 1 upril 8, 2004 1015 801 99,0 April 16, 2008 1140 864 1 up 3, 2004 1000 838 96.5 May 13, 2008 1020 853 1 ups 12, 2004 0915 788 87.9 June 18, 2008 0920 802 upgus 12, 2004 0915 788 87.9 June 18, 2008 1035 796 upgus 12, 2004 0915 781 96.2 July 7, 2008 1035 796 upgus 12, 2005 1015 841 104 July 21, 2008 1020 802 darch 16, 2005 1015 841 104 July 21, 2008 1050 804 1 darch 12, 2005 1000 868 109 August 4, 2008 1020 802 1 dary 16, 2005	•							
Anch 10, 2004 1115 806 104 April 1, 2008 0955 861 1 vpril 8, 2004 1015 801 99,0 April 16, 2008 1140 864 1 une 3, 2004 1015 825 107 April 29, 2008 1035 861 1 ung 3, 2004 0400 838 96.5 May 13, 2008 045 812 ung 3, 2004 0950 760 89.3 June 3, 2008 0455 812 ungus 12, 2004 0915 738 87.9 June 25, 2008 1155 806 eptember 9, 2004 0935 751 96.2 July 7, 2008 1035 796 charch 16, 2005 1013 841 104 July 23, 2008 0955 807 12 vpri 13, 2005 1000 868 109 August 4, 2008 042 808 1 dary 16, 2005 0955 885 103 September 17, 2008 1005 781 une 1, 2005 1020	5							102
pril 8, 2004 1015 801 99.0 April 16, 2008 1140 864 1 fay 5, 2004 1115 825 107 April 29, 2008 1035 861 1 uns 3, 2004 1000 838 96.5 May 13, 2008 1020 853 1 uly 15, 2004 0915 738 87.9 June 18, 2008 0920 802 ugust 12, 2004 0915 751 96.2 July 7, 2008 1035 796 ebrandy 2, 2005 1013 827 102 July 21, 2008 1035 797 farch 16, 2005 1015 841 104 July 22, 2008 1000 808 1 fay 16, 2005 1012 884 110 August 4, 2008 1000 808 1 fay 16, 2005 095 885 103 September 17, 2008 1000 778 fay 16, 2005 1000 844 102 October 1, 2008 1055 781 mare 1, 2005 1000	5				/			104
Íay 5, 2004 1115 825 107 April 29, 2008 1035 861 1 une 3, 2004 1000 838 96.5 May 13, 2008 1020 853 1 ungus 12, 2004 0950 760 89.3 June 3, 2008 0945 812 ugus 12, 2004 0915 738 87.9 June 2, 2008 1055 806 eptember 9, 2004 0935 751 96.2 July 17, 2008 1055 806 fermary 2, 2005 1035 827 102 July 21, 2008 1020 802 farch 16, 2005 1015 841 104 July 28, 2008 0925 797 farch 16, 2005 1020 882 103 September 2, 2008 1000 808 1 fary 4, 2005 1020 890 105 September 17, 2008 1000 778 une 1, 2005 0945 850 112 October 17, 2008 1055 781 une 2, 2005 1040 844 <td< td=""><td>,</td><td></td><td></td><td></td><td>· ·</td><td></td><td></td><td>104</td></td<>	,				· ·			104
unc 1, 2004 1000 838 96,5 May 13, 2008 1020 853 1 uly 15, 2004 0950 760 89,3 June 3, 2008 0920 802 Vugust 12, 2004 0915 738 87.9 June 18, 2008 0920 802 vugust 27, 2004 1115 743 99.3 June 25, 2008 1035 766 reptember 9, 2004 0935 751 96.2 July 7, 2008 1035 796 rebrary 2, 2005 1035 827 102 July 28, 2008 0920 802 darch 16, 2005 1015 841 104 August 8, 2008 0920 802 day 4, 2005 1120 884 110 August 18, 2008 0945 808 1 une 1, 2005 1020 890 105 September 17, 2008 1000 778 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0855 753 88.9	1 /							107
uly 15, 2004 0950 760 89.3 June 3, 2008 0945 812 Vagust 12, 2004 1115 743 87.9 June 18, 2008 1055 806 September 9, 2004 0335 751 96.2 July 7, 2008 1035 796 September 9, 2005 1035 827 102 July 21, 2008 0055 797 Aarch 16, 2005 1015 841 104 July 28, 2008 0955 797 Agy 4, 2005 11020 884 110 August 4, 2008 1000 808 1 May 4, 2005 1020 890 105 September 17, 2008 1000 778 une 15, 2005 0945 850 112 October 15, 2008 1155 781 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 13, 2005 0850 745 90.1 December 2, 2008 0950 784 uly 13, 2005 0850 753 88.9 January					1 /			104
August 12, 2004 0915 738 87.9 June 18, 2008 0920 802 hugust 27, 20041 1115 743 99.3 June 25, 2008 1155 806 reptember 9, 2004 0935 751 96.2 July 7, 2008 1035 796 reburny 2, 2005 1035 827 102 July 21, 2008 1050 804 1 tarch 16, 2005 1010 844 110 August 4, 2008 0955 808 1 tyril 13, 2005 1020 844 110 August 4, 2008 0945 808 1 tyril 13, 2005 1020 855 885 103 September 17, 2008 1000 808 1 une 15, 2005 1045 850 112 October 15, 2008 1055 781 ung 13, 2005 0920 739 91.8 November 4, 2008 0950 805 vulg 27, 2005 0855 753 88.9 January 6, 2009 1010 842 1	,				5 ,			105
Vagust 27, 2004 1115 743 99.3 June 25, 2008 1155 806 leptember 9, 2004 0355 751 96.2 July 7, 2008 1035 796 leptember 9, 2005 1035 827 102 July 21, 2008 1050 804 1 darch 16, 2005 1015 841 104 July 22, 2008 0055 797 dark 16, 2005 1020 884 110 August 4, 2008 1020 802 day 16, 2005 0955 885 103 September 17, 2008 1000 778 une 1, 2005 0920 739 91.8 November 4, 2008 1055 781 une 12, 2005 0945 850 112 October 1, 2008 1055 781 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 805 uly 27, 2005 0855 753 88.9 January 6, 2009 1010 842 102 uugust 0, 2005 0945 733 88.	•							94.5
keptember 9, 2004 0935 751 96.2 July 7, 2008 1035 796 kebruary 2, 2005 1015 841 104 July 21, 2008 1050 804 1 darch 16, 2005 1015 841 104 July 28, 2008 0955 797 day 4, 2005 1100 868 109 August 4, 2008 1020 802 day 16, 2005 0955 885 103 September 17, 2008 1000 808 1 une 1, 2005 1020 890 105 September 17, 2008 1000 778 une 29, 2005 1000 804 102 October 1, 2008 0950 784 uig 27, 2005 0850 745 90.1 December 2, 2008 0950 805 uigust 10, 2005 0855 753 88.9 January 6, 2009 1010 842 uugust 30, 2005 0945 733 88.7 January 6, 2009 1030 825 1 uigrethmer 7, 2005 1030					,			92.9
February 2, 2005 1035 827 102 July 21, 2008 1050 804 1 darch 16, 2005 1015 841 104 July 28, 2008 0955 797 day 4, 2005 1120 884 110 August 18, 2008 0945 808 1 day 4, 2005 1120 884 110 August 18, 2008 0945 808 1 une 1, 2005 1020 890 105 September 17, 2008 1000 808 1 une 1, 2005 1020 890 105 September 17, 2008 1000 778 une 29, 2005 0900 804 102 October 15, 2008 1150 752 uly 27, 2005 0850 745 90.1 December 2, 2008 0950 805 vagust 10, 2005 855 753 88.9 January 6, 2009 1010 842 Vagust 30, 2005 0945 733 88.7 January 20, 2009 1000 837 1 Vatother 13, 2005	August 27, 2004 ¹	1115	743	99.3	June 25, 2008	1155		92.9
Jarch 16, 2005 1015 841 104 July 28, 2008 0955 797 Agril 13, 2005 1100 868 109 August 4, 2008 1020 802 Agay 4, 2005 1120 884 110 August 18, 2008 1000 808 1 Aay 16, 2005 0955 885 103 September 17, 2008 1000 778 une 1, 2005 1020 890 105 September 17, 2008 1055 781 une 15, 2005 0945 850 112 October 1, 2008 1055 781 une 12, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0850 745 90.1 December 2, 2009 1010 842 vagust 30, 2005 0945 733 88.7 January 6, 2009 1010 842 vagust 30, 2005 0945 751 88.1 February 18, 2009 1010 819 1 petrember 7, 2005 1030 751 <	September 9, 2004	0935	751	96.2	July 7, 2008	1035	796	95.2
April 13, 2005 1000 868 109 August 4, 2008 1020 802 Aay 4, 2005 1120 884 110 August 18, 2008 0945 808 1 Aay 16, 2005 0955 885 103 September 17, 2008 1000 778 une 1, 2005 1020 890 105 September 17, 2008 1055 781 une 29, 2005 1000 804 102 October 1, 2008 1055 781 uly 27, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0855 753 88.9 January 6, 2009 1010 842 uugust 30, 2005 0945 733 88.7 January 20, 2009 1010 842 uugust 31, 2005 1030 745 93.2 February 2, 2009 1000 837 1 Sottober 13, 2005 1030 745 93.2 February 25, 2009 1030 825 1 anaray 11, 2006 1105	February 2, 2005	1035	827	102	July 21, 2008	1050	804	105
Ary 4, 2005 1120 884 110 August 18, 2008 0945 808 1 Aay 16, 2005 0955 885 103 September 17, 2008 1000 808 1 une 1, 2005 1020 890 105 September 17, 2008 1000 778 une 15, 2005 0945 850 112 October 15, 2008 1150 752 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 805 vuly 13, 2005 0850 745 90.1 December 2, 2008 1010 842 vugust 30, 2005 0850 745 90.1 December 2, 2009 1010 842 vugust 30, 2005 0955 733 88.9 January 6, 2009 1010 842 vugust 30, 2005 1030 730 89.1 February 2, 2009 1000 837 1 petrember 7, 2005 1030 745 93.2 February 2, 2009 1030 825 1 patrach 1, 2006 110 792 98.5 March 3, 2009 1030 843 1	March 16, 2005	1015	841	104	July 28, 2008	0955	797	99.0
May 16, 2005 0955 885 103 September 2, 2008 1000 808 1 une 1, 2005 1020 890 105 September 17, 2008 1000 778 une 15, 2005 0945 850 112 October 1, 2008 1055 781 une 29, 2005 1000 804 102 October 15, 2008 1150 752 uly 13, 2005 0850 745 90.1 December 2, 2008 0950 805 vugust 10, 2005 0855 753 88.9 January 6, 2009 1010 842 Vugust 10, 2005 0855 753 88.9 January 6, 2009 1010 810 September 7, 2005 1030 730 89.1 February 2, 2009 1010 817 1 October 13, 2005 1030 745 93.2 February 18, 2009 1010 819 1 January 11, 2006 1105 820 109 March 3, 2009 1050 841 1 March 1, 2006	April 13, 2005	1000	868	109	August 4, 2008	1020	802	99.2
une 1, 2005 1020 890 105 September 17, 2008 1000 778 une 15, 2005 0945 850 112 October 15, 2008 1150 752 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0850 745 90.1 December 2, 2008 0950 805 Vagust 10, 2005 0945 733 88.7 January 20, 2009 1010 842 Vagust 30, 2005 0945 733 88.7 January 20, 2009 1010 836 1 September 7, 2005 1030 730 89.1 February 18, 2009 1010 819 1 atoch 13, 2005 1030 745 93.2 February 25, 2009 1030 825 1 atoch 12, 2006 1005 751 88.1 February 25, 2009 1030 825 1 atoch 12, 2006 1005 833 105 March 3, 2009 1000 841 1 dar	May 4, 2005	1120	884	110	August 18, 2008	0945	808	101
une 1, 2005 1020 890 105 September 17, 2008 1000 778 une 15, 2005 0945 850 112 October 15, 2008 1150 752 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0850 745 90.1 December 2, 2008 0950 805 vagust 10, 2005 0945 733 88.7 January 20, 2009 1010 842 vagust 30, 2005 0945 733 88.7 January 20, 2009 1010 836 1 ieptember 7, 2005 1030 745 93.2 February 18, 2009 1010 819 1 atober 27, 2005 1005 751 88.1 February 25, 2009 1030 825 1 atarch 1, 2006 1105 820 109 March 3, 2009 1050 843 1 darch 29, 2006 1005 833 105 March 16, 2009 1100 841 1 dareh		0955	885	103	.	1000	808	101
une 15, 2005 0945 850 112 October 1, 2008 1055 781 une 29, 2005 1000 804 102 October 15, 2008 1150 752 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0850 745 90.1 December 2, 2008 0950 805 Vagust 30, 2005 0945 733 88.7 January 6, 2009 1010 836 1 eptember 7, 2005 1030 745 93.2 February 2, 2009 1000 837 1 betober 13, 2005 1030 745 93.2 February 2, 2009 1030 825 1 anuary 11, 2006 120 792 98.5 March 3, 2009 1050 843 1 farch 1, 2006 1105 820 109 March 3, 2009 1050 844 1 darch 1, 2006 1045 852 107 March 25, 2009 1030 842 1 <t< td=""><td></td><td>1020</td><td>890</td><td>105</td><td></td><td></td><td>778</td><td>96.2</td></t<>		1020	890	105			778	96.2
une 29, 2005 1000 804 102 October 15, 2008 1150 752 uly 13, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0850 745 90.1 December 2, 2008 0950 805 vugust 10, 2005 0845 733 88.9 January 6, 2009 1010 836 1 reptember 7, 2005 1030 730 89.1 February 2, 2009 1000 837 1 betober 13, 2005 1030 745 93.2 February 18, 2009 1010 819 1 cotober 27, 2005 1005 751 88.1 February 18, 2009 1030 825 1 anuary 11, 2006 1105 820 109 March 3, 2009 1050 841 1 darch 1, 2006 1005 833 105 March 19, 2009 1010 844 1 darch 29, 2006 1045 857 107 March 25, 2009 1020 847 1 day 17, 2006 1140 849 110 April 29, 2009 <t< td=""><td></td><td></td><td></td><td></td><td>· ·</td><td></td><td></td><td>97.5</td></t<>					· ·			97.5
uly 13, 2005 0920 739 91.8 November 4, 2008 0950 784 uly 27, 2005 0850 745 90.1 December 2, 2008 0950 805 Vagust 10, 2005 0855 753 88.9 January 6, 2009 1010 842 Vagust 30, 2005 0945 733 88.7 January 6, 2009 1010 836 1 keptember 7, 2005 1030 745 93.2 February 2, 2009 1010 819 1 October 13, 2005 1030 745 93.2 February 18, 2009 1030 825 1 nuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 1 darch 1, 2006 1005 833 105 March 16, 2009 1100 844 1 Aga 17, 2006 1055 845 107 April 8, 2009 1030 842 1 day 17, 2006 1055 845 108 June 9, 2009 1100 848 1 day 17, 2006 1045 852 108 June 9, 2009 1100								94.3
uly 27, 2005 0850 745 90.1 December 2, 2008 0950 805 Vagust 10, 2005 0855 753 88.9 January 6, 2009 1010 842 Vagust 30, 2005 0945 733 88.7 January 6, 2009 1010 836 1 jeptember 7, 2005 1030 745 93.2 February 2, 2009 1030 825 1 otober 27, 2005 1005 751 88.1 February 25, 2009 1030 825 1 anuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 1 darch 1, 2006 1105 820 109 March 3, 2009 1050 841 1 darch 29, 2006 1005 833 105 March 25, 2009 1020 847 1 day 31, 2006 1140 849 101 April 29, 2009 1030 842 1 une 14, 2006 1045 852 108 June 9, 2009 1040 765	· · · · · · · · · · · · · · · · · · ·				· · · · · ·			94.8
Nugust 10, 2005 0855 753 88.9 January 6, 2009 1010 842 Vagust 30, 2005 0945 733 88.7 January 20, 2009 1010 836 1 September 7, 2005 1030 730 89.1 February 2, 2009 1010 817 1 Detober 13, 2005 1030 745 93.2 February 25, 2009 1030 825 1 Detober 27, 2005 1005 751 88.1 February 25, 2009 1030 825 1 anuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 1 March 29, 2006 1005 833 105 March 16, 2009 1100 841 1 March 29, 2006 1055 845 107 April 8, 2009 1010 848 1 May 31, 2006 1140 849 110 April 8, 2009 1010 765 une 14, 2006 0945 845 108 June 9, 2009 1100 765								95.2
August 30, 2005 0945 733 88.7 January 20, 2009 1010 836 1 September 7, 2005 1030 730 89.1 February 2, 2009 1000 837 1 October 13, 2005 1030 745 93.2 February 18, 2009 1010 819 1 October 27, 2005 1005 751 88.1 February 25, 2009 1030 825 1 anuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 1 darch 1, 2006 1005 833 105 March 9, 2009 1050 8441 1 dyrid 25, 2006 1005 833 105 March 16, 2009 1100 841 1 dyrid 12, 2006 1055 845 107 April 8, 2009 1010 848 1 dyray 17, 2006 1045 852 108 May 27, 2009 1040 765 une 14, 2006 1045 852 108 May 27, 2009 1100 768 uly 13, 2006 0940 859 109 June 23, 2009	-				· · ·			94.7
September 7, 2005 1030 730 89.1 February 2, 2009 1000 837 1 Detober 13, 2005 1030 745 93.2 February 18, 2009 1010 819 1 Detober 27, 2005 1005 751 88.1 February 25, 2009 1030 825 1 anuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 1 March 1, 2006 1105 820 109 March 49, 2009 1050 841 1 March 12, 2006 1025 833 105 March 16, 2009 1100 841 1 April 25, 2006 1245 857 107 March 25, 2009 1020 847 1 May 31, 2006 1140 849 110 April 8, 2009 1010 848 1 une 14, 2006 1045 852 108 May 27, 2009 1140 765 une 28, 2006 0955 845 108 June 23, 2009 1045 772	0 ,				• •			101
Detober 13, 2005 1030 745 93.2 February 18, 2009 1010 819 1 Detober 27, 2005 1005 751 88.1 February 25, 2009 1030 825 11 anuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 11 Aarch 12, 2006 1105 820 109 March 9, 2009 1050 841 11 Aarch 29, 2006 1005 833 105 March 16, 2009 1100 841 11 Aarch 29, 2006 1055 845 107 March 25, 2009 1020 847 11 Aay 17, 2006 1055 845 107 April 8, 2009 1010 848 11 Aay 31, 2006 1140 849 110 April 29, 2009 1030 842 11 une 14, 2006 1045 852 108 May 27, 2009 1140 765 uly 13, 2006 0940 859 109 June 23, 2009 1045 772 uly 26, 2006 1115 847 117 July 7, 2009 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>101</td></t<>	-							101
Detober 27, 2005 1005 751 88.1 February 25, 2009 1030 825 1 anuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 1 March 1, 2006 1105 820 109 March 9, 2009 1050 841 1 March 29, 2006 1005 833 105 March 16, 2009 1100 841 1 April 25, 2006 1245 857 107 March 25, 2009 1020 847 1 May 17, 2006 1055 845 107 April 8, 2009 1010 848 1 Yay 31, 2006 1140 849 110 April 29, 2009 1030 842 1 Yune 14, 2006 1045 852 108 May 27, 2009 1140 765 Yuly 26, 2006 1115 847 117 July 7, 2009 1000 759 August 10, 2006 1005 844 109 July 21, 2009 1020 763	1 ,							
anuary 11, 2006 1210 792 98.5 March 3, 2009 1050 843 1 March 1, 2006 1105 820 109 March 9, 2009 1050 841 1 March 29, 2006 1005 833 105 March 16, 2009 1100 841 1 April 25, 2006 1245 857 107 March 25, 2009 1020 847 1 May 31, 2006 1140 849 110 April 29, 2009 1030 842 1 une 14, 2006 1045 852 108 May 27, 2009 1140 765 une 14, 2006 0455 845 108 June 9, 2009 1100 768 uly 13, 2006 0940 859 109 June 23, 2009 1045 772 uly 26, 2006 1115 847 117 July 7, 2009 1100 763 August 10, 2006 1005 844 109 July 21, 2009 1020 763 August 22, 2006 1000 837 111 August 5, 2009' 1030 773 September					2 ,			109
March 1, 2006 1105 820 109 March 9, 2009 1050 841 1 March 29, 2006 1005 833 105 March 16, 2009 1100 841 1 April 25, 2006 1245 857 107 March 25, 2009 1020 847 1 Aay 17, 2006 1055 845 107 April 8, 2009 1010 848 1 March 1, 2006 1140 849 110 April 29, 2009 1030 842 1 une 14, 2006 1045 852 108 May 27, 2009 1140 765 une 28, 2006 0955 845 108 June 9, 2009 1100 768 uly 13, 2006 0940 859 109 June 23, 2009 1045 772 uly 26, 2006 1115 847 117 July 7, 2009 1020 763 August 10, 2006 1005 844 109 July 21, 2009 1030 773 Vagust 22, 2006 1015 840 112 September 2, 2009 1030 773 September 6	/							111
March 29, 2006 1005 833 105 March 16, 2009 1100 841 1 April 25, 2006 1245 857 107 March 25, 2009 1020 847 1 May 17, 2006 1055 845 107 April 8, 2009 1010 848 1 May 31, 2006 1140 849 110 April 29, 2009 1030 842 1 une 14, 2006 1045 852 108 May 27, 2009 1140 765 une 28, 2006 0955 845 108 June 9, 2009 1100 768 uly 13, 2006 0940 859 109 June 23, 2009 1045 772 uly 26, 2006 1115 847 117 July 7, 2009 1100 763 August 10, 2006 1005 844 109 July 21, 2009 1020 763 August 22, 2006 1015 840 112 September 2, 2009 1030 773 September 6, 2006 1015 840 112 September 16, 2009 1030 773 October 25, 2006 <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td>110</td>					· · · · · · · · · · · · · · · · · · ·			110
April 25, 20061245857107March 25, 200910208471May 17, 20061055845107April 8, 200910108481May 31, 20061140849110April 29, 200910308421une 14, 20061045852108May 27, 20091140765une 28, 20060955845108June 9, 20091100768uly 13, 20060940859109June 23, 20091045772uly 26, 20061115847117July 7, 20091100759August 10, 20061005844109July 21, 20091020763August 22, 20061000837111August 5, 2009'1030773September 6, 20061015840112September 2, 20091030785October 11, 20060950854117September 16, 20091030773October 25, 20060945866118October 5, 20091100773October 12, 20061115907124October 19, 20091100781'ebruary 7, 2007'1115822129November 23, 20091100803Aurot 7, 20071135940123December 16, 20091140838								104
Aay 17, 20061055845107April 8, 200910108481May 31, 20061140849110April 29, 200910308421une 14, 20061045852108May 27, 20091140765une 28, 20060955845108June 9, 20091100768uly 13, 20060940859109June 23, 20091045772uly 26, 20061115847117July 7, 20091100759August 10, 20061005844109July 21, 20091020763August 22, 20061000837111August 5, 2009 ¹ 1030773September 6, 20061015840112September 2, 20091000785Detober 11, 20060950854117September 16, 20091030773Detober 25, 20060945866118October 5, 20091100773December 12, 20061115907124October 19, 20091100781Yebruary 7, 2007 ¹ 1115822129November 23, 20091100803Jarch 7, 20071135940123December 16, 20091140838	· · · · · · · · · · · · · · · · · · ·							104
Aay 31, 2006 1140 849 110 April 29, 2009 1030 842 1 uue 14, 2006 1045 852 108 May 27, 2009 1140 765 uue 28, 2006 0955 845 108 June 9, 2009 1100 768 uly 13, 2006 0940 859 109 June 23, 2009 1045 772 uly 26, 2006 1115 847 117 July 7, 2009 1100 763 August 10, 2006 1005 844 109 July 21, 2009 1020 763 August 22, 2006 1000 837 111 August 5, 2009 ¹ 1030 773 deptember 6, 2006 1020 830 108 August 24, 2009 1000 778 deptember 20, 2006 1015 840 112 September 2, 2009 1030 773 deptember 25, 2006 0945 866 118 October 5, 2009 1100 773 October 25, 2006 0945 866 118 October 19, 2009 1100 781 deptember 12, 2006 1115 9								106
une 14, 20061045852108May 27, 20091140765une 28, 20060955845108June 9, 20091100768uly 13, 20060940859109June 23, 20091045772uly 26, 20061115847117July 7, 20091100759uugust 10, 20061005844109July 21, 20091020763uugust 22, 20061000837111August 5, 2009 ¹ 1030773deptember 6, 20061020830108August 24, 20091000778deptember 20, 20061015840112September 2, 20091030773October 11, 20060950854117September 16, 20091030773October 25, 20060945866118October 5, 20091100773Oecember 12, 20061115907124October 19, 20091100781derug 7, 2007 ¹ 1115822129November 23, 20091100803Jarch 7, 20071135940123December 16, 20091140838					· ·			114
une 28, 20060955845108June 9, 20091100768uly 13, 20060940859109June 23, 20091045772uly 26, 20061115847117July 7, 20091100759uugust 10, 20061005844109July 21, 20091020763uugust 22, 20061000837111August 5, 2009 ¹ 1030773deptember 6, 20061020830108August 24, 20091000778deptember 20, 20061015840112September 2, 20091030773Decober 11, 20060950854117September 16, 20091030773Decober 25, 20060945866118October 5, 20091100773December 12, 20061115907124October 19, 20091100781derug 7, 2007 ¹ 1115822129November 23, 20091100803Jarch 7, 20071135940123December 16, 20091140838	•				1 · ·			103
uly 13, 2006 0940 859 109 June 23, 2009 1045 772 uly 26, 2006 1115 847 117 July 7, 2009 1100 759 August 10, 2006 1005 844 109 July 21, 2009 1020 763 August 22, 2006 1000 837 111 August 5, 2009 ¹ 1030 773 September 6, 2006 1020 830 108 August 24, 2009 1000 778 September 20, 2006 1015 840 112 September 2, 2009 1030 773 October 11, 2006 0950 854 117 September 16, 2009 1030 773 October 25, 2006 0945 866 118 October 5, 2009 1100 773 October 12, 2006 1115 907 124 October 19, 2009 1100 781 Cebruary 7, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 Jacch 7, 2007 1135 940 123 December 16, 2009 1140 838		1045	852			1140		90.1
uly 26, 20061115847117July 7, 20091100759August 10, 20061005844109July 21, 20091020763August 22, 20061000837111August 5, 200911030773Beptember 6, 20061020830108August 24, 20091000778Beptember 20, 20061015840112September 2, 20091030785Decober 11, 20060950854117September 16, 20091030773Decober 25, 20060945866118October 5, 20091100773December 12, 20061115907124October 19, 20091100781Bernary 7, 200711115822129November 23, 20091100803Aarch 7, 20071135940123December 16, 20091140838		0955						92.1
August 10, 20061005844109July 21, 20091020763August 22, 20061000837111August 5, 200911030773Beptember 6, 20061020830108August 24, 20091000778Beptember 20, 20061015840112September 2, 20091030785Detober 11, 20060950854117September 16, 20091030773Detober 25, 20060945866118October 5, 20091100773December 12, 20061115907124October 19, 20091100781Bernary 7, 200711115822129November 23, 20091100803Aarch 7, 20071135940123December 16, 20091140838	uly 13, 2006	0940	859	109	June 23, 2009	1045	772	90.8
August 10, 2006 1005 844 109 July 21, 2009 1020 763 August 22, 2006 1000 837 111 August 5, 2009 ¹ 1030 773 September 6, 2006 1020 830 108 August 24, 2009 1000 778 September 20, 2006 1015 840 112 September 2, 2009 1030 773 October 11, 2006 0950 854 117 September 16, 2009 1030 773 October 25, 2006 0945 866 118 October 5, 2009 1100 773 October 12, 2006 1115 907 124 October 19, 2009 1100 781 September 2, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 Jarch 7, 2007 1135 940 123 December 16, 2009 1140 838	uly 26, 2006	1115	847	117	July 7, 2009	1100	759	92.0
August 22, 2006 1000 837 111 August 5, 2009 ¹ 1030 773 Geptember 6, 2006 1020 830 108 August 24, 2009 1000 778 Geptember 20, 2006 1015 840 112 September 2, 2009 1030 785 October 11, 2006 0950 854 117 September 16, 2009 1030 773 October 25, 2006 0945 866 118 October 5, 2009 1100 773 October 12, 2006 1115 907 124 October 19, 2009 1100 781 Gebruary 7, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 March 7, 2007 1135 940 123 December 16, 2009 1140 838	August 10, 2006	1005	844	109	July 21, 2009		763	80.1
eptember 6, 2006 1020 830 108 August 24, 2009 1000 778 eptember 20, 2006 1015 840 112 September 2, 2009 1030 785 October 11, 2006 0950 854 117 September 16, 2009 1030 773 October 25, 2006 0945 866 118 October 5, 2009 1100 773 October 12, 2006 1115 907 124 October 19, 2009 1100 781 ebruary 7, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 Jarch 7, 2007 1135 940 123 December 16, 2009 1140 838		1000	837				773	82.7
September 20, 2006 1015 840 112 September 2, 2009 1030 785 October 11, 2006 0950 854 117 September 16, 2009 1030 773 October 25, 2006 0945 866 118 October 5, 2009 1100 773 December 12, 2006 1115 907 124 October 19, 2009 1100 781 Sebruary 7, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 Aarch 7, 2007 1135 940 123 December 16, 2009 1140 838								95.3
October 11, 2006 0950 854 117 September 16, 2009 1030 773 October 25, 2006 0945 866 118 October 5, 2009 1100 773 Oecember 12, 2006 1115 907 124 October 19, 2009 1100 781 Vebruary 7, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 Jarch 7, 2007 1135 940 123 December 16, 2009 1140 838	1 ,				· ·			95.9
October 25, 2006 0945 866 118 October 5, 2009 1100 773 December 12, 2006 1115 907 124 October 19, 2009 1100 781 December 12, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 Jacro 7, 2007 1135 940 123 December 16, 2009 1140 838								93.2
December 12, 2006 1115 907 124 October 19, 2009 1100 781 'ebruary 7, 2007' 1115 822 129 November 23, 2009 1100 803 //arch 7, 2007 1135 940 123 December 16, 2009 1140 838	,				1 ,			93.5
Yebruary 7, 2007 ¹ 1115 822 129 November 23, 2009 1100 803 March 7, 2007 1135 940 123 December 16, 2009 1140 838								94.3
March 7, 2007 1135 940 123 December 16, 2009 1140 838	,				· · · · · ·			94.8
	•							94.8
April 9, 2007 1045 884 116 ¹ Data point removed from final analysis because it was an extrem	April 9, 2007	1135	940 884	125				

Table 4. Chloride linear regression dataset using reservoir elevation and specific conductance as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Specific conductance, in μS/cm at 25°C	Chloride, in mg/L
May 3, 2001	1055	1,422	789	120
June 4, 2001	1030	1,422	809	126
June 22, 2001	1155	1,422	756	116
July 24, 2001	1055	1,421	776	122
August 29, 2001	1125	1,419	799	129
May 15, 2002	1115	1,419	913	158
June 19, 2002	0955	1,421	814	141
August 7, 2002	1000	1,420	863	151
September 4, 2002	1015	1,420	863	144
September 25, 2002	1010	1,420	842	145
January 23, 2003	1055	1,422	879	162
February 10, 2003	1250	1,422	891	155
March 3, 2003	1025	1,422	885	159
June 17, 2003	1045	1,422	792	144
June 20, 2003	0905	1,422	802	140
July 7, 2003	0940	1,421	806	144
July 17, 2003	1155	1,421	797	146
July 28, 2003	1150	1,421	799	157
March 10, 2004	1115	1,423	806	146
April 8, 2004	1015	1,422	801	137
May 5, 2004	1115	1,422	825	140
June 3, 2004	1000	1,421	838	147
July 15, 2004	0950	1,422	760	136
August 12, 2004	0915	1,422	738	138
August 27, 2004	1115	1,422	743	128
September 9, 2004	0935	1,422	751	128
February 2, 2005	1035	1,422	827	139
March 16, 2005	1015	1,422	841	139
April 13, 2005	1000	1,422	868	136
May 4, 2005	1120	1,422	884	142
May 16, 2005	0955	1,422	885	147
June 1, 2005	1020	1,422	890	146
June 15, 2005	0945	1,424	850	137
June 29, 2005	1000	1,423	804	127
July 13, 2005	0920	1,423	739	105
July 27, 2005	0850	1,422	745	116
August 10, 2005	0855	1,421	753	119
August 30, 2005	0945	1,422	733	111
September 7, 2005	1030	1,422	730	114
October 13, 2005	1030	1,421	745	123
October 27, 2005	1005	1,421	751	120

 Table 4.
 Chloride linear regression dataset using reservoir elevation and specific conductance as explanatory variables

 for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Specific conductance, in µS/cm at 25°C	Chloride, in mg/L
January 11, 2006	1210	1,421	792	132
March 1, 2006	1105	1,421	820	134
March 29, 2006	1005	1,422	833	146
April 25, 2006	1245	1,421	857	140
May 17, 2006	1055	1,422	845	133
May 31, 2006	1140	1,422	849	139
June 14, 2006	1045	1,421	852	137
June 28, 2006	0955	1,421	845	131
July 13, 2006	0940	1,421	859	152
July 26, 2006	1115	1,420	847	156
August 10, 2006	1005	1,420	844	152
August 22, 2006	1000	1,420	837	150
September 6, 2006	1020	1,420	830	151
September 20, 2006	1015	1,419	840	156
October 11, 2006	0950	1,419	854	160
October 25, 2006	0945	1,418	866	161
December 12, 2006	1115	1,418	907	166
February 7, 2007	1115	1,419	822	160
March 7, 2007	1135	1,419	940	166
April 9, 2007	1045	1,421	884	160
May 8, 2007	0940	1,424	845	130
May 31, 2007	1020	1,425	754	120
June 13, 2007	1140	1,424	728	120
June 25, 2007	1000	1,422	739	120
July 9, 2007	0950	1,423	732	120
July 23, 2007	1020	1,423	732	110
August 7, 2007	0930	1,423	748	120
August 15, 2007	0955	1,422	746	120
August 28, 2007	1055	1,421	765	120
September 12, 2007	1025	1,421	776	130
September 24, 2007	1025	1,421	779	130
October 15, 2007	1005	1,420	792	130
October 29, 2007	1045	1,420	792	130
November 13, 2007	1040	1,420	806	130
December 19, 2007	1100	1,420	837	140
February 11, 2008	1100	1,421	866	140
February 14, 2008	1105	1,421	869	140
February 15, 2008	1025	1,421	867	140
March 10, 2008	1125	1,422	864	140
April 1, 2008	0955	1,422	861	140
April 16, 2008	1140	1,422	864	140

Table 4.Chloride linear regression dataset using reservoir elevation and specific conductance as explanatory variablesfor Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; µS/cm, microsiemens per centimeter; °C, degrees Celsius; mg/L, milligrams per liter]

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Specific conductance, in µS/cm at 25°C	Chloride, in mg/L
April 29, 2008	1035	1,423	861	140
May 13, 2008	1020	1,424	853	140
June 3, 2008	0945	1,423	812	130
June 18, 2008	0920	1,423	802	120
June 25, 2008	1155	1,423	806	130
July 7, 2008	1035	1,422	796	130
July 21, 2008	1050	1,422	804	130
July 28, 2008	0955	1,422	797	130
August 4, 2008	1020	1,421	802	130
August 18, 2008	0945	1,421	808	130
September 2, 2008 ²	1000	1,421	808	79
September 17, 2008	1000	1,422	778	130
October 1, 2008	1055	1,422	781	130
October 15, 2008	1150	1,422	752	130
November 4, 2008	0950	1,422	784	130
December 2, 2008	0950	1,422	805	130
January 6, 2009	1010	1,422	842	130
January 20, 2009	1010	1,422	836	140
February 2, 2009	1000	1,422	837	140
February 18, 2009	1010	1,422	819	140
February 25, 2009	1030	1,422	825	140
March 3, 2009	1050	1,422	843	150
March 9, 2009	1050	1,422	841	140
March 16, 2009	1100	1,422	841	140
March 25, 2009	1020	1,422	847	140
April 8, 2009	1010	1,422	848	140
April 29, 2009	1030	1,424	842	140
May 27, 2009	1140	1,424	765	110
June 9, 2009	1100	1,422	768	110
June 23, 2009	1045	1,422	772	120
July 7, 2009	1100	1,422	759	120
July 21, 2009	1020	1,421	763	120
August 5, 2009	1030	1,421	773	120
August 24, 2009	1000	1,421	778	120
September 2, 2009	1030	1,421	785	130
September 16, 2009	1030	1,422	773	120
October 5, 2009	1100	1,422	773	120
October 19, 2009	1100	1,422	781	120
November 23, 2009 ²	1100	1,422	803	170
December 16, 2009	1140	1,422	838	120

¹Reservoir elevation above National Geodetic Vertical Datum of 1929.

²Data point removed from final analysis because it was an extreme outlier on a bivariate plot of actual as compared to computed concentrations.

Table 5.Magnesium linear regression dataset using specific conductance as the explanatory variable for Cheney Reservoir nearCheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Specific conductance, in µS/cm at 25°C	Magnesium, in mg/L	Date	Time, in hhmm	Specific conductance, in µS/cm at 25°C	Magnesium in mg/L
May 3, 2001	1055	789	13.4	May 8, 2007	0940	845	13.2
June 4, 2001	1030	809	14.2	May 31, 2007	1020	754	11.8
June 22, 2001	1155	756	12.5	June 13, 2007	1140	728	12.0
July 24, 2001	1055	776	13.4	June 25, 2007	1000	739	11.8
August 29, 2001	1125	799	14.1	July 9, 2007	0950	732	11.0
May 15, 2002	1125	913	15.2	July 23, 2007	1020	732	12.0
•	0955	814	13.2		0930	732	12.0
une 19, 2002				August 7, 2007			
August 7, 2002	1000	863	14.2	August 15, 2007	0955	746	11.9
September 4, 2002	1015	863	13.8	August 28, 2007	1055	765	12.0
September 25, 2002	1010	842	14.4	September 12, 2007	1025	776	12.5
anuary 23, 2003	1055	879	14.7	September 24, 2007	1025	779	12.7
February 10, 2003	1250	891	14.5	October 15, 2007	1005	792	13.4
Aarch 3, 2003	1025	885	14.8	October 29, 2007	1045	792	13.5
une 17, 2003	1045	792	13.4	November 13, 2007	1040	806	13.3
une 20, 2003	0905	802	13.5	December 19, 2007	1100	837	13.4
uly 7, 2003	0940	806	13.9	February 11, 2008	1100	866	13.6
uly 17, 2003	1155	797	14.1	February 14, 2008	1105	869	13.3
uly 28, 2003	1150	799	13.3	February 15, 2008	1025	867	13.1
March 10, 2004	1115	806	14.2	March 10, 2008	1125	864	13.3
April 8, 2004	1015	801	13.9	April 1, 2008	0955	861	14.1
May 5, 2004	1115	825	14.6	April 16, 2008	1140	864	14.0
une 3, 2004	1000	838	13.5	April 29, 2008	1035	861	13.8
uly 15, 2004	0950	760	12.6	May 13, 2008	1020	853	14.3
August 12, 2004	0915	738	12.0	June 3, 2008	0945	812	13.1
August 27, 2004	1115	743	12.3	June 18, 2008	0920	802	13.0
September 9, 2004	0935	751	12.5	June 25, 2008	1155	806	13.0
*	1035	827	14.4	· · · · · · · · · · · · · · · · · · ·	1035	796	
ebruary 2, 2005				July 7, 2008			13.5
Aarch 16, 2005	1015	841	15.1	July 21, 2008	1050	804	14.3
April 13, 2005	1000	868	15.3	July 28, 2008	0955	797	13.5
/lay 4, 2005	1120	884	15.5	August 4, 2008	1020	802	13.5
Aay 16, 2005	0955	885	15.0	August 18, 2008	0945	808	13.7
une 1, 2005	1020	890	15.2	September 2, 2008	1000	808	13.4
une 15, 2005	0945	850	14.9	September 17, 2008	1000	778	12.9
une 29, 2005	1000	804	14.1	October 1, 2008	1055	781	13.1
uly 13, 2005	0920	739	12.6	October 15, 2008	1150	752	12.6
uly 27, 2005	0850	745	13.5	November 4, 2008	0950	784	12.8
August 10, 2005	0855	753	12.7	December 2, 2008	0950	805	13.2
August 30, 2005	0945	733	12.4	January 6, 2009	1010	842	13.2
September 7, 2005	1030	730	13.4	January 20, 2009	1010	836	13.9
October 13, 2005	1030	745	13.3	February 2, 2009	1000	837	14.3
October 27, 2005	1005	751	12.7	February 18, 2009	1010	819	14.9
anuary 11, 2006	1210	792	13.8	February 25, 2009	1030	825	15.1
1arch 1, 2006	1105	820	14.7	March 3, 2009	1050	843	14.9
1arch 29, 2006	1005	833	14.3	March 9, 2009	1050	841	14.2
April 25, 2006	1245	857	14.3	March 16, 2009	1100	841	14.2
fay 17, 2006	1055	845	14.2	March 25, 2009	1020	847	14.2
	1140	849	14.2			848	14.4
1ay 31, 2006		849 852		April 8, 2009	1010	848 842	
une 14, 2006	1045		14.3	April 29, 2009	1030		14.6
une 28, 2006	0955	845	14.1	May 27, 2009	1140	765	13.6
uly 13, 2006	0940	859	14.2	June 9, 2009	1100	768	13.5
uly 26, 2006	1115	847	14.8	June 23, 2009	1045	772	13.3
ugust 10, 2006	1005	844	14.0	July 7, 2009	1100	759	13.3
ugust 22, 2006	1000	837	14.1	July 21, 2009	1020	763	11.4
eptember 6, 2006	1020	830	13.5	August 5, 2009	1030	773	11.7
eptember 20, 2006	1015	840	13.7	August 24, 2009	1000	778	13.7
October 11, 2006	0950	854	14.3	September 2, 2009	1030	785	14.0
October 25, 2006	0945	866	14.2	September 16, 2009	1030	773	13.6
December 12, 2006	1115	907	15.3	October 5, 2009	1100	773	13.1
ebruary 7, 2007	1115	822	15.2	October 19, 2009	1100	781	13.1
Aarch 7, 2007	1135	940	14.9	November 23, 2009	1100	803	13.3
April 9, 2007	1045	884	13.9	December 16, 2009	1140	838	12.9

Table 6.Total suspended solids linear regression dataset using turbidity and fluorescence as explanatory variables for CheneyReservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

[hhmm, hours and minutes; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Fluorescence at a wavelength range of 650 to 700 nanometers (YSI model 6025 sensor)	Total suspended solids, in milligrams per liter
May 3, 2001	1055	38	8.1	9
June 4, 2001	1030	20	6.5	6
June 22, 2001	1155	22	13	<4
July 24, 2001	1055	18	6.8	4
August 29, 2001	1125	13	4.8	4
May 15, 2002	1115	27	6.0	12
June 19, 2002	0955	36	18	7
August 7, 2002	1000	13	5.2	5
September 4, 2002	1015	12	7.3	9
September 25, 2002	1010	20	8.0	8
January 23, 2003	1055	3.9	24	<4
February 10, 2003	1250	1.6	4.7	4
March 3, 2003	1025	3.3	25	5
June 17, 2003	1045	14	8.4	12
June 20, 2003	0905	3.5	5.3	<4
July 7, 2003	0940	24	23	11
July 17, 2003	1155	27	10	11
July 28, 2003	1150	29	8.3	12
March 10, 2004	1115	22	22	12
April 8, 2004	1015	31	14	14
May 5, 2004	1115	21	2.0	<4
June 3, 2004	1000	21	6.5	11
July 15, 2004	0950	7.0	2.9	<4
August 12, 2004	0915	23	9.4	<4
August 27, 2004	1115	32	3.3	13
September 9, 2004	0935	26	3.1	12
February 2, 2005	1035	2.7	22	5
March 16, 2005	1015	10	25	17
April 13, 2005	1000	18	9.3	8
May 4, 2005	1120	10	4.1	9
May 16, 2005	0955	8.1	6.4	5
June 1, 2005	1020	8.1	6.4	5
June 15, 2005	0945	14	12	7
June 29, 2005	1000	25	7.1	10
July 13, 2005	0920	15	12	12
July 27, 2005	0850	20	8.0	12
August 10, 2005	0855	12	5.4	8
August 30, 2005	0945	22	12	12
September 7, 2005	1030	12	7.4	12
October 13, 2005	1030	18	10	<4
October 27, 2005	1005	20	9.2	18
January 11, 2006	1210	8.9	20	<4
March 1, 2006	1105	3.2	19	7
1viaicii 1, 2000	1105	5.2	17	/

Table 6.Total suspended solids linear regression dataset using turbidity and fluorescence as explanatory variables for CheneyReservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Fluorescence at a wavelength range of 650 to 700 nanometers (YSI model 6025 sensor)	Total suspended solids, in milligrams per liter
April 25, 2006	1245	34	8.5	23
May 17, 2006	1055	20	12	12
May 31, 2006	1140	10	8.9	10
June 14, 2006	1045	25	6.6	8
June 28, 2006	0955	13	6.9	13
July 13, 2006	0940	15	5.5	8
July 26, 2006	1115	14	11	8
August 10, 2006	1005	17	10	12
August 22, 2006	1000	21	6.6	9
September 6, 2006	1020	10	15	8
September 20, 2006	1015	22	10	23
October 11, 2006	0950	29	7.3	12
October 25, 2006	0945	35	6.8	8
December 12, 2006	1115	9.2	10	11
February 7, 2007	1115	14	6.9	<4
March 7, 2007	1135	14	34	<4
April 9, 2007	1045	23	17	11
May 8, 2007	0940	11	3.1	14
May 31, 2007	1020	27	4.8	14
June 13, 2007	1140	35	5.0	<4
June 25, 2007	1000	25	5.1	<4
July 9, 2007	0950	23	7.7	17
July 23, 2007	1020	21	11	10
August 7, 2007	0930	27	10	7
August 15, 2007	0930	23	8.5	8
-		23		
August 28, 2007	1055		7.0	12
September 12, 2007	1025	13	8.4	8
September 24, 2007	1025	17	9.0	8
October 15, 2007	1005	29	7.1	17
October 29, 2007	1045	26 25	7.1	10
November 13, 2007	1040	25	11	14
December 19, 2007	1100	8.1	5.8	<4
February 11, 2008	1100	2.7	12	<4
February 14, 2008	1105	2.3	13	4
February 15, 2008	1025	6.4	14	7
March 10, 2008	1125	9.0	26	6
April 1, 2008	0955	19	30	18
April 16, 2008	1140	28	11	38
April 29, 2008	1035	42	8.1	16
May 13, 2008	1020	30	5.7	10
June 3, 2008	0945	22	5.9	7
June 18, 2008	0920	31	6.8	12
June 25, 2008	1155	17	11	18
July 7, 2008	1035	18	5.3	10

Table 6.Total suspended solids linear regression dataset using turbidity and fluorescence as explanatory variables for CheneyReservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Fluorescence at a wavelength range of 650 to 700 nanometers (YSI model 6025 sensor)	Total suspended solids, in milligrams per liter
July 21, 2008	1050	26	12	11
July 28, 2008	0955	18	24	9
August 4, 2008	1020	18	6.2	7
August 18, 2008	0945	15	3.7	4
September 2, 2008	1000	16	5.1	8
September 17, 2008	1000	20	4.9	10
October 1, 2008	1055	16	5.2	8
November 4, 2008	0950	27	8.0	10
December 2, 2008	0950	18	7.1	11
January 6, 2009	1010	7.3	23	6
January 20, 2009	1010	8.5	31	10
February 2, 2009	1000	6.9	49	12
February 18, 2009	1010	15	23	17
February 25, 2009	1030	10	24	10
March 3, 2009	1050	10	24	8
March 9, 2009	1050	10	22	9
March 16, 2009	1100	9.3	23	10
March 25, 2009	1020	25	24	19
April 8, 2009	1010	24	16	16
April 29, 2009	1030	34	4.9	<4
May 27, 2009	1140	36	7.6	16
June 9, 2009	1100	25	15	6
June 23, 2009	1045	17	16	8
July 7, 2009	1100	12	9.1	5
July 21, 2009	1020	18	3.6	6
August 5, 2009	1030	14	7.7	6
August 24, 2009	1000	16	6.9	8
September 2, 2009	1030	20	6.2	7
September 16, 2009	1030	19	4.3	6
October 5, 2009	1100	24	6.2	23
October 19, 2009	1100	22	6.2	8
November 23, 2009	1100	17	6.5	6
December 16, 2009	1140	16	4.5	<4

Table 7.Suspended-sediment concentration linear regression dataset using turbidity as the explanatory variable forCheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Suspended-sediment concentration, in milligrams per liter 25	
May 3, 2001	1055	38		
June 4, 2001	1030	20	16	
June 22, 2001	1155	22	21	
July 24, 2001	1055	18	16	
August 29, 2001	1125	13	9	
May 15, 2002	1115	27	21	
June 19, 2002	0955	36	22	
July 11, 2002	1005	12	7	
August 7, 2002	1000	13	13	
September 4, 2002	1015	12	11	
January 23, 2003	1055	3.9	5	
February 10, 2003	1250	1.6	4	
June 17, 2003	1045	14	8	
June 20, 2003	0905	3.5	3	
July 7, 2003	0940	24	18	
July 17, 2003	1155	27	12	
July 28, 2003	1150	29	14	
March 10, 2004	1115	22	15	
April 8, 2004	1015	31	33	
May 5, 2004	1115	21	17	
June 3, 2004	1000	21	15	
July 15, 2004	0950	7.0	9	
August 12, 2004	0915	23	15	
August 27, 2004	1115	32	20	
September 9, 2004	0935	26	20	
February 2, 2005	1035	2.7	5	
March 16, 2005	1015	10	11	
April 13, 2005	1000	18	15	
May 4, 2005	1120	10	15	
May 16, 2005	0955	8.1	10	
June 1, 2005	1020	8.1	7	
June 15, 2005	0945	14	13	
June 29, 2005	1000	25	20	
July 13, 2005	0920	15	5	
July 27, 2005	0850	20	2	
August 10, 2005	0855	12	14	
August 30, 2005	0945	22	11	
September 7, 2005	1030	12	12	
October 13, 2005	1030	18	12	
October 27, 2005	1005	20	21	
January 11, 2006	1210	8.9	7	

Table 7.Suspended-sediment concentration linear regression dataset using turbidity as the explanatory variable forCheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Suspended-sediment concentration, in milligrams per liter 4	
March 1, 2006	1105	3.2		
March 29, 2006	1005	10	7	
April 25, 2006	1245	34	34	
May 17, 2006	1055	20	15	
May 31, 2006	1140	10	7	
June 14, 2006	1045	25	12	
June 28, 2006	0955	13	9	
July 13, 2006	0940	15	12	
July 26, 2006	1115	14	9	
August 10, 2006	1005	17	14	
August 22, 2006	1000	21	13	
September 6, 2006	1020	10	10	
September 20, 2006	1015	22	26	
October 11, 2006	0950	29	21	
October 25, 2006	0945	35	22	
December 12, 2006	1115	9.2	9	
February 7, 2007	1115	14	2	
March 7, 2007	1135	14	12	
April 9, 2007	1045	23	16	
May 8, 2007	0940	11	8	
May 31, 2007	1020	27	11	
June 13, 2007	1140	35	25	
June 25, 2007	1000	25	8	
July 9, 2007	0950	21	20	
July 23, 2007	1020	21	14	
August 7, 2007	0930	27	16	
August 15, 2007	0955	23	14	
August 28, 2007	1055	28	24	
September 12, 2007	1025	13	12	
September 24, 2007	1025	17	15	
October 15, 2007	1005	29	34	
October 29, 2007	1045	26	14	
November 13, 2007	1040	25	20	
December 19, 2007	1100	8.1	6	
February 11, 2008	1100	2.7	4	
February 14, 2008	1105	2.3	3	
March 10, 2008	1125	9.0	7	
April 1, 2008	0955	19	15	
April 16, 2008	1140	28	23	
April 29, 2008	1035	42	36	
May 13, 2008	1020	30	27	

Table 7. Suspended-sediment concentration linear regression dataset using turbidity as the explanatory variable for

 Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Suspended-sediment concentration, in milligrams per liter	
June 3, 2008	0945	22	19	
June 18, 2008	0920	31	26	
July 7, 2008	1035	18	18	
July 21, 2008	1050	26	20	
July 28, 2008	0955	18	16	
August 4, 2008	1020	18	14	
August 18, 2008	0945	15	14	
September 2, 2008	1000	16	12	
September 17, 2008	1000	20	16	
October 1, 2008	1055	16	15	
October 15, 2008	1150	48	26	
November 4, 2008	0950	27	18	
December 2, 2008	0950	18	16	
January 6, 2009	1010	7.3	8	
January 20, 2009	1010	8.5	10	
February 2, 2009	1000	6.9	12	
February 18, 2009	1010	15	18	
February 25, 2009	1030	10	11	
March 3, 2009	1050	10	10	
March 9, 2009	1050	10	9	
March 16, 2009	1100	9.3	11	
March 25, 2009	1020	25	22	
April 8, 2009	1010	24	21	
April 29, 2009	1030	34	17	
May 27, 2009	1140	36	35	
June 9, 2009	1100	25	18	
June 23, 2009	1045	17	18	
July 7, 2009	1100	12	10	
July 21, 2009	1020	18	17	
August 5, 2009	1030	14	16	
August 24, 2009	1000	16	16	
September 2, 2009	1030	20	13	
September 16, 2009	1030	19	16	
October 5, 2009	1100	24	20	
October 19, 2009	1100	22	14	
November 23, 2009	1100	17	13	
December 16, 2009	1140	16	11	

Table 8.
 Total Kjeldahl nitrogen linear regression dataset using turbidity, dissolved oxygen, and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Dissolved oxygen, in milligrams per liter	Water temperature, in degrees Celsius	Total Kjeldahl nitrogen, in milligrams per liter
May 3, 2001	1055	38	7.8	18.4	0.63
June 4, 2001	1030	20	7.9	19.2	0.58
June 22, 2001	1155	22	10.7	24.1	0.61
July 24, 2001	1055	18	7.0	27.7	0.63
August 29, 2001	1125	13	7.3	26.2	0.46
May 15, 2002	1115	27	9.6	17.9	0.81
June 19, 2002	0955	36	7.5	22.6	0.67
July 11, 2002	1005	12	9.7	26.9	1.20
August 7, 2002	1000	13	6.1	27.2	0.59
September 4, 2002	1015	12	7.0	25.9	0.56
September 25, 2002	1010	20	6.3	20.8	0.65
January 23, 2003	1055	3.9	15.2	0.3	0.58
February 10, 2003	1250	1.6	14.4	1.2	0.56
March 3, 2003	1025	3.3	16.1	1.8	0.77
June 17, 2003	1045	14	12.2	25.0	1.40
June 20, 2003	0905	3.5	6.2	22.5	0.62
July 7, 2003	0940	24	8.0	25.7	0.79
July 17, 2003	1155	27	8.4	27.5	1.30
July 28, 2003	1150	29	11.2	28.6	1.20
March 10, 2004	1115	22	12.4	6.4	0.65
April 8, 2004	1015	31	9.3	14.7	0.71
May 5, 2004	1115	21	9.4	16.1	0.65
June 3, 2004	1000	21	7.7	21.7	0.63
July 15, 2004	0950	7.0	6.2	26.0	0.72
August 12, 2004	0915	23	7.3	24.9	0.69
August 27, 2004	1115	32	6.8	24.4	0.80
September 9, 2004	0935	26	4.3	23.3	0.76
February 2, 2005	1035	2.7	16.4	1.8	0.58
March 16, 2005	1015	10	10.8	8.5	0.77
April 13, 2005	1000	18	10.1	13.4	0.69
May 4, 2005	1120	10	10.3	14.7	0.73
May 16, 2005	0955	8.1	9.5	18.4	0.71
June 1, 2005	1020	8.1	7.2	22.1	0.74
June 15, 2005	0945	14	7.2	23.5	0.79
June 29, 2005	1000	25	6.1	25.2	0.64
July 13, 2005	0920	15	9.5	26.8	0.92
July 27, 2005	0850	20	6.4	25.7	0.81
August 30, 2005	0945	22	6.9	26.6	0.81
September 7, 2005	1030	12	4.6	25.1	0.70
October 13, 2005	1030	18	9.4	18.1	0.75
October 27, 2005	1005	20	8.5	14.4	0.74

 Total Kjeldahl nitrogen linear regression dataset using turbidity, dissolved oxygen, and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Dissolved oxygen, in milligrams per liter	Water temperature, in degrees Celsius	Total Kjeldahl nitrogen, in milligrams per liter
January 11, 2006	1210	8.9	13.8	4.2	0.73
March 1, 2006	1105	3.2	14.9	3.7	0.73
March 29, 2006	1005	10	12.7	7.6	0.75
April 25, 2006	1245	34	8.5	17.0	0.89
May 17, 2006	1055	20	10.2	18.1	0.74
May 31, 2006	1140	10	9.0	23.6	0.84
June 14, 2006	1045	25	6.5	24.3	0.77
June 28, 2006	0955	13	8.0	25.0	0.78
July 13, 2006	0940	15	6.8	25.3	0.86
July 26, 2006	1115	14	7.2	26.7	0.76
August 10, 2006	1005	17	8.6	27.6	1.20
August 22, 2006	1000	21	4.3	26.8	0.90
September 6, 2006	1020	10	9.2	24.2	0.94
September 20, 2006	1015	22	7.5	20.8	0.91
October 11, 2006	0950	29	8.0	17.1	0.82
October 25, 2006	0945	35	9.0	12.7	0.76
December 12, 2006	1115	9.2	13.2	3.8	0.94
February 7, 2007	1115	14	13.6	5.6	0.71
March 7, 2007	1135	14	12.3	6.7	0.68
April 9, 2007	1045	23	10.0	11.4	0.81
May 8, 2007	0940	11	7.2	18.2	0.75
May 31, 2007	1020	27	6.8	21.3	0.91
June 13, 2007	1140	35	6.5	22.6	0.63
June 25, 2007	1000	25	6.3	24.4	0.60
July 9, 2007	950	21	6.6	25.2	0.74
July 23, 2007	1020	21	6.2	26.1	0.73
August 7, 2007	0930	27	5.7	27.0	0.72
August 15, 2007	0955	23	6.9	27.9	0.70
August 28, 2007	1055	28	6.5	26.6	0.70
September 12, 2007	1025	13	7.7	23.7	0.67
September 24, 2007	1025	17	7.5	22.1	0.72
October 15, 2007	1005	29	8.0	18.9	0.68
October 29, 2007	1045	26	8.9	13.9	0.67
November 13, 2007	1040	25	9.7	11.8	0.68
December 19, 2007	1100	8.1	12.6	1.8	0.60
February 11, 2008	1100	2.7	13.6	1.8	0.67
February 14, 2008	1105	2.3	13.6	2.0	0.71
February 15, 2008	1025	6.4	13.2	1.8	0.67
March 10, 2008	1125	9.0	13.3	4.3	0.77
April 1, 2008	0955	19	11.2	9.1	0.77
April 16, 2008	1140	28	10.5	10.1	0.85

Table 8.Total Kjeldahl nitrogen linear regression dataset using turbidity, dissolved oxygen, and water temperature as explanatory
variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Dissolved oxygen, in milligrams per liter	Water temperature, in degrees Celsius	Total Kjeldahl nitrogen, i milligrams per liter
April 29, 2008	1035	42	8.8	13.8	0.97
May 13, 2008	1020	30	8.8	16.0	1.00
June 3, 2008	0945	22	6.8	22.7	0.68
June 18, 2008	0920	31	6.0	23.5	0.84
June 25, 2008	1155	17	6.4	24.7	0.66
July 7, 2008	1035	18	6.8	25.3	0.75
July 21, 2008	1050	26	7.5	26.2	0.83
July 28, 2008	0955	18	6.7	26.5	0.72
August 4, 2008	1020	18	6.3	26.8	0.66
August 18, 2008	0945	15	5.4	24.6	0.60
September 2, 2008	1000	16	7.5	25.1	0.72
September 17, 2008	1000	20	8.0	20.2	0.64
October 1, 2008	1055	16	8.4	21.6	0.65
October 15, 2008	1150	48	8.4	16.8	0.65
November 4, 2008	0950	27	9.4	12.7	0.61
December 2, 2008	0950	18	11.6	5.3	0.54
January 6, 2009	1010	7.3	13.2	0.8	0.34
January 20, 2009	1010	8.5	15.2	0.9	0.80
February 2, 2009	1000	6.9	15.2	0.7	0.74
February 18, 2009	1010	15	11.9	5.2	0.68
February 25, 2009	1030	10	12.3	5.4	0.68
March 3, 2009	1050	10	12.3	4.4	0.63
March 9, 2009	1050	10	11.9	6.4	0.62
March 16, 2009	1100	9.3	11.6	6.3	0.82
March 25, 2009	1020	25	10.2	11.0	0.68
April 8, 2009	1010	24	10.9	7.6	0.75
April 29, 2009	1030	34	8.1	14.9	0.84
May 27, 2009	1140	36	8.1	22.1	0.79
June 9, 2009	1100	25	6.5	22.0	0.67
June 23, 2009	1045	17	7.1	25.0	0.70
July 7, 2009	1100	12	5.6	25.8	0.74
July 21, 2009	1020	18	5.3	25.4	0.73
August 5, 2009	1030	14	5.9	25.1	0.59
August 24, 2009	1000	16	6.1	24.3	0.63
September 2, 2009	1030	20	6.6	23.2	0.64
September 16, 2009	1030	19	6.5	22.0	0.49
October 5, 2009	1100	24	8.0	17.3	0.55
October 19, 2009	1100	22	9.9	12.2	0.58
November 23, 2009	1100	17	9.9	9.8	0.55
December 16, 2009	1140	16	12.6	0.9	0.56

Table 9. Nitrate plus nitrite linear regression dataset using pH and specific conductance as explanatory variables for CheneyReservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

[hhmm, hours and minutes; <, less than]

Date Time, in hhmm		pH, in standard units	Specific conductance, in microsiemens per centimeter at 25 degrees Celsius	Nitrate plus nitrite, in milligrams per liter	
May 3, 2001	1055	8.5	789	0.29	
une 4, 2001	1030	8.4	809	0.36	
June 22, 2001	1155	8.7	756	0.17	
July 24, 2001	1055	8.3	776	0.06	
August 29, 2001	1125	8.2	799	0.05	
May 15, 2002	1115	8.4	913	0.10	
June 19, 2002	0955	8.3	814	0.11	
August 7, 2002	1000	8.4	863	0.03	
September 4, 2002	1015	8.4	863	0.07	
January 21, 2003	1210	8.9	871	0.02	
January 23, 2003	1055	8.8	879	< 0.02	
February 10, 2003	1250	8.0	891	< 0.02	
March 3, 2003	1025	8.6	885	< 0.02	
June 17, 2003	1045	8.9	792	< 0.02	
June 20, 2003	0905	8.2	802	0.17	
July 7, 2003	0940	8.6	806	0.03	
July 17, 2003	1155	8.7	797	0.02	
July 28, 2003	1150	8.8	799	< 0.02	
March 10, 2004	1115	8.3	806	0.32	
April 8, 2004	1015	8.2	801	0.75	
May 5, 2004	1115	8.0	825	0.39	
June 3, 2004	1000	8.2	838	0.38	
July 15, 2004	0950	8.3	760	0.04	
August 12, 2004	0915	8.2	738	0.97	
August 27, 2004	1115	8.4	743	0.02	
September 9, 2004	0935	7.7	751	0.06	
February 2, 2005	1035	8.9	827	0.04	
March 16, 2005	1015	8.7	841	< 0.02	
April 13, 2005	1000	8.4	868	0.03	
May 4, 2005	1120	8.5	884	0.06	
May 16, 2005	0955	8.5	885	0.05	
une 1, 2005	1020	8.3	890	0.03	
une 15, 2005	0945	8.1	850	0.05	
une 29, 2005	1000	8.2	804	0.18	
uly 13, 2005	0920	8.8	739	0.57	
uly 27, 2005	0850	8.2	745	0.07	
August 10, 2005	0855	8.2	753	0.16	
August 30, 2005	0945	8.3	733	0.12	
September 7, 2005	1030	8.1	730	0.13	
Detober 13, 2005	1030	8.7	745	0.04	
October 27, 2005	1005	8.5	751	0.04	

Table 9. Nitrate plus nitrite linear regression dataset using pH and specific conductance as explanatory variables for CheneyReservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; <, less than]

Date	Time, in hhmm	pH, in standard units	Specific conductance, in microsiemens per centimeter at 25 degrees Celsius	Nitrate plus nitrite, in milligrams per liter
January 11, 2006	1210	8.6	792	0.17
March 1, 2006	1105	8.6	820	0.04
March 29, 2006	1005	8.5	833	0.10
April 25, 2006	1245	8.3	857	0.15
May 17, 2006	1055	8.4	845	0.22
May 31, 2006	1140	8.3	849	0.08
June 14, 2006	1045	8.0	852	0.20
June 28, 2006	0955	8.7	845	0.39
July 13, 2006	0940	8.3	859	0.04
July 26, 2006	1115	8.3	847	0.03
August 10, 2006	1005	8.5	844	0.17
August 22, 2006	1000	8.2	837	0.08
September 6, 2006	1020	8.4	830	0.20
September 20, 2006	1015	8.3	840	0.06
October 11, 2006	0950	8.4	854	0.18
October 25, 2006	0945	8.3	866	0.03
December 12, 2006	1115	8.5	907	0.15
February 7, 2007	1115	8.5	822	0.20
March 7, 2007	1135	8.6	940	0.18
April 9, 2007	1045	8.6	884	0.18
May 8, 2007	0940	8.4	845	0.11
May 31, 2007	1020	8.0	754	0.25
June 13, 2007	1140	8.0	728	0.54
June 25, 2007	1000	8.2	739	0.47
July 9, 2007	0950	8.3	732	0.37
July 23, 2007	1020	8.4	732	0.24
August 7, 2007	0930	8.4	748	0.07
August 15, 2007	0955	8.5	746	0.07
August 28, 2007	1055	8.2	765	0.17
September 12, 2007	1025	8.5	776	0.14
September 24, 2007	1025	8.4	779	0.12
October 15, 2007	1005	8.4	792	0.12
October 29, 2007	1045	8.4	792	0.21
November 13, 2007	1040	8.6	806	0.15
December 19, 2007	1100	8.5	837	0.17
February 11, 2008	1100	8.6	866	0.19
February 14, 2008	1105	8.6	869	0.20
February 15, 2008	1025	8.6	867	0.19
March 10, 2008	1125	8.6	864	0.17
April 1, 2008	0955	8.6	861	0.06
April 16, 2008	1140	8.3	864	< 0.04

Table 9. Nitrate plus nitrite linear regression dataset using pH and specific conductance as explanatory variables for CheneyReservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Specific conductance, in microsiemens Nitrate plus nitrite, Time, in Date pH, in standard units hhmm per centimeter at 25 degrees Celsius in milligrams per liter April 29, 2008 1035 8.1 861 0.10 May 13, 2008 1020 8.2 853 0.18 June 3, 2008 0945 8.2 812 0.54 0920 802 0.54 June 18, 2008 8.2 June 25, 2008 1155 8.3 806 0.53 July 7, 2008 1035 8.4 796 0.24 July 21, 2008 1050 8.4 804 0.17 July 28, 2008 0955 8.3 797 0.13 August 4, 2008 1020 8.4 802 0.11 0945 8.2 808 0.24 August 18, 2008 September 2, 2008 1000 8.5 808 0.06 September 17, 2008 1000 8.4 778 0.21 October 1, 2008 1055 8.4 781 0.20 October 15, 2008 0.25 1150 8.3 752 November 4, 2008 0950 8.3 784 0.42 December 2, 2008 0950 8.7 805 0.48 January 6, 2009 1010 8.2 842 0.47 January 20, 2009 1010 8.6 0.22 836 February 2, 2009 1000 0.09 8.6 837 February 18, 2009 1010 8.7 819 0.07 February 25, 2009 1030 8.8 825 0.07 March 3, 2009 1050 8.8 843 0.06 March 9, 2009 1050 8.7 841 0.12 March 16, 2009 1100 8.6 < 0.02 841 March 25, 2009 1020 8.6 847 < 0.02 April 8, 2009 1010 8.6 848 0.02 April 29, 2009 1030 8.1 842 0.07 May 27, 2009 1140 8.3 765 0.36 June 9, 2009 1100 8.1 768 0.49 June 23, 2009 1045 8.4 772 0.40 July 7, 2009 1100 8.6 759 0.04 0.07 July 21, 2009 1020 8.5 763 August 5, 2009 1030 8.4 773 0.18 August 24, 2009 1000 8.6 778 0.22 September 2, 2009 1030 8.3 785 0.15 September 16, 2009 1030 8.3 773 0.28 October 5, 2009 1100 0.37 8.5 773 October 19, 2009 1100 8.4 781 0.42 November 23, 2009 1100 8.5 803 0.51 December 16, 2009 1140 8.6 838 0.58

[hhmm, hours and minutes; <, less than]

Table 10. Total phosphorus linear regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	sin(2 πD/365)	cos(2πD/365)	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Total phosphorus, in milligrams per lite
May 3, 2001	1055	0.8543	-0.5197	38	0.06
June 4, 2001	1030	0.4559	-0.8900	20	0.08
June 22, 2001	1155	0.1628	-0.9867	22	0.08
July 24, 2001	1055	-0.3777	-0.9259	18	0.09
August 29, 2001	1125	-0.8453	-0.5344	13	0.09
May 15, 2002	1115	0.7296	-0.6839	27	0.11
June 19, 2002 ¹	0955	0.2135	-0.9769	36	0.15
August 7, 2002	1000	-0.5878	-0.8090	13	0.11
September 4, 2002	1015	-0.8958	-0.4444	12	0.11
September 25, 2002	1010	-0.9951	-0.0988	20	0.07
January 21, 2003	1210	0.3537	0.9354	6.5	0.04
January 23, 2003	1055	0.3857	0.9226	3.9	0.04
February 10, 2003	1250	0.6486	0.7611	1.6	< 0.03
March 3, 2003	1025	0.8759	0.4825	3.3	0.05
June 17, 2003 ¹	1045	0.2470	-0.9690	14	0.08
June 20, 2003	0905	0.1967	-0.9805	3.5	0.05
July 7, 2003	0940	-0.0945	-0.9955	24	0.13
July 17, 2003	1155	-0.2637	-0.9646	27	0.13
July 28, 2003	1150	-0.4405	-0.8977	29	0.13
March 10, 2004	1115	0.9338	0.3577	22	0.08
April 8, 2004	1015	0.9911	-0.1330	31	0.08
May 5, 2004	1115	0.8264	-0.5632	21	0.11
June 3, 2004	1000	0.4559	-0.8900	21	0.12
July 15, 2004	0950	-0.2470	-0.9690	7.0	0.05
August 12, 2004	0915	-0.6681	-0.7441	23	0.08
August 27, 2004	1115	-0.8359	-0.5488	32	0.14
September 9, 2004	0935	-0.9369	-0.3496	26	0.11
February 2, 2005	1035	0.5380	0.8429	2.7	0.03
March 16, 2005	1015	0.9611	0.2761	10	0.05
April 13, 2005	1000	0.9796	-0.2009	18	0.09
May 4, 2005	1120	0.8452	-0.5344	10	0.11
May 16, 2005	0955	0.7177	-0.6964	8.1	0.06
June 1, 2005	1020	0.5012	-0.8653	8.1	0.08
June 15, 2005 ¹	0945	0.2802	-0.9599	14	0.04
June 29, 2005	1000	0.0430	-0.9991	25	0.17
July 13, 2005 ¹	0920	-0.1967	-0.9805	15	0.10
July 27, 2005	0850	-0.4250	-0.9052	20	0.10
August 10, 20051	0855	-0.6288	-0.7776	12	0.03
August 30, 2005 ¹	0945	-0.8543	-0.5197	22	0.11
September 7, 2005 ¹	1030	-0.9176	-0.3975	12	0.04
October 13, 2005	1030	-0.9778	0.2093	18	0.05
October 27, 2005	1005	-0.8996	0.4367	20	0.07

Table 10.Total phosphorus linear regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoirnear Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	sin(2 πD/365)	cos(2πD/365)	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Total phosphorus, in milligrams per liter
January 11, 2006	1210	0.1882	0.9821	8.9	< 0.03
March 1, 2006	1105	0.8588	0.5124	3.2	< 0.03
March 29, 2006	1005	0.9984	0.0559	10	0.07
April 25, 2006	1245	0.9176	-0.3975	34	0.09
May 17, 2006	1055	0.7056	-0.7086	20	0.08
May 31, 2006	1140	0.5161	-0.8566	10	0.07
June 14, 2006 ¹	1045	0.2967	-0.9550	25	0.17
June 28, 2006	0955	0.0602	-0.9982	13	0.07
July 13, 2006 ¹	0940	-0.1967	-0.9805	15	0.09
July 26, 2006	1115	-0.4094	-0.9124	14	0.08
August 10, 2006	1005	-0.6288	-0.7776	17	0.08
August 22, 2006	1000	-0.7749	-0.6321	21	0.12
September 6, 2006	1020	-0.9106	-0.4133	10	0.11
September 20, 2006 ¹	1015	-0.9829	-0.1840	22	0.09
October 11, 2006	0950	-0.9845	0.1755	29	0.13
October 25, 2006	0945	-0.9141	0.4054	35	0.09
December 12, 2006	1115	-0.3213	0.9470	9.2	0.09
February 7, 2007	1115	0.6085	0.7936	14	0.06
March 7, 2007 ¹	1135	0.9070	0.4211	14	0.11
April 9, 2007	1045	0.9911	-0.1330	23	0.12
May 8, 2007 ¹	0940	0.8065	-0.5913	11	0.09
May 31, 2007	1020	0.5161	-0.8566	27	0.17
June 13, 2007	1140	0.3131	-0.9497	35	0.15
June 25, 2007	1000	0.1117	-0.9937	25	0.23
July 9, 2007	0950	-0.1288	-0.9917	21	0.22
July 23, 2007	1020	-0.3617	-0.9323	21	0.17
August 7, 2007	0930	-0.5878	-0.8090	27	0.19
August 15, 2007	0955	-0.6933	-0.7207	23	0.12
August 28, 2007	1055	-0.8359	-0.5488	28	0.12
September 12, 2007	1025	-0.9484	-0.3172	13	0.11
September 24, 2007	1025	-0.9933	-0.1159	17	0.11
October 15, 2007	1005	-0.9701	0.2429	29	0.10
October 29, 2007	1045	-0.8841	0.4674	26	0.10
November 13, 2007	1040	-0.7354	0.6776	25	0.07
December 19, 2007	1100	-0.2051	0.9787	8.1	0.07
February 11, 2008	1100	0.6616	0.7498	2.7	< 0.03
February 14, 2008	1105	0.6995	0.7147	2.3	< 0.03
February 15, 2008	1025	0.7117	0.7025	6.4	< 0.03
March 10, 2008	1125	0.9338	0.3577	9.0	0.06
April 1, 2008	0955	0.9999	-0.0129	19	0.06
April 16, 2008	1140	0.9635	-0.2678	28	0.08
April 29, 2008	1035	0.8800	-0.4750	42	0.08

Table 10.Total phosphorus linear regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoirnear Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; sin, sine; D, day of year; cos, cosine; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	sin(2πD/365)	cos(2πD/365)	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Total phosphorus, in milligrams per liter
May 13, 2008	1020	0.7412	-0.6713	30	0.09
June 3, 2008	0945	0.4559	-0.8900	22	0.09
June 18, 2008	0920	0.2135	-0.9769	31	0.08
June 25, 2008 ¹	1155	0.0945	-0.9955	17	0.07
July 7, 2008	1035	-0.1117	-0.9937	18	0.12
July 21, 2008	1050	-0.3456	-0.9384	26	0.10
July 28, 2008	955	-0.4559	-0.8900	18	0.09
August 4, 2008	1020	-0.5596	-0.8288	18	0.09
August 18, 2008	0945	-0.7412	-0.6713	15	0.11
September 2, 2008	1000	-0.8881	-0.4597	16	0.09
September 17, 2008	1000	-0.9760	-0.2177	20	0.11
October 1, 2008	1055	-0.9998	0.0215	16	0.06
October 15, 2008	1150	-0.9657	0.2595	48	0.10
November 4, 2008	0950	-0.8215	0.5703	27	0.09
December 2, 2008	0950	-0.4635	0.8861	18	0.09
January 6, 2009	1010	0.1031	0.9947	7.3	0.06
January 20, 2009	1010	0.3375	0.9413	8.5	0.04
February 2, 20091	1000	0.5380	0.8429	6.9	< 0.03
February 18, 2009	1010	0.7470	0.6649	15	0.04
February 25, 2009	1030	0.8215	0.5702	10	0.04
March 3, 2009	1050	0.8759	0.4825	10	0.05
March 9, 2009	1050	0.9210	0.3896	10	0.04
March 16, 2009	1100	0.9611	0.2761	9.3	0.03
March 25, 2009	1020	0.9922	0.1245	25	0.07
April 8, 2009	1010	0.9933	-0.1159	24	0.09
April 29, 2009	1030	0.8881	-0.4597	34	0.08
May 27, 2009	1140	0.5738	-0.8190	36	0.13
June 9, 2009	1100	0.3777	-0.9259	25	0.13
June 23, 2009	1045	0.1458	-0.9893	17	0.16
July 7, 2009	1100	-0.0945	-0.9955	12	0.09
July 21, 2009	1020	-0.3294	-0.9442	18	0.11
August 5, 2009	1030	-0.5596	-0.8288	14	0.10
August 24, 2009	1000	-0.7962	-0.6050	16	0.10
September 2, 2009	1030	-0.8800	-0.4749	20	0.09
September 16, 2009	1030	-0.9679	-0.2512	19	0.09
October 5, 2009	1100	-0.9973	0.0731	24	0.07
October 19, 2009	1100	-0.9511	0.3090	22	0.09
November 23, 2009	1100	-0.6085	0.7936	17	0.09
December 16, 2009	1140	-0.2553	0.9669	16	0.10

¹Data point removed from final analysis because of laboratory issues with phosphorus analysis. The filtered orthophosphate value was larger than the dissolved phosphorus value.

Table 11. Orthophosphate linear regression dataset using turbidity, water temperature, and fluorescence as explanatory variables forCheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Turbidity, in formazin nephelometric units	Water temperature, in degrees Celsius	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Orthophosphate, ir milligrams per lite
May 3, 2001	1055	38	18.4	8.1	0.04
June 4, 2001	1030	20	19.2	6.5	0.05
June 22, 2001	1155	22	24.1	12.5	0.06
July 24, 2001	1055	18	27.7	6.8	0.05
August 29, 2001	1125	13	26.2	4.8	0.03
May 15, 2002	1115	27	17.9	6.0	0.06
June 19, 2002 ¹	0955	36	22.6	18.1	0.09
August 7, 2002	1000	13	27.2	5.2	< 0.01
September 4, 2002	1015	12	25.9	7.3	0.05
September 25, 2002	1010	20	20.8	8.0	0.03
January 21, 2003	1210	6.5	1.4	13.7	< 0.01
January 23, 2003	1055	3.9	0.3	24.2	< 0.01
February 10, 2003	1250	1.6	1.2	4.7	< 0.01
March 3, 2003	1025	3.3	1.8	24.5	< 0.01
June 17, 2003 ¹	1045	14	25.0	8.4	0.04
June 20, 2003	0905	3.5	22.5	5.3	< 0.01
July 7, 2003	0940	24	25.7	22.8	0.06
July 17, 2003	1155	27	27.5	9.6	0.04
July 28, 2003	1150	29	28.6	8.3	0.03
March 10, 2004	1115	22	6.4	21.7	< 0.01
April 8, 2004	1015	31	14.7	14.1	0.01
May 5, 2004	1115	21	16.1	2.0	0.03
June 3, 2004	1000	21	21.7	6.5	0.04
July 15, 2004	0950	7.0	26.0	2.9	0.03
August 12, 2004	0915	23	24.9	9.4	0.02
August 27, 2004	1115	32	24.4	3.3	0.04
September 9, 2004	0935	26	23.3	3.1	0.04
February 2, 2005	1035	2.7	1.8	21.5	< 0.01
March 16, 2005	1015	10	8.5	25.3	< 0.01
April 13, 2005	1000	18	13.4	9.3	< 0.01
May 4, 2005	1120	10	14.7	4.1	0.02
May 16, 2005	0955	8.1	18.4	6.4	0.02
June 1, 2005	1020	8.1	22.1	6.4	0.02
June 15, 2005	0945	14	23.5	12.2	0.03
June 29, 2005	1000	25	25.2	7.1	0.06
July 13, 2005 ¹	0920	15	26.8	11.6	0.06
July 27, 2005	0850	20	25.7	8.0	0.06
August 10, 2005	0855	12	26.2	5.4	0.05
August 30, 2005 ¹	0945	22	26.6	11.8	0.09
September 7, 2005 ¹	1030	12	25.1	7.4	0.05
October 13, 2005	1030	18	18.1	9.5	0.02

Table 11. Orthophosphate linear regression dataset using turbidity, water temperature, and fluorescence as explanatory variables for

 Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	Turbidity, in formazin nephelometric units	Water temperature, in degrees Celsius	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Orthophosphate, in milligrams per liter
October 27, 2005	1005	20	14.4	9.2	0.01
January 11, 2006	1210	8.9	4.2	19.7	< 0.01
March 1, 2006	1105	3.2	3.7	19.1	< 0.01
March 29, 2006	1005	10	7.6	23.0	< 0.01
April 25, 2006	1245	34	17.0	8.5	0.03
May 17, 2006	1055	20	18.1	11.7	0.02
May 31, 2006	1140	10	23.6	8.9	0.03
June 14, 2006 ¹	1045	25	24.3	6.6	0.04
June 28, 2006	0955	13	25.0	6.9	0.02
July 13, 2006	0940	15	25.3	5.5	0.02
July 26, 2006	1115	14	26.7	10.7	0.02
August 10, 2006	1005	17	27.6	10.2	< 0.01
August 22, 2006	1000	21	26.8	6.6	0.03
September 6, 2006	1020	10	24.2	14.7	0.02
September 20, 2006 ¹	1015	22	20.8	9.9	0.04
October 11, 2006	0950	29	17.1	7.3	0.03
October 25, 2006	0945	35	12.7	6.8	0.03
December 12, 2006	1115	9.2	3.8	10.2	< 0.01
February 7, 2007	1115	14	5.6	6.9	< 0.01
March 7, 2007 ¹	1135	14	6.7	33.6	0.05
April 9, 2007	1045	23	11.4	17.2	0.02
May 8, 2007 ¹	0940	11	18.2	3.1	0.05
May 31, 2007	1020	27	21.3	4.8	0.08
June 13, 2007	1140	35	22.6	5.0	0.09
June 25, 2007	1000	25	24.4	5.1	0.09
July 9, 2007	0950	21	25.2	7.7	0.08
July 23, 2007	1020	21	26.1	10.6	0.06
August 7, 2007	0930	27	27.0	9.9	0.05
August 15, 2007	0955	23	27.9	8.5	0.04
August 28, 2007	1055	28	26.6	7.0	0.06
September 12, 2007	1025	13	23.7	8.4	0.04
September 24, 2007	1025	17	22.1	9.0	0.03
October 15, 2007	1005	29	18.9	7.1	0.04
October 29, 2007	1045	26	13.9	7.1	0.04
November 13, 2007	1040	25	11.8	10.6	0.02
December 19, 2007	1100	8.1	1.8	5.8	0.02
February 11, 2008	1100	2.7	1.8	12.5	< 0.01
February 14, 2008	1105	2.3	2.0	12.8	< 0.01
February 15, 2008	1025	6.4	1.8	14.2	< 0.01
March 10, 2008	1125	9.0	4.3	25.6	< 0.01
April 1, 2008	0955	19	9.1	29.6	< 0.01

Table 11. Orthophosphate linear regression dataset using turbidity, water temperature, and fluorescence as explanatory variables for

 Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Turbidity, in formazin nephelometric units	Water temperature, in degrees Celsius	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Orthophosphate, in milligrams per liter
April 16, 2008	1140	28	10.1	10.7	< 0.01
April 29, 2008	1035	42	13.8	8.1	0.03
May 13, 2008	1020	30	16.0	5.7	0.05
June 3, 2008	0945	22	22.7	5.9	0.05
June 18, 2008	0920	31	23.5	6.8	0.05
June 25, 2008 ¹	1155	17	24.7	11.1	0.07
July 7, 2008	1035	18	25.3	5.3	0.05
July 21, 2008	1050	26	26.2	11.7	0.05
July 28, 2008	0955	18	26.5	24.4	0.05
August 4, 2008	1020	18	26.8	6.2	0.05
August 18, 2008	0945	15	24.6	3.7	0.07
September 2, 2008	1000	16	25.1	5.1	0.03
September 17, 2008	1000	20	20.2	4.9	0.05
October 1, 2008	1055	16	21.6	5.2	0.04
October 15, 2008	1150	48	16.8	5.7	0.04
November 4, 2008	0950	27	12.7	8.0	0.06
December 2, 2008	0950	18	5.3	7.1	0.04
January 6, 2009	1010	7.3	0.8	23.1	< 0.01
January 20, 2009	1010	8.5	0.9	31.2	< 0.01
February 2, 2009	1000	6.9	0.7	49.4	< 0.01
February 18, 2009	1010	15	5.2	23.0	< 0.01
February 25, 2009	1030	10	5.4	23.7	< 0.01
March 3, 2009	1050	10	4.4	24.4	< 0.01
March 9, 2009	1050	10	6.4	22.0	< 0.01
March 16, 2009	1100	9.3	6.3	23.1	< 0.01
March 25, 2009	1020	25	11.0	23.5	< 0.01
April 8, 2009	1010	24	7.6	16.2	< 0.01
April 29, 2009	1030	34	14.9	4.9	0.04
May 27, 2009	1140	36	22.1	7.6	0.06
June 9, 2009	1100	25	22.0	14.8	0.08
June 23, 2009	1045	17	25.0	15.5	0.07
July 7, 2009	1100	12	25.8	9.1	0.05
July 21, 2009	1020	18	25.4	3.6	0.08
August 5, 2009	1030	14	25.1	7.7	0.06
August 24, 2009	1000	16	24.3	6.9	0.06
September 2, 2009	1030	20	23.2	6.2	0.05
September 16, 2009	1030	19	22.0	4.3	0.07
October 5, 2009	1100	24	17.3	6.2	0.07
October 19, 2009	1100	22	12.2	6.2	0.07
November 23, 2009	1100	17	9.8	6.5	0.07
December 16, 2009	1140	16	0.9	4.5	0.07

¹Data point removed from final analysis because of laboratory issues with phosphorus analysis. Orthophosphorus was larger than dissolved phosphorus.

Table 12. Dissolved phosphorus linear regression dataset using dissolved oxygen, specific conductance, and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

[hhmm, hours and minutes; mg/L, milligrams per liter; µS/cm, microsiemens per centimeter; °C, degrees Celsius; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Dissolved oxygen, in mg/L	Specific conductance, in µS/cm at 25°C	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Dissolved phosphorus, in mg/L
May 3, 2001	1055	7.8	789	8.1	0.04
June 4, 2001	1030	7.9	809	6.5	0.06
June 22, 2001	1155	10.7	756	12.5	0.06
July 24, 2001	1055	7.0	776	6.8	0.06
August 29, 2001	1125	7.3	799	4.8	0.07
May 15, 2002	1115	9.6	913	6.0	0.06
June 19, 2002 ¹	0955	7.5	814	18.1	0.08
August 7, 2002	1000	6.1	863	5.2	0.09
September 4, 2002	1015	7.0	863	7.3	0.07
September 25, 2002	1010	6.3	842	8.0	0.05
January 21, 2003	1210	15.8	871	13.7	< 0.03
January 23, 2003	1055	15.2	879	24.2	< 0.03
February 10, 2003	1250	14.4	891	4.7	< 0.03
March 3, 2003	1025	16.1	885	24.5	< 0.03
June 17, 2003	1045	12.2	792	8.4	< 0.03
June 20, 2003	0905	6.2	802	5.3	< 0.03
uly 7, 2003	0940	8.0	806	22.8	0.07
uly 17, 2003	1155	8.4	797	9.6	0.05
uly 28, 2003	1150	11.2	799	8.3	0.05
March 10, 2004	1115	12.4	806	21.7	< 0.03
April 8, 2004	1015	9.3	801	14.1	0.03
May 5, 2004	1115	9.4	825	2.0	0.03
une 3, 2004	1000	7.7	838	6.5	0.06
July 15, 2004	0950	6.2	760	2.9	0.03
August 12, 2004	0915	7.3	738	9.4	0.03
August 27, 2004	1115	6.8	743	3.3	0.05
September 9, 2004	0935	4.3	751	3.1	0.06
February 2, 2005	1035	16.4	827	21.5	< 0.03
March 16, 2005	1015	10.8	841	25.3	< 0.03
April 13, 2005	1000	10.1	868	9.3	< 0.03
May 4, 2005	1120	10.3	884	4.1	0.03
May 16, 2005	0955	9.5	885	6.4	0.03
une 1, 2005	1020	7.2	890	6.4	0.04
une 15, 2005 ¹	0945	7.2	850	12.2	0.06
une 29, 2005	1000	6.1	804	7.1	0.07
uly 13, 2005 ¹	0920	9.5	739	11.6	0.06
uly 27, 2005	0850	6.4	745	8.0	0.09
August 10, 2005 ¹	0855	4.7	753	5.4	0.07
August 30, 2005 ¹	0945	6.9	733	11.8	0.06
September 7, 2005	1030	4.6	730	7.4	< 0.03
Detober 13, 2005	1030	9.4	745	9.5	< 0.03

Results of Linear Regression Analysis for Selected Constituents 37

 Table 12.
 Dissolved phosphorus linear regression dataset using dissolved oxygen, specific conductance, and fluorescence as

 explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; mg/L, milligrams per liter; µS/cm, microsiemens per centimeter; °C, degrees Celsius; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Dissolved oxygen, in mg/L	Specific conductance, in µS/cm at 25°C	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Dissolved phosphorus, in mg/L
October 27, 2005	1005	8.5	751	9.2	< 0.03
January 11, 2006	1210	13.8	792	19.7	< 0.03
March 1, 2006	1105	14.9	820	19.1	< 0.03
March 29, 2006	1005	12.7	833	23.0	< 0.03
April 25, 2006	1245	8.5	857	8.5	0.04
May 17, 2006	1055	10.2	845	11.7	0.04
May 31, 2006	1140	9.0	849	8.9	< 0.03
une 14, 2006	1045	6.5	852	6.6	< 0.03
une 28, 2006	0955	8.0	845	6.9	< 0.03
uly 13, 2006 ¹	0940	6.8	859	5.5	0.10
uly 26, 2006	1115	7.2	847	10.7	0.03
August 10, 2006	1005	8.6	844	10.2	0.03
August 22, 2006	1000	4.3	837	6.6	0.07
September 6, 2006	1020	9.2	830	14.7	< 0.03
September 20, 2006 ¹	1015	7.5	840	9.9	0.04
Detober 11, 2006	0950	8.0	854	7.3	< 0.03
October 25, 2006	0945	9.0	866	6.8	0.04
December 12, 2006	1115	13.2	907	10.2	< 0.03
February 7, 2007	1115	13.6	822	6.9	0.04
March 7, 2007	1135	12.3	940	33.6	< 0.03
April 9, 2007	1045	10.0	884	17.2	< 0.03
May 8, 2007 ¹	0940	7.2	845	3.1	0.04
May 31, 2007	1020	6.8	754	4.8	0.11
une 13, 2007	1140	6.5	728	5.0	0.11
une 25, 2007	1000	6.3	739	5.1	0.11
uly 9, 2007	0950	6.6	732	7.7	0.16
uly 23, 2007	1020	6.2	732	10.6	0.13
August 7, 2007	0930	5.7	748	9.9	0.13
August 15, 2007	0955	6.9	746	8.5	0.06
August 28, 2007	1055	6.5	765	7.0	0.09
September 12, 2007	1025	7.7	776	8.4	0.06
September 24, 2007	1025	7.5	779	9.0	0.06
Detober 15, 2007	1005	8.0	792	7.1	0.04
Detober 29, 2007	1045	8.9	792	7.1	0.06
November 13, 2007	1040	9.7	806	10.6	< 0.03
December 19, 2007	1100	12.6	837	5.8	0.06
Sebruary 11, 2008	1100	13.6	866	12.5	< 0.03
Sebruary 14, 2008	1105	13.6	869	12.8	< 0.03
February 15, 2008	1025	13.2	867	14.2	< 0.03
March 10, 2008	1125	13.3	864	25.6	< 0.03
April 1, 2008	0955	11.2	861	29.6	< 0.03

 Table 12.
 Dissolved phosphorus linear regression dataset using dissolved oxygen, specific conductance, and fluorescence as

 explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; mg/L, milligrams per liter; µS/cm, microsiemens per centimeter; °C, degrees Celsius; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Dissolved oxygen, in mg/L	Specific conductance, in µS/cm at 25°C	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Dissolved phosphorus, in mg/L
April 16, 2008	1140	10.5	864	10.7	0.03
April 29, 2008	1035	8.8	861	8.1	0.04
May 13, 2008	1020	8.8	853	5.7	0.07
June 3, 2008	0945	6.8	812	5.9	0.08
June 18, 2008	0920	6.0	802	6.8	0.05
June 25, 2008 ¹	1155	6.4	806	11.1	0.04
July 7, 2008	1035	6.8	796	5.3	0.07
July 21, 2008	1050	7.5	804	11.7	0.08
July 28, 2008	0955	6.7	797	24.4	0.06
August 4, 2008	1020	6.3	802	6.2	0.07
August 18, 2008	0945	5.4	808	3.7	0.09
September 2, 2008	1000	7.5	808	5.1	0.06
September 17, 2008	1000	8.0	778	4.9	0.07
October 1, 2008	1055	8.4	781	5.2	0.06
October 15, 2008	1150	8.4	752	5.7	0.05
November 4, 2008	0950	9.4	784	8.0	0.06
December 2, 2008	0950	11.6	805	7.1	0.06
January 6, 2009	1010	13.2	842	23.1	< 0.03
January 20, 2009	1010	15.2	836	31.2	< 0.03
February 2, 2009 ¹	1000	15.2	837	49.4	0.04
February 18, 2009	1010	11.9	819	23.0	< 0.03
February 25, 2009	1030	12.3	825	23.7	< 0.03
March 3, 2009	1050	12.3	843	24.4	< 0.03
March 9, 2009	1050	11.9	841	22.0	< 0.03
March 16, 2009	1100	11.6	841	23.1	< 0.03
March 25, 2009	1020	10.2	847	23.5	< 0.03
April 8, 2009	1010	10.9	848	16.2	0.03
April 29, 2009	1030	8.1	842	4.9	0.05
May 27, 2009	1140	8.1	765	7.6	0.08
June 9, 2009	1100	6.5	768	14.8	0.09
June 23, 2009	1045	7.1	772	15.5	0.11
July 7, 2009	1100	5.6	759	9.1	0.06
July 21, 2009	1020	5.3	763	3.6	0.08
August 5, 2009	1030	5.9	773	7.7	0.08
August 24, 2009	1000	6.1	778	6.9	0.08
September 2, 2009	1030	6.6	785	6.2	0.06
September 16, 2009	1030	6.5	773	4.3	0.08
October 5, 2009	1100	8.0	773	6.2	0.07
October 19, 2009	1100	9.9	781	6.2	0.09
November 23, 2009	1100	9.9	803	6.5	0.08
December 16, 2009	1140	12.6	838	4.5	0.09

¹Data point removed from final analysis because of issues with phosphorus analysis. The filtered orthophosphate value was larger than the dissolved phosphorus value.

Table 13. Chlorophyll-*a* linear regression dataset using reservoir elevation, water temperature, and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

[hhmm, hours and minutes; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Water temperature, in degrees Celsius	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Chlorophyll- <i>a</i> , in micrograms per liter
December 3, 2001	1210	1,418	6.9	6.8	3.0
March 19, 2002	1400	1,418	5.8	0.2	10.4
June 19, 2002	0955	1,421	22.6	18.1	6.1
July 11, 2002	1005	1,421	26.9	12.8	6.2
August 7, 2002	1000	1,420	27.2	5.2	3.1
September 4, 2002	1015	1,420	25.9	7.3	5.2
September 25, 2002	1010	1,420	20.8	8.0	6.7
January 21, 2003	1210	1,422	1.4	13.7	6.8
January 23, 2003	1055	1,422	0.3	24.2	7.3
February 10, 2003	1250	1,422	1.2	4.7	8.7
March 3, 2003	1025	1,422	1.8	24.5	7.6
March 12, 2003	1200	1,422	4.2	11.8	9.0
March 13, 2003	1200	1,422	4.4	6.1	7.0
June 20, 2003	0905	1,422	22.5	5.3	1.9
July 7, 2003	0940	1,421	25.7	22.8	12.2
July 17, 2003	1155	1,421	27.5	9.6	25.6
July 28, 2003	1150	1,421	28.6	8.3	14.7
March 10, 2004	1115	1,423	6.4	21.7	12.2
April 8, 2004	1015	1,422	14.7	14.1	7.6
May 5, 2004	1115	1,422	16.1	2.0	2.2
June 3, 2004	1000	1,421	21.7	6.5	17.0
July 15, 2004	0950	1,422	26.0	2.9	3.7
August 12, 2004	0915	1,422	24.9	9.4	12.5
August 27, 2004	1115	1,422	24.4	3.3	11.6
September 9, 2004	935	1,422	23.3	3.1	11.8
March 16, 2005	1015	1,422	8.5	25.3	18.7
April 13, 2005	1000	1,422	13.4	9.3	7.5
May 4, 2005	1120	1,422	14.7	4.1	3.2
May 16, 2005	955	1,422	18.4	6.4	14.9
June 1, 2005	1020	1,422	22.1	6.4	0.8
June 15, 2005	0945	1,424	23.5	12.2	6.6
June 29, 2005	1000	1,423	25.2	7.1	3.7
July 13, 2005	0920	1,423	26.8	11.6	19.7
July 27, 2005	0850	1,422	25.7	8.0	24.4
August 10, 2005	0855	1,421	26.2	5.4	4.0
August 30, 2005	0945	1,422	26.6	11.8	12.1
September 7, 2005	1030	1,422	25.1	7.4	12.4
October 13, 2005	1030	1,421	18.1	9.5	18.8
October 27, 2005	1005	1,421	14.4	9.2	8.1
January 11, 2006	1210	1,421	4.2	19.7	21.8
March 1, 2006	1105	1,421	3.7	19.1	19.8

Table 13. Chlorophyll-*a* linear regression dataset using reservoir elevation, water temperature, and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Water temperature, in degrees Celsius	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Chlorophyll- <i>a</i> , in micrograms per liter
March 29, 2006	1005	1,422	7.6	23.0	19.2
April 25, 2006	1245	1,421	17.0	8.5	11.1
May 17, 2006	1055	1,422	18.1	11.7	16.3
May 31, 2006	1140	1,422	23.6	8.9	16.1
June 14, 2006	1045	1,421	24.3	6.6	10.8
June 28, 2006	0955	1,421	25.0	6.9	12.2
July 13, 2006	0940	1,421	25.3	5.5	14.0
July 26, 2006	1115	1,420	26.7	10.7	20.5
August 10, 2006	1005	1,420	27.6	10.2	27.5
August 22, 2006	1000	1,420	26.8	6.6	23.6
September 6, 2006	1020	1,420	24.2	14.7	41.2
September 20, 2006	1015	1,419	20.8	9.9	31.3
October 11, 2006	0950	1,419	17.1	7.3	21.9
October 25, 2006	0945	1,418	12.7	6.8	16.2
December 12, 2006	1115	1,418	3.8	10.2	15.0
February 7, 2007	1115	1,419	5.6	6.9	10.4
March 7, 2007	1135	1,419	6.7	33.6	20.2
April 9, 2007	1045	1,421	11.4	17.2	18.4
May 8, 2007	0940	1,424	18.2	3.1	1.2
May 31, 2007	1020	1,425	21.3	4.8	2.7
June 13, 2007	1140	1,424	22.6	5.0	2.2
June 25, 2007	1000	1,422	24.4	5.1	4.2
July 9, 2007	0950	1,423	25.2	7.7	12.4
July 23, 2007	1020	1,423	26.1	10.6	20.6
August 7, 2007	0930	1,423	27.0	9.9	18.8
August 15, 2007	0955	1,422	27.9	8.5	14.8
August 28, 2007	1055	1,421	26.6	7.0	15.6
September 12, 2007	1025	1,421	23.7	8.4	18.6
September 24, 2007	1025	1,421	22.1	9.0	16.6
October 15, 2007	1005	1,420	18.9	7.1	11.7
October 29, 2007	1045	1,420	13.9	7.1	9.7
November 13, 2007	1040	1,420	11.8	10.6	12.7
December 19, 2007	1100	1,420	1.8	5.8	4.5
February 11, 2008	1100	1,421	1.8	12.5	10.8
February 14, 2008	1105	1,421	2.0	12.8	7.9
April 1, 2008	0955	1,422	9.1	29.6	24.9
April 16, 2008	1140	1,422	10.1	10.7	9.6
April 29, 2008	1035	1,423	13.8	8.1	3.5
May 13, 2008	1020	1,424	16.0	5.7	2.5
June 3, 2008	0945	1,423	22.7	5.9	7.4
June 18, 2008	0920	1,423	23.5	6.8	6.5

 Table 13.
 Chlorophyll-a linear regression dataset using reservoir elevation, water temperature, and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Water temperature, in degrees Celsius	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Chlorophyll- <i>a</i> , in micrograms per liter
July 7, 2008	1035	1,422	25.3	5.3	11.0
July 21, 2008	1050	1,422	26.2	11.7	26.9
July 28, 2008	0955	1,422	26.5	24.4	22.3
August 18, 2008	0945	1,421	24.6	3.7	7.2
September 2, 2008	1000	1,421	25.1	5.1	10.9
September 17, 2008	1000	1,422	20.2	4.9	11.2
October 1, 2008	1055	1,422	21.6	5.2	10.5
October 15, 2008	1150	1,422	16.8	5.7	8.4
November 4, 2008	0950	1,422	12.7	8.0	3.7
December 2, 2008	0950	1,422	5.3	7.1	6.7
January 6, 2009	1010	1,422	0.8	23.1	21.1
January 20, 2009	1010	1,422	0.9	31.2	22.4
February 2, 2009	1000	1,422	0.7	49.4	47.2
February 18, 2009	1010	1,422	5.2	23.0	19.8
February 25, 2009	1030	1,422	5.4	23.7	21.9
March 3, 2009	1050	1,422	4.4	24.4	24.9
March 9, 2009	1050	1,422	6.4	22.0	22.6
March 12, 2009	1120	1,422	5.9	24.2	23.5
March 16, 2009	1100	1,422	6.3	23.1	27.5
March 25, 2009	1020	1,422	11.0	23.5	25.9
April 8, 2009	1010	1,422	7.6	16.2	20.8
April 29, 2009	1030	1,424	14.9	4.9	2.2
May 27, 2009	1140	1,424	22.1	7.6	10.6
June 9, 2009	1100	1,422	22.0	14.8	2.6
June 23, 2009	1045	1,422	25.0	15.5	29.1
July 7, 2009	1100	1,422	25.8	9.1	20.2
July 21, 2009	1020	1,421	25.4	3.6	3.4
August 5, 2009	1030	1,421	25.1	7.7	3.8
August 24, 2009	1000	1,421	24.3	6.9	5.8
September 2, 2009	1030	1,421	23.2	6.2	7.4
September 16, 2009	1030	1,422	22.0	4.3	2.4
October 5, 2009	1100	1,422	17.3	6.2	4.0
October 19, 2009	1100	1,422	12.2	6.2	2.5
November 23, 2009	1100	1,422	9.8	6.5	2.8
December 16, 2009	1140	1,422	0.9	4.5	2.8

¹Reservoir elevation above National Geodetic Vertical Datum of 1929.

 Table 14.
 Actinomycetes bacteria linear regression dataset using reservoir elevation, turbidity, and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Water temperature, in degrees Celsius	Actinomycetes bacteria, in colonies per milliliter
April 13, 2005	1000	1,422	18	13.4	6.0
May 4, 2005	1120	1,422	10	14.7	3.0
May 16, 2005	0955	1,422	8.1	18.4	1.0
June 1, 2005	1020	1,422	8.1	22.1	2.0
June 15, 2005	0945	1,424	14	23.5	12
June 29, 2005	1000	1,423	25	25.2	9.0
July 13, 2005	0920	1,423	15	26.8	5.0
July 27, 2005	0850	1,422	20	25.7	2.0
August 10, 2005	0855	1,421	12	26.2	2.0
August 30, 2005	0945	1,422	22	26.6	8.0
September 7, 2005	1030	1,422	12	25.1	2.0
October 13, 2005	1030	1,421	18	18.1	2.0
October 27, 2005	1005	1,421	20	14.4	5.0
January 11, 2006	1210	1,421	8.9	4.2	4.0
March 1, 2006	1105	1,421	3.2	3.7	1.0
March 29, 2006	1005	1,422	10	7.6	7.0
April 25, 2006	1245	1,421	34	17.0	8.0
May 17, 2006	1055	1,422	20	18.1	21
May 31, 2006	1140	1,422	10	23.6	4.0
June 14, 2006	1045	1,421	25	24.3	4.0
June 28, 2006	0955	1,421	13	25.0	1.0
July 13, 2006	0940	1,421	15	25.3	2.0
July 26, 2006	1115	1,420	14	26.7	1.0
August 10, 2006	1005	1,420	17	27.6	<1.0
August 22, 2006	1000	1,420	21	26.8	<1.0
September 6, 2006	1020	1,420	10	24.2	2.0
September 20, 2006	1015	1,419	22	20.8	6.0
September 26, 2006	1130	1,419	10	19.7	1.0
October 11, 2006	0950	1,419	29	17.1	4.0
October 25, 2006	0945	1,418	35	12.7	<1.0
December 12, 2006	1115	1,418	9.2	3.8	1.0
February 7, 2007	1115	1,419	14	5.6	1.0
March 7, 2007	1135	1,419	14	6.7	2.0
April 9, 2007	1045	1,421	23	11.4	30
May 8, 2007	0940	1,424	11	18.2	24
May 31, 2007	1020	1,425	27	21.3	60
June 13, 2007	1140	1,424	35	22.6	63
June 25, 2007	1000	1,422	25	24.4	24
July 9, 2007	0950	1,423	21	25.2	16
July 23, 2007	1020	1,423	21	26.1	3.0
August 7, 2007	0930	1,423	27	27.0	8.0

 Table 14.
 Actinomycetes bacteria linear regression dataset using reservoir elevation, turbidity, and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Water temperature, in degrees Celsius	Actinomycetes bacteria in colonies per milliliter
August 15, 2007	0955	1,422	23	27.9	8.0
August 28, 2007	1055	1,421	28	26.6	12
September 12, 2007	1025	1,421	13	23.7	4.0
September 24, 2007	1025	1,421	17	22.1	8.0
October 15, 2007	1005	1,420	29	18.9	14
October 29, 2007	1045	1,420	26	13.9	11
November 13, 2007	1040	1,420	25	11.8	4.0
December 19, 2007	1100	1,420	8.1	1.8	6.0
February 11, 2008	1100	1,421	2.7	1.8	4.0
March 10, 2008	1125	1,422	9.0	4.3	8.0
April 1, 2008	0955	1,422	19	9.1	12
April 16, 2008	1140	1,422	28	10.1	17
April 29, 2008	1035	1,423	42	13.8	28
May 13, 2008	1020	1,424	30	16.0	17
June 3, 2008	0945	1,423	22	22.7	17
June 18, 2008	0920	1,423	31	23.5	15
June 25, 2008	1155	1,423	17	24.7	9.0
July 7, 2008	1035	1,422	18	25.3	12
July 21, 2008	1050	1,422	26	26.2	<1.0
July 28, 2008	0955	1,422	18	26.5	5.0
August 4, 2008	1020	1,421	18	26.8	3.0
August 18, 2008	0945	1,421	15	24.6	3.0
September 2, 2008	1000	1,421	16	25.1	2.0
September 17, 2008	1000	1,422	20	20.2	29
October 1, 2008	1055	1,422	16	21.6	8.0
October 15, 2008	1150	1,422	48	16.8	14
November 4, 2008	0950	1,422	27	12.7	15
December 2, 2008	0950	1,422	18	5.3	9.0
January 6, 2009	1010	1,422	7.3	0.8	2.0
January 20, 2009	1010	1,422	8.5	0.9	10
February 2, 2009	1000	1,422	6.9	0.7	3.0
February 18, 2009	1010	1,422	15	5.2	8.0
February 25, 2009	1030	1,422	10	5.4	7.0
March 3, 2009	1050	1,422	10	4.4	4.0
March 9, 2009	1050	1,422	10	6.4	1.0
March 16, 2009	1100	1,422	9.3	6.3	5.0
March 25, 2009	1020	1,422	25	11.0	7.0
April 8, 2009	1010	1,422	24	7.6	13
April 29, 2009	1030	1,424	34	14.9	34
May 27, 2009	1140	1,424	36	22.1	37
June 9, 2009	1100	1,422	25	22.0	12

 Table 14.
 Actinomycetes bacteria linear regression dataset using reservoir elevation, turbidity, and water temperature as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; YSI, Yellow Springs Instruments; <, less than]

Date	Time, in hhmm	Reservoir elevation¹, in feet	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Water temperature, in degrees Celsius	Actinomycetes bacteria, in colonies per milliliter
June 23, 2009	1045	1,422	17	25.0	7.0
July 7, 2009	1100	1,422	12	25.8	3.0
July 21, 2009	1020	1,421	18	25.4	5.0
August 5, 2009	1030	1,421	14	25.1	7.0
August 24, 2009	1000	1,421	16	24.3	7.0
September 2, 2009	1030	1,421	20	23.2	5.0
September 16, 2009	1030	1,422	19	22.0	11
October 5, 2009	1100	1,422	24	17.3	13
October 19, 2009	1100	1,422	22	12.2	9.0
November 23, 2009	1100	1,422	17	9.8	7.0
December 16, 2009	1140	1,422	16	0.9	7.0

¹Reservoir elevation above National Geodetic Vertical Datum of 1929.

Table 15.Anabaena spp. linear regression dataset using reservoir elevation and water temperature as explanatory
variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

[hhmm, hours and minutes]

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Water temperature, in degrees Celsius	<i>Anabaena</i> spp., in micrometers cubed per milliliter
June 22, 2001	1155	1,422	24.1	34,721
August 29, 2001	1125	1,419	26.2	966
May 15, 2002	1115	1,419	17.9	531
July 11, 2002	1005	1,421	26.9	1,455
August 7, 2002	1000	1,420	27.2	0
September 4, 2002	1015	1,420	25.9	5,194
January 21, 2003	1210	1,422	1.4	1,190
January 23, 2003	1055	1,422	0.3	1,169
February 10, 2003	1250	1,422	1.2	83
March 3, 2003	1025	1,422	1.8	48
March 12, 2003	1200	1,422	4.2	11,485
March 13, 2003	1200	1,422	4.4	4,768
June 17, 2003	1045	1,422	25.0	54,010
June 20, 2003	0905	1,422	22.5	3,748
July 7, 2003	0940	1,421	25.7	9,622
July 17, 2003	1155	1,421	27.5	28,872
July 28, 2003	1150	1,421	28.6	72,403
March 10, 2004	1115	1,423	6.4	0
April 8, 2004	1015	1,422	14.7	0
May 5, 2004	1115	1,422	16.1	0
July 15, 2004	0950	1,422	26.0	12,126
August 12, 2004	0915	1,422	24.9	571
August 27, 2004	1115	1,422	24.4	2,440
September 9, 2004	0935	1,422	23.3	94
February 2, 2005	1035	1,422	1.8	0
March 16, 2005	1015	1,422	8.5	0
April 13, 2005	1000	1,422	13.4	0
May 4, 2005	1120	1,422	14.7	0
May 16, 2005	0955	1,422	18.4	0
June 1, 2005	1020	1,422	22.1	108
June 15, 2005	0945	1,424	23.5	14,916
June 29, 2005	1000	1,423	25.2	771
July 13, 2005	0920	1,423	26.8	33,502
July 27, 2005	0850	1,422	25.7	25,548
August 10, 2005	0855	1,421	26.2	64
October 27, 2005	1005	1,421	14.4	0
January 11, 2006	1210	1,421	4.2	0
March 1, 2006	1105	1,421	3.7	0
March 29, 2006	1005	1,422	7.6	0
April 25, 2006	1245	1,421	17.0	0
May 17, 2006	1055	1,422	18.1	1,481

Table 15. Anabaena spp. linear regression dataset using reservoir elevation and water temperature as explanatoryvariables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes]

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Water temperature, in degrees Celsius	<i>Anabaena</i> spp., in micrometers cubed per millilite
May 31, 2006	1140	1,422	23.6	708,775
June 14, 2006	1045	1,421	24.3	54
June 28, 2006	0955	1,421	25.0	33,348
July 13, 2006	0940	1,421	25.3	75,065
July 26, 2006	1115	1,420	26.7	102,349
August 10, 2006	1005	1,420	27.6	83,432
August 22, 2006	1000	1,420	26.8	53,810
September 6, 2006	1020	1,420	24.2	202,296
September 20, 2006	1015	1,419	20.8	2,363
October 11, 2006	0950	1,419	17.1	274,097
October 25, 2006	0945	1,418	12.7	201,177
December 12, 2006	1115	1,418	3.8	18,196
February 7, 2007	1115	1,419	5.6	70
March 7, 2007	1135	1,419	6.7	0
April 9, 2007	1045	1,421	11.4	0
May 8, 2007	0940	1,424	18.2	0
May 31, 2007	1020	1,425	21.3	233
June 13, 2007	1140	1,424	22.6	0
June 25, 2007	1000	1,422	24.4	542
July 9, 2007	0950	1,423	25.2	6,179
July 23, 2007	1020	1,423	26.1	11,521
August 7, 2007	0930	1,423	27.0	5,047
August 15, 2007	0955	1,422	27.9	17,177
August 28, 2007	1055	1,421	26.6	55,286
September 12, 2007	1025	1,421	23.7	96,876
September 24, 2007	1025	1,421	22.1	81,340
October 15, 2007	1005	1,420	18.9	29,020
October 29, 2007	1045	1,420	13.9	5,719
November 13, 2007	1040	1,420	11.8	0
December 19, 2007	1100	1,420	1.8	2,243
February 11, 2008	1100	1,421	1.8	0
February 14, 2008	1105	1,421	2.0	0
February 15, 2008	1025	1,421	1.8	0
March 10, 2008	1125	1,422	4.3	0
April 1, 2008	0955	1,422	9.1	0
April 16, 2008	1140	1,422	10.1	0
April 29, 2008	1035	1,423	13.8	0
May 13, 2008	1020	1,424	16.0	0
June 3, 2008	0945	1,423	22.7	0
June 18, 2008	0920	1,423	23.5	5,719
July 7, 2008	1035	1,422	25.3	705

Table 15. Anabaena spp. linear regression dataset using reservoir elevation and water temperature as explanatoryvariables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes]

Date	Time, in hhmm	Reservoir elevation ¹ , in feet	Water temperature, in degrees Celsius	<i>Anabaena</i> spp., in micrometers cubed per milliliter
July 21, 2008	1050	1,422	26.2	63,356
August 4, 2008	1020	1,421	26.8	0
August 18, 2008	0945	1,421	24.6	21,936
September 17, 2008	1000	1,422	20.2	779
October 1, 2008	1055	1,422	21.6	3,173
October 15, 2008	1150	1,422	16.8	1,723
November 4, 2008	0950	1,422	12.7	0
December 2, 2008	0950	1,422	5.3	0
January 6, 2009	1010	1,422	0.8	0
January 20, 2009	1010	1,422	0.9	2,308
February 2, 2009	1000	1,422	0.7	0
February 18, 2009	1010	1,422	5.2	0
February 25, 2009	1030	1,422	5.4	0
March 3, 2009	1050	1,422	4.4	0
March 9, 2009	1050	1,422	6.4	0
March 16, 2009	1100	1,422	6.3	0
March 25, 2009	1020	1,422	11.0	0
April 8, 2009	1010	1,422	7.6	0
April 29, 2009	1030	1,424	14.9	0
May 27, 2009	1140	1,424	22.1	0
June 9, 2009	1100	1,422	22.0	2,341
June 23, 2009	1045	1,422	25.0	0
July 7, 2009	1100	1,422	25.8	30,108
July 21, 2009	1020	1,421	25.4	25,456
August 5, 2009	1030	1,421	25.1	12,847
August 24, 2009	1000	1,421	24.3	0
September 2, 2009	1030	1,421	23.2	0
September 16, 2009	1030	1,422	22.0	0
October 5, 2009	1100	1,422	17.3	0
October 19, 2009	1100	1,422	12.2	0
November 23, 2009	1100	1,422	9.8	0
December 16, 2009	1140	1,422	0.9	0

¹Reservoir elevation above National Geodetic Vertical Datum of 1929.

Table 16. Geosmin linear regression dataset using turbidity and pH as explanatory variables for Cheney Reservoir near Cheney,Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	pH, in standard units	Geosmin, in micrograms per liter
May 3, 2001	1055	38	8.5	< 0.003
June 4, 2001	1030	20	8.4	0.005
June 22, 2001	1155	22	8.7	0.011
July 24, 2001	1055	18	8.3	0.003
August 29, 2001	1125	13	8.2	0.004
May 15, 2002	1115	27	8.4	< 0.003
June 19, 2002	0955	36	8.3	< 0.002
July 11, 2002	1005	12	8.7	0.007
August 7, 2002	1000	13	8.4	0.004
September 4, 2002	1015	12	8.4	0.005
September 25, 2002	1010	20	8.4	0.006
January 21, 2003	1210	6.5	8.9	0.029
January 23, 2003	1055	3.9	8.8	0.024
February 10, 2003	1250	1.6	8.0	0.022
March 3, 2003	1025	3.3	8.6	0.012
March 12, 2003	1200	4.5	8.8	0.006
March 13, 2003	1200	5.6	8.7	0.005
June 17, 2003	1045	14	8.9	0.015
June 20, 2003	0905	3.5	8.2	0.063
July 7, 2003	0940	24	8.6	0.007
July 17, 2003	1155	27	8.7	0.113
March 10, 2004	1115	22	8.3	< 0.005
April 8, 2004	1015	31	8.2	< 0.005
May 5, 2004	1115	21	8.0	< 0.005
June 3, 2004	1000	21	8.2	< 0.005
July 15, 2004	0950	7.0	8.3	0.005
August 12, 2004	0915	23	8.2	< 0.005
August 27, 2004	1115	32	8.4	< 0.005
September 9, 2004	0935	26	7.7	< 0.005
February 2, 2005	1035	2.7	8.9	0.024
March 16, 2005	1015	10	8.7	< 0.005
April 13, 2005	1000	18	8.4	< 0.005
May 4, 2005	1120	10	8.5	< 0.005
May 16, 2005	0955	8.1	8.5	< 0.005
June 1, 2005	1020	8.1	8.3	< 0.005
June 15, 2005	0945	14	8.1	0.043
June 29, 2005	1000	25	8.2	< 0.005
July 13, 2005	0920	15	8.8	0.043
July 27, 2005	0850	20	8.2	0.064
August 10, 2005	0855	12	8.2	< 0.005
August 30, 2005	0945	22	8.3	< 0.005
September 7, 2005	1030	12	8.1	< 0.005
October 13, 2005	1030	18	8.7	< 0.005

Table 16. Geosmin linear regression dataset using turbidity and pH as explanatory variables for Cheney Reservoir near Cheney,Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	pH, in standard units	Geosmin, in micrograms per liter
October 27, 2005	1005	20	8.5	< 0.005
January 11, 2006	1210	8.9	8.6	< 0.005
March 1, 2006	1105	3.2	8.6	0.005
March 29, 2006	1005	10	8.5	< 0.005
April 25, 2006	1245	34	8.3	< 0.005
May 17, 2006	1055	20	8.4	< 0.005
May 31, 2006	1140	10	8.3	< 0.005
June 14, 2006	1045	25	8.0	< 0.005
June 28, 2006	0955	13	8.7	< 0.005
July 13, 2006	0940	15	8.3	< 0.005
July 26, 2006	1115	14	8.3	< 0.005
August 10, 2006	1005	17	8.5	< 0.005
August 22, 2006	1000	21	8.2	< 0.005
September 6, 2006	1020	10	8.4	0.005
September 20, 2006	1015	22	8.3	< 0.005
September 26, 2006	1130	10	8.6	< 0.005
September 28, 2006	1120	28	8.7	< 0.005
September 29, 2006	1130	28	8.6	< 0.005
Detober 11, 2006	0950	29	8.4	< 0.005
October 25, 2006	0945	35	8.3	0.005
December 12, 2006	1115	9.2	8.5	< 0.002
February 7, 2007	1115	14	8.5	0.032
March 7, 2007	1135	14	8.6	0.020
April 9, 2007	1045	23	8.6	< 0.005
May 8, 2007	0940	11	8.4	< 0.005
May 31, 2007	1020	27	8.0	< 0.005
June 13, 2007	1140	35	8.0	< 0.005
lune 25, 2007	1000	25	8.2	< 0.002
fuly 9, 2007	0950	21	8.3	< 0.002
uly 23, 2007	1020	21	8.4	< 0.002
August 7, 2007	0930	27	8.4	0.0024
August 15, 2007	0955	23	8.5	< 0.002
August 28, 2007	1055	28	8.2	< 0.002
September 12, 2007	1025	13	8.5	< 0.005
September 24, 2007	1025	17	8.4	0.0022
Detober 15, 2007	1005	29	8.4	< 0.002
Detober 29, 2007	1045	26	8.4	< 0.002
November 13, 2007	1040	25	8.6	< 0.002
December 19, 2007	1100	8.1	8.5	< 0.002
February 11, 2008	1100	2.7	8.6	0.0058
March 10, 2008	1125	9.0	8.6	0.0083
April 1, 2008	0955	19	8.6	0.0106
April 16, 2008	1140	28	8.3	0.0139

Table 16.Geosmin linear regression dataset using turbidity and pH as explanatory variables for Cheney Reservoir near Cheney,Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	pH, in standard units	Geosmin, in micrograms per liter <0.002	
April 29, 2008	1035	42	8.1		
May 13, 2008	1020	30	8.2	< 0.002	
June 3, 2008	0945	22	8.2	< 0.002	
June 18, 2008	0920	31	8.2	< 0.002	
June 25, 2008	1200	17	8.3	0.0061	
July 7, 2008	1035	18	8.4	0.0043	
July 21, 2008	1050	26	8.4	< 0.002	
July 28, 2008	0955	18	8.3	< 0.002	
August 4, 2008	1200	18	8.4	< 0.002	
August 18, 2008	0945	15	8.2	< 0.002	
September 2, 2008	1000	16	8.5	0.005	
September 17, 2008	1000	20	8.4	< 0.002	
October 1, 2008	1055	16	8.4	0.003	
October 15, 2008	1150	48	8.3	< 0.002	
November 4, 2008	0950	27	8.3	< 0.002	
December 2, 2008	0950	18	8.7	< 0.002	
January 6, 2009	1010	7.3	8.2	0.003	
January 20, 2009	1010	8.5	8.6	< 0.002	
February 2, 2009	1000	6.9	8.6	< 0.002	
February 18, 2009	1010	15	8.7	0.010	
February 25, 2009	1030	10	8.8	0.008	
March 3, 2009	1050	10	8.8	0.017	
March 9, 2009	1050	10	8.7	0.012	
March 12, 2009	1120	16	8.7	0.011	
March 16, 2009	1100	9.3	8.6	0.009	
March 25, 2009	1020	25	8.6	0.009	
April 8, 2009	1010	24	8.6	0.004	
April 29, 2009	1030	34	8.1	< 0.002	
May 27, 2009	1140	36	8.3	< 0.002	
June 9, 2009	1100	25	8.1	< 0.002	
June 23, 2009	1045	17	8.4	0.005	
July 7, 2009	1100	12	8.6	0.014	
July 21, 2009	1020	18	8.5	0.005	
August 5, 2009	1030	14	8.4	< 0.002	
August 24, 2009	1000	16	8.6	< 0.002	
September 2, 2009	1030	20	8.3	< 0.002	
September 16, 2009	1030	19	8.3	< 0.002	
October 5, 2009	1100	24	8.5	< 0.002	
October 19, 2009	1100	22	8.4	< 0.002	
November 23, 2009	1100	17	8.5	< 0.002	
December 16, 2009	1140	16	8.6	< 0.002	

Table 17. Microcystin linear regression dataset using seasonal data and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	sin(2πD/365)	cos(2 πD/365)	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Microcystin, in micrograms per lite
June 1, 2005	1020	0.5012	-0.8653	6.4	<0.1
June 15, 2005	0945	0.2802	-0.9599	12.2	0.1
June 29, 2005	1000	0.0430	-0.9991	7.1	< 0.1
July 13, 2005	0920	-0.1967	-0.9805	11.6	1.7
July 27, 2005	0850	-0.4250	-0.9052	8.0	0.6
August 10, 2005	0855	-0.6288	-0.7776	5.4	0.2
August 30, 2005	0945	-0.8543	-0.5197	11.8	2.3
September 7, 2005	1030	-0.9176	-0.3975	7.4	2.1
October 13, 2005	1030	-0.9778	0.2093	9.5	0.4
October 27, 2005	1005	-0.8996	0.4367	9.2	0.2
January 11, 2006	1210	0.1882	0.9821	19.7	< 0.1
March 1, 2006	1105	0.8588	0.5124	19.1	< 0.1
March 29, 2006	1005	0.9984	0.0559	23.0	< 0.1
April 25, 2006	1245	0.9176	-0.3975	8.5	< 0.1
May 17, 2006	1055	0.7056	-0.7086	11.7	< 0.1
May 31, 2006	1140	0.5161	-0.8566	8.9	< 0.1
June 14, 2006	1045	0.2967	-0.9550	6.6	< 0.1
June 28, 2006	0955	0.0602	-0.9982	6.9	0.2
July 13, 2006	0940	-0.1967	-0.9805	5.5	0.2
July 26, 2006	1115	-0.4094	-0.9124	10.7	0.2
August 10, 2006	1005	-0.6288	-0.7776	10.2	1.6
August 22, 2006	1000	-0.7749	-0.6321	6.6	0.6
September 6, 2006	1020	-0.9106	-0.4133	14.7	2.6
September 20, 2006	1015	-0.9829	-0.1840	9.9	1.2
September 26, 2006	1130	-0.9967	-0.0817	11.8	3.6
September 28, 2006	1120	-0.9989	-0.0473	10.9	3.8
September 29, 2006	1130	-0.9995	-0.0301	9.7	3.4
October 11, 2006	0950	-0.9845	0.1755	7.3	0.7
October 25, 2006	0945	-0.9141	0.4054	6.8	0.3
December 12, 2006	1115	-0.3213	0.9470	10.2	< 0.1
February 7, 2007	1115	0.6085	0.7936	6.9	< 0.1
March 7, 2007	1135	0.9070	0.4211	33.6	< 0.1
April 9, 2007	1045	0.9911	-0.1330	17.2	< 0.1
May 8, 2007	0940	0.8065	-0.5913	3.1	0.1
May 31, 2007	1020	0.5161	-0.8566	4.8	0.2
June 13, 2007	1140	0.3131	-0.9497	5.0	< 0.1
June 25, 2007	1000	0.1117	-0.9937	5.1	< 0.1
July 9, 2007	0950	-0.1288	-0.9917	7.7	0.2
July 23, 2007	1020	-0.3617	-0.9323	10.6	0.6
August 7, 2007	0930	-0.5878	-0.8090	9.9	0.7
August 15, 2007	0955	-0.6933	-0.7207	8.5	1.4

 Table 17.
 Microcystin linear regression dataset using seasonal data and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	sin(2πD/365)	cos(2πD/365)	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Microcystin, in micrograms per lite
August 28, 2007	1055	-0.8359	-0.5488	7.0	1.1
September 12, 2007	1025	-0.9484	-0.3172	8.4	0.6
September 24, 2007	1025	-0.9933	-0.1159	9.0	0.7
October 15, 2007	1005	-0.9701	0.2429	7.1	0.3
October 29, 2007	1045	-0.8841	0.4674	7.1	0.1
November 13, 2007	1040	-0.7354	0.6776	10.6	< 0.1
December 19, 2007	1100	-0.2051	0.9787	5.8	< 0.1
February 11, 2008	1100	0.6616	0.7498	12.5	0.1
February 14, 2008	1105	0.6995	0.7147	12.8	< 0.1
February 15, 2008	1025	0.7117	0.7025	14.2	0.1
March 10, 2008	1125	0.9338	0.3577	25.6	< 0.1
April 1, 2008	0955	0.9999	-0.0129	29.6	0.1
April 16, 2008	1140	0.9635	-0.2678	10.7	< 0.1
April 29, 2008	1035	0.8800	-0.4750	8.1	< 0.1
May 13, 2008	1020	0.7412	-0.6713	5.7	< 0.1
June 3, 2008	0945	0.4559	-0.8900	5.9	< 0.1
lune 18, 2008	0920	0.2135	-0.9769	6.8	0.1
fuly 7, 2008	1035	-0.1117	-0.9937	5.3	0.8
uly 21, 2008	1050	-0.3456	-0.9384	11.7	1.1
fuly 28, 2008	0955	-0.4559	-0.8900	24.4	0.4
August 4, 2008	1020	-0.5596	-0.8288	6.2	0.2
August 18, 2008	0945	-0.7412	-0.6713	3.7	0.2
September 2, 2008	1000	-0.8881	-0.4597	5.1	< 0.1
September 17, 2008	1000	-0.9760	-0.2177	4.9	0.1
October 1, 2008	1055	-0.9998	0.0215	5.2	< 0.1
October 15, 2008	1150	-0.9657	0.2595	5.7	< 0.1
November 4, 2008	0950	-0.8215	0.5703	8.0	0.1
December 2, 2008	0950	-0.4635	0.8861	7.1	< 0.1
January 6, 2009	1010	0.1031	0.9947	23.1	< 0.1
January 20, 2009	1010	0.3375	0.9413	31.2	< 0.1
February 2, 2009	1000	0.5380	0.8429	49.4	< 0.1
February 18, 2009	1010	0.7470	0.6649	23.0	< 0.1
February 25, 2009	1030	0.8215	0.5702	23.7	< 0.1
March 3, 2009	1050	0.8759	0.4825	24.4	< 0.1
March 9, 2009	1050	0.9210	0.3896	22.0	< 0.1
March 12, 2009	1120	0.9399	0.3416	24.2	< 0.1
March 16, 2009	1100	0.9611	0.2761	23.1	< 0.1
March 25, 2009	1020	0.9922	0.1245	23.5	< 0.1
April 8, 2009	1010	0.9933	-0.1159	16.2	< 0.1
April 29, 2009	1030	0.8881	-0.4597	4.9	< 0.1
May 27, 2009	1140	0.5738	-0.8190	7.6	< 0.1

 Table 17.
 Microcystin linear regression dataset using seasonal data and fluorescence as explanatory variables for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	sin(2πD/365)	cos(2 πD/365)	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Microcystin, in micrograms per liter
June 9, 2009	1100	0.3777	-0.9259	14.8	<0.1
June 23, 2009	1045	0.1458	-0.9893	15.5	< 0.1
July 7, 2009	1100	-0.0945	-0.9955	9.1	0.1
July 21, 2009	1020	-0.3294	-0.9442	3.6	< 0.1
August 5, 2009	1030	-0.5596	-0.8288	7.7	< 0.1
August 24, 2009	1000	-0.7962	-0.6050	6.9	< 0.1
September 2, 2009	1030	-0.8800	-0.4749	6.2	< 0.1
September 16, 2009	1030	-0.9679	-0.2512	4.3	2.9
October 5, 2009	1100	-0.9973	0.0731	6.2	< 0.1
October 19, 2009	1100	-0.9511	0.3090	6.2	< 0.1
November 23, 2009	1100	-0.6085	0.7936	6.5	< 0.1
December 16, 2009	1140	-0.2553	0.9669	4.5	< 0.1

```
*** Linear Model ***
Call: lm(formula = DS ~ SC, data = DS, na.action =
          na.exclude)
Residuals:
                 10 Median 30 Max
      Min
 -32.67 -6.676 0.09518 6.783 46.12
Coefficients:
                      Value Std. Error t value Pr(>|t|)
(Intercept) 28.3795 19.1958 1.4784 0.1420
              SC 0.5093 0.0236 21.5880 0.0000
Residual standard error: 12.02 on 118 degrees of freedom
Multiple R-Squared: 0.798 Adjusted R-squared: 0.7962
F-statistic: 466 on 1 and 118 degrees of freedom, the p-value is 0
Correlation of Coefficients:
     (Intercept)
SC -0.9984
Analysis of Variance Table
Response: DS
Terms added sequentially (first to last)
                Df Sum of Sq Mean Sq F Value Pr(F)
           SC 1 67386.77 67386.77 466.0428 0
Residuals 118 17062.03 144.59
model.formula nvars stderr
                                                 adjr2
                                                                   Ср
                                                                                 press
         DS ~ SC 1 12.02470 79.62478 1.003052 17701.67
Test criteria
 leverage cooksD dfits
        0.05 0.793 0.258
          Observations exceeding at least one test criterion
      DS yhat resids stnd.res stud.res leverage cooksD dfits

      8
      436
      468
      -31.67
      -2.66
      -2.730
      0.0180
      0.064889
      -0.3700

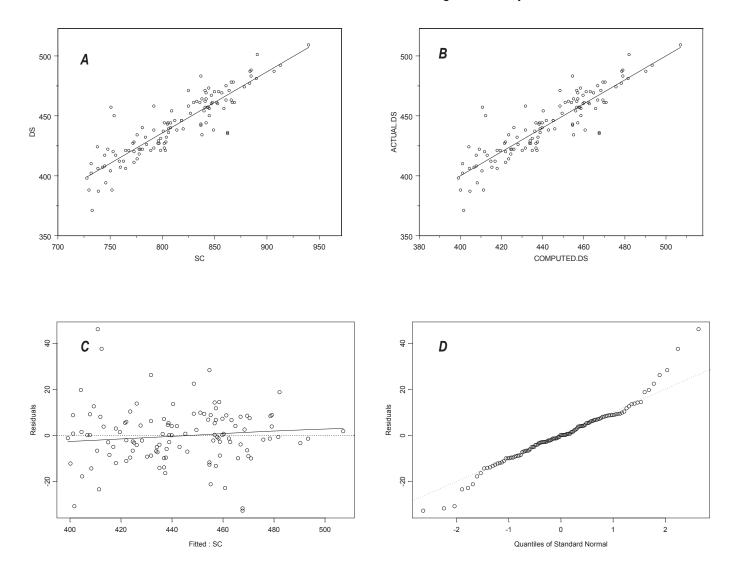
      9
      435
      468
      -32.67
      -2.74
      -2.822
      0.0180
      0.069052
      -0.3824

      12
      501
      482
      18.81
      1.59
      1.601
      0.0322
      0.042044
      0.2919

      24
      424
      404
      19.74
      1.67
      1.679
      0.0296
      0.042319
      0.2932

35 387 405 -17.77 -1.50 -1.508 0.0290 0.033603 -0.2606

      38
      371
      402
      -30.71
      -2.60
      -2.663
      0.0325
      0.113401
      -0.4884


      41
      457
      411
      46.12
      3.88
      4.136
      0.0228
      0.175557
      0.6317

      59
      509
      507
      1.85
      0.16
      0.159
      0.0711
      0.000981
      0.0441

      62
      450
      412
      37.59
      3.16
      3.289
      0.0214
      0.109257
      0.4865

94 388 411 -23.39 -1.97 -1.992 0.0223 0.044197 -0.3010
```

```
Figure 2. S+<sup>®</sup> output of regression model development using specific conductance (SC) as an explanatory variable for dissolved solids (DS) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.
```


Figure 3. S+[®] output graphs from simple linear regression analysis showing *A*, specific conductance (SC) compared to dissolved solids (DS) concentrations; *B*, computed compared to actual DS concentrations; *C*, computed DS concentrations compared to regression residuals; and *D*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

```
*** Linear Model ***
Call: lm(formula = NA ~ SC, data = NA, na.action = na.exclude)
Residuals:
                      1Q Median
                                                3Q
       Min
                                                        Max
  -13.03 -2.348 -0.1978 2.225 11.19
Coefficients:
                            Value Std. Error t value Pr(>|t|)
(Intercept) -32.7950 7.2517 -4.5224 0.0000
                 SC 0.1636 0.0089 18.3900
                                                                                0.0000
Residual standard error: 4.501 on 117 degrees of freedom
Multiple R-Squared: 0.743 Adjusted R-squared: 0.7408
F-statistic: 338.2 on 1 and 117 degrees of freedom, the p-value is 0
Correlation of Coefficients:
     (Intercept)
SC -0.9984
Analysis of Variance Table
Response: NA
Terms added sequentially (first to last)
                  Df Sum of Sq Mean Sq F Value Pr(F)
             SC 1 6851.872 6851.872 338.1907
                                                                                        Ω
Residuals 117 2370.465 20.260
model.formula nvars stderr
                                                           adjr2
                                                                                Ср
                                                                                               press
           NA ~ SC 1 4.501153 74.07680 1.072877 2446.346
Test criteria
 leverage cooksD dfits
     0.0504 0.793 0.259
            Observations exceeding at least one test criterion
             NA yhat resids stnd.res stud.res leverage cooksD dfits

        NA
        ynat
        reside
        stud.res
        stud.res
        stud.res
        leverage
        cooksD
        dilts

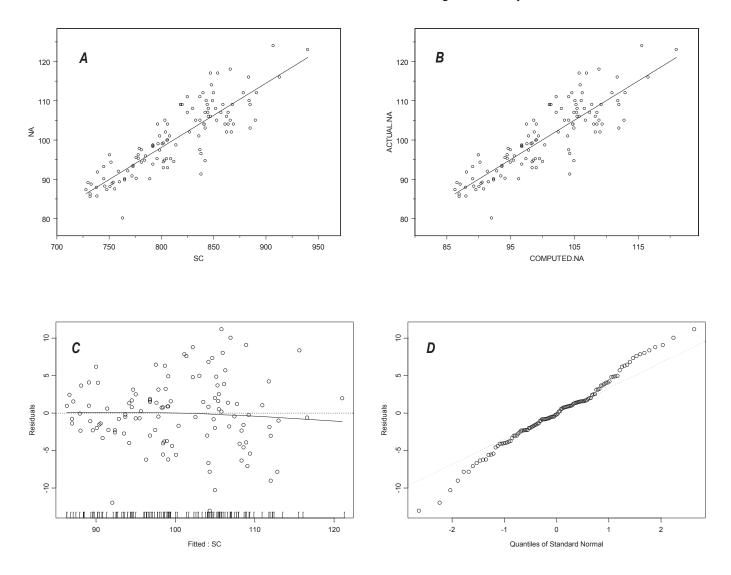
        30
        103.0
        112.0
        -9.03
        -2.034
        -2.062
        0.0283
        0.06026
        -0.352

        31
        105.0
        112.8
        -7.84
        -1.770
        -1.787
        0.0312
        0.05046
        -0.321

        50
        117.0
        105.8
        11.19
        2.503
        2.561
        0.0128
        0.04045
        0.291

        55
        117.0
        10.05
        2.249
        2.289
        0.0148
        0.03791
        0.280

        56
        118.0
        108.9
        9.08
        2.038
        2.066
        0.0191
        0.04046
        0.288


        57
        124.0
        115.6
        8.37
        1.901
        1.923
        0.0425
        0.08017
        0.405

        58
        123.0
        121.0
        1.97
        0.455
        0.454
        0.0708
        0.00789
        0.125

        112
        80.1
        20.1
        21.0
        2.757
        0.0184
        0.0752
        0.378

112 80.1 92.1 -11.96 -2.682 -2.757 0.0184 0.06752 -0.378
119 91.3 104.3 -13.03 -2.911 -3.010 0.0107 0.04594 -0.313
```

Figure 4. S+[®] output of regression model development using specific conductance (SC) as an explanatory variable for sodium (NA) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 5. S+[®] output graphs from simple linear regression analysis showing *A*, specific conductance (SC) compared to sodium (NA) concentrations; *B*, computed compared to actual NA concentrations; *C*, computed NA concentrations compared to regression residuals; and *D*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

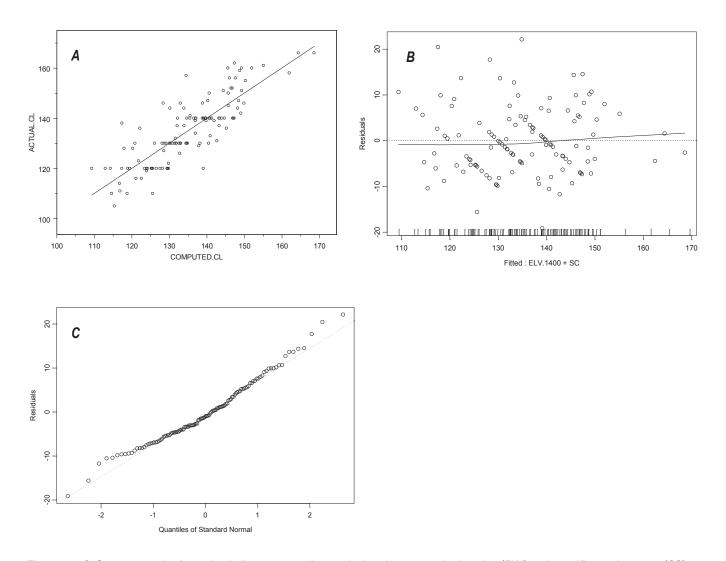
```
*** Linear Model ***
Call: lm(formula = CL ~ ELV.1400 + SC, data = Chloride.Splus, na.action = na.exclude)
Residuals:
                1Q Median 3Q
     Min
                                         Max
  -19.12 -5.011 -1.034 4.83 22.14
Coefficients:
                     Value Std. Error t value Pr(>|t|)
 (Intercept) 37.1865 21.4482 1.7338 0.0856
ELV.1400 -3.0417 0.6166 -4.9331 0.0000
            SC 0.2009 0.0156 12.8762 0.0000
Residual standard error: 7.441 on 117 degrees of freedom
Multiple R-Squared: 0.6997 Adjusted R-squared: 0.6946
F-statistic: 136.3 on 2 and 117 degrees of freedom, the p-value is 0
Correlation of Coefficients:
             (Intercept) ELV.1400
ELV.1400 -0.8342
        SC -0.8167
                               0.3645
Analysis of Variance Table
Response: CL
Terms added sequentially (first to last)
        Df Sum of Sq Mean Sq F Value Pr(F)
 ELV.1400 1 5916.637 5916.637 106.8499 0
         SC 1 9180.648 9180.648 165.7955
                                                                 0
Residuals 117 6478.681 55.373
       model.formula nvars stderr adjr2
                                                                       Ср
                                                                                press
CL ~ ELV.1400 + SC 2 7.441327 69.45941 3.00000 6814.175
Variance inflation factors
ELV.1400 SC
 1.15317 1.15317
Test criteria
  leverage cooksD dfits
      0.075 0.844 0.316
         Observations exceeding at least one test criterion
     CL yhat resids stnd.res stud.res leverage cooksD dfits

      11
      162
      147
      14.54
      1.983
      2.008
      0.0296
      0.03999
      0.351

      18
      157
      135
      22.14
      3.000
      3.109
      0.0165
      0.05023
      0.402

      19
      146
      128
      17.72
      2.416
      2.468
      0.0282
      0.05653
      0.421

      24
      138
      118
      20.46
      2.792
      2.877
      0.0298
      0.07980
      0.504


      33
      137
      134
      3.44
      0.484
      0.483
      0.0870
      0.00745
      0.149

      58
      166
      164
      1.59
      0.223
      0.222
      0.0879
      0.00160
      0.069

      59
      160
      146
      14.36
      1.994
      2.020
      0.0628
      0.08875
      0.523

60 166 169 -2.61 -0.366 -0.365 0.0849 0.00415 -0.111
62 130 133 -3.07 -0.429 -0.428 0.0763 0.00508 -0.123
63 120 113 7.00 0.979 0.979 0.0756 0.02612 0.280
64 120 109 10.61 1.475 1.482 0.0643 0.04977 0.388
```

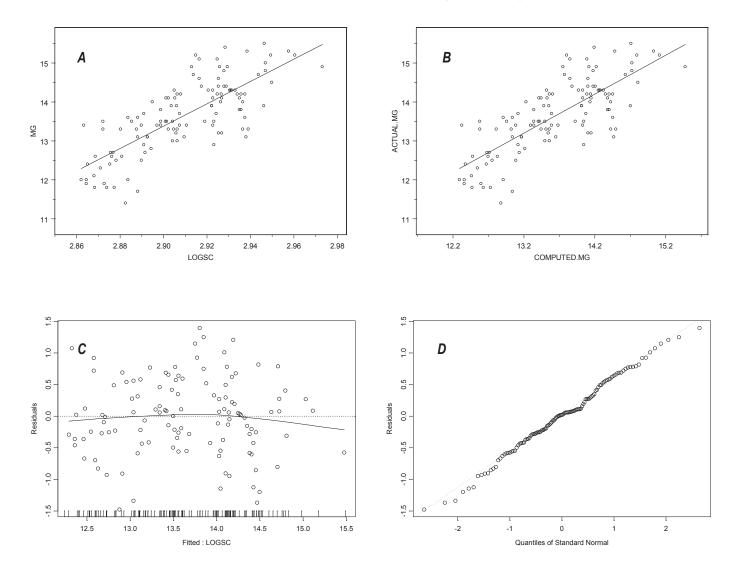

Figure 6. S+[®] output of regression model development using reservoir elevation (ELV) and specific conductance (SC) as explanatory variables for chloride (CL) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 7. S+® output graphs from simple linear regression analysis using reservoir elevation (ELV) and specific conductance (SC) as explanatory variables for chloride (CL) showing *A*, computed compared to actual CL concentrations; *B*, computed CL concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

```
*** Linear Model ***
Call: lm(formula = MG ~ LOGSC, data = MG, na.action = na.exclude)
Residuals:
            1Q Median
                         3Q
   Min
                              Max
 -1.477 -0.3616 0.02158 0.4144 1.395
Coefficients:
              Value Std. Error t value Pr(>|t|)
(Intercept) -69.8049 6.3200 -11.0451 0.0000
     LOGSC 28.6839 2.1723 13.2045
                                        0.0000
Residual standard error: 0.5951 on 120 degrees of freedom
Multiple R-Squared: 0.5923 Adjusted R-squared: 0.5889
F-statistic: 174.4 on 1 and 120 degrees of freedom, the p-value is 0
Correlation of Coefficients:
     (Intercept)
LOGSC -1
Analysis of Variance Table
Response: MG
Terms added sequentially (first to last)
         Df Sum of Sq Mean Sq F Value Pr(F)
   LOGSC 1 61.75738 61.75738 174.359
                                           Ο
Residuals 120 42.50360 0.35420
model.formula nvars stderr adjr2 Cp
                                               press
  MG ~ LOGSC 1 0.5951443 58.89373 4.575412 43.91914
Test criteria
leverage cooksD dfits
  0.0492 0.793 0.256
      Observations exceeding at least one test criterion
     MG yhat resids stnd.res stud.res leverage cooksD dfits
3613.512.60.9201.5671.5770.02660.03350.2603913.412.31.0741.8381.8570.03630.06370.360
 60 14.9 15.5 -0.576 -0.999 -0.999 0.0625 0.0333 -0.258
 78 13.3 14.5 -1.198 -2.033 -2.060 0.0200 0.0421 -0.294
79 13.1 14.5 -1.369 -2.322 -2.366 0.0192 0.0528 -0.331
80 13.3 14.4 -1.126 -1.909 -1.930 0.0181 0.0335 -0.262
114 11.4 12.9 -1.477 -2.504 -2.561 0.0177 0.0566 -0.344
115 11.7 13.0 -1.339 -2.266 -2.307 0.0141 0.0368 -0.276
```

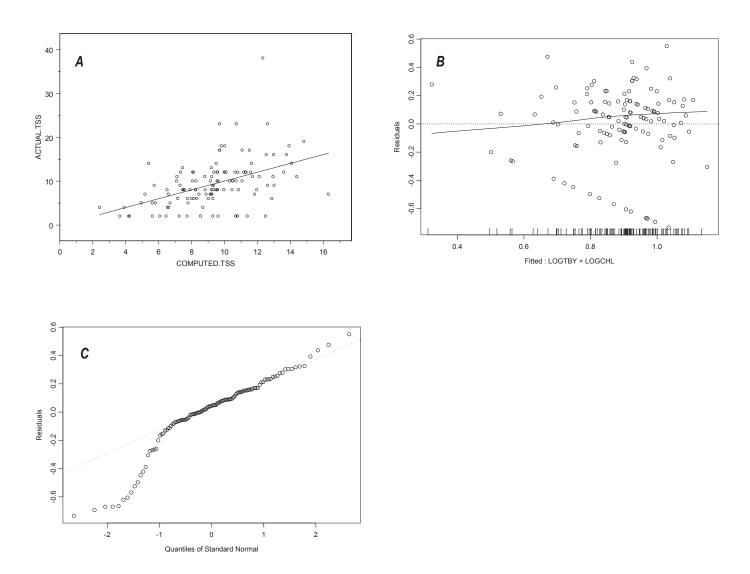
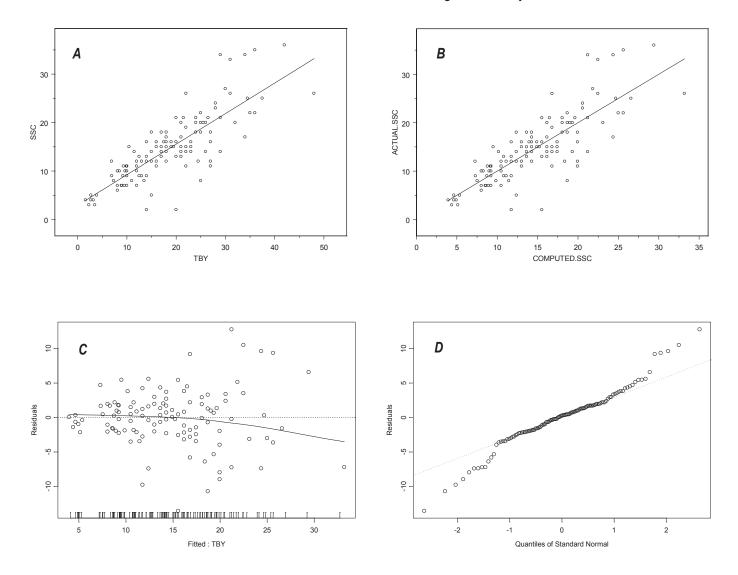

Figure 8. S+[®] output of regression model development using specific conductance (SC) as an explanatory variable for magnesium (MG) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 9. S+[®] output graphs from simple linear regression analysis showing *A*, log-transformed specific conductance (SC) compared to magnesium (MG) concentrations; *B*, computed compared to actual MG concentrations; *C*, computed MG concentrations compared to regression residuals; and *D*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

*** Linear Model *** Call: lm(formula = LOGTSS ~ LOGTBY + LOGCHL, data = TSS, na.action = na.exclude) Residuals: Min 1Q Median ЗQ Max -0.7339 -0.07061 0.04525 0.1526 0.5507 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 0.0215 0.1571 0.1368 0.8914 LOGTBY 0.4807 0.0889 5.4085 0.0000 LOGCHL 0.3030 0.0919 3.2985 0.0013 Residual standard error: 0.2571 on 118 degrees of freedom Multiple R-Squared: 0.2183 Adjusted R-squared: 0.2051 F-statistic: 16.48 on 2 and 118 degrees of freedom, the p-value is 4.879e-007 Correlation of Coefficients: (Intercept) LOGTBY LOGTBY -0.8268 LOGCHL -0.7434 0.2668 Analysis of Variance Table Response: LOGTSS Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) LOGTBY 1 1.459163 1.459163 22.07895 0.000007141 LOGCHL 1 0.719059 0.719059 10.88025 0.001285096 Residuals 118 7.798437 0.066088 model.formula nvars stderr adjr2 Ср press LOGTSS ~ LOGTBY + LOGCHL 2 0.2570767 20.50832 3.00000 8.233660 Variance inflation factors LOGTBY LOGCHL 1.076635 1.076635 Test criteria leverage cooksD dfits 0.0744 0.844 0.315 Observations exceeding at least one test criterion LOGTSS yhat resids stnd.res stud.res leverage cooksD dfits 3 0.301 0.994 -0.6934 -2.716 -2.793 0.0140 0.03493 -0.3329 11 0.301 0.722 -0.4210 -1.688 -1.701 0.0585 0.05895 -0.4239 12 0.602 0.323 0.2788 1.180 1.182 0.1556 0.08558 0.5076 15 0.301 0.501 -0.2002 -0.811 -0.810 0.0770 0.01828 -0.2338 21 0.301 0.748 -0.4473 -1.795 -1.813 0.0605 0.06923 -0.4601 0.699 0.633 0.0664 0.269 0.268 0.0770 0.00201 0.0773 0.301 0.870 -0.5691 -2.241 -2.281 0.0242 0.04153 -0.3592 27 0.301 0.870 -0.5691 42 -3.024 0.301 1.035 -0.7339 -2.925 0.0473 0.14157 -0.6738 60 1.146 0.671 0.4751 0.0443 0.05519 0.4114 62 1.890 1.912 64 0.301 0.971 -0.6702 -2.641 -2.711 0.0254 0.06048 -0.4373 65 0.301 0.907 -0.6056 -2.378 -2.426 0.0183 0.03507 -0.3310 78 0.602 0.530 0.0717 0.292 0.291 0.0862 0.00268 0.0893 100 1.079 0.938 0.1412 0.571 0.569 0.0746 0.00876 0.1616 108 0.301 0.967 -0.6658 -2.623 -2.692 0.0252 0.05921 -0.4325

Figure 10. S+[®] output of regression model development using turbidity (TBY, YSI model 6026 sensor) and fluorescence (CHL) as explanatory variables for total suspended solids (TSS) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.


Figure 11. S+[®] output graphs from simple linear regression analysis using turbidity (TBY, YSI model 6026 sensor) and fluorescence (CHL) as explanatory variables for total suspended solids (TSS) showing *A*, computed compared to actual TSS concentrations; *B*, computed log-transformed TSS concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

```
*** Linear Model ***
Call: lm(formula = SSC ~ TBY, data = SSC, na.action = na.exclude)
Residuals:
           1Q Median
                      ЗQ
   Min
                            Max
 -13.54 -2.027 0.2694 1.951 12.79
Coefficients:
             Value Std. Error t value Pr(>|t|)
(Intercept) 2.9310 0.8746 3.3512 0.0011
       TBY 0.6304 0.0421 14.9908 0.0000
Residual standard error: 4.133 on 117 degrees of freedom
Multiple R-Squared: 0.6576 Adjusted R-squared: 0.6547
F-statistic: 224.7 on 1 and 117 degrees of freedom, the p-value is 0
Correlation of Coefficients:
   (Intercept)
TBY -0.9013
Analysis of Variance Table
Response: SSC
Terms added sequentially (first to last)
         Df Sum of Sq Mean Sq F Value Pr(F)
     TBY 1 3839.469 3839.469 224.7249
                                            Ω
Residuals 117 1998.968 17.085
model.formula nvars stderr
                              adjr2
                                         Ср
                                               press
   SSC ~ TBY 1 4.133424 65.46930 1.021886 2083.105
Test criteria
leverage cooksD dfits
  0.0504 0.793 0.259
      Observations exceeding at least one test criterion
   SSC yhat resids stnd.res stud.res leverage cooksD dfits

        19
        33
        22.5
        10.53
        2.58
        2.64
        0.02395
        0.0815
        0.414

93 26 33.2 -7.19 -1.83 -1.85 0.09698 0.1799 -0.606
106 17 24.4 -7.36 -1.81 -1.83 0.03249 0.0551 -0.335
107 35 25.6 9.37 2.31 2.36 0.03922 0.1093 0.477
```

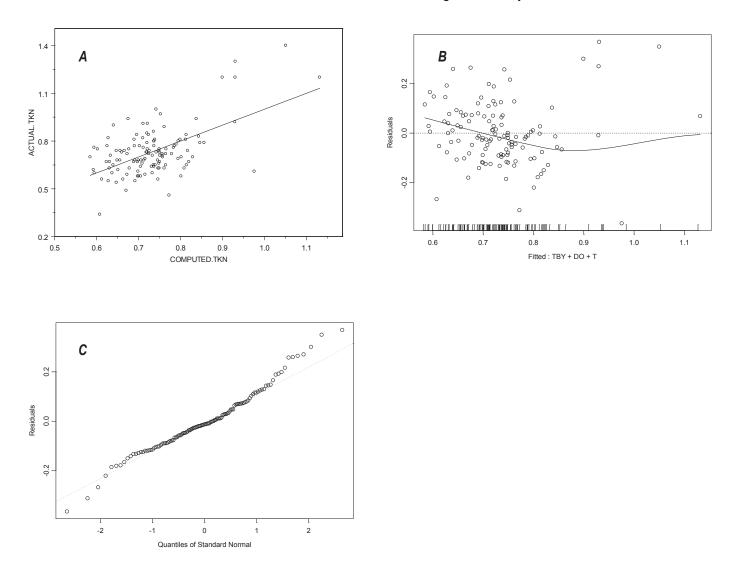
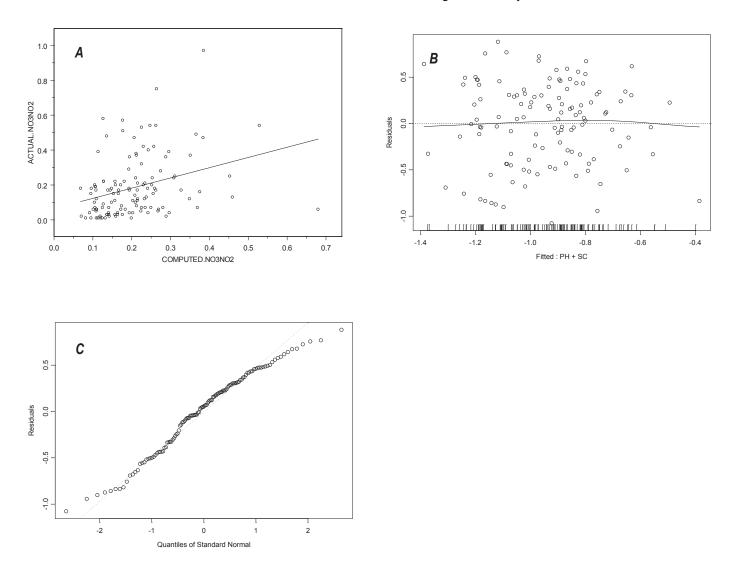

Figure 12. S+[®] output of regression model development using turbidity (TBY, YSI model 6026 sensor) as an explanatory variable for suspended sediment concentrations (SSC) for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 13. S+[®] output graphs from simple linear regression analysis showing *A*, turbidity (TBY, YSI model 6026 sensor) compared to suspended-solids concentration (SSC) data; *B*, computed compared to actual SSC; *C*, comparison of estimated SSC and regression residuals; and *D*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

```
*** Linear Model ***
Call: lm(formula = TKN ~ TBY + DO + T, data = TKN, na.action = na.exclude)
Residuals:
    Min
              1Q
                  Median
                            3Q
                                    Max
 -0.3653 -0.08153 -0.01264 0.07024 0.3696
Coefficients:
             Value Std. Error t value Pr(>|t|)
(Intercept) -0.2437 0.1342 -1.8153 0.0720
       TBY 0.0045 0.0014 3.1593 0.0020
        DO 0.0608 0.0090
                             6.7441 0.0000
         т 0.0197 0.0027 7.2028 0.0000
Residual standard error: 0.1271 on 118 degrees of freedom
Multiple R-Squared: 0.3293 Adjusted R-squared: 0.3123
F-statistic: 19.31 on 3 and 118 degrees of freedom, the p-value is 2.954e-010
Correlation of Coefficients:
   (Intercept) TBY
                            DO
TBY -0.4280
DO -0.9739
                0.3204
 T -0.8942
                0.0984 0.8574
Analysis of Variance Table
Response: TKN
Terms added sequentially (first to last)
         Df Sum of Sq Mean Sq F Value
                                             Pr(F)
     TBY10.0782610.07826074.843730.0296935DO10.0197160.01971581.220260.2715575
       T 1 0.838246 0.8382458 51.88094 0.0000000
Residuals 118 1.906538 0.0161571
                                     adjr2
    model.formula nvars
                         stderr
                                                Ср
                                                       press
TKN ~ TBY + DO + T 3 0.1271106 31.228481 4.00000 2.108368
Variance inflation factors
     TBY
             DO
                        Т
 1.282006 4.79267 4.342717
Test criteria
 leverage cooksD dfits
   0.0984 0.875 0.362
      Observations exceeding at least one test criterion
   TKN yhat resids stnd.res stud.res leverage cooksD dfits
 3 0.61 0.975 -0.3653 -2.987 -3.094 0.0745 0.1796 -0.878
 5 0.46 0.772 -0.3121 -2.489 -2.546 0.0265 0.0422 -0.420
 8 1.20 0.929 0.2705 2.205 2.243 0.0685 0.0894 0.608
15 1.40 1.050 0.3501 2.971 3.075 0.1401 0.3594 1.241
18 1.30 0.930 0.3696 2.984 3.090 0.0507 0.1190 0.714
191.201.1310.06870.5980.5960.18380.02010.283280.580.801-0.2207-1.807-1.8250.07730.0684-0.528
52 1.20 0.899 0.3009 2.423 2.475 0.0452 0.0694 0.538
                      2.0872.1180.04120.04680.4392.1162.1490.03030.03500.380
53 0.90 0.640 0.2598
58 0.94 0.675 0.2649
83 0.97 0.753 0.2165 1.776 1.793 0.0804 0.0690 0.530
96 0.65 0.815 -0.1655 -1.382 -1.387 0.1121 0.0603 -0.493
99 0.34 0.607 -0.2675 -2.151 -2.185 0.0434 0.0525 -0.466
```

Figure 14. S+[®] output of regression model development using turbidity (TBY, YSI model 6026 sensor), dissolved oxygen (DO), and water temperature (T) as explanatory variables for total Kjeldahl nitrogen (TKN) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 15. S+[®] output graphs from simple linear regression analysis using turbidity (TBY, YSI model 6026 sensor), dissolved oxygen (DO), and water temperature (T) as explanatory variables for total Kjeldahl nitrogen (TKN) showing *A*, computed compared to actual TKN concentrations; *B*, computed TKN concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.


```
*** Linear Model ***
Call: lm(formula = LOGNO3NO2 ~ PH + SC, data = NO3NO2, na.action = na.exclude)
Residuals:
    Min
             1Q Median
                            ЗQ
                                   Max
 -1.077 -0.3307 0.05465 0.3194 0.8815
Coefficients:
              Value Std. Error t value Pr(>|t|)
(Intercept) 5.8934 1.6309 3.6137 0.0004
                                -2.8985 0.0045
         PH -0.5585 0.1927
         SC -0.0026 0.0009 -2.9664 0.0036
Residual standard error: 0.4471 on 119 degrees of freedom
Multiple R-Squared: 0.1546 Adjusted R-squared: 0.1404
F-statistic: 10.88 on 2 and 119 degrees of freedom, the p-value is 0.00004564
Correlation of Coefficients:
  (Intercept) PH
PH -0.9011
SC -0.2343
              -0.2098
Analysis of Variance Table
Response: LOGNO3NO2
Terms added sequentially (first to last)
           Df Sum of Sq Mean Sq F Value
                                                   Pr(F)
       PH
           1 2.59224 2.592243 12.96711 0.000463536
       SC 1
               1.75910 1.759104 8.79952 0.003642422
Residuals 119 23.78918 0.199909
      model.formula nvars stderr
                                         adjr2
                                                      Ср
                                                             press
LOGNO3NO2 ~ PH + SC 2 0.4471119 14.042130 3.000000 25.33309
Variance inflation factors
       PH SC
 1.046048 1.046048
Test criteria
 leverage cooksD dfits
   0.0738 0.844 0.314
       Observations exceeding at least one test criterion
   LOGNO3NO2 yhat resids stnd.res stud.res leverage cooksD dfits

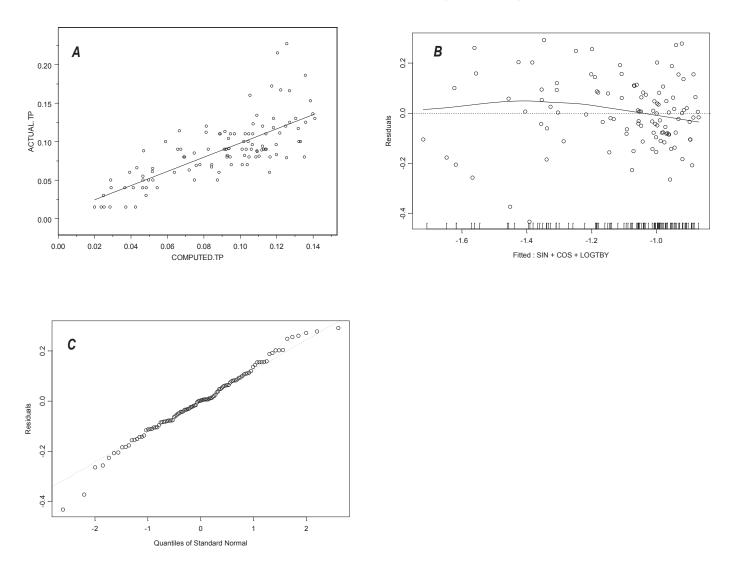
      11
      -2.000
      -1.309
      -0.691
      -1.58
      -1.59
      0.0384
      0.0331
      -0.317

      12
      -2.000
      -0.923
      -1.077
      -2.51
      -2.56
      0.0753
      0.1705
      -0.732

     -2.000 -1.164 -0.836 -1.93 -1.95 0.0578 0.0758 -0.482
14
     -2.000 -1.098 -0.902 -2.05 -2.08 0.0320 0.0463 -0.378
18
25
     -1.699 -0.756 -0.943 -2.14 -2.17 0.0273 0.0427 -0.364
26 -1.222 -0.385 -0.837 -1.98 -2.00 0.1019 0.1475 -0.674
     -0.244 -0.969 0.725 1.68 1.69 0.0681 0.0686 0.457
-0.745 -1.387 0.642 1.49 1.50 0.0698 0.0555 0.410
35
60
```

Figure 16. S+[®] output of linear regression model development of pH (PH) and specific conductance (SC) as explanatory variables for nitrate plus nitrite (NO3NO2) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 17. S+[®] output graphs from simple linear regression analysis using pH (PH) and specific conductance (SC) as explanatory variables for nitrate plus nitrite (NO3NO2) showing *A*, computed compared to actual NO3NO2 concentrations; *B*, computed log-transformed NO3NO2 concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.


```
*** Linear Model ***
Call: lm(formula = LOGTP ~ SIN + COS + LOGTBY, data = TP, na.action = na.exclude)
Residuals:
     Min
                1Q
                    Median
                                  3Q
                                        Max
 -0.4324 -0.08188 0.002713 0.08266 0.2911
Coefficients:
               Value Std. Error t value Pr(>|t|)
(Intercept) -1.6626 0.0618 -26.9105 0.0000
        SIN -0.0663 0.0190 -3.4862 0.0007
        COS -0.1357 0.0218 -6.2154 0.0000
     LOGTBY 0.4390 0.0520 8.4405 0.0000
Residual standard error: 0.1364 on 105 degrees of freedom
Multiple R-Squared: 0.6918 Adjusted R-squared: 0.683
F-statistic: 78.58 on 3 and 105 degrees of freedom, the p-value is 0
Correlation of Coefficients:
       (Intercept) SIN
                                 COS
   SIN -0.2424
   COS -0.3435
                   -0.0018
LOGTBY -0.9747
                    0.2411 0.4197
Analysis of Variance Table
Response: LOGTP
Terms added sequentially (first to last)
           Df Sum of Sq Mean Sq F Value
                                                    Pr(F)
      SIN 1 0.909736 0.909736 48.9103 2.581102e-010
           1 2.149665 2.149665 115.5728 0.000000e+000
      COS
LOGTBY 1 1.325118 1.325118 71.2426 1.874000e-013
Residuals 105 1.953010 0.018600
model.formula nvars stderr adjr2 Cp press
LOGTP ~ SIN + COS + LOGTBY 3 0.1363822 68.30295 4.00000 2.119644
Variance inflation factors
      SIN COS LOGTBY
 1.076425 1.230612 1.30656
Test criteria
 leverage cooksD dfits
     0.11 0.876 0.383
       Observations exceeding at least one test criterion
    LOGTP yhat resids stnd.res stud.res leverage cooksD dfits
  1 -1.22 -0.958 -0.264 -1.986 -2.015 0.0489 0.0507 -0.457
 12 -1.82 -1.719 -0.105 -0.818 -0.817 0.1191 0.0226 -0.300
 13 -1.30 -1.561 0.260 1.974 2.002 0.0651 0.0678 0.528
 36 -1.82 -1.391 -0.432 -3.235 -3.394 0.0396 0.1079 -0.689
 37 -1.82 -1.567 -0.257 -1.947 -1.974 0.0658 0.0668 -0.524

      49
      -1.06
      -1.347
      0.291
      2.181
      2.222
      0.0422
      0.0524
      0.466

      66
      -1.82
      -1.619
      -0.205
      -1.565
      -1.576
      0.0761
      0.0505
      -0.452

                                              0.0877 0.0443 -0.423
 67 -1.82 -1.647 -0.177
                           -1.357
                                     -1.363
                                    -2.882
 68 -1.82 -1.451 -0.373
                           -2.786
                                               0.0376 0.0759 -0.570
                                    1.887 0.0472 0.0431 0.420
109 -1.00 -1.248 0.248
                           1.864
```

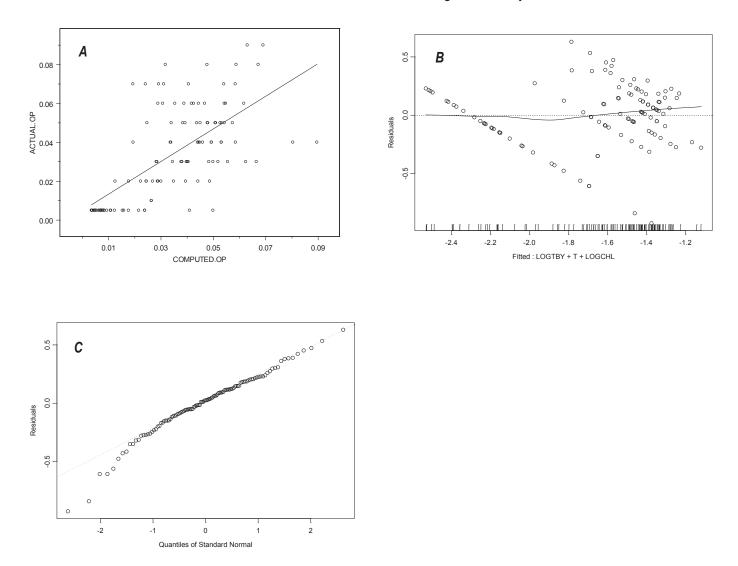

Figure 18. S+[®] output of regression model development using season (SIN and COS) and turbidity (TBY, YSI model 6026 sensor) as explanatory variables for total phosphorus (TP) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 19. $S+^{(0)}$ output graphs from simple linear regression analysis using season (SIN and COS) and turbidity (TBY, YSI model 6026 sensor) as explanatory variables for total phosphorus (TP) showing *A*, computed compared to actual TP concentrations; *B*, computed log-transformed TP concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

*** Linear Model *** Call: lm(formula = LOGOP ~ LOGTBY + T + LOGCHL, data = OP, na.action = na.exclude) Residuals: Min 1Q Median ЗQ Max -0.927 -0.1352 0.02488 0.1766 0.6298 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) -2.0430 0.1788 -11.4243 0.0000 LOGTBY 0.4942 0.1023 4.8324 0.0000 T 0.0189 0.0036 5.2416 0.0000 LOGCHL -0.5408 0.1116 -4.8479 0.0000 Residual standard error: 0.2662 on 109 degrees of freedom Multiple R-Squared: 0.6552 Adjusted R-squared: 0.6457 F-statistic: 69.04 on 3 and 109 degrees of freedom, the p-value is 0 Correlation of Coefficients: Т (Intercept) LOGTBY LOGTBY -0.5819 т -0.3155 -0.4206 LOGCHL -0.7961 0.0719 0.4377 Analysis of Variance Table Response: LOGOP Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) LOGTBY 1 8.258913 8.258913 116.5335 0.00000e+000 T 1 4.753859 4.753859 67.0771 1.00000e-012 LOGCHL 1 1.665614 1.665614 23.5018 4.16733e-006 Residuals 109 7.725004 0.070872 model.formula nvars stderr adjr2 Ср press LOGOP ~ LOGTBY + T + LOGCHL 3 0.2662172 64.56956 4.00000 8.398949 Variance inflation factors T LOGCHL LOGTBY 1.347654 1.658468 1.372232 Test criteria leverage cooksD dfits 0.106 0.876 0.376 Observations exceeding at least one test criterion LOGOP yhat resids stnd.res stud.res leverage cooksD dfits 7 -2.30 -1.37 -0.9270 -3.5398 -3.7454 0.0323 0.104406 -0.6838 12 -2.30 -2.28 -0.0181 -0.0747 -0.0744 0.1737 0.000293 -0.0341 14 -2.30 -1.74 -0.5616 -2.2230 -2.2647 0.0993 0.136239 -0.7521 15 -1.22 -1.61 0.3893 1.5146 1.5237 0.0676 0.041578 0.4103 47 -2.30 -1.46 -0.8410 -3.2096 -3.3574 0.0312 0.082914 -0.6024 74 -2.30 -1.69 -0.6070 -2.3191 -2.3675 0.0334 0.046500 -0.4403 0.0770 0.045617 0.4295 81 -1.30 -1.68 0.3784 1.4793 1.4876 113 -1.15 -1.78 0.6298 2.4894 2.5516 0.0970 0.166363 0.8361

Figure 20. S+[®] output of regression model development using turbidity (TBY, YSI model 6026 sensor), water temperature (T), and fluorescence (CHL) as explanatory variables for orthophosphate (OP) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 21. S+[®] output graphs from simple linear regression analysis using turbidity (TBY, YSI model 6026 sensor), water temperature (T), and fluorescence (CHL) as explanatory variables for orthophosphate (OP) showing *A*, computed compared to actual OP concentrations; *B*, computed log-transformed OP concentrations and regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

*** Linear Model *** Call: lm(formula = LOGDP ~ LOGDO + SC + CHL, data = DP, na.action = na.exclude) Residuals: Min 1Q Median ЗQ Max -0.642 -0.09622 0.03565 0.1162 0.4633 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 1.0851 0.3671 2.9560 0.0038 -4.1329 0.0001 LOGDO -0.8764 0.2121 SC -0.0019 0.0005 -3.5470 0.0006 CHL -0.0137 0.0035 -3.8822 0.0002 Residual standard error: 0.2056 on 105 degrees of freedom Multiple R-Squared: 0.5858 Adjusted R-squared: 0.5739 F-statistic: 49.49 on 3 and 105 degrees of freedom, the p-value is 0 Correlation of Coefficients: (Intercept) LOGDO SC LOGDO 0.0879 SC -0.9058 -0.4928 CHL 0.1305 -0.5342 0.0480 Analysis of Variance Table Response: LOGDP Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) LOGDO 1 5.163193 5.163193 122.0919 0.00000000 SC10.4787690.47876911.32120.001070848CHL10.6373550.63735515.07130.000181166 Residuals 105 4.440386 0.042289 model.formula nvars stderr adjr2 Ср press LOGDP ~ LOGDO + SC + CHL 3 0.2056439 57.39383 4.00000 4.794384 Variance inflation factors LOGDO SC CHL 2.016798 1.44452 1.530531 Test criteria leverage cooksD dfits 0.11 0.876 0.383 Observations exceeding at least one test criterion LOGDP yhat resids stnd.res stud.res leverage cooksD dfits 6 -1.22 -1.567 0.3450 1.743 1.761 0.0741 0.06077 0.4979 14 -1.82 -1.182 -0.6420 -3.158 -3.304 0.0228 0.05819 -0.5047 15 -1.16 -1.525 0.3643 1.828 1.849 0.0607 0.05393 0.4698 22 -1.52 -1.068 -0.4549 -2.244 -2.289 0.0287 0.03723 -0.3936 25 -1.25 -0.916 -0.3357 -1.684 -1.699 0.0599 0.04516 -0.4288 34 -1.82 -1.292 -0.5320 -2.652 -2.732 0.0484 0.08933 -0.6159 35 -1.82 -1.261 -0.5632 -2.786 -2.881 0.0338 0.06786 -0.5388 45 -1.17 -1.127 -0.0473 -0.244 -0.243 0.1127 0.00189 -0.0867 1.2471.2500.10330.044770.42432.3232.3740.06000.086070.5996 78 -1.22 -1.465 0.2428 109 -1.05 -1.509 0.4633

Figure 22. S+[®] output of regression model development using dissolved oxygen (D0), specific conductance (SC), and fluorescence (CHL) as explanatory variables for dissolved phosphorus (DP) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

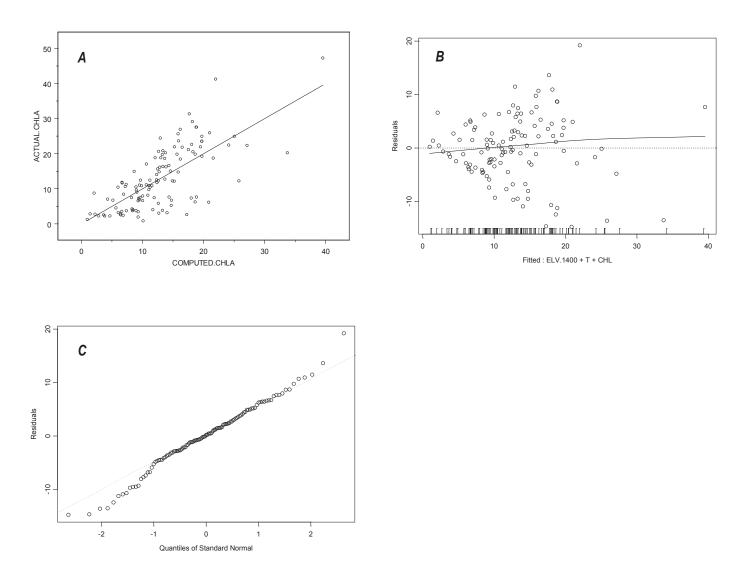


Figure 23. S+[®] output graphs from simple linear regression analysis using dissolved oxygen (DO), specific conductance (SC), and fluorescence (CHL) as explanatory variables for dissolved phosphorus (DP) showing *A*, computed compared to actual DP concentrations; *B*, computed log-transformed DP concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

76 Real-Time and Discrete Water-Quality Constituent Relations in Cheney Reservoir near Cheney, Kansas, 2001–2009

*** Linear Model *** Call: lm(formula = CHLA ~ ELV.1400 + T + CHL, data = Chlorophyll.a.Splus, na.action = na.exclude) Residuals: Min 1Q Median 3Q Max -14.76 -3.129 0.1915 3.852 19.21 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 40.2468 10.0971 3.9860 0.0001 ELV.1400 -1.9656 0.4722 -4.1623 0.0001 т 0.3204 0.0741 4.3229 0.0000 CHL 0.8463 0.0834 10.1493 0.0000 Residual standard error: 6.223 on 113 degrees of freedom Multiple R-Squared: 0.5078 Adjusted R-squared: 0.4947 F-statistic: 38.86 on 3 and 113 degrees of freedom, the p-value is 0 Correlation of Coefficients: Т (Intercept) ELV.1400 ELV.1400 -0.9812 т -0.0215 -0.1457 CHL -0.0859 -0.0651 0.4820 Analysis of Variance Table Response: CHLA Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) ELV.1400 1 508.790 508.790 13.1379 0.0004353 T 1 16.334 16.334 0.4218 0.5175755 CHL 1 3989.229 3989.229 103.0088 0.0000000 Residuals 113 4376.157 38.727 model.formula nvars stderr adjr2 Ср press CHLA ~ ELV.1400 + T + CHL 3 6.223106 49.470410 4.00000 4759.741 Variance inflation factors ELV.1400 Т CHL 1.021719 1.32527 1.302671 Test criteria leverage cooksD dfits 0.103 0.876 0.37 Observations exceeding at least one test criterion CHLA yhat resids stnd.res stud.res leverage cooksD dfits 1 3.0 12.69 -9.69 -1.631 -1.643 0.0891 0.0651 -0.514 2 10.4 6.01 4.39 0.746 0.745 0.1058 0.0165 0.256 6.1 20.86 -14.76 -2.407 -2.460 0.0287 0.0428 -0.423 З -1.759 -1.776 0.0460 0.0373 -0.390 -1.847 -1.867 0.0427 0.0380 -0.394 9 7.3 17.99 -10.69 7.6 18.84 -11.24 11 -2.257 -2.299 0.0605 0.0819 -0.583 15 12.2 25.81 -13.61 5241.221.9919.213.1643.3000.04870.12830.7475331.317.6913.612.2382.2790.04450.05830.492 58 20.2 33.74 -13.54 -2.318 -2.365 0.1192 0.1819 -0.870 7.65 1.387 95 47.2 39.55 1.393 0.2138 0.1308 0.726

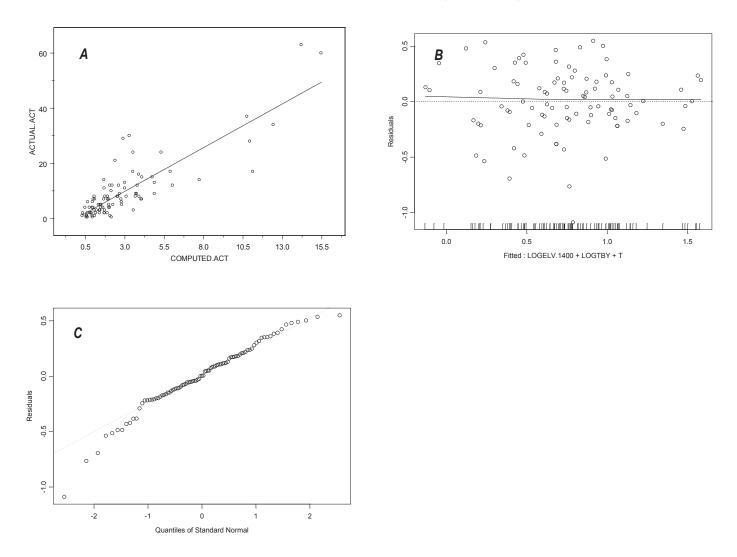

Figure 24. S+[®] output of regression model development using reservoir elevation (ELV), water temperature (T), and fluorescence (CHL) as explanatory variables for chlorophyll-*a* (CHLA) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 25. S+[®] output graphs from simple linear regression analysis using reservoir elevation (ELV), water temperature (T), and fluorescence (CHL) as explanatory variables for chlorophyll-*a* (CHLA) showing *A*, computed compared to actual CHLA concentrations; *B*, computed CHLA concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

*** Linear Model *** Call: lm(formula = LOGACT ~ LOGELV.1400 + LOGTBY + T, data = Actinomycetes.Splus, na.action = na.exclude) Residuals: Min 1Q Median ЗQ Max -1.089 -0.1621 0.004718 0.1837 0.5495 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) -14.9286 1.6263 -9.1797 0.0000 LOGELV.1400 11.0619 1.2383 8.9335 0.0000 LOGTBY 0.9924 0.1572 6.3112 0.0000 т -0.0163 0.0041 -4.0136 0.0001 Residual standard error: 0.3021 on 89 degrees of freedom Multiple R-Squared: 0.6076 Adjusted R-squared: 0.5944 F-statistic: 45.94 on 3 and 89 degrees of freedom, the p-value is 0 Correlation of Coefficients: (Intercept) LOGELV.1400 LOGTBY LOGELV.1400 -0.9940 LOGTBY 0.0380 -0.1379 т 0.1023 -0.0994 -0.3799 Analysis of Variance Table Response: LOGACT Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) LOGELV.1400 1 8.662210 8.662210 94.94122 0.000000000 LOGTBY 1 2.442792 2.442792 26.77396 0.0000014012 T 1 1.469750 1.469750 16.10904 0.0001244246 Residuals 89 8.120147 0.091238 model.formula nvars stderr adjr2 Cp press LOGACT ~ LOGELV.1400 + LOGTBY + T 3 0.3020556 59.43996 4.00000 12.554020 Variance inflation factors LOGELV.1400 LOGTBY Т 1.048162 1.212831 1.201626 Test criteria leverage cooksD dfits 0.129 0.877 0.415 Observations exceeding at least one test criterion LOGACT yhat resids stnd.res stud.res leverage cooksD dfits 150.0000.213-0.213-0.758-0.7560.13090.0216-0.29325-0.3010.236-0.537-1.832-1.8570.05900.0526-0.465270.7780.2420.5361.8341.8590.06340.05690.484 30 -0.301 0.393 -0.694 -2.471 -2.546 0.1357 0.2396 -1.009 50 0.602 0.121 0.481 1.732 1.752 0.1556 0.1381 0.752 60 -0.301 0.788 -1.089 -3.650 -3.936 0.0251 0.0857 -0.631 76 0.000 0.765 -0.765 -2.579 -2.666 0.0353 0.0609 -0.510

Figure 26. S+[®] output of regression model development using reservoir elevation (ELV), turbidity (TBY, YSI model 6026 sensor), and water temperature (T) as explanatory variables for actinomycetes bacteria (ACT) densities for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

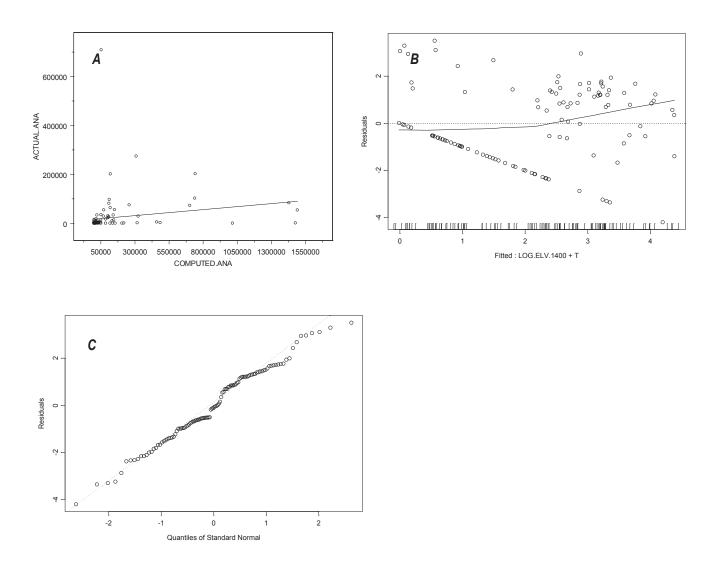
Figure 27. S+[®] output graphs from simple linear regression analysis using reservoir elevation (ELV), turbidity (TBY, YSI model 6026 sensor), and water temperature (T) as explanatory variables for actinomycetes bacteria (ACT) showing *A*, computed compared to actual ACT concentrations; *B*, computed log-transformed ACT concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

*** Linear Model *** Call: lm(formula = LOGANA ~ LOG.ELV.1400 + T, data = Anabaena.Splus, na.action = na.exclude) Residuals: Min 1Q Median ЗQ Max -4.196 -0.9902 -0.09599 1.253 3.504 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 34.4946 8.2782 4.1669 0.0001 LOG.ELV.1400 -25.8073 6.2229 -4.1471 0.0001 т 0.1203 0.0166 7.2324 0.0000 Residual standard error: 1.619 on 111 degrees of freedom Multiple R-Squared: 0.3724 Adjusted R-squared: 0.3611 F-statistic: 32.93 on 2 and 111 degrees of freedom, the p-value is 5.901e-012 Correlation of Coefficients: (Intercept) LOG.ELV.1400 LOG.ELV.1400 -0.9993 T 0.0321 -0.0653Analysis of Variance Table Response: LOGANA Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) LOG.ELV.1400 1 35.5214 35.5214 13.55996 0.0003585721 T 1 137.0251 137.0251 52.30801 0.0000000001 Residuals 111 290.7735 2.6196 Ср model.formula nvars stderr adjr2 press LOGANA ~ LOG.ELV.1400 + T 2 1.618512 36.11054 3.00000 307.3110 Variance inflation factors LOG.ELV.1400 Т 1.004288 1.004288 Test criteria leverage cooksD dfits 0.0789 0.844 0.324 Observations exceeding at least one test criterion LOGANA yhat resids stnd.res stud.res leverage cooksD dfits 5 0.00 4.19575 -4.20 -2.64 -2.72 0.0370 0.0894 -0.532

 3.08
 0.13138
 2.94
 1.85
 1.87
 0.0342
 0.0404
 0.352

 3.07
 0.00334
 3.06
 1.93
 1.95
 0.0379
 0.0404
 0.352

 4.06
 0.55603
 3.50
 2.19
 2.23
 0.0253
 0.0416
 0.359


 4.17
 1.49381
 2.68
 1.71
 1.72
 0.0583
 0.0600
 0.428

 5.30
 3.36865
 1.93
 1.24
 1.25
 0.0752
 0.0419
 0.355

 4.26
 2.51305
 1.75
 1.14
 1.14
 0.1048
 0.0508
 0.391

 7 8 11 31 52 4.26 2.51305 1.75 53 55 0.00 2.37637 -2.38 -1.52 -1.53 0.0633 0.0519 -0.397 92 3.36 0.07123 3.29 2.07 2.10 0.0358 0.0531 0.405

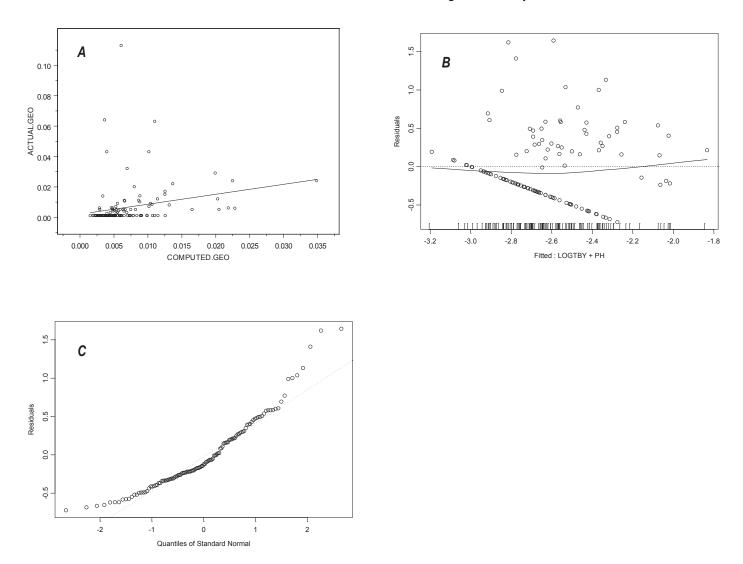

Figure 28. S+[®] output of regression model development using reservoir elevation (ELV) and water temperature (T) as explanatory variables for *Anabaena* spp. (ANA) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 29. S+[®] output graphs from simple linear regression analysis using reservoir elevation (ELV) and water temperature (T) as explanatory variables for *Anabaena* spp. (ANA) showing *A*, computed compared to actual ANA concentrations; *B*, computed log-transformed ANA concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

*** Linear Model *** Call: lm(formula = LOGGEO ~ LOGTBY + PH, data = Geosmin.Splus.New, na.action = na.exclude) Residuals: Min 1Q Median ЗQ Max -0.7243 -0.3228 -0.1244 0.268 1.644 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) -7.0015 1.8357 -3.8141 0.0002 LOGTBY -0.6356 0.1685 -3.7727 0.0002 PH 0.6115 0.2082 2.9374 0.0039 Residual standard error: 0.4757 on 124 degrees of freedom Multiple R-Squared: 0.2216 Adjusted R-squared: 0.2091 F-statistic: 17.65 on 2 and 124 degrees of freedom, the p-value is 1.792e-007 Correlation of Coefficients: (Intercept) LOGTBY LOGTBY -0.4516 PH -0.9944 0.3577 Analysis of Variance Table Response: LOGGEO Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) LOGTBY 1 6.03799 6.037987 26.67987 0.000000929 PH 1 1.95264 1.952637 8.62806 0.003947642 Residuals 124 28.06275 0.226312 Ср model.formula nvars stderr adjr2 press LOGGEO ~ LOGTBY + PH 2 0.4757231 20.90789 3.000000 29.71152 Variance inflation factors LOGTBY PH 1.146753 1.146753 Test criteria leverage cooksD dfits 0.0709 0.844 0.307 Observations exceeding at least one test criterion LOGGEO yhat resids stnd.res stud.res leverage cooksD dfits 14 -1.658 -2.24 0.582 1.377 1.382 0.2123 0.17043 0.718 19-1.201-2.331.1322.4912.5450.08700.197060.78621-0.947-2.591.6443.5223.6970.03670.157680.72229-3.000-3.190.1920.4250.4240.09620.006410.13830-1.620-1.830.2130.4690.4670.08480.006790.142 30 -1.620 -1.83 0.213 36 -1.367 -2.78 1.410 3.010 3.113 0.0299 0.09298 0.546 38 -1.367 -2.37 1.001 2.142 2.174 0.0344 0.05452 0.410 39 -1.194 -2.81 1.620 3.434 3.595 0.0161 0.06423 0.460 83 -2.237 -2.02 -0.220 -0.480 -0.479 0.0725 0.00601 -0.134

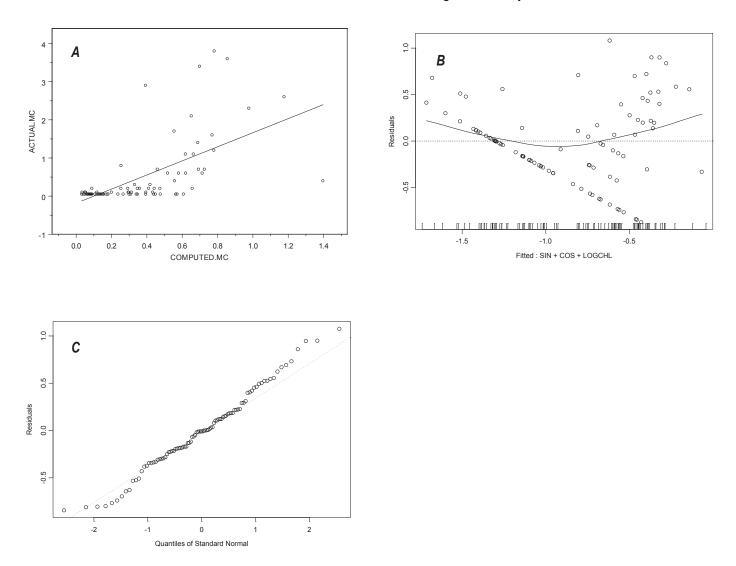

Figure 30. S+® output of regression model development using turbidity (TBY, YSI model 6026 sensor) and pH (PH) as explanatory variables for geosmin (GEO) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 31. S+[®] output graphs from simple linear regression analysis using turbidity (TBY, YSI model 6026 sensor) and pH (PH) as explanatory variables for geosmin (GEO) showing *A*, computed compared to actual GEO concentrations; *B*, computed log-transformed GEO concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

*** Linear Model *** Call: lm(formula = LOGMC ~ SIN + COS + LOGCHL, data = Microcystin.Splus, na.action = na.exclude) Residuals: Min 1Q Median 3Q Max -0.8723 -0.2689 -0.001287 0.2157 1.08 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) -1.8153 0.2319 -7.8268 0.0000 SIN -0.5916 0.0706 -8.3810 0.0000 COS -0.3244 0.0748 -4.3392 0.0000 LOGCHL 0.8574 0.2222 3.8588 0.0002 Residual standard error: 0.4333 on 90 degrees of freedom Multiple R-Squared: 0.4822 Adjusted R-squared: 0.4649 F-statistic: 27.93 on 3 and 90 degrees of freedom, the p-value is 7.376e-013 Correlation of Coefficients: (Intercept) SIN COS SIN 0.4812 COS 0.4505 0.1249 LOGCHL -0.9794 -0.4753 -0.4072 Analysis of Variance Table Response: LOGMC Terms added sequentially (first to last) Df Sum of Sq Mean Sq F Value Pr(F) SIN 1 11.21395 11.21395 59.72654 0.00000000 COS 1 1.72434 1.72434 9.18399 0.003187402 LOGCHL 1 2.79567 2.79567 14.89001 0.000214012 Residuals 90 16.89795 0.18775 Cp press model.formula nvars stderr adjr2 LOGMC ~ SIN + COS + LOGCHL 3 0.4333070 46.490383 4.487311 18.33903 Variance inflation factors SIN COS LOGCHL 1.301281 1.207573 1.535598 Test criteria leverage cooksD dfits 0.128 0.877 0.413 Observations exceeding at least one test criterion LOGMC yhat resids stnd.res stud.res leverage cooksD dfits 260.580-0.3190.8992.112.160.03670.04260.42134-1.000-1.6790.6791.671.690.11810.09330.617 34-1.000-1.6790.6791.671.690.11810.09330.617900.462-0.6181.0802.542.620.03790.06370.521

Figure 32. S+[®] output of regression model development using season (SIN and COS) and fluorescence (CHL) as explanatory variables for microcystin (MC) concentrations for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, during 2001 through 2009.

Figure 33. S+[®] output graphs from simple linear regression analysis using season (SIN and COS) and fluorescence (CHL) as explanatory variables for microcystin (MC) showing *A*, computed compared to actual MC concentrations; *B*, computed log-transformed MC concentrations compared to regression residuals; and *C*, standard normal quantiles compared to regression residuals for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Results of Multiple Logistic Regression Analysis for Geosmin and Microcystin

The multiple logistic regression models that estimate the probability of the occurrence of geosmin and microcystin concentrations above relevant thresholds (0.005 µg/L and $0.1 \,\mu$ g/L, respectively) are shown in table 18. Model datasets are presented in tables 19 and 20 and SigmaPlot® statistical model output (Systat Software, Inc., 2008) is presented in figures 34 and 35. The best fit model for geosmin occurrence included a seasonal component and turbidity as explanatory variables, likely because geosmin occurrences in Cheney Reservoir have seasonal patterns mediated by light. The threshold of the geosmin model was reset from 0.5 to 0.32, which was the estimated proportion of detections in the dataset. The final logistic geosmin model correctly estimated the likelihood of geosmin concentrations exceeding the detection threshold 70 percent of the time and not exceeding the detection threshold 71 percent of the time, resulting in an overall sensitivity of 71 percent (table 18, fig. 34).

The best fit model for microcystin occurrence also included a seasonal component as well as fluorescence likely because microcystin occurrences in Cheney Reservoir have seasonal patterns mediated by algal community composition and abundance. The threshold of the microcystin model was reset from 0.5 to 0.47, which was the estimated proportion of detections in the dataset. The final logistic microcystin model correctly estimated the likelihood of microcystin concentrations exceeding the detection threshold 89 percent of the time and not exceeding the detection threshold 74 percent of the time, resulting in an overall sensitivity of 81 percent (table 18, fig. 35).

Turbidity, YSI Model 6026 and 6136 Sensors

Regression models were developed in this report and by Christensen and others (2006) using YSI_{6026} turbidity sensor data to compute concentrations or densities of physical, chemical, and biological water properties. Because of the change in turbidity instrumentation from YSI_{6026} to YSI_{6136} sensors in January 2011, the regression models that were developed using YSI_{6026} data require modification. The computation of a conversion factor allows the YSI_{6026} sensor regression models to include turbidity measurements from the YSI_{6136} sensor.

The ordinary least squares regression shows the linear association between the YSI₆₀₂₆ and YSI₆₁₃₆ turbidity sensors and explains 80 percent of the variance between the sensor turbidity readings (fig. 36, table 21). YSI₆₁₃₆ sensor measurements were on average 24 percent lower than YSI₆₀₂₆ measurements. The ratios of the YSI₆₁₃₆ sensor values to theYSI₆₀₂₆ sensor values ranged from 0.16 to 3.43 and had a median of 0.74 (table 21). To convert YSI₆₀₂₆ turbidity measurements in Cheney Reservoir, the YSI₆₀₂₆ turbidity measurements in Cheney Reservoir, the YSI₆₀₂₆ turbidity measurement should be multiplied by the conversion factor of 0.74. Original and newly developed models from this report are shown in tables 22, 23, and 24 in addition to converted models that should be used to calculate concentrations when turbidity is measured using the YSI₆₁₃₆ turbidity sensor at the Cheney Reservoir site.

 Table 18.
 Best fit multiple logistic regression models and summary statistics for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

 2009.

[Logit P Pres, logistic probability of presence; sin, sine; D, day of year; cos, cosine; TBY₆₀₂₆, turbidity from YSI sensor 6026 in formazin nephelometric units; <, less than; CHL, fluorescence at a wavelength of 650 to 700 nanometers]

	ŧ	Resp	onse	Response information						
Multiple logistic regression equation	Threshold probability for positive classification Classification table	Predicted reference responses	Predicted positive responses	Disgnostic	Totals	Percent	Pearson chi-squared (p-value)	(sulev-q) test otto test (p-value)	-2 log liklihood statistic	(əuløv-q) worlzməJ-nəmzoH
	Geosmin (GEO)									
Logit P Pres = $0.825 \sin(2\pi D/365) - 0.262 \cos(2\pi D/365) - 0.102(TBY_{6026}) + 0.829$	0.32 Actual reference responses	62	25	Specificity	87	71	143.8 (0.087)	25.551 (<0.001)	132.694	3.650 (0.887)
	Actual positive responses	12	28	Sensitivity	40	70				
	Totals	74	53	Overall	127	71				
	Microcystin (MC)									
Logit P Pres = -1.990sin($2\pi D/365$) - 1.340cos($2\pi D/365$) + 0.0511(CHL) - 1.305	0.47 Actual reference	37	13	Specificity	50	74	110.273 (0.063)	36.408 (<0.001)	93.521	10.239 (0.249)
	responses									

88 Real-Time and Discrete Water-Quality Constituent Relations in Cheney Reservoir near Cheney, Kansas, 2001–2009

Table 19.Geosmin logistic regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoir nearCheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

[hhmm, hours and minutes; sin, sine; D, day of year; cos, cosine; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	sin(2 πD/365)	cos(2πD/365)	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Geosmin occurrence
May 3, 2001	1055	0.8543	-0.5197	38	0
June 4, 2001	1030	0.4559	-0.8900	20	1
June 22, 2001	1155	0.1628	-0.9867	22	1
July 24, 2001	1055	-0.3777	-0.9259	18	0
August 29, 2001	1125	-0.8453	-0.5344	13	0
May 15, 2002	1115	0.7296	-0.6839	27	0
June 19, 2002	0955	0.2135	-0.9769	36	0
July 11, 2002	1005	-0.1628	-0.9867	12	1
August 7, 2002	1000	-0.5878	-0.8090	13	0
September 4, 2002	1015	-0.8958	-0.4444	12	1
September 25, 2002	1010	-0.9951	-0.0988	20	1
January 21, 2003	1210	0.3537	0.9354	6.5	1
January 23, 2003	1055	0.3857	0.9226	3.9	1
February 10, 2003	1250	0.6486	0.7611	1.6	1
March 3, 2003	1025	0.8759	0.4825	3.3	1
March 12, 2003	1200	0.9399	0.3416	4.5	1
March 13, 2003	1200	0.9456	0.3253	5.6	1
June 17, 2003	1045	0.2470	-0.9690	14	1
June 20, 2003	0905	0.1967	-0.9805	3.5	1
July 7, 2003	0940	-0.0945	-0.9955	24	1
July 17, 2003	1155	-0.2637	-0.9646	27	1
March 10, 2004	1115	0.9338	0.3577	22	0
April 8, 2004	1015	0.9911	-0.1330	31	0
May 5, 2004	1115	0.8264	-0.5632	21	0
June 3, 2004	1000	0.4559	-0.8900	21	0
July 15, 2004	0950	-0.2470	-0.9690	7.0	1
August 12, 2004	0915	-0.6681	-0.7441	23	0
August 27, 2004	1115	-0.8359	-0.5488	32	0
September 9, 2004	0935	-0.9369	-0.3496	26	0
February 2, 2005	1035	0.5380	0.8429	2.7	1
March 16, 2005	1015	0.9611	0.2761	10	0
April 13, 2005	1000	0.9796	-0.2009	18	0
May 4, 2005	1120	0.8452	-0.5344	10	0
May 16, 2005	0955	0.7177	-0.6964	8.1	0
June 1, 2005	1020	0.5012	-0.8653	8.1	0
June 15, 2005	0945	0.2802	-0.9599	14	1
June 29, 2005	1000	0.0430	-0.9991	25	0
July 13, 2005	0920	-0.1967	-0.9805	15	1
July 27, 2005	0850	-0.4250	-0.9052	20	1
August 10, 2005	0855	-0.6288	-0.7776	12	0
August 30, 2005	0945	-0.8543	-0.5197	22	0
September 7, 2005	1030	-0.9176	-0.3975	12	0
October 13, 2005	1030	-0.9778	0.2093	18	0

Table 19. Geosmin logistic regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoir nearCheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	sin(2πD/365)	cos(2πD/365)	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Geosmin occurrence ¹
October 27, 2005	1005	-0.8996	0.4367	20	0
January 11, 2006	1210	0.1882	0.9821	8.9	0
March 1, 2006	1105	0.8588	0.5124	3.2	1
March 29, 2006	1005	0.9984	0.0559	10	0
April 25, 2006	1245	0.9176	-0.3975	34	0
May 17, 2006	1055	0.7056	-0.7086	20	0
May 31, 2006	1140	0.5161	-0.8566	10	0
June 14, 2006	1045	0.2967	-0.9550	25	0
June 28, 2006	0955	0.0602	-0.9982	13	0
July 13, 2006	0940	-0.1967	-0.9805	15	0
July 26, 2006	1115	-0.4094	-0.9124	14	0
August 10, 2006	1005	-0.6288	-0.7776	17	0
August 22, 2006	1000	-0.7749	-0.6321	21	0
September 6, 2006	1020	-0.9106	-0.4133	10	1
September 20, 2006	1015	-0.9829	-0.1840	22	0
September 26, 2006	1130	-0.9967	-0.0817	10	0
September 28, 2006	1120	-0.9989	-0.0473	28	0
September 29, 2006	1130	-0.9995	-0.0301	28	0
October 11, 2006	0950	-0.9845	0.1755	29	0
October 25, 2006	0945	-0.9141	0.4054	35	1
December 12, 2006	1115	-0.3213	0.9470	9.2	0
February 7, 2007	1115	0.6085	0.7936	14	1
March 7, 2007	1135	0.9070	0.4211	14	1
April 9, 2007	1045	0.9911	-0.1330	23	0
May 8, 2007	0940	0.8065	-0.5913	11	0
May 31, 2007	1020	0.5161	-0.8566	27	0
June 13, 2007	1140	0.3131	-0.9497	35	0
June 25, 2007	1000	0.1117	-0.9937	25	0
July 9, 2007	0950	-0.1288	-0.9917	21	0
July 23, 2007	1020	-0.3617	-0.9323	21	0
August 7, 2007	0930	-0.5878	-0.8090	27	0
August 15, 2007	0955	-0.6933	-0.7207	23	0
August 28, 2007	1055	-0.8359	-0.5488	28	0
September 12, 2007	1025	-0.9484	-0.3172	13	0
September 24, 2007	1025	-0.9933	-0.1159	17	0
October 15, 2007	1025	-0.9701	0.2429	29	0
October 29, 2007	1045	-0.8841	0.4674	26	0
November 13, 2007	1043	-0.7354	0.6776	25	0
December 19, 2007	11040	-0.2051	0.9787	8.1	0
February 11, 2008	1100	0.6616	0.7498	2.7	0
March 10, 2008		0.9338		2.7 9.0	
	1125		0.3577		1
April 1, 2008	0955	0.9999	-0.0129	19	1
April 16, 2008	1140	0.9635	-0.2678	28	1

[hhmm, hours and minutes; sin, sine; D, day of year; cos, cosine; YSI, Yellow Springs Instruments]

90 Real-Time and Discrete Water-Quality Constituent Relations in Cheney Reservoir near Cheney, Kansas, 2001–2009

Table 19. Geosmin logistic regression dataset using seasonal data and turbidity as explanatory variables for Cheney Reservoir nearCheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; sin, sine; D, day of year; cos, cosine; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	sin(2πD/365)	cos(2πD/365)	Turbidity, in formazin nephelometric units (YSI model 6026 sensor)	Geosmin occurrence ¹
April 29, 2008	1035	0.8800	-0.4750	42	0
May 13, 2008	1020	0.7412	-0.6713	30	0
June 3, 2008	0945	0.4559	-0.8900	22	0
June 18, 2008	0920	0.2135	-0.9769	31	0
June 2005, 2008	1200	0.0945	-0.9955	17	1
July 7, 2008	1035	-0.1117	-0.9937	18	0
July 21, 2008	1050	-0.3456	-0.9384	26	0
July 28, 2008	0955	-0.4559	-0.8900	18	0
August 4, 2008	1020	-0.5596	-0.8288	18	0
August 18, 2008	0945	-0.7412	-0.6713	15	1
September 2, 2008	1000	-0.8881	-0.4597	16	0
September 17, 2008	1000	-0.9760	-0.2177	20	0
October 1, 2008	1055	-0.9998	0.0215	16	0
October 15, 2008	1150	-0.9657	0.2595	48	0
November 4, 2008	0950	-0.8215	0.5703	27	0
December 2, 2008	0950	-0.4635	0.8861	18	0
January 6, 2009	1010	0.1031	0.9947	7.3	0
January 20, 2009	1010	0.3375	0.9413	8.5	0
February 2, 2009	1000	0.5380	0.8429	6.9	0
February 18, 2009	1010	0.7470	0.6649	15	1
February 25, 2009	1030	0.8215	0.5702	10	1
March 3, 2009	1050	0.8759	0.4825	10	1
March 9, 2009	1050	0.9210	0.3896	10	1
March 12, 2009	1120	0.9399	0.3416	16	1
March 16, 2009	1100	0.9611	0.2761	9.3	1
March 25, 2009	1020	0.9922	0.1245	25	1
April 8, 2009	1010	0.9933	-0.1159	24	0
April 29, 2009	1030	0.8881	-0.4597	34	0
May 27, 2009	1140	0.5738	-0.8190	36	0
June 9, 2009	1100	0.3777	-0.9259	25	0
June 23, 2009	1045	0.1458	-0.9893	17	1
July 7, 2009	1100	-0.0945	-0.9955	12	1
July 21, 2009	1020	-0.3294	-0.9442	18	1
August 5, 2009	1030	-0.5596	-0.8288	14	0
August 24, 2009	1000	-0.7962	-0.6050	16	0
September 2, 2009	1030	-0.8800	-0.4749	20	0
September 16, 2009	1030	-0.9679	-0.2512	19	0
October 5, 2009	1100	-0.9973	0.0731	24	0
October 19, 2009	1100	-0.9511	0.3090	22	0
November 23, 2009	1100	-0.6085	0.7936	17	0
December 16, 2009	1140	-0.2553	0.9669	16	0

¹A value of 1 indicates occurrence and a value of 0 indicates a non-occurrence.

Table 20.Microcystin logistic regression dataset using seasonal data and fluorescence as explanatory variablesfor Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.

Date	Time, in hhmm	sin(2πD/365)	cos(2πD/365)	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Microcystin occurrence ¹
June 1, 2005	1020	0.5012	-0.8653	6.4	0
June 15, 2005	0945	0.2802	-0.9599	12.2	1
June 29, 2005	1000	0.0430	-0.9991	7.1	0
July 13, 2005	0920	-0.1967	-0.9805	11.6	1
July 27, 2005	0850	-0.4250	-0.9052	8.0	1
August 10, 2005	0855	-0.6288	-0.7776	5.4	1
August 30, 2005	0945	-0.8543	-0.5197	11.8	1
September 7, 2005	1030	-0.9176	-0.3975	7.4	1
October 13, 2005	1030	-0.9778	0.2093	9.5	1
October 27, 2005	1005	-0.8996	0.4367	9.2	1
January 11, 2006	1210	0.1882	0.9821	19.7	0
March 1, 2006	1105	0.8588	0.5124	19.1	0
March 29, 2006	1005	0.9984	0.0559	23.0	0
April 25, 2006	1245	0.9176	-0.3975	8.5	0
May 17, 2006	1055	0.7056	-0.7086	11.7	0
May 31, 2006	1140	0.5161	-0.8566	8.9	0
June 14, 2006	1045	0.2967	-0.9550	6.6	0
June 28, 2006	0955	0.0602	-0.9982	6.9	1
July 13, 2006	0940	-0.1967	-0.9805	5.5	1
July 26, 2006	1115	-0.4094	-0.9124	10.7	1
August 10, 2006	1005	-0.6288	-0.7776	10.2	1
August 22, 2006	1000	-0.7749	-0.6321	6.6	1
September 6, 2006	1020	-0.9106	-0.4133	14.7	1
September 20, 2006	1015	-0.9829	-0.1840	9.9	1
September 26, 2006	1130	-0.9967	-0.0817	11.8	1
September 28, 2006	1120	-0.9989	-0.0473	10.9	1
September 29, 2006	1130	-0.9995	-0.0301	9.7	1
October 11, 2006	0950	-0.9845	0.1755	7.3	1
October 25, 2006	0945	-0.9141	0.4054	6.8	1
December 12, 2006	1115	-0.3213	0.9470	10.2	0
February 7, 2007	1115	0.6085	0.7936	6.9	0
March 7, 2007	1135	0.9070	0.4211	33.6	0
April 9, 2007	1045	0.9911	-0.1330	17.2	0
May 8, 2007	0940	0.8065	-0.5913	3.1	1
May 31, 2007	1020	0.5161	-0.8566	4.8	1
June 13, 2007	1140	0.3131	-0.9497	5.0	0
June 25, 2007	1000	0.1117	-0.9937	5.1	0
July 9, 2007	0950	-0.1288	-0.9917	7.7	1
July 23, 2007	1020	-0.3617	-0.9323	10.6	1
August 7, 2007	0930	-0.5878	-0.8090	9.9	1
August 15, 2007	0955	-0.6933	-0.7207	8.5	1

[hhmm, hours and minutes; sin, sine; D, day of year; cos, cosine; YSI, Yellow Springs Instruments]

 Table 20.
 Microcystin logistic regression dataset using seasonal data and fluorescence as explanatory variables
 for Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

[hhmm, hours and minutes; sin, sine; D, day of year; cos, cosine; YSI, Yellow Springs Instruments]

Date	Time, in hhmm	sin(2πD/365)	cos(2πD/365)	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Microcystin occurrence
August 28, 2007	1055	-0.8359	-0.5488	7.0	1
September 12, 2007	1025	-0.9484	-0.3172	8.4	1
September 24, 2007	1025	-0.9933	-0.1159	9.0	1
October 15, 2007	1005	-0.9701	0.2429	7.1	1
October 29, 2007	1045	-0.8841	0.4674	7.1	1
November 13, 2007	1040	-0.7354	0.6776	10.6	0
December 19, 2007	1100	-0.2051	0.9787	5.8	0
February 11, 2008	1100	0.6616	0.7498	12.5	1
February 14, 2008	1105	0.6995	0.7147	12.8	0
February 15, 2008	1025	0.7117	0.7025	14.2	1
March 10, 2008	1125	0.9338	0.3577	25.6	0
April 1, 2008	0955	0.9999	-0.0129	29.6	1
April 16, 2008	1140	0.9635	-0.2678	10.7	0
April 29, 2008	1035	0.8800	-0.4750	8.1	0
May 13, 2008	1020	0.7412	-0.6713	5.7	0
June 3, 2008	0945	0.4559	-0.8900	5.9	0
June 18, 2008	0920	0.2135	-0.9769	6.8	1
July 7, 2008	1035	-0.1117	-0.9937	5.3	1
July 21, 2008	1050	-0.3456	-0.9384	11.7	1
July 28, 2008	0955	-0.4559	-0.8900	24.4	1
August 4, 2008	1020	-0.5596	-0.8288	6.2	1
August 18, 2008	0945	-0.7412	-0.6713	3.7	1
September 2, 2008	1000	-0.8881	-0.4597	5.1	0
September 17, 2008	1000	-0.9760	-0.2177	4.9	1
October 1, 2008	1055	-0.9998	0.0215	5.2	0
October 15, 2008	1150	-0.9657	0.2595	5.7	0
November 4, 2008	0950	-0.8215	0.5703	8.0	1
December 2, 2008	0950	-0.4635	0.8861	7.1	0
January 6, 2009	1010	0.1031	0.9947	23.1	0
January 20, 2009	1010	0.3375	0.9413	31.2	0
February 2, 2009	1000	0.5380	0.8429	49.4	0
February 18, 2009	1010	0.7470	0.6649	23.0	0
February 25, 2009	1030	0.8215	0.5702	23.7	0
March 3, 2009	1050	0.8759	0.4825	24.4	0
March 9, 2009	1050	0.9210	0.3896	22.0	0
March 12, 2009	1120	0.9399	0.3416	24.2	0
March 16, 2009	1100	0.9611	0.2761	23.1	0
March 25, 2009	1020	0.9922	0.1245	23.5	0
April 8, 2009	1010	0.9933	-0.1159	16.2	0
April 29, 2009	1030	0.8881	-0.4597	4.9	0
May 27, 2009	1140	0.5738	-0.8190	7.6	0

Table 20.Microcystin logistic regression dataset using seasonal data and fluorescence as explanatory variablesfor Cheney Reservoir near Cheney, Kansas (site 07144790), south-central Kansas, 2001 through 2009.—Continued

Date	Time, in hhmm	sin(2 πD/365)	cos(2πD/365)	Fluorescence at a wavelength of 650 to 700 nanometers (YSI model 6025 sensor)	Microcystin occurrence ¹
June 9, 2009	1100	0.3777	-0.9259	14.8	0
June 23, 2009	1045	0.1458	-0.9893	15.5	0
July 7, 2009	1100	-0.0945	-0.9955	9.1	1
July 21, 2009	1020	-0.3294	-0.9442	3.6	0
August 5, 2009	1030	-0.5596	-0.8288	7.7	0
August 24, 2009	1000	-0.7962	-0.6050	6.9	0
September 2, 2009	1030	-0.8800	-0.4749	6.2	0
September 16, 2009	1030	-0.9679	-0.2512	4.3	1
October 5, 2009	1100	-0.9973	0.0731	6.2	0
October 19, 2009	1100	-0.9511	0.3090	6.2	0
November 23, 2009	1100	-0.6085	0.7936	6.5	0
December 16, 2009	1140	-0.2553	0.9669	4.5	0

[hhmm, hours and minutes; sin, sine; D, day of year; cos, cosine; YSI, Yellow Springs Instruments]

¹A value of 1 indicates occurrence and a value of 0 indicates a non-occurrence.

Multiple Logistic Regression

Data source: Geosmin Data in GEO.JNB

Logit P = 0.829 + (0.825 * SIN) - (0.262 * COS) - (0.102 * TBY)

N = 127 Estimation Criterion: Maximum likelihood Dependent Variable: Geo Positive response (1): 1 Reference response (0): 0 Number of unique independent variable combinations: 126

Pearson Chi-square Statistic: 143.776 (P = 0.087)Likelihood Ratio Test Statistic: 25.551 (P = <0.001)-2*Log(Likelihood) = 132.694Hosmer-Lemeshow Statistic: 3.650 (P = 0.887)

Threshold probability for positive classification: 0.320 **Classification Table:**

	Predicted Reference	Predicted Positive	Totals
Actual Reference Responses	62	25	87
Actual Positive Responses	12	28	40
Totals	74	53	127

Details of the Logistic Regression Equation

Ind. Variable	Coefficient	Standard Error	Wald Statistic	P value	VIF
Constant	0.829	0.500	2.746	0.097	
SIN	0.825	0.327	6.357	0.012	1.036
COS	-0.262	0.351	0.555	0.456	1.107
TBY	-0.102	0.0299	11.536	< 0.001	1.129

Ind. Variable	Odds Ratio	5% Conf. Lower	95% Conf. Upper
Constant	2.292	0.859	6.112
SIN	2.282	1.202	4.332
COS	0.770	0.387	1.532
TBY	0.903	0.852	0.958

Figure 34. SigmaPlot[®] output results of multiple logistic regression analysis using season (SIN and COS), turbidity (TBY), and geosmin (GEO) data.

Multiple Logistic Regression

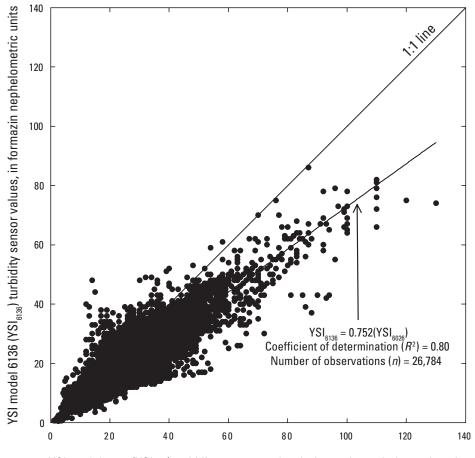
Data source: Microcystin Data in MC.JNB

Logit P = -1.305 - (1.990 * SIN) - (1.340 * COS) + (0.0511 * CHL)

N = 94 Estimation Criterion: Maximum likelihood Dependent Variable: DET MC Positive response (1): 1 Reference response (0): 0 Number of unique independent variable combinations: 94

Pearson Chi-square Statistic: 110.273 (P = 0.063) Likelihood Ratio Test Statistic: 36.408 (P = <0.001) -2*Log(Likelihood) = 93.521 Hosmer-Lemeshow Statistic: 10.239 (P = 0.249)

Threshold probability for positive classification: 0.470 **Classification Table:**


	Predicted Reference	Predicted Positive	Totals
Actual Reference Responses	37	13	50
Actual Positive Responses	5	39	44
Totals	42	52	94

Details of the Logistic Regression Equation

Ind. Variable	Coefficient	Standard Error	Wald Statistic	P value	VIF
Constant	-1.305	0.645	4.092	0.043	
SIN	-1.990	0.464	18.405	< 0.001	1.348
COS	-1.340	0.456	8.621	0.003	1.239
CHL	0.0511	0.0439	1.355	0.244	1.620

Ind. Variable	Odds Ratio	5% Conf. Lower	95% Conf. Upper
Constant	0.271	0.0766	0.960
SIN	0.137	0.0551	0.339
COS	0.262	0.107	0.640
CHL	1.052	0.966	1.147

Figure 35. SigmaPlot[®] output results of multiple logistic regression analysis using season (SIN and COS), fluorescence (CHL), and microcystin (MC) data.

YSI model 6026 (YSI $_{\scriptscriptstyle 6026})$ turbidity sensor vaules, in formazin nephelometric units

Figure 36. Relation between Yellow Springs Instruments (YSI) model 6026 (YSI₆₀₂₆) and YSI model 6136 (YSI₆₁₃₆) turbidity sensor values at Cheney Reservoir near Cheney, Kansas (site 07144790), September 2006 through September 2010.

 Table 21.
 Summary statistics for data used in turbidity sensor linear regression analyses for Cheney

 Reservoir near Cheney, Kansas (site 07144790), September 2006 through September 2010.

 $[R^2$, coefficient of determination; *n*, number of observations; TBY₆₁₃₆, YSI model 6136 turbidity in formazin nephelometric units (FNU); TBY₆₀₂₆, YSI model 6026 turbidity in FNU]

Regression equation	R ²	Turbidity sensor type or ratio	п	Range	Mean	Median
$TBY_{6136} = 0.752(TBY_{6026})$	0.80	YSI ₆₀₂₆	26,784	1.10-130	23	22
		YSI ₆₁₃₆	26,784	0.50-86.0	18	16
		YSI ₆₁₃₆ /YSI ₆₀₂₆ ratio	26,784	0.16-3.43	0.75	0.74

Table 22. Updated Christensen and others (2006) linear regression models for Cheney Reservoir near Cheney, Kansas (site 07144790).

[mg/L, milligrams per liter; 6026, YSI model 6026 turbidity sensor; TSS, total suspended solids in milligrams per liter; TBY₆₀₂₆, turbidity from YSI sensor 6026 in formazin nephelometric units; 6136, YSI model 6136 turbidity sensor; TBY₆₁₃₆, turbidity from YSI sensor 6136 in formazin nephelometric units; SSC, suspended sediment concentration in milligrams per liter; log, log_{10} ; NO₂NO₃, nitrite plus nitrate in milligrams per liter; DO, dissolved oxygen in milligrams per liter; T, water temperature in degrees Celsius; TKN, total Kjeldahl nitrogen (total ammonia plus organic nitrogen) in milligrams per liter; pH, pH in standard units; TP, total phosphorus in milligrams per liter; OP, orthophosphate in milligrams per liter; GEO, geosmin in micrograms per liter; CHL, fluorescence at a wavelength of 650 to 700 nanometers; col/100 mL, colonies per 100 milliliters; ANA, *Anabaena* spp. in colonies per 100 milliliters]

Constituent	Sensor type	Regression model
Total suspended solids (mg/L)	6026	$TSS = 0.2125(TBY_{6026}) + 2.8474$
	6136	$TSS = 0.2872(TBY_{6136}) + 2.8474$
Suspended sediment (mg/L)	6026	$log(SSC) = 0.5966log(TBY_{6026}) + 0.3610$
	6136	$log(SSC) = 0.5966log(TBY_{6136}) + 0.4390$
Nitrite plus nitrate (mg/L)	6026	$log(NO_2NO_3) = -2.5log(DO) + 0.7094log(TBY_{6026}) - 0.0014(T^2) + 0.9793$
	6136	$log(NO_2NO_3) = -2.5log(DO) + 0.7094log(TBY_{6136}) - 0.0014(T^2) + 1.0721$
Total Kjeldahl nitrogen (mg/L)	6026	$TKN = 0.0085(TBY_{6026}) + 0.7039log(DO) + 0.6577(pH) - 5.5840$
	6136	$TKN = 0.0115(TBY_{6136}) + 0.7039log(DO) + 0.6577(pH) - 5.5840$
Total phosphorus (mg/L)	6026	$TP = 0.0022(T) + 0.0010(TBY_{6026}) + 0.0218$
	6136	$TP = 0.0022(T) + 0.0014(TBY_{6136}) + 0.0218$
Orthophosphorus (mg/L)	6026	$log(OP) = 1.0067log(TBY_{6026}) - 2.7586$
	6136	$log(OP) = 1.0067log(TBY_{6136}) - 2.6270$
Geosmin (µg/L)	6026	$log(GEO) = -1.0664log(TBY_{6026}) - 0.0097(SC) + 7.2310$
	6136	$\log(\text{GEO}) = -1.0664\log(\text{TBY}_{6136}) - 0.0097(\text{SC}) + 7.0994$
Chlorophyll-a (µg/L)	6026	$log(CHL) = 0.0145(TBY_{6026}) - 0.9872log(DO) - 0.2902$
	6136	$\log(CHL) = 0.0196(TBY_{6136}) - 0.9872\log(DO) - 0.2902$
Anabaena spp. (col/100 mL)	6026	$(ANA)10^5 = 4.3634(TBY_{6026}) - 7.0070$
	6136	$(ANA)10^5 = 5.8965(TBY_{6136}) - 7.0070$

98 Real-Time and Discrete Water-Quality Constituent Relations in Cheney Reservoir near Cheney, Kansas, 2001–2009

Table 23. Updated new linear regression models for Cheney Reservoir near Cheney, Kansas (site 07144790).

[mg/L, milligrams per liter; 6026, YSI model 6026 turbidity sensor; log, log₁₀, TBY₆₀₂₆, turbidity from YSI sensor 6026 in formazin nephelometric units; 6136, YSI model 6136 turbidity sensor; TBY₆₁₃₆, turbidity from YSI sensor 6136 in formazin nephelometric units; SSC, suspended sediment concentration in milligrams per liter; TP, total phosphorus in milligrams per liter; sin, sine; D, day of year; cos, cosine; OP, orthophosphate in milligrams per liter; T, water temperature in degrees Celsius; CHL, fluorescence at a wavelength of 650 to 700 nanometers; ACT, actinomycetes bacteria in colonies per milliliter; ELV, reservoir elevation in feet]

Constituent	Sensor type	Regression model
Suspended sediment (mg/L)	6026	$SSC = 0.6304(TBY_{6026}) + 2.9310$
	6136	$SSC = 0.8519(TBY_{6136}) + 2.9310$
Total phosphorus (mg/L)	6026	$\log(\text{TP}) = -0.0633 \sin(2\pi D/365) - 0.1357 \cos(2\pi D/365) + 0.4390 \log(\text{TBY}_{6026}) - 1.6626$
	6136	$\log(\text{TP}) = -0.0633 \sin(2\pi D/365) - 0.1357 \cos(2\pi D/365) + 0.4390 \log(\text{TBY}_{6136}) - 1.6052$
Orthohphosphate (mg/L)	6026	$log(OP) = 0.4942log(TBY_{6026}) + 0.0189(T) - 0.5408log(CHL) - 2.0430$
	6136	$log(OP) = 0.4942log(TBY_{6136}) + 0.0189(T) - 0.5408log(CHL) - 1.9784$
Actinomycetes bacteria (col/mL)	6026	$log(ACT) = 11.06log(ELV - 1,400) + 0.9924log(TBY_{6026}) - 0.0163(T) - 14.93$
	6136	$log(ACT) = 11.06log(ELV - 1,400) + 0.9924log(TBY_{6136}) - 0.0163(T) - 14.80$

Table 24. Updated new logistic regression model for Cheney Reservoir near Cheney, Kansas (site 07144790).

[6026, YSI model 6026 turbidity sensor; Logit P Pres, logistic probability of presence; sin, sine; D, day of year; cos, cosine; TBY_{6026} , turbidity from YSI sensor 6026 in formazin nephelometric units; 6136, YSI model 6136 turbidity sensor; TBY_{6136} , turbidity from YSI sensor 6136 in formazin nephelometric units]

Constituent	Sensor type	Regression model
Geosmin	6026	Logit P Pres = $0.825 \sin(2\pi D/365) - 0.262 \cos(2\pi D/365) - 0.102(TBY_{6026}) + 0.829$
	6136	Logit P Pres = $0.825 \sin(2\pi D/365) - 0.262 \cos(2\pi D/365) - 0.138(TBY_{6136}) + 0.829$

Summary

Cheney Reservoir in south-central Kansas is one of the primary sources of water for the city of Wichita. The U.S. Geological Survey has operated a continuous real-time waterquality monitoring station since 2001 in Cheney Reservoir. Continuously measured physicochemical properties include specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence, and reservoir elevation. Discrete water-quality samples were collected during 2001 through 2009 and were analyzed for sediment, major ions, nutrients, taste-and-odor compounds, cyanotoxins, cyanotoxin producers, and other water-quality measures.

Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physicochemical properties to estimate concentrations of those constituents of interest that are not easily measured in real time. Regression models based on data collected during 2001 through 2003 were published in 2006. This report updates those models using discrete and continuous data collected during March 2001 through December 2009. Regression equations were updated based on continuous physical property measurements and analyses of discretely collected water samples. The previously published models for dissolved solids, sodium, chloride, suspendedsediment concentration, total phosphorus, orthophosphate, and chlorophyll-*a* were updated. New regression models were developed for magnesium, dissolved phosphorus, actinomycetes bacteria, and microcystin. The actinomycetes bacteria and microcystin models are particularly important because actinomycetes bacteria may be related to taste-and-odor occurrences and microcystin is a cyanotoxin.

Specific conductance was the single explanatory variable for dissolved solids, most other major ions, and some nutrient species. Turbidity was an explanatory variable for some nutrient species and actinomycetes bacteria. Fluroescence (an estimate of chlorophyll) was an explanatory variable for total suspended solids, orthophosphate, dissolved phosphorus, chlorophyll-*a*, and microcystin. Total phosphorus and microcystin models included a seasonal component. Updated dissolved solids, sodium, chloride, and suspended solids model forms were similar to previously published models. Some updated models changed substantially from previously published models or an acceptable model could not be developed. Those constituents with updated models that were different from original models are those that are affected by biological processes.

Because a high percentage of geosmin and microcystin data were below analytical detection thresholds (censored data), multiple logistic regression was used to develop models that best explained the probability of geosmin and microcystin concentrations exceeding relevant thresholds. The best fit multiple logistic regression model for geosmin included a seasonal component and turbidity as explanatory variables. The best fit multiple logistic regression model for microcystin also included a seasonal component as well as fluorescence as explanatory variables.

In-situ continuous turbidimeters were changed from Yellow Springs Instruments (YSI) model 6026 (YSI₆₀₂₆) to YSI model 6136 (YSI₆₁₃₆) sensors in 2011, and a relation between the continuous turbidity values of both sensors was developed using four years (September 2006 through September 2010) of concurrent YSI₆₀₂₆ and YSI₆₁₃₆ hourly turbidity measurements. The relation between turbidity values measured by the two sensor models was updated and a conversion factor of 0.74 was established to convert the YSI₆₀₂₆ turbidity measurements to YSI₆₁₃₆ measurements for Cheney Reservoir.

References Cited

- American Public Health Association, American Water Works Association, and Water Environment Federation, 2012, Standard methods for the examination of water and wastewater, (22nd ed.): Washington, D.C., American Water Works Association, 1,496 p.
- American Public Health Association, American Water Works Association, and Water Environment Federation, 1995, Standard methods for the examination of water and wastewater (19th ed.): Washington D.C., American Public Health Association, 905 p.
- Arar, E.J., and Collins, G.B, 1997, U.S. Environmental Protection Agency Method 445.0—In vitro determination of chlorophyll-a and pheophytin-a in marine and freshwater algae by fluorescence, Revision 1.2: Office of Research and Development, 22 p.

Christensen, V.G., Graham, J.L., Milligan, C.R., Pope, L.M., and Ziegler, A.C., 2006, Water quality and relation to tasteand-odor compounds in the North Fork Ninnescah River and Cheney Reservoir, south-central Kansas, 1997–2003: U.S. Geological Survey Scientific Investigations Report 2006–5095, 43 p.

- Duan, N., 1983, Smearing estimate a nonparametric retransformation method: Journal of the American Statistical Association, v. 78, no. 383, p. 605–610.
- Fishman, M.J., and Friedman, L.C., 1989, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 545 p.
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. C1, 58 p.
- Hardison, C.H., 1969, Accuracy of streamflow characteristics, *in* Geological Survey Research, 1969: U.S. Geological Survey Professional Paper 650–D, p. D210–D214.
- Helsel, D.R., and Hirsch, R.M., 2002, Statistical methods in water resources—Hydrologic analysis and interpretation: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A3, 510 p.
- Hosmer, D.W., Lemeshow, S., and Sturdivant, R.X., 2013, Applied logistic regression (3rd ed.): John Wiley and Sons, Inc., Hoboken, New Jersey, 528 p.
- Kansas Applied Remote Sensing Program, 2009, Kansas Land Cover Patterns, accessed August 2012 at *http://www.kars. ku.edu/research/2005-kansas-land-cover-patterns-level-iv/.*
- Kansas Department of Health and Environment, 2012, 2012 303(d) list of impaired waters, accessed November 2012 at http://www.kdheks.gov/tmdl/2012/303d List Long.pdf.
- Lane, S.L., Flanagan, S., and Wilde, F.D., 2003, Selection of equipment for water sampling (ver. 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A2, accessed November 2012 at http://pubs. water.usgs.gov/twri9A2/.
- Loftin, K.A., Meyer, M.T., Rubio, F., Kamp, L., Humphries, E., and Whereat, E., 2008, Comparison of two cell lysis procedures for recovery of microcystins in water samples from Silver Lake in Dover, Delaware, with microcystin producing cyanobacterial accumulations: U.S. Geological Survey Open-File Report 2008–1341, 9 p.
- Lund, J.W.G., Kipling, C., and LeCren, E.D., 1958, The inverted microscope method of estimated algal numbers and the statistical basis of estimates by counting: Hydrobiologia, v. 11, p. 143–170.
- McNabb, C.D., 1960, Enumeration of freshwater phytoplankton concentrated on the membrane filter: Limnology and Oceanography, v. 5, p. 57–61.
- Menard, S.W., 2002, Applied logistic regression analysis (2nd ed.): Sage Publications, Inc., Thousand Oaks, California, 119 p.

100 Real-Time and Discrete Water-Quality Constituent Relations in Cheney Reservoir near Cheney, Kansas, 2001–2009

Patton, C.J., and Truitt, E.P., 2000, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of ammonium plus organic nitrogen by a Kjeldahl digestion method and an automated photometric finish that includes digest cleanup by gas diffusion: U.S. Geological Survey Open-File Report 00–170, 31 p.

Peterson, D.L., Whistler, J.L., Lomas, J.M., Dobbs, K.E., Jakubauskas, M.E., and Martinko, E.A., 2005, 2005 Kansas land cover patterns phase I: University of Kansas, Kansas Biological Survey, Report 150, 29 p.

Rasmussen, P. P., Gray, J.R., Glysson, G.D., and Ziegler, A.C., 2009, Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from instream turbidity sensor and streamflow data: U.S. Geological Survey Techniques and Methods book 3, chap. C4, 53 p.

Rasmussen, T.J., Lee, C.J., and Ziegler, A.C., 2008, Estimation of constituent concentrations, loads, and yields in streams of Johnson County, northeast Kansas, using continuous waterquality monitoring and regression models, October 2002 through December 2006: U.S. Geological Survey Scientific Investigations Report 2008–5014, 103 p.

Sauer, B.B., and Turnipseed, D.P., 2010, Stage measurement at gaging stations: U.S. Geological Survey Techniques and Methods, book 3, chap. A7, 45 p.

Smith, V.H., Sieber-Denlinger, J., deNoyes, F., and Strasser, V.A., 2002, Managing taste and odor problems in a eutrophic drinking water reservoir: Lake and Reservoir Management, v. 18, no. 4, p. 319–323.

State of Kansas, 2012, 2012 Kansas population by county, accessed November 2012 at http://budget.ks.gov/files/ FY2013/DOB Certified KS Population 07-01-2012.pdf.

Systat Software, Inc., 2008, SigmaPlot[®] 11.0 Statistics User's Guide, 564 p.

Taylor, W.D., Losee, R.F, Torobin, M., Izaguirre, G., Sass, D., Khiari, D., and Atasi, K., 2005, Early warning and management of surface water taste-and-odor events: American Water Works Association Research Foundation, 373 p.

TIBCO Software, Inc., 2008, TIBCO Spotfire S+[®] 8.1 for Windows[®] User's Guide, 582 p.

U.S. Geological Survey, variously dated, National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1–A9.

Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods, book 1, chap D3, 51 p. Wetzel, R.G., 2001, Limnology of lake and river ecosystems: New York, Academic Press, 1,006 p.

Wilde, F.D., and Radke, D.B., eds., 1998, Field measurements, in National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, p. 3–20.

Ziegler, A.C., and Combs, L.J., 1997, Baseline data-collection and quality control protocols and procedures for the *Equus* Beds Groundwater Recharge Demonstration Project near Wichita, Kansas, 1995–96: U.S. Geological Survey Open-File Report 97–235, 57 p.

Ziegler, A.C., Hansen, C.V., and Finn, D.A., 2010, Water quality in the *Equus* Beds aquifer and the Little Arkansas River before implementation of large-scale artificial recharge, south-central Kansas, 1995–2005: U.S. Geological Survey Scientific Investigations Report 2010–5023, 143 p.

Zimmerman, L.R., Ziegler, A.C., and Thurman, E.M., 2002, Method of analysis and quality-assurance practices by U.S. Geological Survey Organic Geochemistry Research Group–Determination of geosmin and methylisoborneol in water using solid-phase microextraction and gas chromatography/mass spectrometry: U.S. Geological Survey Open-File Report 02–337, 12 p.

Publishing support provided by: Rolla Publishing Service Center

For additional information concerning this publication, contact: Director, USGS Kansas Water Science Center 4821 Quail Crest Place Lawrence, KS 66049 (785) 842–9909

Or visit the Kansas Water Science Center Web site at: http://ks.water.usgs.gov