

Exposure-Related Effects of Formulated *Pseudomonas fluorescens* Strain CL145A to Glochidia from Seven Unionid Mussel Species

By James A. Luoma, Kerry L. Weber, Todd J. Severson, Theresa M. Schreier, Denise A. Mayer, Douglas B. Aloisi and Nathan L. Eckert

Open-File Report 2015–1094

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

SALLY JEWELL, Secretary

U.S. Geological Survey

Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2015

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747)

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Luoma, J.A., Weber, K.L., Severson, T.J, Schreier ,T.M., Mayer, D.A., Aloisi, D.B, and Eckert N.L., 2015, Exposure-related effects of formulated *Pseudomonas fluorescens* strain CL145A to glochidia from seven unionid mussel species: U.S. Geological Survey Open-File Report 2015–1094, 474 p., http://dx.doi.org/10.3133/ofr20151094.

ISSN 2331-1258 (online)

Acknowledgments

This study was funded through a grant from the U.S. Environmental Protection Agency Great Lakes Restoration Initiative awarded to the New York State Education Department and U.S. Geological Survey appropriated funds. The authors thank Mark P. Gaikowski of the Upper Midwest Environmental Sciences Center for assisting with study design and statistical analysis as well as Jeremy K. Wise, Samuel M. Stafslien, Pajtshiab L. Moua, and Susan M. Schleis for technical assistance and data collection.

Contents

Acknowledgments	iii
Abstract	1
Introduction	1
Materials and Methods	3
Experimental Design	
Test Article	3
Test system	4
Animal Collection and Distribution	
Test Article Preparation and Application	8
Water Chemistry	9
Glochidia Viability Assessments	
Data Analysis	
Results and Discussion	
Conclusions	17
References Cited	17
Appendix 1. Study Protocol, Amendments, and Datasheets	19
Appendix 2. Deviations from the Study Protocol	. 113
Appendix 3. Randomization Assignments	. 135
Appendix 4. Test Article Information	
Appendix 5. Test Animal Information	
Appendix 6. Water Quality	
Appendix 7. Glochidia Viability	

Figures

Figure 1.	Photograph showing glochidia test system with individual test chambers	. 6
Figure 2.	Photographs showing <i>A</i> , the extraction of glochidia from a gravid female mussel and, <i>B</i> , extracted glochidia.	. 7
Figure 3.	Photomicrographs showing <i>A</i> , glochidia before a drop of sodium chloride solution was added to induce valve closure in viable animals and, <i>B</i> , glochidia one minute after addition of the sodium chloride solution.	. 8
Figure 4.	Photograph showing the distribution of glochidia to test chambers	. 8

Tables

Table 1.	Data for test animals, test articles and, exposure dates for studies of selected native freshwater	
	mussel glochidia exposed to two formulations of Pseudomonas fluorescens, strain CL145A	.4
Table 2.	Data for initial glochidia viability by individual female mussel for each species	. 5
Table 3.	Estimated number of glochidia distributed to test chambers.	. 6
Table 4.	Mean temperature, alkalinity, hardness, and conductivity of pre-exposure source water and pooled	-
	exposure termination-water samples	12
Table 5.	Mean dissolved oxygen, mean temperature, and pH range of exposure water	12
Table 6.	Mean total ammonia nitrogen of exposure water by treatment group at 24 hours	14
Table 7.	Mean un-adjusted glochidia viability from selected native	
	freshwater mussels at 6, 12 and 24 hours	15
Table 8.	Mean adjusted glochidia viability from selected native freshwater mussels at 6, 12 and 24 hours	16

Conversion Factors

International System of Units to Inch/Pound

Multiply	Ву	To obtain
	Length	
centimeter (cm)	0.3937	inch (in.)
micrometer (µm)	3.937x10 ⁻⁵	inch (in.)
millimeter (mm)	0.03937	inch (in.)
	Volume	
liter (L)	1.057	quart (qt)
microliter (µL)	0.000033814	ounce, fluid (fl. oz)
milliliter (mL)	0.03382	ounce, fluid (fl. oz)
	Flow rate	
milliliter per minute (mL/min)	0.0002642	gallon per minute (gal/min)
	Mass	
gram (g)	0.03527	ounce, avoirdupois (oz)
milligram (mg)	3.527 x10 ⁻⁵	ounce, avoirdupois (oz)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as °F = $(1.8 \times °C) + 32$. Conductivity is given in microsiemens per centimeter at 25 degrees Celsius (μ S/cm at 25 °C).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L).

Abbreviations

AI	active ingredient
α	alpha
CaCO₃	calcium carbonate
DO	dissolved oxygen
FDP	freeze-dried powder
HD	heat deactivated
р	<i>p</i> -value
SDP	spray-dried powder
TAN	total ammonia nitrogen
USGS	U.S. Geological Survey

Exposure-Related Effects of Formulated *Pseudomonas fluorescens* Strain CL145A to Glochidia from Seven Unionid Mussel Species

By James A. Luoma¹, Kerry L. Weber¹, Todd J. Severson¹, Theresa M. Schreier¹, Denise A. Mayer², Douglas B. Aloisi³, and Nathan L. Eckert³

Abstract

The study was completed to evaluate the exposure-related effects of a biopesticide for dreissenid mussel (*Dreissena polymorpha*, zebra mussel and *Dreissena rostriformis bugensis*, quagga mussel) control on glochidia from unionid mussels endemic to the Great Lakes and Upper Mississippi River Basins. The commercially prepared biopesticide was either a spray-dried powder (SDP) or freeze-dried powder (FDP) formulation of *Pseudomonas fluorescens*, strain CL145A. Glochidia of the unionid mussel species *Lampsilis cardium*, *Lampsilis siliquoidea*, *Lampsilis higginsii*, *Ligumia recta*, *Obovaria olivaria*, and *Actinonaias ligamentina* were exposed to SDP-formulated *P. fluorescens* and *Lampsilis cardium* and *Megalonaias nervosa* were exposed to FDP-formulated *P. fluorescens*.

All exposures were static, 24 hours in duration, and included six treatment groups. The treatment groups included (1) an untreated control, (2) a positive control which received a nominal target active ingredient (AI) concentration of 300 milligrams per liter (mg/L) of heat-deactivated test article, and (3) treatments that received nominal target AI concentrations of 50, 100, 200, and 300 mg/L of test article. All treatment concentrations are reported based on active ingredient.

Glochidia viability was reduced in two of the six species exposed to 50 mg/L SDP and in four of the six species exposed to 100 mg/L SDP when compared to untreated control groups at 6, 12, and 24 hours. Regardless of sample time, concentrations of 200 and 300 mg/L of SDP and 300 mg/L of heat-deactivated SDP (positive control) substantially reduced glochidia viability in all species except, *L. higginsii*. Glochidia viability was only reduced for *L. cardium* exposed to FDP at concentrations \geq 200 mg/L. After 24 hours of FDP exposure, differences in glochidia viability were only detected in *M. nervosa* that were exposed to 300 mg/L of heat-deactivated SDP. However, given the low viability in the control group, the results for *M. nervosa* should be interpreted with caution.

Introduction

North America has the greatest diversity of freshwater mussels in the World with historical evidence of approximately 297 taxa consisting of 281 species and 16 subspecies, but because of their sedentary nature, freshwater mussels are particularly vulnerable to anthropogenic influences, such as

¹ U.S. Geological Survey

² New York State Education Department

³ U.S. Fish and Wildlife Service

habitat alteration; habitat degradation; pollution and overharvest; and more recently, to impacts from dreissenid mussels (Dreissena polymorpha, zebra mussel and Dreissena rostriformis bugensis, quagga mussel) (Williams and others, 1993, Neves and others, 1997, Strayer and Malcom, 2007). Master and others (1998) listed: 67 percent of freshwater mussels in the United States as extinct or vulnerable to extinction: 95 species of North American freshwater bivalves were listed as vulnerable, endangered, or critically endangered; and 29 were listed as extinct or possibly extinct on the International Union for Conservation of Nature's Red List (http://www.iucnredlist.org/, accessed March 6, 2015). Estimates indicate that 127 mussel species will become extinct in the next 100 years; however, this estimate may be low as it did not factor in impacts from dreissenid mussels (Ricciadi and Rasmussen, 1999). Native mussels in the southeastern United States are in particular danger with only 25 percent of the 269 historical species listed as stable, 13 percent presumed extinct, and 60 percent reported as either endangered, threatened or of special concern (Neves and others, 1997). The negative impact of dreissenid mussels on unionid mussels is well documented in the scientific literature with reports as early as 1937 of extirpation of unionid mussels from European waters due to dreissenid mussel colonization (Sebestyen, 1937; cited in Burlakova and others, 2000). Severe declines in unionid abundance linked to dreissenid colonization in North American waters were reported approximately one decade after dreissenids invaded the United States (Haag and others, 1993; Nalepa, 1994; Ricciardi and others, 1996).

The need to protect and recover imperiled species, such as freshwater mussels, was recognized in the 1973 Endangered Species Act (16 USC 1531-1544, 87 Stat. 884) and the U.S. Fish and Wildlife Service has developed recovery plans for many threatened and endangered unionid mussel species (U.S. Fish and Wildlife Service, 2013; http://www.fws.gov/endangered/species/recovery-plans.html, accessed April 1, 2015). Mitigating the severe impacts of dreissenid mussels on unionid species and the use of population enhancement and reintroduction into historical ranges with propagated animals are commonly cited tasks in unionid recovery plans (U.S. Fish and Wildlife Service, 2004). The U.S. Fish and Wildlife Service mussel propagation program uses wire-mesh rearing cages that are placed in natural waterways for approximately 18 months to rear unionid mussels (Brady and others, 2010). However, some areas previously used for rearing have been abandoned due to dreissenid mussel fouling of the rearing cages. A potential dreissenid mussel management tool for limited, high-value, open-water habitats, such as around unionid mussel rearing cages or mussel beds, is a commercially formulated biopesticide containing a specific strain (CL145A) of the common soil bacterium, Pseudomonas *fluorescens* as the active ingredient. Currently, the spray-dried powder (SDP) formulation of the biopesticide Zequanox[®] is manufactured by Marrone Bio Innovations, Inc. (Davis, California). It was registered by the U.S. Environmental Protection Agency (registration number 84059–15) for controlling dreissenid mussels in industrial water systems in 2012 and for open-water system use in 2014. The biopesticide containing *P. fluorescens* is readily ingested by dreissenid mussels, which causes necrosis of epithelial cells lining the digestive tract that results in the death of the dreissenid mussel (Molloy, Mayer, Gaylo, Morse, and others, 2013). The component of the P. fluorescens biopesticide that causes epithelial cell necrosis has been identified as a heat-liable natural metobilite associated with the bacterium's cell wall (Molloy, Mayer, Gaylo, Burlakova, and others 2013).

Freshwater mussels have a unique reproductive strategy that includes a short parasitic lifestage called glochidia. The ability of mature glochidia to attach to a suitable host (typically a fish) is a critical life-cycle step for most freshwater mussels (ASTM International, 2013). Therefore, evaluating the exposure-related effects of water-borne pesticides on freshwater mussel glochidia is prudent.

The objective of this study was to evaluate the exposure-related effects of a commercially formulated *P. fluorescens*, strain CL145A biopesticide on glochidia from select unionid mussel species

present in the Great Lakes and Upper Mississippi River Basins. This report summarizes the methods and results of laboratory trials in which applications of SDP- or FDP-formulated *P. fluorescens* biopesticides were administered for 24 hours to static test chambers containing glochidia extracted from female unionid mussels. During the course of this study, the test article manufacturer, Marrone Bio Innovations, Inc., requested a change to a freeze-dried powder (FDP) formulation. However, the FDP formulation was quickly discontinued; the resulting data for the two species exposed to FDP (*Lampsilis cardium and Megalonaias nervosa*) are included within the report.

Materials and Methods

The protocol and amendments for this study are presented in appendix 1 (items 1–6). All methods and materials followed the written protocol and amendments except those instances that were identified as deviations (appendix 2, items 1–12). Notes to file provide further documentation on the procedures used during the study (appendix 1, items 7 and 8).

Experimental Design

The study was completed at the U.S. Geological Survey's Upper Midwest Environmental Sciences Center (La Crosse, Wisconsin). Seven species of unionid mussel glochidia (table 1) were exposed to either the SDP- (six species) or the FDP-formulation (two species) following procedures outlined in "Standard Guide for Conducting Laboratory Toxicity Tests with Freshwater Mussels" (Annex A1 of the ASTM International, 2013). The six species of unionid mussel glochidia exposed to the SDP-formulation were L. cardium, Lampsilis siliquoidea, Lampsilis higginsii, Ligumia recta, Obovaria olivaria, and Actinonaias ligamentina. The two species of unionid mussel glochidia exposed to the FDP-formulation were Lampsilis cardium and M. nervosa. For each species, glochidia were flushed from 3–4 gravid female mussels and viability was estimated to be over 80 percent before the glochidia were used in the study. Consistent with the Standard Guide for Conducting Laboratory Toxicity Tests with Freshwater Mussels, glochidia that closed their valves in response to sodium chloride exposure were considered viable (ASTM International, 2013). Photomicrographs were recorded before and after the addition of the sodium chloride solution and used for definitive determination of initial glochidia viability (table 2). Glochidia were pooled and distributed to test chambers according to a predetermined random distribution scheme (appendix 3, items 4-6). An estimated 843–4,602 glochidia were distributed to each test chamber (table 3).

Each species was assigned to one of three test block locations and treatments were assigned to test chambers using randomized block designs (appendix 3, items 1–3 and 7–9, respectively). Six treatments (n = 3 per treatment) were tested and included (1) an untreated control, (2) nominal target concentrations of 50, 100, 200, and 300 milligrams per liter (mg/L) of test article based on active ingredient (AI), and (3) a nominal target concentration of 300 mg/L AI of heat-deactivated test article group (300 HD, positive control). Exposures were static and lasted 24 hours. Glochidia from each test chamber were assessed for viability at 6, 12 and 24 hours, with the exception of *M. nervosa* glochidia, which were only assessed at 24 hours.

Test Article

The test articles used in the study were commercially prepared SDP or FDP formulated *P*. *fluorescens* (strain CL145A) biopesticides containing 50 and 100 percent AI (weight-to-weight ratio *P*. *fluorescens*, strain CL145A cells), respectively. The test articles were produced by Marrone Bio

Innovations, Inc. and test article use was documented in log books (appendix 4, items 4–6). All test article concentrations are reported as active ingredient. Verification of biological activity (the ability of the test article to induce dreissenid mussel mortality) was determined for each test article lot after use in the study by the New York State Museum Field Research Laboratory (Cambridge, New York). Biological activity for each lot of test article was confirmed as indicated by mean zebra mussel mortality ranging from 85.3 to 94.7 percent in the test article treated groups compared to 0.0 to 1.3 percent in the untreated control groups (table 1; appendix 4, items 7–9).

Table 1. Data for test animals, test articles and, exposure dates for studies of selected native freshwater mussel glochidia exposed to two formulations of *Pseudomonas fluorescens*, strain CL145A.
[PPB, plain pocketbook; WAS, washboard; BLS, black sandshell; FAM, fatmucket; HGE, Higgins eye; HIC, hickorynut; MUC, mucket; FDP, freeze-dried powder; SDP, spray-dried powder; MBI, Marrone Bio Innovations, Inc.]

Test article Biological Scientific name Abbreviation Formulation activity1 Exposure date Common name Lot number (percent) Lampsilis Plain pocketbook PPB FDP 110607WB-FD-E 94.7 ± 6.1 October 18, 2011 cardium Megalonaias Washboard WAS FDP 110607WB-FD-E 94.7 ± 6.1 October 18, 2011 nervosa Ligumia BLS SDP Black sandshell MBI-401-SDP-4655-12-MIX 85.3 ± 11.5 January 17, 2012 recta Lampsilis FAM SDP MBI-401 110308AI-BD-3 86.7 ± 4.6 May 12, 2011 Fatmucket siliquoidea Lampsilis Higgins eye HGE SDP MBI-401-110308AI-BD-3 86.7 ± 4.6 May 12, 2011 higginsii Obovaria Hickorynut HIC SDP MBI-401-SDP-4655-12-MIX 85.3 ± 11.5 January 19, 2012 olivaria Actinonaias MUC SDP MBI-401-SDP-4655-12-MIX 85.3 ± 11.5 January 17, 2012 Mucket ligamentina Lampsilis PPB SDP Plain pocketbook MBI-401 110308AI-BD-3 86.7 ± 4.6 May 12, 2011 cardium

¹Biological activity is the mean percent zebra mussel mortality in test article treated groups during a bioassay performed by the New York State Museum Field Research Laboratory (Cambridge, New York).

Test system

The test system was a series of glass test chambers (80×40 millimeters [mm], width × height; catalog number 89000–286; VWR International, West Chester, Pennsylvania) arranged in three blocks. Each block contained 3 rows with 6 test chambers, for a total of 18 test chambers per species (fig. 1). Test chambers were labelled to allow for identification of treatment type and replicate number. During the exposure, light aeration (1–2 bubbles per second) was provided to each test chamber through a disposable glass pipet. Test water was well water conditioned to ambient temperature (≈ 20 °C) and dissolved-gas saturation by providing gentle aeration in 19-liter (L) glass jars for a minimum of 24 hours before use. Indirect fluorescent lighting (mean of 108 to 536 lux) was provided on an 18 hours light to 6 hours dark cycle in accordance with ASTM International guidelines (ASTM International, 2013).

Table 2.	Data for initial glochidia viability by individual female mussel for each species.
[Viability of	f glochidia by individual female mussel and species during exposures of selected native
freshwater m	nussel glochidia to two formulations of Pseudomonas fluorescens, strain CL145A. SD, standard
deviation-n	number in parentheses; SDP, spray-dried powder; FDP, freeze-dried powder]

Species	Formulation	Mussel number	Total glochidia	Nonviable glochidia ¹	Glochidia viability (percent)	Mean percent glocihidia viability (SD)
Lampsilis cardium	FDP	1	212	16	92.5	84.7 (6.9)
		2	222	39	82.4	
		3	150	31	79.3	
Megalonaias nervosa	FDP	1	124	2	98.4	96.5 (5.5)
		2	155	1	99.4	
		3	51	5	90.2	
		4	104	0	100.0	
Ligumia recta	SDP	1	312	32	89.7	84.5 (6.7)
		2	1,083	250	76.9	
		3	405	53	86.9	
Lampsilis siliquoidea	SDP	1	548	70	87.2	80.3 (7.1)
		2	297	80	73.1	
		3	456	89	80.5	
Lampsilis higginsii	SDP	1	129	49	62.0	80.8 (16.5)
		2	168	20	88.1	
		3	357	27	92.4	
Obovaria olivaria	SDP	1	366	54	85.2	86.0 (1.2)
		2	352	51	85.5	
		3	309	39	87.4	
Actinonaias ligamentina	SDP	1	161	14	91.3	92.7 (1.4)
		2	153	9	94.1	
		3	287	21	92.7	
Lampsilis cardium	SDP	1	467	36	92.3	93.8 (1.4)
		2	537	27	95.0	
		3	927	55	94.1	

¹Nonviable glochidia are the sum of glochidia closed before the addition of, and open after the addition of, sodium chloride.

Table 3.Estimated number of glochidia distributed to test chambers.[Distributions to test chambers by species during exposures of selectednative freshwater mussel glochidia to two formulations of *Pseudomonasfluorescens*, strain CL145A. SD, standard deviation—number inparentheses; SDP, spray-dried powder; FDP, freeze-dried powder]

Species	Formulation	Estimated number (SD) of glochidia per test chamber
Lampsilis cardium	FDP	4,602 (1,225)
Megalonaias nervosa	FDP	843 (382)
Ligumia recta	SDP	2,021 (500)
Lampsilis siliquoidea	SDP	2,702 (1,094)
Lampsilis higginsii	SDP	3,427 (1,018)
Obovaria olivaria	SDP	4,187 (2,503)
Actinonaias ligamentina	SDP	2,200 (1,061)
Lampsilis cardium	SDP	3,355 (1,077)



Figure 1. Photograph showing glochidia test system with individual test chambers.

Animal Collection and Distribution

Test animal information is presented in appendix 5, items 1-8. Gravid female mussels were collected from the Upper Mississippi, Chippewa, and St. Croix Rivers and identified to species as described in Cummings and Mayer (1992) and Watters and others (2009) by biologists from the Genoa National Fish Hatchery (Genoa, Wis.). Gravid mussels were maintained at the Genoa National Fish Hatchery on flowing pond water for up to 120 days before being transported to the Upper Midwest Environmental Sciences Center for glochidia extraction. Glochidia were extracted from the gravid female mussels by gently opening the valves and using a syringe to flush the marsupium with water (fig. 2). Glochidia from 6-10 marsupial tubes were flushed into a 500-milliliter (mL) beaker and viability of the glochidia was estimated to be > 80 percent by observation under a microscope before pooling. Glochidia viability was defined as valve closure in response to the addition of a drop of saturated sodium chloride solution (fig. 3). Glochidia from 3-4 mussels of each species were pooled in a 500-mL beaker containing water. Definitive initial viability of glochidia extracted from each female mussel was determined from photomicrographs after exposures were completed (table 2). The beaker containing the pooled glochidia was gently swirled to position the glochidia in a concentrated group at the bottom of the beaker. Glochidia were then indiscriminately collected by placing a 1,000-microliter (µL) wide bore pipet tip (model T-1005-WB-C-R; Axygen Scientific, Union City, California) within the concentrated glochidia and withdrawing a $100-\mu$ L sample with an adjustable pipette (model research plus 100–1,000 µL; Eppendorf USA, Hauppauge, N.Y.). The glochidia were then placed into a randomly selected test chamber that contained 96.5 mL of water (fig. 4). After all test chambers had received glochidia, the distribution process was repeated until all test chambers received five independent glochidia distributions (appendix 3, items 4–6). Throughout the distribution process samples (100 μ L, *n* =16 per species) containing glochidia were placed into a 35-mm petri dish and used to estimate the total number of glochidia distributed to the test chambers. Each treatment group contained three test chamber replicates with an estimated range of 843 to 4,602 glochidia per chamber (table 3). The volume of water within the test chambers after glochidia distribution and before test article administration was 97.0 mL.

Figure 2. Photographs showing *A*, the extraction of glochidia from a gravid female mussel and, *B*, extracted glochidia.

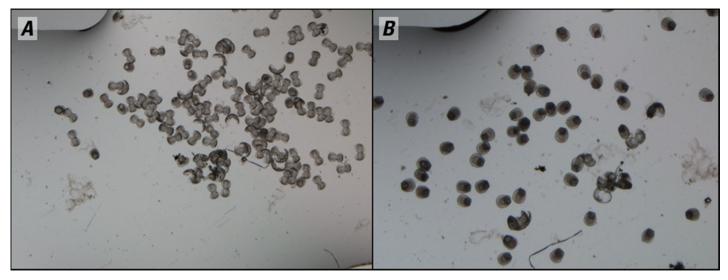


Figure 3. Photomicrographs showing *A*, glochidia before a drop of sodium chloride solution was added to induce valve closure in viable animals and, *B*, glochidia one minute after addition of the sodium chloride solution.

Figure 4. Photograph showing the distribution of glochidia to test chambers.

Test Article Preparation and Application

For each species, a separate test article stock solution was prepared for the 50, 100, 200 and 300 mg/L treatment groups immediately prior to application. A single heat-deactivated test article solution was prepared for each treatment day and used for all applications of heat-deactivated stock solution (positive control) that were completed on the same day. Untreated water was used as the test article stock solution for the untreated control treatment. The stock solutions were prepared by weighing a known amount of test article (1.0 grams FDP; 2.0 grams SDP) on an analytical balance and then

placing the test article into a 100-mL flask with water, which resulted in an AI stock solution of 10,000 mg/L. The heat-deactivated stock was prepared by placing the test article into a 100-mL volumetric flask with approximately 50 mL of water, then the flask was placed into a 70 degrees Celsius (°C) water bath for 45 minutes to degrade the activity of the *P. fluorescens* according to methods developed at the New York State Museum Field Research Laboratory (D. Mayer, Director of the New York State Museum Field Research Laboratory, oral commun., 2010). After cooling to ambient temperature, the heat-deactivated stock solution was brought to a final 100 mL volume with water.

Each test chamber received (1) 3.0 mL of untreated water (control), (2) 3.0 mL of heatdeactivated stock solution (positive control), (3) 3.0 mL of stock solution (300 mg/L treatment), or (4) 3.0 mL of the appropriate combination of untreated water and stock solution (50, 100 and 200 mg/L treatments [appendix 1, items 20 and 24]). The final volume in each test chamber after application of the test article was 100 mL.

Water Chemistry

Prior to exposure, temperature, hardness, and alkalinity were measured on the source water for all trials. Conductivity was measured on the source water for all trials, excluding those completed in May 2011 (*L. cardium*, *L. siliquoidea*, and *L. higginsii* SDP exposures; table 1). For the trials completed in May 2011 the water chemistry parameters measured during the exposure included duplicate measurements of dissolved oxygen (DO), pH, and temperature on all control and high test article concentration (300 mg/L) test chambers and on one indiscriminately selected test chamber from the remaining treatment groups. For all other trials, the water chemistry parameters measured during the exposure included duplicate measurements of DO, pH, and temperature in all test chambers. At the termination of the exposure, the contents of each test chamber were pooled by treatment group and the hardness, alkalinity, conductivity, temperature, pH, and total ammonia nitrogen (TAN) were measured on the pooled replicates. The TAN was measured using a YSI 9000 photometer (YSI, Inc., Yellow Springs, Ohio; *L. cardium*, *L. siliquoidea*, and *L. higginsii* SDP exposures) or using the automated phenate method (Standard Method 4500G in American Public Health Association and others, 2012; *L. recta, O. olivaria*, and *A. ligamentina* SDP exposures; *L. cardium* and *M. nervosa* FDP exposures).

Glochidia Viability Assessments

Definitive initial viability determinations for glochidia extracted from each female mussel and the viability of glochidia in samples collected during the exposures were completed from photomicrographs using equation 1:

Viability (percer	$nt) = \frac{(N-[NC])}{2}$	$\frac{C_{\text{pre}}+NO_{\text{post}}]}{N} \times 100$	(1)
where	N NC _{pre} NO _{post}	is the total number of glochidia in the sample, is the number of glochidia closed before adding sodium chloride, and is the number of glochidia open after adding sodium chloride.	

During the exposure, glochidia from each test chamber were assessed for viability at 6, 12, and 24 hours, with the exception of the *M. nerovosa* glochidia, which were assessed only at 24 hours. Water within each test chamber was gently swirled to position the glochidia in a concentrated group centered at the bottom exposure chamber. Then a 100- μ L sample was withdrawn from each exposure chamber using a 1,000- μ L wide-bore pipet tip attached to an adjustable pipette. For each species, excluding *M*.

nerovosa, the glochidia samples were placed into a 35-mm petri dish, viewed, and photomicrographed using a Nikon model SMZ 1500 compound stereo microscope fitted with a Nikon digital sight DS–Fi1 camera controlled by Nikon Imaging Systems Elements-BR[®] software, version 3.10 (Nikon Imaging systems, 1991–2010). Photomicrographs were recorded before and after a drop of saturated sodium chloride solution was added to induce valve closure in viable glochidia. The second photomicrograph was recorded one minute after sodium chloride addition to provide a standard valve closure response time. Glochidia on each photomicrograph were enumerated by valve position (either open or closed) and the percentage of viable glochidia was calculated by using equation 1. *Megalonaias nervosa* glochidia are released in a mucoidal matrix, which precluded the ability to obtain an image of the glochidia on a single focal plane. Therefore, *M. nervosa* glochidia were immediately assessed for viability by placing the glochidia under a dissecting microscope (model SMZ745; Nikon Instruments) and enumerating, by valve position, before and after a after a drop of saturated sodium chloride solution was added to induce valve closure in viable glochidia.

Data Analysis

Water chemistry (DO, pH, temperature, hardness, alkalinity, conductivity, and TAN) data analyses were limited to simple descriptive statistics (appendix 6, items 1, 2, 4, and 7). In order to compensate for initial glochidia viabilities of less than 100 percent, the observed viabilities of glochidia during the exposure were adjusted with the initial viability of glochidia using the methods described by Wang and others (2007). Viability adjustments were completed using equation 2:

Adjusted viability
$$=\frac{(V_0)}{(V_1)} \times 100$$
 (2)

where

Vo	is the observed (un-adjusted) viability of a treatment replicate (appendix 7, items
	5–7), and
V_{I}	is the initial mean viability observed for the species, in percent (table 3).

For example, the mean initial viability of *A. ligamentina* glochidia was 92.7 percent. The observed (unadjusted) viability of *A. ligamentina* glochidia in a control group replicate, at 24 hours, was 90.0 percent, therefore, the adjusted viability of *A. ligamentina* glochidia in the control group replicate, at 24 hours, is $90/92.7 \times 100$ or 97.1 percent.

Statistical comparisons were completed with the observed (un-adjusted) glochidia viability of each treatment group replicate using SAS[®] software version 9.3 (SAS, 2010). Significance was declared at $\alpha \leq 0.05$. A generalized linear mixed model was used to analyze the viability of glochidia by treatment group and species (appendix 7, item 2). The proportion of mortalities (number of nonviable glochidia compared to the total number of glochidia present) were modeled with a binomial distribution and a logit link function. A scale parameter was added to the model using the "random_residual_" statement. At each sampling time, glochidia viability in each treatment group was individually compared to the viability in the untreated control group using a two-sided means comparison test.

Results and Discussion

Pre-exposure water chemistry parameters (temperature, alkalinity, hardness, and conductivity) of the source water are summarized in table 4 and are presented in appendix 6 (item 1). Pre-exposure temperature ranged from 18.4 to 19.9 °C; hardness ranged from 171 to 175 mg/L as calcium carbonate (CaCO₃); alkalinity ranged from 122 to 130 mg/L as CaCO₃; and conductivity ranged from 383 to

422 microsiemens per centimeter (μ S/cm). Water chemistry parameters (DO, pH, and temperature) measured during the exposure are presented in table 5 and in appendix 6 (item 2). Dissolved oxygen remained well above the ASTM International criterion of 4 mg/L throughout the exposure period (ASTM International, 2013). The pH of exposure water ranged from 7.52 to 8.56 and the temperature ranged from 17.2 to 20.7 °C. The pooled replicate exposure water samples collected at exposure termination had mean temperatures from 18.2 to 20.3 °C, hardness from 180 to 210 mg/L as CaCO₃, alkalinity from 137 to 153 mg/L as CaCO₃, and conductivity from 367 to 457 μ S/cm (table 4; appendix 6, item 4). The mean TAN from samples collected at the termination of the exposure period are presented in table 6 and appendix 6 (items 5–7). The TAN remained below the 2013 U.S. Environmental Protection Agency criterion for acute exposure (17 mg/L at pH 7 and 20 °C) throughout the entire exposure period for all species and treatment groups (U.S. Environmental Agency, 2013).

The initial viability of glochidia extracted for each female mussel ranged from 62 to 100 percent, with glochidia extracted from four individuals below the 80 percent viability recommended in the "Standard Guide for Conducting Laboratory Toxicity Tests with Freshwater Mussels" (ASTM International, 2013). However, the mean viability of glochidia extracted from the female mussels for each species ranged from 80.3 to 96.5 percent (table 2, appendix 7, item 1). Statistical analyses of the un-adjusted glochidia viability are presented in appendix 7 (item 4) and the un-adjusted-mean glochidia viability of each treatment group are presented by species in table 7. The mean of the adjusted viability of each treatment group are presented by species in table 8 and in appendix 7 (item 5–7).

Regardless of species, the mean of the un-adjusted and adjusted control group viability during the SDP trials exceeded 66 and 82 percent, respectively, throughout the study. After 6 hours of SDP exposure at 50 mg/L, the un-adjusted-mean viabilities of *L. recta* and *A. ligamentina* glochidia were significantly lower (11.7 percent [p < 0.01] and 71.7 percent [p = 0.04], respectively) than the untreated control groups (85.7 and 88.6 percent, respectively). Concentrations of SDP \geq 100 mg/L for 6 hours significantly lowered glochidia viability for all species, except for *L. cardium* and *L. higginsii*, which were impacted at concentrations \geq 200 and 300 mg/L, respectively. The observed lower viability for *O. olivaria* at 6 hours in the 100 mg/L SDP-treated group is likely an outlier, given no differences were detected at 12 and 24 hours in the viability of glochidia in the 100 mg/L SDP-treated group compared to the control group (p = 0.16 and 0.15, respectively).

The mean for the un-adjusted and adjusted control group viability for *L. cardium* during the FDP trial exceeded 81 and 96 percent, respectively. The un-adjusted- and adjusted-mean control group glochidia viability *for M. nervosa* at 24 hours was 52.1 and 53.9 percent, respectively. During the *L. cardium* FDP-trial, glochidia exposed to FDP concentrations \geq 200 mg/L were significantly less viable than those in the untreated control group, regardless of sample time. After 24 hours of exposure, no difference was detected between the viability of *M. nervosa* glochidia in the FDP-treated groups compared to the control group, with the exception of the positive control group. However, given the low viability observed in the *M. nervosa* untreated controls (un-adjusted viability of 52.1 percent) the results should be interpreted with caution.

Table 4. Mean temperature, alkalinity, hardness, and conductivity of pre-exposure source water and pooledexposure termination-water samples.

[Samples were collected before and during exposures of selected native freshwater mussel glochidia to two formulations of *Pseudomonas fluorescens*, strain CL145A. °C, degrees Celsius; mg/L, milligrams per liter; Cond., conductivity; µS/cm, microsiemens per centimeter at 25 degrees Celsius; SDP, spray-dried powder; FDP, freeze-dried powder; number in parentheses, standard deviation; --, no data collected or cannot calculate]

			Preexpo	sure			Exposure ter	rmination	
Species	Formulation	Temperature (°C)	Alkalinity (mg/L) 1	Hardness (mg/L) 1	Cond. (µS/cm)	Temperature (°C)	Alkalinity (mg/L) 1	Hardness (mg/L) 1	Cond. (µS/cm)
Lampsilis cardium	FDP	18.4 (0.0)	126(1)	174 (0)	391 ()	18.2 (0.2)	144 (3)	196 (4)	431 (12)
Megalonaias nervosa	FDP	18.4 (0.0)	126(1)	174 (0)	391 ()	18.7 (0.3)	148 (5)	201 (2)	440 (18)
Ligumia recta	SDP	19.9 (0.0)	124 (1)	171 (1)	422 (9)	20.3 (0.5)	153 (8)	199 (6)	433 (21)
Lampsilis siliquoidea	SDP	19.3 (0.1)	130 (0)	171 (1)		19.9 (0.1)	137 (2)	181 (2)	367 (13)
Lampsilis higginsii	SDP	19.3 (0.1)	130 (0)	171 (1)		19.5 (0.1)	142 (4)	185 (3)	387 (17)
Obovaria olivaria	SDP	19.9 (0.2)	122 (1)	175 (1)	383 (2)	19.7 (0.7)	147 (7)	210 (4)	457 (27)
Actinonaias ligamentina	SDP	19.9 (0.0)	124 (1)	171 (1)	422 (9)	20.0 (0.4)	153 (5)	198 (2)	440 (25)
Lampsilis cardium	SDP	19.3 (0.1)	130 (0)	171 (1)		19.1 (0.1)	137 (3)	180 (1)	391 (14)

¹Alkalinity and hardness reported as milligrams per liter of calcium carbonate.

Table 5. Mean dissolved oxygen, mean temperature, and pH range of exposure water. [Values are by treatment group, during exposures of selected native freshwater mussel glochidia to two formulations of *Pseudomonas fluorescens*, strain CL145A. mg/L, milligrams per liter; pH, reported as standard units; °C, degrees Celsius; SDP, spray-dried powder; number in parentheses, standard deviation; HD, heat-deactivated test article, FDP, freeze-dried powder]

Treatment group	Dissolved oxygen (mg/L)	Temperature (°C)	рН
	Lampsilis cardium, FDP	formulation	
Control	8.34 (0.51)	17.8 (0.4)	8.12-8.32
50	8.13 (0.54)	17.2 (0.5)	8.26-8.31
100	8.08 (0.81)	17.5 (0.3)	8.31-8.34
200	7.92 (0.63)	17.4 (0.50	8.31-8.34
300	7.81 (0.62)	17.6 (0.5)	8.29-8.33
300 HD	7.19 (0.89)	17.7 (0.4)	8.31-8.36
	<i>Megalonaias nervosa</i> , FD	P formulation	
Control	7.43 (0.19)	18.6 (0.2)	8.39-8.41
50	7.64 (0.64)	17.8 (0.4)	8.39-8.40
100	8.39 (0.79)	18.3 (0.4)	8.39-8.41
200	8.12 (0.69)	18.5 (0.3)	8.35-8.49

Treatment group	Dissolved oxygen (mg/L)	Temperature (°C)	рН	
300	7.87 (0.53)	18.1 (0.3)	8.35-8.39	
300 HD	7.84 (0.68)	18.4 (0.2)	8.37-8.40	
	Ligumia recta, SDP fo	ormulation		
Control	9.17 (0.31)	20.4 (0.4)	8.27-8.56	
50	9.36 (0.48)	20.7 (0.7)	8.34-8.44	
100	9.59 (0.94)	20.5 (0.4)	8.32-8.38	
200	8.72 (0.57)	20.2 (0.3)	8.21-8.37	
300	8.75 (1.09)	20.6 (0.4)	8.15-8.31	
300 HD	9.29 (0.88)	19.6 (0.9)	8.27-8.50	
	Lampsilis siliquoidea, SD	P formulation		
Control	8.59 (0.28)	19.4 (0.4)	8.39-8.48	
50	7.71 (0.57)	19.3 (0.4)	8.05-8.36	
100	7.58 (0.81)	19.5 (0.8)	8.09-8.35	
200	7.31 (1.82)	19.5 (0.6)	7.73-8.26	
300	6.92 (2.09)	19.7 (0.7)	7.52-8.37	
300 HD	6.78 (2.24)	19.1 (0.1)	7.68-8.31	
	Lampsilis higginsii, SDP	formulation		
Control	8.05 (0.20)	19.3 (0.6)	8.38-8.46	
50	7.59 (0.26)	19.3 (0.2)	8.08-8.38	
100	8.02 (0.76)	19.0 (1.1)	8.00-8.29	
200	7.49 (0.68)	18.7 (0.9)	8.03-8.30	
300	7.21 (1.54)	19.3 (0.8)	7.58-8.41	
300 HD	7.02 (1.34)	19.5 (0.7)	7.85-8.34	
	Obovaria olivaria, SDP	formulation		
Control	9.82 (0.78)	19.9 (0.2)	8.36-8.51	
50	10.41 (0.32)	19.7 (0.5)	8.32-8.48	
100	10.16 (0.42)	19.6 (0.5)	8.30-8.45	
200	9.67 (0.34)	19.7 (0.5)	8.10-8.35	
300	9.66 (0.93)	19.7 (0.2)	8.10-8.30	
300 HD	10.57 (0.30)	19.3 (1.0)	8.11-8.36	
	<i>Actinonaias ligamentina</i> , S	DP formulation		
Control	8.40 (0.63)	20.1 (0.1)	8.34-8.53	
50	9.20 (0.47)	20.1 (0.1)	8.33-8.43	
100	8.65 (0.18)	19.8 (0.5)	8.31-8.43	
200	8.96 (0.50)	19.7 (0.2)	8.26-8.40	

Treatment group	Dissolved oxygen (mg/L)	Temperature (°C)	рН
300	8.74 (0.25)	19.8 (0.3)	8.29-8.38
300 HD	8.63 (0.31)	19.7 (0.6)	8.23-8.42
	Lampsilis cardium, SDP	formulation	
Control	8.50 (0.11)	19.5 (0.4)	8.23-8.42
50	8.15 (0.11)	19.7 (0.7)	8.25-8.39
100	8.04 (0.91)	19.3 (0.4)	8.03-8.39
200	7.66 (0.87)	19.3 (0.4)	8.09-8.36
300	7.21 (1.63)	19.6 (0.5)	7.74-8.29
300 HD	7.46 (1.17)	19.6 (0.6)	8.07-8.37

Table 6. Mean total ammonia nitrogen of exposure water by treatment group at 24 hours.

[Total ammonia nitrogen in milligrams per liter measured at the termination of 24 hours exposures of selected native freshwater mussel glochidia to two formulations of *Pseudomonas fluorescens*, strain CL145A. FDP, freeze-dried powder; SDP, spray-dried powder; --, cannot calculate data; number in parentheses, standard deviation; HD, heat-deactivated product]

FDP formulation				SDP formulation				
Treatment group	Lampsilis cardium	Megalonaias nervosa	Ligumia recta	Lampsilis siliquoidea	Lampsilis higginsii	Obovaria olivaria	Actinonaias ligamentina	Lampsilis cardium
Control	0.058	0.026	0.080	0.10	0.09	0.066	0.066	0.06
	(0.016)	(0.004)	(0.002)	()	()	(0.029)	(0.039)	()
50	0.107	0.050	0.297	0.25	0.17	0.210	0.268	0.08
	(0.013)	(0.010)	(0.121)	()	()	(0.097)	(0.234)	()
100	0.137	0.056	0.714	0.24	0.31	0.367	0.445	0.13
	(0.011)	(0.019)	(0.014)	()	()	(0.238)	(0.241)	()
200	0.225	0.047	1.054	0.44	0.53	0.243	0.853	0.24
	(0.014)	(0.013)	(0.127)	()	()	(0.027)	(0.072)	()
300	0.296	0.123	1.452	0.63	0.45	0.302	1.047	0.44
	(0.012)	(0.057)	(0.242)	()	()	(0.157)	(0.116)	()
300 HD	0.193	0.086	0.230	0.55	0.50	0.489	0.581	0.51
	(0.012)	(0.020)	(0.028)	()	()	(0.389)	(0.197)	()

Table 7. Mean un-adjusted glochidia viability from selected native freshwater mussels at 6, 12 and 24 hours.

[Selected native freshwater mussel glochidia exposed for 6, 12 and 24 hours to two formulations of *Pseudomonas fluorescens*, strain CL145A. FDP, freeze dried powder; SDP, spray dried powder; number in parentheses, standard deviation; --, no data collected; HD, heat-deactivated test article]

	FDP for	rmulation			SDP For	mulation		
Treatment group	Lampsilis cardium	Megalonaias nervosa	Ligumia recta	Lampsilis siliquoidea	Lampsilis higginsii	Obovaria olivaria	Actinonaias ligamentina	Lampsilis cardium
				6 hours				
Control	82.3 (4.7)		85.7 (1.1)	72.3 (4.0)	72.3 (9.5)	80.0 (11.5)	88.6 (4.4)	92.3 (1.0)
50	69.6 (11.5)		11.7 ^a (9.5)	56.8 (2.7)	77.7 (3.7)	85.2 (1.3)	71.7 ^a (6.6)	77.9 (8.9)
100	65.7 (3.4)		0.5 ^a (0.8)	29.0 ^a (14.8)	63.2 (1.0)	61.0 ^a (13.8)	72.2ª (9.7)	75.3 (6.1)
200	48.7 ^a (11.4)		1.7 ^a (1.6)	19.3 ^a (17.1)	56.7 (5.5)	40.6 ^a (11.5)	40.5 ^a (16.3)	52.2 ^a (21.2)
300	40.7 ^a (14.7)		1.1 ^a (1.6)	11.9 ^a (16.7)	29.1 ^a (21.7)	15.7 ^a (12.7)	11.8 ^a (7.3)	9.9 ^a (10.4)
300 HD	20.4 ^a (23.0)		0.8 ^a (1.5)	2.3 ^a (2.4)	13.3 ^a (12.3)	13.8 ^a (6.3)	3.6 ^a (2.1)	3.4 ^a (3.1)
				12 hours				
Control	81.8 (3.4)		89.5 (0.5)	66.6 (6.5)	68.7 (6.1)	86.4 (6.3)	94.2 (1.5)	86.1 (2.0)
50	76.7 (6.2)		16.2 ^a (5.6)	59.1 (4.1)	68.7 (6.5)	84.5 (2.9)	66.6 ^a (17.8)	78.6 (6.6)
100	70.6 (8.4)		8.8 ^a (3.3)	43.6 ^a (3.4)	65.5 (3.1)	77.2 (12.4)	64.4 ^a (17.7)	52.7 ^a (45.6)
200	34.9 ^a (30.6)		1.2^{a} (0.3)	19.6 ^a (13.2)	46.2 (17.9)	50.3 ^a (16.5)	40.0 ^a (4.5)	46.7 ^a (22.3)
300	9.1 ^a (8.8)		0.0^{a} (0.0)	4.5 ^a (1.9)	38.8 ^a (8.1)	39.2 ^a (3.0)	10.2 ^a (2.5)	6.5 ^a (4.2)
300 HD	4.8 ^a (1.2)		0.9 ^a (0.8)	2.1 ^a (2.8)	9.5 ^a (0.9)	1.2 ^a (0.4)	8.2 ^a (5.0)	5.8ª (2.6)
				24 hours				
Control	81.9 (1.4)	52.1 (11.3)	84.5 (1.9)	69.4 (8.2)	69.3 (7.3)	87.0 (1.8)	92.6 (2.2)	92.1 (0.9)
50	74.1 (9.3)	55.6 (9.5)	14.7 ^a (1.8)	56.8 (6.0)	74.6 (3.4)	89.2 (2.9)	75.8 ^a (13.0)	79.8 (5.6)
100	67.7 (3.8)	48.1 (17.0)	7.0 ^a (4.9)	41.6 ^a (6.5)	65.5 (4.9)	78.3 (6.8)	63.5 ^a (11.2)	66.9 ^a (15.8)
200	29.5 ^a (23.8)	49.5 (18.7)	3.3 ^a (2.2)	11.6 ^a (4.7)	42.5 ^a (14.8)	60.7^{a} (4.5)	30.0 ^a (7.2)	59.2ª (12.8)
300	12.0 ^a (1.8)	40.1 (20.8)	0.7^{a} (0.6)	6.0 ^a (1.7)	22.3 ^a (26.6)	26.5 ^a (3.2)	6.0 ^a (3.5)	6.1 ^a (7.2)
300 HD	4.9^{a} (2.3)	26.8 ^a (10.6)	0.7^{a} (0.8)	1.7^{a} (0.9)	13.9 ^a (10.4)	0.5 ^a (0.3)	5.2ª (3.4)	4.7 ^a (1.3)

^aAt each sample time, the mean un-adjusted treatment group glochidia viability (in percent) within the same column that have a letter superscript are significantly different (p > 0.05) from the control group.

FDP formulation				SDP Formulation				
Treatment group	Lampsilis cardium	Megalonaias nervosa	Ligumia recta	Lampsilis siliquoidea	Lampsilis higginsii	Obovaria olivaria	Actinonaias ligamentina	Lampsilis cardium
				6 hours				
Control	97.1 (5.6)		101.4 (1.3)	90.1 (5.0)	89.5 (11.8)	93.0 (13.4)	95.6 (4.8)	98.4 (1.1)
50	82.1 (13.6)		13.9 (11.3)	70.7 (3.4)	96.2 (4.6)	99.1 (1.5)	77.3 (7.1)	83.1 (9.5)
100	77.6 (4.1)		0.6 (1.0)	36.1 (18.4)	78.2 (1.3)	70.9 (16.1)	77.9 (10.5)	80.2 (6.5)
200	57.5 (13.5)		2.1 (1.8)	24.0 (21.4)	70.1 (6.8)	47.3 (13.3)	43.7 (17.6)	55.7 (22.6)
300	48.0 (17.3)		1.3 (1.8)	14.8 (20.8)	36.0 (26.9)	18.3 (14.8)	12.7 (7.9)	10.6 (11.1)
300 HD	24.1 (27.2)		1.0 (1.7)	2.9 (2.9)	16.4 (15.2)	16.1 (7.3)	3.9 (2.2)	3.7 (3.3)
				12 hours				
Control	96.6 (4.0)		105.9 (0.6)	82.9 (8.0)	85.0 (7.6)	100.5 (7.4)	101.7 (1.6)	91.8 (2.2)
50	90.5 (7.4)		19.1 (6.6)	73.6 (5.1)	85.0 (8.0)	98.2 (3.4)	71.8 (19.1)	83.8 (7.0)
100	83.3 (10.0)		10.5 (3.9)	54.3 (4.2)	81.1 (3.9)	89.7 (14.5)	69.4 (19.1)	56.1 (48.7)
200	41.2 (36.1)		1.4 (0.4)	24.4 (16.4)	57.2 (22.2)	58.4 (19.2)	43.2 (4.9)	49.8 (23.8)
300	10.8 (10.4)		0.0 (0.0)	5.6 (2.4)	48.0 (10.0)	45.6 (3.5)	11.0 (2.7)	6.9 (4.5)
300 HD	5.7 (1.4)		1.1 (1.0)	2.7 (3.5)	11.8 (1.1)	1.4 (0.4)	8.8 (5.4)	6.2 (2.8)
				24 hours				
Control	96.7 (1.7)	53.9 (11.7)	100.0 (2.3)	86.5 (10.2)	85.8 (9.0)	101.2 (2.0)	99.9 (2.4)	98.2 (1.0)
50	87.5 (11.0)	57.6 (9.8)	17.4 (2.1)	70.8 (7.4)	92.3 (4.2)	103.7 (3.3)	81.7 (14.1)	85.1 (6.0)
100	80.0 (4.5)	49.8 (17.6)	8.2 (5.8)	51.9 (8.0)	81.0 (6.0)	91.0 (8.0)	68.5 (12.1)	71.3 (16.8)
200	34.9 (28.0)	51.3 (19.3)	3.8 (2.6)	14.5 (5.8)	52.6 (18.3)	70.6 (5.3)	32.4 (7.8)	63.2 (13.6)
300	14.2 (2.2)	41.6 (21.5)	0.9 (0.8)	7.5 (2.2)	27.6 (32.9)	30.9 (3.8)	6.5 (3.8)	6.5 (7.7)
300 HD	5.8 (2.7)	27.7 (11.0)	0.9 (0.9)	2.1 (1.1)	17.2 (12.9)	0.6 (0.4)	5.6 (3.7)	5.1 (3.3)

Table 8.Mean adjusted glochidia viability from selected native freshwater mussels at 6, 12 and 24 hours.[Selected native freshwater mussel glochidia exposed for 6, 12 and 24 hours to two formulations of *Pseudomonas fluorescens*, strain CL145A. FDP, freeze-dried powder; SDP, spray-dried powder; number in parentheses, standard deviation; --, no data collected; HD, heat-deactivated test article]

Conclusions

The mean adjusted-viability of control group glochidia in trials with spray-dried powder (SDP) formulation of *Pseudomonas fluorescens* strain CL145A exceeded 82 percent. Differences in glochidia viability were detected in two of six species exposed to 50 milligrams per liter (mg/L) SDP and in four of six species exposed to 100 mg/L SDP at 6, 12, and 24 hours when compared to untreated controls. Regardless of sample time, viability of glochidia in the 200 and 300 mg/L SDP-treated groups and the 300 mg/L heat-deactivated SDP positive control groups were significantly lower than glochidia in the untreated control for all species except *Lampsilis higginsii*. The significant impact of the SDP positive control treatments on glochidia viability indicate that the decreases in glochidia viability may not be caused by the same mode of action that causes dreissenid mussel (zebra mussel, *Dreissena polymorpha* and quagga mussel, *Dreissena rostriformis bugensis*) mortality.

The mean adjusted-viability of control group glochidia in trials with freeze-dried powder (FDP) formulation of *P. fluorescens* (strain CL145A) exceeded 96 percent in the *Lampsilis cardium* trial and was 53.9 percent in the *Megalonaias nervosa* at 24 hours. Regardless of sample time, differences in glochidia viability were only detected in the *L. cardium* FDP-trial when the concentration was \geq 200 mg/L. In the *M. nervosa* FDP exposures, differences in glochidia viability were only detected between the 300 mg/L heat-deactivated FDP-treated group (positive control) and the untreated control group.

However, given the low viability observed in the *M. nervosa* control group (52.1 percent unadjusted viability), the results for *M. nervosa* should be interpreted with caution. Similar to the SDPtrials, the impact of the FDP positive control treatments indicate that the observed decreases in glochidia viability may not be caused from the same mode of action that causes dreissenid mussel mortality. The results of these exposures indicate that applications of a biopesticide formulated with *P. fluorescens* as the active ingredient may impact the viability of native freshwater mussel glochidia if they are present in the water column during an application. However, freshwater mussel glochidia are only present in the water column for a relatively short period which could be avoided by timing *P. fluorescens* biopesticide applications. Additionally, applications of a *P. fluorescens* biopesticide for dreissenid mussel control would be of short duration and the biological activity of *P. fluorescens* degrades rapidly; further reducing the risk of exposure to *P. fluorescens* to native mussel glochidia.

References Cited

- American Public Health Association, American Water Works Association, and Water Environment Federation, 2012, Standard methods for examination of water and wastewater (22d ed): Washington, D.C., American Public Health Association, 1,360 p.
- ASTM International, 2013, ASTM Standard E2455–06 (2013)—Standard guide for conducting laboratory toxicity tests with freshwater mussels: West Conshohocken, Pa., ASTM International, 52 p.
- Brady, T.R., Aloisi, D., Gordon, D and Wege G., 2010, A method for culturing mussels using in-river cages: Journal of Fish and Wildlife Management, v. 2, no. 1, p.85–89.
- Burlakova, L.E., Karatayev, A.Y., and Padilla, D.K., 2000, The impact of *Dreissena polymorpha* (PALLAS) invasion on unionid bivalves: International Review of Hydrobiology, v. 85, no. 5–6, p. 529–541.
- Cummings S.K. and Mayer C.A., 1992, Field guide to freshwater mussels of the Midwest, Illinois Natural History Survey Manual 5, 194 pp.

- Haag, W.R., Berg, D.L., Garton, D.W., and Farris, J.L., 1993, Reduced survival and fitness in native bivalves in response to fouling by the introduced zebra mussel (*Dreissena polymorpha*) in western Lake Erie: Canadian Journal of Fisheries and Aquatic Sciences, v. 50, no. 1, p. 13–19.
- Master, L.L., Flack, S.R. and Stein, B.A., eds., 1998, Rivers of Life: Critical Watersheds for Protecting Freshwater Biodiversity. The Nature Conservancy, Arlington, Virginia.
- Molloy, D.P., Mayer, D.A., Gaylo, M.J., Burlakova, L.E., Karatayev, A.Y., Presti, K.T., Sawyko, P.M., and Morse, J.T., 2013, Non-target trials with *Pseudomonas fluorescens* strain CL145A, a lethal control agent of dreissenid mussels (Bivalvia: Dreissenidae): Management of Biological Invasions, v. 4, p. 71-79.
- Molloy, D.P., Mayer, D.A., Gaylo, M.J., Morse, J.T., Presti, K.T., Sawyko, P.M., Karatayev, A.Y., Burlakova, L.E., Laruelle, F., Nishikawa, K.C., and Griffin, B.H., 2013, *Pseudomonas fluorescens* strain CL145A—A biopesticide for the control of zebra and quagga mussels (Bivalvia: Dreissenidae): Journal for Invertebrate Pathology, v. 113, p. 104–114.
- Nalepa, T.F., 1994, Decline of native unionids in Lake St. Clair after infestation by the zebra mussel, *Dreissena polymorpha*: Canadian Journal of Fisheries and Aquatic Sciences, v. 51, p. 2227–2233.
- Neves, R.J., Bogan, A.E., Williams, J.D., Ahlstedt, S.A., and Hartfield, P.W., 1997, Status of aquatic mollusks in the southeastern United States—A downward spiral of diversity, *in* Benz, G.W., and Collins, D.E., eds., Aquatic fauna in peril—The southeastern perspective: Decatur, Ga., Southeastern Aquatic Research Institute, Lenz Design and Communications, p. 43–85.
- Nikon Imaging System Elements-BR, 1991-2010, Version 3.10, Nikon Instruments Inc., Melville, New York, USA.
- Ricciardi, A., Whoriskey F.G., and Rasmussen J.B., 1996, Impact of the *Dreissena* invasion on native unionid bivalves in the upper St. Lawerence River, Canadian Journal of Fisheries and Aquatic Sciences, v. 53, p. 1434–1444.
- Ricciardi, A., and Rasmussen, J.B., 1999, Extinction rates of North American freshwater fauna: Conservation Biology, v. 13, no. 5, p. 1220–1222.
- SAS, 2010, Version 9.3, SAS Institute Inc., Cary, NC, USA.
- Strayer, D.L., and Malcom, H.M., 2007, Effects of zebra mussels (*Dreissena polymorpha*) on native bivalves—The beginning of the end or the end of the beginning?: Journal of the North American Benthological Society, v. 26, no. 1, p. 111–122.
- U.S. Environmental Protection Agency, 2013, Ambient water quality criteria for ammonia—Freshwater 2013: Washington, D.C., Office of Water, EPA 822–R–13–001, 242 p.
- U.S. Fish and Wildlife Service, 2004, Higgins Eye Pearlymussel (*Lampsilis higginsii*) recovery plan: First Revision, Ft. Snelling, Minnesota, 126 p.
- U.S. Fish and Wildlife Service, 2013, ESA Basics 40 Years of Conserving Endangered Species, 2 p., accessed April 1, 2015, at http://www.fws.gov/endangered/esa-library/pdf/ESA basics.pdf/.
- Wang, N., Augspurger, T., Barnhart, M.C., Bidwell, J. R., Cope, W. G., Dwyer, F. J., Geis S., Greer, E., Ingersoll, C.G., Kane, C.M, May, T.W., Neves, R.J., Newton T.J., Roberts, A.D., and Whites, D.W., 2007, Intra-and interlaboratory variability in acute toxicity tests with glochidia and juveniles of freshwater mussels (unionidae): Environmental Toxicology and Chemistry, v. 26, no. 10, 2029-2035.
- Watters, G.T., M.A. Hoggarth and D.H. Stansbery, 2009, The freshwater mussels of Ohio: Columbus, Ohio, Ohio State University Press, 421 p.
- Williams, J.D., Warren, M.L., Jr., Cummings, K.S., Harris, J.L., and Neves, R.J., 1993, Conservation status of freshwater mussels of the United States and Canada: Fisheries, v. 18, no. 9, p. 6–22.

Appendix 1. Study Protocol, Amendments, and Datasheets

ltem number	Item description	Number of pages	Report page number
1	Protocol: "Effects of <i>Pseudomonas fluorescens</i> (<i>Pf</i> -CL145A) to glochidia from seven unionid mussel species"	21	20
2	Amendment 1: Revision of Study Protocol, Study # AEH-11-PSEUDO-01	6	41
3	Amendment 2: Revision of Study Protocol, Study # AEH-11-PSEUDO-01	8	47
4	Amendment 3: Revision of Study Protocol, Study # AEH-11-PSEUDO-01	5	55
5	Amendment 4: Revision of Study Protocol, Study # AEH-11-PSEUDO-01	7	60
6	Amendment 5: Revision of Study Protocol, Study # AEH-11-PSEUDO-01	2	67
7	Note to File 1: Study # AEH-11-PSEUDO-01	6	69
8	Note to File 2: Study # AEH-11-PSEUDO-01	7	75
9	Version 1.1 "Donor Mussel UMESC Lot Number Assignment Form" Datasheet	1	82
10	Version 1.1 "Daily Care Worksheet Donor Mussel Holding" Datasheet	1	83
11	"Adult Mussel Holding Daily Algal Diet 1/13/2012" Datasheet	1	84
12	Version 1.1 "Glochidia Test Organism UMESC Lot Number Assignment Form" Datasheet	1	85
13	Version 1.1 "Glochidia Aliquot Distribution Form" Datasheet	1	86
14	Version 1.1 "Glochidia Photomicrograph Counting Record" Datasheet	1	87
15	Version 1.1 "Initial Viability and Concentration Determination of Glochidia" Datasheet	1	88
16	Version 1.1 "Water Quality – Form 1 Initial (Dilution water Hardness, Alkalinity, and Temperature)" Datasheet	1	89
17	Version 1.2 "Water Quality - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature)" Datasheet	1	90
18	Version 1.2 "Water Quality – Form 3 Upon Termination (Hardness, Alkalinity, Conductivity, Temperature and pH)" Datasheet	1	91
19	Version 1.1 "Test Chemical Stock Preparation Data Form" Datasheet	1	92
20	Version 1.2 "Chemical Stock Solution Determination and Preparation" Datasheet	1	93
21	Version 1.1 "Pipette Calibration" Datasheet	1	94
22	OLD Versions of Datasheets	18	95

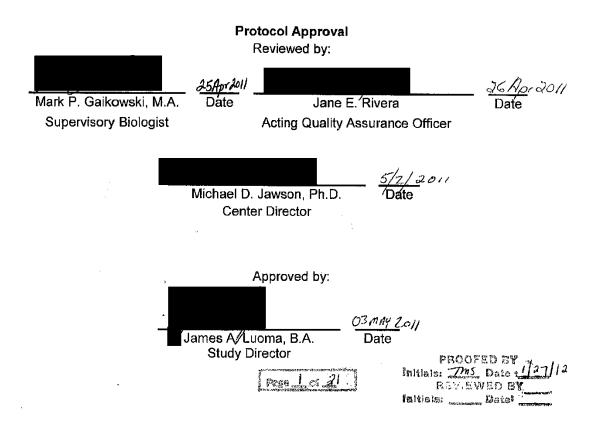
. .

ORIGINAL

Protocol Title:

Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species

Study Number: AEH-11-PSEUDO-01


Item No.

FOLDER NO. 3

Test Facilities

Upper Midwest Environmental Sciences Center (UMESC) US Geological Survey 2630 Fanta Reed Rd. La Crosse, Wisconsin 54603

Proposed Experimental Start Date: May 2011 Proposed Experimental Termination Date: February 2012

ORIGINAL -

1

STUDY NO AEH 11 PSEUDO-01

TABLE OF CONTENTS

	1. INTRODUCTION	. 5
	2. PROTOCOL OBJECTIVE	. 6
	3. STUDY SCHEDULE	. 6
) 10.5	3.1 Proposed initiation	. 6
	3.2 Schedule of events	. 6
	3.3 Proposed completion date	. 6
	4. STUDY DESIGN	. 7
	4.1 Génèral Description	. 7
	4.2 Experimental Design	. 7
	5. STUDY PROCEDURES	. 8
	5.1 Test Animals	. 8
	5.1.1 Description	. 8
	5.1.1.1 Age	
	5.1.1.2 Sex	. 8
	5.1.1.3 Species	8
	5.1.2 Number of animals	
	5.1.3 Source of animals	9
	5.1.4 Inclusion criteria	
	5.1.5 Acclimation	
	5.1.6 Feeding	
	5.2 Water Chemistry	
	5.2.1 Dissolved Oxygen	
	5.2.2 Temperature	9
	5.2.3 pH	9
	5.2.4 Hardness	9
	5.2.5 Alkalinity	
	5.2.6 Conductivity	
	5.2.7 Ammonia	9
	5.3 Disposal	10
	5.4 Study facilities	10
	5.4.1 Test facility	
	5.4.1.1 Exposure System	
	5.4.1.2 Aeration	
	5.4.1.3 Water supply	10
	5.4.1.4 Lighting	
	5.4.1.5 Exposure chamber dimensions	10
	5.4.1.6 Water discharge	
	5.5 Observations	10

ORIGINAL

÷

i

5.5.1 Behavioral Observations	. 10
5.5.2 Water chemistry	. 11
5.6 Treatment administration	. 11
5.6.1 Treatment	. 11
5.6.2 Route of administration	. 11
6. SPECIFICATION OF VARIABLES	. 11
6.1 Distribution to experimental units	
6.2 Determination of viability	. 11
7. DATA ANALYSIS	. 12
7.1 Experimental unit	. 12
7.2 Number of exposures and replicates	. 12
7.3 Statistical methodology	12
7.4 Statistical significance	12
7.5 Other data analyses	. 12
8. PERSONNEL	
8.1 Study Director	. 12
8.1.1 Address	. 12
8.1.2 Contact	. 12
8.1.3 Training and experience	
8.2 Other personnel involved in study	. 12
9. DISPOSITION/STORAGE	
9.1 Study Records	. 13
10. GOOD LABORATORY PRACTICES	. 13
11. AMENDMENT/DEVIATIONS TO THE PROTOCOL	. 13
11.1 Protocol amendments	. 13
11.2 Protocol deviations	13
12. INVESTIGATIONAL TEST ARTICLE	
12.1 Test substance	
12.1.1 Chemical name	
12.1.2 Trade name	
12.1.3 Active/inactive ingredients	
12.1.4 Source	
12.1.5 Lot Number	
12.1.6 Expiration Date	
12.1.7 Storage during study	
12.1.8 Safety	
13. ADVERSE EVENTS	
14. BIOSECURITY PROCEDURES	
14.1 General Procedures	
14.2 HACCP Plan	14

STUDY NO. AEH-11-PSEUDO-01

URIGINAL

. . معرب رون

÷

,

STUDY NO. AEH 11-PSEUDO-01

15.	STANDARD OPERATING PROCEDURES	15
16.	REFERENCES	16
17.	APPENDIX	18
17	.1 Appendix 1 HACCP Plan	18

4

1. INTRODUCTION:

Historical native freshwater mussel populations of North America were considered the most diverse in the world with about 297 recognized taxa consisting of 281 species and 16 subspecies (Williams et al., 1993). Mussels are largely sedentary in nature, relying on movement of host fish during glochidial attachment as means of transport. Due to these facts, mussels are particularly vulnerable to a variety of anthropogenic influences including habitat degradation and alteration, pollution and over harvest. Master (1990) reported a survey conducted by the Nature Conservancy which showed 55% of North America's mussels as extinct or imperiled compared to 7% of terrestrial species which traditionally have received far greater attention. Ricciardi and Rasmussen (1999) projected that at least 127 imperiled mussel species will be lost in the next 100 years. The extinction rate was calculated to be 6.4% per decade and should be considered conservative because it did not take into account the extirpations caused by the invasive dreissenid mussels (Ricciardi and Rasmussen, 1999).

Neves et al (1997) reported the ominous status of native mussels in the Southeast with only 25 percent of the 269 species historically present reported as stable. Thirteen percent were reported as presumed extinct, 28 percent as endangered, followed by 14 percent as threatened and 18 percent listed as species of special concern. Many unionid mussel species in North America were imperiled prior to epizoic colonization by zebra mussels (*Dreissena polymorpha*), which has dramatically heightened concerns for their continued survival. Zebra mussels have been deemed responsible for the extirpation of unionids from waters in Europe as early as 1937 (Sebestyen, 1937). Severe declines in unionid abundance in Europe (Karatayev and Burlakova, 1995; Burlakova, 1998) and North America (Haag et al, 1993; Nalepa, 1994; Ricciardi et al., 1996) have since been well documented in the literature.

The 1973 Endangered Species Act (ESA) brought forth the need to recognize, protect and recover rare mussels in the United States. The United States Fish and Wildlife Service (USFWS) develops recovery plans for threatened and endangered species which utilize a range of tools to promote recovery of the species including restoring and acquiring critical habitat, removing introduced or invasive species and captive propagation and release into historic ranges.

As of 2004, mussel propagation work was being conducted in several different facilities in 7 states as well as in Ontario, Canada (Neves, 2004). The Genoa National Fish Hatchery (GNFH) in Wisconsin has been involved in mussel recovery since 2000, releasing tens of thousands of propagated subadult Higgins eye pearlymussel (*Lampsilis higginsii*) for recovery efforts. The GNFH produces subadult mussels using cage culture techniques. This technique involves placing glochidia laden host fish into

5

STUDY NO. AEH-11-PSEUDQ-01

ORIGINAL

submerged cages within natural water bodies such as the Upper Mississippi and St. Croix Rivers. The fish are released from the cages after mussel excystment and the mussels are allowed to grow on the cage bottom for an additional 6-18 months before being harvested. Areas that were previously successful in rearing mussels using this technique have been abandoned due to the proliferation and colonization by zebra mussels.

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a commercial sprayed dried formulation of this bacterium called MBI-401 SDP. The current commercial applications of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

The Glochidia life stage of unionid mussels has been identified as a critical life stage and has been shown to be highly sensitive to various contaminants (ASTM E2455-06). This research will determine the animal effects of various concentrations of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the glochidia lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

3. STUDY SCHEDULE:

- 3.1 Proposed initiation: May 2011
- 3.2 Schedule of events: A proposed schedule of events is provided in Table 1.
- 3.3 Proposed completion date: February 2012

STUDY NO. AEH-11-PSEUDO-01

ORIGINAL

Date	Activity
May 2011-November 2011	Glochidia exposures
November 2011-January 2012	Data analysis
February 2012	Final Report submission

4. STUDY DESIGN:

4.1 General Description:

Glochidia from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Glochidia will be exposed in static exposures for 24 h as described in ASTM E-2455-06 and evaluated at 6, 12 and 24 h for viability as determined by valve closure response after addition of a saturated sodium chloride solution.

Table 2. Mussel species to be evaluated for MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) exposure effects.

Common name	Scientific name
Black sandshell	Ligumia recta
Fatmucket	Lampsilis siliquoidea
Hickorynut	Obovaria olivaria
Higgins eye	Lampsilis higginsii
Mucket	Actinonaias ligamentina
Plain pocketbook	Lampsilis cardium
Washboard	Megalonaias nervosa

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Glochidia from at least three gravid female mussels of each species will be extracted and evaluated for viability and if acceptable (≥80%) glochidia groups will pooled for use by the Genoa NFH according to the procedures outlined in ASTM E2455-06 and immediately transferred to the UMESC in a

7

EH-11-PSEUDO-01

ORIGINAL

cooler at ~20°C. Glochidia will be acclimated to test water by the addition of 50% UMESC well water at the Genoa NFH and upon arrival at UMESC. Prior to exposure initiation, viability will be assessed in a subsample of glochidia by the addition of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]). Viability will be assessed ~1 minute after addition of sodium chloride and must exhibit > 80% viability for use in exposures. An appropriate amount of glochidia suspension (ie: 2 mL) will be randomly aliquoted to a exposure chamber (80 mm x 40 mm crystallizing dish) containing acclimated well water to achieve a final volume of 100 mL. Approximately 500 glochidia will be transferred to each exposure chamber in a minimum of two aliquots per chamber (ie: two 1 mL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 SDP, deactivated MBI-401 SDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 SDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cycle. Viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration through a dissecting microscope. Photomicrographs of subsamples may be recorded. The study will be terminated after 24 h post exposure evaluations are completed.

5. STUDY PROCEDURES

- 5.1 Test Animals
 - 5.1.1 Description:

5.1.1.1 Age – <24 h extracted glochidia.

5.1.1.2 Sex – glochidia are an immature lifestage and they cannot be identification sexually.

5.1.1.3 Species – See Table 2

5.1.2 Number of animals: Approximately 9,000 glochidia (500 per replicate x 3 replicates x 6 concentrations) of each species. This design uses the fewest number of glochidia possible, consistent with the objective of the study, contemporary scientific standards and ASTM guide E2455-06.

ORIGINAL

- 5.1.3 Source of animals: All glochidia will be obtained from donor mussels located at the Genoa NFH.
- 5.1.4 Inclusion criterion: Glochidia will be used if they meet or exceed the following percentage of valve closure requirements after addition of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O). Glochidia must exhibit ≥ 80% valve closure to be pooled for use at the Genoa NFH and glochidia must exhibit ≥ 80% valve closure immediately prior study initiation at the UMESC.
- 5.1.5 Acclimation: Glochidia will be acclimated to UMESC well water and temperature (20 °C) by the addition of up to 50% UMESC well water at the Genoa NFH prior to transport to UMESC and again after arrival at the UMESC.
- 5.1.6 Feeding: In compliance with contemporary scientific standards, glochidia will not be fed during the exposures.
- 5.2 Water Chemistry

STUDY NO AEH-11-PSEUDO-01

- 5.2.1 Dissolved oxygen: Dissolved oxygen will be measured and recorded at least twice during the exposure period in the control and high concentration. (UMESC SOP AEH 394 or equivalent).
- 5.2.2 Temperature: Temperature will be measured and recorded at least twice during the exposure period.
- 5.2.3 pH: The pH will be measured and recorded at least twice during the exposure period in the control and high concentration (UMESC SOP AEH 310, 334 or equivalent).
- 5.2.4 Hardness: The hardness will be measured and recorded on dilution water prior to test initiation and upon test termination from pooled replicate samples from the control and high concentrations (UMESC SOP AEH 712 or equivalent).
- 5.2.5 Alkalinity: The alkalinity will be measured and recorded on dilution water prior to test initiation and upon test termination from pooled replicate samples from the control and high concentrations (UMESC SOP AEH 706 or equivalent).
- 5.2.6 Conductivity: The conductivity will be measured and recorded upon test termination from pooled replicate samples of each test concentration (UMESC SOP AEH 188 or equivalent).
- 5.2.7 Ammonia: The ammonia will be measured and recorded at the termination of the exposure from pooled replicate samples from the controls and all test concentrations (UMESC SOP AEH 301 or equivalent).

5.3 Disposal: Upon study termination the glochidia in each test vessel will be euthanized by MS-222 overdose (UMESC SOP GEN 132) then disposed of by incineration.

5.4 Study facilities:

5.4.1Test Facility

STUDY:NO AEH-11100

U.S. Geological Survey, Upper Midwest Environmental Sciences Center 2630 Fanta Reed Rd

La Crosse, Wisconsin 54603

- 5.4.1.1 Exposure system: The test system is a series of eighteen static 80 x 40 mm crystallizing dishes (100 mL of test water) for each species, placed in a recirculating water bath system or on a bench top of a controlled environment room. Each replicate will be uniquely identified (eg: 1A2) to allow for identification of species treatment type and replicate number. Coding identification procedures will be documented in the laboratory notebook.
- 5.4.1.2 Aeration: Supplemental aeration will be supplied during exposures by gently bubbling in laboratory air through a pasteur pipet at a rate of approximately 1 bubble/second.
- 5.4.1.3 Water supply: UMESC well water will be temperature acclimated (20°C) and aerated for at least 24 h prior to use for test water.
- 5.4.1.4 Lighting: Direct light may adversely affect test results, thus indirect lighting(~18 h L:6 h D; 100-1000 lux) will be provided; light intensity will be recorded at the initiation and completion of the exposure period (UMESC SOP AEH 308).
- 5.4.1.5 Exposure chamber dimensions: The exposure chambers are 80 x 40 mm crystallizing dishes. Each exposure chamber will be filled with 100 mL of test water (ASTM E2455-06).
- 5.4.1.6 Water discharge: All water will be discharged into the UMESC invasive species isolation facility.

5.5 Observations:

5.5.1 Behavioral Observations: Behavioral observations will be limited to viability assessments. Viability is determined by the ability of the glochidia to constrict their adductor mussel thereby causing valve closure in response to saturated sodium chloride (12 g NaCl/ 50 mL of D.I. H₂O) exposure. Viability will be determined on a subsample of approximately 100 glochidia at 6, 12 and 24 h post exposure for each test chamber.

STUDY NO, AEH-11-PSEUDO-01

ORIGINAL

- 5.5.2 Water chemistry: Dissolved oxygen, pH, and temperature will be monitored after the addition of the specified treatment. Alkalinity, hardness, conductivity and ammonia will be measured on a sample of dilution water at test initiation and on pooled replicate samples upon test termination. Alkalinity, hardness, conductivity and ammonia will not be measured during the exposures due to the quantity of test water required and probe submersion requirements to complete the analysis.
- 5.6 Treatment administration:
- 5.6.1 Treatment: Each species of mussel glochidia will be exposed to three replicates of either 0 (control), 50, 100, 200 or 300 mg/L (active ingredient) and a 300 mg/L heat deactivated (70°C/45 minutes) control as a one time single dose exposure.
- 5.6.2 Route of administration: To assure uniform exposure, an appropriate amount of freshly prepared stock solution will added to each test chamber from an agitated stock suspension with a pipet.

6. SPECIFICATION OF VARIABLES

- 6.1 Distribution to experimental units: The glochidia concentration (glochidia/mL) will be determined for each species prior to test initiation by enumeration of replicate subsamples of glochidial suspension through a dissecting microscope. Appropriate volumes (mL) will be determined that would contain approximately 500 glochidia. Test chambers will then be filled with appropriate amounts of dilution water to obtain a final volume of 100 mL. Distribution to test chambers will then proceed by the addition of the calculated volume of suspension in at least two separate aliquots. Aliquots will be randomly assigned to a test chamber until all receive one aliquot. This procedure will then be repeated until all chambers receive approximately 500 glochidia in two or more aliquots. The test chambers will be randomly assigned treatment concentration.
- 6.2 Determination of viability: Viability will determined by the ability of the glochidia to constrict their adductor mussel thereby causing valve closure in response to saturated sodium chloride (12 g NaCl/ 50 mL of D.I. H₂O) exposure. Viability will be determined on a subsample of approximately 100 glochidia for each species prior to test initiation and at 6, 12 and 24 h post exposure for each test replicate. A volume of water containing approximately 100 glochidia (eg: 1-2 mL) will be placed on a 35 mm mini petri dish and examined under a dissecting scope to enumerate the percentage of glochidia with closed valves. Then approximately 1 drop of a saturated sodium chloride solution will be added to the sample and the glochidia will then be reassessed for valve closure after approximately one

30

minute. Subsample photomicrographs of glochidia pre and post sodium chloride addition may be recorded and uniquely identified for documentation and optional later enumeration and/or validation of closure percentages. Only glochidia that are open and responsive to sodium chloride addition will be considered viable.

7. DATA ANALYSIS

- 7.1 Experimental unit: The experiment unit will be the exposure chamber.
- 7.2 Number of exposures and replicates: There will be a total of 6 treatment levels (control, positive control (heat treated *Pf*-CL145A) 50, 100, 200 and 300 mg *Pf*-CL145A/L) for each replicate and three replicate exposure chambers per treatment level for a total of 18 exposure chambers for each mussel species.
- 7.3 Statistical methodology:

Viability data will be analyzed using a generalized linear mixed model (SAS PROC GLIMMIX). In every analysis, the exposure chamber will be treated as the experimental unit. The change in proportion of viability will be analyzed using a generalized linear mixed model where the distribution is binomial and the link used is the logit function.

If a significant effect of treatment is identified then pairwise comparison tests will be completed to compare each treatment group to the control group using unadjusted least squares means.

- 7.4 Statistical significance: Statistical significance will be declared at p < 0.05.
- 7.5 Other data analyses: Statistical methods for other study data collected will include calculation of means, standard deviations and coefficients of variation.

8. PERSONNEL

- 8.1 Study Director: James A. Luoma, B.A.
 - 8.1.1 Address: Upper Midwest Environmental Sciences Center, US Geological Survey, 2630 Fanta Reed Rd., La Crosse, Wisconsin 54603
 - 8.1.2 Contact: Tel: (608) 781-6391, Fax: (608) 783-6066; jluoma@usgs.gov
 - 8.1.3 Training and experience: CV on file at UMESC.
- 8.2 Other personnel involved in study: Technical staff involved in the study will be identified in the study raw data to include study function. UMESC technical staff training and experience will be documented in CVs included in the study raw data.

12

9. DISPOSITION/STORAGE

9.1 Study Records: All data generated in the study at UMESC will be recorded in bound laboratory notebooks or kept in file folders (SOP No. GEN 008). All data sheets, file folders, laboratory notebooks and computer disks will be encoded with the study number when the data are generated and stored in secure files (SOP No. GEN 008). Raw data, laboratory notebooks and electronic files (including a CD-ROM containing the annotated SAS program used for the statistical analysis, the data files, SAS log and SAS output files) generated by UMESC and contract laboratory reports will be filed in the UMESC archives (SOP No. GEN 007) of the Upper Midwest Environmental Sciences Center, LaCrosse Wisconsin, before the final report is signed by the Study Director. The final report will then be signed and archived.

ORIGINAL

10. GOOD LABORATORY PRACTICES

Data collection, storage and retrieval procedures for the study will be conducted in compliance with FDA regulations for Good Laboratory Practices (GLP; 21 CFR, Part 58). The study protocol and progress of the study will be reviewed at the start of the study and periodically throughout the study by the Quality Assurance Unit (QAU). The Study Director has the responsibility of ensuring that all procedures used in conjunction with the study conform with Good Laboratory Practices.

11. AMENDMENT/DEVIATIONS TO THE PROTOCOL

- 11.1 Protocol amendments: A signed copy of the Study Protocol will be retained on-site. Proposed amendments to the protocol shall be brought to the attention of UMESC Management. When the Study Director and Management agree verbally, the study can proceed with the change. As soon as possible, the Study Director will then prepare a written protocol amendment that is signed by the Study Director, Branch Chief, UMESC Center Director, and UMESC-QA. The UMESC statistician or UMESC Animal Care and Use Chair may also sign as needed. The amendment then becomes an official part of the protocol.
- 11.2 Protocol deviations: All deviations from this approved protocol will be documented and reviewed by the Study Director. The Study Director will make a judgment on the impact of the deviations. The Study Director will notify Management, UMESC-QA, as soon as possible, in writing, of any deviations to the protocol, including their impact on the study.

STUDY NO AEH-11-PSEUDO-01

ONGNAS

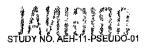
12. INVESTIGATIONAL TEST ARTICLE

- 12.1 Test Substance(s): MBI-401 SDP, Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.2 Trade name: MBI-401 SDP
 - 12.1.3 Active ingredients: *Pseudomonas fluorescens* (*Pf*-CL145A) is the sole active ingredient, 50% active by weight.
 - 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
 - 12.1.5 Lot number: None established
 - 12.1.6 Expiration date: None established
 - 12.1.7 Storage during study: test chemical will be stored at refrigerated in a locked container within a restrictive entry laboratory. A subsample of the test chemical will be archived in the UMESC Chemical Archive (UMESC SOP GEN 011).
 - 12.1.8 A NIOSH approved respirator will be used when preparing stock solutions to avoid inhalation. Protective eyewear, gloves and lab coats will be worn at all times when working with the test substance.
- 13. ADVERSE EVENTS: Any adverse event will be recorded in the study logbook and the Study Director will be notified.

14. BIOSECURITY PROCEDURES

14.1 General Procedures: All personnel involved in the study will review the UMESC biosecurity (UMESC SOP APP 075) and project HACCP plans. Testing will be conducted in a laboratory with controlled access. All effluent and sample water will be iodine or chlorine disinfected prior to discharge.

Biosecurity procedures outlined in UMESC SOP APP 075.0 will be followed for samples and equipment.


14.2 HACCP Plan: See Appendix 1 for the HACCP plan for this project.

14

15. STANDARD OPERATING PROCEDURES

UMESC SOP GEN 007 - Archives Management for Regulated Studies UMESC SOP GEN 008 - Maintenance of Data Recording of Raw Data for **Regulated Studies** UMESC SOP GEN 012 - Receipt, Identification, Storage, Handling, Checkout and Documentation of Use of Test Chemicals UMESC SOP APP 075 - Procedures to Minimize the Risk of Transfer of Pathogens and Invasive Species UMESC SOP GEN 132 - Care, Maintenance & Disposal of Aquatic Vertebrates UMESC SOP AEH 011 - Procedures for Labeling Chemicals and Specimens. UMESC SOP AEH 213 - Sartorius Balance, Model LC34000P, Serial 30303922 UMESC SOP AEH 188 - Accumet Portable Waterproof Conductivity meter Model # AP75 UMESC SOP AEH 301 - Instrument Operating Procedure: YSI Photometer Model # 9000 Serial # 3638017 UMESC SOP AEH 308 - Instrument Operating Procedure: Milwaukee Light Meter Model # SM7000 Serial # 727298 UMESC SOP AEH 310 - Hanna pH Meter, Model HI991001, Serial Number 370973 UMESC SOP AEH 334 - Beckman Portable pH/mV Meter, Model F210, Serials 330167 & 330168 UMESC SOP AEH 338 – Sartorius Model BP 3100S, Serial Number 12907582 UMESC SOP AEH 394 - YSI Handheld Dissolved Oxygen Meter, Model 55/12FT, Serials 94C17261 & 97F0837AG UMESC SOP AEH 606 - Methods Used to Weigh, Measure & Mark Test Animals UMESC SOP AEH 706 - Determination of Total Alkalinity by the Titrimetric (pH 4.5) Method UMESC SOP AEH 712 – Determination of Total Hardness UMESC SOP AEH 903 - Verification of Thermometer & Temperature Recorder Calibration UMESC

34

16. REFERENCES.

American Society for Testing and Materials. 2006. Standard guide for conducting laboratory toxicity tests with freshwater mussels. E2455-06. In Annual Book of ASTM Standards, Vol 11.06. Philidelphia, PA.

Burlakova, L.E., 1998. Ecology of *Dreissena polymorpha* (PALLAS) and its role in the structre and function of aquatic ecosystems. Candidate dissertation, Zoology Institute of the Academy of Science Republice Belarus, 168 p. (in Russian) in Burlakova L.E., A.Y. Karatayev and D. K. Padilla. 2000. The impact of Dreissena polymorpha (PALLAS) invasion on Unionid bivalves. Internat. Rev. hydrobiol. 85 (5-6):529-541.

Cummings S.K. and C.A. Mayer, 1992. Field guide to freshwater mussels of the Midwest. Illinois Natural History Survey Manual 5. 194 pp.

Haag, W.R., D.L. Berg, D.W. Garton, and J.L. Farris. 1993. Reduced survival and fitness in native bivalves in response to fouling by the introduced zebra mussel (Dreissena polymorpha) in western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 50(1):13-19.

Karatayev, A.Y. and L.E. Burlakova, 1995. Present and further patterns in Dreissena population development in the Narochanskaya lakes system. Vestisi Akad. Navuk Belarusi. Ser. Biyol. Navuk 3: 95098 (in Belarussian) in Burlakova L.E., A.Y. Karatayev and D. K. Padilla. 2000. The impact of Dreissena polymorpha (PALLAS) invasion on Unionid bivalves. Internat. Rev. hydrobiol. 85 (5-6):529-541.

Master, L. 1990. The imperiled status of North American aquatic animals. Biodiversity Network News 3(3):5-8.

Napela, T.F., 1994. Decline of native unionid bivalves in Lake St. Clair after infestation by the zebra mussel, *Dreissena polymorpha*. Can. J. Fish. Aquat. Sci. 51:2227-2233.

Neves R. J. 2004. Propagation of endangered freshwater mussels in North America. Journal of Conchology, special publication 3:69-80.

Neves, R.J., A.E. Bogan, J.D. Williams, S.A. Ahlstedt, and P.W. Hartfield. 1997. Status of aquatic mollusks in the southeastern United States: a downward spiral of diversity. Pages 43-85 in G.W. Benz and D.E. Collins, editors. Aquatic fauna in peril: the southeastern perspective. Southeastern Aquatic Research Institute, Lenz Design and communications, Decatur, Georgia.

STUDY NO. AEH-11-PSEUDO-01

ORIGINAL

Ricciardi, A. F.G. Whoriskey, and J.B. Rasamussen. 1996. Impact of the *Dreissena* invasion on native unionid bivalves in the upper St. Lawerance River. Can. J. Fish. Aquat. Sci. 53:1434-1444.

Ricciardi A., and J.B. Rasmussen. 1999. Extinction rates of North American freshwater fauna. Conservation Biology. Vol. 13 (5):1220-1222.

Sebestyn, O. 1937. Colonization of two new fauna-elements of Pontus-origin (*Dreissena polymorpha* Pall. And *Corophuim curvispinum* G.O. Sars forma devium Wundsch) in Lake Balaton, Verh. Int. Ver. Theor. Angew. Limnol. 8:169-182 in Burlakova L.E., A.Y. Karatayev and D. K. Padilla. 2000. The impact of Dreissena polymorpha (PALLAS) invasion on Unionid bivalves. Internat. Rev. hydrobiol. 85 (5-6):529-541.

Watters, G.T., M.A. Hoggarth and D.H. Stansbery. (2009) The Freshwater Mussels of Ohio. The Ohio State University Press, Columbus, OH. 421 pp.

Williams, J.D., M.L. Warren Jr., K.S. Cummings, J.L. Harris, and R.J. Neves. 1993. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18(9):6-22.

17. APPENDIX.

17.1 Appendix 1. HACCP PLAN for the study Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species

Step 1 – Activity Description

Facility: US Geo ogical Survey-Upper Midwest Environmental Sciences Center	Site: Lower B, rooms 15, 16 and 17
Site Coordinator: Jim Luoma	Activity: Determine the effects of various concentrations of
Site Manager: Mark Galkowski	Pseudomonas fluorescens (Pf-CL145A) to the glochidia lifestage of seven unionid mussels species present in the Great Lakes and Upper
Address: 2630 Fanta Reed Road La Crosse WI, 54601	Mississippi River basins.
Phone: 608-781-6322	-

Project Description

The objective of this study is to determine effects of various concentrations of *Pseudomonus fluorescens* (Pf-CL145A) to the glochidia lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

Vertebrates:	
None	
Invertebrates	
Zebra mussel (Dreissena polymorpha)	
Plants: None	
Other biologicals (disease, pathogen, parasite):	
Largemouth Bass Virus	
Spring Viremia of Carp Virus	
Bluegiil Virus	
Infectious Pancreatic Necrosis Virus	
Viral Hemorrhagic Septicemia	
Furunculosis Aeromonas salmanicida Enteric Redmouth Disease Yersinia ruckeri	
Bacterial Kidney Disease Renibacterium salmoninarum	
Other Assorted parasites/pathogens commonly found in the upper Mississippi River Basin	
Other (construction materials):	
NA	

Step 3 – Flow Diagram

Flow diagram outlining sequential tasks to complete activity/project

STUDY NO. AEH-11-PSEUDO-01

ORIGINAL

Task 1	Mussei glochidia are obtained from the Genoa NFH and transferred to UMESC.
Ťask 0	
Task 2	Mussel glochidia distributed to test chambers in the invasive species laboratory
* Task 3	Mussel g ochicia are removed for enumeration
Task 4	Water samples collected and analyzed for chemical parameters
↓ ⊺ask 5	After exposure, the glochidia will be euthanized using a lethal dose of MS-222 and discarded according to UMESC SOPs GEN 132.

1 Tasks (from HACCP Step 3 - Flow Diagram)	2 Potential hazards Identified in HACCP Step 2	3 Are any potential hazards probable? (yes/no)	4 Justify evaluation for column 3	5 What control measures can be app'ied to prevent undesirable results?	6 Is this task a critica control point? (yes/no)
---	---	---	---	--	---

Task 1 Mussel glochidia are obtained from the Genoa NFH and	Vertebrates	No	Mussel glochidia will be transported in clean well water and the will not be vertebrates present	N/A	no
transferred to UMESC.	Invertebrates	yes	Mussel glochidia will be collected from donor mussels collected from wild sources.	Assure donor mussels have been cleaned and rinsed with well water prior to use. Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	γes
	Plants	No	The donor mussels are cleaned upon collection and held in clean well water prior to use.	Any plant material will be removed from conor mussels and equipment before transporting Genoa NFH.	no
	Others	No	The potential transfer of fish diseases from glochidla harvested from donor mussels Is extremely low.	Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	no

Task 2 Mussel glochidia distributed to test	Vertebrates	no	Risk eliminated in Task 1	N/A	no
chambers in the invasive species laboratory	invertebrates	no	Risk eliminated in Task 1	Effluent water Is treated and equipment will be disinfected. Equipment remains in the laboratory.	no
	Plants	no	Risk eliminated in Task 1	N/A	no
	Others	no	The potential transfer of fish diseases from glochidia has never been documented.	Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	no

19

_

I.

STUDY NO AEH-11-PSEUDO-01

Task 3	Vertebrates	No	Risk eliminated in Task 1	N/A	no
Mussel glochidia are removed for					
enumeration	Invertebrates	No	' Risk eliminatec in Task 1	Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	no
	Plants	No	Risk eliminated in Task 1	N/A :	no
	Others	No	The potential transfer of fish diseases from glochidia has never been documented.	Effluent water Is treated and equipment will be disinfected. Equipment remains in the laboratory.	na

Task 4 Water samples collected and analyzed	Vertebrates	NO	Risk eliminated in Task 1	N/A	no
for chemical parameters	Invertebrates	No	Risk eliminated in Task 1	Effluent water is treated and equipment will be oisinfected. Equipment remains in the faboratory.	no
	Plants	No	Risk eliminated in Task 1	N/A	no
	Others	No	The potential transfer of fish diseases from glochidia has never been documented.	Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	no

Task 5	Vertebrates	No	Risk eliminated in Task	N/A	no
After exposure, the glochidia will be					
euthanized using a lethal dose of MS-222 and discarded according to UMESC	Invertebrates	No	Risk eliminated in Task 1	N/A	no
SOPs GEN 132.	Plarts	Νο	Risk ellminated in Task 1	N/A	no

STUDY NO. AEH-11-PSEUDO-01

· · · ·

Others	No	The potential transfer of fish diseases from glochidia has never been documented.	Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	no	
--------	----	--	---	----	--

				Moni	toring			
Critical Control Point {CCP)	Significant Hazard(s)	Limits for each Control Measure	What	How	Frequency	Who	Evaluation & Corrective Action(s) (If needed)	Supporting Documentation (if any)
Fask 1 nvertebrates	Invertebrate transfer	Invertebrates cannot be transferred. Donor mussels must be cleaned and rinsed Effluent water must be captured and treated.	Macro/Micro scopic Invertebrates	remove	Da'ly inspections Immediately upon animal or sample transfer	All Staff	Supervisor and staff are responsible for careful attention to detail-Disinfection of equipment	Records in log bool
Facility: Upper Midwe	st Environmenta	Sciences Center		<u> </u>		s fluorescens	ffects of various concent (<i>Pf</i> -CL145A) to the gloci	
Address: 2630 Fanta Re	ed Road, La Cro	ssc. WI 54601		··				····
Signature;					Date:			

FOLDER NO. 3

Ļ

PROOPED BY 127/12 Initials: 201 Date: 1/27/12 BEVIEWED BY Icitials: Date:

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

ORIGINAL

Item No. 2

FOLDER NO. 3

Date: May 9, 2011 To: The Record Study Number AEH-11PSEUDO-01

Subject: Amendment 1- Amendment to the study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

Revision of Study Protocol, Study # AEH-11PSEUDO-01 is proposed as detailed on pages 2-6 of this amendment. Revised text is indicated in **bold**.

This amendment 1) changes the physical location where glochidia are extracted from the gravid female mussels and adds a description of the acclimation procedures applied to the female mussels and glochidia; 2) adds the use of photomicrographs to enumerate glochidia; 3) changes the glochidia distribution and sampling methods; 4) adds the requirements to determine stock and test solution absorbance; and 5) includes the test material lot number and post-testing activity determination.

The amendment adjusts the glochidia collection methods to minimize the time period between collection and testing and maximizes acclimation to test conditions. The amendment adjusts the procedures used to enumerate, distribute and sample glochidia based on preliminary observations. The amendment also adds methods to assess the stock solution concentration. Last, the amendment adds the test material lot number and post-testing activity assessment.

Reviewed by: 09 May 11 Mark P. Gaikowski, M.A. Date Jane E. Rivera, B.A. Supervisory Biologist Acting Quality Assurance Officer, Aquatic Ecosystem Health, UMESC UMESC¹ <u>5/10/20</u>4 Date Michael Jawson, Ph.D. Center Director, UMESC Approved by: 5/10/2-11 Date ayhes A. Lugoma, B.A. Study Director, UMESC

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center PROOFED BY

BLY EWED BY n'tials: Datel

Study# AEH-11-PSEUDO-01 Amendment #1

Page 1 of 6

Current text:

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Glochidia from at least three gravid female mussels of each species will be extracted and evaluated for viability and if acceptable (280%) glochidia groups will pooled for use by the Genoa NFH according to the procedures outlined in ASTM E2455-06 and immediately transferred to the UMESC in a cooler at ~20°C. Glochidia will be acclimated to test water by the addition of 50% UMESC well water at the Genoa NFH and upon arrival at UMESC. Prior to exposure initiation, viability will be assessed in a subsample of glochidia by the addition of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. $H_2 \tilde{O}$ [ASTM E2455-06]). Viability will be assessed ~1 minute after addition of sodium chloride and must exhibit > 80% viability for use in exposures. An appropriate amount of glochidia suspension (ie: 2 mL) will be randomly aliquoted to a exposure chamber (80 mm x 40 mm crystallizing dish) containing acclimated well water to achieve a final volume of 100 mL. Approximately 500 glochidia will be transferred to each exposure chamber in a minimum of two aliquots per chamber (ie: two 1 mL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 SDP, deactivated MBI-401 SDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 SDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cycle. Viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration through a dissecting microscope. Photomicrographs of subsamples may be recorded. The study will be terminated after 24 h post exposure evaluations are completed.

Revised text (in bold):

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Approximately 72 h prior to test initiation the donor mussels will be transferred from the Genoa NFH to the UMESC and acclimated to test temperature. Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 µL) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 µL) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. Enumerations will be conducted for the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample - {total number of glochidia

Study# AEH-11-PSEUDO-01 Amendment #1

Page 2 of 6

OBIGINAL

closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If viability is acceptable (≥80%) for a mussel, the glochidia from that mussel will be pooled with glochidia from other mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and aliquoted to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two aliquots (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 SDP, deactivated MBI-401 SDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 SDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. Exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cvcle. Viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride addition. The study will be terminated after 24 h post exposure evaluations are completed.

Current text:

- 5. STUDY PROCEDURES
 - 5.1 Test Animals
 - 5.1.2 Number of animals: Approximately 9,000 glochidia (500 per replicate x 3 replicates x 6 concentrations) of each species. This design uses the fewest number of glochidia possible, consistent with the objective of the study, contemporary scientific standards and ASTM guide E2455-06.
 - 5.1.3 Source of animals: All glochidia will be obtained from donor mussels located at the Genoa NFH.
 - 5.1.5 Acclimation: Glochidia will be acclimated to UMESC well water and temperature (20 °C) by the addition of up to 50% UMESC well water at the Genoa NFH prior to transport to UMESC and again after arrival at the UMESC.
 - 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussel glochidia will be exposed to three replicates of either 0 (control), 50, 100, 200 or 300 mg/L (active ingredient) and a 300 mg/L heat deactivated (70°C/45 minutes) control as a one time single dose exposure.
 - 5.6.2 Route of administration: To assure uniform exposure, an appropriate amount of freshly prepared stock solution will added to each test chamber from an agitated stock suspension with a pipet.

Revised text (in bold):

- 5. STUDY PROCEDURES
- 5.1 Test Animals
 - 5.1.2 Number of animals: Approximately 9,000-**18,000** glochidia (500-**1,000** per replicate x 3 replicates x 6 concentrations) of each species. This design uses the fewest number of glochidia possible, consistent with the objective of the study, contemporary scientific standards and ASTM guide E2455-06.
 - 5.1.3 Source of animals: All glochidia will be obtained from donor mussels collected and temporarily held at the Genoa NFH. The donor mussels will be transported to the

Study# AEH-11-PSEUDO-01 Amendment #1

Page 3 of 6

ORIGINAS

UMESC for acclimation to test conditions. Glochidia extraction will occur at UMESC; glochidia will be extracted by trained GNFH personnel.

- 5.1.5 Acclimation: Donor mussels will be acclimated from approximately 12 °C to the exposure temperature (20°C) over a period of approximately 72 h upon arrival at UMESC.
- 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussel glochidia will be exposed to three replicates of either 0 (control), 50, 100, 200 or 300 mg/L (active ingredient) and a 300 mg/L heat deactivated (70°C/45 minutes) control as a one time single dose exposure.
 - 5.6.2 Route of administration: To assure uniform exposure, an appropriate amount of freshly prepared stock solution will added to each test chamber from an agitated stock suspension with a pipet.
 - 5.6.3 Dose verification: The activity of MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined or characterized. Dosage verification of MBI-401 SDP will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations. The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

Current text:

6.1 Distribution to experimental units:

The glochidia concentration (glochidia/mL) will be determined for each species prior to test initiation by enumeration of replicate subsamples of glochidial suspension through a dissecting microscope. Appropriate volumes (mL) will be determined that would contain approximately 500 glochidia. Test chambers will then be filled with appropriate amounts of dilution water to obtain a final volume of 100 mL. Distribution to test chambers will then proceed by the addition of the calculated volume of suspension in at least two separate aliquots. Aliquots will be randomly assigned to a test chamber until all receive one aliquot. This procedure will then be repeated until all chambers receive approximately 500 glochidia in two or more aliquots. The test chambers will be randomly assigned treatment concentration.

6.2 Determination of viability:

Viability will determined by the ability of the glochidia to constrict their adductor mussel thereby causing valve closure in response to saturated sodium chloride (12 g NaCl/ 50 mL of D.I. H₂O) exposure. Viability will be determined on a subsample of approximately 100 glochidia for each species prior to test initiation and at 6, 12 and 24 h post exposure for each test replicate. A volume of water containing approximately 100 glochidia (eg: 1-2 mL) will be placed on a 35 mm mini petri dish and examined under a dissecting scope to enumerate the percentage of glochidia with closed valves. Then approximately 1 drop of a saturated sodium chloride solution will be added to the sample and the glochidia will then be reassesded for valve closure after approximately one minute. Subsample photomicrographs of glochidia per and post sodium chloride addition may be recorded and uniquely identified for documentation and optional later enumeration and/or validation of closure percentages. Only glochidia that are open and responsive to sodium chloride addition will be considered viable.

Revised text (in bold)

6.1 Distribution to experimental units:

The number of glochidia per 100 μ L aliquot will be estimated from samples taken to determine initial viability for each species prior to test initiation. Appropriate volumes (μ L) will be determined that would contain at least 500 glochidia. Test chambers will then be filled with appropriate amounts of dilution water to obtain a final volume of 100 mL. Distribution to exposure chambers will then proceed by the addition of the calculated volume of settled glochidia in at least two separate aliquots. Aliquots will be randomly assigned to an exposure

Study# AEH-11-PSEUDO-01 Amendment #1

Page 4 of 6

APIGIMAN

chamber until all receive one aliquot. This procedure will then be repeated until all chambers receive approximately 500 glochidia in two or more aliquots. The test chambers will be randomly assigned treatment concentration.

6.2 Determination of viability:

Viability will determined by the ability of the glochidia to constrict their adductor mussel thereby causing valve closure in response to saturated sodium chloride (12 g NaCl/ 50 mL of D.I. H₂O) exposure. Viability will be determined on a subsample of approximately 100 glochidia from each mussel prior to test initiation and at 6, 12 and 24 h post exposure for each test replicate. A subsample of at least 100 glochidia will be removed by drawing an aliquot (e.g. 100 µL) of settled glochidia from the exposure chamber with an adjustable manual plpet fitted with a wide bore tip and placing it on a pre-labeled 35 mm petri dish. The samples will be diluted with a known and consistent volume (e.g. 200 µL) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H2O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. Enumerations will be conducted for the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

Current text:

12. INVESTIGATIONAL TEST ARTICLE

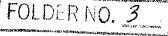
12.1 Test Substance(s): MBI-401 SDP, Pseudomonas fluorescens (Pf-CL145A)

- 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
- 12.1.2 Trade name: MBI-401 SDP
- 12.1.3 Active ingredients: *Pseudomonas fluorescens (Pf*-CL145A) is the sole active ingredient, 50% active by weight.
- 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
- 12.1.5 Lot number: None established
- 12.1.6 Expiration date: None established
- 12.1.7 Storage during study: test chemical will be stored at refrigerated in a locked container within a restrictive entry laboratory. A subsample of the test chemical will be archived in the UMESC Chemical Archive (UMESC SOP GEN 011).
- 12.1.8 A NIOSH approved respirator will be used when preparing stock solutions to avoid inhalation. Protective eyewear, gloves and lab coats will be worn at all times when working with the test substance.

Revised text (in bold)

12. INVESTIGATIONAL TEST ARTICLE

- 12.1 Test Substance(s): MBI-401 SDP, Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.2 Trade name: MBI-401 SDP
 - 12.1.3 Active ingredients: *Pseudomonas fluorescens (Pf*-CL145A) is the sole active ingredient, 50% active by weight.
 - 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA


Study# AEH-11-PSEUDO-01 Amendment #1

Page 5 of 6

- 12.1.5 Lot number: MBI-401-110308AI-BD-3
- 12.1.6 Expiration date: None established, an aliquot of test material will be returned to the NYSM or MBI at the conclusion of exposures at UMESC for confirmatory posttest activity comparative zebra mussel bioassay tests (the standard testing protocol to assess *Pseudomonas fluorescens* [*Pf*-CL145A] formulation activity). Results of these confirmation bioassays will be used to validate the activity retention of the MBI-401 SDP, *Pseudomonas fluorescens* (*Pf*-CL145A).
- 12.1.7 Storage during study: test chemical will be stored refrigerated (≤ 4°C) in a locked container within a restrictive entry laboratory. A subsample of the test chemical will be archived in the UMESC Chemical Archive (UMESC SOP GEN 011).
- 12.1.8 A NIOSH approved respirator will be used when preparing stock solutions to avoid inhalation. Protective eyewear, gloves and lab coats will be worn at all times when working with the test substance.

Item No. 2

PROOFED BY Initials: 7ms Date :2/0//2 BEV:EWED BY Initials: Date!

Study# AEH-11-PSEUDO-01 Amendment #1

Mark P. Gaikowski, M.A.

Aquatic Ecosystem Health,

Supervisory Biologist

UMESC¹

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

ORIGINAL

Litern No. 3

FOLDER NO. 3

Date: October 19, 2011 To: The Record Study Number AEH-11-PSEUDO-01

Subject: Amendment 2 to the study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

Revision of amended study protocol, study # AEH-11-PSEUDO-01 is proposed as detailed on pages 2-8 of this amendment. Revised text is indicated **in bold**.

This amendment changes 1) the test material from a spray dried (SDP) to a freeze dried (FDP) formulation; 2) the procedures for acclimation of the donor mussels and 3) specifies the procedures for ammonia sample collection and analysis.

The FDP *Pseudomonas fluorescens* is a new manufacturer-preferred formulation that is considered to be ~100% active compared to the spray-dried product (SDP) which was considered ~50% active. The exposures will be conducted in an identical fashion except for the change in product type. Mussel species previously exposed to SDP will be exposed to the new FDP formulation; data collected during SDP exposures will be retained in the study data management system. Acclimation procedures previously outlined may induce glochidial abortion in some species that are sensitive to handling (ie: washboard *Megalonaias nervosa*). The proposed acclimation procedures provide flexibility to address acclimation at the direction of the Genoa NFH mussel biologist. The amendment specifies the procedures to determine ammonia concentration in exposure chamber water at the end of the 24-h exposure period.

Reviewed by:

190 + 2411

Date

Michael Jawson, Ph.D. Center Director, UMESC

Date

Approved by 19 oct 1 James A. Luoma, B.A. Date PROOFED BY 2/6/10 るtudy Director, UMESC HEVIEWED BY ¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-01 Amendment #2

Page 1 of 8

Current text:

1. INTRODUCTION: (paragraph 4 of Section 1 is the only paragraph affected by this amendment)

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a commercial sprayed dried formulation of this bacterium called MBI-401 SDP. The current commercial applications of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the glochidia lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

4.1 General Description:

Glochidia from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Glochidia will be exposed in static exposures for 24 h as described in ASTM E-2455-06 and evaluated at 6, 12 and 24 h for viability as determined by valve closure response after addition of a saturated sodium chloride solution.

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Approximately 72 h prior to test initiation the donor mussels will be transferred from the Genoa NFH to the UMESC and acclimated to test temperature. Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 µL) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 µL) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. Enumerations will be conducted for the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition. The percentage of

Study# AEH-11-PSEUDO-01 Amendment #2

Page 2 of 8

viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If viability is acceptable (≥80%) for a mussel, the glochidia from that mussel will be pocled with glochidia from other mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and aliquoted to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two aliquots (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 SDP, deactivated MBI-401 SDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 SDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. Exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cycle. Viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride addition. The study will be terminated after 24 h post exposure evaluations are completed.

5. STUDY PROCEDURES

5.1 Test Animals

1

- 5.1.2 Number of animals: Approximately 9,000-18,000 glochidia (500-1,000 per replicate x 3 replicates x 6 concentrations) of each species. This design uses the fewest number of glochidia possible, consistent with the objective of the study, contemporary scientific standards and ASTM guide E2455-06.
- 5.1.3 Source of animals: All glochidia will be obtained from donor mussels collected and temporarily held at the Genoa NFH. The donor mussels will be transported to the UMESC for acclimation to test conditions. Glochidia extraction will occur at UMESC; glochidia will be extracted by trained GNFH personnel.
- 5.1.4 Inclusion criterion: Glochidia will be used if they meet or exceed the following percentage of valve closure requirements after addition of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O). Glochidia must exhibit ≥ 80% valve closure to be pooled for use at the Genoa NFH and glochidia must exhibit ≥ 80% valve closure immediately prior study initiation at the UMESC.
- 5.1.5 Acclimation: Donor mussels will be acclimated from approximately 12 °C to the exposure temperature (20°C) over a period of approximately 72 h upon arrival at UMESC.
- 5.2 Water Chemistry

Study# AEH-11-PSEUDO-01 Amendment #2

Page 3 of 8

- 5.2.7 Ammonia: The ammonia will be measured and recorded at the termination of the exposure from pooled replicate samples from the controls and all test concentrations (UMESC SOP AEH 301 or equivalent).
- 5.5 Observations:
 - 5.5.2 Water chemistry: Dissolved oxygen, pH, and temperature will be monitored after the addition of the specified treatment. Alkalinity, hardness, conductivity and ammonia will be measured on a sample of dilution water at test initiation and on pooled replicate samples upon test termination. Alkalinity, hardness, conductivity and ammonia will not be measured during the exposures due to the quantity of test water required and probe submersion requirements to complete the analysis.
- 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussel glochidia will be exposed to three replicates of either 0 (control), 50, 100, 200 or 300 mg/L (active ingredient) and a 300 mg/L heat deactivated (70°C/45 minutes) control as a one time single dose exposure.
 - 5.6.2 Route of administration: To assure uniform exposure, an appropriate amount of freshly prepared stock solution will added to each test chamber from an agitated stock suspension with a pipet.
 - 5.6.3 Dose verification: The activity of MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined or characterized. Dosage verification of MBI-401 SDP will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations. The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

12. INVESTIGATIONAL TEST ARTICLE

- 12.1 Test Substance(s): MBI-401 SDP, Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.2 Trade name: MBI-401 SDP
 - 12.1.3 Active ingredients: *Pseudomonas fluorescens* (*Pf*-CL145A) is the sole active ingredient, 50% active by weight.
 - 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
 - 12.1.5 Lot number: MBI-401-110308AI-BD-3
 - 12.1.6 Expiration date: None established, an aliquot of test material will be returned to the NYSM or MBI at the conclusion of exposures at UMESC for confirmatory post-test activity comparative zebra mussel bioassay tests (the standard testing protocol to assess *Pseudomonas fluorescens* [*Pf*-CL145A] formulation activity). Results of these confirmation bioassays will be used to validate the activity retention of the MBI-401 SDP, *Pseudomonas fluorescens* (*Pf*-CL145A).

Revised text (in bold):

1. INTRODUCTION: (paragraph 4 of Section 1 is the only paragraph affected by this amendment)

Study# AEH-11-PSEUDO-01 Amendment #2

Page 4 of 8

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a commercial freeze dried formulation of this bacterium referred to as MBI-401 FDP. The current commercial applications of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 **FDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the glochidia lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

4.1 General Description:

Glochidia from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 **FDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]). Glochidia will be exposed in static exposures for 24 h as described in ASTM E-2455-06 and evaluated at 6, 12 and 24 h for viability as determined by valve closure response after addition of a saturated sodium chloride solution.

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Prior to test initiation the donor mussels will be acclimated to the test temperature (see Section 5.1). Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH or UMESC. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 µL) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35 mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 µL) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. Enumerations will be conducted for the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following

Study# AEH-11-PSEUDO-01 Amendment #2

Page 5 of 8

ÓRIGINAL

method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If viability is acceptable (≥80%) for a mussel, the glochidia from that mussel will be pooled with glochidia from other mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and **distributed** to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two distributions (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 FDP, deactivated MBI-401 FDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 FDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. Exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cycle. Viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride addition. The study will be terminated after 24 h post exposure evaluations are completed.

5. STUDY PROCEDURES

- 5.1 Test Animals
 - 5.1.2 Number of animals: Approximately 9,000-18,000 glochidia (500-1,000 per replicate x 3 replicates x 6 concentrations) of each species. This design uses the fewest number of glochidia possible, consistent with the objective of the study, contemporary scientific standards and ASTM guide E2455-06.
 - 5.1.3 Source of animals: All glochidia will be obtained from donor mussels collected and temporarily held at the Genoa NFH. Donor mussel holding procedures (from collection to glochidia extraction) will be described in the study data management system. Glochidia extraction will occur at UMESC; glochidia will be extracted by trained GNFH or UMESC personnel.
 - 5.1.5 Acclimation: Donor mussels will be acclimated from the collection/holding temperature to the exposure temperature (20±2°C) before glochidia extraction at a rate specified by the Genoa NFH mussel biologist. The acclimation procedures will be described in the study data management system.
- 5.2 Water Chemistry
 - 5.2.7 Ammonia: Total ammonia-nitrogen will be measured in a sample collected at the end of the 24-h exposure period from each exposure chamber. Samples (~3 mL) will be filtered (0.45 μm syringe filter), acidified (pH ~2.5

Study# AEH-11-PSEUDO-01 Amendment #2

Page 6 of 8

ORIGINAL

with H_2SO_4) and then stored at ~4°C. Total ammonia-nitrogen in samples will be determined by the UMESC Long Term Resources Monitoring Program (LTRMP) Water Quality Laboratory using the automated phenate method. Unionized ammonia will be calculated from the ammonia pKa (based on the pH and temperature recorded in the respective exposure chamber at the end of the 24-h exposure period) and the total ammonianitrogen concentration. The UMESC-LTRMP laboratory does not comply with Good Laboratory Practices (GLP) and thus data generated by the UMESC-LTRMP will be so annotated in the final report.

- 5.5 Observations:
 - 5.5.2 Water chemistry: Dissolved oxygen, pH, and temperature will be monitored after the addition of the specified treatment. Alkalinity, hardness, and conductivity will be measured using separate samples of dilution water collected before exposure initiation and from separate samples collected at the end of the 24-h exposure period. Water from replicate exposure chambers will be pooled to provide sufficient volume for these tests. Total ammonia-nitrogen will be measured in samples collected at the end of the 24-h exposure period (see Section 5.2.7). Alkalinity, hardness, conductivity and ammonia will not be measured during the exposures due to the quantity of test water required and probe submersion requirements to complete the analysis.
- 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussel glochidia will be exposed to three replicates of either 0 (control), 50, 100, 200 or 300 mg/L (active ingredient) and a 300 mg/L heat deactivated (70°C/45 minutes) control as a one time single dose exposure.
 - 5.6.2 Route of administration: To assure uniform exposure, an appropriate amount of freshly prepared stock solution will added to each test chamber from an agitated stock suspension with a pipet.
 - 5.6.3 Dose verification: The activity of MBI-401 **FDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined or characterized. Dosage verification of MBI-401 **FDP** will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations. The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

12. INVESTIGATIONAL TEST ARTICLE

- 12.1 Test Substance(s): MBI-401 FDP, Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.2 Trade name: MBI-401 FDP
 - 12.1.3 Active ingredients: *Pseudomonas fluorescens (Pf*-CL145A) is the sole active ingredient, **100%** active by weight.
 - 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
 - 12.1.5 Lot number: More than one lot will be used. Test article lot numbers for each species will be recorded in the study files.

Study# AEH-11-PSEUDO-01 Amendment #2

Page 7 of 8

12.1.6 Expiration date: Pseudomonas fluorescens (Pf-CL145A) FDP is

susceptible to degradation if not properly handled. Therefore an aliquot of test material will be returned to the NYSM or MBI after each set of glochidia exposures at UMESC for post-exposure activity confirmation through completion of comparative zebra mussel bioassay tests (the standard testing protocol to assess *Pseudomonas fluorescens* [*Pf*-CL145A] formulation activity). Results of the zebra mussel bioassays will be used to validate the retention of the activity of the MBI-401 FDP lot used for a given mussel species.

	Item	No.		-
FO	LDEF	<u> 2 MC</u>). 3	2015 (J. 2019) 2015 (J. 2019) 2017 (J. 2019)

PROOFED BY Initials: 2015 Date : 2/6/12 REV EWED BY Initials: Date:

Study# AEH-11-PSEUDO-01 Amendment #2

Page 8 of 8

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

HINAI

	ltem	No.	y engenteelististististee
1944 a	an a	980-9940999-9100	

FOLDER NO.

Date: October 19, 2011 To: The Record Study Number AEH-11-PSEUDO-01

Subject: Amendment 3 to the study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

Revision of amended study protocol, study # AEH-11-PSEUDO-01 is proposed as detailed on pages 2-5 of this amendment. Revised text is indicated in **bold**.

This amendment changes 1) the procedures for the viability assessment for mussels which cannot be reliably assessed from photomicrographic records (e.g. *Megalonaias nervosa*). *M. nervosa* glochidia are released from the donor mussel in a mucoidal matrix. Viability assessment from photomicrographic records is unreliable because glochidia within the mucus occupy several different focal planes, making it nearly impossible to bring all glochidia into focus. Therefore, this amendment specifies the procedures used to determine viability of species of donor mussels whose glochidia are released in a mucoidal matrix and when those assessments will be completed. The Study Director will determine the appropriate glochidia viability determination procedure to use for each mussel species after collecting glochidia from donor mussels. That decision will be recorded in the study data management system. This amendment serves as the record that the viability of glochidia of *M. nervosa* was determined using direct microscopic enumeration, not enumeration from photomicrographic recordings.

Reviewed by:

Mark P. Gaikowski, M.A. Supervisory Biologist Aquatic Ecosystem Health, UMESC¹

190 t 2011 Date

Michael Jawson, Ph.D.
 Center Director, UMESC

Date

Date

Approved by:

James A. Luoma, B.A. Study Director, UMESC

19 oct 11 Date

PROOFED BY Initials: <u>705</u> Date 2/6/12 BEV.EWED BY Initials: Date:

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-01 Amendment #3

Page 1 of 5

ORIGINAi

Current text:

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Prior to test initiation the donor mussels will be acclimated to the test temperature (see Section 5.1). Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH or UMESC. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 µL) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35 mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 µL) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. Enumerations will be conducted for the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample -- {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If viability is acceptable (≥80%) for a mussel, the glochidia from that mussel will be pooled with glochidia from other mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and distributed to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two distributions (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain \sim 250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 FDP. deactivated MBI-401 FDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 FDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. Exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cycle. Viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride

Study# AEH-11-PSEUDO-01 Amendment #3

Page 2 of 5

addition. The study will be terminated after 24 h post exposure evaluations are completed.

- 5.5 Observations:
 - 5.5.1 Behavioral Observations: Behavioral observations will be limited to viability assessments. Viability is determined by the ability of the glochidia to constrict their adductor mussel thereby causing valve closure in response to saturated sodium chloride (12 g NaCl/ 50 mL of D.I. H₂O) exposure. Viability will be determined on a subsample of approximately 100 glochidia at 6, 12 and 24 h post exposure for each test chamber.

Revised text (in bold):

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Prior to test initiation the donor mussels will be acclimated to the test temperature (see Section 5.1). Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH or UMESC. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 μ L) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35 mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 μ L) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration.

The Study Director will determine which method of glochidia viability assessment will be used (enumeration from photomicrographic recording or direct enumeration) after glochidia are collected from donor mussels. That decision will be recorded in the study data management system. If glochidia can be enumerated and viability status (i.e. open or closed) reliably determined through photomicrographic records (i.e. the glochidia remain on a single focal plane) then the following procedures will be used for viability assessment. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCI/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. The total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition will be determined. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If glochidia enumeration and viability cannot be reliably determined through

Study# AEH-11-PSEUDO-01 Amendment #3

Page 3 of 5

photomicrographic records because the glochidia do not occupy a single focal plane (e.g. *Megalonaias nervosa* and other mussels that release glochidia in a mucoidal matrix) the following procedures will be used to assess viability.

The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and the total number of glochidia and the number of closed or open glochidia (discretion of the individual performing the count) will be directly enumerated. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample. After one minute, the number of glochidia that remain open after sodium chloride addition will be directly enumerated. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If glochidia viability is acceptable (≥80%) for a donor mussel, the glochidia from that donor mussel will be pooled with glochidia from other donor mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and distributed to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two distributions (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 FDP, deactivated MBI-401 FDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 FDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. Exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cycle. For mussel species for which the viability of glochidia can be assessed from photomicrographic records, the viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride addition. For mussel species for which the viability of glochidia cannot be assessed from photomicrographic records (e.g. M. nervosa), the viability of a subsample of approximately 100 glochidia from each chamber will be assessed only at 24 h post exposure using the methods described for initial glochidia viability assessment.

The study will be terminated after 24 h post exposure evaluations are completed.

5.5 Observations:

5.5.1 Behavioral Observations: Behavioral observations will be limited to

Study# AEH-11-PSEUDO-01 Amendment #3

ORIGINAL

viability assessments. Viability is determined by the ability of the glochidia to constrict their adductor mussel thereby causing valve closure in response to saturated sodium chloride (12 g NaCl/ 50 mL of D.I. H₂O) exposure. For mussel species for which the viability of glochidia can be assessed from photomicrographic records, the viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrographic records pre- and post-sodium chloride addition. For mussel species for which the viability of glochidia cannot be assessed from photomicrographic records (e.g. *M. nervosa*), the viability of a subsample of approximately 100 glochidia from each chamber will be assessed only at 24 h post exposure using the methods described for initial glochidia viability assessment.

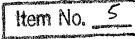
The study will be terminated after 24 h post exposure evaluations are completed.

Item No. FOLDER NO. 3

PROOFED BY 1/0/12 REV.EWED BY Initials Date

Study# AEH-11-PSEUDO-01 Amendment #3

2


Page 5 of 5

United States Department of the Interior

U.S. GEOLOGICAL SURVEY **Biological Resources Division** Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

ORIGINA

FO	_DER	NO.	3
	1200-1408-1403-1407-1409-1409-1409-1409-1409-1409-1409-1409	and the second	2005 ALC: 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10

Date: December 20, 2011 The Record Study Number AEH-11-PSEUDO-01 To:

Subject: Amendment 4 to the study AEH-11-PSEUDO-01 "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species"

Revision of amended study protocol, study #AEH-11-PSEUDO-01 is proposed as detailed on pages 2-7 of this amendment. Revised text is indicated in bold.

This amendment changes the test material from a Freeze dried (FDP) to a spray dried (SDP) formulation.

The initially manufacturer-preferred freeze dried formulation (FDP) of Pseudomonas fluorescens has recently been discontinued and the manufacturer has indicated support for a spray-dried (SDP) formulation.

The exposures will be conducted in an identical fashion except for the change in product formulation. Mussel species previously exposed to FDP will not be re-evaluated with the SDP formulation; data collected during FDP exposures will be retained in the study data management system.

Reviewed by:

Supervisory Biologist Aquatic Ecosystem Health, UMESC¹

Date

Michael Jawson, Ph.D. Center Director, UMESC

12/22/2011 Date

Approved by:

James A. Luoma, B.A.

12/22/11 Date

Study Director, UMESC

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center Interior

Proceed by Millais: This Date in REV EWED BY

Study# AEH-11-PSEUDO-01 Amendment #4

Page 1 of g ward number 10

Current text:

1. INTRODUCTION: (paragraph 4 of Section 1 is the only paragraph affected by this amendment)

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a commercial freeze dried formulation of this bacterium referred to as MBI-401 FDP. The current commercial applications of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the glochidia lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

4.1 General Description:

Glochidia from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Glochidia will be exposed in static exposures for 24 h as described in ASTM E-2455-06 and evaluated at 6, 12 and 24 h for viability as determined by valve closure response after addition of a saturated sodium chloride solution.

4.2 Experimental Design:

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Prior to test initiation the donor mussels will be acclimated to the test temperature (see Section 5.1). Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH or UMESC. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 μ L) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35 mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 μ L) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration.

The Study Director will determine which method of glochidia viability assessment will be used (enumeration from photomicrographic recording or direct enumeration) after glochidia are collected from donor mussels. That decision will be recorded in the study data management system. If glochidia can be enumerated and viability status (i.e. open or closed) reliably determined through photomicrographic records (i.e. the

Study# AEH-11-PSEUDO-01 Amendment #4

Page 2 of 7

glochidia remain on a single focal plane) then the following procedures will be used for viability assessment. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. The total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition will be determined. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If glochidia enumeration and viability cannot be reliably determined through photomicrographic records because the glochidia do not occupy a single focal plane (e.g. *Megalonaias nervosa* and other mussels that release glochidia in a mucoidal matrix) the following procedures will be used to assess viability.

The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and the total number of glochidia and the number of closed or open glochidia (discretion of the individual performing the count) will be directly enumerated. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H_2O [ASTM E2455-06]) will be added to the sample. After one minute, the number of glochidia that remain open after sodium chloride addition will be directly enumerated. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If glochidia viability is acceptable (≥80%) for a donor mussel, the glochidia from that donor mussel will be pooled with glochidia from other donor mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and distributed to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two distributions (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 FDP, deactivated MBI-401 FDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 FDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. Exposure chambers will be held at 20°C in a water bath or controlled

Study# AEH-11-PSEUDO-01 Amendment #4

Page 3 of 7

environment room and maintained on an 18:6 h light/dark cycle. For mussel species for which the viability of glochidia can be assessed from photomicrographic records, the viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride addition. For mussel species for which the viability of glochidia cannot be assessed from photomicrographic records (e.g. *M. nervosa*), the viability of a subsample of approximately 100 glochidia from each chamber will be assessed only at 24 h post exposure using the methods described for initial glochidia viability assessment.

The study will be terminated after 24 h post exposure evaluations are completed.

5. STUDY PROCEDURES

- 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussel glochidia will be exposed to three replicates of either 0 (control), 50, 100, 200 or 300 mg/L (active ingredient) and a 300 mg/L heat deactivated (70°C/45 minutes) control as a one time single dose exposure.
 - 5.6.2 Route of administration: To assure uniform exposure, an appropriate amount of freshly prepared stock solution will added to each test chamber from an agitated stock suspension with a pipet.
 - 5.6.3 Dose verification: The activity of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined or characterized. Dosage verification of MBI-401 FDP will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations. The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

12. INVESTIGATIONAL TEST ARTICLE

- 12.1 Test Substance(s): MBI-401 FDP, Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.2 Trade name: MBI-401 FDP
 - 12.1.3 Active ingredients: *Pseudomonas fluorescens* (*Pf*-CL145A) is the sole active ingredient, 100% active by weight.
 - 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
 - 12.1.5 Lot number: More than one lot will be used. Test article lot numbers for each species will be recorded in the study files.

Revised text:

1. INTRODUCTION: (paragraph 4 of Section 1 is the only paragraph affected by this amendment)

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a commercial spray dried formulation of this bacterium referred to as MBI-401 **SDP**. The current commercial applications

Study# AEH-11-PSEUDO-01 Amendment #4

Page 4 of 7

of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 **SDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the glochidia lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

4.1 General Description:

Glochidia from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 SDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Glochidia will be exposed in static exposures for 24 h as described in ASTM E-2455-06 and evaluated at 6, 12 and 24 h for viability as determined by valve closure response after addition of a saturated sodium chloride solution.

4.2 Experimental Design:

4.2 Experimental Design:

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Prior to test initiation the donor mussels will be acclimated to the test temperature (see Section 5.1). Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH or UMESC. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 μ L) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35 mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 μ L) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration.

The Study Director will determine which method of glochidia viability assessment will be used (enumeration from photomicrographic recording or direct enumeration) after glochidia are collected from donor mussels. That decision will be recorded in the study data management system. If glochidia can be enumerated and viability status (i.e. open or closed) reliably determined through photomicrographic records (i.e. the glochidia remain on a single focal plane) then the following procedures will be used for viability assessment. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be recorded. The total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition will be determined. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Study# AEH-11-PSEUDO-01 Amendment #4

Page 5 of 7

ÓRIGINAL

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If glochidia enumeration and viability cannot be reliably determined through photomicrographic records because the glochidia do not occupy a single focal plane (e.g. *Megalonaias nervosa* and other mussels that release glochidia in a mucoidal matrix) the following procedures will be used to assess viability.

The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and the total number of glochidia and the number of closed or open glochidia (discretion of the individual performing the count) will be directly enumerated. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample. After one minute, the number of glochidia that remain open after sodium chloride addition will be directly enumerated. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If glochidia viability is acceptable (≥80%) for a donor mussel, the glochidia from that donor mussel will be pooled with glochidia from other donor mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and distributed to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two distributions (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 SDP, deactivated MBI-401 SDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 SDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be tested in triplicate for a total of 18 exposure chambers per species. Exposure chambers will be held at 20°C in a water bath or controlled environment room and maintained on an 18:6 h light/dark cycle. For mussel species for which the viability of glochidia can be assessed from photomicrographic records, the viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride addition. For mussel species for which the viability of glochidia cannot be assessed from photomicrographic records (e.g. M. nervosa), the viability of a subsample of approximately 100 glochidia from each chamber will be assessed only at 24 h post exposure using the methods described for initial glochidia viability assessment.

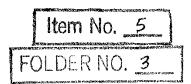
The study will be terminated after 24 h post exposure evaluations are completed.

Study# AEH-11-PSEUDO-01 Amendment #4

Page 6 of 7

ORIGINAL

5. STUDY PROCEDURES


. .

- 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussel glochidia will be exposed to three replicates of either 0 (control), 50, 100, 200 or 300 mg/L (active ingredient) and a 300 mg/L heat deactivated (70°C/45 minutes) control as a one time single dose exposure.
 - 5.6.2 Route of administration: To assure uniform exposure, an appropriate amount of freshly prepared stock solution will added to each test chamber from an agitated stock suspension with a pipet.
 - 5.6.3 Dose verification: The activity of MBI-401 **SDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined or characterized. Dosage verification of MBI-401 **SDP** will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations. The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

12. INVESTIGATIONAL TEST ARTICLE

12.1 Test Substance(s): MBI-401 SDP, Pseudomonas fluorescens (Pf-CL145A)

- 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
- 12.1.2 Trade name: MBI-401 SDP
- 12.1.3 Active ingredients: *Pseudomonas fluorescens (Pf*-CL145A) is the sole active ingredient, **50%** active by weight.
- 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
- 12.1.5 Lot number: More than one lot will be used. Test article lot numbers for each species will be recorded in the study files.

PROOFED BY
PROOFED BY
BEVIEWED BY
nitials Dates

Study# AEH-11-PSEUDO-01 Amendment #4

Page 7 of 7

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: May 12, 2014 To: The Record Study Number AEH-11-PSEUDO-01 $\mathcal{F} = \frac{1}{2} \int \mathcal{F} / \mathcal{F} / \mathcal{F} / \mathcal{F} / \mathcal{F}$ Subject: Amendment 1- Amendment to the study AEH-11-PSEUD

Subject: Amendment **1**-Amendment to the study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

Revision of Study Protocol, Study # AEH-11PSEUDO-01 as detailed on page 2 of this amendment. Revised text is in **bold and underlined**, deleted text has a strike through.

This amendment documents the change of status of study number AEH-11-PSEUDO-01 titled "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species" from a Good Laboratory Practices (GLP) regulated study to a non-GLP regulated study. The data resulting from this study will not be used to support a product registration, therefore, a verbal decision with UMESC management was agreed to on April 22, 2014 to change the status of the study to non-regulated.

Reviewed by: May Mark P. Gaikowski, M.A. Date Jane E. Rivera, B.A. Supervisory Biologist Acting Quality Assurance Aquatic Ecosystem Health, Officer, UMESC UMESC¹ 05/12/2014 Kevin D. Richards, Ph.D. Date Acting Center Director, UMESC Approved by: 15 MAY 2014 James A. Luoma, B.A. Date Study Director, UMESC

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-01 Amendment 5

Page 1 of 2

Current text:

10. GOOD LABORATORY PRACTICES

Data collection, storage and retrieval procedures for the study will be conducted in compliance with FDA regulations for Good Laboratory Practices (GLP; 21 CFR, Part 58). The study protocol and progress of the study will be reviewed at the start of the study and periodically throughout the study by the Quality Assurance Unit (QAU). The Study Director has the responsibility of ensuring that all procedures used in conjunction with the study conform with Good Laboratory Practices.

Revised text (in bold and underlined):

10. GOOD LABORATORY PRACTICES

Data collection, storage and retrieval procedures for the study will be <u>not be</u> conducted in compliance with FDA regulations for Good Laboratory Practices (GLP; 21 CFR, Part 58). The study protocol and progress of the study <u>may</u> will be reviewed at the start of the study and periodically throughout the study by the Quality Assurance Unit (QAU). The Study Director has the responsibility of ensuring that all procedures used in conjunction with the study <u>conforms to</u> with Good Scientific Laboratory Practices.

Page 2 of 2

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: February 4, 2013 To: The Record study Number AEH-11-PSEUDO-01

Subject: Note To File #1 to the study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

This note to file is to document and clarify the lab notebook entries for the study events and procedures used in the *Lampsilis cardium, L. Higginsii* and *L. Siliquoidea* glochidia exposures conducted in May of 2011. This document was prepared on May 31, 2011 and signed on February 4, 2013.

Pre-exposure period:

Test Chemical: (Lab notebook pages 2, 3 & 7)

Approximately 96 g of *Pseudomonas fluorescens* (*Pf*-CL145A) test material (lot# MBI-401-110308A1-BD-3; SDP formulation) was received on 28 April, 2011 from the New York State Museum Field Research Laboratory (NYSM-FRL) located in Cambridge, NY. The test material was shipped from Denise Mayer (NYSM-FRL) on 27 April, 2011. The test material was received with a thermometer inside the cooler which indicated a temperature of 9.3°C above the ice packs in the cooler. A clean glass thermometer inserted into the test chemical indicated a temperature of 8.5°C. The temperature observed was greater than the recommend storage temperature of 4°C. Therefore, an aliquot of test material was returned to the NYSM-FRL after the conclusion of testing at UMESC (shipped May 17, 2011) to confirm the activity of the product. A chemical lab notebook was prepared for the test material upon arrival and the material was placed in a lock box located in a refrigerator in Room 122. On 29 April, 2011, 1.00147 g of test material was placed into a pre-cleaned glass archive vial for storage in the UMESC ultra-cold freezer chemical archive. All weights and documentation were recorded in the chemical lab notebook.

Donor Mussels: (Lab notebook pages 3-6)

On 09 May 2011, four gravid adult mussels of 3 species [*Lampsilis cardium* (lot # 111100), *L. higginsii* (lot # 111300) and *L. siliquoidea* (lot# 111200)] were received from the Genoa NFH at approximately 1130 h. The mussels were received at approximately 11.7°C and they were placed directly into holding tank 1 (compartments 1A, 1B and 1C) in room 11 which contained cold (~13°C) UMESC well water flowing at approximately 1.1 LPM (1 tank exchange/hr). A temperature ramp was set to acclimate the donor mussels to test temperature (20°C) over a period of 60 h. The donor mussels were feed by mixing the following Reed Mariculture (Campbell, CA) instant algae with 14,400 mL of UMESC well water: 44.0 g of shellfish diet, 35.3 g of tetraselmis and 92.4 g of Thalassiorsira weissflogii. This recipe approximates a 1:1:1 dry weight ratio of ~10 mg/L total dry weight of food in the culture system when delivered to the holding tank at ~ 10.0 mL/min. The donor mussels were feed this diet on a continuous basis throughout the entire holding period.

Note: Separate Daily Care Worksheets were prepared for each section of the tank that held mussels, however, water chemistry analysis were only completed on a single compartment, farthest from the incoming water. The measurements were recorded for all 3 sections as the water is not separated between compartments. The data sheets were labeled (5/12/11) with a note (dated 5/12/11) detailing this procedure (File Folder 7A).

cc: UMESC QAU

Page 1 of 6

UMESC lot numbers were obtained from the UMESC fish culture for the donor mussels. The information regarding the assignment of lot numbers was placed into File Folder 7B. The following lot numbers were assigned: *L. Cardium* (plain pocketbook; PPB) = Lot # 11110; *L. Siliquoidea* (fat mucket; FAM) = Lot# 111200; *L. Higginsii* (Higgins eye; HGE) = Lot# 111300.

On May 10, 2011 the temperature acclimation was found to have failed after running 660 minutes. The temperature then increased to the 20°C study temperature. A screen capture of the acclimation ramp setting and curve were recorded in the electronic study record (I:\AEH-11-PSEUDO-01\Donor mussels) and was saved to disk. The temperatures were then set to remain at the test temperature until the use. The temperature increase would likely have no impacts to the study as the temperature increase was buffered from the existing tank water and it likely took several hours to raise the temperature to 20°C in the holding tank.

Daily observations for donor mussels included pH, temperature and dissolved oxygen (D.O.) in addition to daily preparation of food.

Equipment calibration: (Lab notebook pages 4-5)

Adjustable pipettors were calibrated on 09 and 10 May, 2011 for the tips and volumes to be used in the study. Results from the calibrations were placed into File Folder 13.

Test Water preparation: (Lab notebook pages 6-7)

Three 20 L glass jars were filled with UMESC well water on 10 May 2011 and supplied with air from an air pump and the water was allowed to equilibrate to room temperature for use in exposures of glochidia. The test water prepared on 10 May 2011 was discarded and replaced with fresh well water on 11 May 2011 due to over aeration of the water. A smaller air pump was used to lightly bubble air into the water acclimation jars. Two jars were placed on bench top in room 15 for use in all aspects of the study (glochidia extraction, stock preparation and dilution water). Siphons were placed into the jars for easy removal of water as required.

Randomization Procedures: (Lab notebook pages 4)

Randomizations were prepared by Mark Gaikowski on 10 May 2011 to perform the following:

- 1) Assignment of each mussel species to a treatment block (1, 2, or 3)
- 2) The distribution order of glochidia to exposure chambers for each species
 - a. Ten separate rounds prepared for each species by exposure chamber
 - b. Only 5 rounds of prepared distribution rounds were used during the distribution
- 3) The assignment of treatment to each exposure vessel
 - a. One of 6 treatment types to each vessel
 - i. 0, 50, 100, 200 or 300 mg/L active ingredient
 - ii. 300 mg/L heat deactivated product
 - b. Three replicates per species

Exposure Period: (initiated 12 May 2011)

Pipette calibration verification: (Lab notebook pages 7-8)

Pipette calibrations were verified for pipettes 1-4 by weighing 20°C distilled water using a calibrated analytical balance (BAL1/WTS2). The pipette setting and target volume (μ I) were recorded along with the verification reading (g). Additionally, a summary table was prepared for each pipette indicating the delivery volume, delivery setting and tip type to use for each pipette assigned to the study. The pipette verifications were performed by Todd Severson. The data was placed into File Folder 13.

Initial water Chemistry: (Lab notebook pages 7, 13)

The water quality parameters were measured on the initial water dilution water (from the 3 20 L glass jars) and the donor mussel culture water between 0645 and 0730 by Jeremy Wise on 12 May 2011. The initial parameters included hardness, alkalinity and temperature. The measurements were recorded on Water Quality Form 1 and were filed in File Folder 10a. The initial measurements conducted by Jeremy Wise cc: UMESC QAU

Page 2 of 6

were found to be conducted in error as he mixed water from the dilution vessels with the donor mussel culture tanks and then performed the water chemistry analysis. Once the mistake was realized, new water chemistry parameters were conducted on remaining dilution water and donor mussel culture tank water (separately) at ~1900 h by Todd Severson on 12 May 2011. The water chemistry values were found to be nearly identical to the earlier mixed samples. This was explained on the lab notebook page 13 and the original data sheets that contained the values from the mixed water were noted as such and retained. All of the data sheets were placed into File Folder 10a.

Test Chemical Stock Preparations: (Lab notebook pages 8-10)

In order to preserve efficacy and to maintain similar times between stock preparation and dosing, one stock solution was prepared for each species active dosing (i.e., 50, 100, 200 and 300 mg/L). A common stock solution was prepared for dosing the heat deactivated controls for use in all 3 species tested on 12 May 2011. Individual 50 mL beakers were labeled and tared on analytical balance BAL1. Then (~0645h) approximately 2.0 g of test material was weighed into each beaker. The exact weight of test material was recorded on each beaker and the beaker was then covered with parafilm and refrigerated until used in making a test material solution. The exact weights for each stock solution were as follows: 1.99990 g used for heat deactivated stock; 2.00062 g used to make L. cardium active stock; 2.00008 g used to make L. higginsii active stock and 2.00062 g used to make L. siliguoidea active stock. Each stock solution was prepared in the following fashion: the test material was poured through a funnel into a 100 mL volumetric flask. The 50 mL beaker and funnel were rinsed with well water and the flask filled approximately 25% with well water and shaken to suspend the test material. The flask was then filled to ~ 75% and was shaken for ~15 minutes to suspend the test material. The resulting foam was allowed to dissipate and the volumetric flask was brought to volume with well water. The heat deactivated stock was placed in a 70°C water bath for 45 minutes for deactivation at approximately 0725 h. The heat deactivated stock was allowed to cool to room temperature prior to use in deactivated control dosing. Other stocks were prepared ~ 30 minutes prior to use. Test material was weighed by Kerry Weber and the information regarding the stock preparation was recorded on page 8 of the laboratory notebook, File Folder 8 and in the test material lab notebook.

Glochidia extraction: (Lab notebook pages 8-10)

Glochidia were extracted in the order of block assignment (Block 1 = L, *cardium*, Block 2 = L. *Higginsii* and Block 3 = L. *siliquoidea*). The glochidia were all extracted by Nathan Eckert (Genoa NFH) following the same procedures. The glochidia were extracted by irrigating donor gills with well water from a 10 cc syringe fitted with a 1.5 inch 25 gauge needle. The gill water tubes containing glochidia were pierced with the needle and the gill was gently irrigated to express the glochidia. The glochidia were captured in a pre-wetted 500 mL beaker. From 6-10 water tubes from each mussel were extracted. For more detailed information regarding glochidia extraction and the donor mussels see the laboratory notebook pages 8-10. Glochidia from three mussels of each species were extracted for use in the exposures. The glochidia from each mussel were assessed visually for viability prior to acceptance for use. After acceptable viability was determined (>80%), the glochidia were pooled into a common 500 mL beaker for distribution. Glochidia of each species were extracted at the following times: *L. cardium* = 0900, 0910 and 0922 h; *L. higginsii* = 1033, 1041 and 1045h; *L. siliquoidea* = 1215, 1220 and 1225h.

Glochidia viability assessment and pooling: (Lab notebook pages 9-10)

Glochidia from each mussel were assessed for viability immediately after extraction to determine acceptable viability (>80%) for use in exposure trials. Assessments were conducted by Kerry Weber and Theresa Schreier for all the mussels. The procedures used for all mussels were as follows: A 100 µl sample of settle glochidia was placed on a 35 mm petri dish. 200 µl of well water was added to the sample and the sample was placed under a dissecting scope (SCO 1). The scope was adjusted for maximum clarity and a photomicrograph was recorded using Image-Pro Express software (SOFT1) and stored in the AEH-11-PSEUDO-01 electronic study folder at the following path I:\AEH-11-PSEUDO-01\Pictures\12May11\Initial Viability. A drop of saturated sodium chloride solution (12g NaCl/50mL well water, page 7 of lab notebook) was then added to the sample and allowed to sit for 1 minute. A second photomicrograph was recorded for species, mussel number, and before or after salt addition. The samples were visually assessed for viability and if they appeared to have greater than 80% viability then cc: UMESC QAU

Page 3 of 6

the mussels were used for the study. No mussels that were assessed were rejected due to initial glochidia viability. Two of the HGE mussels visually appeared to have near 80% viability so a preliminary hand count was done to determine that they were indeed greater than 80% viable. The method used was: (total number of glochidia in the sample – [number of glochidia closed prior to addition of the salt solution + number of glochidia open after the addition of the salt solution])/total number of glochidia in the sample *100. The initial counts revealed that the glochidia viability exceeded the minimum threshold of 80% viability so they were used in the study. The photomicrograph records will be used to determine and document the exact initial viability for each mussel used in the study.

After the glochidia were verified to be of acceptable viability they were pooled into a common 500 mL beaker and then distributed to the exposure chambers.

Glochidia Lot number assignments: (Lab notebook page 11)

The glochidia from each species were assigned a UMESC lot number by Steve Redman after they were pooled and an estimate of the number of glochidia was available. Glochidia lot number assignment data sheets were completed and filed in File Folder 7C. The lot numbers assigned were as follows: *L. cardium* #111400, *L. higginsii* #111500, and *L. siliquoidea* #111600.

Glochidia distribution to the exposure chambers: (Lab notebook pages 9-10, 13-14)

The glochidia from all three species were distributed to the exposure chambers using identical procedures. The glochidia were distributed in 5 separate randomized rounds for each species with each exposure chamber receiving a 100 µL aliquot of settled glochidia during each round. The order of the aliquots to each exposure chambered followed the randomization order produced by SAS and prepared by Mark Gaikowski (File Folder 14b). Prior to the start of each distribution round and every sixth aliquot, a separate 100 µL aliquot was placed on a petri dish for enumeration. The enumeration aliquots will be used to estimate the total number of glochidia that were placed in each exposure chamber. The distribution to the exposure chambers followed these procedures:

- 1) The exposure chambers were filled with 97 mL of acclimated test water using a 100 mL graduated cylinder. Then 500 µL was removed from each chamber using a Biohit pipette (PIP3) fitted with a 5000µL tip. The starting volume was then 96.5 mL; which when added to the 500 µL of glochidia aliquots and the 3.0 mL of dosing aliquots the resulting final volume will be 100 mL.
- 2) The exposure chambers were placed in order in the bench top in room 15.
- 3) The distributions were performed by James Luoma and were conducted by drawing 100 µl of settled glochidia from the source 1000 mL beaker of pooled glochidia using an Eppendorf Research Plus pipette (PIP1) fitted with 1000 µL wide bore pipette tip. The glochidia were then released below the surface of the water in the exposure chamber identified in the randomization order or placed on a petri dish for distribution enumeration. A watch glass was then placed over the exposure chamber to denote that the chamber had received an aliquot of glochidia for that distribution round. After completion of the distribution round the watch glasses were removed and the procedure was repeated until a total of 5 rounds were completed.

Exposure chamber Dosing: (Lab notebook Pages 9-11)

After the glochidia were distributed to the exposure chambers the chambers were dosed with the appropriate amount of stock solutions to attain the desired concentration of test chemical. The exposure chambers were previously labeled with color coded tape to denote the assigned test concentration that was determined in the dosing randomization procedures (File Folder 14c). The color coding was as follows: white = control; white with stripes = 300 mg/L heat deactivated control; yellow = 50 mg/L active ingredient (A.I.); yellow with stripes = 100 mg/L A.I.; blue = 200 mg/L A.I.; and blue with stripes = 300 mg/L A.I. The exposure chambers for each species were arranged on the bench top in room 15 by concentration for the dosing.

All exposure chambers received 3 mL of the appropriate amount of stock solution(s) required to attain the desired concentration. Chambers that received a combination of control (well water) stock and active ingredient stock to attain the desired concentration received the control water stock first followed by the active ingredient stock. This procedure allowed the final volume of all chambers to be 100 mL and all cc; UMESC QAU

Page 4 of 6

chambers received 3 mL of stock(s). The amount of each stock that each chamber received was documented on the "Chemical Stock Solution Determination" sheet and the sheets were filed in File Folder 16 along with the "Glochidia Exposure Dosing Form" that was prepared for each species. Dosing for each species was initiated and completed at the following times (File Folder 16): *L. cardium*: 1036-1040 h; *L. higginsii*: 1155-1204 h and *L. siliquoidea*: 1317-1325.

After the dosing was completed for each species the exposure chambers were placed into their appropriate position within the test system (room 16) as determined by the randomization procedures (File Folder 14a). The exposure chambers were then provided light aeration via a disposable glass pipet that was suspended from a PVC air supply line with a length of latex tubing. Air was bubbled into the chambers at a rate to provide approximate 1-5 bubbles/sec.

Water Chemistry - Exposure Period Measurements: (Lab notebook Pages 11 &15)

Water chemistry parameters including dissolved oxygen, pH and temperature were measured and recorded twice during the exposure period, after all dosings were completed on May 12, 2011 and prior to completion of the exposure period on May 13, 2011. Measurements were recorded for all test block replicates for the control and high (300 mg/L active ingredient) concentrations and one replicate of each of the other concentrations (50, 100, 200 mg/L active ingredient and the 300 mg/L heat deactivated). Data for the water quality measurements including dissolved oxygen, pH and temperature were recorded on Water Quality – Form 2 and placed into study File Folder 10b. Additionally, light intensity was measured at the center of each species block and recorded on the bottom of Form 2. The measurements were conducted by Jeremy Wise and Pajtshiab Moua.

Glochidia Viability Assessments: (Lab notebook pages 14 & 15)

Samples of glochidia from each exposure replicate from all species were removed at 6, 12 and 24 h post exposure to determine the viability. The exposure chambers were slightly stirred to bring the glochidia to the center of the chamber. A 100 µl sample of settled glochidia was removed from each exposure chamber using an adjustable 1000 µl pipette (PIP1) fitted with a wide bore pipet tip. The sample was placed onto a pre-labeled (chamber code + sample time) 35 mm petri dish. 200 µl of 20°C well water was added to each sample to increase dispersion for easier enumeration from photomicrograph records. A photomicrograph was recorded for each sample and then 1 drop of saturated sodium chloride was added to each petri dish to induce closure of viable glochidia. A second photomicrograph was recorded after allowing the sample to stand for 1 minute. During the 1 minute closure time the sample was removed from the stage and a new sample petri dish was placed on the stage and a pre-sodium chloride photomicrograph was recorded. Immediately after the 1 minute had elapsed for valve closure the sample was returned to the stage and the after sodium chloride addition photomicrograph was recorded. All photomicrograph records were recorded in the studies electronic file log and were coded for exposure chamber, sampling time, and before (bs) or after (as) sodium chloride addition. The photomicrograph records were recorded by Kerry Weber and Theresa Schreier; the samples were collected by Jim Luoma and Todd Severson.

Note: No 24h data was collected from exposure chamber 2B1 (HGE control) as it was inadvertently pooled with the control replicates for Block 1 during the pooling for final water quality analysis. When this was discovered, additional 24h viability samples were removed and processed as described above for the 2 remaining HGE control chambers, 2C3 and 2C6. This is further explained in study deviations # 1 and 2, dated 6/3/2011. The study deviation is located in the electronic study file as well as File Folder 3.

Water Chemistry – Experimental Termination Measurements: (Lab notebook Page16)

After completion of the 24h viability sampling and the second exposure period water quality measurements (DO, pH, temp) the replicate concentrations from each species block were pooled for final hardness, alkalinity, conductivity and ammonia analysis.

cc: UMESC QAU

· · ·

Page 5 of 6

Initially, hardness and alkalinity data analysis were performed on the control and high concentrations as described in the study protocol. Due to a slight variance in the observed measurements, hardness and alkalinity measurements were performed for all pooled concentrations.

Conductivity and total ammonia were recorded for all pooled replicate samples. pH and temperature were not initially determined for the pooled replicate samples (Block 1, PPB) however, due to what appeared to be high ammonia concentrations, the termination water quality (Form 3) was modified and pH and temperature data were recorded for the pooled replicate samples for Blocks 2 and 3 (HGE and FAM).

Un-ionized ammonia concentrations for the pooled replicate samples from Blocks 2 and 3 can be determined using the collected pH and temperature data. Un-ionized ammonia concentrations for Block 1 will have to be estimated using the second exposure period temperature and pH measurements collected prior to termination. The meters used to collect the terminal water quality data were calibrated according to their respective SOP's and are denoted in the study as pH2, Therm 3, CON1 and PHO1. All data sheets for the terminal water quality were placed into study File Folder 10C.

Final Termination: (Lab notebook Page17)

The glochidia were euthanized by MS-222 overdose and discarded. All sample analysis was completed by 1530 h on 05/13/2011.

Prepared by:

4/2013

James A. Luoma, B.A. Study Director, UMESC

cc: UMESC QAU

Page 6 of 6

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: October 31, 2012 To: The Record study Number AEH-11-PSEUDO-01

Subject: Note To File #2 to the study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

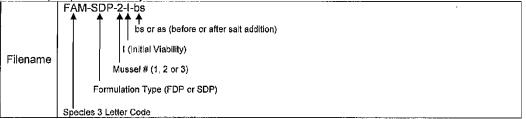
This note to file is to document and clarify the path, folder and file names for glochidia photomicrographs for study number AEH-11-PSEUDO-01.

Pictures of glochidia (photomicrographs) were used to: 1) determine the viability of extracted glochidia that were used in the exposures; 2) estimate the number of glochidia distributed to each exposure replicate and; 3) to assess the treatment effects on the viability of glochidia at three time points (6, 12 and 24 hour) during the exposure period.

The original and enumerated photomicrograph files are saved as described below. Additionally, how the files were enumerated is also described.

ORIGINAL PHOTOMICROGRAPHS

Initial Viability


Photomicrographs were recorded to document the viability of glochidia extracted from each donor mussel. The glochidia were photographed before and after a concentrated salt solution was added to the sample to induce valve closure as a valve closure response indicates viability. Glochidia that visually appeared to have suitable viability (>80%) were pooled for use prior to determining the initial viability. Examples of path and filenames for the original initial viability photomicrographs are shown in Table 1.

	ar vidbility Path and Filehames
1	://AEH-11-PSEUDO-01/Pictures/12May11/Initial Viability/FAM-SDP-2-I-bs
Path	Photomicrograph Filename Sample Type Folder (Initial Viability, Distribution, 6h, 12h or 24h) Exposure Date Folder (12May11, 18OCT11, 17JAN12 or 19JAN12)
	Picture Folder (Location of all study photomicrographs)
	Study Folder (Location of all study specific data)
1	// Drive Location of all study data)

Table 1. Initial Viability Path and Filenames

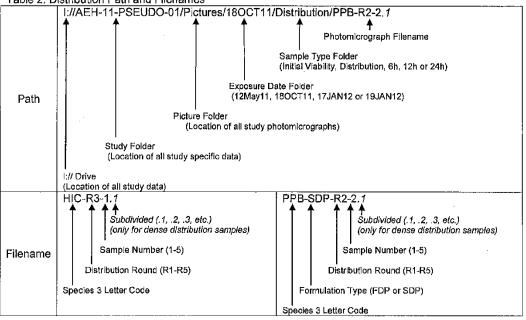

Page 1 of 7

Table 1 (con.) Initial Viability Path and Filenames

Distribution

Photomicrographs were recorded on 100 μ L glochidia samples collected during each round of glochidia distribution to the exposure chambers. Glochidia distribution was completed in 5 randomized rounds with 18 100 μ L glochidia aliquots (1 aliquot per exposure chamber) per round. Photomicrographs were recorded on the initial aliquot and then after every 6 aliquots for a total of 16 distribution samples per species. Distribution samples that had very dense quantities of glochidia were subdivided into more manageable counts before being photomicrographed. Plain pocketbook (PPB) was the only species exposed to both SDP and FDP formulations. Therefore, only the distribution file names for PPB were modified to include the formulation type. Examples of path and filenames for the original distribution photomicrographs are shown in Table 2.

Table 2. Distribution Path and Filenames

Viability Samples (6, 12 and 24 hour)

Two photomicrographs were recorded for each sample collected for exposure period viability assessment. The first photomicrograph was recorded prior to the addition of a salt solution to induce valve closure and the second after induced closure. Photomicrographs were recorded on 100 μ L glochidia samples collected from each exposure chamber at 6, 12 and 24 hours post-dose initiation.

Page 2 of 7

Examples of path and filenames for the original viability samples (6, 12 and 24 hour) photomicrographs are shown in Table 3.

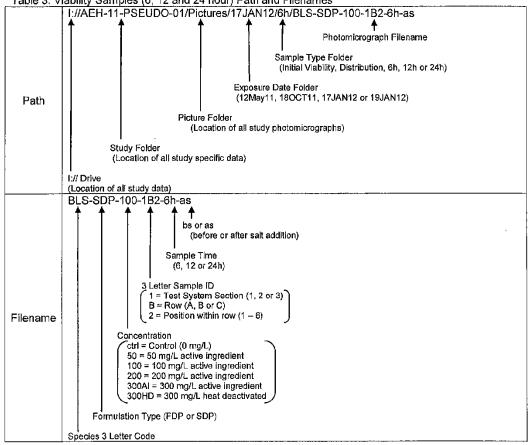


Table 3. Viability Samples (6, 12 and 24 hour) Path and Filenames

ENUMERATED PHOTOMICROGRAPHS

Enumerated data files are saved in different electronic folders, depending on when they were enumerated. Some photomicrograph files were inadvertently over-written during file conversion and during the enumeration process (see Deviations 8 and 9). To prevent reoccurrence, the folders containing the raw data files were locked to prevent additional file overwrites. All of the initial viability photomicrographs were enumerated prior to the locking of the electronic file folders. All of distribution photomicrographs were enumerated after the locking of the electronic file folders. Some of the viability samples were enumerated prior to the locking of the electronic file folders. Some of the viability samples were enumerated prior to the locking of the electronic file folders (FAM, PPB and HGE from 12May11 at 12 and 24 hour; PPB from 18OCT11 at 6, 12 and 24 hour) while other viability samples were enumerated after the locking of the folders (FAM, PPB and HGE from 12May11 at 6, 12 and 24 hour; HIC from 19JAN12 at 6, 12, and 24 hour). Those files that were enumerated prior to the locking of the electronic file folders were added to be the same saved in the raw data file folders in

Page 3 of 7

a separate electronic folder entitled "Enumerated" (e.g., I://AEH-11-PSEUDO-

01/Pictures/18OCT11/6h/Enumerated/PPB-FDP-ctrl-386-6h-bs-C). Those files that were enumerated after the locking of the electronic file folders were saved in a separate enumerated file folder within the study folder (e.g., I://AEH-11-PSEUDO-01/Pictures/Enumerated/18OCT11/6h/PPB-FDP-ctrl-386-6h-bs-C).

Initial Viability

All of the initial viability photomicrographs were enumerated prior to the locking of the raw data electronic file folders. The photomicrographs were enumerated for total number of glochidia within the sample and the number of glochidia open or closed before and after salt addition. The percentage of viable glochidia (i.e., glochidia that respond to salt exposure by valve closure) was calculated by the following method

Percent Viability =

(Total number of glochidia in sample-(Number of glochidia closed before salt+Number of glochidia open after salt)) * 100 Total number of glochidia in sample

For more specific details regarding the enumeration process, refer to Amendment 1 of the protocol. Examples of path and filenames for the enumerated initial viability photomicrographs are shown in Table 4.

	I://AEH-11-PSEUDO-01/Pictures/12May11/Initial Viability/Enumerated/FAM-SDP-2-I-bs-T
Path	Photomicrograph Filename Enumerated Folder (Includes all enumerated initial viability photomicrographs) Sample Type Folder (Initial Viability, Distribution, 6h, 12h or 24h) Exposure Date Folder (12May11, 18OCT11, 17JAN12 or 19JAN12) Picture Folder (Location of all study photomicrographs) Study Folder (Location of all study specific data)
Filename	Location of all study data) FAM-SDP-2-I-bs-T Count Type (T, O, or C: total count, open count or closed count, respectively) bs or as (before or after salt addition) I (Initial Viability) Mussel # (1, 2 or 3) Formulation Type (FDP or SDP) Species 3 Letter Code

Table 4. Enumerated Initial Viability Path and Filename

Page 4 of 7

Distribution

All of the distribution photomicrographs were enumerated after the locking of the raw data electronic file folders containing the original photomicrograph files. The photomicrographs were recorded and enumerated to estimate the number of animals distributed to each chamber. Distribution samples in which the glochidia were too dense to enumerate from a single photomicrograph were subdivided and multiple photomicrographs were recorded for each sample. Plain pocketbook (PPB) was the only species exposed to both SDP and FDP formulations, therefore, the distribution file names for PPB were the only files renamed to include the formulation type used. Distribution photomicrographs were counted for each sample. Enumerated files were saved with a "T" to designate that they had been counted. Examples of path and filenames for the enumerated distribution photomicrographs are shown in Table 5.

Table 5. Enumerated Distribution Path and Filename

	I://AEH-11-PSEUDO-01/Pictures/Enumerated/180CT11/Distribution/PPB-R2-2.1-T
Path	Photomicrograph Filename Sample Type Folder (Initial Viability, Distribution, 6h, 12h or 24h) Exposure Date Folder (12May11, 180CT11, 17JAN12 or 19JAN12) Enumerated Folder (Includes all enumerated distribution photomicrographs) Picture Folder (Location of all study photomicrographs)
	Study Folder (Location of all study specific data) I:// Drive (Location of all study data)
Filename	HC-R3-1.1-T Count Type (T = total count) Subdivided (.1, .2, .3, etc.) (only for dense distribution samples) Sample Number (1-5) Distribution Round (R1-R5) Species 3 Letter Code PPB-SDP-R2-2.1-T Count Type (T = total count) Subdivided (.1, .2, .3, etc.) (only for dense distribution samples) Sample Number (1-5) Distribution Round (R1-R5) Species 3 Letter Code

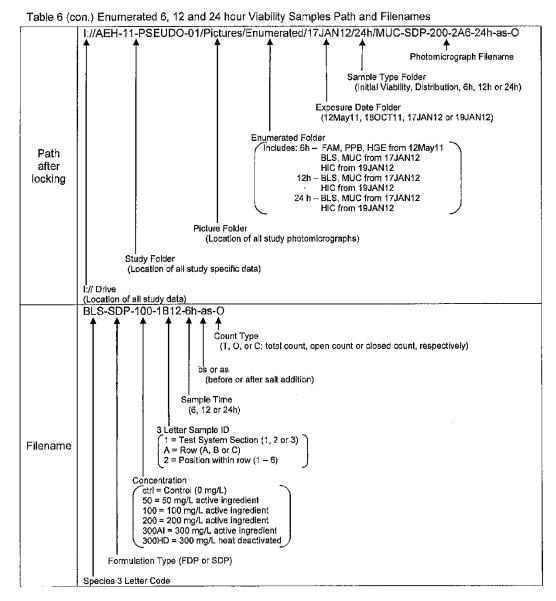
Viability Samples (6, 12 and 24 hour)

Photomicrographs were recorded on glochidia samples collected from each exposure chamber at 6, 12 and 24 hours post-dose initiation for viability assessment. Two photomicrographs were recorded for each sample. The first photomicrograph was recorded prior to the addition of a salt solution to induce valve closure (a closure response indicates viability) and the second after induced closure. To determine viability the photomicrographs were examined to 1) determine the total number of glochidia with the sample, 2) to determine the number of glochidia in an open state prior to induced valve closure and 3) the number of open glochidia (prior to the addition of salt solution) that responded to the addition of the salt solution by valve closure. The photomicrographs were enumerated for total number of glochidia within the sample (T) and the number of glochidia open (O) or closed (C) before and after salt addition. The percentage of viable glochidia (i.e., glochidia that respond to salt exposure by valve closure) was

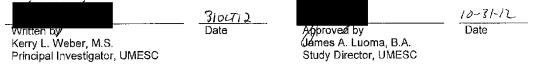
Page 5 of 7

calculated by the following method:

Percent Viability =


 $\left(rac{[Total number of glochidia in sample-(Number of glochidia closed before salt+Number of glochidia open after salt)}{Total number of glochidia in sample}
ight)*100$

For more specific details regarding the enumeration process, refer to Amendment 1 of the protocol.


Enumerated photomicrograph files were saved in one of two locations. Viability samples enumerated prior to the locking of the electronic file folders (FAM, PPB and HGE from 12May11 at 12 and 24 hour; PPB from 18OCT11 at 6, 12 and 24 hour) are saved within the raw data file folders in a separate electronic folder entitled enumerated. Viability samples enumerated after the locking of the electronic file folders (FAM, PPB and HGE from 12May11 at 6); BLS and MUC from 17JAN12 at 6, 12 and 24 hour; HIC from 19JAN12 at 6, 12, and 24 hour) are saved in a separated enumerated file folder within the study folder. Examples of path and filenames for the enumerated viability samples (6, 12 and 24 hour) photomicrographs are shown in Table 6.

	I://AEH-11-PSEUDO-01/Pictures/18OCT11/6h/Enumerated/PPB-FDP-ctrl-3B6-6h-bs-C
Path prior to locking	Photomicrograph Filename Enumerated Folder Includes: 6h – PPB from 180CT11 12h – FAM, PPB, HGE from 12May11 PPB from 180CT11 24 h – FAM, PPB, HGE from 12May11 PPB from 180CT11 24 h – FAM, PPB, HGE from 12May11 PPB from 180CT11 Sample Type Folder (Initial Viability, Distribution, 6h, 12h or 24h) Exposure Date Folder (12May11, 180CT11, 17JAN12 or 19JAN12) Picture Folder (Location of all study photomicrographs) Study Folder (Location of all study specific data) I:// Drive (Location of all study specific data)

Table 6. Enumerated 6, 12 and 24 hour Viability Samples Path and Filenames

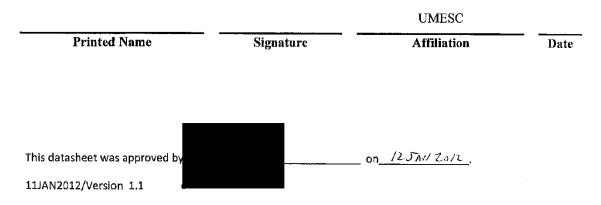
The electronic log can be used to also determine where the raw and enumerated files are located in the electronic study folder.

cc: UMESC QAU

Page 7 of 7

Study Title: "Effects of *Pseudomonas fluorescens (Pf-CL145A)* to glochidia from seven unionid mussel species"

Study number: AEH-11-PSEUDO-01


File Folder: _____ Lab book/pgs: _____ Reviewed: _____ Verified: _____

Donor Mussel UMESC Lot Number Assignment Form

DONOR MUSSEL INFORMATION:

Species:
Number of Donor Mussels: Collection Date:
Collection Location:
Species Identification performed by:
Title/affiliation of identifier:
UMESC Arrival Date:
Receiving UMESC tank/room #
Additional information:
UMESC LOT NUMBER DESIGNATION:

Witness and form recorded by:

File Folder: ______ Lab book/pgs: ______ Reviewed: ______ Verified: ______

Ľ

Daily Care Worksheet

Donor Mussel Holding

Tank #:	Sect	tion #:			Month/Ye		
Species:			Lo	t Number:			
	ents:		<u> </u>			•	
	Feed	Flow	Rate (min)				
Day	Time (military)	Inflow	Pump	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	initials
1							l
2							
3							ļ
4							
5							
6			 				
7							
8			L	· ··			
9		-7					
10	ļ						
11							
12							
13							
14							
15	· · · · ·					<u>.</u>	
16							
17						<u> </u>	
18							
19							
20							
21							
22							
23							
24	<u>+</u>	1					
25							
26		<u> </u>	1				
27	-						
28		ľ	-1				
29							
30							
31			-		-1	1	

This datasheet was approved b 11JAN2012/version1.1

on 12 JAN2012.

AEH-11-PSEUDO-01

Adult Mussel Holding Daily Algal Diet 1/13/2012

<u>Tank Dimensions and volume</u> 48"x 14" x 6" (121.92 cm x 35.56 cm x 15.24 cm) = 66,073 cm³ 6" (15.24 cm) standpipe: 66.073 L

Flow rate (1 turnover per hour): 1.1 L/m)

Daily water volume: 1.1 L/m X 60 m/h X 24 h/d = 1584 L/d

<u>Diet weights</u> (50% *Tetraselmis* and 50% *Nannochloropsis*) to achieve 10 mg/L by dry weight:

Tetraselmis: Target 5.0 mg/L (17.93% Dry Wt); Nannochloropsis: Target 5.0 mg/L (20.48% Dry Wt)

Tetraselmis: 27.89 mg/L; Nannochloropsis: 24.41mg/L

X 1584 L/d

Tetraselmis: 44.2 g/d; Nannochloropsis: 38.7g/d

Diet Inflow Rate: 10 mL/min X 60 m/h X 24 h/d = 14400 mL/d

Daily Care:

Mix 44.2g *Tetraselmis* and 38.7g *Nannochloropsis* with 14,400 mL well water each day, to be delivered by peristaltic pump at 10 mL per minute. Prepare fresh diet daily.

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

Study number: AEH-11-PSEUDO-01

Ļ

File Folder:	Lab book/pgs:	Reviewed:	Verified:	
Glochidia Test	-		Number Assignr	nent
	F	orm		
Species:				
Number of Donor Mus	sels: Dono	r Mussel Lot #:_		
Extraction Date: /	/ Extraction	n Time (military)	
Extraction Location:		Container ID:		
Approximate Number	of glochidia:			
Glochidia extracted by:	:	Affiliat	ion:	
Additional information	:			
		·		
···· , <u>,</u> , <u>,</u>				
UMESC GLOCHIDIA	LOT NUMBER DE			
Witness and form recor		Signation,		
			LIMEGO	
Printed Name	Sig	nature –	UMESC Affiliation	Da
	a of here			
This datasheet was approvention 1.1	ea by		on 12 SAN Zaiz.	

Study Title: "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

Study number: AEH-11-PSEUDO-01

File Folder: _____ Lab book/pgs: _____ Reviewed: _____ Verified: ______

Glochidia Aliquot Distribution Form

Species:	UMES	SC LOT NUMBER:	
Test Block Assignment (circle one)	: <u>1 2 3</u>		
Aliquot Volume (µl):	_ Estimated	# glochidia/aliquot	
Initial Distribution aliquot date/tin	ne (military):		_
Final Distribution Aliquot date/tin	ıe (military):		
Number of Aliquot rounds:	Estimated # glocl	hidia/chamber	
Additional information:			
		· · · · · · · · · · · · · · · · · · ·	
		· · · · ·	
Witness and form recorded by:			
		UMESC	
Printed Name	Signature	Affiliation	Date
This datasheet was approved by		on 12 JAN 2012.	
11JAN2012/version 1.1			

File Folder: Lab book/pgs: Reviewed:

Verified:

Glochidia Photomicrograph Counting Record

Mussei Species:		Sample	Sample Period (h post exposure):	ost exp(osure):					
Dosing Date:		Formula	Formulation and lot #:	r#:						
	Photomicrograph		Glochidia Count Before NaCl Solution	nidia Count Be NaCl Solution	Before on	Glochic Na	Glochidia Count After NaCl Solution	t After on		
Photomicrograph Record ID	Capture Time (military)	Total Glochidia Counted	No. Counted	ס ס	Circle One ¹	No. Counted		Circle One ¹	Date	Initials
				Open	Closed		Dnen	Closed		
		=		Open	Closed		Open			
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed	 	
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
		.4		Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
¹ Technician counting glochidia sample.	ia photomicrograph will select either open or closed glochidia, whichever is less, and circle the corresponding selection for each	lect either open or c	closed glochic	dia, which	hever is les	s, and circle	the corre	ssponding se	election f	or each

. ⊷

ON 12 JAN 2012.

This datasheet was approved by 11JAN2012/version1.1

87

Verified: Reviewed: Lab book/pgs:__ File Folder: ____

Initial Viability and Concentration Determination of Glochidia

Mussel	Mussel Species:			File/Fc	File/Folder Path:					
Dosing Date:	Date:			Formu	Formulation and lot #:	#				
A	8	U	0	ш	Ľ	9	н		_	
Mussel	Sample Volume	Photomicrograph	Total Number Glochidia	Closed Glochidia Counted	Open Glochídia Counted	Number Glochidia per mL	Percent Viability		Time Time	
#	(אר)	Record ID	Counted	(Before NaCl)	(After NaCl)	(D/B*1000)	([D-{E+F]]/D) *100	Date	(military)	Initials

on /2Jaw20/2

2

.

This datasheet was approved by 11JAN2012/version1.1

File Folder: ______ Lab book/pgs: ______ Reviewed: ______ Verified: ______

Water Quality - Form 1

Initial (Dilution Water Hardness, Alkalinity, and Temperature)

Date/T	ime Containers	Filled:			Initials:		
Mussel	l Species:		Bloc	:k ID:			
Dosing	Date:	. .	For	mulation and lot #	;		
Instrun	nents:			_			
	Hardness	Alkalinity	Temperature	Conductivity		Time	
Rep #	(mg/L CaCO₃)	(mg/L CaCO ₃)	(°C)	(µS)	Date	(military)	Initials
1							
2							
З							
Mean							

This datasheet was approved by	on	17 JAN ZOR
11JAN2012/Version 1.1		

File Folder: _____ Lab book/pgs: _____ Reviewed: _____ Verified: _____

Water Quality – Form 2

During Exposure (Dissolved Oxygen, pH, Temperature)

Mussel Species:			Block ID:					
Dosing Date:			Formulation and lot #:					
	ts:							
Chamber ID	Dissolved Oxygen (mg/L)	рН	Temperature (°C)	Date	Time (military)	Initials		
	(Dute		11111113		
	· · · · · ·			· · ·				
			·····					
						+		
						i •••		
		······································				†		
						+		
						<u> </u>		
						<u> </u>		
		······································						
						1		
		· · · · · · · · · · · · · · · · · · ·						
		<u> </u>			<u> </u>			
						1		
	·				<u> </u>			
			<u> </u>			<u> </u>		
						<u> </u>		
			I	l				

Light Measurement	Block Number	Date	Time (military)	Initials

Note: Dissolved oxygen, pH, temperature, and light intensity will be measured at least twice during the exposure period in the controls and high concentrations.

11JAN2012/vs1.2 This datasheet was approved by _

on 12 JAN 2012

File Folder: ______ Lab book/pgs: ______ Reviewed: ______ Verified: ______

Water Quality - Form 3

Upon Termination (Hardness, Alkalinity, Conductivity, Temperature, and pH)

Mussel Species: Dosing Date: _____

Block ID: ____

Formulation and lot #:____

Instruments:

Pooled Sample Concentration	Chamber IDs	Hardness (mg/L CaCO ₃)	Alkalinity (mg/L CaCO ₃)	Conductivity (µS/cm)	Date	Time (military)	Initials
				·····			
							<u> </u>

Note: Hardness, alkalinity, and conductivity will be measured upon termination of trial from pooled replicate samples.

Chamber ID	Temperature (°C)	рН	Date	Time (military)	Initials
{					
•••			,	·	
					v
			,		
		····			
1					
			·····	···	
		i i		. I	
				· + · · · · · · · · · ·	
				1	
				1	
			1		
		1			

Note: Temperature and pH will be measured upon termination of trial from each individual test chamber. These values will be used for ammonia analysis.

13JAN2012/vs1.2 This datasheet was approved by

on 17 JAN 2012

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven different unionid species"

Study number: AEH-11-PSEUDO-01

File Folder: _____ Lab book/pgs: _____ Reviewed: _____ Verified; _____

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot #_____Date Rec'd_____Exp. Date

Mussel Species Block ID

Instruments:

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
	· · · · · · ·		
			······································

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
			1994 - Ling A. J. S.	·	· · · _ · ·
		<u> </u>			

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared prior to use to allow for deactivation and cooling.

This datasheet was approved by 11JAN2012/version 1.1

on 12 JAN 2412.

Study Number AEH-11-PSEUDO-01 Reviewed:

Verified:

File Folder: Lab book/pgs: Species: Date of Dosing:

Chemical Stock Solution Determination and Preparation

Formulation and lot #:

Stock A = Control (20 °C well water)

Stock B = 10,000 mg/L active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient)

Stock C = 10,000 mg/L detoxified active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use)

Dosage Łevel (mg/L)	Exposure Volume Deactivated mg (mL) Required	Deactivated mg Required	Active mg required	<i>Well Water</i> Aliquot Stock A (mL)	Well Water Active Stock Aliquot Aliqot Stock A (mL) Stock B (mL)	Deactive Stock Aliquot Stock C (mL)	Color Code Assignment
0	100	0	0	3.0	0.0	0.0	White
300 HD	100	30	0	0.0	0.0	3.0	White/black stripes
50	100	0	5	2.5	5.0	0.0	Yellow
100	100	0	10	2.0	0'T	0.0	Yellow/black stripes
200	100	0	20	1.0	2.0	0.0	Blue
300 Active	100	0	30	0.0	3.0	0.0	Blue/black stripes
Total per rep					5'8	6.5	3.0
Total per species					25.5	19.5	0.6
Total per 3 species					76.5	58.5	27.0

Concontration	Stock Preperation	Time Dosing	Time Dosing	Date	Initiale
רחורבוזון פוזחו	Time	Started	Completed	המוכ	
0 mg/L					
300 mg/L Deactive					
50 mg/L					
100 mg/L					
200 mg/L					
300 mg/L Active					

This datasheet was approved by

._____

01 17 JAN26/2

.

•				
'SN:	т	ip Type:		
	Thermometer:			
Wa	nter Density ¹ (g/mL):			<u></u>
	Water Mass		Time	
**************************************	(g)	Date	(military)	Initials
			-	
6				
7				
8				
9				
10				
Mean				·
Standard Deviation				
	/SN:Wa Rep # 1 2 3 4 5 6 7 8 9 10 Mean	Thermometer: Water Density ¹ (g/mL): Water Mass Water Mass Rep # (g) 1 2	/SN: Tip Type: Thermometer: Water Density ¹ (g/mL): Water Mass Date 1 2 3	'SN: Tip Type: Thermometer:

i.

Note: Pipette calibration must be performed with deionized water left to adjust to ambient room temperature for at least 24 hours prior to calibration.

¹ Water density (g/mL) at varying temperatures: 18°C: 0.9985976; 19°C: 0.9984073; 20°C: 0.9982063; 21°C: 0.9979948; 22°C: 0.9977730.

This datasheet was approved by	on _	12 JAN 2012.
11JAN2012/version1.1		

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven different unionid species"

Ϊ.

\backslash		Study number:	AEH-11-PSEU	DO-01		
	pproved by		····	Date_/0-/8	~1/	
File	Folder:	Lab book/pgs:				
Т	'est Che	emical Stock	Preparati	on Data I	Form	
	Test	Chemical: Pseudor	monas fluorescen	s strain 145A		
Test Chemical	Lot #	Date Rec'	d	_Exp. Date		
Chemical Wei	ghing:		·			
Sample I.I).	Sample wt. (g)	Date/Time	e	Initials	
		<u>م </u>		,		
~~ <u>~</u>		· ····				
					· · ·	
*Chemical sa	4	stored refrigerated i		preparation.		
Stock Prepara	N	vised forms vised from v 18 JAN 2. Vol. 1004	12 TAN 20	KIN 23	JAN201	<u>ə</u>
Sample I.D.	(ml)	time		tive stock for GE)		
	()	time		JE)	Time	Initials
		1				
		ared immediately be least 1 hr prior to u				⊥ which

Pg ____ of ___8

1

File Folder: ______ Lab book/pgs: ______ Proofed; ______ Reviewed: ______

Water Quality – Form 2

During Exposure (Dissolved Oxygen, pH, Temperature)

Sample ID	Dissolved (mg	Oxygen		Block ID:				
		<u>g/L)</u>	pH	Tem	perature (°C)	Date	Time (military)	Initials
							-	
						· · · · · · · · · · · · · · · · · · ·		
							+	
					-			
-								
····								
							· · · · · · · · · · · · · · · · · · ·	
							•	
	· ····							
							:	
							•	
					<u> </u>		•	
					·		-*	
÷			* <u>-</u> .	·				
Light Meas	uromont	Block Numb	or l	Date	T:.	(military)	Initia	

Note: Dissolved oxygen, pH, and temperature will be measured at least twice during the exposure period in the controls and high concentrations.

Approved by:	Date:1> //7/1/	Pg 🔒 of 👔
170CT2011/vs1.1	-	

Species Dosed: ____ Date of Dosing: __

, ,

۱ ۲

Chemical Stock Solution Determination

Date: 10/17/11

Study Numbe<u>r AEH-11-PSEU</u>DO-01

Approved by:

Stock C = 10,000 mg/L detoxified active material (1.0g/100 mL - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Stock A = Control (20 °C well water); Stock B = 10,000 mg/t active material (1.0g/100 mL product = 10.0mg/mL active ingredient);

Dosage Level (mg/L)	Dose concentration	Exposure Volume (mL)	Deactivated mg Required	Active mg required	<i>Well Water</i> Aliquot Stock A (mL)	Active Stock Aliqot Stock B (mL)	Well Water Active Stock Deactive Stock Aliquot Stock Aliqot Stock Aliquot Stock A (mL) B (mL) C (mL)	Color Code Assignment
	control (well water blank)	100	0	0	3.0	0.0	0.0	White
300	mg/L (Deactivated)	100	30	0	0.0	0.0	3.0	White/black stripes
50	mg/L	100	0	5	2.5	0.5	0.0	Yellow
100	mg/L	100	0	10	2.0	1.0	0.0	Yellow/black stripes
200	mg/L	100	0	20	1.0	2.0	0.0	Blue
300	mg/L	100	0	30	0.0	3.0	0.0	Blue/black stripes
Total		1			8.5	6.5	3.0	
Total per species					25.5	19.5	9.0	

per species	per 3 species
Total	Total

27.0

58.5

76.5

Concentration	Time Dosing	Time Dosing	Date	Initials
	Started	Completed		
0 mg/L				
300 mg/L Deactive				
50 mg/L				
100 mg/L				
200 mg/L				
300 mg/L Active				

Pg 3 of 18

. +

170CT2011/vs1.1

ł

۰,

File Folder: ______ Lab book/pgs: ______ Proofed: ______ Reviewed: ______

Water Quality - Form 1

Initial (Dilution Water Hardness, Alkalinity, and Temperature)

ate/Tir	ne Containers Fille	d:		In i	tials:	
Rep#	Hardness (mg/L CaCO₃)	Alkalinity (mg/L CaCO ₃)	Temperature (°C)	Date	Time (military)	Initials
1						
2				- 10 P . L.		
3					-	
	· · · ·					·
Mean						
				··· = -		

Note: Hardness, alkalinity, and temperature will be measured prior to test initiation from well water aerated and allowed to acclimate to room temperature for at least 24 hours prior to use.

Approved by:

_____ Date:<u>5-11-11</u>

Pg 4 of 18

File Folder: _____ Lab book/pgs: _____ Proofed: _____ Reviewed: _____

Water Quality - Form 3

Upon Termination (Hardness, Alkalinity, Conductivity, Temperature, and pH)

Mussel Species:

Block ID: _

ooled Sample oncentration	Sample IDs	Hardness (mg/L CaCO ₃)	Alkalinity (mg/L CaCO ₃)	Conductivity (µS/cm)	Date	Time (military)	Initial
	~						

Note: Hardness, alkalinity, and conductivity will be measured upon termination of trial from pooled replicate samples.

Sample ID	Dissolved Oxygen (mg/L)	Temperature (°C)	рН	Date	Time (military)	Initials
					,	
					*-	
				·		
	· · ·			1. b		
1						
			·			

Note: D.O., temperature and bH will be measured upon termination of trial from each individual test chamber for ammonia analysis.

_ Date: <u>///////</u> Approved by:

Pg <u>5</u> of <u>18</u>

170CT2011/vs1.1

	1	
۰.	• ,	

File Folder:	Lab book/pgs:	Proofed:	R	eviewed:	_
	Pipe	ette Calibration			
Pipette Brand/Mod	el/SN:	T	ір Туре:		
Balance:		Thermometer:			
Temperature:	Wa	ater Density ¹ (g/mL):		<u></u>	
Pipette Setting (µL)	Rep#	Water Mass (g)	Data	Time	
(με/	1	(6)	Date	(military)	Initials
	2				
	3		-		
	4				
	5				~
	6				·······
	7				*
	8				
	9				
	10				
	Maan				
	Mean Standard Deviation	·			
· · · ·	Standard Deviation				
Pass or Fail (Pass = R	eviation (Standard Deviati elative Standard Deviation an mass / Water Density ¹)	n ≤ 1%):	·		_
i iperce volume (me		•	·		
	tion must be performed with nours prior to calibration.	deionized water left to ad	just to ambie	nt room tempe	rature

Approved by: Date: <u>5-9-//</u>	Pg <u>6</u> of <u>18</u>
----------------------------------	--------------------------

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

	Study number:	AEH-11-PSEU	J DO-01	
Approved by _			Date 5-5-11	
File Folder:	Lab book/pgs:	Proofed:	Reviewed:	

Donor Mussel UMESC Lot Number Assignment Form

DONOR MUSSEL INFORMATION:

٠,

Species:	·
Number of Donor Mussels:	Collection Date:
Collection Location:	
Title/affiliation of identifier:	
UMESC Arrival Date:	
Additional information:	
UMESC LOT NUMBER DESIGNAT	FION:

Witness and form recorded by:

UMESC **Printed Name** Signature Affiliation Date

Pg <u>7</u> of <u>18</u>

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

	Study number: A	AEH-11-PSEU	DO-01	
Approved by	_		Date_5~5~11	
File Folder:	Lab book/pgs:	Proofed:	Reviewed:	_
Glochidia Test (Drganism UN	AESC Lot	Number Assi	gnment
	F	orm		

species:	
Number of Donor Mussels: Donor Musse	Lot #:
Extraction Date: //201Extraction Time	e (military)
Extraction Location: UMESC rm 15 Conta	iner ID:
Approximate Number of glochidia:	
Glochidia extracted by:	Affiliation:
Additional information:	
JMESC GLOCHIDIA LOT NUMBER DESIGNAT	1UN:
Vitness and form recorded by:	
	UMESC

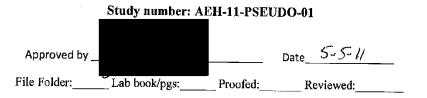
Printed Name

.

, ; :

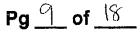
Signature

Affiliation


Date

Pg <u>8</u> of <u>18</u>

Study Title: "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"


•.

٠.

Glochidia Exposure Dosing Form

Species:	UMES	C lot number:	_
Test Block Assignment (circle one)	:_1_2_3		
Estimated # glochidia/Chamber			
Date/time (military) of dosing initia	ation:		
Date/time (military) of dosing com	pletion:		
Additional information:			
		·····	
Witness and form recorded by:			
		UMESC	
Printed Name	Signature	Affiliation	Date

Study number: AEH-11-PSEUDO-01 Approved by ______ Date <u>5-5-1</u> File Folder: ______ Lab book/pgs: ______ Proofed: _______

Study Title: "Effects of *Pseudomonas fluorescens (Pf-*CL145A) to glochidia from seven unionid mussel species"

,

۰.

Glochidia Aliquot Distribution Form

Species:	UMESC	LOT NUMBER:	
Test Block Assignment (circle one):	13		
Aliquot Volume (µl):	Estimated #	glochidia/aliquot	
Initial Distribution aliquot date/time	e (military):		
Final Distribution Aliquot date/time	e (military):		
Number of Aliquot rounds:			
Additional information:			
	······		
Witness and form recorded by:			
		UMESC	
Printed Name	Signature	Affiliation	Date
		_ \	0
		Pg <u>_</u> of _	18

 File Folder:

 Proofed:

 Reviewed:

• .

Daily Care Worksheet

Tank #:			_ Room #:		Month	/Year:	
						· · · · · · · · · · · · · · · · · · ·	
Lot Num	ber:						
			Rate				
	Feed Time	(mL/ Inflow	'min) Pump	Temperature	Dissolved		
Day	(military)			(°C)	Oxygen (mg/L)	рН	Initials
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12		· · ·				<u>.</u>	<u> </u>
13							
14	···						
15	 			· ·		-	
16							
17							
18							
19							
20							
21							
22							
23						·····	ļ
24							
25							
26				······································			
27			<u></u>				
28						l	
29							ļ
30							ļ
31					1		

Daily Food Prep: Mix 44.0g Shellfish diet, 35.3g Tetraselmis, and 92.4g Thalassiosira weissflogii with 14,400 mL well water each day, to be delivered by peristaltic pump at 10 mL per minute. Target water inflow rate is 1,100 mL/min. Prepare fresh diet daily.

Approved by:	Date: <u>5-9-11</u>	Pg <u>↓</u>	of <u>18</u>
--------------	---------------------	--------------------	--------------

,

File Folder: ______ Lab book/pgs: _____ Proofed: _____ Reviewed: ______

.

Water Quality – Form 2

During Exposure (Dissolved Oxygen, pH, Temperature)

Mussel Sp	ecies:		Block ID:			
Sample ID	Dissolved Oxygen (mg/L)	рН	Temperature (°C)	Date	Time (military)	Initials
		- 197-				
	,					-
				1		•
		· · · · · · · · · · · · · · · · · · ·				
						· · ·
	· · · · · · · · · · · · · · · · · · ·	•				u.
		·		•		

Note: Dissolved oxygen, pH, and temperature will be measured at least twice during the exposure period in the controls and high concentrations.

Approved by:

Date: 5-11-11

Pg <u>12</u> of <u>18</u>

Ļ

Proofed:

Lab book/pgs:_

File Folder:

Reviewed:

، • . **`.**

Water Quality – Form 3

Upon Termination (Hardness, Alkalinity, Conductivity, and Ammonia)

Pooled Sample Paradness ¹ Alkalinity ¹ Conductivity ² Ammonia ² Time Time Concentration Sample IDs (mg/L CaCO ₃) (mg/L CaCO ₃) (mg/L) Date (military) Initials Concentration Sample IDs (mg/L CaCO ₃) (mg/L CaCO ₃) (mg/L) Date (military) Initials Concentration Img/L CaCO ₃) (mg/L CaCO ₃) (mg/L) (mg/L) Date (military) Initials Img Img Img Img Img/L Img/L	Mussel Species:		Block	Block ID:		1			
Note: Water quality parameters will be measured upon termination of trail from pooled replicate samples.	Pooled Sample Concentration	Sample IDs	Hardness ¹ (mg/L CaCO ₃)	Alkalinity ¹ (mg/L CaCO ₃)		Ammonia ² (mg/L)	Date	Time (military)	Initials
• Mater guality parameters will be measured upon termination of trial from pooled replicate samples. • Mater guality parameters will be measured upon termination of trial from pooled replicate samples.							: :		
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.			-						
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.									
	Note: Water quality	y parameters will be measured	upon termination of tri	ial from pooled re	plicate samples.				

Conductivity and ammonia will be taken from all concentrations.

Pg <u>{3</u> of <u>18</u>

. +

.....

Reviewed: Proofed: Lab book/pgs: __ File Folder:

` `.

e S

Initial Viability and Concentration Determination of Glochidia

Mussel	Mussel Species:			File/Fi	File/Folder Path:					
A	8	C	٥	ш	4	9	Ŧ			
lasuM	Sample	Dhotomicroare	Total Number Glochidia	Closed Glochidia	Open Glochidia	Number Glochidia per	Percent Víability		i	
#	(hf)	Record ID	Counted	(Before NaCl)	(After NaCl)	(D/8*1000)	([D-(E+F)]/D) *100	Date	ume (military)	Initials
										i
Approved by	ud be		Date:	Date: 55 11-4						
· · · ·					1					

Pg <u>14</u> of <u>18</u>

Ļ

File Folder: ____

Lab book/pgs: Proofed: Reviewed:

Glochidia Photomicrograph Counting Record

Mussel Species:		Sample	Sample Period (h post exposure):	ost exp	osure):					
	Photomicrograph		Glochidia Count Before NaCl Solution	nidia Count Be NaCl Solution	Before on	Glochic Nat	Glochidia Count After NaCl Solution	t After on		
Photomicrograph Record ID	Capture Time (military)	Total Glochidia Counted	No. Counted	00	Circle One ¹	No. Counted	00	Circle One ¹	Date	Initials
				Open	Closed		Open	Closed		
				Open	Open Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				open	Closed		Open	Closed		
				open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
	-			Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		
				Open	Closed		Open	Closed		

Pg 15 of 18

Date: 5-1/-1/

Approved by:

.

Proofed: Lab book/pgs: _ File Folder:

Reviewed:

. **`.**

۰,

Water Quality – Form 3

Upon Termination (Hardness, Alkalinity, Conductivity, Temperature, pH, %T, and Total Ammonia Nitrogen)

Mussel Species:				Bloc	Block ID:						
Pooled Sample Concentration	Sample IDs	Hardness ¹ (mg/L CaCO ₃)	Alkalinity ¹ (mg/L CaCO ₃)	Conductivity ² 1 (µS/cm)	Temperature ² (*C)	pH ²	Percent Transmittance ² (%T)	Total Ammonia Nitrogen ³ (mg/L)	Date	Time (military)	Initials
	,										
										-	
									1		
		-									
	-										
Note: Water quality parameters will be measured upon termination of trial from pooled replicate samples.	Water quality parameters will be measured up	ers will be me	asured upon t	termination of ti	ial from pooled	replicate	samples.				

¹ Hardness and alkalinity will be taken from the control and high concentration.

Conductivity, temperature, pH, and percent transmittance will be taken from all concentrations.

Follow procedure in SOP AEH 301.0 to calculate total ammonia nitrogen from %T. Additionally, SOP AEH 301.0 contains a procedure for calculating un-ionized ammonia from temperature, pH, and total ammonia nitrogen.

Date: 5-13-11

Pg 16 of 18

l

Ļ

Study number: AEH-11-PSEUDO-01 Approved by ______ Date ______ File Folder: ______ Lab book/pgs: _____ Proofed: ______

Study Title: "Effects of *Pseudomonas fluorescens (Pf-*CL145A) to glochidia from seven unionid mussel species"

Donor Mussel UMESC Lot Number Assignment Form

DONOR MUSSEL INFORMATION:

Species:	
	ollection Date:
Collection Location:	
Title/affiliation of identifier:	
Additional information:	
UMESC LOT NUMBER DESIGNATIO	

Witness and form recorded by:

UMESC **Printed Name** Signature Affiliation Date

Pg 17 of 18

Study Title: "Effects of Pseudo	omonas fluorescens (Pf- unionid mussel species	CL145A) to glochidia from sev "	en
Study	number: AEH-11-PSE	U DO-01	
Approved by _		Date <u>5-5-11</u>	
File Folder: Lab b	ook/pgs: Proofed:	Reviewed:	
Glochidia Test Organ	ism UMESC Lo	ot Number Assignme	ent
	Form	C C	
Species:			
Number of Donor Mussels:		#:	
Extraction Date://201	\backslash		
	\backslash		
Extraction Location:UMESC	rin 15 Container	ID: These forms in	
Approximate Number of glochidia	a:/	TEVISED 12 JAN 2	~L 012
Glochidia extracted by:	Affi	to 18 JAW2012 and u	<u>네(</u>
Additional information:		ID: These forms were the vised 12 JAN 2 to 18 JAN2012 and u ho longer be i KL	ised, h)
		2377	IN ZOLZ
		<u> </u>	
UMESC GLOCHIDIA LOT NUM	IBER DESIGNATION:		
Witness and form recorded by:		$\langle \rangle$	
·			
Printed Name	Signature	UMESC Affiliation	—
	~~gantus t		Date
		Da 8 of 19	
		Pg <u>8</u> of <u>8</u>	\backslash

Appendix 2. Deviations from the Study Protocol

ltem number	Item description	Number of pages	Report page number
1	Deviations #1 and #2 from Study Protocol, Study # AEH-11-PSEUDO-01	1	114
2	Deviation #3 from Study Protocol, Study # AEH-11-PSEUDO-01	1	115
3	Deviation #4 from Study Protocol, Study # AEH-11-PSEUDO-01	1	116
4	Deviation #5 from Study Protocol, Study # AEH-11-PSEUDO-01	1	117
5	Deviation #6 from Study Protocol, Study # AEH-11-PSEUDO-01	1	118
6	Deviation #7 from Study Protocol, Study # AEH-11-PSEUDO-01	2	119
7	Deviation #8 from Study Protocol, Study # AEH-11-PSEUDO-01	2	121
8	Deviation #9 from Study Protocol, Study # AEH-11-PSEUDO-01	1	123
9	Deviation #10 from Study Protocol, Study # AEH-11-PSEUDO-01	5	124
10	Deviation #11 from Study Protocol, Study # AEH-11-PSEUDO-01	2	129
11	Deviation #12 from Study Protocol, Study # AEH-11-PSEUDO-01	2	131
12	Deviation #13 from Study Protocol, Study # AEH-11-PSEUDO-01	2	133

U.S. GEOLOGICAL SURVEY **Biological Resources Division** Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

OR	IG	INA	L
----	----	-----	---

Item No.

OLDER NO.

MEMORANDUM

Date: June 3, 2011 To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviations 1 and 2 to study AEH-11-PSEUDO-01 "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species"

Deviation #1 -- Sections 4.2 and 6.2 (Experimental Design and Determination of viability) state that the viability will determined on subsamples of approximately 100 glochidia taken from each exposure chamber at 6, 12 and 24 h post exposure. After completing the 24-h viability assessments for Block 1 (Lampsilis cardium) the test replicates for each concentration were pooled for the final water quality measurements. A control chamber (2B1) from Block 2 (L. higginsii) was inadvertently pooled with the control chambers from Block 1. Because chamber 2B1 was pooled with the control chambers from Block 1, a glochida sample was not taken for this one control replicate at 24-h post exposure to assess L. higginsii viability in that one control replicate. The remaining two L. higginsii controls (chambers 2C3 and 2C6) were sampled to assess glochida viability at 24-h post exposure according to the study protocol except that two ~100-µL aliquots were collected per replicate and the glochida viability recorded in each aliquot (two separate glochida viability determinations per control replicate).

Deviation #2 - Section 5.2 (Water Chemistry) of the study protocol specifies that water remaining in the replicates will be pooled after glochidia aliquots are taken to determine glochidia viability at 24-h post exposure. Lampsilis higginsii control replicate chamber 381 was inadvertently combined with the L. cardium control chambers. Therefore, the water quality measurements at 24-h post exposure for L. cardium were determined in a water sample of which a portion was derived from the L. higginsii control. The water quality measurements for the L. higginsii controls were made in a water sample which only contained water from control replicate chambers 2C3 and 2C6.

The impact of these deviations to the outcome of the study will not be fully known until the glochidia viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

jemes A. Leioma, B.A.

<u>6/3/11</u> Date

Study Director, UMESC

() Toppopulate error - the chamber is 2B1 3-16-1550-

PROOFED BY 2/6/12 Initials Ins Date 2/6/12 REV.EWED ST Initiale: Date:

cc: UMESC QAU

114

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

RICHAL

ltem No.

FOLDER NO

MEMORANDUM

Date: June 3, 2011 To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 3 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

Deviation #3 – Sections 4.2 and 6.2 (Experimental Design and Determination of Viability) of the amended protocol states that the viability of glochidia from each mussel will be assessed by "drawing aliquots (e.g. 100 μ L) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 μ L) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. Enumerations will be conducted for the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If viability is acceptable (>80%) for a mussel, the glochidia from that mussel will be pooled with glochidia from other mussels of that species."

The procedures as described in the protocol were followed except mussels that were observed to have high viability, the exact viability percentage was not determined prior to allowing the glochidia into the study. For these mussels a preliminary visual observation was used to determine acceptable viability. Only two L, higginsii mussels appeared to have viability near the threshold limit of 80% viability. For these mussels a preliminary estimation of the viability using the formula in the protocol showed that the viability was greater than the minimum 80% for acceptance.

The methods described were used to substantially reduce the period from glochidia extraction until use in the study. No negative impacts to the study are anticipated as the exact viability of the glochidia will be determined from the photomicrograph records, viability $\geq 80\%$ for all but two mussels was easily identified by visual observation and the two higginsii mussels with somewhat reduce viability were determined to have acceptable viability by using the formula described in the protocol. The calculations were preliminary and not recorded, however they did indicate greater than 80% viability.

James A. Luoma B.A.

Study Director, UMESC

Date

cc: UMESC QAU

PROOFED BY Initials: _____ Date: 2/6/13 BEV.EWED BY Initials: _____ Date: ____

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

0	R	10	n	ľ	A	L
	ant the	-	 1	# ,	(.§	1

Item No. 8 FOLDER NO.

MEMORANDUM

Date: June 7, 2011 To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 4 to study AEH-11-PSEUDO-01 "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species"

Deviation #4 - UMESC SOP GEN 012.2 section C, 3 & 4, specify that " the chemical removed from the test chemical container will be weighed into a tared vessel and the weight of the chemical mass recorded in the Test Chemical Use Log (Form GEN 012.2b)." and "After the chemical has been removed from the test chemical container (including the cap or lid) re-weigh the container and its contents and record the weight in the use loa".

When the test chemical was removed from the container, four separate aliquots of ~ 2.0 grams each were weighed into separate tared 50-mL beakers. The exact weight of test material weighed into each beaker was recorded on a piece of laboratory tape fixed to the beaker. At the conclusion of the all samples being removed the container was re-weighed and a single entry was placed into the chemical use logbook. The original tapes (containing the exact chemical weights) affixed to the beakers were retained and were filed in file folder 8 of the study records along with a description and time of their use. Additionally, an entry explaining the procedures used were recorded in the chemical logbook and laboratory notebook.

No adverse impacts to the study are anticipated as a result of this deviation.

ámes A. Luóma, B.A. Study Director, UMESC

PROOFED BY 2/6/13 Initiate: 7 MS Date: 2/6/13 REVEWED BY Initiels Date:

cc: UMESC QAU

ORIGINAL

Item No.

FOLDER NO.

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: January 11, 2012

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 5 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

Deviation #5 – Sections 4.2 and 6.2 (Experimental Design and Determination of viability) of the amended protocol (see Amendment 3) state that "approximately one drop of saturated sodium chloride solution (12g NaCl/50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. The total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition will be determined". Due to the large quantity of samples to be processed, samples were placed on the microscope stage and photographed to enumerate for viable glochidia (i.e., those with open valves). One drop of a saturated sodium chloride solution was added to the sample and a timer was started. The sample was then removed from the microscope stage and replaced with the next sample. Once the minute was over, the original sample exposed to the saturated sodium chloride solution was again placed on the microscope stage and photographed to enumerate for viable glochidia (i.e., those with other sample. Once the minute was over, the original sample exposed to the saturated sodium chloride solution was again placed on the microscope stage and photographed to enumerate for viable glochidia (i.e., those with closed valves). This process was used for the initial viability, distribution, 6, 12, and 24 hour viability determinations.

The method described was only used for samples processed on May 12-13, 2011. No negative impacts to the study are anticipated as each sample was re-photographed at the one minute post-exposure to saturated sodium chloride. The photographs are not aligned in the same way from before salt to after salt, but will have no impact on enumeration.

Written by Kerry L. Weber, M.S. Principal Investigator, UMESC	<u>h JAW 2012</u> Date	Approved by James A. Luoma, B.A. Study Director, UMESC	InMale: <u>Ims</u> Date REVIEWED
cc: UMESC QAU			Initiala: Date Page 1 of 1

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Û		ALT BUCCUSCING		to the state of		Å.	i 1
---	--	----------------	--	-----------------	--	----	--------

FOLDER NO.

Item No. 10

MEMORANDUM

Date: January 11, 2012

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 6 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

Deviation #6 - Sections 4.2 and 6.2 (Experimental Design and Determination of viability) of the amended protocol (see Amendment 3) state that "if glochidia can be enumerated and viability statues (i.e. open or closed) reliably determined through photomicrograph records (i.e. the glochidia remain on a single focal plane)" then the viability of the subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12, and 24 h post exposure by enumeration through a dissection microscope. The 24 h control dosing (0 mg/L) photographs taken on May 12, 2011 for Plain pocketbook (Lampsilis cardium), Higgins eye (Lampsilis higginsii) and Fatmucket (Lampsilis siliquoidea) were enumerated on May 16, 2011 using Image Pro Software. The new Nikon NIS-Elements BR imaging software was received and installed after this enumeration occurred. Therefore, the samples were recounted on August 10-16, 2011 using the new software. The original enumerations from Image Pro were retained as .jpg images. The enumerations using the Nikon NIS-Elements BR software were saved as .tif files. All count data from both enumerations were recorded on the Glochidia Photomicrograph Counting Record datasheet (File Folder 12C) and within the electronic log (pages 1 to 24 of I://AEH-11-PSEUDO-01/Pictures/12May11/24h). The count data from the Nikon NIS-Elements BR software were used during analysis.

Samples that were re-counted using the Nikon NIS-Elements BR software include:

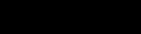
Plain Pocketbook	Higgins Eye	Fatmucket
1A3-24h-1	2C3-24h	3A2-24h
1A3-24h-2	2C3-24h-R2	3B2-24h
1B1-24h	2C6-24h_	3B3 24h
1C3-24h	2C6-24-R2	

No negative impacts to the study are anticipated. The images analyzed with Nikon BR Elements are easier to visualize which glochidia are included in the dataset.

1JAN 2012 Written by Approved by Date Kerry L. Weber, M.S. James A. Luoma, B.A. PROOFED BY Principal Investigator, UMESC Study Director, UMESC Initials: Ins. Date : **BEV:EWED BY** initials: Date! cc: UMESC QAU Page 1 of 1

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM


Date: January 11, 2012

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 7 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

Deviation #7 – Section 6.2 (Determination of viability) of the amended protocol (see Amendment 3) states that "the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition will be determined." Samples taken on May 12, 2011 for Plain pocketbook (*Lampsilis cardium*), Higgins eye (*Lampsilis higginsii*) and Fatmucket (*Lampsilis siliquoidea*) were enumerated from August 10 to 22, 2011 in this manner, which is prior to the written amendment. The samples analyzed following this procedure can be found in Table 1 on page 2 of this deviation.

No negative impacts to the study are anticipated as an official amendment was approved for this procedure after the fact.

h JAN 2013 Date

ORIGINAL

Item No.

FOLDER NO.

Written bý Kerry L. Weber, M.S. Principal Investigator, UMESC

> <u>11Jaw 2012</u> Date

Approved by James A. Luoma, B.A. Study Director, UMESC

PROOFED BY 2/6/12 REV EWED BY Initials Date!

Page 1 of 2

AEH-11-PSEUDO -01

	Plain Pocketbook	Higgins Eye	Fatmucket
	1A2-12h	2A5-12h	3A4 12h
	1A5-12h	2A6-12h	3A6-12h
	IA6-J2h	2B4-12h	
12 hour	1B3-12h	2B6-12h	3 B4-12 h
	11 B6-1 2h		
	1C2-12h		3C2-12h
			===3C3-12h
	1C6-12h		3C4-12h
	1A5-24h	2A5_24h	3A4 24h
	1A6-24h	2 B 3-24h	3A5-24h
	1B3-24h	2B5-24h	
24 hour	1 B6-24 h	2B6-24h	3B1-24h
samples		- 2CL24h	31814-241h
	1C5-24h		3B6-24h
			3C1-24h
			3C2-24h

Table 1. Samples analyzed using modified enumeration procedure outlined in amended protocol (see Amendment 3)

Item No. / FOLDER NO. 3

ORIGINAL

Approved

11JANZOI2

PROOFED BY Sollies: The Date : 2/6/12 REV EWED BY Initials ____ Date!

Page 2 of 2

P,

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: January 11, 2012

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 8 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

Deviation #8 – Sections 4.2 and 6.2 (Experimental Design and Determination of viability) of the amended protocol (see Amendments 2 and 3) state that "if glochidia can be enumerated and viability status (i.e. open or closed) reliably determined through photomicrographic records (i.e. the glochidia remain on a single focal plane" then "the sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded". Photographs taken on May 13, 2011 were saved as .jpg files. During a training session, it was brought to our attention that compression inherent to .jpg files actually discards information associated with images. Over time, the loading and saving of .jpg images can cause enough information to be lost as to actually degrade the image. Therefore, the .jpg photographs taken on May 13, 2011. During the conversion process and/or enumeration, 5 of the photographs were inadvertently over-written. Two of the over-written photographs were restored by Martin Tagesen using the network back-up while three of the over-written photographs were converted back to a .tif file from the original .jpg file. See the Table 1 on page 2 of this deviation for detailed information.

No negative impacts to the study are anticipated as the .tif files are have greater integrity and each photograph was restored to its original file before analysis was conducted.

115AW 2012 W itten by Date Approved by Kerry L. Weber, M.S. James A. Luoma, B.A. Principal Investigator, UMESC Study Director, UMESC

1)JAN 2012 Date

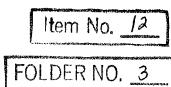
ORIGINAL

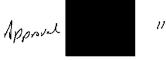
Item No. 12

FOLDER NO.

PROOFED BY Initials: 215 Date : 2/6 REVEWED BY niticle Datel

Page 1 of 2




OBIGINAL

i.

AEH - 11- PSEudo - 01 Table 1. Detailed information regarding restoration for over-written files:

Sample ID	Data Restoration Information
	Over-written on August 3, 2011
2B4=12h=as=jpg	Restored on August 4, 2011 by Martin Tagesen
	Restored using Network back-up from 13 May 2011
	Over-written on: August 3, 2011
3B1-12h-as.jpg	Restored on: August 4, 2011 by Martin Tagesen
	Restored using: Network back-up from 13 May 2011
	Over-written on: August 9, 2011
- PPB-sellisati	Restored on August 11, 2011 by Kenry Weber
	Restored using original preture files PPB 3-lebs, pg
	Over-written on: August 12, 2011
2A5-24h-bs.tif	Restored on: August 12, 2011 by Kerry Weber
	Restored using original picture file: 2A5-24h-bs.jpg
	Over-written on: August 18, 2011
1B6-12habsatir	Restored on August 18, 2011 by Kerry Weber
	Restored using original picture files 186-12h bs.jpg

115AN 2012

PROOFED BY 2/6/12 Initials: 2015 Date 2/6/12 REV: EWED BY Initials: Date:

Page 2 of 2

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Item No. <u>/3</u> File Folder: 3.

Date: February 7, 2012

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 9 to study AEH-11-PSEUDO-01 "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species"

Deviation #9 - Sections 4.2 and 6.2 (Experimental Design and Determination of viability) of the amended protocol (see Amendments 2 and 3) state that "if glochidia can be enumerated and viability status (i.e. open or closed) reliably determined through photomicrographic records (i.e. the glochidia remain on a single focal plane" then "the sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded". During enumeration of Hickorynut glochidia (dosed on January 19, 2012) for initial viability, the following photograph was inadvertently over-written: HIC-3-I-bs.tif. The original file was restored by Martin Tagesen using the network back-up from January 19, 2012.

No adverse impacts to the study will result from this error as the over-written file was restored from a backup of the original file.

07 FEBIJ Date

Written by Kerry L. Weber, M.S. Principal Investigator, UMESC

Approved by

OTFeb 12 Date

James A. Luoma, B.A. Study Director, UMESC

PROOFED SY Inillais: This Date : 4/10/12 REV EWED BY Initials: ____ Date!

cc: UMESC QAU

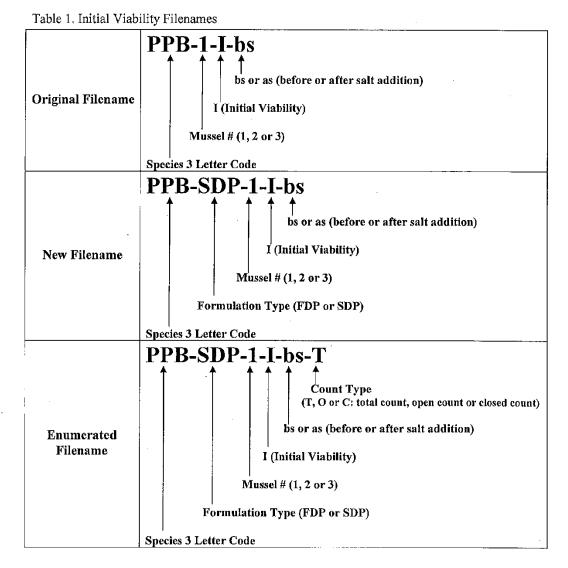
U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: October 31, 2012 ,

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 10 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"


Deviation #10 – Filcnames for the photomicrographs of glochidia samples were changed to allow for unique file identification. The original photomicrograph codes used were not unique as the test system was used for multiple species and formulations and the original photomicrograph codes did not identify the species or product formulation. The filenames for each photomicrograph were renamed to include unique identifiers for each time point at which photomicrographs were recorded. Codes were used within the filenames to make the file identifiable to species, formulation, concentration, sample, exposure time and before or after salt addition, as applicable. The resulting codes allow for unambiguous photomicrograph tracking.

INITIAL VIABILITY

Photomicrographs were used to determine the suitability of glochidia for inclusion in the exposures. Photomicrographs were recorded for samples of glochidia flushed from each gravid mussel. The glochidia were photographed before and after a concentrated salt solution was added to the sample to induce valve closure. The photomicrographs were enumerated according to the procedures described in Amendment 1 of the protocol.

The original codes used in the original filenames were not unique as two formulations were used in exposures. The formulation type was incorporated into the filename. Additionally, once files were enumerated, they were then saved with a new filename that had the addition of T, O or C (Total count, Open count or Closed count) at the end of the filename which designate the type of count performed. See Table 1 for the original filenames, the new filenames and enumerated filenames for the initial viability samples.

cc: UMESC QAU

DISTRIBUTION

Photomicrographs were recorded on samples collected during each round of distribution to the exposure chambers. Distributions were completed in 5 rounds with 18 aliquots per round. Photomicrographs were recorded on the initial aliquot and then after every 6 aliquots for a total of 16 distribution samples for each species. The photomicrographs were recorded and enumerated to estimate the number of animals distributed to each chamber. Distribution samples that had very dense quantities of glochidia were subdivided into more manageable counts before being photomicrographed. The photomicrographs were enumerated according to the procedures described in Amendment 1 of the protocol.

cc: UMESC QAU

Page 2 of 5

The codes used in the original filenames were unique and were retained with the exception of the plain pocketbook (PPB) photomicrograph files. Plain pocketbook was the only species that was exposed to both formulations. Therefore, the formulation type was added only to the PPB distribution photomicrographs. Additionally, once files were enumerated, they were then saved with a new filename that had the addition of T (Total count) at the end of the filename which designate the type of count performed. See Table 2 for the original filenames, the new filenames and enumerated filenames for the distribution samples.

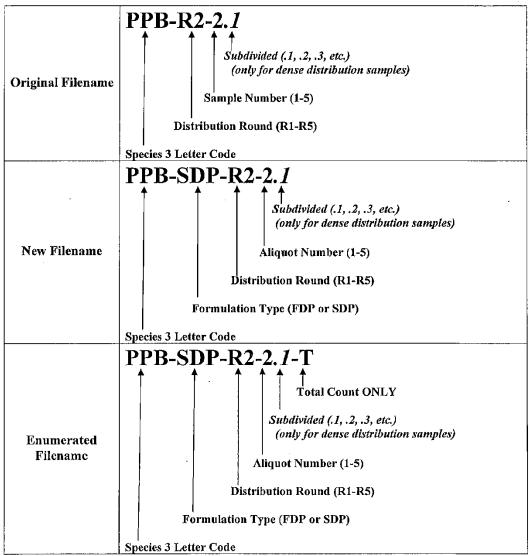


Table 2. Distribution Filenames

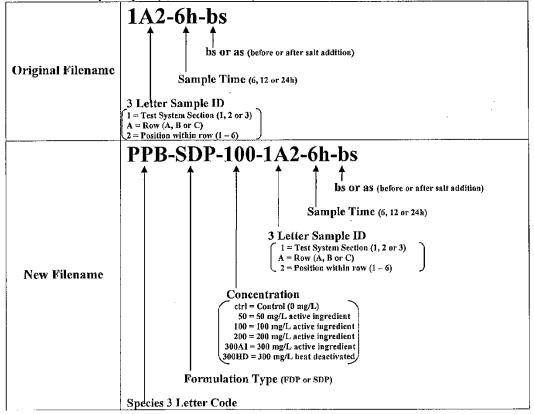
cc: UMESC QAU

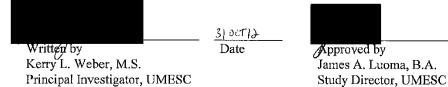
Page 3 of 5

VIABILITY SAMPLES (6, 12 AND 24 HOUR)

Photomicrographs were recorded on glochidia samples collected from each exposure chamber at 6, 12 and 24 hours post-dose initiation to determine viability. Two photomicrographs were recorded for each sample collected for viability assessment. The first photomicrograph was recorded prior to the addition of a salt solution to induce valve closure and the second after induced closure. The photomicrographs were enumerated according to the procedures described in Amendment 1 of the protocol.

The codes used in the original filenames were not unique as multiple species were exposed using the same test system and two formulations were used in the exposures. Therefore, the species ID, formulation type and concentration were added to the filenames. Additionally, once files were enumerated, they were then saved with a new filename that had the addition of T, O or C (Total count, Open count or Closed count) at the end of the filename which designate the type of count performed. See Table 3 for the original filenames, the new filenames and enumerated filenames for the viability samples at 6, 12 and 24 hours.




Table 3. Viability Samples (6, 12 and 24 hour)

cc: UMESC QAU

Page 4 of 5

No adverse impacts to the study will result from this change.

10-31-12

Date

cc: UMESC QAU

Page 5 of 5

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: November 27, 2012

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 11 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

Deviation #11 – Sections 4.2 (Experimental Design) and 5.1.4 (Test Animal: Inclusion criterion) of the amendment 1 of the protocol entitled "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species" states that "if viability [of glochidia] is acceptable ($\geq 80\%$) for a mussel, the glochidia from that mussel will be pooled with glochidia from other mussels of that species". Deviation 3 further states that "mussels that were observed to have high viability, the exact viability percentage was not determined prior to allowing the glochidia into the study. For these mussels a preliminary visual observation was used to determine acceptable viability... exact viability of the glochidia will be determined from the photomicrograph records..."

The initial viability of three individual mussels [Fatmucket (FAM 2), Higgins eye (HGE 1) and Plain pocketbook (PPB 3)] appeared (by visual observation) to be greater than 80%. Upon conducting the final counts of the photomicrograph records, it was discovered that the viability of the glochidia from these individual mussels were slightly below 80%. See Table 1 for the mussel ID and the percent viability.

The initial viability of one individual mussel [Black sandshell (BLS 2)] did not appear (by visual observation) to be greater than 80% (photomicrograph enumeration = 54.4% viable). Two additional glochidia samples (BLS 2.2 and BLS 2.3) from this mussel were observed for initial viability and they appeared to have near or greater than 80% viability (photomicrograph enumeration = 79.4% and 85.4%, respectively). Upon visual observation of the two subsequent samples, the glochidia from this mussel were pooled for use in the study.

The results obtained from the three viability samples (BLS 2, BLS 2.2 and BLS 2.3) photomicrograph record counts were averaged to determine the viability of glochidia extracted from BLS 2. Additionally, the mean initial viability from BLS 2 was used to determine the pooled viability of all glochidia extracted from the BLS donor mussels. See Table 1 for the

cc: UMESC QAU

mussel ID and the percent viabilities.

No negative impacts to the study are anticipated as the mean glochidia viability for all pooled samples were greater than 80% criteria identified in the study protocol.

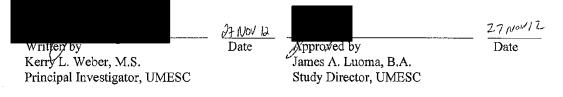


Table 1. Photomicrograph record determined glochidia viability from individual mussels.

Mussel ID	Individual Percent Viability (%)	Pooled Viability (%)
FAM 1	2	002
FAM2	73.11	80.3
FAM3		
HGE 1	62.0	
HGE 2	. 88.1	80.8
HGE 3	92.4	
PPB 1	5.52 , 5.52 , 5.52 , 5.52 , 5.52 , 5.52	
	82.4	84.7
PPB 3	79,3	
BLS 1	89.7	nan penerakanan manatanan kangan da kangan basa
BLS 2	73.1 ^a	83.2
BLS 3	86.9	

^a This value is the mean percent initial viability (%) of the 3 glochidia samples (BLS 2, BLS 2.2, BLS 2.3) from BLS mussel 2. This value was used to determine the pooled initial viability (%) from the BLS donor mussels.

Page 2 of 2

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: December 17, 2012

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 12 to study AEH-11-PSEUDO-01 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid mussel species"

Deviation #12 – Sections 4.2 (Experimental Design) and 6.2 (Determination of viability) of the amendment 3 of the protocol entitled "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species" states that "if glochidia can be enumerated and viability status (i.e. open or closed) reliably determined through photomicrograph records (i.e. the glochidia remain on a single focal plane)" then the viability of the subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12, and 24 h post exposure by enumeration through a dissection microscope. As outlined in Note to File #2, the glochidia photomicrograph records were used to: 1) determine the viability of extracted glochidia that were used in the exposures; 2) estimate the number of glochidia distributed to each exposure replicate and; 3) assess the treatment effects on the viability of glochidia at three time points (6, 12 and 24 h) during the exposure period. Note to File #2 provides clarification to the path and unique folder and filenames for the photomicrograph records. Enumerated photomicrographs each contain a text box legend containing the study number, species, formulation type (SDP vs. FDP), concentration, filename and the glochidia count (i.e. Total Number Glochidia = the total number of glochidia present before salt; Glochidia Open or Glochidia Closed = the number of glochidia open or closed before or after salt). The legend allows the photomicrograph to be uniquely identified. Legend data were typed in by the analyst upon completion of the enumerations and the legend was then burned as an overlay onto the image.

During data proofing, the hard copy data was verified against the legend information on the enumerated photomicrographs. Typographical errors were noted and corrected on 6 photomicrographs. The individual images were opened in the Nikon NIS-Elements BR software. A new legend was created with the correct information. The new legend was burned as an overlay on the image before it was saved. See Table 1 for the photomicrograph filename, the typographical error and the correction.

No negative impacts to the study are anticipated as the data in the legend reflects the original

cc: UMESC QAU

hard copy data. Enumeration data was immediately recorded on the "Glochidia Photomicrograph Counting Record" datasheet (File Folders 11, 12A, 12B, 12C and 12D).

Photomicrograph Filename	Typographical error and correction
HGE-SDP-300HD-2A5-6h-bs-T.tif	Error: HGE-SDP-300HD-2A506h-bs-T.tif
	Correction: HGE-SDP-300HD-2A5-6h-bs-T.tif ^a
HIC-SDP-100-3C5-6h-bs-T.tif	Error: HIC-SDP-100-3C6-6h-bs-T.tif
	Correction: HIC-SDP-100-3C5-6h-bs-T.tif ^a
BLS-SDP-50-1A1-6h-bs-T.tif	Error: BLS-SDP-50-1A1-6h-as-T.tif
	Correction: BLS-SDP-50-1A1-6h-bs-T.tif ^a
MUC-SDP-100-2A2-12h-bs-C.tif	Error: Glochidia Closed = 0
	Correction: Glochidia Closed = 91^{b}
HIC-SDP-300AI-3B5-12h-bs-T.tif	Error: HIC-SDP-300AI-3B5012h-bs-T,tif
	Correction: HIC-SDP-300AI-3B5-12h-bs-T.tif ^a
HGE-SDP-300HD-2A5-24h-as-O.tif	Error: Glochidia Open = 137
	Correction: Glochidia Open = 42 ^b

Table 1. Typographical errors in AEH-11-PSEUDO-01 enumerated photomicrograph records,

^a – Typographical errors identified by comparison to the filename.

^b – Typographical errors identified by comparison of the data in the text box legend to the original hard copy data.

17 DECID M per n Approved/by James A. Luoma, B.A. Date Date Study Director, UMESC

₩¢itten by Kerry L. Weber, M.S. Principal Investigator, UMESC

cc: UMESC QAU

Page 2 of 2

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: March 16, 2015

To: The Record Study Number AEH-11-PSEUDO-01

Subject: Deviation 13 to study AEH-11-PSEUDO-01 "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species"

Deviation #13 – Sections 4.2 (Experimental Design) and 5.1.4 (Test Animal: Inclusion criterion) of the amendment 1 of the protocol entitled "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species" states that "if viability [of glochidia] is acceptable (\geq 80%) for a mussel, the glochidia from that mussel will be pooled with glochidia from other mussels of that species".

Deviation 11 calculated black sandshell donor mussel 2 (BLS 2) percent viability by taking the mean of all three BLS 2 sample percent viabilities (BLS 2, BLS 2.2, and BLS 2.3). See deviation 11 for clarification. Deviation 13 calculates percent viability of BLS 2 using the sum total of all glochidia and non-viable glochidia (those closed before the addition, and open after the addition of salt) from all three BLS 2 samples.

See Table 1 for viable and non-viable glochidia counts and percent viability calculations.

The mean percent viability of the glochidia from all black sandshell donor mussels was 84.5 percent. No negative impacts to the study were observed from the viability of glochidia from donor mussel BLS 2 being 76.9 percent.

Written by

Todd J. Severson, B.S. **Biologist**, UMESC

<u>3/16/15</u> Date

3/16/15

Appføved by James A. Luoma, B.A. Study Director, UMESC

cc: UMESC QAU

Total glochidia	Non-viable glochidia¹	Percent viability
237	108	54.42
310	64	79.4 ²
536	78	85.4²
1083	250	76.9 ³
	237 310 536	Total glochidia glochidia' 237 108 310 64 536 78

Table 1. Black sandshell donor mussel 2 initial glochidia viability samples and calculations.

¹Non-viable glochidia are glochidia closed prior to the addition of, and open after the addition of salt.

²Percent viability calculation: (total glochidia - non-viable glochidia) / total glochidia * 100.

³Percent viability calculation: (sum total glochidia - sum total non-viable glochidia) / sum total glochidia * 100.

Page 2 of 2

Appendix 3. Randomization Assignments

ltem number	Item description		Report page number
1	SAS random assignment of mussel species to block for plain pocketbook, Higgins eye, and fatmucket (10-May-11)	4	136
2	SAS random assignment of mussel species to block for washboard and plain pocketbook (14-Oct-11)	4	140
3	SAS random assignment of mussel species to block for black sandshell, mucket, and hickory nut (09-Jan-12)	5	144
4	SAS random assignment of glochidia to tank for plain pocketbook, Higgins eye, and fatmucket (12-May-11)	20	149
5	SAS random assignment of glochidia to tank for washboard and plain pocketbook (14-Oct-11)	13	169
6	SAS random assignment of glochidia to tank for black sandshell, mucket, and hickorynut (09-Jan-12)	20	182
7	$SAS\ random\ assignment\ of\ treatment\ to\ tank\ for\ plain\ pocket book, Higgins\ eye,\ and\ fatmucket\ (12-May-11)$	13	202
8	SAS random assignment of treatment to tank for washboard and plain pocketbook (14-Oct-11)	9	215
9	SAS random assignment of treatment to tank for black sandshell, mucket, and hickorynut (09-Jan-12)	13	224

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 1 AEH-11-PSUED0-01

sps

Random assignment of mussel species to block

х

≤ ¹2 •

block

0bs

File Folder 14A Book 1 p. 4

1	1	0.93721	Block 1	Pocketbook
2	2	0.64024	Block 2	Higgins Eye
з	3	0.95216	Block 3	Fatmucket
-	_		,	~~

blocka

AEH-11-PSEUDO-01

Item No. 1

1

PROOFED BY 5/14/12 Initials: 7MS Date: 5/14/12 REVIEWED BY Initiala: Date:

Page / of

mM Analysis performed by M. Gaikowski SAS version 9.2 08:56 10MAY11

```
* Study Number : AEH-11-PSUED0-01
* Study Director: Jim Luoma
* date created : 22Apr11 - MPG MM
               _____ (Date:____)
* Verified by:
                                                   page ____ of __
* Random allocation of mussel species to block.sas
*************
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
/*Random assignment of mussel species to block*/
data sps;
do block = 1 to 3 by 1;
  x = ranuni(-1);
  output;
 end;
run;
proc sort data≃sps;
by x;
run;
data block; set sps;
if block = 1 then blocka = 'Block 1';
if block = 2 then blocka = 'Block 2';
if block = 3 then blocka = 'Block 3'; run;
data assign_sps; set block;
if _n = 1 then sps = 'Higgins Eye';
 if _n_ = 2 then sps = 'Pocketbook';
  if _n_ = 3 then sps = 'Fatmucket';
 run;
proc sort data=assign_sps;
by block;
run;
proc print data= assign_sps;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUEDO-01';
title3 h=1 'Random assignment of mussel species to block';
run;
```

2

•

Page 2 of

· · ·

```
127 * date created : 22Apr11 - MPG
128 * Verified by: _____ (Date:____
                                          )
                                                              page ____ of ____
129 * Random allocation of mussel species to block.sas
    ************************
130
131 DV 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
                                                                              AEH-11-PSEUDO-01
132
133
    FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' & SYSVER & SYSTIME & SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
134
     options /*1s=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
135
136
137
     /*Random assignment of mussel species to block*/
138
139
    data sps;
140
     do block = 1 \text{ to } 3 \text{ by } 1;
141
       x = ranuni(-1);
142
       output;
143
     end:
144
    run;
NOTE: The data set WORK.SPS has 3 observations and 2 variables.
NOTE: DATA statement used (Total process time):
     real time
                         0.00 seconds
      cpu time
                         0.00 seconds
145 proc sort data=sps;
146 by x;
147 run;
NOTE: There were 3 observations read from the data set WORK.SPS.
NOTE: The data set WORK.SPS has 3 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
      real time
                         0.00 seconds
                         0.00 seconds
     cpu time
148 data block; set sps;
149 if block = 1 then blocka = 'Block 1';
150 if block = 2 then blocka = 'Block 2';
151 if block = 3 then blocka = 'Block 3'; run;
NOTE: There were 3 observations read from the data set WORK.SPS.
NOTE: The data set WORK.BLOCK has 3 observations and 3 variables.
NOTE: DATA statement used (Total process time):
     real tíme
                        0.00 seconds
     opu time
                      . 0.00 seconds
152
    data assign_sps; set block;
153
     if _n_ = 1 then sps = 'Higgins Eye';
      if _n = 2 then sps = 'Pocketbook';
154
155
       if _n_ = 3 then sps = 'Fatmucket';
156
     run;
                                                                       Page 3_ 67
NOTE: There were 3 observations read from the data set WORK.BLOCK.
NOTE: The data set WORK.ASSIGN_SPS has 3 observations and 4 variables,
```

2

	(Total process time): 0.00 seconds 0.00 seconds	AEH-11-PSEUDO-01
157 proc sort data=assi 158 by block; 159 run;	.gn_sps;	
NOTE: There were 3 observ NOTE: The data set WORK A NOTE: PROCEDURE SORT used real time cpu time		28. 3.
161! mussel species'; 162 títle2 h=1.5 'AEH-11	of Psuedomonas fluorescens (Pf-CL145A) to gl	lochídia from seven unionid
NOTE: PROCEDURE PRINT use	vations read from the data set WORK.ASSIGN_SP ed (Total process time): 0.00 seconds 0.00 seconds	PS.

.

File Folder Ma

BOOFED BY Initials: 7ms Date : 5/14/12 REVIEWED BY

Page Lot 1

Mrb 10 May 11

Study Number : AEH-11-PSUED0-01 AEH-11-PSEUDO-01 Study Director: Jim Luoma * * date created : 140ct11 - MPG MMT * Verified by: _____ (Date:____ _) page * Random allocation of mussel species to block.sas Item No. ð DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE; options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2; /*Random assignment of mussel species to block*/ File Folder 14A Book 1 p. 21-22 data sps; do block = 1 to 2 by 1;x = ranuni(-1); output; end; run; proc sort data=sps; by x; run; data block; set sps; if block = 1 then blocka = 'Block 1'; if block = 2 then blocka = 'Block 3'; run; /*Note: only two mussel species tested therefore Block data assign_sps; set block; if _n_ = 1 then sps = 'Washboard'; if _n_ = 2 then sps = 'Fatmucket'; run: proc sort data=assign_sps; by block; run; proc print data= assign_sps; title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel title2 h=1.5 'AEH-11-PSUEDO-01'; title3 h=1 'Random assignment of mussel species to block'; run;

PROOFED BY Initials: The Date : 5/14/12 REVIEWED BY Initialer Date!

Page 1_of

```
* date created : 140ct11 - MPG
4
    ×
5
       Verified by: _____ (Date:____
                                        __)
                                                            page ____ of ____
    * Random allocation of mussel species to block.sas
6
7
       DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
8
                                                                            AEH-11-PSEUDO-01
9
10
    FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
11
12
    options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
13
14
    /*Random assignment of mussel species to block*/
15
16
    data sps;
     do block = 1 to 2 by 1;
17
18
       x = ranuni(-1);
19
       output;
20
     end ;
21
    run;
NOTE: The data set WORK.SPS has 2 observations and 2 variables.
NOTE: DATA statement used (Total process time):
     real time
                        0.36 seconds
     cpu time
                        0.09 seconds
22 proc sort data=sps;
23
     by x;
24
    run;
NOTE: There were 2 observations read from the data set WORK.SPS.
NOTE: The data set WORK.SPS has 2 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
                        0.05 seconds
     real time
                        0.03 seconds
     cpu time
25 data block; set sps;
26 if block = 1 then blocka = 'Block 1';
27
    if block = 2 then blocka = 'Block 3'; run;
NOTE: There were 2 observations read from the data set WORK.SPS.
NOTE: The data set WORK.BLOCK has 2 observations and 3 variables.
NOTE: DATA statement used (Total process time):
     real time
                        0.01 seconds
                        0.01 seconds
     cpu time
27 1
                                              /*Note: only two mussel species tested therefore
27 1 Block 2 was not used. MPG Oct 14, 2011*/
28 data assign_sps; set block;
    if _n_ = 1 then sps = 'Washboard';
29
      if _n_ = 2 then sps = 'Fatmucket';
30
31
     run;
NOTE: There were 2 observations read from the data set WORK, BLOCK.
NOTE: The data set WORK.ASSIGN SPS has 2 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                        0.01 seconds
     opu time
                        0.03 seconds
```

```
Pope & ef 4
```

32 proc sort data=assign_sps; AEH-11-PSEUDO-01 33 by block; 34 run; NOTE: There were 2 observations read from the data set WORK.ASSIGN_SPS. NOTE: The data set WORK.ASSIGN_SPS has 2 observations and 4 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.01 seconds 0.01 seconds cpu time 35 proc print data= assign_sps; 36 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid 36 ! mussel species'; 37 title2 h=1.5 'AEH-11-PSUEDO-01'; 38 title3 h=1 'Random assignment of mussel species to block'; 39 run; NOTE: There were 2 observations read from the data set WORK.ASSIGN_SPS. NOTE: PROCEDURE PRINT used (Total process time): 0.33 seconds real time

0.06 seconds

cpu time

Page 3 of 3

Effects of Psuedomonas fluorescens (Pf-CL:45A) to glochidia from seven unionid mussel species (AEH-11-PSUEDO-01 Random assignment of mussel species to block

Obs block х blocka sps AEH-11-PSEUDO-01 Washboard Fatmucket () File Folder 14A 1 1 0.75861 Block 1 2 0.78587 2 Block 3

Ospecies changed to plain pocketbook due to availability. 10-18-11 KLW

PROOFED BY Initials: 7/15 Date :5/14/12 REVIEWED BY Initials: 2010 Date: 1

Page 4 of 4

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11 MML

FIECES - FSUEDOMONIAS FINORESCENS (FI-CE145A) to grounidia from seven unionid musser species EH-11-PSUED0-01

sps

and/om assignment of mussel species to block ${\bf J}{\bf r}-$

х

bs

block

File folder 14A Lab Nokbook 1/p.30-31

1	1	0.03703	Block 1	Black Sandshell
2	2	0.53285	Block 2	Mucket
3	3	0.18011	Block 3	Hickory Nut

blocka

Item No. 3

٦

È

AEH-11-PSEUDO-01

PROOFED BY 3/14/12 Initials: 2ms Date 3/14/12 REVIEWED BY

Pero Let 5

50nalysis performed by J. Luoma SAS version 9.2 10:50 09JAN12

```
Study Number : AEH-11-PSUEDO-01
 Study Director: Jim Luoma
 date created : 09Jan12 - JAL
 Verified by: _____ (Date:_____
                                )
                                                  page ____ of __
 Random allocation of mussel species to block.sas
AEH-11-PSEUDO-01
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
*Random assignment of mussel species to block*/
ata sps;
do block = 1 to 3 by 1;
 x = ranuni(-1);
 output;
end;
un;
roc sort data=sps;
by x;
un;
ata block; set sps;
f block = 1 then blocka = 'Block 1';
f block = 2 then blocka = 'Block 2';
f block = 3 then blocka = 'Block 3'; run;
ata assign sps; set block;
if n = 1 then sps = 'Black Sandshell';
if _n_ = 2 then sps = 'Hickory Nut';
 if _n_ = 3 then sps = 'Mucket';
run;
proc sort data=assign_sps;
by block;
un;
roc print data= assign_sps;
itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel spec
itle2 h=1.5 'AEH-11-PSUED0-01';
itle3 h=1 'Random assignment of mussel species to block';
un;
Study Number : AEH-11-PSUEDO-01
 Study Director: Jim Luoma
 date created : 09Jan12 - JAL
 Verified by:
                _____ (Date:____
                                _)
                                                  page ____ of ____
 Random allocation of mussel species to block.sas
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
                                             Page 2 of 5
*Random assignment of mussel species to block*/
```

```
ata sps;
                                                                                            ٩.
do block = 1 to 3 by 1;
 x = ranuni(-1);
 output;
end;
                                                                     AEH-11-PSEUDO-01
un;
roc sort data=sps;
by x;
un;
ata block; set sps;
f block = 1 then blocka = 'Block 1';
f block = 2 then blocka = 'Block 2';
f block = 3 then blocka = 'Block 3'; run;
ata assign_sps; set block;
if _n_ = 1 then sps = 'Black-Sandshell';
if _n_ = 2 then sps = 'Hickory Nut';
 if _n_ = 3 then sps = 'Mucket';
run;
proc sort data=assign_sps;
by block;
un;
roc print data= assign_sps;
itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel spec
itle2 h=1.5 'AEH-11-PSUEDO-01';
itle3 h=1 'Random assignment of mussel species to block';
un;
```

Poge 3 of 5

```
m date created : 090an12 - 0AL
b
                                                           page ____ of ____
   *
      Verified by: _____ (Date:____
7
                                       _)
   * Random allocation of mussel species to block.sas
8
   ***********
9
                                                                          AEH-11-PSEUDO-01
  DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
0
1
   FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
2
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
З
   options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
4
5
6
  /*Random assignment of mussel species to block*/
7
8 data sps;
9
    do block = 1 \text{ to } 3 \text{ by } 1;
00
     x = ranuni(-1);
01
      output;
02 end;
03 run;
OTE: The data set WORK.SPS has 3 observations and 2 variables.
OTE: DATA statement used (Total process time):
                      0.01 seconds
    real time
                       0.01 seconds
    cpu time
04 proc sort data=sps;
05 by x;
06 run;
OTE: There were 3 observations read from the data set WORK.SPS.
OTE: The data set WORK.SPS has 3 observations and 2 variables.
OTE: PROCEDURE SORT used (Total process time):
    real time 0.01 seconds
    cpu time
                       0.01 seconds
07 data block; set sps;
08 if block = 1 then blocka = 'Block 1';
09 if block = 2 then blocka = 'Block 2';
10 if block = 3 then blocka = 'Block 3'; run;
DTE: There were 3 observations read from the data set WORK.SPS,
OTE: The data set WORK.BLOCK has 3 observations and 3 variables.
OTE: DATA statement used (Total process time):
    real time
                       0.01 seconds
    cpu time
                       0.01 seconds
11 data assign_sps; set block;
   if _n_ = 1 then sps = 'Black Sandshell';
12
13
     if _n_ = 2 then sps = 'Hickory Nut';
                                             Page 4 of S
14
     if _n_ = 3 then sps = 'Mucket';
15
    run;
```

DTE: There were 3 observations read from the data set WORK.BLOCK.

	The data set WORK.ASSIGN_SPS has 3 observations and 4 variables. DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds	۲	*, •
		AEH-11-PSEUDO-01	
16 17 18	proc sort data=assign_sps; by block; run;	AEH-11-PSEUDO-01 File Folder 141	4
OTE:	There were 3 observations read from the data set WORK.ASSIGN_SPS. The data set WORK.ASSIGN_SPS has 3 observations and 4 variables. PROCEDURE SORT used (Total process time): real time 0.01 seconds cpu time 0.01 seconds		
20 20! 21	proc print data= assign_sps; title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to gloch mussel species'; title2 h=1.5 'AEH-11-PSUEDO-01'; title3 h=1 'Random assignment of mussel species to block'; run;	hidia from seven unionid	
	There were 3 observations read from the data set WORK.ASSIGN_SPS, PROCEDURE PRINT used (Total process time): real time 0.00 seconds cpu time 0.00 seconds		

PROOFED BY Initials: <u>2005</u> Date 15/14/12 REVIEWED BY Initials: Date!

-

Page _5 cl _5

JA- 1-9-12

Random	assignm	ent of	glochidi	a to test 1.	tanks			while over
Mussel	species	: Plain	pocketb	ook			AEH-11-PSEUDO	and white over the
Obs	round	row	tank	×	_row_	tankn		0-01 Stant a: \$3 am wigner stant
4	1	1	1	0 01970	٨	1 4 1	¥	and when
1 2	1	2	3	0.01879 0.02945	A B	1A1 1B3	- 1-	
2	י 1	1	2	0.02945		1A2		PLM 12MAYL
4	1	1	3	0.21417	A A	1A2		
+ 5	1	3	2	0.38756	c	102		
5 6	1	2	4	0.40940	В	162 184 ·		File Folder 1415
7	1	3	4	0,48443	C	104		
8	1	3	-7 1	0.52590	c	104		File Folder 14B Book 1 p.4
9	1	3	5	0.56059	c	105		1
10	1	2	5	0,58232	В	185		
11 -	1	3	3	0.74320	c	103		CONTRACTOR AND AND A CONTRACTOR AND A CONT
12	1	1	6	0,77304	A	1A6	۲.	Item No.
13	1	2	1	0.80460	B	1B1		
14	1	2	2	0,80583	B	182		
15	1	2	6	0.85455	В	186		
16	1	1	5	0.97248	A	1A5		\ \
17	i	3	6	0.99067	c	106		
18	1	1	4	0.99498	Ă	1A4		
19	2	2	1	0.01131	В	1B1	<u> </u>	
20	2	3	6	0.04127	С	106		
21	2	1	2	0.05369	Ā	1A2		
22	2	2	4	0.27941	В	184		
23	2	1	з	0.29343	А	1A3		
24	2	1	4	0.36830	А	1A4,	¥	
25	2	3	2	0.39506	C	102		
26	2	3	1	0.43877	C	101		
27	2	2	2	0.55963	В	1B2		
28	2	2	з	0.58457	В	1B3		
29	2	2	5	0.63270	В	1B5		
30	2	1	6	0.69204	А	1A6	¥	
31	2	1	1	0.74570	Α	1A1	v	
32	2	з	З	0.74910	С	103		
33	2	2	6	0.77992	В	1B6		
34	2	3	4	0.85247	C	104		
35	2	3	5	0.87033	C	105	۰.	
36	2	1	5	0.98962	А	1A5	*	
37	3	3	6	0.02285	C	106		
38	3	2	4	0.10895	В	184		
39	3	3	1	0.17771	c	101		
40	3	1	3	0.18393	A	1A3		
41	3	1	6	0.29164	A	1A6		
42	3	2	2	0.38015	В	1B2	¥	PROOFED BY
43	3	2	5	0.59635	В	185	ł	PROOFED BY S/19/12
44	3	1	5	0.60414	A	1A5		REVIEWED BY
45 48	3	2	3	0.62901	В	1B3	9	miliais,
46	3	1 2	2	0,64482	A	1A2	~	eransemitika
47	3 3	2	1 5	0.65972	B C	1B1		
48			W	0.66020 M		105		
Analysi	s perfo.	rmed by	M. Gáik	owski SAS v	ersion 9	.2 07:41	1 12MAY11	* Sample for distribution alignet 5-12-11 Jan
					Bar	o of .	20	* Sample for
						an Alaysta an a Galantina		1 1 1 1 1 4
								atistichnt on a right
								e har al

ς.

.

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 2 AEH-11-PSUED0-01

Random assignment of glochidia to test tanks Mussel species: Plain pocketbook

. ,

add to
added to
C Ma
of The
sed.
clarification
ms 5/14/12
~

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species – 3 AEH-11-PSUED0-01 Random assignment of glochidia to test tanks

Mussel species: Plain pocketbook

.

Obs	round	LOM	tank	×	row_	tankn	AEH-11-PSEUDO-01
97	6	3	2	0.29738	С	102	
98	6	1	5	0.40275	А	1A5	
99	ô	1	6	0,43727	А	1A6	
100	6	3	з	0.48861	C	103	
101	6	2	2	0,50353	В	182	
102	6	з	6	0,56958	С	106	
103	6	2	1	0.62141	В	1B1	
104	6	2	3	0.76177	8	183	
105	6	1	4	0,89170	А	1A4	
106	6	3	1	0.89421	C	1C1	
107	6	2	5	0,94943	В	1B5	
108	6	3	4	0.95587	С	1C4	
109	7	1	6	0.01753	А	1A6	
110	7	1	3	0.05265	А	1A3	
111	7	3	1	0,06021	С	101	
112	7	2	3	0.13135	В	1B3	
113	7	1	4	0,15031	A	1A4	
114	7	3	2	0.16166	С	102	
115	7	1	2	0.17852	A	1A2	
116	7	1	1	0.18945	Α	1A1	
117	7	1	5	0.21711	Α	1A5	
118	7	2	2	0.30167	в	1B2	
119	7	3	6	0.34314	С	106	
120	7	2	6	0.48469	В	1B6	
121	7	3	4	0.75785	С	104	
122	7	3	3	0.76057	С	103	
123	7	3	5	0.79406	C	105	
124	7	2	4	0.81814	В	1B4	
125	7	2	1	0.84270	В	1B1	
126	7	2	5	0.97628	B	185	
127	8	3	4	0.01800	C	104	
128	8	1	3	0.05110	А	1A3	
129	8	1	4	0.06923	A	1A4	
130	8	1	2	0.08503	A	1A2	
131	8	3	5	0.14368	C	105	
132	8	1	6	0.14720	A	1A6	
133	8	1	5	0.18610	А	1A5	
134	8	3	6	0.31005	C	106	
135	8	з	2	0.47913	C	102	
136	8	2	i	0.55774	В	1 B1	
137	8	2	6	0.61696	В	186	
138	8	2	5	0.63578	В	1B5	
139	8	з	1	0.75157	С	101	
140	8	з	3	0.76715	C	103	
141	8	2	2	0.77851	В	1B2	
142	8	2	4	0.78177	8	1B4	
143	8	2	3	0.80188	В	1B3	
144	8	1	1	0.83057	Α	1A1	

Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11

Page 3 of 20

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 4 AEH-11-PSUEDO-01 Random assignment of glochidia to test tanks

Mussel species: Plain pocketbook

,

0bs	round	row	tank	x	_row_	tankn
145	9	3	1	0.00567	C	1C1
146	9	1	4	0.04799	А	1A4
147	9	3	4	0.09070	C	1C4
148	9	1	2	0.13436	Α	1A2
149	9	1	5	0.17031	Α	1A5
150	9	2	2	0.18916	В	1B2
151	9	1	з	0.28699	Α	1A3
152	9	з	5	0.41896	C	105
153	9	2	6	0.45724	в	186
154	9	1	1	0.47143	А	1A1
155	9	з	3	0.50109	С	103
156	9	1	6	0.51486	Α	1A6
157	9	2	3	0.53944	В	1B3
158	9	2	5	0.62377	В	1B5
159	9	з	2	0.63384	С	102
160	9	3	6	0.91619	С	106
161	9	2	4	0.97574	В	1B4
162	9	2	1	0.98193	В	1B1
163	10	1	5	0.13894	А	1A5
164	10	з	1	0.16112	C	101
165	10	з	5	0.18016	C	105
166	10	2	1	0.21049	в	1B1
167	10	1	4	0.28226	A	1A4
168	10	,3	4	0.28484	С	104
169	10	2	5	0.39719	В	1B5
170	10	2	4	0.45883	В	1B4
171	10	1	2	0.47575	А	1A2
172	10	2	6	0.55730	В	1B6
173	10	1	1	0.71916	А	1A1
174	10	2	3	0.75737	В	1B3
175	10	з	3	0.80742	C	103
176	10	з	6	0.84725	С	106
177	10	1	6	0.86038	A	1A6
178	10	2	2	0.86791	В	1B2
179	10	3	2	0.95113	C	102
180	10	1	з	0.96901	А	1A3

Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11

Page Lot 200

AEH-11-PSEUDO-01

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 5 AEH-11-PSUEDO-01

Random assignment of glochidia to test tank Mussel species: Higgins eye

.

.

							AEH-11-PSEUDO-01	
os	round	row	tank	x	_row_	tankn		PUM Lamay
1	1	2	5	0.00353	в	2B5		
2	1	3	1	0.01828	С	201		
3	1	3	з	0.06547	С	203		
4	1	1	1	0.09979	А	2A1		
5	1	2	2	0.11238	В	282		
6	1	1	6	0,27072	А	2A6	¥	
7	1	2	1	0.28549	В	281	×	
8	1	3	2	0.30041	c	202		
9	1	3	6	0.34286	č	206		
10	1	2	3	0.44640	B	2B3		
11	1	2	6	0.54274	В	286		
12	1	2	4	0,54557	В	284	**	
	1	1	2	0.59140	A	2A2	¥	
13								
14	1	1	4	0.63600	A	2A4		
15	1	1	3	0.65528	A	2A3		
16	1	1	5	0.65562	A	2A5		
17	1	3	5	0.68469	C	205	,	
18	1	3	4	0.88493	C	204		
19	2	3	6	0.09555	С	206	,	
20	2	2	2	0.10853	В	282		
21	2	2	1	0. 1 7714	В	2B1		
2 2	2	з	1	0.25215	С	201		
23	2	2	6	0.32275	В	286		
24	2	з	2	0.33037	С	202	*	
25	2	з	3	0.35151	C	203	•	
26	2	1	1	0.43424	A	2A1		
27	2	2	З	0.47595	В	283		
28	2	1	6	0.47888	Α	2A6		
29	2	1	2	0.54611	Α	2A2		
30	2	з	4	0.66566	С	204		
31	2	2	5	0.73720	В	285		
32	2	1	4	0,79288	А	2A4		
33	2	1	5	0.82948	А	2A5		
34	2	3	5	0.85988	с	205		
35	2	2	4	0.91676	В	2B4		
36	2	1	3	0.97926	А	2A3	.f.,	
37	3	3	3	0.00275	С	203	*	
38	3	1	5	0.02144	Ă	2A5		
39	3	1	6	0.08661	A	2A6		
40	3	1	4	0.11286	A	2A4		
41	3	1	1	0,19395	A	2A1		
42	3	2	5	0.19567	В	285	¥	
43	3	3	4	0.36903	c	203		
43 44	3	1	2	0.37635	A	204 2A2		
		2	3	0.37635	B	2A2 2B3		
45	3							
46	3	3	1	0.41669	C	201		
47	з	3 2	6	0.44630	С	206		

Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11

Page __ 612

<u>.</u>

X Sampe for Distribution 5-12-11 KLW

Effects of Psuedomonas fluorescens (Pf-GL145A) to glochidia from seven unionid mussel species 6 AEH-11-PSUED0-01 Random assignment of glochidia to test tank

AEH-11-PSEUDO-01

2

Mussel species: Higgins eye

.

τ.

							AEH-11-PSEUDO-01
Obs	round	row	tank	x	_row_	tankn	
49	3	1	3	0.50721	А	2A3	
50	3	3	5	0.60580	c	205	
51	3	2	6	0.69776	З	2B6	
52	3	2	4	0,72794	в	2B 4	
53	3	2	1	0.88609	В	2B1	
54	3	3	2	0.93325	C	2 <u>02</u>	¥-
55	4	з	5	0.11301	С	205	
56	4	2	1	0.21527	В	2B1	
57	4	2	5	0.27124	B	2B5	
58	4	1	1	0.38224 0.41408	A C	2A1 2C1	
59 60	4 4	3 1	5	0.41408	A	201 2A5_	¥
60 61	4	3	2	0.46886	ĉ	202	×
62	4	2	3	0.51095	B	2B3	
63	4	3	3	0.54719	c	203	
64	4	2	2	0.60320	в	2B2	
65	4	1	4	0.69545	Α	2A4	
66	4	2	4	0.69847	В	2B4 .	¥ć
67	4	2	6	0.73361	В	2 B6	
68	4	3	4	0.73394	С	2C4	
69	4	3	6	0.77816	c	206	
70	4	1	3 2	0.80287 0.82110	A A	2A3 2A2	
71 72	4 4	1 1	6	0.82110	A	2A2 2A6	¥
73	4 5	2	5	0.04537	В	2B5	*
74	5	1	1	0.09335	Ă	2A1	
75	5	1	4	0.12238	A	2A4	
76	5	3	6	0.22538	С	206	
77	5	3	3	0.27257	С	203	
78	5	1	5	0.37465	А	2A5	<u> </u>
79	5	2	1	0.40649	8	2B1	
80	5	3	4	0.46054	с	204	
81	5	1	2	0.47441	A	2A2	
82	5	1 2	3 4	0.55586 0.57846	A B	2A3 2B4	
83 84	5 5	3	5	0,58119	C	204	¥
85	5	2	2	0.61383	B	2B2	
86	5	2	3	0.62711	В	2B3	
87	5	1	6	0.76919	А	2A6	
88	5	2	6	0.77658	В	286	
89	5	з	2	0.78874	С	202	
90	5	3	1	0.98232	С	201	
91	6	3	3	0.01723	С	203	
92	6	3	1	0.06903	C	201	PLM 12MAUI
93	6	2	6	0.19358	В	286	Five rounds of glochidia were added to exposure chambers. Rounds 6-10 of the
94	6	2 1	5 3	0.26894 0.27596	В А	280	exposure chambers. Rounds 6-10 of the
95 96	6 6	3	6	0.29174	c	206	rabdom assignment were not used. skipmentadded for clarification. This 5/14/12
Analy	vsis perfo	ormed by	/ M. Gai}	cowski SAS v	version	9.2 07:4	* Sander algest kellen for defribulen number estudion
							5-1211 Jac
					1	54	

Effects of Psuedomcnas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 7 AEH-11-PSUEDO-01 Random assignment of glochidia to test tank

Mussel species: Higgins eye

. .

2

i.

Obs	round	row	tank	×	_row_	tankn
97	6	1	4	0,33462	A	2A4
98	6	2	1	0.34254	В	2B1
99	6	2	3	0.42686	В	2B3
100	6	1	1	0,43456	А	2A1
101	6	2	2	0.59493	В	2B2
102	6	з	2	0,59626	С	202
103	6	1	6	0,59777	А	2A6
104	6	1	2	0.63322	А	2A2
105	6	3	4	0,76409	С	2C4
106	6	2	4	0.77924	В	2B4
107	6	1	5	0.82305	А	2A5
108	6	з	5	0.91307	С	205
109	7	3	3	0.01123	С	203
110	7	1	2	0.13433	А	2A2
111	7	2	4	0.15831	В	2B4
112	7	2	6	0.28654	В	2B6
113	7	з	2	0.29506	C	202
114	7	2	3	0.33579	В	2B3
115	7	1	6	0.43376	Α	2A6
116	7	з	6	0,48583	С	206
117	7	з	1	0.52022	С	201
118	7	1	5	0.57020	Α	2A5
119	7	1	1	0,57770	Α	2A1
120	7	2	2	0.62832	В	282
121	7	2	5	0.73838	8	285
122	7	2	1	0.79867	В	2B1
123	7	3	4	0,81943	C	204
124	7	1	4	0.84167	А	2A4
125	7	3	5	0.92596	C	205
126	7	1	з	0.99065	Α	2A3
127	8	3	3	0.06761	С	203
128	8	2	3	0.16831	В	2B3
129	8	2	2	0.23416	В	282
130	8	2	5	0.29976	В	2 B 5
131	8	1	1	0.30323	А	2A1
132	8	3	4	0.31483	C	204
133	8	1	4	0.34192	А	2A4
134	8	3	1	0.35878	С	201
135	8	3	5	0.38611	С	205
136	8	1	2	0.39165	Α	2A2
137	8	2	1	0.42688	В	2B1
138	8	3	2	0.43867	С	202
139	8	2	4	0.47883	В	2B4
140	8	1	3	0.58091	А	2A3
141	8	1	6	0.67692	A	2A6
142	8	2	6	0.74573	В	286
143	8	3	6	0.89282	С	206
144	8	1	5	0.91038	A	2A5

Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11

Pogo 7 of 20

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 8 AEH-11-PSUED0-01 Random assignment of glochidia to test tank

Mussel species: Higgins eye

.

,

AEH-11-PSEUDO-01

1

Obs	round	row	tank	x	_row_	tankn
145	9	1	1	0,06975	А	2A1
146	9	2	6	0.08304	В	2 B6
147	9	3	6	0.14826	С	206
148	9	2	4	0.17937	В	2B4
149	9	2	5	0.19933	В	2B5
150	9	1	3	0.36557	Α	2A3
151	9	3	2	0.38197	С	202
152	9	1	4	0.44056	Α	2A4
153	9	2	3	0.53384	В	2B3
154	9	2	1	0,55441	в	2B1
155	9	3	1	0.60235	С	201
156	9	2	2	0,60503	В	282
157	9	1	6	0.62606	А	2A6
158	9	3	4	0,85074	С	204
159	9	3	5	0,85759	C	205
160	9	3	3	0.86157	C	203
161	9	1	2	0.93100	Α	2A2
162	9	1	5	0.96584	Α	2A5
163	10	1	4	0.01688	A	2A4
164	10	3	5	0.05395	С	205
165	10	2	1	0.06399	В	2B1
166	10	3	1	0.08176	С	201
167	10	3	6	0.08998	c	206
168	10	2	2	0.195 34	В	2B2
169	10	2	4	0.32319	В	2B4
170	10	3	4	0.37064	С	204
171	10	1	5	0.47450	A	2A5
172	10	2	6	0.52635	В	286
173	10	1	2	0.59619	А	2A2
174	10	1	3	0.61180	А	2A3
175	10	1	6	0.63640	A	2A6
176	10	1	1	0.70002	A	2A1
177	10	2	3	0.76863	В	2B3
178	10	3	3	0.89173	ç	203
179	10	2	5	0.94232	В	2B5
180	10	3	2	0.97204	C	202

Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11

1 1200 8 0120

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 9 AEH-11-PSUEDO-01 Random assignment of glochidia to test tank

Mussel species: Fatmucket

. .

AEH-11-PSEUDO-01

Ŀ

Obs	round	row	tank	x	_row_	tankn	•
1	1	1	6	0.06425	А	3A6	
2	1	2	4	0.23487	в	3B4	
3	1	3	3	0.28423	С	3C3	
4	1	2	3	0.29083	В	3B3	
5	1	1	3	0.31575	Ā	3A3	
6	1	2	1	0.34859	В	3B1	
7	1	2	2	0.44260	в	3B2	
8	1	3	2	0.46605	C	302	
9	1	2	6	0.50123	в	386	
10	1	3	5	0.58107	c	305	
11	1	1	1	0.61879	Ā	3A1	
12	1	2	5	0.63059	В	385	¥
13	1	3	1	0.68919	č	301	, /**
14	1	1	5	0.69536	Å	3A5	
15	1	1	4	0.71002	A	3A4	
16	1	3	6	0.79854	c	306	
17	1	1	2	0.84196	A	3A2	
18	1	3	4	0.92360	ĉ	3C4	te
19	2	3	3	0.21575	č	303	4
20	2	2	3	0.21897	в	3B3	
20	2	3	5	0.27131	c	305	
22	2	1	5	0.36197	Ă	365 3A5	
23	2	3	2	0.45861	ĉ	302	
23	2	1	6	0.46067	A	3A6	¥
24 25	2	2	6	0.56608	В	386	d.
25	2	1	1	0.56645	A	3A1	
20	2	2	1	0.58251	В	3B1	
28	2	2 1	2	0.74533	A	3A2	
20 29	2	2	5	0.81915	В	385	
29 30	2	3	6	0.82026	C	306	
30 31	2	3	4	0.83029	c	3C0 3C4	
32	2	2	4	0.83100	В	304 3B4	
-33	2	1	4	0.83244	A	3A4	
34	2	3	1	0.87722	ĉ	301	
35	2	2	2	0.89739	B	3B2	
36	2	1	3	0.97844	A	3A3	6
37	3	2	2	0.13149	В	3B2	¥
38	3	1	1	0.14025	A	3A1	
39	3	2	3	0.18648	В	3B3	
40	3	1	2	0.28969	A	3A2	
41	3	2	1	0.31270	В	3B1	
42	3	1	4	0.32951	A	3A4	*
		1					1
43 44	3 3	2	3 6	0.40179 0.40607	A B	3A3 3B6	
45	3	3 2	6 4	0.48170	С В	306	
46	3			0.59046	ь С	3B4	
47	3	3	4	0.71623		304	
48	3	3	5	0.74142	С	305	/
Analy	sis perfo	rmed by	M. Gaik	owski SAS v	ersion 9	.2 07:41	12MAY11

OAD VEISLON 9.2 01:41 12MAY11 FROM 9 09 25 distribution Mander estimation 5-12-H Jan Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 10 AEH-11-PSUEDO-01

Random assignment of glochidia to test tank Mussel species: Fatmucket

AEH-11-PSEUDO-01

							*
Obs	round	row	tank	x	_row_	tankn	
49	3	3	з	0.84026	С	303	
50	3	1	6	0.84108	А	3A6	
51	3	2	5	0.94185	в	3B5	
52	3	1	5	0.94902	Α	3A5	
53	3	З	2	0,95766	с	302	
54	3	3	1	0.97980	с	301	¥
55	4	1	6	0.00485	A	3A6	
56	4	3	2	0.04653	с	302	
57	4	2	6	0.08927	8	3B6	
58	4	1	2	0.26321	А	· 3A2	
59	4	2	4	0,27095	в	384	·
60	4	2	5	0.27927	В	3B5 _	<u> </u>
61	4	3	5	0,35826	C	305	
62	4	3	6	0.43440	Ċ	306	·
63	4	3	1	0.57582	Ċ	301	
64	4	2	2	0.57707	в	3B2	
65	4	1	1	0.65035	Ā	3A1	
66	4	1	3	0.66001	A	3A3,	¥
67	4	3	4	0.73456	C	304	
68	4	2	3	0.75676	В	383	
69		2	1	0.75680	в	3B1	
70		1	4	0.77378	Ā	3A4	
71	4	3	3	0.91226	C	303	
72		1	5	0.98150	A	3A5_	¥
73		1	2	0.02882	А	3A2	
74		3	2	0.08059	С.	302	
75	5	2	1	0.11022	В	3B1	
76		2	з	0.14474	В	3B3	
77		3	з	0.15604	С	303	
78		2	4	0.16623	в	3B4	¥
79	5	3	4	0.25175	С	304	
80	5	2	5	0.32841	в	3B5	
81	5	2	6	0.36155	В	386	
82		1	5	0.41550	А	3A5	
83	5	3	1	0.45032	С	301	
84		1	з	0.48246	А	3A3,	¥
85		t	4	0.56627	А	3A4	
86	5	1	6	0.63987	А	3A6	
87	5	2	2	0.72266	В	382	
88		1	1	0.89897	А	3A1	
89	5	3	6	0.92983	С	306	
90		3	5	0.93030	С	305_	
91	6	2	4	0,03396	B	384	all all shidle were added to
92		3	2	0.05586	С	302	Five rounds of Jours 6-10 of the random
93		3	6	0,22820	С	306	exposure chambers. Louros
94		1	4	0.25609	А	3A4	assignment were nor stationent accor the
95	6	3	4	0.25905	С	304	Five rounds of glochidic were added to exposure chambers. Rounds 6-10 of the rendom assignment were not used, added for clanification. Stationent added for clanification. May 5/14/12
96	6	1.	5	0.27999	A.	3A5	

Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11 Page 10 as 20 + Skingh algust talan for distribution Munder estimation 5-12.11 Jan

158

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 11 AEH-11-PSUEDO-01 . Random assignment of glochidia to test tank Mussel species: Fatmucket

AEH-11-PSEUDO-01

<u>:</u>___

0bs	round	row	tank	×	_row_	tankn
97	6	1	6	0.30692	Α	3 A6
98	6	3	3	0,30840	С	303
99	6	2	6	0.33386	В	3 B6
100	6	2	3	0.41121	в	3B3
101	6	2	2	0.52134	B	3B2
102	6	1	3	0.64758	А	3A3
103	6	3	1	0.70774	С	301
104	6	з	5	0.73370	С	305
105	6	1	1	0.74906	А	3A1
106	6	2	5	0.85655	в	385
107	6	1	2	0.89278	А	3A2
108	6	2	1	0.98807	В	3B1
109	7	3	6	0.01515	С	306
110	7	2	1	0.27756	в	3B1
111	7	3	5	0.28546	С	305
112	7	1	4	0.31072	А	3A4
113	7	3	4	0.33916	С	304
114	7	1	5	0.35827	A	3A5
115	7	1	2	0.46221	A	3A2
116	7	2	3	0.51697	В	3B3
117	7	1	6	0.59115	A	3A6
118	7	2	2	0,60333	В	3B2
119	7	2	5	0.66243	B	3B5
120	7	3	1	0.68544	С	301
121	7	3	2	0,69659	Ċ	302
122	7	2	4	0,87014	в	3B4
123	7	1	3	0.89719	Ā	3A3
124	7	1	1	0,91395	A	3A1
125	7	2	6	0.92644	В	3B6
126	7	3	3	0,96712	c	303
127	8	3	з	0,03720	С	303
128	8	2	3	0.07049	в	383
129	8	3	4	0.17372	Ċ	304
130	8	2	6	0.23243	в	386
131	8	3	6	0.26338	С	306
132	8	1	4	0.27158	Α	3A4
133	8	1	з	0.29892	А	3 A3
134	8	2	2	0,42426	в	3B2
135	B	2	1	0.53568	в	381
136	8	3	2	0,53767	с	3C2
137	8	з	1	0,59074	С	3C1
138	8	1	1	0.65401	Α	3A1
139	8	2	4	0,77251	В	3B4
140	8	1	5	0.81738	Ā	3A5
141	8	1	6	0.87037	A	3A6
142	8	1	2	0.88416	A	3A2
143	8	2	5	0.94410	В	385
144	8	3	5	0.98817	с	305
	-					

.

Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11

inge II et do

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from soven unionid mussel species 12 AEH-11-PSUEDO-01 Random assignment of glochidia to test tank Mussel species: Fatmucket

0bs	round	row	tank	×	row_	tankn
145	9	1	1	0.10991	А	3A1
146	9	2	4	0.13007	В	3B4
147	9	2	З	0,18093	в	3B3
148	9	2	6	0.18945	B	3B6
149	9	1	3	0,19692	Α	3A3
150	9	1	2	0.21057	А	3A2
151	9	3	3	0.27487	C	303
152	9	3	5	0,32850	С	305
153	9	3	1	0.39289	С	301
154	9	з	2	0.40678	С	302
155	9	3	4	0.45710	С	3 C4
156	9	3	6	0.54291	С	306
157	9	i	6	0.61225	Α	3A6
158	9	1	5	0.73560	А	3A5
159	9	2	5	0.75981	В	3B5
160	9	2	1	0.90249	В	3B1
161	9	2	2	0.91701	В	3 B2
162	9	1	4	0.93682	А	3 A4
163	10	3	6	0.03932	C	306
164	10	1	1	0.05556	Α	3A1
165	10	2	5	0.09212	В	3B5
166	10	2	4	0.16615	В	3B4
167	10	1	2	0.43469	A	3A2
168	10	1	4	0.45582	A	3A4
169	10	1	3	0.46757	A	3A3
170	10	2	6	0.56078	В	3B6
171	10	1	5	0.61491	A	3A5
172	10	1	6	0.61818	A	3A6
173	10	3	5	0,67004	С	305
174	10	2	2	0.69138	В	3B2
175	10	2	1	0.76353	В	3B1
176	10	З	3	0.78170	C	303
177	10	3	1	0.90674	C	301
178	10	3	2	0.93409	C	302
179	10	3	4	0.94792	C	304
180	10	2	3	0,99146	В	3B3

MA Analysis performed by M. Gaikowski SAS version 9.2 07:41 12MAY11

P398 12 01 20

AEH-11-PSEUDO-01

```
AEH-11-PSEUDO-01
* Study Number : AEH-11-PSUED0-01
* Study Director: Jim Luoma
* date created : 22Apr11 - MPG
* date revised : 12May11 - MPG MM
                                                   page ____ of _
* Verified by: _____ (Date:____
                                 _)
* Random allocation of glochidia to tank.sas
************
DM 'LOG: CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
/*Random distribution of glochidia to experimental tanks*/
/* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
  round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
/*Mussel species: Plain pocketbook*/
data glochidia;
 do round = 1 to 10 by 1;
 do row = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
  end:
  end;
 end;
run;
data glochidiadist; set glochidia;
if row = 1 then _row_ = 'A';
if row = 2 then _row_ = 'B';
if row = 3 then _row_ = 'C';
 if row = 1 and tank = 1 then tankn = '1A1';
  if row = 1 and tank = 2 then tankn = '1A2';
   if row = 1 and tark = 3 then tankn = '1A3';
   if row = 1 and tank = 4 then tankn = '1A4';
    if row = 1 and tank = 5 then tankn = '1A5';
     if row = 1 and tank = 6 then tanks = '1A6';
 if row = 2 and tank = 1 then tankn = '1B1';
  if row = 2 and tank = 2 then tankn = '1B2';
   if row = 2 and tank = 3 then tankn = '1B3';
   if row = 2 and tank = 4 then tankn = '1B4';
    if row = 2 and tank = 5 then tankn = '185';
     if row = 2 and tank = 6 then tankn = '1B6';
 if row = 3 and tank = 1 then tankn = '101';
  if row = 3 and tank = 2 then tankn = '1C2';
   if row = 3 and tank = 3 then tankn = '1C3';
   if row = 3 and tank = 4 then tankn = '1C4';
     if row = 3 and tank = 5 then tankn = '105';
     if row = 3 and tank = 6 then tankn = '106'; run;
proc sort data= glochidiadist;
 by round x;
 run;
proc print data = glochidiadist;
                                          Pogn 13 at 20
```

```
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUEDO-01';
title3 h=1 'Random assignment of glochidia to test tanks';
title4 h=1 'Mussel species: Plain pocketbook';
run;
/*Mussel species: Higgins eye */
data glochídia;
do round = 1 to 10 by 1;
do row = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
 end;
 end;
 end;
run:
data glochidiadist; set glochidia;
if row = 1 then _row_ = 'A';
if row = 2 then _row_ = 'B';
if row = 3 then _row_ = 'C';
 if row = 1 and tank = 1 then tankn = '2A1';
 if row = 1 and tank = 2 then tankn = '2A2':
  if row = 1 and tank = 3 then tankn = '2A3';
   if row = 1 and tank = 4 then tankn = '2A4';
    if row = 1 and tank = 5 then tankn = '2A5';
     if row = 1 and tank = 6 then tankn = '2A6';
 if row = 2 and tank = 1 then tankn = '2B1';
 if row = 2 and tank = 2 then tankn = '2B2';
  if row = 2 and tank = 3 then tankn = '2B3';
   if row = 2 and tank = 4 then tankn = '2B4';
    if row = 2 and tank = 5 then tankn = '2B5'
     if row = 2 and tank = 6 then tankn = '286';
 if row = 3 and tank = 1 then tankn = '201';
 if row = 3 and tank = 2 then tankn = '2C2';
  if row = 3 and tank = 3 then tankn = '2C3';
   if row = 3 and tank = 4 then tankn = '2C4':
    if row = 3 and tank = 5 then tankn = '205';
     if row = 3 and tank = 6 then tankn = '2C6'; run;
proc sort data= glochidiadist;
by round x;
run;
proc print data = glochidiadist;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUEDO-01':
title3 h=1 'Random assignment of glochidia to test tank';
title4 h=1 'Mussel species: Higgins eye';
run:
/*Mussel species: Fatmucket */
data glochidia;
do round = 1 to 10 by 1;
                                         Pero 11 or 20
 do row = 1 to 3 by 1;
```

5

```
do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
  end;
  end;
end;
run;
data glochidiadist; set glochidia;
if row = 1 then _row_ = 'A';
if row = 2 then _row_ = 'B';
if row = 3 then _row_ = 'C';
if row = 1 and tank = 1 then tankn = '3A1';
  if row = 1 and tank = 2 then tankn = '3A2';
  if row = 1 and tank = 3 then tankn = '3A3';
   if row = 1 and tank = 4 then tankn = '3A4';
    if row = 1 and tank = 5 then tankn = '3A5';
     if row = 1 and tank = 6 then tankn = '3A6';
 if row = 2 and tank = 1 then tankn = '3B1';
 if row = 2 and tank = 2 then tankn = '3B2';
  if row = 2 and tank = 3 then tankn = '3B3';
    if row = 2 and tank = 4 then tankn = '3B4';
    if row = 2 and tank = 5 then tankn = '3B5';
     if row = 2 and tank = 6 then tankn = '3B6';
 if row = 3 and tank = 1 then tankn = '3C1';
  if row = 3 and tank = 2 then tankn = '3C2';
  if row = 3 and tank = 3 then tankn = '3C3';
    if row = 3 and tank = 4 then tankn = '3C4';
    if row = 3 and tank = 5 then tankn = '3C5';
     if row = 3 and tank = 6 then tankn = '306'; run;
proc sort data= glochidiadist;
by round x;
run;
proc print data = glochidiadist;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid musse]
title2 h=1.5 'AEH-11-PSUED0-01';
title3 h=1 'Random assignment of glochidia to test tank';
title4 h=1 'Mussel species: Fatmuckct';
```

run;

Page 15 of 20

```
date revised : 12May11 - MPG
5
                                                                          AEH-11-PSEUDO-01
       Verified by:
                          (Date:
                                                          page
                                                                   of
6
    * Random allocation of glochidia to tank.sas
7
    8
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
9
10
    FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
11
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
12
    options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
13
14
    /*Random distribution of glochidia to experimental tanks*/
15
    /* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
16
17
       round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
18
     19
    **********
19 [
20
    /*Mussel species: Plain pocketbook*/
21
22
    data glochidia;
     do round = 1 to 10 by 1;
23
24
     do row = 1 to 3 by 1;
      do tank = 1 to 6 by 1;
25
       x = ranuni(-1);
26
27
       output;
28
      end;
29
      end:
30
     end;
31
    run;
NOTE: The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
NOTE: DATA statement used (Total process time):
                       0.10 seconds
     real time
     cpu time
                        0.07 seconds
32
    data glochidiadist; set glochidia;
    if row = 1 then row = 'A';
33
    if row = 2 then _row_ = 'B';
34
    if row = 3 then _row_ = 'C';
35
     if row = 1 and tank = 1 then tankn = '1A1';
36
      if row = 1 and tank = 2 then tankn = '1A2';
37
       if row = 1 and tank = 3 then tankn = '1A3';
38
        if row = 1 and tank = 4 then tankn = '1A4';
39
         if row = 1 and tank = 5 then tankn = '1A5';
40
41
          if row = 1 and tank = 6 then tankn = '1A6';
      if row = 2 and tank = 1 then tankn = '1B1';
42
      if row = 2 and tank = 2 then tankn = '1B2';
43
       if row = 2 and tank = 3 then tankn = '183';
44
45
        if row = 2 and tank = 4 then tankn = '1B4';
         if row = 2 and tank = 5 then tankn = '1B5';
46
          if row = 2 and tank = 6 then tankn = '1B6';
47
      if row = 3 and tank = 1 then tankn = '1C1';
48
      if row = 3 and tank = 2 then tankn = '102';
49
       if row = 3 and tank = 3 then tankn = '1C3';
50
        if row = 3 and tank = 4 then tankn = '1C4';
51
         if row = 3 and tank = 5 then tankn = '1C5';
52
                                                      160020
```

```
if row = 3 and tank = 6 then tankn = '106'; run;
53
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIA.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: DATA statement used (Total process time):
                       0.03 seconds
     real time
                        0.01 seconds
     cpu time
54 proc sort data= glochidiadist;
     by round x;
55
56
     run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: PROCEDURE SORT used (Total process time):
                       0.04 seconds
     real time
     cpu time
                        0.03 seconds
57 proc print data = glochidiadist;
    title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
58
58 ! mussel species';
59 title2 h=1.5 'AEH-11-PSUEDO-01';
60 title3 h=1 'Random assignment of glochidia to test tanks';
61 title4 h=1 'Mussel species: Plain pocketbook';
62
    run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: PROCEDURE PRINT used (Total process time):
      real time
                        0.06 seconds
                        0.04 seconds
     cpu time
63
     64
64 | *********/
65
     /*Mussel species: Higgins eye */
66
    data glochidia;
67
68
     do round = 1 to 10 by 1;
     do row = 1 to 3 by 1;
69
70
      do tank = 1 to 6 by 1;
71
       x = ranuni(-1);
72
       output;
73
      end;
74
      end;
75
      end;
76
     run;
NOTE; The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
NOTE: DATA statement used (Total process time):
                        0.00 seconds
      real time
                        0.00 seconds
      opu time
                                                 I Page LZ er do
77 data glochidiadist; set glochidia;
```

```
if row = 1 then _row_ = 'A';
78
    if row = 2 then _row_ = 'B';
79
    if row = 3 then _row_ = 'C';
80
     if row = 1 and tank = 1 then tankn = '2A1';
81
      if row = 1 and tank = 2 then tankn = '2A2';
82
       if row = 1 and tank = 3 then tankn = '2A3';
83
        if row = 1 and tank = 4 then tankn = '2A4';
84
85
         if row = 1 and tank = 5 then tankn = '2A5';
          if row = 1 and tank = 6 then tankn = '2A6';
86
     if row = 2 and tank = 1 then tankn = '2B1';
87
      if row = 2 and tank = 2 then tankn = '2B2';
88
       if row = 2 and tank = 3 then tankn = '2B3':
89
        if row = 2 and tank = 4 then tankn = '284';
90
         if row = 2 and tank = 5 then tankn = '285':
91
          if row = 2 and tank = 6 then tankn = '2B6';
92
      if row = 3 and tank = 1 then tankn = '2C1';
93
      if row = 3 and tank = 2 then tankn = '202';
94
       if row = 3 and tank = 3 then tankn = '2C3';
95
        if row = 3 and tank = 4 then tankn = '2C4';
96
         if row = 3 and tank = 5 then tankn = '2C5';
97
          if row = 3 and tank = 6 then tankn = '206'; run;
98
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIA.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: DATA statement used (Total process time):
      real time
                         0.03 seconds
                         0.03 seconds
      cpu time
99 proc sort data= glochidiadist;
100 by round x;
101 run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: PROCEDURE SORT used (Total process time):
                         0.01 seconds
      real time
                         0.01 seconds
      opu time
102 proc print data = glochidiadist;
103 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
103! mussel species';
104 title2 h=1.5 'AEH-11-PSUEDO-01';
105 title3 h=1 'Random assignment of glochidia to test tank';
106 title4 h=1 'Mussel species: Higgins eye';
107 run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: PROCEDURE PRINT used (Total process time):
                       0.01 seconds
      real time
                         0.01 seconds
      cou time
108
******
                                                  1 Poor 18 of 20-21
109! *********/
```

```
110
                                                                              AEH-11-PSEUDO-01
111 /*Mussel species: Fatmucket */
112 data glochidia;
     do round = 1 to 10 by 1;
113
114
     do row = 1 to 3 by 1;
      do tank = 1 to 6 by 1;
115
       x = ranuni(-1);
116
117
        output;
118
       end;
119
      end;
     end;
120
121
    run;
NOTE: The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
NOTE: DATA statement used (Total process time):
      real time
                          0.01 seconds
                          0.01 seconds
      opu time
122 data glochidiadist; set glochidia;
123 if row = 1 then _row_ = 'A';
124 if row = 2 then _row_ = 'B';
125 if row = 3 then _row_ = 'C';
     if row = 1 and tank = 1 then tankn = '3A1';
126
      if row = 1 and tank = 2 then tankn = '3A2';
127
        if row = 1 and tank = 3 then tankn = '3A3';
128
        if row = 1 and tank = 4 then tankn = '3A4';
129
         if row = 1 and tank = 5 then tankn = '3A5';
130
           if row = 1 and tank = 6 then tankn = '3A6';
131
      if row = 2 and tank = 1 then tankn = '3B1';
132
       if row = 2 and tank = 2 then tankn = '382';
133
        if row = 2 and tank = 3 then tankn = '3B3';
134
        if row = 2 and tank = 4 then tankn = '3B4';
135
136
          if row = 2 and tank = 5 then tankn = '3B5';
          if row = 2 and tank = 6 then tankn = '386';
137
      if row = 3 and tank = 1 then tankn = '301';
138
       if row = 3 and tank = 2 then tankn = '3C2';
139
        if row = 3 and tank = 3 then tankn = '3C3';
140
         if row = 3 and tank = 4 then tankn = '3C4';
141
          if row = 3 and tank = 5 then tankn = '3C5';
142
           if row = 3 and tank = 6 then tankn = '306'; run;
143
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIA.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: DATA statement used (Total process time):
      real time
                          0.01 seconds
      opu time
                          0.01 seconds
144 proc sort data= glochidiadist;
145 by round x;
146 run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: PROCEDURE SORT used (Total process time):
                                                      Prices 19 of 200
      real time
                          0.00 seconds
```

cpu time

1

0.00 seconds

AEH-11-PSEUDO-01

2

147 proc print data = glochidiadist; 148 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid 148! mussel species'; 149 title2 h=1.5 'AEH-11-PSUEDO-01'; 150 title3 h=1 'Random assignment of glochidia to test tank'; 151 title4 h=1 'Mussel species: Fatmucket'; 152 run;

NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST. NOTE: PROCEDURE PRINT used (Total process time):

0.01 seconds

0.01 seconds

real time cpu time

MAG 12 May 11

File Folder 14B

BROOFED BY Initials: 7ms Date 5/14/12 REVIEWED BY

For 20 al 20

```
* Study Number : AEH-11-PSUEDO-01
                                                                       AEH-11-PSEUDO-01
  Study Director: Jim Luoma
  date created : 140ct11 - MPG MML
* Verified by: _____(Date:__
                                                    page ____ of __
                                  )
* Random allocation of glochidia to tank.sas
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2:
/*Random distribution of glochidia to experimental tanks*/
/* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
  round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
/*Mussel species: Washboard*/
data glochidia;
                                                  File Folder 14B
Book 1 p. 21-22
 do round = 1 to 10 by 1;
 do row = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
  end;
 end:
                                                             Item No. 2
 end;
run:
data glochidiadist; set glochidia;
if row = 1 then _row_ = 'A';
if row = 2 then _row_ = 'B';
if row = 3 then row_ = 'C';
 if row = 1 and tank = 1 then tankn = '1A1';
 if row = 1 and tank = 2 then tankn = '1A2';
  if row = 1 and tank = 3 then tankn = '1A3';
   if row = 1 and tank = 4 then tankn = '1A4';
    if row = 1 and tank = 5 then tankn = ^{1}A5^{1};
     if row = 1 and tank = 6 then tankn = '1A6';
 if row = 2 and tank = 1 then tankn = '1B1';
 if row = 2 and tank = 2 then tankn = '1B2';
  if row = 2 and tank = 3 then tankn = '1B3';
   if row = 2 and tank = 4 then tankn = '1B4';
    if row = 2 and tank = 5 then tankn = '1B6';
     if row = 2 and tank = 6 then tankn = '186';
 if row = 3 and tank = 1 then tankn = 101^{\circ};
 if row = 3 and tank = 2 then tankn = '1C2';
  if row = 3 and tank = 3 then tankn = '1C3';
   if row = 3 and tank = 4 then tankn = '1C4';
                                                             PROOFED BY
Inklais: The Date : 5/14/12
    if row = 3 and tank = 5 then tankn = '105';
     if row = 3 and tank = 6 then tankn = '106'; run;
                                                                   REVIEWED BY
proc sort data= glochidiadist;
                                                             haitiels Datel
by round x;
run:
proc print data = glochidiadist;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUEDO-01';
title3 h=1 'Random assignment of glochidia to test tanks';
                                                        Same / 13
title4 h=1 'Mussel species: Washboard';
run;
```

```
/*Mussel species: Fatmucket */
data glochidia;
 do round = 1 to 10 by 1;
                                                                     AEH-11-PSEUDO-01
 do row = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
 end;
 end;
 end;
run:
data glochidiadist; set glochidia;
if row = 1 then _row_ = 'A';
if row = 2 then row = 'B';
if row = 3 then row = 'C';
 if row = 1 and tank = 1 then tankn = '3A1';
 if row = 1 and tank = 2 then tankn = '3A2';
   if row = 1 and tank = 3 then tankn = '3A3';
   if row = 1 and tank = 4 then tankn = '3A4';
    if row = 1 and tank = 5 then tankn = '3A5';
     if row = 1 and tank = 6 then tankn = '3A6';
 if row = 2 and tank = 1 then tankn = '3B1';
 if row = 2 and tank = 2 then tankn = '3B2';
  if row = 2 and tank = 3 then tankn = '3B3';
   if row = 2 and tank = 4 then tankn = '3B4';
    if row = 2 and tank = 5 then tankn = '3B5';
     if row = 2 and tank = 6 then tankn = '3B6';
 if row = 3 and tank = 1 then tankp = '3C1';
 if row = 3 and tank = 2 then tankn = '3C2';
  if row = 3 and tank = 3 then tankn = '3C3';
   if row = 3 and tank = 4 then tankn = '3C4';
    if row = 3 and tank = 5 then tankn = '3C5';
     if row = 3 and tank = 6 then tankn = '3C6'; run;
proc sort data= glochidiadist;
by round x;
run;
proc print data = glochidiadist;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUEDO-01';
title3 h=1 'Random assignment of glochidia to test tank';
title4 h=1 'Mussel species: Fatmucket';
run;
```

Page 2 of 13

```
149 * date created : 14Oct11 - MPG
150 * Verified by: _____ (Date:____
                                        )
                                                           page ____ of ___
151
    * Random allocation of glochidia to tank.sas
153 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
                                                                           AEH-11-PSEUDO-01
154
155 FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
156
    options /*1s=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
157
158
159
    /*Random distribution of glochidia to experimental tanks*/
160
    /* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
161
       round = distribution rounds i to 2, place one aliquot of glochidia per tank per round */
162
    ſ×≈★☆****
163
163! *********/
164
165
    /*Mussel species: Washboard*/
    data glochidia;
166
167
     do round = 1 to 10 by 1;
168
     do row = 1 to 3 by 1;
     do tank = 1 to 6 by 1;
169
170
      x = ranuni(-1);
171
       output;
172
      end:
173
      end;
174
     end:
175
    run;
NOTE: The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                       0.00 seconds
     cpu time
                        0.01 seconds
176 data glochidiadist; set glochidia;
177 if row = 1 then _row_ = 'A';
178  if row = 2 then _row_ = 'B';
179 if row = 3 then _row_ = 'C';
     if row = 1 and tank = 1 then tankn = '1A1';
180
181
      if row = 1 and tank = 2 then tankn = '1A2';
182
       if row = 1 and tank = 3 then tankn = (1A3):
183
        if row = 1 and tank = 4 then tankn = '1A4';
         if row = 1 and tank = 5 then tankn = '1A5';
184
         if row = 1 and tank = 6 then tankn = '1A6';
185
     if row = 2 and tank = 1 then tankn = '1B1':
186
187
      if row = 2 and tank = 2 then tankn = '1B2';
       if row = 2 and tank = 3 then tankn = '1B3';
188
189
        if row = 2 and tank = 4 then tankn = '1B4';
        if row = 2 and tank = 5 then tankn = '185';
190
         if row = 2 and tank = 6 then tankn = '1B6';
191
     if row = 3 and tank = 1 then tankn = '1C1';
192
      if row = 3 and tank = 2 then tankn = '102';
193
       if row = 3 and tank = 3 then tankn = '1C3';
194
195
        if row = 3 and tank = 4 then tankn = '1C4';
196
         if row = 3 and tank = 5 then tankn = '1C5';
197
          if row = 3 and tank = 6 then tankn = '106'; run;
```

```
NOTE: There were 180 observations read from the data set WORK.QLOCHIDIA.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
```

Page 3 of 13

```
NOTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
                                                                         AEH-11-PSEUDO-01
     cpu time
                        0.03 seconds
198 proc sort data= glochidiadist;
199 by round x;
200
    run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: PROCEDURE SORT used (Total process time):
                        0.00 seconds
     real time
     opu time
                        0.01 seconds
201 proc print data = glochidiadist;
202 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
202! mussel species';
203 title2 h=1.5 'AEH-11-PSUEDO-01';
204 title3 h=1 'Random assignment of glochidia to test tanks';
205 title4 h=1 'Mussel species: Washboard';
206 run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: PROCEDURE PRINT used (Total process time):
     real time
                       0.00 seconds
     opu time
                        0.01 seconds
207
208! ********/
209
210 /*Mussel species: Fatmucket */
211 data glochidia;
212 do round = 1 to 10 by 1;
213
     do row = 1 to 3 by 1;
214
      do tank = 1 to 6 by 1;
      x ≂ ranuni(-1);
215
216
       output;
217
      end;
218
      end;
219
     end;
220 run;
NOTE: The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                        0.01 seconds
                        0.00 seconds
     cpu time
221 data glochidiadist; set glochidia;
222 if row = 1 then _row_ = 'A';
223 if row = 2 then row_ = 'B';
224 if row = 3 then _row_ = 'C';
225
    if row = 1 and tank = 1 then tankn = '3A1';
      if row = 1 and tank = 2 then tankn = '3A2';
226
       if row = 1 and tank = 3 then tankn = '3A3';
227
        if row = 1 and tank = 4 then tankn = '3A4';
228
                                                       Prigo 1 of 13
        if row = 1 and tank = 5 then tankn = '3A5';
229
```

```
230
           if row = 1 and tank = 6 then tankn = '3A6';
     if row = 2 and tank = 1 then tankn = '3B1';
231
                                                                                 AEH-11-PSEUDO-01
232
       if row = 2 and tank = 2 then tankn = '3B2';
       if row = 2 and tank = 3 then tankn = '3B3';
233
234
        if row = 2 and tank = 4 then tankn = '3B4';
235
         if row = 2 and tank = 5 then tankn = '3B5';
236
           if row = 2 and tank = 6 then tankn = '386';
237
     if row = 3 and tank = 1 then tankn = '3C1';
238
      if row = 3 and tank = 2 then tankn = '302';
       if row = 3 and tank = 3 then tankn = '3C3';
239
240
        if row = 3 and tank = 4 then tankn = '3C4';
         if row = 3 and tank = 5 then tankn = '305';
241
242
          if row = 3 and tank = 6 then tankn = '306'; run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIA.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
NOTE: DATA statement used (Total process time):
     real time
                         0.01 seconds
     cpu time
                         0.01 seconds
243 proc sort data= glochidiadist;
244 by round x;
245 run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables,
NOTE: PROCEDURE SORT used (Total process time):
                         0.00 seconds
     real time
      opu time
                         0.01 seconds
246 proc print data = glochidiadist;
247 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
247! mussel species';
248 title2 h=1.5 'AEH-11-PSUEDO-01';
249 title3 h=1 'Random assignment of glochidia to tost tank';
250 title4 h=1 'Mussel species: Fatmucket';
251 run;
NOTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
NOTE: PROCEDURE PRINT used (Total process time):
                         0.00 seconds
     real time
                         0.00 seconds
     opu time
```

Fage Set 1

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 1 AEH-11-PSUED0-01 Random assignment of glochidia to test tanks Nussel species: Washboard

Obs	round	row	tank	x	_row	tankn
1	1	2	з	0.04838	в	1B3 🗸
2	1	2	1	0.15057	В	1B1 🗸
3	1	2	5	0.16278	5	1B5 /
4	1	3	6	0.18466	С	106 🗸
5	f	2	4	0.36690	В	1 B 4 🗸
6	1	3	5	0.37006	С	105
7	1	1	1	0.44366	A	
8	1	3	2	0.44674	С	102 🗸
9	1	1	5	0.45064	А	1A5 🗸
10	1	1	2	0.49027	А	1A2 /
11	1	1	6	0.56970	А	1A6
12	1	2	6	0.63330	В	1B6
13	1	3	4	0.70052	C	104
14	1	3	1	0.77579	С	101 🖌
15	1	3	3	0.77615	С	103 🗸
16	1	1	3	0.77930	А	1A3 🗸
17	1	1	4	0.82716	А	1A4 🗸
18	1	2	2	0.86307	В	182
19	2	2	6	0.05096	В	1B6 V
20	2	1	3	0.13832	А	1A3 🗸
21	2	з	3	0.21191	С	103 1
22	2	з	2	0.36940	С	102 🖌
23	2	1	2	0.38742	А	1A2 🗸
24	2	2	3	0.41658	B	1B3
25	2	1	4	0.54504	A	1A4 V
26	2	з	5	0.58445	C	1051,
27	2	2	1	0.61804	В	1B1√,
28	2	1	6	0.66695	А	1A6 🗸
29	2	2	2	0.77401	В	1B2 🗸
30	2	З	1	0.84946	C	
31	2	2	4	0.85021	В	1B4 🗸
32	2	Э	6	0.88869	С	106 🗸
33	2	1	1	0.90716	A	1A1 🗸
34	2	2	5	0.96065	В	185
35	2	1	5	0.98905	A	1A5 /
36	2	Э	4	0.99356	<u> </u>	
37	3	3	3	0.00319	C	103 ♥ **
38	3	2	1	0.00885	В	181
39	3	3	6	0.06275	C	106
40	3 3	1	4	0.15052	A	1A4
41 42	-	2	3	0.20804	В	183
42 43	3 3	3	4	0.46083	<u> </u>	104 ×
43 44	3	2 2	2 6	0.47385	В	1B2 /
44 45	3	2	4	0.56072	В	1B6 ✓
45 46	3	3	4 2	0.56497 0.57337	B C	1B4 √ 1C2 √
40	3	3	1	0.63977	c	
47	3	3	2	0.65438		101/
40 49	3	2	5	0.65438	<u>А</u> В	
49 50	3	23	5 5	0.82134	в С	185 1C5
51	3	3	5	0.82425	A	105 -
52	3	, 1	5	0.82425	A	1A6 V 1A5 V
~	5	•	U	0102213	~	INJ ¥

.

.

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11 MML

.

AEH-11-PSEUDO-01

<u>.</u>

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 2 AEH-11-PSUEDO-01 Random assignment of glochidia to test tanks Mussel species: Washboard

+

Obs	round	row	tank	x	_row_	tankn	AEH-11-PSEUDO-01
53	з	1	1	0.96150	A	1A1./	∠ ¥0,
54	з	1	з	0.99602	A	1A3 🗸	
55	4	1	2	0.01675	Â	A2	—× ×
56	4	2	3	0.03225	В	LTB3	
57	4	1	6	0.07077	A	-1A6	
58	4	3	3	0.09805	С	. /C3	
59	4	3	2	0.10623	С	~tC2	
60	4	2	6	0.27354	В	L1-B6	x
61	4	2	5	0.29696	В	<i>⊾</i> +B5	~
62	4	2	1	0.29785	В	-1B1	
63	4	3	6	0.31372	C	⊷†06	
64	4	1	1	0,43548	А	" 1 A1	
65	4	1	4	0.49463	А	21-A4	
66	4	1	5	0,57987	A	⊶A5	
67	4	3	1	0.72352	C	~1C1	
68	4	2	4	0.91329	В	- 1 -B4	
69	4	3	4	0.91675	С	L7C4	
70	4	2	2	0.92533	в	1-B2	
71	4	1	з	0.96086	A	1A3	
72	4	3	5	0.97561	<u> </u>	+105	-*
73	5	1	1	0.01106	A	-1A1	
74	5	2	1	0.18516	B	4B1	
75	5	2	6	0.21654	В	<i>(</i> 1 B6	
76	5	3	1	0.26751	С	~1C1	
77	5	1	2	0.30069	А	+1A2	
78	5	2	2	0.43225	<u>_B</u>	·182 ¥	
79	5	1	6	0.48596	А	_1A6	
80	5	2	5	0.48743	в	z 1 -B5	
81	5	3	4	0.54357	С	-1C4	
82	5	3	Э	0.63776	C	~1 C3	
83	5	2	4	0.73840	B	J_B4	
84	5	3	5	0.75303	<u> </u>	<u>1C5</u> *	4
85	5	3	2	0.77589	С	+1C2	
86	5	2	3	0.80186	В	HB3	
87	5	3	6	0,80385	с	'-1C6	
88	5	1	3	0.88062	A	EAT	
89	5	1	5	0.91017	A	-1A5	
90	5	1	4	0.93914	A	•1Á4	×
91	6	1	з	0.10293	A	1A3	* Five rounds of glochidia were added for exposure chambers. Rounds 6-10 of to exposure chambers. Rounds 6-10 of the random assignment were not used. The random statement added for clarification This 5/14/12
92	6	1	2	0.12505	A	1A2	Five rounds of Junter 6-10 of
93	6	2	2	0.13401	В	1B2	to exposure chambers. Nound used.
94	6	з	1	0.17936	С	101	assignment were not clarification
95	6	2	5	0.27550	В	185 .	the random statement added the Sliving
96	6	1	4	0.31435	A	1A4	Jus stille
97	6	1	6	0.35475	A ·	1A6	
98	6	3	4	0.37608	С	104	
99	6	1	1	D.38250	A	1A1	
100	6	2	4	0.45321	В	184	
101	6	3	6	0.48700	С	106	
102	6	2	3	0.49334	В	1 B3	
103	6	2	6	0.57207	В	1 B6	
104	6	1	5	0.64539	A	1 A5	
Analys:	is perfo	ormed by	M. Gaik	owski SAS	version	9.2 11:03	140CT11 Page 7 of 13

÷

ODistribution aliquot after 113 not 111 JKW 1800711

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 3 AEH-11-PSUEDO-01 Random assignment of glochidia to test tanks

Wussel species: Washboard

.

.

.

Obs	round	row	tank	x	_row_	tankn
105	6	2	1	0,65028	B	1 B1
106	6	3	Э	0.69455	с	103
107	6	3	2	0.74112	с	102
108	6	3	5	0,91209	с	105
109	7	2	2	0,07653	В	1B2
110	7	3	4	0.12108	c	104
111	7	1	4	0.12753	Ā	1A4
112	7	2	3	0.14355	В	183
113	7	1	3	0.21451	Ā	1A3
114	7	3	1	0.21495	c	101
115	7	3	6	0.24565	ċ	106
116	7	3	2	0.35784	c	102
117	7	2	6	0.37076	В	186
118	7	1	5	0.48846	Ā	1A5
119	7	1	6	0.49531	A	1A6
120	7	3	5	0.62835	C	105
121	7	1	1	0.66040	A	1A1
122	7	2	1	0.78412	В	1B1
123	7	3	3	0.84819	c	103
124	7	2	5	0.84879	В	185
125	7	2	4	0.91208	в	184
126	7	1	2	0.93405	Ā	1A2
127	8	1	4	0.07285	A	1A4
128	8	2	2	0,13071	В	1 B2
129	8	3	3	0.17105	С	103
130	8	1	6	0.17484	A	1A6
131	8	1	1	0.17628	A	1A1
132	8	3	4	0.21731	С	104
133	8	3	1	0.29783	C	101
134	8	2	3	0.39927	в	1B3
135	8	3	2	0.44313	С	102
136	8	3	5	0.46488	С	105
137	8	2	5	0.48661	В	1 B 5
138	8	2	1 .	0.65784	В	1 B1
139	8	3	6	0.74051	С	106
140	8	1	5	0.74383	А	1 A 5
141	8	1	2	0.75499	А	1A2
142	8	2	4	0.77273	В	1B4
143	8	2	6	0.85171	В	1B6
144	8	1	3	0.98418	А	1A3
145	9	2	5	0.00420	В	1B5
146	9	1	5	0.07321	А	1A5
147	9	2	4	0.10943	В	1B4
148	9	1	1	0.12746	А	1A1
149	9	1	3	0.12940	А	1A3
150	9	2	3	0.21011	в	1B3
151	9	з	2	0.22581	С	102
152	9	з	4	0.23737	С	104
153	9	Э	з	0.24321	С	103
154	9	з	6	0.56414	С	106
155	9	1	4	0.63829	A	1A4
156	9	2	6	0.63940	В	1B6

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11

Paps For 13

.

,

<u>.</u>

AEH-11-PSEUDO-01

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 4 AEH-11-PSUEDO-01 Random assignment of glochidia to test tanks

Mussel species: Washboard

•

Obs	round	row	tank	x	_row_	tankn	AEH-11-PSEUDO-01
157	9	3	1	0,78984	C	101	
158	9	1	2	0.83409	A	1A2	
159	9	2	2	0.83827	В	1B2	
160	9	2	1	0.86606	В	1B1	
161	9	1	6	0.93247	А	1A6	
162	9	3	5	0.97047	C	105	
163	10	1	5	0.13868	А	1A5	
164	10	2	з	0.19793	В	1B3	
165	10	2	1	0.22524	В	1B1	
166	10	2	2	0.26319	В	1B2	
167	10	1	1	0,33809	А	1A1	
168	10	1	2	0.35208	А	1A2	
169	10	2	6	0.40875	В	1B6	
170	10	2	5	0.49523	В	1B5	
171	10	3	2	0.54407	С	102	
172	10	3	6	0.62890	С	106	
173	10	З	4	0.66996	С	1C4	
174	10	1	з	0.69539	Α	1A3	
175	10	1	6	0,73423	А	1A6	
176	10	3	1	0.77376	С	101	
177	10	2	4	0.81274	в	1B4	
178	10	з	5	0.83455	С	105	
179	10	3	3	0.98332	С	103	
180	10	1	4	0.99509	А	1A4	

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11

Page 2 of 13

_

Mussel speci Obs round 1 1 2 1	row	tank	ain Poillel	-bask		DEPENSION Church F
1 1		tonk				U specifi - goe i
	-	Lank	x	_row_	tankn	D Species charged + Plain product book due to availability
	2	5	0.01984	B	3B5 /	1. to avarkhelik
	2	4	0.02206	В	3B4 /	CIEVE 10 CONTRACT
3 1	2	2	0.03535	В	3B2 /	10-18-4
4 1	. 2	1	0.06789	В	3B1 √	10-18-4 511-
5 1	3	4	0,09694	c	304	JAC
6 1	з	6	0.14775	c	306	
7 1	3	з	0.16191	c	303 /	
8 1	3	1	0.20688	c	301 1,	
91	1	3	0.20991	A	3A3 🗸	AEH-11-PSEUDO-01
10 1	1	6	0.30468	A	3A6 /	
11 1	1	2	0.36183	A	3A2 √	
12 1	2	3	0.45100	В	3B3 🗸 🛶	
13 1	3	5	0.54897	c	305 /	
14 1	2	6	0.68545	В	3B6 √	
15 1	1	4	0.69170	Ā	3A4 V	
16 1	1	1	0.70064	A	3A1 √	
17 1	1	5	0.70843	A	3A5 /	
18 1	3	2	0.90442	c	000 1 1	
19 2	3	1	0.00545	č	302 V 301 V	
20 2	2	5	0,11329	B	3B5 V	
21 2	1	2	0.13927	Ā	3A2 ✓	
22 2	3	6	0.17332	c	306 ✓	
23 2	1	6	0.22802	Ā	3A6 √	
24 2	2	4	0.31714	В	204 /	
25 2	2	6	0.38788	В	3B6 / ×	
26 2	1	1	0,39340	Ā	3A1 V	
27 2	1	5	0.40032	A	3A5 V	
28 2	2	2	0.47171	В	3B2 V	
29 2	2	1	0.54855	В	381 /	
30 2	3	3	0.57131	c	303 */	
31 2	3	5	0.61824	č	305 /	
32 2	3	2	0.72234	c	303 √	
33 2	1	3	0.79335	A	362 V 3A3 √	
34 2	2	3	0.82843	В	3B3 V	
34 2 35 2	1	4	0.93168	A	3A4 √ ,	
36 2	3	4	0.99853	ĉ	3C4 V X	
30 2 37 3	3	4	0.02972	c	<u>304 V</u> 302 √	
38 3	3	4	0.05996	c	302 3	
39 3	1	4	0.20484	A	364 ¥ 3A1 1	
39 3 40 3	2	3	0.20484	В	3B3 /	
41 3	2	5	0,29706	В	3B5 1	
41 3	1	6	0.31291		,	/
42 3 43 3	2	6	0.38686	A B	3A6 / 3B6 ✓ ¥	1
43 3 44 3	∠ 3	1	0.38686	в С	3B6 ✓ 3C1 √	
	3 1	5	0.42806		3C1 V 3A5 🗸	
45 3 46 3	1			A	3A3 V	
		3	0.57085	A	3A3 V 3A2 √	
47 3 48 3	1 3	2 3	0.57194 0.58116	A		,
		3		Ċ,		× 1
	2		0.65021	B	3B2 V	
50 3	3	5	0.68760	C	305 🗸 384 🗸	East Viscort cept stress and
51 3	2	4	0.91176	В		Pego 10 or 13
52 3	3	6	0.93952	С	306 🗸	Same and the second sec

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 5

.

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11

to supply for instal distribution with pays-11 Jac

<u>.</u>

178

	ts of Psu 1-PSUEDO-		s fluore	scens (Pf-C	L145A) to	glochid	ia from seven unionid mussel species 6	
			alochidi	a to test t	ank		1 1 b	
				lein Puelo-			O Spectes Coungel 10	
Obs	round	row	() tank	×	_row_	tankn	D spectes changed to plan poclathook due to availability 10-18-11 JA-	
50	•	2		0 06010		_{3B1} /		
53	3	2 1	1	0.96219	B	3B1 € 3A4 √		
54 55	3 4	1	4 1	0.98562	A A	3A4 V 3A1 V	×	
56	4	3	4	0.12171	ĉ	3C4 √		
57	4	2	3	0.26431	В	3B3 √	AEH-11-PSEUDO-01	
58	4	1	2	0.33085	A	3A2		
59	4	3	3	0.37231	ĉ	303 1	,	
60	4	3	1	0.44582	č	301 1	· /	
61	4	2	2	0.45637	B	3B2 V	¥ /	-
62	4	2	1	0.51454	В	3B1 √		
63	4	3	5	0.56189	Ċ	3C5 V	(
64	4	2	6	0.58070	В	3в6 √	<i>,</i>	
65	4	1	3	0.67822	Ā	3A3 🗸	(
66	4	2	4	0.70090	В	3B4 /		
67	4	2	5	0.75720	B	3B5 V		
68	4	1	6	0.77556	Ā	3A6 🗸	·	
69	4	1	5	0.80028	A	3A5 🗸		
70	4	1	4	0.89069	А	3A4 🗸		
71	4	3	6	0,96558	C	306 🗸		
72	4	3	2	0.97468	С	302 🗸	Nat	
73	5	1	2	0.01511	A	3A2 🗸	······································	
74	5	з	6	0.10971	С	306 🗸		
75	5	1	6	0.12110	А	3A6 🗸		
76	5	3	5	0.12841	C	305 🗸	/	
77	5	3	з	0.23289	С	3C3 🗸		
78	5	1	3	0.26407	Α	3A3 🗸	¥./	
79	5	2	6	0.27565	В	3B6 🗸	· · · ·	
80	5	2	2	0.30196	B	3B2 🗸		
81	5	1	4	0,42720	Α	3A4 🗸		
82	5	2	4	0.57471	В	3B4 🗸		
83	5	2	з	0.71329	В	383 🗸		
84	5	2	1	0.73755	<u> </u>	3B1 🗸	¥	
85	5	1	1	0.76979	Α	3A1 🗸		
86	5	3	1	0.78149	С	301 🗸		
87	5	3	4	0.89971	C	3C4 🗸		
88	5	1	5	0.90033	A	3A5√		
89	5	2	5	0.93155	В	3B5 √		
90	5	3	2	0.96067	C	302	Five rounds of glochidia were added to exposure chambers. Rounds 6-10 of the	
91	6	3	5	0.09556		305	E musde of glochidia were and to	
92	6 6	2 3	3 3	0.12167 0.15818	B C	3B3	Five phanheas Rounds 6-10 of The	
93 04			1			303	exposure Chambers. Kounces of used. random assignment were not used. statement added for clarification ms 5/14/12	
94 05	6 6	3 3	4	0.18872 0.20937	C C	3C1 3C4	random assignment added for clarificeron	
95 96	6	1	3	0.41650	A	304 3A3	Steeteners -7ms 5/14/12	
95 97	6	1	2	0.50092	Ā	3A3 3A2		
98	6	1	6	0.54739	A	3A2		
99	6	1	5	0.57758	Ā	3A5		
100	6	2	5	0.58475	В	3B5		
101	6	3	2	0.74069	C	302		
102	6	2	4	0.84537	В	384		
103	6	2	6	0.88420	В	386		
104	6	1	4	0.89658	Ā	3A4		
					-			

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11

,

Pape // or _/3

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 7 AEH-11-PSUEDD-01

Random	assignme	nt of	glochidia	to test	tank
Mussel	species:	Fatm	CKet plan	portal	book
Obs	round	row	tank	х	row

Obs	round	row	tank	x	_row_	tankn
105	6	2	1	0.90354	В	3B1
106	6	2	2	0.90435	В	3B2
107	6	3	6	0.96706	C	306
108	6	1	1	0.97874	А	3A1
109	7	2	4	0.02158	в	384
110	7	2	6	0.06957	в	386
111	7	3	3	0,11259	С	303
112	7	1	6	0.18067	А	3A6
113	7	1	2	0.27586	A	3A2
114	7	1	5	0.28208	A	3A5
115	7	3	2	0.29497	c	302
116	7	2	2	0.35074	В	382
117	7	з	4	0.38960	С	3C4
118	7	2	1	0.50335	в	381
119	7	1	з	0.51187	А	3A3
120	7	2	5	0.77789	В	3B5
121	7	1	1	0.80690	Α	3A1
122	7	з	1	0.89798	С	301
123	7	1	4	0.95446	А	3A4
124	7	3	5	0.96114	c	305
125	7	2	3	0.99428	В	3B3
126	7	з	6	0.99761	c	306
127	8	1	3	0.01429	Ā	3A3
128	8	з	1	0.07414	C	3C1
129	8	1	5	0.14921	А	3A5
130	8	з	4	0.21611	С	304
131	8	2	5	0.26547	В	3B5
132	8	1	1	0.31691	А	3A1
133	8	з	5	0.34881	С	305
134	8	з	6	0.37552	С	306
135	8	2	2	0.37813	В	3B2
136	8	1	6	0.39360	А	3A6
137	8	2	1	D.49526	В	3B1
138	8	2	6	0.50407	в	386
139	8	2	4	0.65842	в	3B4
140	8	з	2	0.71088	С	302
141	8	1	4	0.76065	Α	3A4
142	8	1	2	0.83296	А	3A2
143 ·	8	з	З	0.94481	С	303
144	8	2	3	0.97151	В	3B3
145	9	з	3	0.09622	С	303
146	9	1	2	0.13471	А	3A2
147	9	1	4	0.18266	А	3A 4
148	9	з	4	0.37323	С	304
149	9	2	2	0.41030	в	3B2
150	9	з	2	0,41378	С	302
151	9	1	1	0.42871	Α	3A1
152	9	З	1	0.46783	С	301
153	9	2	6	0.59253	В	3B 6
154	9	1	5	0.59983	А	3A 5
155	9	2	5	0.61762	В	3B5
156	9	1	3	0.66848	А	3A3

@ spaces changed to Plan poclat boold done to avoil the 10-18-4 Jan

AEH-11-PSEUDO-01

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11

Page 1201 13

	l species			ia to test, t Plan poch			D species Changed to planp alue to availability 12-18-11 Sac
Obs	round	row	tank	×	_row_	tankn	10-18-11 JAL
157	9	2	3	0.83063	в	383	• -
158	9	1	6	0.84236	А	3A6	
159	9	2	4	0.88438	В	3B4	
160	9	3	5	0.92844	C	305	
161	9	з	6	0.93473	C	306	AEH-11-PSEUDO-0 File Folden 14B
162	9	2	1	0.95001	В	3B1	and all how the
163	10	1	з	0.01342	A	3A3	file torden 1913
164	10	2	5	0.09717	В	3 B 5	
165	10	3	3	0.16608	С	3C3	
166	10	1	1	0.23652	А	3A1	
167	10	1	5	0.32192	А	3A5	
168	10	з	6	0.38088	C	306	
169	10	3	2	0.43876	C	302	
170	10	2	6	0.51029	В	3B6	
171	10	2	1	0.54732	В	3B1	
172	10	з	4	0.57027	C	3C4	
173	10	t	4	0.72514	А	3A4	
174	10	2	3	0,74935	В	3B3	
175	10	1	6	0.80066	А	3A6	
176	10	2	2	0.83958	В	3B2	
177	10	з	1	0.87588	C	301	
178	10	1	2	0.88810	Α	3A2	
179	10	з	5	0,93787	C	305	
180	10	2	4	0.98796	в	3B4	

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 8 to phanpocketbook

Initials: The Date : 5/14/12 REVIEWED BY

2

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11 MMA

trects of Psuedomonas fluorescens (PT-GL145A) to glochidia from seven unionid nussel species 1 EH-11-PSJED0-01 Ligburk 1, 89 30-31 andom assignment of glochidia to test tanks 54-File folder 14B ussel species: Black sandshell Initiated at bs round row tank х _row_ tankn 1026 h 55W IFJANII -*~ 1 1 1 1 0.03540 А 1A1 J 2 1 2 5 0.15720 В 1B5 🗸 Item No. 3 1A2 / 3 1 2 0.16134 A 1 2 3 В 1B3 🗸 4 1 0.36077 1A5 🗸 5 1 5 0.39275 1 А 6 3 6 С 106 🗸 0.39514 1 X 1B2 🗸 7 1 2 2 0.42251 В 1A6 🗸 8 1 1 6 0.43934 A 104 / 9 З 4 0.45629 С 1 1C1 🗸 З С 10 1 1 0.46298 1A4 🗸 4 0.46826 A 11 1 1 103 🗸 3 3 0.49509 С 12 1 \star 2 С З 1C2 √ 13 1 0.53590 1B4 🗸 2 4 0.63459 В 14 1 З 0.72859 A 1A3 🗸 1 15 1 105 🗸 С 3 5 0.73196 16 1 1B6 🗸 17 2 6 0.85674 В 1 1<u>B1</u> 🗸 2 1 0.86215 В 18 1 X-1 1032 19 2 1 1 0.00152 А 1A1 / 20 2 2 6 0.01044 В 1B6 🗸 21 2 2 1 0.01183 В 1B1 √ 22 2 1 6 0.09963 А 1A6 🗸 23 2 З 6 0.16381 С 106 / 2 С 1017 24 З 1 0.37238 Hr. 3 2 С 1C2 V 25 2 0.39250 26 2 1 5 0.39924 А 1A5 🗸 27 2 1 3 0.48046 A 1A3 🗸 2 2 3 0.57825 В 1B3 / 28 З 4 С 104 🗸 29 2 0.65481 2 2 2 0.71580 в 1B2 🗸 30 *-1 2 3 3 0.73748 С 103 🗸 31 5 С 2 3 105 🗸 32 0.76035 2 4 0.79744 А 1A4 √ 33 1 2 2 0.87184 А 1A2√ 34 1 В 1B4 / 35 2 2 4 0.93146 36 2 2 5 0.94375 В 1B5 🗸 长/ 1037 37 3 1 З 0.08401 А 1A3 / 3 3 5 0.11492 С 38 105 🗸 Initialisi This Date 1 5/14/12 39 З 1 4 0.12051 А 1A4 🗸 REVIEWED BY 1 40 3 1 0.17095 A 1A1 🗸 Intials, Jr. Data 10/2/12 1B6 🗸 З 2 6 0.25392 В 41 3 1B3 🗸 42 З 2 0.26144 В 4 С 104 / 43 3 3 0.40117 Page 1. 02 22 6 1A6 🗸 44 З 1 0.41257 А 2 45 3 1 0.45539 А 1A2 🗸 3 2 5 В 1B5 / 46 0.51031 X-Sample for distribution alliquet KW 1200012 5 1A5 🗸 47 3 1 0.55130 А halysis performed by J. Luoma SAS version 9.2 12:27 09JAN12

i,

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species EH-11-PSUEDO-01 andom assignment of glochidia to test tanks 5~ ussel species: Black sandshell AEH-11-PSEUDO-01

							AEH-11-PSEUDO-01
bs	round	row	tank	x	_row_	tankn	
48	3	3	6	0.63349	С	1 <u>C6√</u>	1.1
49	3	2	4	0.66683	B	184√	
50	3	2	1	0.67735	B	1B1 √	
51	3	2	2	0.74551	В	1B2 √	
52	3	3	1	0.79592	c	1C1 √	
53	3	3	2	0.85372	C	102 √	
54	3	3	3	0.97376	C	1C3 √	L land
55		2	6	0.04165	В	1B6 /	
56	4	3	3	0.12059	С	1C3 🗸	
57	4	3	5	0.19203	С	105 🗸	
58	4	2	2	0.23442	В	1B2 🗸	
59	4	2	3	0.31512	В	1B3 🗸	
60	4	1	3	0.42558	А	1A3 √	V V
61	4	2	1	0.46156	В	1B1 ✓	⊁√
62	4	3	6	0.49274	С	106 🗸	
63	4	2	5	0.53001	В	1B5 🗸	
64	4	1	4	0.64966	А	1A4 🗸	
65	4	1	5	0.66283	А	1A5 √	
66	4	1	6	0.71016	А	1A6 🗸	
67	4	З	2	0.75088	С	102 1	<i>T</i> ·
68	4	1	1	0.82426	А	1A1√	
69	4	1	2	0.86272	А	1A2 🗸	
70	4	З	1	0.88343	C	101 🗸	
71	4	2	4	0.90920	В	1B4√	
72	4	З	4	0.94484	С	1C4 √	
73	5	2	6	0.05331	В	1B6 √	F 10-10
74	5	1	5	0.07180	А	1A5 🗸	
75	5	2	2	0.07704	В	1B2 √	
76	5	3	З	0.12926	С	103 🗸	
77	5	3	4	0.21732	С	104 🗸	
78	5	2	З	0,29334	В	1B3 🗸	
79	5	1	1	0.29504	А	1A1 ⁄	1
80	5	1	4	0.32955	А	1A4 √	
81	5	2	1	0.34201	В	1B 1 √	
82	5	3	2	0.35173	C	102 🗸	
83	5	1	2	0.46220	А	1A2 √	
84	5	3	6	0.64764	С	1C6√	
85	5	1	3	0.66290	А	1A3 🗸	<i>η</i> -
86	5	2	4	0.82630	В	1B4 √	
87	5	3	1	0.92558	С	1C1√	0.00
88	5	2	5	0.92810	В	185	Pare 2. 58.20
89	5	3	5	0.95883	С	105./	Ū.
90	5	1	6	0.98341	А	1A6 🗸	
91	6	1	6	0.00717	А	1A6	pointed at 1051 h
92	6	2	1	0.03283	В	1B1	Completion TKW 17 JAN12
93	6	2	3	0.05644	В	1B3	Completed at 1051 h TKW 17 JAN12 X Sample for dotribution alignot KLW 12 JAW 12
94	6	1	4	0.09740	А	1A 4	The state of the state
							abtribation aligno.
naly	sis perfo	rmed by	J. Luom	a SAS versi	on 9.21	2:27 09JAN12	KIW 12JAW 12

2

2

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species EH-11-PSUEDO-01 andom assignment of glochidia to test tanks $\mathcal{J}_{q} \sim$ ussel species: Black sandshell AEH-11-PSEUDO-01

bs	round	row	tank	x	_row_	tankn	
95	6	3	4	0.16739	с	1C4	
96	6	2	6	0.21512	В	1B6	<u>, (</u>
97	6	2	4	0.35347	В	1B4	
98	6	2	2	0.36195	В	1B2	
99	6	3	2	0.52497	С	102	
0 0	6	1	3	0.60721	А	1A3	
01	6	3	3	0,61745	С	103	
02	6	2	5	0.63064	В	185	¥
03	6	3	1	0.64129	С	101	
04	6	З	6	0.66559	С	106	
05	6	3	5	0.67314	С	1C5	
06	6	1	2	0.78109	А	1A2	
07	6	1	5	0.79067	А	1A5	
08	6	1	1	0.93271	А	1A1	. tf
09	7	2	6	0.05320	В	1B6	
10	7	3	3	0.09042	С	1C3	
11	7	1	5	0.16011	А	1A5	
12	7	1	6	0.20313	А	1A6	
13	7	3	6	0.25107	С	1C6	
14	7	2	5	0.25202	В	1B5	×
15	7	2	3	0.35410	В	1B3	77
16	7	1	2	0.36411	А	1A2	
17	7	2	2	0.38468	В	1B2	
18	7	2	1	0.40012	В	1B1	
19	7	1	3	0.54025	А	1A3	
20	7	3	4	0.62582	С	104	¥
21	7	1	4	0.64380	А	1A4	<i>y</i>
22	7	1	1	0.77253	А	1A1	
23	7	3	1	0.77724	С	101	
24	7	3	2	0.94665	C	102	
25	7	2	4	0.96571	В	1B4	
26	7	3	5	0.96636	С	105	
27	. 8	3	2	0.03099	С	102	¥
28	8	2	2	0.03762	В	1B2	
29	8	1	2	0.04247	А	1A2	
30	8	1	5	0.09006	A	1A5	
31	8	3	5	0,09815	С	105	
32	8	2	4	0.13921	В	<u>1B4</u>	x
33	8	3	6	0.16122	C	1C6	~
34	8	1	4	0.26608	A	1A4	
35	8	1	3	0.29674	A	1A3	
36	8	2	3	0.32798	В	1B3	Page 3 st 20
37	8	2	1	0.35775	В	1B1	G & Martin Strand Start - Start Carter - Start
38	8	2	5	0.45371	В	1B5	N
39 40	8	1	6	0.50449	A	1A6	V~
40 41	8	3	1	0.56444	C	101	
41	8	3	3	0.72173	С	103	* Sample for
nalys	sis perfo∣	rmed by	J. Luoma	SAS version	9.2	12:27 09JAN12	X Sample for distribution alignot
						101	

3

<u>.</u>

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species EH-11-PSUED0-01

andom assignment of glochidia to test tanks $5^{\prime\prime}$ ussel species: Black sandshell

bs	round	row	tank	x	_row_	tankn	AEH-11-PSEUDO-01
42	8	2	6	0.74113	В	1B6	
43	8	1	1	0.94768	А	1A1	
44	8	З	4	0.94903	Ć	1C4	1
45	9	2	6	0.03961	В	1B6	¥
46	9	З	5	0.05729	С	105	
47	9	3	1	0.13174	С	101	
48	9	1	5	0.14749	А	1A5	
49	·9 ···	3 ·	····6· -	0.22306	·`C····	106	. .
50	9	1	6	0.22381	А	1A6	*
51	9	2	4	0.24007	В	1B4	/1
52	9	1	4	0.35483	А	1A4	
53	9	1	1	0.35749	А	1A1	
54	9	1	3	0.41038	А	1A3	
55	9	2	1	0.43514	В	1B1	
56	9	3	2	0.55984	С	102	X
57	9	2	5	0.77391	В	1B5	· <i>P</i> -
58	9	2	3	0.77465	В	1B3	
59	9	2	2	0.80819	В	1 B 2	
50	9	3	3	0.85688	С	103	
31	9	1	2	0.90994	А	1A2	
32	9	3	4	0.93858	C	164	
53	10	2	4	0.02628	В	1B4	ブ
34	10	3	2	0.02875	С	102	
35	10	1	3	0.05560	А	1A3	
36	10	1	1	0.11087	А	1A1	
37	10	2	3	0.20975	В	1B3	
38	10	1	5	0.24947	А	1 <u>A5</u>	¥
39	10	3	5	0.26831	С	1C5	1
70	10	3	4	0.36314	С	104	
71	10	3	6	0.36828	С	106	
72	10	1	2	0.41707	А	1A2	
73	10	3	1	0.52680	С	101	
74	10	1	4	0.53721	Α	1A4	X
75	10	2	5	0.66343	В	1B5	1
76	10	2	2	0.75209	В	1B2	
77	10	3	3	0.85367	С	1C3	
78	10	1	6	0.85835	Α	1A6	
79	10	2	1	0.94702	В	1B1	
30	10	2	6	0.96842	В	<u>1B6</u>	×

4

2

, :

* Sample for distribution aliquet KW 12JAMIS

halysis performed by J. Luoma SAS version 9.2 12:27 09JAN12

ffects of Psuedomonas fluorescens (PT-UL145A) to glochidia from seven unionid mussel species EH-11-PSUED0-01 ussel species: Mucket AEH-11-PSEUDO-01

5

2

							faither tel @ 1200
bs	round	row	tank	х	_row_	tankn	
1	1	1	2	0.00098	A	2A2 🗸	~~~~ ⁄ ·
2	1	2	4	0,01664	В	2B4 ✓	
3	1	3	5	0.17106	С	205 🗸	
4	1	1	1	0.19629	A	2A1 🗸	
5	1	3	3	0.21688	С	203 🗸	,
6	1	2	3	0.22886	В	2B3 /	¥
7	1	1	3	0.32034	А	2A3 🗸	,
8	1	3	2	0.32988	C	202	
9	1	2	2	0.33127	В	2B2 🗸	
10	1	1	5	0.39490	А	2A5 🗸	
11	1	3	6	0.41756	С	206 🗸	
12	1	2	1	0.61317	В	2B1 🗸	
13	1	1	4	0.65694	А	2A4 /	/`
14	1	2	6	0.65809	В	2B6 √	
15	1	1	6	0.70590	А	2A6 🗸	
16	1	3	4	0.71470	С	204 🗸	
17	1	2	5	0.85421	В	2B5 /	
18	1	3	1	0.97547	С	201 🗸	<u>v</u> _ /
19	2	1	2	0.04473	А	2A2 /	X 12.09
20	2	3	3	0.05814	C	203 🗸	
21	2	2	6	0.09603	В	2B6 ✓	
22	2	2	1	0.14342	В	2B1 🗸	
23	2	1	6	0.29490	А	2A6 🗸	
24	2	1	1	0.32005	А	2A1 1	J. 1
25	2	2	3	0.34073	в	2B3 🗸	
26	2	1	3	0.38231	А	2A3 🗸	
27	2	3	4	0.38258	С	204 🗸	
28	2	3	2	0.54309	C	202√	
29	2	2	5	0.66187	В	2B5 /	
30	2	2	2	0.68421	В	2B2 🗸	<i>A i</i>
31	2	3	5	0.77307	С	205 1	
32	2	3	1	0.77572	C	201 🗸	7
33	2	2	4	0.81987	В	2B4 🗸	
34	2	1	5	0.84082	A	2A5 🗸	
35	2	3	6	0.92784	С	206 1	Comments of the second s
36	2	1	4	0.96058	А	2A4 /	
37	3	3	4	0.01582	С	204 1	
38	3	2	6	0,02269	В	2B6 √	
39	3	1	3	0.10073	Ā	2A3 √	
40	3	3	6	0.24126	С	2C6 √	
41	3	3	1	0.38566	c	201 1	
42	3	1	2	0.40678	Ā	2A2 /	,
43	3	3	3	0.47539	c	203 /	
44	3	1	5	0.62337	Ă	205↓ 2A5√	A 1000 5 01 20
44 45	3	2	5	0.63294	В	2B5 /	Contrasting in the second s
45 46	3	2	3	0.71107	B	2B3 √ 2B3 √	•
40 47	3	2 3	2	0.76563	C	203 ↓ 202 √	V Curdo for
47	J	J	2	0.10000	U	202 1	A Sample I'm I'm I'm
nalve	te norfo	emeri by	. Luomo	SAS varator	0 º 1	2:27 09JAN12	& Sample for al Btribotion al ignot KW IDJAN 12
патуз	re her in	nneu uy	o. Luuna	040 AGI9701	0.21	LICT UDUANTZ	KW DJAN B

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 6 EH-11-PSUEDO-01 andom assignment of glochidia to test tank ussel species: Mucket AEH-11-PSEUDO-01 bs round row tank x row tankn

bs	round	row	tank	x	_row_	tankn	
						1	
48	3	1	6	0.77490	А	2A6 /	
49	З	1	1	0.79056	A	2A1 🗸	
50	3	З	5	0.82629	C	205 1	
51	3	2	1	0.84457	В	2B1 🗸	
52	3	2	2	0.86062	В	2B2 🗸	
53	З	2	4	0.88782	В	2B4 /	
54	3	1	4	0.90326	А	2A4 /	¥-1 1120
55	-4	1	• • • • 3 • • •	0.02466	· A ·	2A3 🗸 -	
5 6	4	2	1	0.07961	В	2B1 🗸	
57	4	3	1	0.09021	С	201 🗸	
58	4	3	6	0.10964	С	206 🗸	
59	4	1	2 ·	0.15271	А	2A2 1	
6 0	4	2	2	0.22284	В	2B2 /	
61	4	1	5	0.36666	Α	2A5 🗸	
62	4	2	4	0.41787	В	2B4 🗸	
63	4	2	3	0.43712	В	2B3 🗸	
64	4	3	5	0.50663	C	205 🗸	
65	4	1	4	0.58751	А	2A4 🗸	
66	4	2	5	0.60800	В	2B5 🗸	
67	4	3	3	0.66845	C	203 🗸	γ
68	4	t	1	0.75786	А	2A1 🗸	
6 9	4	3	4	0.78458	C	204 🗸	
70	4	3	2	0.94567	C	202 🗸	
71	4	2	6	0.96083	В	2B6 🗸	
72	4	1	6	0.96962	А	2A6 /	
73	5	2	2	0,03379	В	2B2 🗸	1
74	5	3	4	0,09290	С	204 🗸	
75	5	1	4	0.17092	А	2A4 🗸	
76	5	2	3	0.35518	В	2B3 🗸	
77	5	3	3	0.41766	С	203 🗸	
78	5	1	2	0.45670	Α	2A2 /	
79	5	3	5	0.54443	С	205 🗸	
30	5	2	4	0.65095	В	2B4 🗸	
31	5	1	5	0.65645	А	2A5 🗸	
32	5	2	5	0.66093	В	2B5 🗸	
33	5	1	1	0.67867	А	2A1 🗸	
34	5	3	2	0.67998	C	2C2	
35	5	2	1	0.68374	В	2B1 /	\mathcal{T}^{*}
36	5	1	3	0.70107	А	2A3 🗸	10 / 10
37	5	1	6	0.73423	А	2A6 🗸	Face 6 or 20
38	5	3	6	0.76479	C	2C6√	
3 9	5	3	1	0.80740	С	201√	¥4
90	5	2	6	0.90553	В	2B6 /	VI Langlater at 1228
91	6	1	6	0.06769	А	2A6	T JANIJ
92	6	1	2	0.08744	А	2A2	Counter by
93	6	2	1	0.14791	В	2B1	* Sample Timot
94	6	1	3	0.45638	А	2A3	distribution any
							INTAN D
nalys	sis perfo	rmed by	J. Luom	a SAS version	9.2 1	2:27 09JAN12	* Sample for alignot Aistribution alignot KIW IDJANIZ

rfects of Psuedomonas fluorescens (Pf-UL145A) to glochidia from seven unionid mussel species EH-11-PSUED0-01 andom assignment of glochidia to test tank $\mathcal{I}_{\mathcal{A}}$ ussel species: Mucket AEH-11-PSEUDO-01

1

Ļ

							MENE 11-PSEUDU-01
зs	round	row	tank	x	_row_	tankn .	
95	6	3	3	0.46071	С	203	
96	6	3	6	0.49449	С	206	N-
37	6	1	5	0.52489	А	2A5	X
98	6	3	1	0.61590	С	201	
39	6	3	4	0.70732	С	204	
00	6	2	5	0.71307	В	2B5	
D1	6	3	5	0.75936	С	205	
)2	6	1	1	0.78284	A	2A1	X-
33	6	2	3	0.83665	В	2B3	
04	6	3	2	0.84431	C	202	
5	6	2	4	0.84525	В	2B4	
26	6	2	2	0.88368	B	2B2	
)7	6	2	6	0,90205	В	286	
28 28	6	1	4	0.96568	Ā	2A4	Y
39	7	2	1	0.04213	В	2B1	
10	7	2	2	0.05244	В	282	
11	, 7	3	5	0.08552	C	202	
12	7	1	6	0.11230	A	205 2A6	
	7		2	0,16857	ĉ	202	
13		3	5	0.22141		202 2B5	
14	7	2	5 6		В		
15	7	2	4	0.22335	В	2B6	
16	7	2		0.25653	В	2B4	
17	7	1	4	0.33381	A	2A4	
18	7	1	1	0.40108	A	2A1	
19	7	2	3	0.56124	В	2B3	
20	7	3	1	0.60276	C	201	
21	7	3	6	0.78412	C	206	•
22	7	1	2	0.81734	A	2A2	
23	7	3	3	0.82288	C	203	
24	7	3	4	0.88472	C	204	
25	7	1	3	0.96413	A	2A3	
26	7	1	5	0.99816	A	2A5	
27	8	1	4	0.01906	A	2A4	ł
28	8	2	1	0.02411	В	2B1	
29	8	3	4	0.06716	C	204	
30	8	. 3	5	0.23709	С	205	
31	8	2	3	0.26067	В	2B3	
32	8	2	5	0.30873	В	2B5	,X
33	8	1	1	0.40705	A	2A1	4
34	8	1	5	0.48246	A	2A5	
35	8	3	2	0.64868	С	202	
36	8	3	1	0.69547	С	201	Para 2 4 20
37	8	2	6	0.71882	В	2B6	 Low and the second s
38	8	2	2	0.74359	В	2B2	4 ·
39	8	2	4	0.76087	В	2B4	Th
40	8	1	2	0.80410	A	2A2	\sim
41	8	1	3	0,82372	А	2A3	& GAMARE TON 1- MOT
nalys	sis perfo	rmed by	J. Luom	a SAS versior	9.21	2:27 09JAN12	#-Sampe for alignot distribution alignot Kiw 12JMW12
						100	£200-

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species EH-11-PSUEDO-01 andom assignment of glochidia to test tank 5^w ussel species: Mucket

bs	round	row	tank	x	_row_	tankn	AEH-11-PSEUDO-01
42	8	3	6	0.91183	С	2C6	
43	8	1	6	0.92576	А	2A6	
44	8	3	3	0.92879	С	203	6
45	9	3	2	0.05308	С	202	X
46	9	2	3	0.18267	В	2B3	
47	9	3	3	0.22758	С	203	
48	9	1	4	0.28404	А	2A4	
49 ⁻	9	3-		-0.31054	C	204	
50	9	1	2	0.37890	А	2A2	
51	9	3	6	0.40119	С	206	
52	9	2	1	0.40611	В	2B1	
53	9	2	2	0.46055	В	2B2	
54	9	1	6	0.52324	А	2A6	
55	9	2	4	0.60900	В	2B4	
56	9	1	3	0.61136	А	2A3	⊁
57	9	1	5	0.72902	А	2A5	
58	9	1	1	0.74745	А	2A1	
59	9	2	6	0.76650	В	2B6	
60	9	2	5	0.81084	В	2B5	
61	9	3	1	0.90941	С	201	
82	9	3	5	0.91173	С	205	s.
63	10	1	3	0.07174	А	2A3	K
64	10	2	1	0.24946	В	2B1	
65	10	3	5	0.26949	С	205	
66	10	1	1	0.35243	А	2A1	
67	10	3	3	0.37878	С	203	
68	10	3	2	0.38445	С	202	-t
3 9	10	2	3	0.38997	В	2B3	*
70	10	1	2	0.53325	A	2A2	
71	10	3	6	0.54136	C	206	
72	10	1	4	0.59608	А	2 A 4	
73	10	1	6	0.60197	А	2A6	
74	10	2	6	0.60681	В	<u>2B6</u>	<u>d</u>
75	10	1	5	0.77531	А	2A5	T
76	10	3	1	0.84612	С	201	
77	10	3	4	0.84761	С	204	
78	10	2	4	0.85964	в	2B4	
79	10	2	5	0.88245	В	2B5	
30	10	2	2	0.97126	В	2B2	X
						-	K

X Sample for distribution aliquot Kew 12 JAW 12

halysis performed by J. Luoma SAS version 9.2 12:27 09JAN12

189

8

•

у

bs	round	row	tank	х	_row_	tankn	
1	1	2	3	0.09694	В	3B3 🗸	K/Began distribution at 085.5 JAW 19JANIZ
2	1	3	2	0.12386	С	302 🗸	51 W 17 71 5 Mar C
3	1	2	2	0.24003	В	3B2 🗸	
4	1	1	1	0.35718	А	3A1√	
5	1	2	1	0.36418	В	3B1 🗸	
6	1	1	5	0.39705	А	3A5 🗸	4-1
7	1	2	4	0,39869	В	3B4 /	
8	1	з	6	0.43999	C	306 🖍	
9	1	2	6	0.45944	В	зв6 🗸	
10	1	3	1	0.48797	С	301 🗸	
11	1	2	5	0.55122	В	3B5 🗸	
12	1	3	5	0.61015	С	305 🗸	.1
13	1	1	2	0.84062	Ā	3A2 /	\
14	1	1	4	0.84562	А	ЗА4√	
15	1	1	3	0.91209	А	3АЗ √	
16	1	3	3	0.93867	С	303√	
17	1	1	6	0.97246	А	3A6 🗸	
18	1	3	4	0.97311	C	304	0000
19	2	2	3	0.10321	В	3B3 🗸	
20	2	3	4	0.11034	С	3C4 🗸	
21	2	1	4	0.12373	А	3A4 √	с.
22	2	3	1	0.17907	С	301 🗸	
23	2	2	6	0.18162	В	3B6 🗸	
24	2	1	2	0.21762	А	3A2 /	s.l
25	2	2	1	0.27501	В	3B1 /	
26	2	1	5	0,28241	А	3A5 🗸	
27	2	1	3	0.28415	А	3A3 🗸	
28	2	3	3	0.37881	С	3C3√	
29	2	2	5	0.37999	В	3B5 /	
30	2	1	6	0.49017	А	3A6 √	× ./
31	2	1	1	0.63859	A	3A1 🗸	
32	2	2	2	0.65262	В	3B2 🗸	
33	2	3	6	0.69186	C	3067	
34	2	3	2	0.69369	С	302√	
35	2	2	4	0.70827	В	3B4 🗸	
36	2	3	5	0.78579	C	305√	
37	3	2	1	0.01179	В	3B1 √,	
38	3	2	4	0.10882	В	3B4 /	
39	3	1	3	0.11746	А	3A3 /	
40	3	1	6	0.13722	А	за6 √	
41	3	2	3	0.16069	В	3В3 🗸	and an annual state and a state and and an an annual state and a state and a state and a state and a state and
42	3	1	2	0.35818	А	3A2 🗸	1 Parm 20120
43	3	1	1	0,41017	A	3A1 🗸	
44	3	З	5	0.53766	С	305 /	2
45	3	3	4	0.63046	C	304 /	. fr
46	3	3	2	0.67755	C	302	* Sample Stimust
47	3	1	4	0.68602	A	3A4 /	distribution and
naly	sis perfo	ormed by	J. Luom	a SAS versi	.on 9.2 1	2:27 09JAN12	* Sample for alignet distribution alignet Kun 12TAND

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species EH-11-PSUED0-01 • • andom assignment of glochidia to test tank $3^{n'}$ ussel species: Hickorynut AEH-11-PSEUDO-01

bs	round	row	tank	x	_row_	tankn	
48	3	1	5	0.69543	A	3A5 /	5/
49	3	2	5	0.75556	В	385√	
50	3	2	6	0.79147	В	3B6 🗸	
51	3	З	6	0.84903	C	3C6√	
52	3	З	1	0.97540	С	301 /	
53	З	2	2	0.97573	В	3B2 🗸	
54	3	3	3	0.97702	C	3C3√	10910
55	· · - · 4	1	5	0.07050	· • A · · · ·	3A5	
56	4	3	2	0.14045	С	3C2 🗸	
57	4	2	2	0.21126	В	3B2 🗸	
58	4	З	3	0.21630	С	3C3 🗸	
59	4	1	6	0.22909	А	3A6 🗸	
60	4	З	1	0,29698	С	3C1 🗸	
61	4	1	2	0.44271	Α	3A2 🗸	2
62	4	1	4	0.52535	А	3A4 🗸	
63	4	2	3	0.55913	В	3B3 🗸	
64	4	1	3	0.62375	А	ЗАЗ√	
65	4	З	4	0.62433	С	3C4√	
66	4	2	5	0.68598	В	3B5 🗸	NE/
67	4	1	1	0.69146	A	3A1	k,
68	4	2	1	0.69765	В	3B1 🗸	
69	4	3	6	0.72655	С	306	
70	4	З	5	0.82123	С	305 🗸	
71	4	2	6	0.88000	В	3B6 ✓	
72	4	2	4	0.92653	В	3B4 🗸	
73	5	3	2	0.00824	C	302 🗸	
74	5	1	4	0.01230	А	3A4 🗸	
75	5	2	1	0.02548	В	3B1 🗸	
76	5	1	1	0.06230	А	3A1 🗸	
77	5	З	5	0.13003	С	305 🗸	
78	5	1	5	0.24109	A	3A5 🗸	
79	5	2	5	0.39376	В	3B5 🗸	\uparrow
30	5	2	3	0.41701	В	3B3 🗸	
31	5	1	2	0.45119	А	3A2 🗸	
32	5	2	4	0.47559	В	3B4 🗸	
33	5	1	6	0.48506	А	3A6 /	
34	5	З	1	0.68921	C	301 🗸	
35	5	3	3	0.70606	C	303 🗸	
36	5	1	3	0.73924	А	3A3 🗸	That this state (see) and the second se
37	5	2	6	0.75774	В	3B6 🗸	Page 10 as 20
38	5	3	6	0.88193	С	306√	
39	5	З	4	0.96848	C	3C4	/
90	5	2	2	0.99055	В	3B2 🗸	- KV 0918 aliquot distribution
91	6	1	6	0.12821	A	3A6	T complete
92	6	3	2	0.16364	С	302	is a male for increat
эз	6	3	4	0.24726	С	3C4	* Sampe aligner
€3	6	1	5	0.25910	А	3A5	distribution TAWIZ
naly	/sis perfo	rmed by	J. Luom	a SAS versio	n 9.21	2:27 09JAN12	- X 0718 aliquot distribution complete X Sample for distribution aliquot distribution aliquot KIN 12JAW12

191

10

TTECTS OT PSUEDOWONAS (LUOPESCENS (PI-ULI45A) TO GLOCHIDIA THOM SEVEN UNIONIC MUSSEL SPECIES EH-11-PSUED0-01 andom assignment of glochidia to test ${\tt tank}$ ussel species: Hickorynut AEH-11-PSEUDO-01

bs	round	row	tank	x	_row_	tankn	
95	6	2	1	0.26299	в	3B1	
96	6	3	3	0.30397	Ċ	303	1-
97	6	1	3	0.30555	Ā	3A3	
98	6	3	6	0.32338	С	306	
99	6	2	4	0.33703	В	3B4	
00	6	1	2	0.39379	A	3A2	
01	6	2	2	0.40541	В	3B2	
02	6	2	6	0.58897	B	3B6	,
03	6	3	1	0.59051	C	301	
04	6	2	3	0.61685	В	3B3	
05	6	1	1	0.63296	Ā	3A1	
D6	6	2	5	0.79550	В	385	
07	6	1	4	0.83396	Ā	3A4	
08 0	6	З	5	0.84557	C	3C5	¥~
09	7	1	6	0.02148	Ā	3A6	¥
10	7	1	4	0.02382	A	3A4	
11	7	1	1	0,02963	A	3A1	
12	7	3	4	0.14361	C	3C4	
13	7	2	5	0.19079	В	3B5	
14	7	3	5	0.20467	C	305	
15	7	1	2	0.27057	Ā	3A2	¥
16	7	3	6	0,31717	C	306	
17	7	° 1	3	0.38801	Ă	3A3	
18	7	3	2	0.39049	C	302	
19	7	2	6	0.39349	В	3B6	
20	7	3	1	0.42828	C	301	
21	7	2	4	0.54735	B	3B4	¥
22	7	3	3	0.55535	C	3C3	
23	7	2	1	0.68413	в	3B1	
24	7	2	2	0.72020	B	3B2	
25	7	2	3	0.76838	В	383	
26	7	1	5	0.83621	Ā	3A5	r
27	8	3	3	0.13585	- <u>C</u>	3C3	¥-
28	8	2	5	0.16375	в	3B5	
29	8	3	4	0.18530	c	304	
30	8	2	3	0.19336	3	3B3	
31	8	3	2	0.26637	c	302	
32	8	ĩ	6	0.34703	Ă	3A6	
33	8	1	3	0.35070	A	3A3	
34	8	3	5	0.37603	c	305	v
35	8	2	4	0.38254	B	3B4	
36	8	2	2	0.44956	В	3B2	Pegn // of 20
37	8	1	2	0.56573	Ā	3A2	2 Solid State S
38	8	3	6	0.66244	c	306	,
39	0 8	2	1	0.69048	 B	3B1	
40	8	2	6	0.69651	B	386	tor 1 sust
40	8	1	4	0.77204	A	3A4	& GAMPY in aligo
-7 1	Ū.		I	J.,, <u>L</u> UT		<i></i>	A 1-XNONON NAND
nalys	is perfo	ormed by	J. Luoma	SAS version	9.2	12:27 09JAN12	* Sample for aliquet A stributor aliquet
<i>,</i> –	•						4.4
						192	

192

11

-

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species EH-11-PSUED0-01 andom assignment of glochidia to test tank 😽

ussel species: Hickorynut

usse	T sheares	i HICKU	rynut				AEH-11-PSEUDO-01
bs	round	row	tank	x	_row_	tankn	ACH-17-PSEUDU-01
42	8	3	1	0.82651	С	301	
43	8	1	1	0.86643	А	3A1	
44	8	1	5	0.87486	А	3A5	*
45	9	2	2	0.11291	В	3B2	*
46	9	1	1	0.13740	А	3A1	
47	9	1	4	0.21325	А	3A4	
48	9	1	5	0.31054	А	3A5	
49	9		- 1	0.37708	в	3B1	
50	9	2	6	0.49338	В	3B6	
51	9	З	2	0.54631	C	302	-7
52	9	3	6	0 .579 31	С	3C 6	
53	9	2	3	0.59069	В	3B3	
54	9	3	3	0.59828	С	303	
55	9	3	4	0.68249	C	3C4	
56	9	3	1	0.68708	C	301	Sk.
57	9	3	5	0,76617	C	3C5	
58	9	1	3	0.81233	А	3A3	
59	9	1	6	0,82266	А	3A6	
60	9	2	5	0.84778	В	3B5	
61	9	1	2	0.84787	А	3A2	
62	9	2	4	0.97792	В	3B4	K
6 3	10	1	3	0.08787	А	3A3	Ŗ
64	10	2	5	0.10147	В	3B5	
65	10	3	1	0.16544	C	301	
6 6	10	2	2	0.19042	В	3 B2	
67	10	2	6	0.24519	В	3B6	
6 8	10	З	5	0.27066	C -	305	K
69	10	1	5	0.30115	A	3A5	·
70	10	3	4	0.33208	С	304	
71	10	1	6	0.34559	А	3A6	
72	10	2	1	0.55190	В	3B1	
73	10	2	3	0.57019	В	3B3	
74	10	1	1	0.59400	<u> </u>	3A1	
75	10	1	2	0.64943	А	3A2	ŀ.
76	10	1	4	0.65495	А	3A4	
77	10	2	4	0.69299	В	3B4	
78	10	3	6	0.71444	С	306	
79	10	3	2	0.74016	С	302	
80	10	3	3	0.90388	С	303	*

12

•

* Sample for aliquot distribution aliquot KLW 125412

nalysis performed by J. Luoma SAS version 9.2 12:27 09JAN12

```
59 * date revised : 09Jan12 - JAL
60 * Verified by: _____ (Date:____
                                                        page ____ of _
                                      _)
61 * Random allocation of glochidia to tank.sas
AEH-11-PSEUDO-01
63 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
64
65 FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
66
   options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
67
68
69 /*Random distribution of glochidia to experimental tanks*/
70 /* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
71
      round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
72
   73
73! ******/
74
75 /*Mussel species: Black Sandshell*/
76 data glochidia;
77
   do round = 1 to 10 by 1;
    do row = 1 to 3 by 1;
78
    do tank = 1 to 6 by 1;
79
80
     x = ranuni(-1);
81
     output;
82
     end;
83
     end;
84
    end;
85 run;
OTE: The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
OTE: DATA statement used (Total process time):
                      0.01 seconds
    real time
                       0.01 seconds
    cpu time
86 data glochidiadist; set glochidia;
87 if row = 1 then row = 'A';
88 if row = 2 then _row_ = 'B';
89 if row = 3 then _row__ = 'C';
    if row = 1 and tank = 1 then tankn = '1A1';
90
     if row = 1 and tank = 2 then tankn = '1A2';
91
      if row = 1 and tank = 3 then tankn = '1A3';
92
      if row = 1 and tank = 4 then tankn = '1A4';
93
        if row = 1 and tank = 5 then tankn = '1A5';
94
         if row = 1 and tank = 6 then tankn = '1A6';
95
96
    if row = 2 and tank = 1 then tankn = '1B1';
97
     if row = 2 and tank = 2 then tankn = '1B2';
98
     if row = 2 and tank = 3 then tankn = '1B3';
                                                                100:0/3 5120
      if row = 2 and tank = 4 then tankn = '1B4';
99
        if row = 2 and tank = 5 then tankn = '1B5';
00
         if row = 2 and tank = 6 then tankn = '1B6';
01
    if row = 3 and tank = 1 then tankn = '1C1';
02
     if row = 3 and tank = 2 then tankn = '1C2';
03
     if row = 3 and tank = 3 then tankn = '1C3';
04
      if row = 3 and tank = 4 then tankn = '1C4';
05
```

```
if row = 3 and tank = 5 then tankn = '1C5';
 06
          if row = 3 and tank = 6 then tankn = '1C6'; run;
 07
 OTE: There were 180 observations read from the data set WORK.GLOCHIDIA.
 OTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
 OTE: DATA statement used (Total process time):
      real time
                        0.04 seconds
      cpu time
                         0.04 seconds
                                                             AEH-11-PSEUDO-01
 08 proc sort data= glochidiadist;
     by round x;
 09
 10
      run;
 OTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST,
OTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
 OTE: PROCEDURE SORT used (Total process time):
                        0.01 seconds
      real time
                         0.01 seconds
      cpu time
 11 proc print data = glochidiadist;
 12 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
 12! mussel species';
 13 title2 h=1.5 'AEH-11-PSUEDO-01';
 14 title3 h=1 'Random assignment of glochidia to test tanks';
 15 title4 h=1 'Mussel species: Black sandshell';
 16 run;
 OTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
 OTE: PROCEDURE PRINT used (Total process time):
                        0.00 seconds
      real time
                         0.00 seconds
      opu time
 17
 18! ******/
 19
 20 /*Mussel species: Mucket */
 21 data glochidia;
 22 do round = 1 to 10 by 1;
     do row = 1 to 3 by 1;
 23
      do tank = 1 to 6 by 1;
 24
       x = ranuni(-1);
 25
       output;
 26
 27
       end;
 28
       end;
 29
      end;
 30 run;
 DTE: The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
 DTE: DATA statement used (Total process time):
                        0,01 seconds
      real time
                        0.01 seconds
      opu time
```

```
31 data glochidiadist; set glochidia;
32 if row = 1 then row_{-} = 'A';
33 if row = 2 then row = 'B';
                                                             AEH-11-PSEUDO-01
34 if row = 3 then _row_ = 'C';
    if row = 1 and tank = 1 then tankn = '2A1';
35
     if row = 1 and tank = 2 then tankn = '2A2';
36
      if row = 1 and tank = 3 then tankn = '2A3';
37
      if row = 1 and tank = 4 then tankn = '2A4';
38
        if row = 1 and tank = 5 then tankn = '2A5';
39
         if row = 1 and tank = 6 then tankn = '2A6';
40
41
    if row = 2 and tank = 1 then tankn = '2B1';
42
     if row = 2 and tank = 2 then tankn = '2B2';
     if row = 2 and tank = 3 then tankn = '2B3';
43
      if row = 2 and tank = 4 then tankn = '2B4';
44
        if row = 2 and tank = 5 then tankn = '2B5';
45
         if row = 2 and tank = 6 then tankn = '2B6';
46
47
    if row = 3 and tank = 1 then tankn = '2C1';
     if row = 3 and tank = 2 then tankn = '2C2';
48
     if row = 3 and tank = 3 then tankn = '2C3';
49
      if row = 3 and tank = 4 then tankn = '2C4';
50
        if row = 3 and tank = 5 then tankn = '2C5';
51
         if row = 3 and tank = 6 then tankn = '206'; run;
52
OTE: There were 180 observations read from the data set WORK.GLOCHIDIA.
OTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
OTE: DATA statement used (Total process time):
                        0.03 seconds
     real time
     cpu time
                        0.03 seconds
53 proc sort data= glochidiadist;
54 by round x;
55 run;
OTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
OTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
OTE: PROCEDURE SORT used (Total process time):
     real time
                        0.01 seconds
                        0.01 seconds
     cpu time
56 proc print data = glochidiadist;
57 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
57! mussel species';
58 title2 h=1.5 'AEH-11-PSUED0-01';
59 title3 h=1 'Random assignment of glochidia to test tank';
60 title4 h=1 'Mussel species: Mucket';
61 run;
OTE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.
OTE: PROCEDURE PRINT used (Total process time):
                                                                          Page 15 0120
     real time
                        0.01 seconds
                         0.01 seconds
     cou time
```

196

```
62
63! ******/
64
65 /*Mussel species: Hickorynut */
                                                              AEH-11-PSEUDO-01
   data glochidia;
66
67
    do round = 1 to 10 by 1;
    do row = 1 to 3 by 1;
68
69
    do tank = 1 to 6 by 1;
70
     x = ranuni(-1);
71
      output;
72
     end;
73
     end:
74
    end;
   run;-
75
OTE: The data set WORK.GLOCHIDIA has 180 observations and 4 variables.
OTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
    cpu time
                       0.01 seconds
76 data glochidiadist; set glochidia;
77 if row = 1 then _row_ = 'A';
78 if row = 2 then row_ = 'B';
79 if row = 3 then _row_ = 'C';
    if row = 1 and tank = 1 then tankn = '3A1';
80
    if row = 1 and tank = 2 then tankn = '3A2';
81
     if row = 1 and tank = 3 then tankn = '3A3';
82
       if row = 1 and tank = 4 then tankn = '3A4';
83
        if row = 1 and tank = 5 then tankn = '3A5';
84
         if row = 1 and tank = 6 then tankn = '3A6';
85
86
    if row = 2 and tank = 1 then tankn = '3B1';
    if row = 2 and tank = 2 then tankn = '3B2';
87
     if row = 2 and tank = 3 then tankn = '3B3';
88
       if row = 2 and tank = 4 then tankn = '3B4';
89
        if row = 2 and tank = 5 then tankn = '3B5';
90
         if row = 2 and tank = 6 then tankn = '3B6';
91
    if row = 3 and tank = 1 then tankn = '3C1';
92
93
    if row = 3 and tank = 2 then tankn = '3C2';
     if row = 3 and tank = 3 then tankn = '3C3';
94
      if row = 3 and tank = 4 then tankn = '3C4';
95
        if row = 3 and tank = 5 then tankn = '3C5';
96
         if row = 3 and tank = 6 then tankn = '3C6'; run;
97
OTE: There were 180 observations read from the data set WORK.GLOCHIDIA.
OTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables.
OTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
     cpu time
                       0.01 seconds
98 proc sort data= glochidiadist;
   by round x;
99
```

```
00 run;
```

JTE: There were 180 observations read from the data set WORK.GLOCHIDIADIS1. JTE: The data set WORK.GLOCHIDIADIST has 180 observations and 6 variables. JTE: PROCEDURE SORT used (Total process time): real time 0.01 seconds opu time 0.01 seconds AEH-11-PSEUDO-01 1 proc print data = glochidiadist; 2 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid 21 mussel species'; 3 title2 h=1.5 'AEH-11-PSUEDO-01'; 4 title3 h=1 'Random assignment of glochidia to test tank';

J4 CITIES N=1 Manush assignment of grooniata to to

05 title4 h=1 'Mussel species: Hickorynut';

)6 run;

)TE: There were 180 observations read from the data set WORK.GLOCHIDIADIST.

DTE: PROCEDURE PRINT used (Total process time):

	, ,
real time	0.00 seconds
cpu time	0.00 seconds

1700 do

```
****************
 Study Number : AEH-11-PSUED0-01
 Study Director: Jim Luoma
                                                           AEH-11-PSEUDO-01
 date created : 22Apr11 - MPG
 date revised : 12May11 - MPG
 date revised : 09Jan12 - JAL
 Verified by: _____ (Date:____
                                                   page ____ of ____
                                -)
 Random allocation of glochidia to tank.sas
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
DOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
>tions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
*Random distribution of glochidia to experimental tanks*/
* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
 round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
*Mussel species: Black Sandshell*/
ata glochidia;
do round = 1 to 10 by 1;
jo row = 1 to 3 by 1;
do tank = 1 to 6 by 1;
 x = ranuni(-1);
 output;
end;
end;
end;
ung
ata glochidiadist; set glochidia;
f row = 1 then _row_ = 'A';
f row = 2 then _row_ = 'B';
f row = 3 then _row_ = 'C';
if row = 1 and tank = 1 then tankn = '1A1';
if row = 1 and tank = 2 then tankn = '1A2';
 if row = 1 and tank = 3 then tankn = '1A3';
  if row = 1 and tank = 4 then tankn = '1A4';
   if row = 1 and tank = 5 then tankn = '1A5';
    if row = 1 and tank = 6 then tankn = '1A6';
if now = 2 and tank = 1 then tankn = '1B1';
if row = 2 and tank = 2 then tankn = '1B2';
 if row = 2 and tank = 3 then tankn = '1B3';
  if row = 2 and tank = 4 then tankn = '1B4';
   if row = 2 and tank = 5 then tankn = '1B5';
    if row = 2 and tank = 6 then tankn = '1B6';
if row = 3 and tank = 1 then tankn = '1C1';
if row = 3 and tank = 2 then tankn = '102';
 if row = 3 and tank = 3 then tankn = '1C3';
  if row = 3 and tank = 4 then tankn = '1C4';
                                                               Faco 15 at
   if row = 3 and tank = 5 then tankn = '1C5';
    if row = 3 and tank = 6 then tankn = '106'; run;
roc sort data= glochidiadist;
by round x;
```

```
run:
roc print data = glochidiadist;
itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel*spec
itle2 h=1.5 'AEH-11-PSUED0-01';
itle3 h=1 'Random assignment of glochidia to test tanks';
itle4 h=1 'Mussel species: Black sandshell';
                                                             AEH-11-PSEUDO-01
un;
    *******
*Mussel species: Mucket */
ata glochidia;
do round = 1 to 10 by 1;
do row = 1 to 3 by 1;
x = ranuni(-1);
 output;
 end;
 end;
end;
un;
ata glochidiadist; set glochidia;
f row = 1 then row_{-} = 'A';
f row = 2 then _row_ = 'B';
f row = 3 then _row_ = 'C';
if row = 1 and tank = 1 then tankn = '2A1';
 if row = 1 and tank = 2 then tankn = '2A2';
 if row = 1 and tank = 3 then tankn = '2A3';
  if row = 1 and tank = 4 then tankn = '2A4';
   if row = 1 and tank = 5 then tankn = '2A5';
    if row = 1 and tank = 6 then tankn = '2A6';
if row = 2 and tank = 1 then tankn = '2B1';
 if row = 2 and tank = 2 then tankn = '2B2';
 if row = 2 and tank = 3 then tankn = '2B3';
  if row = 2 and tank = 4 then tankn = '2B4';
   if row = 2 and tank = 5 then tankn = '2B5';
    if row = 2 and tank = 6 then tankn = '2B6';
if row = 3 and tank = 1 then tankn = '2C1';
 if row = 3 and tank = 2 then tankn = '2C2';
 if row = 3 and tank = 3 then tankn = '2C3';
  if row = 3 and tank = 4 then tankn = '2C4';
   if row = 3 and tank = 5 then tankn = '2C5';
    if row = 3 and tank = 6 then tankn = '2C6'; run;
roc sort data= glochidiadist;
by round x;
un;
roc print data = glochidiadist;
itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel spec
itle2 h=1.5 'AEH-11-PSUED0-01';
itle3 h=1 'Random assignment of glochidia to test tank';
                                                                          Page 19 of 200
itle4 h=1 'Mussel species: Mucket';
un:
****
*Mussel species: Hickorynut */
```

ata glochidia; do round = 1 to 10 by 1; do now = 1 to 3 by 1; do tank = 1 to 6 by 1; AEH-11-PSEUDO-01 x = ranuni(-1);File Folder 14B output; end; end; end; un; ata glochidiadist; set glochidia; f row = 1 then _row_ = 'A'; f row = 2 then _row_ = 'B'; f row = 3 then row = 'C';if row = 1 and tank = 1 then tankn = '3A1'; if row = 1 and tank = 2 then tankn = '3A2'; if row = 1 and tank = 3 then tankn = '3A3'; if row = 1 and tank = 4 then tankn = '3A4'; if row = 1 and tank = 5 then tankn = '3A5'; if row = 1 and tank = 6 then tankn = '3A6'; if row = 2 and tank = 1 then tankn = '3B1'; if row = 2 and tank = 2 then tankn = '3B2'; if row = 2 and tank = 3 then tankn = '3B3'; if row = 2 and tank = 4 then tankn = '3B4'; if row = 2 and tank = 5 then tankn = '3B5'; if row = 2 and tank = 6 then tankn = '3B6'; if row = 3 and tank = 1 then tankn = '3C1'; if row = 3 and tank = 2 then tankn = '3C2'; if row = 3 and tank = 3 then tankn = '3C3'; if row = 3 and tank = 4 then tankn = '3C4'; if row = 3 and tank = 5 then tankn = '305'; if row = 3 and tank = 6 then tankn = '3C6'; run; roc sort data= glochidiadist; by round x; un; roc print data = glochidiadist; itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel spec itle2 h=1.5 'AEH-11-PSUEDO-01'; itle3 h=1 'Random assignment of glochidia to test tank'; itle4 h=1 'Mussel species: Hickorynut'; un;

BOOFED BY S/14/12 REVIEWED BY Initialar Sh Dates 6/1-1/2

Prov 2001 20

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 1 AEH-11-PSUEDO-01 Random assignment of treatment to experimental tanks Mussel speces: Plain pocketbook

Obs	block	tank	x	tankn	trt
1	1	3	0.01295	1A3	control
2	з	3	0.02351	103	control
3	2	1	0.04483	1B1	control
4	1	1	0.08181	1A1	50
5	2	5	0.10591	1B5	50.
6	з	1	0.16200	101	5 0
7	1	2	0.16274	1A2	100
8	2	4	0.19080	1B4	100
9	1	4	0.31663	1A4	100
10	2	2	0.37323	182	200
11	3	6	0.57147	106	200
12	з	4	0.60073	1C4	200
13	3	2	0.61414	102	300
14	3	5	0.73888	105	300
15	1	5	0.83704	1A5	300
16	2	6	0.88651	1B6	300-HD
17	1	6	0.88955	1A6	300-HD
18	2	3	0.92670	1B3	300-HD

AEH-11-PSEUDO-01

File Folder 14C Book 1 p.4

Item No. /

BOOFED BY Initials: 77MS Date: 5/15/12 REV.EWED BY Initials: Date:

MM-Analysis performed by M. Gaikowski SAS version 9.2 08:56 10MAY11

Page Lot 13

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 2 AEH-11-PSUED0-01

Random assignment of treatment to experimental tanks Mussel speces: Higgins eye

AEH-11-PSEUDO-01

е.т., *г*

0bs	block	tank	×	tankn	trt
1	3	6	0.02715	206	control
2	2	1	0.10793	2B1	control
3	3	з	0.24227	203	control
4	1	4	0.39065	2A4	50
5	1	2	0.41329	2A2	50
6	1	1	0.60081	2A1	50
7	3	5	0.63527	205	100
8	3	4	0.63939	204	100
9	1	3	0.67341	2A3	100
10	1	6	0.68308	2A6	200
11	2	2	0,70345	2B2	200
12	2	5	0.73297	2B5	200
13	2	3	0.77113	2B3	300
14	3	2	0.77978	202	300
15	3	1	0.83290	201	300
16	2	6	0.84501	2B6	300 - HD
17	1	5	0.87678	2A5	300 - HD
18	2	4	0.88010	2B4	300 - HD

Page 2 of 13 Analysis performed by M. Gaikowski SAS version 9.2 08:56 10MAY11

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 3 AEH-11-PSUED0-01

Random assignment of treatment to experimental tanks Mussel speces: Fatmucket

!

,

•

1.1

Øbs	block	tank	x	tankл	trt	AEH-11-PSEUDO-01
			0.00000			
1	1	2	0,08330	3A2	control	
2	2	2	0.10124	3B2	control	
3	2	3	0.31999	3B3	control	
4	з	5	0.32027	305	50	
5	3	6	0.35692	306	50	
6	2	5	0.45716	3B5	50	
7	1	1	0.52092	3A1	100	
В	1	з	0.52278	3A3	100	
9	1	5	0.55777	3A5	100	
10	2	4	0.63422	384	200	
11	2	6	0,73185	3B6	200	
12	3	4	0.78148	304	200	
13	3	1	0.81279	301	300	
14	2	1	0.83781	3B1	300	
15	3	3	0.84275	303	300	
16	1	4	0.84300	3A4	300-HD	
17	з	2	0.89865	3C2	300-HD	
18	1	6	0.91420	3A6	300 - HD	

MA

Analysis performed by M. Gaikowski SAS version 9.2 08:56 10MAY11

Page 3 of 13

```
1234 * date created : 22Apr11 - MPG MML
1235 * Verified by: _____ (Date:_____
                                           )
                                                              page ____ of ___
1236 * Random allocation of treatment to tank.sas
AEH-11-PSEUDO-01
1238 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
1239
1240 FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
1241
1242 options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
1243
1244 /*Random assignment of treatment to experimental tanks*/
1245 /*Mussel speces: Pocketbook*/
1246 data PPB;
1247
      do block = 1 \text{ to } 3 \text{ by } 1;
       do tank = 1 to 6 by 1;
1248
        x = ranuni(-1);
1249
1250
        output;
1251
       end;
1252
      end;
1253 run;
NOTE: The data set WORK.PPB has 18 observations and 3 variables.
NOTE: DATA statement used (Total process time):
                         0.01 seconds
     real time
     cpu time
                         0.01 seconds
1254 data PPB2; set PPB;
1255
     if block = 1 and tank = 1 then tankn = '1A1';
1256
       if block = 1 and tank = 2 then tankn = '1A2';
1257
        if block = 1 and tank = 3 then tankn = '1A3';
         if block = 1 and tank = 4 then tankn = '1A4';
1258
          if block = 1 and tank = 5 then tankn = '1A5';
1259
           if block = 1 and tank = 6 then tankn = '1A6';
1260
       if block = 2 and tank = 1 then tankn = '1B1';
1261
       if block = 2 and tank = 2 then tankn = '1B2';
1262
        if block = 2 and tank = 3 then tankn = '1B3';
1263
1264
         if block = 2 and tank = 4 then tankn = '1B4';
1265
          if block = 2 and tank = 5 then tankn = '1B5';
           if block = 2 and tank = 6 then tankn = '186';
1266
1267
      if block = 3 and tank = 1 then tankn = '101';
       if block = 3 and tank = 2 then tankn = '1C2';
1268
1269
        if block = 3 and tank = 3 then tankn = '1C3';
1270
         if block = 3 and tank = 4 then tankn = '1C4';
          if block = 3 and tank = 5 then tankn = '1C5';
1271
1272
           if block = 3 and tank = 6 then tankn = '1C6';
1273
         run:
NOTE: There were 18 observations read from the data set WORK.PPB.
NOTE: The data set WORK.PPB2 has 18 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                         0.01 seconds
                         0.01 seconds
     cpu time
                                         Page L et 13
1274 proc sort data=PPB2;
```

- A.

```
1275 by x;
1276 run;
                                                                   AEH-11-PSEUDO-01
NOTE: There were 18 observations read from the data set WORK.PPB2.
NOTE: The data set WORK, PPB2 has 18 observations and 4 variables.
NOTE: PROCEDURE SORT used (Total process time):
                         0.01 seconds
      real time
      cpu time
                         0.01 seconds
1277
1278
     data assign_trt_PPB; set PPB2;
      if _n_ = 1 then trt = 'control';
1279
       if _n_ = 2 then trt = 'control';
1280
        if _n_ = 3 then trt = 'control';
1281
         if _n_ = 4 then trt = '50';
1282
      if _n_ = 5 then trt = '50';
1283
       if _n_ = 6 then trt = '50';
1284
        if _n_ = 7 then trt = '100';
1285
1286
         if _n_ = 8 then trt = '100';
       if _n_ = 9 then trt = '100';
1287
1288
       if _n_ = 10 then trt = '200';
        if _n_ = 11 then trt = '200';
1289
         if _n_ = 12 then trt = '200';
1290
       if _n_ = 13 then trt = '300';
1291
        if _n_ = 14 then trt = '300';
1292
         if _n_ = 15 then trt = '300';
1293
        if _n_ = 16 then trt = '300-HD';
1294
         if _n = 17 then trt = '300-HD';
1295
         if _n_ = 18 then trt = '300-HD';
1296
1297
         run:
NOTE: There were 18 observations read from the data set WORK.PPB2.
NOTE: The data set WORK.ASSIGN_TRT_PPB has 18 observations and 5 variables.
NOTE: DATA statement used (Total process time):
                         0.01 seconds
      rcal time
      cpu time
                         0.01 seconds
1298 proc print data= assign_trt_PPB;
1299 title! h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
1299! mussel species';
1300 title2 h=1.5 'AEH-11-PSUEDO-01';
1301 title3 h=1 'Random assignment of treatment to experimental tanks';
1302 title4 h=1 'Mussel speces: Plain pocketbook';
1303 run;
NOTE: There were 18 observations read from the data set WORK.ASSIGN_TRT_PPB.
NOTE: PROCEDURE PRINT used (Total process time):
      real time
                         0.01 seconds
                         0.01 seconds
      cpu time
1304
****
                                                    Paga S.
1305! **********************/
1306
```

```
1307 /*Mussel speces: Higgins eye*/
1308
     data HGE;
      do block = 1 to 3 by 1;
1309
       do tank = 1 to 6 by 1;
1310
1311
        x = ranuni(-1);
1312
        output;
1313
        end;
1314
       end;
1315 run;
NOTE: The data set WORK.HGE has 18 observations and 3 variables.
NOTE: DATA statement used (Total process time):
      real time
                         0.00 seconds
      cpu time
                          D.00 seconds
1316 data HGE2; set HGE;
1317
      if block = 1 and tank = 1 then tankn = '2A1';
1318
        if block = 1 and tank = 2 then tankn = '2A2';
         if block = 1 and tank = 3 then tankn = '2A3';
1319
         if block = 1 and tank = 4 then tankn = '2A4';
1320
1321
           if block = 1 and tank = 5 then tankn = '2A5';
           if block = 1 and tank = 6 then tankn = '2A6';
1322
1323
      if block = 2 and tank = 1 then tankn = '2B1';
       if block = 2 and tank = 2 then tankn = '282';
1324
1325
        if block = 2 and tank = 3 then tankn = '2B3';
          if block = 2 and tank = 4 then tankn = '2B4';
1326
1327
           if block = 2 and tank = 5 then tankn = '2B5';
            if block = 2 and tank = 6 then tankn = '2B6';
1328
1329
       if block = 3 and tank = 1 then tankn = '201';
        if block = 3 and tank = 2 then tankn = '2C2';
1330
         if block = 3 and tank = 3 then tankn = '2C3';
1331
          if block = 3 and tank = 4 then tankn = '2C4';
1332
           if block = 3 and tank = 5 then tankn = '2C5';
1333
            if block = 3 and tank = 6 then tankn = '206';
1334
1335
          run;
NOTE: There were 18 observations read from the data set WORK.HGE.
NOTE: The data set WORK.HGE2 has 18 observations and 4 variables.
NOTE: DATA statement used (Total process time):
                          0.01 seconds
      real time
                          0.01 seconds
      cpu time
1336 proc sort data=HGE2;
1337 by x;
1338 run;
NOTE: There were 18 observations read from the data set WORK.HGE2.
NOTE: The data set WORK.HGE2 has 18 observations and 4 variables.
NOTE: PROCEDURE SORT used (Total process time):
      real time
                          0.00 seconds
      cpu time
                          0.00 seconds
1339
1340 data assign_treat_HGE; set HGE2;
                                                  Por Col 13
```

1.1

AEH-11-PSEUDO-01

```
if _r_ = 1 then trt = 'control';
1341
                                                           AEH-11-PSEUDO-01
       if _n_ = 2 then trt = 'control';
1342
        if _n_ = 3 then trt = 'control';
1343
         if _n_ = 4 then trt = '50';
1344
      if _r_ = 5 then trt = '50';
1345
       if _n_ = 6 then trt = 50^{\circ};
1346
        if _n_ = 7 then trt = '100';
1347
        if _n_ = 8 then trt = '100';
1348
      if _n_ = 9 then trt = '100';
1349
      if _n_ = 10 then trt = '200';
1350
        if _n_ = 11 then trt = '200';
1351
        if _n_ = 12 then trt = '200';
1352
       if _n_ = 13 then trt = '300';
1353
        if _n_ = 14 then trt = '300';
1354
        if _n_ = 15 then trt = '300';
1355
       if _n_ = 16 then trt = '300-HD';
1356
        if _n_ = 17 then trt = '300-HD';
1357
        if _n_ = 18 then trt = '300-HD';
1358
1359
         run:
NOTE: There were 18 observations read from the data set WORK.HGE2.
NOTE: The data set WORK.ASSIGN_TREAT_HGE has 18 observations and 5 variables.
NOTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
     cpu time
                        0.01 seconds
1360 proc print data= assign_treat_HGE;
1361 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
1361! mussel species';
1362 title2 h=1.5 'AEH-11-PSUEDO-01';
1363 title3 h=1 'Random assignment of treatment to experimental tanks';
1364 title4 h=1 'Mussel speces: Higgins eye';
1365 run;
NOTE: There were 18 observations read from the data set WORK.ASSIGN_TREAT_HGE.
NOTE: PROCEDURE PRINT used (Total process time):
                        0.00 seconds
     real time
     cpu time
                        0.00 seconds
1366
1367! **********************
1368
1369 /*Mussel speces: Fatmucket*/
1370 data FAM;
     do block = 1 to 3 by 1;
1371
      do tank = 1 to 6 by 1;
1372
       x = ranuni(-1);
1373
1374
        output;
1375
       end;
1376
     end;
1377 run;
NOTE: The data set WORK.FAM has 18 observations and 3 variables.
NOTE: DATA statement used (Total process time):
```

•• •

7 01 [3 f 690

```
real time
cpu time
```

```
0.01 seconds
0.01 seconds
```

```
AEH-11-PSEUDO-01
```

```
1378 data FAM2; set FAM;
      if block = 1 and tank = 1 then tankn = '3A1';
1379
       if block = 1 and tank = 2 then tankn = '3A2';
1380
         if block = 1 and tank = 3 then tankn = '3A3';
1381
1382
          if block = 1 and tank = 4 then tankn = '3A4':
1383
           if block = 1 and tank = 5 then tankn = '3A5';
            if block = 1 and tank = 6 then tankn = '3A6';
1384
       if block = 2 and tank = 1 then tankn = '3B1';
1385
        if block = 2 and tank = 2 then tankn = '3B2';
1386
1387
         if block = 2 and tank = 3 then tankn = '3B3';
          if block = 2 and tank = 4 then tankn = '3B4';
1388
           if block = 2 and tank = 5 then tankn = '3B5';
1389
            if block = 2 and tank = 6 then tankn = '3B6';
1390
       if block = 3 and tank = 1 then tankn = '3C1';
1391
        if block = 3 and tank = 2 then tankn = '3C2';
1392
         if block = 3 and tank = 3 then tankn = '3C3';
1393
          if block = 3 and tank = 4 then tankn = '3C4';
1394
1395
           if block = 3 and tank = 5 then tankn = '305';
1396
            if block = 3 and tank = 6 then tankn = '306';
1397
          run:
NOTE: There were 18 observations read from the data set WORK.FAM.
NOTE: The data set WORK.FAM2 has 18 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     , real time
                          0.01 seconds
                          0.01 seconds
      cpu time
1398 proc sort data=FAM2;
1399
     by x;
1400 run;
NOTE: There were 18 observations read from the data set WORK.FAM2.
NOTE: The data set WORK.FAM2 has 18 observations and 4 variables.
NOTE: PROCEDURE SORT used (Total process time):
                         0.01 seconds
      real time
      opu time
                          0.01 seconds
1401
1402
     data assign treat FAM; set FAM2;
1403
      if _n_ = t then trt = 'control';
        if _n = 2 then trt = 'control';
1404
         if _n_ = 3 then trt = 'control';
1405
         if _n_ = 4 then trt = '50';
1406
1407
       if _n_ = 5 then trt = '50';
        if _n_ = 6 then trt = '50';
1408
1409
         if _n_ = 7 then trt = '100';
          if _n_ = 8 then trt = '100';
1410
1411
       if _n_ = 9 then trt = '100';
        if _n = 10 then trt = '200';
1412
         if _n_ = 11 then trt = '200';
1413
1414
          if _n_ = 12 then trt = '200';
                                            Page 8 of 13
```

if _n_ = 13 then trt = '300'; if _n_ = 14 then trt = '300'; if _n_ = 15 then trt = '300'; AEH-11-PSEUDO-01 1415 1416 1417 if _n_ = 16 then trt = '300-HD'; 1418 if _n_ = 17 then trt = '300-HD'; 1419 if _n_ = 18 then trt = '300-HD'; 1420 1421 run: NOTE: There were 18 observations read from the data set WORK.FAM2. NOTE: The data set WORK.ASSIGN_TREAT_FAM has 18 observations and 5 variables. NOTE: DATA statement used (Total process time): _____real time. 0.01 seconds 0.01 seconds . cpu time 1422 proc print data= assign_treat_FAM; 1423 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid 1423! mussel species'; 1424 title2 h=1.5 'AEH-11-PSUEDO-01'; 1425 title3 h=1 'Random assignment of treatment to experimental tanks'; 1426 title4 h=1 'Mussel speces: Fatmucket'; 1427 run; NOTE: There were 18 observations read from the data set WORK.ASSIGN_TREAT_FAM. NOTE: PROCEDURE PRINT used (Total process time): real time 0.01 seconds 0.01 seconds cpu time

·• ·

Page 9 et13

```
AEH-11-PSEUDO-01
* Study Number : AEH-11-PSUEDO-01
* Study Director: Jim Luoma
* date created : 22Apr11 - MPG MW
* Verified by:
                     (Date:____
                                  .)
                                                     page ____ of ___
* Random allocation of treatment to tank.sas
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate noscurce2;
/*Random assignment of treatment to experimental tanks*/
/*Mussel speces: Pocketbook*/
data PPB;
do block = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
 end;
end;
run;
data PPB2; set PPB;
if block = 1 and tank = 1 then tankn = '1A1';
 if block = 1 and tank = 2 then tankn = '1A2';
  if block = 1 and tank = 3 then tankn = '1A3';
   if block = 1 and tank = 4 then tankn = '1A4';
    if block = 1 and tank = 5 then tankn = '1A5';
     if block = 1 and tank = 6 then tankn = '1A6';
if block = 2 and tank = 1 then tankn = '1B1';
 if block = 2 and tank = 2 then tankn = '1B2':
  if block = 2 and tank = 3 then tankn = '1B3';
   if block = 2 and tank = 4 then tankn = '1B4';
    if block = 2 and tank = 5 then tankn = '185';
     if block = 2 and tank = 6 then tankn = '1B6';
 if block = 3 and tank = 1 then tankn = '1C1';
 if block = 3 and tank = 2 then tankn = '1C2';
  if block = 3 and tank = 3 then tankn = '1C3';
   if block = 3 and tank = 4 then tankn = '1C4';
    if block = 3 and tank = 5 then tankn = '105';
     if block = 3 and tank = 6 then tankn = '1C6';
   run;
proc sort data=PPB2;
by x;
run;
data assign_trt_PPB; set PPB2;
if _n_ = 1 then trt = 'control';
 if _n_ = 2 then trt = 'control';
  if _n_ = 3 then trt = 'control';
   if _n = 4 then trt = '50';
if _n_ = 5 then trt = '50';
 if _n_ = 6 then trt = '50';
  if _n_ = 7 then trt = '100';
   if _n_ = 8 then trt = '100';
                                          Pego 10 of 13
if _n_ = 9 then trt = '100';
```

1.1

.

```
if __n_ = 10 then trt = '200';
  if _n_ = 11 then trt = '200';
                                                                AEH-11-PSEUDO-01
   if _n_ = 12 then trt = '200';
  if _n_ = 13 then trt = '300';
  if _n_ = 14 then trt = '300';
   if _n_ = 15 then trt = '300';
  if _n_ = 16 then trt = '300-HD';
  if_{n} = 17 then trt = '300-HD';
   if _n_ = 18 then trt = '300-HJ';
   run;
proc print data= assign_trt_PP3;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUED0-01';
title3 h=1 'Random assignment of treatment to experimental tanks';
title4 h=1 'Mussel speces: Plain pocketbook';
run:
/*Mussel speces: Higgins eye*/
data HGE;
 do block = 1 to 3 by 1;
  do tank = 1 \text{ to } 6 \text{ by } 1;
  x = ranuni(-1);
  output;
  end;
 end;
run;
data HGE2; set HGE;
 if block = 1 and tank = 1 then tankn = '2A1';
  if block = 1 and tank = 2 then tankn = '2A2';
   if block = 1 and tank = 3 then tankn = '2A3';
    if block = 1 and tank = 4 then tankn = '2A4';
     if block = 1 and tank = 5 then tankn = '2A5';
      if block = 1 and tank = 6 then tankn = '2A6';
 if block = 2 and tank = 1 then tankn = '2B1';
  if block = 2 and tank = 2 then tankn = '2B2';
   if block = 2 and tank = 3 then tankn = '2B3';
    if block = 2 and tank = 4 then tankn = '2B4';
     if block = 2 and tank = 5 then tankn = '2B5';
      if block = 2 and tank = 6 then tankn = '2B6';
 if block = 3 and tank = 1 then tankn = '201';
  if block = 3 and tank = 2 then tankn = '202';
   if block = 3 and tank = 3 then tankn = '2C3';
    if block = 3 and tank = 4 then tankn = ^{\circ}2C4^{\circ};
     if block = 3 and tank = 5 then tankn = '205';
      if block = 3 and tank = 6 then tankn = '2C6';
    run:
proc sort data=HGE2;
 by x;
run;
data assign_treat_HGE; set HGE2;
 if _n_ = 1 then trt = 'control';
  if _n_ = 2 then trt = 'control';
                                             Page 11 of 13
   if _n_ = 3 then trt = 'control';
    if _n_ = 4 then trt = '50';
```

ų •

```
if _n_ = 5 then trt = '50';
 if _n_ = 6 then trt = '50';
                                                                 AEH-11-PSEUDO-01
  if _n_ = 7 then trt = '100 ;
   if __n_ = 8 then trt = '100';
if _n_ = 9 then trt = '100';
 if _n_ = 10 then trt = '200';
  if _n_ = 11 then trt = '200';
   if _n_ = 12 then trt = '200';
 if _n_ = 13 then trt = '300';
  if _n_ = 14 then trt = '300';
   if _n_ = 15 then trt = '300';
 if _n_ = 16 then trt = '300-HD':
  if _n_ = 17 then trt = '300-HD';
   if _n_ = 18 then trt = '300-HD';
   run;
proc print data= assign_treat_HGE;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUEDO-01';
title3 h=1 'Random assignment of treatment to experimental tanks';
title4 h=1 'Mussel speces: Higgins eye';
run;
/*Mussel speces: Fatmucket*/
data FAM;
do block = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
 end;
end;
run;
data FAM2; set FAM;
if block = 1 and tank = 1 then tankn = '3A1';
 if block = 1 and tank = 2 then tankn = '3A2';
  if block = 1 and tank = 3 then tankn = '3A3';
   if block = 1 and tank = 4 then tankn = '3A4';
    if block = 1 and tank = 5 then tankn = '3A5';
     if block = 1 and tank = 6 then tankn = '3A6';
 if block = 2 and tank = 1 then tankn = '3B1';
 if block = 2 and tank = 2 then tankn = '3B2';
  if block = 2 and tank = 3 then tankn = '383';
   if block = 2 and tank = 4 then tankn = '3B4';
    if block = 2 and tank = 5 then tankn = '385';
     if block = 2 and tank = 6 then tankn = '386';
 if block = 3 and tank = 1 then tankn = '3C1';
 if block = 3 and tank = 2 then tankn = '3C2';
  if block = 3 and tank = 3 then tankn = '3C3';
   if block = 3 and tank = 4 then tankn = '3C4';
    if block = 3 and tank = 5 then tankn = '305':
     if block = 3 and tank = 6 then tankn = '306';
   run;
proc sort data=FAM2;
                                                         Page 1201 13
by x;
run;
```

÷ 1

data assign_treat_FAM; set FAM2; if _n_ = 1 then trt = 'control';
if _n_ = 2 then trt = 'control'; AEH-11-PSEUDO-01 if_n_ = 3 then trt = 'control'; File Folder 14C if _n_ = 4 then trt = '50'; if _n_ = 5 then trt = '50'; if _n_ = 6 then trt = '50'; if _n_ = 7 then trt = '100'; if _n_ = 8 then trt = '100'; if _n_ = 9 then trt = '100'; if _n_ = 10 then trt = '200'; if _n = 11 then trt = '200'; if _n_ = 12 then trt = '200'; if _n_ = 13 then trt = '300'; if _n_ = 14 then trt = '300'; if _n_ = 15 then trt = '300'; if _n_ = 16 then trt = '300-HD'; if _n_ = 17 then trt = '300-HD'; if _n_ = 18 then trt = '300-HD'; run; proc print data= assign_treat_FAM; title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel title2 h=1.5 'AEH-11-PSUEDO-01'; title3 h=1 'Random assignment of treatment to experimental tanks'; title4 h=1 'Mussel speces: Fatmucket'; run;

MM IØMuy II

Inhials: The Date : 5/15/12 REVIEWED BY

Page 13 of 13 18

Study Number : AEH-11-PSUEDO-01 * Study Director: Jim Luoma AEH-11-PSEUDO-01 * date created : 140ct11 - MPG MML * Verified by: _____ (Date:____) page ____ of __ * Random allocation of treatment to tank.sas DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE; options /*1s=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2; /*Random assignment of treatment to experimental tanks*/ /*Mussel speces: Washboard*/ data WASH; do block = 1 to 3 by 1; do tank = 1 to 6 by 1; File Folder 14c Book 1 p.21-22 x = ranuni(-1); output; end; end; run; data WASH2; set WASH; Item No. 2 if block = 1 and tank = 1 then tankn = '1A1'; if block = 1 and tank = 2 then tankn = '1A2'; if block = 1 and tank = 3 then tankn = '1A3'; if block = 1 and tank = 4 then tankn = '1A4'; if block = 1 and tank = 5 then tankn = '1A5'if block = 1 and tank = 6 then tankn = '1A6'; if block = 2 and tank = 1 then tankn \approx '1B1'; if block = 2 and tank = 2 then tankn = '1B2'; if block = 2 and tank = 3 then tankn = '1B3'; if block = 2 and tank = 4 then tankn = '1B4': if block = 2 and tank = 5 then tankn = '1B5'; if block = 2 and tank = 6 then tankn = '186'; if block = 3 and tank = 1 then tankn = '1C1'; if block = 3 and tank = 2 then tankn = '1C2'; if block = 3 and tank = 3 then tankn = '1C3'; if block = 3 and tank = 4 then tankn = '164'; if block = 3 and tank = 5 then tankn = '105'; if block = 3 and tank = 6 then tankn = '106'; run; proc sort data=WASH2; by x; run: data assign_trt_WASH; set WASH2; if _n_ = 1 then trt = 'control'; if _n_ = 2 then trt = 'control'; if _n_ = 3 then trt = 'control'; PROOFED BY Initiais: 2ms Date: 5/15/12 if _n_ = 4 then trt = '50'; if _n_ = 5 then trt = '50'; REVIEWED BY if _n_ = 6 then trt = '50'; Initiala: ____ Date' ____ if _n_ = 7 then trt = '100'; if _n_ = 8 then trt = '100'; if _n_ = 9 then trt = '100'; if _n_ = 10 then trt = '200'; if _n_ = 11 then trt = '200'; Page Lot 2 if _n_ = 12 then trt = '200'; if _n_ = 13 then trt = '300';

```
if _n_ = 14 then trt = '300';
    if _n_ = 15 then trt = '300';
  if _n_ = 16 then trt = '300-HD';
                                                                            AEH-11-PSEUDO-01
  if _n_ = 17 then trt = '300-HD';
   if _n_ = 18 then trt = '300-HD':
    run;
proc print data= assign_trt_WASH;
title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel
title2 h=1.5 'AEH-11-PSUEDO-01';
title3 h=1 'Random assignment of treatment to experimental tanks';
title4 h=1 'Mussel speces: Washboard';
run;
/*Mussel speces: Fatmucket*/
data FAM;
do block = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
  x = ranuni(-1);
  output;
 end;
end;
run;
data FAM2; set FAM;
if block = 1 and tank = 1 then tankn = '3A1';
 if block = 1 and tank = 2 then tankn = '3A2';
  if block = 1 and tank = 3 then tankn = '3A3';
   if block = 1 and tank = 4 then tankn = '3A4';
    if block = 1 and tank = 5 then tankn = '3A5';
     if block = 1 and tank = 6 then tankn = '3A6';
if block = 2 and tank = 1 then tankn = '3B1';
 if block = 2 and tank = 2 then tankn = '3B2';
  if block = 2 and tank = 3 then tankn = '3B3';
   if block = 2 and tank = 4 then tankn = '3B4';
    if block = 2 and tank = 5 then tankn = '3B5';
     if block = 2 and tank = 6 then tankn = '3B6';
if block = 3 and tank = 1 then tankn = '3C1';
 if block = 3 and tank = 2 then tankn = '3C2';
  if block = 3 and tank = 3 then tankn = '303';
   if block = 3 and tank = 4 then tankn = ^{1}3C4^{1};
    if block = 3 and tank = 5 then tankn = '305';
     if block = 3 and tank = 6 then tankn = '3C6';
   run;
proc sort data=FAM2;
by x;
run:
data assign_treat_FAM; set FAM2;
if n = 1 then trt = 'control';
 if n = 2 then trt = 'control';
  if _n_ = 3 then trt = 'control';
   if n_{-} = 4 then trt = '50';
if _n_ = 5 then trt = '50';
 if _n_ = 6 then trt = '50';
  if _n_ = 7 then trt = '100';
   if _n_ = 8 then trt = '100';
if _n_ = 9 then trt = '100';
 if _n_ = 10 then trt = '200';
  if n = 11 then trt = '200';
                                                 Page 2 of 9
   if _n_ = 12 then trt = '200';
```

```
216
```

if _n_ = 13 then trt = '300'; if _n_ = 14 then trt = '300'; if _n_ = 15 then trt = '300'; if _n_ = 15 then trt = '300-HD'; if _n_ = 16 then trt = '300-HD'; if _n_ = 17 then trt = '300-HD'; if _n_ = 18 then trt = '300-HD'; run; proc print data= assign_treat_FAM; title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel title2 h=1.5 'AEH-11-PSUED0-01'; title3 h=1 'Random assignment of treatment to experimental tanks'; title4 h=1 'Mussel speces: Fatmucket'; run;

i

۲

Page 3 of 9

```
390 * date created : 140ct11 - MPG
                                                            page ____ of ____AEH-11-PSEUDO-01
391 * Verified by: _____ (Date:____
                                         )
392 * Random allocation of treatment to tank.sas
394 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
395
396 FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' & SYSVER & SYSTIME & SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
397
398
    options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
399
    /*Random assignment of treatment to experimental tanks*/
400
401
    /*Mussel speces: Washboard*/
402 data WASH;
403
     do block \approx 1 to 3 by 1;
      do tank = 1 to 6 by 1;
404
405
       x = ranuni(-1);
406
       output;
407
      end;
408
     end;
409
    run;
NOTE: The data set WORK.WASH has 18 observations and 3 variables.
NOTE: DATA statement used (Total process time):
     real time
                        0.00 seconds
     cpu time
                         0.01 seconds
410 data WASH2; set WASH;
    if block = 1 and tank = 1 then tankn = '1A1';
411
      if block = 1 and tank = 2 then tankn = '1A2';
412
413
       if block = 1 and tank = 3 then tankn = '1A3';
        if block = 1 and tank = 4 then tanks = '1A4':
414
415
         if block = 1 and tank = 5 then tankn = '1A5';
          if block = 1 and tank = 6 then tankn = '1A6';
416
417
     if block = 2 and tank = 1 then tankn = '1B1';
      if block = 2 and tank = 2 then tankn = '1B2';
418
419
       if block = 2 and tank = 3 then tankn = '1B3';
        if block = 2 and tank = 4 then tankn = '1B4';
420
421
         if block = 2 and tank = 5 then tankn = '1B5';
          if block = 2 and tank = 6 then tankn = '1B6';
422
     if block = 3 and tank = 1 then tankn = '1C1';
423
      if block = 3 and tank = 2 then tankn = '1C2';
424
       if block = 3 and tank = 3 then tankn = '1C3';
425
        if block = 3 and tank = 4 then tankn = '1C4';
426
         if block = 3 and tank = 5 then tankn = '105';
427
          if block = 3 and tank = 6 then tankn = '1C6';
428
429
        run;
NOTE: There were 18 observations read from the data set WORK.WASH.
NOTE: The data set WORK.WASH2 has 18 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                         0.01 seconds
                         0.01 seconds
     cpu time
430 proc sort data=WASH2;
    by x;
431
                                                                     Page 4 of 9
432 run;
NOTE: There were 18 observations read from the data set WORK.WASH2.
```

```
NOTE: The data set WORK.WASH2 has 18 observations and 4 variables.
NOTE: PROCEDURE SORT used (Total process time);
                                                                               AEH-11-PSEUDO-01
      real time
                         0,00 seconds
      opu time
                          0.01 seconds
433
434
     data assign_trt_WASH; set WASH2;
     if _n_ = 1 then trt = 'control';
435
436
      if _n_ = 2 then trt = 'control';
       if _n_ = 3 then trt = 'control';
437
        if _n_ = 4 then trt = '50';
438
439
      if _n_ = 5 then trt = '50';
440
      if _n_ = 6 then trt = '50';
441
       ______if __n_ = 7 then trt = '100';
        if _n_ = 8 then trt = '100';
442
443
      if _n_ = 9 then trt = '100';
444
      if _n_ = 10 then trt = '200';
      if _n = 11 then trt = '200';
445
446
        if _n_ = 12 then trt = '200';
       if _n_ = 13 then trt = '300';
447
       if _n_ = 14 then trt = '300';
448
        if _n_ = 15 then trt = '300';
449
450
       if _n_ = 16 then trt = '300-HD';
       if _n_ = 17 then trt = '300-HD';
451
452
        if _n_ = 18 then trt = '300-HD';
453
         run:
NOTE: There were 18 observations read from the data set WORK.WASH2.
NOTE: The data set WORK.ASSIGN_TRT_WASH has 18 observations and 5 variables,
NOTE: DATA statement used (Total process time):
      real time
                         0.01 seconds
      cpu time
                         0.01 seconds
454 proc print data= assign_trt_WASH;
455 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
4551 mussel species';
456 title2 h=1.5 'AEH-11-PSUEDO-01';
457 title3 h=1 'Random assignment of treatment to experimental tanks';
458 title4 h=1 'Mussel speces: Washboard';
459 run;
NOTE: There were 18 observations read from the data set WORK.ASSIGN TRT WASH.
NOTE: PROCEDURE PRINT used (Total process time):
      real time
                         0.00 seconds
      cpu time
                         0.00 seconds
460
461! ****************
                   B Plain pocket book

B Plain pocket book

s: Eatmooket*1 Ospecies name was changed

due to availability lot entry TMS 5/15/12

due to availability lot entry TMS 5/15/12
462
463 /*Mussel speces: Eatmucket*/
464 data FAM; PPB
465 do block = 1 to 3 by 1;
466
     do tank = 1 to 6 by 1;
467
       x = ranuni(-1);
468
       output;
                                                   Page 5 st.
469
      end:
```

```
470 end;
```

,

```
219
```

471 run: OppB NOTE: The data set WORK.FAM has 18 observations and 3 variables. AEH-11-PSEUDO-01 NOTE: DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds PPB PPB data_FAM2; set_FAM; 472 473 if block = 1 and tank = 1 then tankn = '3A1'; if block = 1 and tank = 2 then tankn = '3A2'; 474 475 if block = 1 and tank = 3 then tankn = '3A3'; if block = 1 and tank = 4 then tankn = '3A4'; 476 if block = 1 and tank = 5 then tankn = '3A5'; 477 if block = 1 and tank = 6 then tankn = '3A6'; 478 479 if block = 2 and tank = 1 then tankn = '3B1'; if block = 2 and tank = 2 then tankn = '3B2'; 480 if block = 2 and tank = 3 then tankn = '3B3'; 481 if block = 2 and tank = 4 then tankn = '3B4'; 482 if block = 2 and tank = 5 then tankn = '3B5'; 483 if block = 2 and tank = 6 then tankn = '3B6'; 484 if block = 3 and tank = 1 then tankn = '3C1'; 485 if block = 3 and tank = 2 then tankn = '302'; 486 if block = 3 and tank = 3 then tankn = '3C3'; 487 if block = 3 and tank = 4 then tankn = '3C4'; 488 if block = 3 and tank = 5 then tankn = '3C5'; 489 if block = 3 and tank = 6 then tankn = '306'; 490 491 run: NOTE: There were 18 observations read from the data set WORK.FAM. NOTE: The data set WORK.FAME has 18 observations and 4 variables. NOTE: DATA statement used (Total process time): real time 0.01 seconds 0.01 seconds cpu time PP 8 492 proc sort data=FAM2; 493 by x; 494 run: PPB NOTE: There were 18 observations read from the data set WORK. FAM2 NOTE: The data set WORK.FAM2 has 18 observations and 4 variables NOTE; PROCEDURE SORT used (Total process time): real time 0.00 seconds 0.00 seconds cpu time 495 PPBO PPB data assign_treat_FAM; set FAM2; if _n_ = 1 then trt = 'control'; (D) species name was changed due to availability lot entry TMS 5/15/62 496 497 if _n_ = 2 then trt = 'control'; 498 if _n_ = 3 then trt = 'control'; 499 if _n_ = 4 then trt = '50'; 500 if _n_ = 5 then trt = '50'; 501 if _n_ = 6 then trt = '50'; 502 if _n_ = 7 then trt = '100'; 503 if _n_ = 8 then trt = '100'; 504 if _n_ = 9 then trt = '100'; 505 if _n_ = 10 then trt = '200' 506 if _n_ = 11 then trt = '200'; 507 page 6 or. if _n_ = 12 then trt = '200'; 508

509 if _n_ = 13 then trt = '300'; $if_n = 14$ then trt = '300'; AEH-11-PSEUDO-01 510 if _n_ = 15 then trt = '300'; 511 if _n_ = 16 then trt = '300-HD'; if _n_ = 17 then trt = '300-HD'; 512 513 if _n_ = 18 then trt = '300-HD'; 514 515 run; PPBO NOTE: There were 18 observations read from the data set WORK.EAM2. NOTE: The data set WORK.ASSIGN_TREAT_PAR has 18 observations and 5 variables. NOTE: DATA statement used (Total process time): real time 0.01 seconds 0.00 seconds opu time pθ8 516 proc print data= assign_treat_FAH; 517 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid 517! mussel species'; 518 title2 h=1.5 'AEH-11-PSUED0-01'; 519 title3 h=1 'Random assignment of treatment to experimental tanks'; 520 title4 h=1 'Mussel speces: Fatmuckot'; 521 run: Pockef book 521 run; O PPB NOTE: There were 18 observations read from the data set WORK.ASSIGN_TREAT_FAM. NOTE: PROCEDURE PRINT used (Total process time): 0.00 seconds real time O species name changed due to availability late entry TMS 5/15/2 cpu time 0.00 seconds

Page 7 of 7

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 2 AEH-11-PSUEDO-01

Random	assignme	ent of tr	reatment to	experime	ntal tanks 🚬
Mussel	speces:	Fatmueke	t Dlank	jacket bo	N (PPB)
		- 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.2
Obs	block	tank	x	tankn	trt
1	2	5	0.01598	v8B5	control
2	2	6	0.19581	¥3B6	control
3	1	6	0.22694	r3A6	control
4	з	1	0.24156	VGC1	50
5	1	4	0.24732	∿3A4	50
6	з	2	0.29907	∿ 302	50
7	2	3	0.35524	13B3	100
8	2	1	0.41973	دsB1	100
9	3	6	0.46543	19284	100
10	3	з	0.50889	~ 3C3	200
11	3	5	0.53796	∽ 8 C5	200
12	1	2	0.63093	L3A2	200
13	2	4	0.81196	3 84	300
14	3	4	0.86321	-3C4	300
15	1	з	0.88466	4 3 A3	300
16	1	5	0.88937	⊷8A5	300-HD
17	2	2	0.90543	-3 82	300-HD
18	1	1	0.99497	-8A1	300 - HD

· • •

Depictus chirgent due to availability to wrong with 10/18/11 Jan T Je

AEH-11-PSEUDO-01

Analysis performed by M. Gaikowski SAS version 9.2 11:03 1400711 MM Free Fer 9

Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species 1 AEH-11-PSUED0-01 Random assignment of treatment to experimental tanks

Mussel speces; Washboard

, ·

Obs	block	tank	х	tankn	trt
1	2	2	0.04902	は B2	control
2	1	5	0.19550	UA5	control
3	2	4	0.22508	너B4	control
4	3	2	0.25731	v1 C2	50
5	1	1	0.26201	UTA1	50
6	3	1	0.29013	401	50
7	з	6	0.48750	irĆ6	100
8	1	2	0.51734	1A2	100
9	1	6	0.60907	LA6	100
10	2	5	D.69893	M185	200
11	з	4	0.75130	• 1 Ć4	200
12	3	з	0.78912	ułć3	200
13	2	1	0.79399	·/1B1	300
14	3	5	0.79401	·105	300
15	1	4	0.80175	LAA	300
16	2	3	0.83625	∽1B3	300-HD
17	1	3	0.91376	-1A3	300-HD
18	2	6	0.95637	-1 8 6	300-HD

PROOFED BY Initials: <u>2015</u> Date: <u>5/15</u>/12 REVIEWED BY Initials: <u>Date</u>

AEH-11-PSEUDO-01 File Folder 14c

Analysis performed by M. Gaikowski SAS version 9.2 11:03 140CT11 MM

TTECTS OT PSUEdomonias Tidorescens (PI-OLI45A) to giochidia from seven unionid mussel species EH-11-PSUEDO-01 andom assignment of treatment to experimental tanks 5... AEH-11-PSEUDO-01 ussel speces: Black Sandshell

bs	block	tank	x	tankn	trt
1	3	6	0.04349	106	control
2	1	5	0.05493	1A5	control
3	2	1	0.06777	1B1	control
4	1	1	0.06965	1A1	50
5	3	1	0.07510	101	50
6	1	3	0.07952	1A3	50
7	2	2	0.09559	1B2	100
8	2	3	0.21685	1B3	100
9	3	5	0.29355	105	100
10	1	6	0.32497	1A6	200
11	2	6	0.36986	1B6	200
12	2	5	0.41768	185	200
13	3	2	0.43417	102	300
14	2	4	0.48474	1B4	300
15	1	2	0.70423	1A2	300
16	3	4	0.72592	1C4	300-HD
17	3	3	0.74208	103	300-HD
18	1	4	0.80908	1A4	300-HD

File Folder 14/C Ligbook 1, pg 30-31

Item No. 3

٦

PROFILE BY Initials: 2015 Date: 5/15/12 REVIEWED BY Initials: 2010 Date: 101715

Page 1 of 13

nalysis performed by J. Luoma SAS version 9.2 11:32 09JAN12

ffects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species EH-11-PSUED0-01 andom assignment of treatment to experimental tanks $\zeta \sim$ ussel speces: Mucket

AEH-11-PSEUDO-01

bs	block	tank	x	tankn	trt
1	3	1	0.05499	201	control
2	2	5	0.14187	2 B5	control
З	2	4	0.23886	284	control
4	2	6	0.25670	286	50
5	1	4	0.26143	2A4	50
6	3	З	0.34256	203	50
7	3	6	0.37326	206	100
8	1	· 2	0.37424	2A2	100
9	2	2	0.49338	282	100
10	3	2	0.55304	202	200
11	1	6	0.55610	2A6	200
12	1	5	0.73592	2A5	200
13	2	3	0.76571	2B3	300
14	2	1	0.79764	2B1	300
15	3	4	0.86801	204	300
16	1	З	0.92888	2A3	300-HD
17	3	5	0.97855	205	30 0-HD
18	1	1	0.98976	2A1	300-HD

| Page 2 of 13

nalysis performed by J. Luoma SAS version 9.2 11:32 09JAN12

225

TTECTS OF PSUEDOMONAS TRUOPESCENS (PE-GLI4DA) TO glochidia trom seven unionid mussel species EH-11-PSUEDO-01 andom assignment of treatment to experimental tanks سريک ussel speces: Hickory Nut З

	-	-				
bs	block	tank	х	tankn	trt	AEH-11-PSEUDO-01
1	3	4	0.01010	3C4	control	
2	3	1	0.03487	3C1	control	
3	1	2	0.04425	3A2	control	
4	2	6	0.14354	3 B6	50	
5	2	3	0.31457	3B3	50	
6	1	5	0.41691	3A5	50	
7	2	. 1	0.52751	3B1	100	
8	3	5	0.66356	305	100	
9	3	2	0.67191	302	100	
10	3	6	0.70303	3C 6	200	
11	1	4	0.71377	3A4	200	
12	1	3	0.77824	3A3	200	
13	1	6	0.78722	3A6	300	
14	2	5	0.86606	3B5	300	
15	2	2	0.89116	3B2	300	
16	1	1	0.90987	3A1	300-HD	
17	3	3	0.94304	303	300-HD	
18	2	4	0.99299	3B4	300-HD	

[Page 3 of 13

nalysis performed by J. Luoma SAS version 9.2 11:32 09JAN12

```
~~~~~~~~~~~
Study Number : AEH-11-PSUEDO-01
 Study Director: Jim Luoma
                                                                      AEH-11-PSEUDO-01
 date created : 09Jan12 - JAL
                                                     page ____ of __
 Verified by:
              (Date:__
                                  -)
  Random allocation of treatment to tank.sas
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
*Random assignment of treatment to experimental tanks*/
*Mussel speces: Black Sandshell*/
ata BLS;
do block = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
 x = ranuni(-1);
 output;
 end;
end;
un;
ata BLS2; set BLS;
if block = 1 and tank = 1 then tankn = '1A1';
 if block = 1 and tank = 2 then tankn = '1A2';
  if block = 1 and tank = 3 then tankn = '1A3';
   if block = 1 and tank = 4 then tankn = '1A4';
    if block = 1 and tank = 5 then tankn = '1A5';
     if block = 1 and tank = 6 then tankn = '1A6';
if block = 2 and tank = 1 then tankn = '1B1';
 if block = 2 and tank = 2 then tankn = '1B2';
  if block = 2 and tank = 3 then tankn = '1B3';
   if block = 2 and tank = 4 then tankn = '1B4';
    if block = 2 and tank = 5 then tankn = '1B5';
     if block = 2 and tank = 6 then tankn = '1B6';
if block = 3 and tank = 1 then tankn = '1C1';
 if block = 3 and tank = 2 then tankn = '1C2';
  if block = 3 and tank = 3 then tankn = '103';
   if block = 3 and tank = 4 then tankn = '1C4';
    if block = 3 and tank = 5 then tankn = '1C5';
     if block = 3 and tank = 6 then tankn = '1C6';
   run;
roc sort data=BLS2;
by x;
un;
ata assign_trt_BLS; set BLS2;
if n = 1 then trt = 'control';
 if _n_ = 2 then trt = 'control';
  if _n_ = 3 then trt = 'control';
   if n = 4 then trt = '50';
if n = 5 then trt = '50';
                                                  | Page 4 of 13
 if _n_ = 6 then trt = '50';
  if _n_ = 7 then trt = '100';
   if _n_ = 8 then trt = '100';
```

```
227
```

```
if n = 9 then trt = '100';
if _n_ = 10 then trt = '200';
 if _n_ = 11 then trt = '200';
                                                            AEH-11-PSEUDO-01
  if n = 12 then trt = '200';
 if _n_ = 13 then trt = '300';
  if _n_ = 14 then trt = '300';
  if _n_ = 15 then trt = '300';
 if _n_ = 16 then trt = '300-HD';
  if _n_ = 17 then trt = '300-HD';
  if _n_ = 18 then trt = '300-HD';
  run;
roc print data= assign_trt_BLS;
itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel spec
itle2 h=1.5 'AEH-11-PSUEDO-01';
itle3 h=1 -'Random assignment of treatment to experimental tanks';
itle4 h=1 'Mussel speces: Black Sandshell';
un:
                                        *******************
**********************************
*Mussel speces: Mucket*/
ata MUC;
do block = 1 to 3 by 1;
do tank = 1 to 6 by 1;
 x = ranuni(-1);
 output;
 end;
end;
un;
ata MUC2; set MUC;
if block = 1 and tank = 1 then tankn = '2A1';
 if block = 1 and tank = 2 then tankn = '2A2';
  if block = 1 and tank = 3 then tankn = '2A3';
  if block = 1 and tank = 4 then tankn = '2A4';
    if block = 1 and tank = 5 then tankn = '2A5';
     if block = 1 and tank = 6 then tankn = '2A6';
if block = 2 and tank = 1 then tankn = '2B1';
 if block = 2 and tank = 2 then tankn = '2B2';
  if block = 2 and tank = 3 then tankn = '2B3';
   if block = 2 and tank = 4 then tankn = '2B4';
    if block = 2 and tank = 5 then tankn = '2B5';
     if block = 2 and tank = 6 then tankn = '2B6';
if block = 3 and tank = 1 then tankn = '2C1';
 if block = 3 and tank = 2 then tankn = '202';
  if block = 3 and tank = 3 then tankn = '203';
   if block = 3 and tank = 4 then tankn = '2C4';
    if block = 3 and tank = 5 then tankn = '2C5';
     if block = 3 and tank = 6 then tankn = '2C6';
   run;
roc sort data=MUC2;
by x;
                                              Fage 5 of 13
un;
ata assign_trt_MUC; set MUC2;
if _n_ = 1 then trt = 'control';
if _n_ = 2 then trt = 'control';
```

```
228
```

```
II _N_ - S EDBH CCC - CONCLOT ,
  if _n_ = 4 then trt = '50';
if n = 5 then trt = '50';
if _n_ = 6 then trt = '50';
 if _n_ = 7 then trt = '100';
                                                                    AEH-11-PSEUDO-01
  if _n_ = 8 then trt = '100';
if _n_ = 9 then trt = '100';
 if _n_ = 10 then trt = '200';
 if _n_ = 11 then trt = '200';
  if _n_ = 12 then trt = '200';
 if _n_ = 13 then trt = '300';
 if n = 14 then trt = '300';
  if _n_ = 15 then trt = '300';
 if n_ = 16 then trt = '300-HD';
 if _n_ = 17 then trt = '300-HD';
  if _n_ = 18 then trt = '300-HD';
  run:
roc print data= assign_trt_MUC;
itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel spec
itle2 h=1.5 'AEH-11-PSUED0-01';
itle3 h=1 'Random assignment of treatment to experimental tanks';
itle4 h=1 'Mussel speces: Mucket';
un;
*Mussel speces: Hickory Nut*/
ata HIC:
do block = 1 to 3 by 1;
 do tank = 1 to 6 by 1;
 x = ranuni(-1);
 output;
 end;
end;
in;
ata HIC2; set HIC;
if block = 1 and tank = 1 then tankn = '3A1';
 if block = 1 and tank = 2 then tankn = '3A2';
 if block = 1 and tank = 3 then tankn = '3A3';
   if block = 1 and tank = 4 then tankn = '3A4';
    if block = 1 and tank = 5 then tankn = '3A5';
     if block = 1 and tank = 6 then tankn = '3A6';
if block = 2 and tank = 1 then tankn = '3B1';
 if block = 2 and tank = 2 then tankn = '3B2';
  if block = 2 and tank = 3 then tankn = '3B3';
   if block = 2 and tank = 4 then tankn = '3B4';
    if block = 2 and tank = 5 then tankn = '3B5';
     if block = 2 and tank = 6 then tankn = '3B6';
if block = 3 and tank = 1 then tankn = '3C1';
 if block = 3 and tank = 2 then tankn = '3C2';
  if block = 3 and tank = 3 then tankn = '3C3';
   if block = 3 and tank = 4 then tankn = '3C4';
                                                       Page 6 01 13
    if block = 3 and tank = 5 then tankn = '305';
     if block = 3 and tank = 6 then tankn = '306';
   run:
roc sort data=HIC2;
```

```
229
```

by x; un;	•
ata assign_trt_HIC; set HIC2; if _n_ = 1 then trt = 'control'; if _n_ = 2 then trt = 'control'; if _n = 3 then trt = 'control';	AEH-11-PSEUDO-01
<pre>if _n_ = 3 then trt = '50'; if _n = 5 then trt = '50';</pre>	
if _n_ = 6 then trt = '50'; if _n_ = 7 then trt = '100';	
if _n_ = 8 then trt = '100'; if _n_ = 9 then trt = '100';	
if _n_ = 10 then trt = '200';	
if <u>_n_</u> = 11 then trt = '200'; if _n_ = 12 then trt = '200';	
if _n = 13 then trt = '300'; if n = 14 then trt = '300';	
if _n_ = 15 then trt = '300';	
if _n_ = 16 then trt = '300-HD'; if _n_ = 17 then trt = '300-HD';	
if _n_ = 18 then trt = '300-HD'; run;	
roc print data= assign_trt_HIC;	re alechidia from cover unionid muscal spor
<pre>itle1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) t itle2 h=1.5 'AEH-11-PSUEDO-01';</pre>	o grountara from seven antonia mosser spec
itle3 h=1 'Random assignment of treatment to experimental t itle4 h=1 'Mussel speces: Hickory Nut'; un;	anks';

1 Page 7 of 13

```
95 * date created : U9Jan12 - JAL
96 * Verified by: _____ (Date:____
                                                           page ____ of ____
                                        -)
97 * Random allocation of treatment to tank.sas
99 DM 'LOG; CLEAR; OUTPUT; CLEAR; '; * CLEAR LOG AND OUTPUT;
                                                                   AEH-11-PSEUDO-01
00
01 FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
02
03 options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
04
05 /*Random assignment of treatment to experimental tanks*/
06 /*Mussel speces: Black Sandshell*/
07 data BLS;
   do block = 1 to 3 by 1;
08
    do tank = 1 to 6 by 1;
09
     x = ranuni(-1);
10
     output;
11
12
     end;
13
    end;
14 run;
OTE: The data set WORK.BLS has 18 observations and 3 variables.
OTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
     cpu time
                       0.01 seconds
15 data BLS2; set BLS;
16
    if block = 1 and tank = 1 then tankn = '1A1';
     if block = 1 and tank = 2 then tankn = '1A2';
17
     if block = 1 and tank = 3 then tankn = '1A3';
18
      if block = 1 and tank = 4 then tankn = '1A4';
19
        if block = 1 and tank = 5 then tankn = '1A5';
20
         if block = 1 and tank = 6 then tankn = '1A6';
21
    if block = 2 and tank = 1 then tankn = '1B1';
22
    if block = 2 and tank = 2 then tankn = '1B2';
23
     if block = 2 and tank = 3 then tankn = '1B3';
24
       if block = 2 and tank = 4 then tankn = '1B4';
25
26
        if block = 2 and tank = 5 then tankn = '1B5';
         if block = 2 and tank = 6 then tankn = '1B6';
27
    if block = 3 and tank = 1 then tankn = '1C1';
28
29
     if block = 3 and tank = 2 then tankn = '1C2';
     if block = 3 and tank = 3 then tankn = '1C3';
30
       if block = 3 and tank = 4 then tankn = '1C4';
31
        if block = 3 and tank = 5 then tankn = '105';
32
         if block = 3 and tank = 6 then tankn = '1C6';
33
34
        run;
DTE: There were 18 observations read from the data set WORK.BLS.
OTE: The data set WORK, BLS2 has 18 observations and 4 variables.
OTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
                                                      1 200 8 ct 13
     cpu time
                        0.01 seconds
```

231

```
35 proc sort data=BLS2;
36
   by x;
37 run;
OTE: There were 18 observations read from the data set WORK.BLS2.
OTE: The data set WORK.BLS2 has 18 observations and 4 variables.
                                                                 AEH-11-PSEUDO-01
OTE: PROCEDURE SORT used (Total process time):
                       0.01 seconds
    real time
                       0.01 seconds
    cpu time
38
   data assign_trt_BLS; set BLS2;
39
    if _n_ = 1 then trt = 'control';
40
     if _n_ = 2 then trt = 'control';
41
      if _n_ = 3 then trt = 'control';
42
       if _n_ = 4 then trt = '50';
43
44
    if n = 5 then trt = '50';
45
     if n = 6 then trt = '50';
46
      if _n_ = 7 then trt = '100';
       if _n_ = 8 then trt = '100';
47
    if _n_ = 9 then trt = '100';
48
     if _n_ = 10 then trt = '200';
49
      if _n_ = 11 then trt = '200';
50
51
      if _n_ = 12 then trt = '200';
     if n_{-} = 13 then trt = '300';
52
      if _n_ = 14 then trt = '300';
53
       if _n_ = 15 then trt = '300';
54
     if _n_ = 16 then trt = '300-HD';
55
      if _n_ = 17 then trt = '300-HD';
56
       if _n_ = 18 then trt = '300-HD';
57
58
       run;
DTE: There were 18 observations read from the data set WORK.BLS2.
DTE: The data set WORK.ASSIGN_TRT_BLS has 18 observations and 5 variables.
DTE: DATA statement used (Total process time):
                       0.01 seconds
    real time
                       0.01 seconds
    cpu time
59 proc print data= assign_trt_BLS;
30 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
30! mussel species';
31 title2 h=1.5 'AEH-11-PSUED0-01';
32 title3 h=1 'Random assignment of treatment to experimental tanks';
33 title4 h=1 'Mussel speces: Black Sandshell';
34 run;
DTE: There were 18 observations read from the data set WORK.ASSIGN_TRT_BLS.
DTE: PROCEDURE PRINT used (Total process time):
                       0,00 seconds
    real time
    cou time
                       0.00 seconds
35
   36
```

```
67
68 /*Mussel speces: Mucket*/
69 data NUC;
    do block = 1 to 3 by 1;
70
71
     do tank = 1 to 6 by 1;
                                                                   AEH-11-PSEUDO-01
72
      x = ranuni(-1);
73
      output;
74
      end;
75
    end;
76 run;
OTE: The data set WORK.MUC has 18 observations and 3 variables.
OTE: DATA statement used (Total process time):
                         0.00 seconds
     real time
     cpu time
                         0.00 seconds
77 data MUC2; set MUC;
78
    if block = 1 and tank = 1 then tankn = '2A1';
79
     if block = 1 and tank = 2 then tankn = '2A2';
      if block = 1 and tank = 3 then tankn = '2A3';
80
        if block = 1 and tank = 4 then tankn = '2A4';
81
         if block = 1 and tank = 5 then tankn = '2A5';
82
          if block = 1 and tank = 6 then tankn = '2A6';
83
     if block = 2 and tank = 1 then tankn = '2B1';
84
     if block = 2 and tank = 2 then tankn = '2B2';
85
      if block = 2 and tank = 3 then tankn = '2B3';
86
        if block = 2 and tank = 4 then tankn = '2B4';
87
         if block = 2 and tank = 5 then tankn = '2B5';
88
          if block = 2 and tank = 6 then tankn = '2B6';
89
90
     if block = 3 and tank = 1 then tankn = '2C1';
     if block = 3 and tank = 2 then tankn = '2C2';
91
     if block = 3 and tank = 3 then tankn = '2C3';
92
93
       if block = 3 and tank = 4 then tankn = '2C4';
         if block = 3 and tank = 5 then tankn = '2C5';
94
          if block = 3 and tank = 6 then tankn = '2C6';
95
96
        run;
OTE: There were 18 observations read from the data set WORK.MUC.
OTE: The data set WORK.MUC2 has 18 observations and 4 variables.
OTE: DATA statement used (Total process time):
     real time
                         0.00 seconds
                         0.00 seconds
     cpu time
97 proc sort data=MUC2;
98
    by x;
99 run;
OTE: There were 18 observations read from the data set WORK.MUC2.
OTE: The data set WORK.MUC2 has 18 observations and 4 variables.
OTE: PROCEDURE SORT used (Total process time):
                                                   Pego 1001/3
     real time
                        0.01 seconds
                         0.01 seconds
     opu time
```

233

```
• • • •
00
)1 data assign_trt_MUC; set MUC2;
    if _n_ = 1 then trt = 'control';
)2
     if n = 2 then trt = 'control';
33
                                                               AEH-11-PSEUDO-01
      if _n_ = 3 then trt = 'control';
)4
      if _n_ = 4 then trt = '50';
)5
    if _n_ = 5 then trt = '50';
36
)7
     if _n_ = 6 then trt = '50';
      if _n_ = 7 then trt = '100';
38
      if _n_ = 8 then trt = '100';
ງ9
    if _n_ = 9 then trt = '100';
10
     if _n_ = 10 then trt = '200';
11
      if _n_ = 11 then trt = '200';
12
       if _n_ = 12 then trt = '200';
13
     if _n_ = 13 then trt = '300';
14
      if _n_ = 14 then trt = '300';
15
      if n = 15 then trt = '300';
16
     if _n_ = 16 then trt = '300-HD';
17
      if _n_ = 17 then trt = '300-HD';
18
       if _n_ = 18 then trt = '300-HD';
19
20
       run;
DTE: There were 18 observations read from the data set WORK.MUC2.
DTE: The data set WORK.ASSIGN_TRT_MUC has 18 observations and 5 variables.
DTE: DATA statement used (Total process time):
                       0.01 seconds
    real time
                       0.01 seconds
    cpu time
21 proc print data= assign_trt_MUC;
22 title1 h=2 'Effects of Psuedomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
221 mussel species';
23 title2 h=1.5 'AEH-11-PSUEDO-01';
24 title3 h=1 'Random assignment of treatment to experimontal tanks';
25 title4 h=1 'Mussel speces: Mucket';
26 run;
DTE: There were 18 observations read from the data set WORK.ASSIGN_TRT_MUC.
DTE: PROCEDURE PRINT used (Total process time):
                       0.00 seconds
    real time
                       0.00 seconds
    cpu time
27
28! ************/
29
30 /*Mussel speces: Hickory Nut*/
31 data HIC;
                                           Prige 11 of 13
   do block = 1 to 3 by 1;
32
     do tank = 1 to 6 by 1;
33
     x = ranuni(-1);
34
35
      output;
36
     end;
37
     end;
```

```
234
```

```
- 38 run;
 OTE: The data set WORK.HIC has 18 observations and 3 variables.
  OTE: DATA statement used (Total process time):
                                                                         AEH-11-PSEUDO-01
       real time
                           0.00 seconds
                           0.00 seconds
       cpu time
      data HIC2; set HIC;
  39
      if block = 1 and tank = 1 then tankn = '3A1';
  40
       if block = 1 and tank = 2 then tankn = '3A2';
  41
  42
         if block = 1 and tank = 3 then tankn = '3A3';
  43
          if block = 1 and tank = 4 then tankn = '3A4';
  44
           if block = 1 and tank = 5 then tankn = '3A5';
  45
            if block = 1 and tank = 6 then tankn = '3A6';
       if block = 2 and tank = 1 then tankn = '3B1';
  46
  47
       if block = 2 and tank = 2 then tankn = '3B2';
         if block = 2 and tank = 3 then tankn = '3B3';
  48
          if block = 2 and tank = 4 then tankn = '3B4';
  49
           if block = 2 and tank = 5 then tankn = '3B5';
  50
            if block = 2 and tank = 6 then tankn = '3B6';
  51
       if block = 3 and tank = 1 then tankn = '3C1';
  52
       if block = 3 and tank = 2 then tankn = '3C2';
  53
         if block = 3 and tank = 3 then tankn = '3C3';
  54
          if block = 3 and tank = 4 then tankn = '3C4';
  55
           if block = 3 and tank = 5 then tankn = '3C5';
  56
  57
            if block = 3 and tank = 6 then tankn = '3C6';
  58
          run;
  OTE: There were 18 observations read from the data set WORK.HIC.
  OTE: The data set WORK.HIC2 has 18 observations and 4 variables.
  OTE: DATA statement used (Total process time):
                           0.01 seconds
       real time
       cpu time
                           0.01 seconds
  59 proc sort data=HIC2;
  60
      by x;
  61 run;
  OTE: There were 18 observations read from the data set WORK.HIC2.
  OTE: The data set WORK.HIC2 has 18 observations and 4 variables.
  OTE: PROCEDURE SORT used (Total process time):
       real time
                           0.01 seconds
       cpu time
                           0.01 seconds
  62
      data assign_trt_HIC; set HIC2;
  63
       if n = 1 then trt = 'control';
  64
        if _n_ = 2 then trt = 'control';
  65
  66
         if _n_ = 3 then trt = 'control';
                                                   Page _1201 _
                                                              12
  67
         if n = 4 then trt = '50';
       if _n_ = 5 then trt = '50';
  68
       if _n_ = 6 then trt = '50';
  69
         if _n_ = 7 then trt = '100';
  70
```

71 72 73 74 75 76 77	<pre>if _n = 8 then if _n = 9 then tr if _n = 10 then if _n = 11 then if _n = 12 the if _n = 13 then if _n = 14 then</pre>	t = '100'; trt = '200'; trt = '200'; n trt = '200'; trt = '300';	AEH-11-PSEUDO-01 File Folder 14c	* , * ,
78 79 80 81 82	if _n_ = 15 the if _n_ = 16 then if _n_ = 17 then	n trt = '300'; trt = '300-HD';	File Folder 14c	
OTE:	The data set WORK. DATA statement use real time	rvations read from the ASSIGN_TRT_HIC has 18 d (Total process time) 0.01 seconds 0.01 seconds	observations and 5 variables.	
84 84! 85 86 87	mussel species'; title2 h=1.5 'AEH-1 title3 h=1 'Random	of Psuedomonas fluore	scens (Pf-CL145A) to glochidia from seven unioni t to experimental tanks';	d
		rvations read from the ed (Total process time 0.00 seconds 0.00 seconds	data set WORK.ASSIGN_TRT_HIC.):	

PROCFED BY Initials: <u>7MS</u> Date: 5/15/12 Revewed BY Initials: <u>51</u> Date: <u>1771</u>

Poge 13 of 13

Appendix 4. Test Article Information

ltem number	Item description	Number of pages	Report page number
1	Material Safety Data Sheet: MBI-401 Spray Dried Powder	2	238
2	Material Safety Data Sheet: MBI-401 Freeze Dried Powder	2	240
3	MBI-401 FDP (lot # 110607WB-FD-E) Test Article: Certificate of Analysis	1	242
4	Copy of test article information from test article log book for MBI-401 SDP; lot number MBI-401- 110308AI-BD-3	5	243
5	Copy of test article information from test article log book for MBI-401 FDP; lot number 110607WB-FD-E	4	248
6	Copy of test article information from test article log book for MBI-401 SDP; lot number MBI-401 SDP 4655-12-Mix	4	252
7	NYSM Post-Treatment Product Validation Assay (lot number MBI-401 SDP 110308AI-BD-3)	2	256
8	NYSM Post-Treatment Product Validation Assay (lot number MBI-401 FDP 110607WB-FD-E)	2	258
9	NYSM Post-Treatment Product Validation Assay (lot number MBI-401 SDP 4655-12-Mix)	2	260
10	Test Chemical Weights (12-May-11)	1	262
11	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (PPB SDP)	2	263
12	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (HGE SDP)	2	265
13	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (FAM SDP)	2	267
14	Test Chemical Stock Preparation Data Form (18-Oct-11)	1	269
15	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (PPB FDP)	2	270
16	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (WAS FDP)	2	272
17	Test Chemical Stock Preparation Data Form (17-Jan-12)	1	274
18	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (BLS SDP)	2	275
19	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (MUC SDP)	2	277
20	Test Chemical Stock Preparation Data Form (19-Jan-12)	1	279
21	Glochidia Exposure Dosing Form and Chemical Stock Solution Determination (HIC SDP)	2	280

繁

цį

AEH-11-PSEUDO-01

CERTIFIED COPY

2

238

Page 3 of 6

					AEH	-11-PS	EODO	-01	uLi Initia		<u>25</u> <u>25</u>	ajel 7	DSFEBI
Page 2 of 2 Proper shipping name: None None	;pç	SARA Title III Hazard Classification: Immediate (acute) Health: None Delayed (chronic) Health: None	ij	Fire Protection Association	Health: Nonc Flammability: Nonc Reactivity: None	This document set forth is based on information that Marrows Bio Immunity.	Irc. (MBI) believes to be accurate. No warranty, expressed or implied, is intended. The information is provided solely for your information and consideration and MBI assumes no level resonveibility.	thereon.			Bio Innovations		• •
SECTION 7: SPILL, LEAK AND DISPOSAL PROCEDURES Steps to be taken in case material is released or spilled:	Wear suitable protective clothing such as long-sleeved shirt, pants, waterproof gloves and shoes with socks. Carefully mop or sweep up spill and place in a closed container for disposal.	Waste disposal method Dispose of in accordance with all applicable federal, state, and local environmental regulations.	For emergencies such as leaks or spills, call CHEMTREC 24-hour toll-free hotline at 1.800.424.9300.	SECTION 8; SPECIAL HANDLING	Respiratory: Use a NIOSH approved respirator with any N-95, P- 95, R-95 or HE filter for biological products when mixing/loading the product.	Protective gloves: Wear gloves made of Latex or other impervious material.	Eye protection: Safety goggles or safety glasses with side shields recommended.	Other protective clothes: Clothing to prevent prolonged skin contact as needed such as long-sleeved shirt, long pants and shoes with socks.	SECTION 9: SPECIAL PRECAUTIONS Precautions to be taken in handling and storing:	Use a NIOSH approved respirator with any N-95, P-95, R-95 or HE filter for biological products when mixing/loading the product.	Store in a dry area inaccessible to children. Store in original containers only, Keep container closed when not in use.	Empty container completely and dispose of in accordance with all applicable federal, state, and local environmental regulations.	Wash any contamination from skin or eyes immediately. Wash hands and exposed skin before eating, drinking, smoking after work or using the toilet.

40000

٠į

AEH-11-PSEUDO-01

CERTIFIED COPY

Page 4 of 6

.

Updated: June 23, 2011

Products, Conditions to avoid.

None known None known

not induce worniting unless told to by a poison control center or doctor. Do not give anything by mouth to an unconscious person.

2

.....

Melting Point Bulk Density: Solubility in Water: Folymerization. Incompatibility. SECTION 3 SECTION 4 Stability Color: SECTION 2 Boiling Point: Molecular Formula CAS Number. Common Name: SECTION 1: INGREDIENT 1 EPA Registration Number: None, Experimental PMRA Research Authorization #, 0053-RA-11 EPA Registration Number: Trade names/ Synonyms: Special Fire Fighting Pincedures. Odor: OTHER INGREDIENTS. incrt, non-reactive Explosion Hezards: Unusual Fire and Exunguishing Media: Appearance F. SUCCUS. Chemical Name: Primary Hazards Hazardous Decomposition Hazardous Method FIRE AND EXPLOSION DATA Not flammable PHYSICAL DATA MATERIAL IDENTIFICATION REACTIVITY Not applicable 0 161 g/mL Dispersible in water Not applicable Not applicable None None Use extinguishing media appropriate for the surrounding fire Tan CL14SA strain of Psuedomonas fluorescens cells, Does not occur Not applicable Musty Powder Not applicable 100% Not applicable powder formulation None known Material is non-reactive Zequanox FDP, MB1-401 FDP Inhalation SECTION 5: HEALT Primary Route of Entry Exposure Limit: Corrosive: | If in eyes: Inhalation SECTION 6: Tosicity: Effects of Overexposue: Skin/ Eye Irritation Inhalation: If swallowed: Call a poison control conter or doctor immediately for treatment If inhaled: Emergency First Aid Procedures: Eye Initation Primary Desmal Initiation Acute Dermal LD₂₀ (Rabbit) >2,000 mg/kg (non-mitating, mild or slight Acute Oral LD₃₀ (Rai): If on skin Acute studies: www.maronebio1nnovations.com For energencies such as leaks or spills call CHEMTREC 24-hour toll-free haltine at 1 800.424.9300 Hold cyt open and rinse slowly and genity with water for 15-20 minutes. Remove coulsed tenses, it present, after the first 5 minutes, then continue intring eye. Call a poison control center of doctor for treatment advice Take off contaminated clothing Rinse skin immediately with plenty of water for 15-20 minutes. Call a poison control center an ambulance, then give artificial respiration, preferably mouth-to-month if possible Move person to fresh air. If person in not breathing, call 911 or advice Have person sip a glass of water if able to swaltow. Do or doctor for further treatment advice. FIRST AID HEALTH HAZARDS POTENTTIAL SENSITIZER irritation) Non-Irritating, Class 4 Minimal Unitation, Class 4 >7.25 g/mL Class 4 >5,000 mg/kg (very low toxicity) irritation may oceu: None.of the components of this product are listed as carcinogenic by NTP, LARC, or CSHA May be irritating to respiratory tract for some individuals. A void breathing dust. May be irritating to skin and eyes for some Skin contact, Eye, Inhalation Not established If product comes in contact with eyes or skin, Not corrosive ndividuals

AEH-11-PSEUDO-01

CERTIFIED COPY

Inilials The Date OBFEBIZ

Product Name: MBI-401 FOP

Contact:

Marrone Bio Innovations, 2121 Second Street Suite B-107, Davis, CA 95618 Phone (Business hours) 530-750-2800 Zequancy FDP/MBI-401-EP FDP MATERIAL SAFETY DATA SHEET

Page 1 of 2

CERTIFIED COPY

AEH-11-PSEUDO-01

Initials: Trs Date; 08FEB12-

Wear suitable provertive clothing such as long-sleeved shurt, perus, waterproof gloves and shoes with specks. Carefully, mop or swuep up spill and place in a clused onitialier for disposal. SECTION 7 SPILL LEAK AND DISPOSAL PROCEDURES SLEPS to be taken in case maker all is released or spilled $7\,\sigma$ energy encies such as leaks or spills, call CHEMTREC 24-flour (oll-free holine at 1 800-424 9360 state, and local environmental regulations. Waste disposal method: Dispose of in accordance with all applicable (ederal. Eye protection Respiratory Protective gloves: SECTION 8 Other protective clothes: SPECIAL HANDLING Safety goggles or safety glasses with side shields recommended when mixing/loading the product Use a N(1)SH approved respirator with any N-95, R-95, P-95 at HE filter for biological products when mixing/loading the product Latex gloves or other impervious, waterproof naterial recommended when mixing/loading the product

National Fire Protection Association Rating. Health: 0 Flammability 0 Reactivity. 0

Reactivity:

Sudden Release of Pressure

116

333383

This document set forth is based on information that Marrore Bio innovations, free (MBI) believes to be accurate. No warranty, expressed or implied, is mended. The information is provided solely for your information and

consideration and MOI assumes no legal responsibility for use or reliance

thereon.

Clothing to prevent prolonged skin contact as needed such as long-steeved shirt, long pans and shoes with socks.

SECTION 9 SPECIAL PRECAUTIONS Precautions to be taken in handling and storing

biological products when mixing/loading the product, Use a NIOSH approved respirator with any N-95, R-95, P-95 or HE filter for

Bio Innovations

Marrone

Store in a dry area inaccessible to children. Store in original containers only. K see container closed when no, in use

Empty container completely and dispose of in accordance with all applicable

federal state, and local environmental regulations

Wash from exposed skin or from eyes immediately. Wash hands and exposed

1,7

skin before easing, drinking, snoking after work or using the toilet

Updaled June 23, 2011

, •

Page 2012

ŝ

Zequanox FDP/MBL401-EP FDP MATERIAL SAFETY DATA SHEFT

SECTION 10 SHIPPIN Proper shipping name DOT Label (S) Required Freight Classification:

NG RECULATIONS

None None

Insecticides, Fungicides N.O.C., Other Thre, Poisons, NMFC 102120 Class 60

SARA Title 111 Havard Classification Immediate (acure) Health No Detayed (chronic) Health No

Het. Page . 7

AEH-11-PSEUDO-01

CERTIFIED COPY

Initials: The Date: 08FEBIZ-

1

Na. 1407-C Storacedo

CERTIFICATE OF ANALYSIS

Name of Product:

Active Ingredient:

Cfu/g:

Lot Number:

Mussel Bioassay:

100% Pseudomonas fluorescens strain C1.145A cells and spent fermentation media

0 cfuig Pseudomonus fluorescens strain CL145A

110607WB-FD-E

Tan powdei

5/31/11

4°C, in the dark

MBI-401 ED₽

Pass

Appearance:

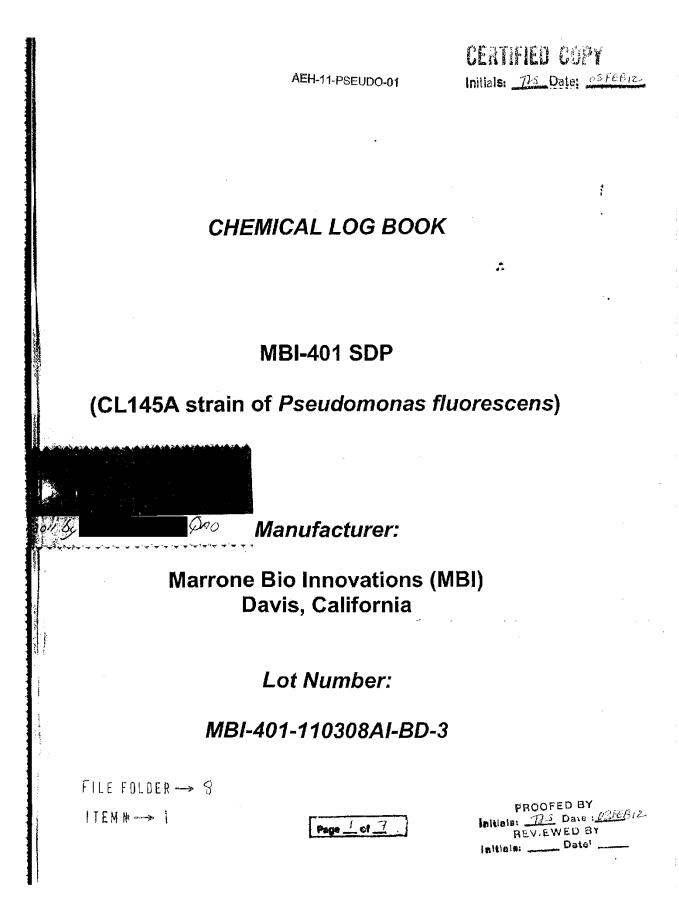
Storage Conditions: Date of Manufacture:

Expiration Date:

This product is stable for 6 months from date of manufacture provided the sample is stored under the recommended storage conditions.

I hereby certify that the above information is true and correct.

Analyst:	Da
James Waller. Applications/Engineer	
Approved by:	D
Ray Lam, Vice President Process Developmen	ι


Date: $\frac{1}{1}$

2121 Second Street, Suite 3-107

Davis, CA 95618

Phone: 530-750-7800

Pege <u>5</u> of.

AEH-11-PSEUDO-01

CERTIFIED COPY

Initials: 175 Date: 08FER12.

SIGNATURE PAGE

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

PRINTED NAME	SIGNATURE	INITIALS	DATE
Kerry L. Weber		KLW	28 APR 1
Kenry L. Weber Todd J. Severson		KLW Tas	29APLII
· · · · · · · · · · · · · · · · · · ·			
	÷.		
······································			
· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·		
			<u> </u>
			
	· · · · · · · · · · · · · · · · · · ·		
			† -
· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
			·
	· · · · · · · · · · · · · · · · · · ·	·	
		ł	1

"This Use and Maintenance Log Book has been inspected and found to be in compliance with SOP GEN 009.

Inspected and sealed on May	11, 2011	by	
	Date	Quality Assurance Un	it
	Page 2	<u>- to</u>	

CERTIFIED COPY

2

Initials The Date: 08FEBIZ

ł

Zequanox Spray Dried Powder - Material Specification Sheet

Prepared By: Denise Mayer New York State Museum Field Research Laboratory 51 Fish Hatchery Road Cambridge, NY 12816 (518) 677-8245

Shipped to: Attn: Jim Luoma Upper Midwest Environmental Sciences Center 2630 Fanta Reed Rd. LaCrosse, WI 54603 (608)783-6451

Shipment Date: 4/27/11

Storage Information: Store below 4C at all times.

Material Specs: Material Lot#: MBI-401-110308AI-BD-3 Formulation: SDP Dry Cell Weight: 50% (by weight of powder) Volume per Aliquot: 96g (= 48 g active ingredient) Number of Aliquots: 1

Pere S of 7

CERTIFIED COPY

Initials The Dates OBFEBIZ

OFICINAL

SOP No. GEN 012 2 Page 5 of 6

	form GEN 012 23
TEST CHEMICAL DATA LORM	Page 1 of 1
Test Material (Chemical Name) <u>CL145A stynin of Pseudo</u>	norme Pl
MBI-HAL SDP	
Source of Chemical (Manufacturer) Marrone Bio Innovation	ns (MRT)
Scorage Eucacion Noom Ida Hotpoint Refrigerator in locky	$\mathbf{r}_{\mathbf{v}}$
bate Received as APR 201 Date Opened 28 APR 201 Expirati	on Dato NIA
Test Chemical Lot Number MBI-401-11030847-Purity of Chemi	less otherwise stated)
Anounc of fest chemical Available or Received (if known)	ai
Initial Weight (with cover on) of Test Chemical and Container	- 130 678.
Physical State: liquid c Solid Form: powder X crys	
Chemical Abstract Service Number <u>NA</u>	
Manufacturer Certificale of Analysis Yes 🗆 No 🗙	
Additional Comments About Test Chemical:	
This lot of PF-CL145A was used for L. Cardium, L and L. higginsic alphidia (during land L. higginsic alphidia (during land)	
and L. higginsic glochidia (dosing date: 12 MAY 11). Tos	- Siliquoidea, 08FEB12
Sample Placed in Archives: Yes & No I (Entries should also be GEN 012.2b) by Jene Ricera, ORO on Spill 2011	
Archive # <u>AV-111-F3</u> Material Safety Data Sheet Availabl	e Yes 🗙 No ta
Signature of person (Study Director or designated representative Test Chemical Use Log and date:	re) mitiating
Signature	

. 14 APP Jan

		AEH-11-	SEUDO-	01 -		
 The first entry The initial weight of to 0130 The chemical reight of the ch	1-18		129.62	⁺¹ 130.678	container (with cap/lid on)(g)	HIED COPY <u>B</u> Date: <u>OSFERIZ</u> Immical: Pf-(L145)
entry should be al weight is also of the chemical chamical has been	goresh.g		0.03054 8.00117	1.00.1 1.4100.1	8 Amcunt removed (g)	f-ci-145m
first entry should be the chemical placed in the Chem initial weight is also entered on Form SEN 012.2a. eight of the Chemical and its container shall be meas themical removed from the test chemical container will the chemical has been removed from the test chemical	112.59		129.18 D	·129.62	C Weight of chemical & container (g) after removal (with cap/lid on)	MB-44 SDP H
The first entry should be the chemical placed in the Chemical Archives. Follow GEN 011. The initial weight is also entered on Form GEN 012.2a. The weight of the chemical and its container shall be measured by weighing it on a balanc 013) The chemical removed from the test chemical container will be weighed into a tared vessel from the chemical removed from the test chemical container will be weighed into a tared vessel	AEH-11-REWDO-ci		AEH-11-PSEUDO-01 AEH-11-PSEUDO-01	*Arch.ved Sample AEH-II-PSEUDD-01	D Study # and Purpose	Hanufacturer: Manne TBr Inna
o <u>ā</u>	2.000629. Used to make 5 Sumple to les sent to New Kit Dense Montees the everly sis	Of the Bibolity of test chemical Removed Haliquets were nearly. There wrights were 1.9999000, 2.000639, 2.000059 and	Preliminary Microscope observations Calabidia Exposure Expriment County Hater 1965		Comments	USE LOG USE LOG LE FOLDER - 8 TEM N - /
() weight of chemical is jow by approximately 6.35 due to a field of paration that was sealing curtanet and thrown away. From now a container will be weighed frier to re-sealing with paration verified to be accurate (SUP SEV that has been verified to be accurate (SUP SEV Wave Speeks From is connect KLU S/10/1000 Wave Speeks From is connect KLU S/10/1000 and its contents (including the cap of	stock Solutions. 12 MAY 11 KLW & state Muxim itmity " KLW	st clernical Removed are wright where accoss and	observations 29APRIL TOS FAM Kenistiski annyn Keni	MW STAPRI	c Date/initials	SOP NO GEN 012 Page 6 of 6 Form GEN 012 25 Page 1 of 1
incle/2 him buy some		Page				PROOFED BY Jeltieles: <u>25</u> Date <u>105FE8</u> REVIEWED BY Initialer Date

CERTIFIED COPY

2

Initials: 73 Date: CSFEBIZ

f

CHEMICAL LOG BOOK

MBI-401 FDP

Marrone Bio Innovations Davis, California

LOT NUMBER: 110607WB-FD-E

FILE FOLDER $\rightarrow 8$ ITEN *-> 2

Page Øf .

PROOFED BY Initiate: <u>173</u> Date : <u>OSTEB</u>IZ BEV:EWED BY Initials: <u>Date</u>!

CERTIFIED COPY

Initials: 17.5 Date: 03FEG12

SIGNATURE PAGE

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

PRINTED NAME	SIGNATURF	INITIALS	ļ
Kerny L. Weber		KLW	14
	i b		
			<u> </u>
		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>
			Ļ
			ļ
	·····		
			[
· ·	······································		-
	······································	<u>.</u>	
· · · · · · · · · · · · · · · · · · ·			
······································			
		• •	
			_
s Use and Maintenance Log Book has bee	n inspected and found to be in compliance v		000
ected and sealed on <u>/೦/೨/ ಎಂ//</u> Date		DRO ."	009.

Page 2 of 7

AEH-11-PSEUDO-01	CERTIFIED COPY	
·	Inilials: <u>The</u> Date: <u>08 FEB 12</u>	
	SOP No. GEN 012.2 Page 5 of 6	•
	Form GEN 012.2a . Page 1 of 1 🛛 😝	
TEST CHEMICAL DATA FORM		
Test Material (Chemical Name) <u>MBI-401 FDP</u>	٠ •	:
Trade Name of Chemical (Synonyms) <u>PF-CL145A;</u> Zequences	· · · · · · · · · · · · · · · · · · ·	
Source of Chemical (Manufacturer) Marrone Bio Innovations		
Storage Location Refrigerator in Rm 122 in lockbax	(4°2)	
Date Received 140cr 11 Date Opened 140Cr 11 Expirat	ion Date <u>31 Nov 2011</u> nless otherwise stated)	
Test Chemical Lot Number <u>110607wB-FD-E</u> Purity of Chem	rical 100%	
Amount of Test Chemical Available or Received (if known)	009	
Initial Weight (with cover on) of Test Chemical and Contain	er 161.689	
Characterization of Test Chemical: Color <u>Tan</u> Physical State: liquid Solid Form: powder or	solid	
Chemical Abstract Service NumberA		
Manufacturer Certificate of Analysis Yes 🗡 No 🗆		
Additional Comments About Test Chemical: Temperature in cooler was 4.4°C upon receipt.	· · · · · · · · · · · · · · · · · · ·	
This lot of PF-CL145A was used for L. cardium and	A M. nervosa	
glochidia (dosing date: 180ct 11). Tos 08FEB12		
Sample Placed in Archives: Yes≯ No □ (Entries should also GEN 012.2b)	be made on Form	
Archive # $\frac{1}{2}$ $\frac{1}{2}$ Material Safety Data Sheet Avail Signature of person (Study Director or designated represented Test Chemical Use Log and date:	able: Yes □ No □ ative) initiating	
Signature Dat	HOCT 2011	

250

AEH-11-PSEUDO-01	CERTIFIED COPY
161.68 161.082 159.046 159.046	CERTIFIED COPY CERTIFIED COPY Distribution Container (with Cap/lid on)(g)
0.9762 1.00014 1.00014 6.1789	Chemical: PC-LI45A A chemical: PC-LI45A A chemical: B B B B Chemical: A amount chemical: B Amount ainer (with removed lid or)(g) (g)
160.66 160.047 159.046 158.044 151.881	MGI-HOI FIXP C Weight of chem:cal & container (g) after removal (with cap/lid on)
*Archived Sample	Hanufacturer: May rave Tab Study # and Purpose
AEH-11-PSEUDO-01 FALADET SPEATES MEH-11-PSEUDO-01 Washbard Active stack AEH-11-PSEUDO-01 Washbard Active stack AEH-11-PSEUDO-01 Washbard Active stack AEH-11-PSEUDO-01 Washbard Active stack MEH-11-PSEUDO-01 Scurpto to MYSM For MEH-11-PSEUDO-01 Scurpto to MYSM For	USE LOG b Innsyntranz (MIRI) Lot #: 11 E Comments
ст <u>късти</u> <u>80ст </u> <u>80ст </u> <u>80ст </u>	Baltieler Date!
	161.68 0.9963 160.66 Sample AEH-II-PSENDe-OI FIXANUMY SAMPLE/LID 161.083 1.0000F3 160.047 Sample Mashbaad FAMatel spares Hoc 160.047 1.0001H 159.046 1.0001H 159.046 AEH-II-PSENDe-OI Washbaad FAMatel spares Hoc 159.046 1.0001H 159.044 1.0001H 159.044 AEH-II-PSENDe-OI Washbaad Athe shake Kuu 158.018 1.58.044 151.881 AEH-II-PSENDe-OI Washbaad Athe shake Kuu 158.018 6.1789 151.881 AEH-II-PSENDe-OI Sample to NYSm for 35 158.018 151.881 AEH-II-PSENDE-OI Sample to NYSm for 35

251

CERTIFIED COPY

Initials 173 Date: 08FEB12

2

CHEMICAL LOG BOOK

MBI-401 SDP

Marrone Bio Innovations Davis, California

4

LOT NUMBER: MBI-401 SDP 4655-12-Mix

 ρ_{RO} FILE FOLDER $\rightarrow 8$ ITEM $\gg 3$

Page__ . of ____

PROOFED BY Initials: 735 Date : USTERIZ REVIEWED BY Initials ____ Datel __

CERTIFIED COPY

AEH-11-PSEUDO-01

Initials: 13 Date: 08FEB 12

SIGNATURE PAGE

• • •

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

І <i>в</i> ТА́Т

 be in compliance with SOP GEN

ORIGINAL

CERTIFIED COPY

Inilials: 77-5 Date: 08FEB12 SOP No. GEN 012.3 Page 5 of 7

Form GEN 012.3a

Page 1 of 1 TEST CHEMICAL DATA FORM Test Chemical (Chemical Name) MBI -401 SDP Test Article, Circle one: Control Article Trade Name of Test Chemical (Synonyms) Pf-CL 145A; Zequanax Source of Test Chemical (Manufacturer) Marrone Bib Innovations in Run 122 in latebox (O-Storage Location Ketnaerator Expiration Date 10 JAN 2017 (5 years unless otherwise stated) (None provide Date Received 10 JAN 2012 Date Opened 10 JADOTA Test Chemical Lot Number <u>MBI-401 SDP</u> Purity of Chemical SD % H655-12-Mix Amount of Test Chemical Available or Received (if known) 1000 Initial Mass (with cover on) of Test Chemical and Container 167.057 Characterization of Test Chemical: Color 1 an Physical State: liquid___solidX Solid Form: powder crystal pellet Chemical Abstract Service Number <u>N/A</u> Manufacturer Certificate of Analysis Yes NoX Additional Comments about the Test Chemical: Temperature in coder your receipt was 31°C Licecta, A. ligamenting, and This lot of PE-CLI45A was used for dates: 17JANIZ and 19JANIZ). TOS OSFEBIZ. glochidia (dosing O olivaria Sample Placed in Archives: Yes X No (Entries should also be made on Form GEN 012.6)

Archive Location <u>RTTE-F11</u> Material Safety Data Sheet Available: Yes X No_____

Signature of Study Director or designee initiating Test Chemical Use Log and date:

Signature Date 10 JAW 2012

Page <u>5</u> et <u>6</u>

CERTIFIED COPY TTS Date: 08 FEBIZ Lot or Batch # MB1-401 SDP 4655-10-41,X nitials: Initials C LES Yuw . Kew kuo LLLU ž } 332 314 3 SOP No. GEN 012.3 Form GEN 012.3b Page 1 of 1 f EINHL 6 CIMALE 17 JAN B F1 Thrung E MAL W IOTHN 12 G-TANKA Page 6 of 7 Date avril Fe 31JAMia
 Image: State
 3.1433
 1.31, 801
 AEH-11-RELIDE CI
 1.854
 1.854
 1.854
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.11
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.11
 1.851
 1.851
 1.11
 1.851
 1.11
 1.851
 1.851
 1.11
 1.851
 1.851
 1.11
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.11
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.851
 1.951
 1.951
 1.951
 <td AC. After the test chemical has been removed from the container, determine the mass of the container and its contents (with cap/lid on). Adia test chemical for Fight Purpose and Other Comments Hertolucine test chemical for 125 cm Heat deadhe that chemical for Hat duathe that chemical ORIGINAL Test chemical for muc Rest church the BLS Test chenned for HIC *Archived Sample (MBI) Par HIC **FEST CHEMICAL USE LOG** Manufacturer: Mayore Big AEH-11-PSEUD0-01 AEH-11-PSEWDU-01 אב דו-ווי משמת שייםו REH-1-PSEUDO-03 AEH-11-PSCUDO-00 AEH-11-75CW20-01 AEH-11-PSEUDO-01 AGH-11-PSEUDS-CI Study Number container after Hohit SI removal, with chemical & Mass of test cap/lid on 51.300 H9.338 147.386 126.969 155,359 137.150 153.339 3 Test Chemical: PE-CLINER/MB1-401 SDF/ Amount removed * 4.5436 2.0013 N7-387/10.0553 2.0020 3.0037 2.0003 J. 0014 (B æ 10.0406 Initial mass of test 151.375 149.338 container with 62.057 137.150 chemical & 57,413 153.339 cap/ lid on 155,359 ම <ζ ILE FOLDER 8 Initials: ef Page TEM N --> 3 initiels:

AEH-11-PSEUDO-01

NYSM Post-Treatment Product Validation Assay MBI-401 SDP 110308AI-BD-3 (USGS Study #AEH-11-PSEUDO-01)

Date product received from USGS: 2011/05/18 Date of start of test: 09/13/2011

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment.

- MBI-401 SDP 110308AI-BD-3
 - USGS Study #AEH-11-PSEUDO-01: Glochidia (FAM, HGE, PPB)

PURPOSE: Post-test product validation of MBI-401 SDP 110308AI-BD-3 from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI 401-110308AI-BD-3 (SDP – 50% active ingredient): Weigh out 1.0 g of the powder into a labeled 50 ml centrifuge tube and bring volume up to 20 ml with dilution water. Vortex until evenly dispersed = 50 mg product/ml or 25 mg ai/ml. For 200 ppm ai treatments in testing jars, add 4 ml to each jar (500 ml).

Cambridge CF (Standard for Positive Controls):

As an efficacy standard, use *Pf*-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, the positive control suspension was produced on 5-2-2011 by weighing out 33.84 g of frozen Batch 10-12 block (killed cell suspension from test 2005-0027) and diluting with ca. 35 ml dilution water. 7 ml of this suspension were dispersed into 50-ml centrifuge tubes and placed in the ultrafreezer (11 tubes). The dry weight of the material was 43.75 mg/ml; therefore 2.3 ml were added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels attached to small stones were collected from Hedges Lake (Washington County, NY) and brought back to the Cambridge Lab in coolers. Mussels were scraped from substrates at the lab and placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (20-23°C).

FILE FOLDER - Sa ITEM N ----and the second second

PROOFED BY Initials: <u>TPS</u> Date: <u>IDFEBI2</u> BEV.EWED BY Initials: _____ Date! ____

*	
Page 1 o	12

Mussel collection and handling:

Sour comeetion and n					
Species	Collection site	Collection	Date in lab	Picked for test	
_		date	(20°C)		
Zebra mussels	Hedges Lake	09/09/2011	09/09/2011	09/13/2011	
	(Washington County)			KP	

Experimental design:

For validation of efficacy the following treatments will be set up:

Zebra mussels (25 mussels/jar):

3 – Untreated Control

3-200 ppm (ai) Positive Control - Cambridge CF (A, B, C)

3 – 200 ppm (ai) SDP MBI 401-110308AI-BD-3 (A, B, C)

Testing jar bioassay protocol:

On the day prior to treatment (09/13/2011) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (09/14/2011), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($A_{660 nm}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 22 days. On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

<u>Mussel length</u>: Zebra mussels 12.35 ± 2.33 mm.

Optical density of treatments:

Treatment	Mean (\pm SD) OD (A _{660 nm})
Untreated Control	-0.006 ± 0.001
Positive Control - Cambridge CF	0.175 ± 0.009
SDP MBI-401 110308AI-BD-3	0.246 ± 0.002

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 23 days.

Treatment	Mean % mortality (+SD)
Untreated Control	$1.3 \pm 2.3\%$
Positive Control - Cambridge CF	80.0 ± 6.9%
SDP MBI-401 110308AI-BD-3	86.7 ± 4.6% Pass

Activity of MBI-401 SDP 110308AI-BD-3 was acceptable for this study.

FILE FOLDER - 8a

PROOFED BY Initials: <u>TOS</u> Dates: <u>IOFEB</u>12-REVIEWED BY Initials: Date:

Page 2 of 2

MBI-401 SDP 110308AI-BD-3 Post-test - 2 -

NYSM Post-Treatment Product Validation Assay

MBI-401 FDP 110607 KB-FD-E (USGS Study #AEH-11-PSEUDO-01)

*W 1/22/12

Date product arrived from USGS: 2011/10/22 Date of start of test: 11/15/2011

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment. $\sqrt{\frac{1}{2}} \frac{\sqrt{1}}{\sqrt{1}} \frac{$

• MBI-401 FDP 11060710B-FD-E

o USGS Study #AEH-11-PSEUDO-01: Glochidia (WAS, PPB)

PURPOSE: Post-test product validation of MBI-401 FDP 11060710B-FD-E from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare treatment stock of MBI 401 formulated product:

MBI 110607 JØB-FD-E (FDP – 100% active ingredient): Weigh out 1.0 g of the powder into a labeled 50 ml centrifuge tube and bring volume up to 20 ml with dilution water. Vortex until evenly dispersed = 50 mg product/ml or 50 mg ai/ml. For 200 ppm ai treatments in testing jars, add 2 ml to each jar (500 ml).

Cambridge CF (Standard):

As an efficacy standard, use *Pf*-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, the positive control suspension was produced on 5-2-2011 by weighing out 33.84 g of frozen Batch 10-12 block (killed cell suspension from test 2005-0027) and diluting with ca. 35 ml dilution water. 7 ml of this suspension were dispersed into 50-ml centrifuge tubes and placed in the ultrafreezer (11 tubes). The dry weight of the material was 43.75 mg/ml; therefore 2.3 ml were added to each testing jar to treat at 200 ppm.

In this test verified the activity of a new batch of positive control suspension produced on 11-14-2011; produced as described above and having a dry weight of 65.65 mg/ml. 1.52 ml were added to each testing jar (500 ml) to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (20°C).

* Entry error within the product lot #

FILE FOLDER - Sa ITEM # - 2

PROOFED BY Intiales ______ Date : ______ REVIEWED BY _ Date' _ leiticio:

. of _2

W wrong lot number time aloging MBI-401 FDP 11060710B-FD-E Post-test - 2 -

Mussel collection and handling:

Species	Collection site	Collection	Date in lab	Picked for test
		date	(20°C)	
Zebra mussels	Hedges Lake	10/18/2011	10/18/2011	11/14/2011
	(Washington County)		,	PS

Experimental design:

For validation of efficacy the following treatments will be set up:

Zebra mussels (25 mussels/jar):

- 3 Untreated Control
- 3-200 ppm (ai) Cambridge CF Positive Control A (A, B, C) (produced on 5-2-2011)
- 3-200 ppm (ai) Cambridge CF Positive Control B (A, B, C) (produced on 11-14-2011)
- 3 200 ppm (ai) MBI 11060710B-FD-E (A, B, C $\bigvee_{\frac{1}{2}3/1^{L}}$

Testing jar bioassay protocol:

On the day prior to treatment (11/14/2011) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight.' The next morning (11/15/2011), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate (A_{660 nm} Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 22 days. On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

Mussel length: Zebra mussels 12.46 ± 2.29 mm.

Optical density of treatments:

Treatment	$Mean (\pm SD) OD (A_{660 nm})$
Untreated Control	-0.005 ± 0.001
Cambridge CF A (Positive Control)	0.171 ± 0.013
Cambridge CF B (Positive Control)	0.176 ± 0.002
MBI-401 FDP-11060710B-FD-E	0.184 ± 0.003

W 1/23/12 mm

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 10 days.

Treatment	Mean % mortality (±SD)
Untreated Control	$0.0 \pm 0.0\%$
Cambridge CF A (Positive Control)	88.0 ± 4.0%
Cambridge CF B (Positive Control)	79.6 ± 11.0%
MBI-401 FDP-11060710B-FD-E	94.7 ± 6.1% Pass

W 1/23/12 DAM

Activity of MBI-401 FDP-11060710B-FD-E was acceptable for this study.

FILE FOLDER - 8a ITEMN -> 2

103/12	BROOFED BY
Dan	PROOFED BY
	Initiels: Datel

NYSM Post-Treatment Product Validation Assay

MBI-401 SDP 4655-12-Mix (USGS Study #AEH-11-PSEUDO-01) File Folder &

 ITEM IN ---- Under the product received from USGS: 2012/02/01

 Date product received from USGS: 2012/02/01

 Date of start of test: 02/09/2012

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment.

- MBI-401 SDP 4655-12-Mix
 - o USGS Study #AEH-11-PSEUDO-01: Glochidia (BLS, MUC, HIC)
 - USGS Study #AEH-11-PSEUDO-02: Juvenile (FAM)

PURPOSE: Post-test product validation of MBI-401 SDP 4655-12-Mix from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI-401 SDP 4655-12-Mix (SDP – 50% active ingredient): Weigh out 2 g of the powder and add slowly to a beaker with water stirring for even suspension. Total volume should be 20 ml in dilution water. Transfer to a 50 ml centrifuge and store in refrigerator until ready to use. Mix until evenly dispersed = 100 mg product/ml or 50 mg a.i./ml. For 200 ppm ai treatments in testing jars, add 2 ml to each jar (500 ml).

Cambridge CF (Standard for Positive Controls):

As an efficacy standard, use *Pf*-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in I cm thick sheets in the Cambridge ultrafreezer at - 80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, the positive control suspension was produced on 11-14-2011 and then stored at -80°C in 50-ml centrifuge tubes. The dry weight of the material is 65.65 mg/ml; therefore 1.5 ml was added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (20°C).

HROOFED BY Include Date

15335 dama Bil and

MBI-401 SDP 4655-12-Mix Post-test.02 - 2 -

AEH-11-PSEUDO-01

Mussel collection and handling:SpeciesCollection siteCollection dateDate in lab (20°C)Picked for testZebraHedges Lake11/30/201101/31/201202/08/2012mussels(Washington County)

Experimental design:

For validation of efficacy the following treatments will be set up: Zebra mussels (25 mussels/jar):

3 – Untreated Control

3 – 200 ppm (a.i.) Cambridge CF Positive Control B (A, B, C) (produced on 11-14-2011)

3 – 200 ppm (a.i.) MBI-401 SDP 4655-12-Mix (A, B, C)

Testing jar bioassay protocol:

On the day prior to treatment (02/08/2012) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (02/09/2012), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($A_{660 nm}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 13 days. On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

<u>Mussel length:</u> Zebra mussels 12.28 ± 2.89 mm.

Optical density of treatments:

Treatment	Mean (±SD) OD (A _{660 nm})
Cambridge CF (Positive Control)	0.191 ± 0.008
MBI-401 SDP 4655-12-Mix	0.283 ± 0.007

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 14 days.

Treatment	Mean % mortality (\pm SD)
Untreated Control	$0.0 \pm 0.0\%$
Cambridge CF (Positive Control)	$78.4 \pm 6.0\%$
MBI-401 SDP 4655-12-Mix	85.3 ± 11.5%

MBI-401 SDP 4655-12-Mix PASSED the post-test bioassay validation (85% mortality). Untreated control mortality was 0%.

FILE FOLDER - Bar Billion Mr. Dais 4/26/12 ITEM # - 4 Fallon Dais 2/26/12 Bev EWED BY Fallon Dais

Study Number; AEH-11-PSEWDO-01 MK Folder 10 PF-CL 14A Test-chemical - Pseudomonas fluorescens (bt # MBI-401 -1103080AI-BD-3 Loghout 1) 15 8 AEH-11-PSEUDO-01 Test Chemical Wights (12 MAY 2011 KLW) Proofed: AS 07FEB12 Reviewed: -Used to make 20,000 mg/L of deactivated stock Selution. Brought up to 100 mL of acclimated well Water. Deacturated by placing in water both at 70°C for 45 minutes. Item No. -Used to make 20,000 mg/L of active stock solution for L. Cardium. Placed in 100mL volumetric flast ad brought to volume. AEH-11- PSE400-01 frep: 12MH7 11 @ 1055 2:000624 98-CLI45A @ 1055 0:00 mL Acclimated wellwater Exp: 1711AY // 20,000 mg/L -used to make 20,000 mg/L of active stock solution for L'higginsii, Placed in 100mL voluments flask and brought to Volume Date: not de la perdebor DEVIEWEO BY SU CIRI orodeed by 5/10/2011 Prep: 12 MAY 11 @ 1124 AEH-11-PSEUDO-01 Initials: ____ Date : - mrs/14/12 2 000089 Pf-CLI45A @ 1124 in acclimated with water Pxp: 17may 11 Iphiala ____ 20,000 mg/L 775 AEH-11-DSENDO-01 Prop. 12MA411 2.000629 RF-CL 145A @1255 in 100nL acclarated Well water 725 EXPITMAYII 20,000mg/L)KLW)5/12/20 -used to make 20,000 mg/L of active stock solution for & L. siliquoidea Placed in <u>loomL volumetric</u> flash of the brought to volume. 2.00.0629 CLIYSA

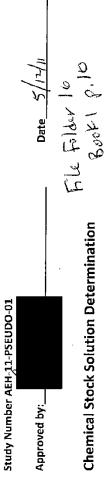
12 MAY 2011 KLW

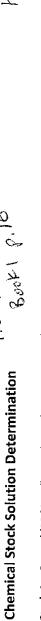
•	unionid mussel s	pecies"	a
Approved by	number: AEH-11	Date5~ <i>5~ //</i>	
Glochidia	oook/pgs: <u>444</u> Proc	Difed: <u>Ths</u> Reviewed: 03FEB12- Dosing Form Item No.	
Species: L. C. Alum		JMESC lot number: 111400	
Test Block Assignment (circle on	e): <u>(1)</u> 2	3	
Estimated # glochidia/Chamber_	>1,000		
Date/time (military) of dosing ini	tiation: 1036		
Date/time (military) of dosing con	npletion: 1040		,
Additional information: adda <u>Controls = 3,0 mL o</u> <u>So mg/L = 2,0 mL of</u> <u>100 mg/L = 2,0 mL of</u> <u>200 mg/L = 1.0 mL of</u> <u>300 mg/L = 3.0 mL o</u>	A 5-100:1 all f bred water vell water + 1 well water + 1 well water + 2.0 f 10,000 mg/L	46.5 ml of well water gests with slochistic DSML of 10,000 mg/L A.T. stock DML of 10,000 mg/L A.T. stock DML of 10,000 mg/L A.T. stock A.T. stock Let deschisted stock	
Witness and form recorded by:			
James A. Church		UMESC	5/12/
Printed Name	Signature	Affiliation	Da

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from se

Sees

¢ř


	sen she	11	100 t	Krofed: 103 03968/2	2 (JOHE B		Review ed.
$\mathcal{B}^{\mathrm{ec}}$ Chemical Stock Solution Determination	Fle Filder 16 Beck 1 P. 9					Pse	Pocher 1000 12
Stock A = Control (20 °C well water); Stock B = 10,000 mg/L active material (2.0g/100 mL product = 10.0mg/mL active ingredient); Stock C = 10,000 mg/L detoxified active material (2.0g/100 mL - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use $\left(1000000000000000000000000000000000000$	ictive material (2.0g ıL - Heat deactivate	g/100 mL produc ed for 45 minutes Descrimted	t = 10.0mg/i at 70°C/cool	mL active ing ed to 20 °C p (ניטנו)	gredient); orior to use (مدراسی) Aliance		ukul)
Expos Dose concentration	Exposure volume F. l. aldut		mg required	Stock A (mL)	Stock B (mL)	Stock C (mL)	color Code Assignment
control (well water blank)	100 1029	0	0	3.0		0.0	White
mg/l. (Deactivated)	100	30	0			رق ع.D	White/black stripes
mg/L	100	0	5		<u>(</u>)0.5	0.0	Yellow
mg/L	001	0	10		Q1.0	0.0	Yellow/black stripes
mg/L	100	0 0	20	0 d d 7	() 2'0	0.0	Blue
rng/ t	- OOT	5	30		(4) 3.U	0.0	Blue/black stripes
				0.0 7.5	ر.0 ۲۹۲	0.0 0	
				76.5	58.5	27.0	
				d O	2501 3 xc0 (D		z hetu
下言下				$\bigcirc \bigcirc \bigcirc & \bigcirc & \bigcirc \\ & & & \bigcirc & \bigcirc & & & \bigcirc \\ & & & &$	(1) 0.2% (2) 2% (1) 0.2% (2) 2% (2) 0.2% (2) 2% (2) 0.2% (2) 2% (3) 0.2% (2) 2% (3) 0.2% (2) 2% (4) 0.2% (2) 2% (5) 0.)	
	**	way insert	nut for soa	usels t	, test	syska -	Exposur charbon of mussels to test system at 10:45


Exposine chambers placed and air et 1358 h 5-2-11 37

Study number: AEH-11-PSEUDO-01
Approved by Date $5 - 5 - 1/$
File Folder: <u>/ Lab book/pgs 1941</u> Proofed: <u>175</u> Reviewed:
07FEB12
Glochidia Exposure Dosing Form
Item No. 3
Species: H.55ins Eye UMESC lot number: 11500
Test Block Assignment (circle one): 1 3
Estimated # glochidia/Chamber <u>>ルンン</u>
Date/time (military) of dosing initiation:// 55
Date/time (military) of dosing completion: / 204
Sate time (minut y) of dosing completion:
Additional information:
Chambers contained 96.5 mls HeO added 5 100 we aliquide with glachidin (0.5 ml)
Each Chamber received 3mL of a stock or combinition of
Stocks .
Castols 3 ml of well haten
Some It = 2.5 at al well water and a train of any I have I h
Somg/L = 2.5 ml of well water and 0.5 ml of 10,000 mg/L A.I. stall 100 mg/L a 2.0 ml of well water and home of 10,000 mg/L A.I. Stack 200 mg/L = 1.0 ml of well water and 2.0 ml of 10,000 mg/L A.I. stack
Zoongk = lione of well water and Zione of 10,000 mg/k A. J. Stak
Witness and form recorded by:
Jams A. Lava UMESC 5/12/4
Printed Name Signature Affiliation Date
300 mg/l = 3.0 ml of 10,000 mg/l A.J. Stock
Boongk Heat deschate a Browl of Heat deschafed stock.
Face Let 2

Study Title: "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to glochidia from seven unionid mussel species"

Reofed: DS 03FCB12 Reviewed ...

Horns Eye - 12 - 14 Stock C = 10,000 mg/L detoxified active material (2.0g/100 mL - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Stock A = Control (20 °C well water); Stock B = 10,000 mg/L active material (2.0g/100 mL product = 10.0mg/mL active ingredient);

			Deactivated	Active	ليونا Aliquot	Cchur Aliquot	Aliauot	
Dosage Level		Exposure volume	mg	gm	Stock A	Stock B	Stock C	Code
	Dose			ł				
(mg/L)	concentration	(mL)	required	required	(mL)	(mL)	(mL)	Assignment
	control (well							
0	water blank)	100	0	o	<u>(</u> 3.0	0.0	0.0	White
	mg/L)			
300	(Deactivated)	100	30	0	0.0	0.0	Q 3.0	White/black stripes
50	mg/L	100	0	ŋ	2.5	(Z)0.5	0.0	Yellow
100	mg/L	100	0	10	2.0	$\widetilde{\mathcal{Q}}^{1.0}$	0.0	Yellow/black stripes
200	mg/L	100	0	20	1.0	<u>(</u>)2.0	0.0	Blue
300	mg/L	100	0	30	0.0	S 3.0	0.0	Blue/black stripes
Total					8.5	6.5	3.0	
Total per species					25.5	19.5	9.0	
Total per 3 species					76.5	58.5	27.0	

Mug 12, 2011 しい horr windows and Q . here whydres was Q 2 Des complete 1200 O over complete 1155

20 × 60 ×

Approved by Date
Glochidia Exposure Dosing Form
I tem No.
Species: Fat Pruclut UMESC lot number: 1/1600
Test Block Assignment (circle one):123
Estimated # glochidia/Chamber 7/000
Date/time (military) of dosing initiation: 13/7
Date/time (military) of dosing completion: 132.5
Additional information: added 5 work alignsts with glachidia (0.5 ml) <u>Controls & 3.0 ml of well water</u> <u>50 mg/L & 2.5 mil of well water</u> <u>100 ng/L & 2.0 ml of well water</u> + 0.5 ml of 10,000 mg/L A.J. stock <u>100 ng/L & 2.0 ml of well water + 1.0 ml of 10,000 mg/L A.J. stock</u> <u>100 ng/L = 1.0 ml of well water + 1.0 ml of 10,000 mg/L A.J. stock</u> <u>200 ng/L = 1.0 ml of well water + 2.0 ml of 10,000 mg/L A.J. stock</u> <u>300 ng/L = 3.0 ml of 10,000 mg/L A.J. stock</u> <u>300 mg/L fleet deallater o 3.0 ml of Itest cleactiveled stock</u>

Study Title: "Effects of Pseudo a (DC C)

Witness and form recorded by:

Jows A. Lunn Printed Name UMESC 5<u>/12/11</u> Date Signature Affiliation

_Reviewedi-Procfed: DS 0312812

> Study Number AEH-11-PSEUDO-0,1 Approved by:

Date 5-/2 -//

Stock C = 10,000 mg/L detoxified active material (2.0g/100 mL - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Chemical Stock Solution Determination Stock A = Control (20 °C well water); Stock B = 10,000 mg/L active material (2.0g/100 mL product = 10.0mg/mL active ingredient);

Deactivated Active Aliquot Active Active Active Aliquot Active Act						أسحدا	ערוייד	SECUL	~ /24/~
Exposure volume mg Stock A Dose control (well mg stock A control (well mg/l required mg stock A water blank) 100 0 0 3.0 mg/l 100 30 0 0.0 mg/l 100 0 0.0 3.0 mg/l 100 0 0.0 3.0 mg/l 100 0 0.0 3.0 mg/l 100 0 3.0 3.0				Deactivated	Active	Aliquot	Aliquot	Aliquot	
Dose Concentration (ml) required required (ml) control (well mg/L 100 0 0 3.0 water blank) 100 0 0 0 3.0 mg/L 100 30 0 0 3.0 mg/L 100 30 0 0.0 3.0 mg/L 100 0 0 3.2 3.0 mg/L 100 0 0 3.0 3.0 3.0 mg/L 100 0 0 3.0 3.0 3.0 3.0 mg/L 100 0 3.0 0.0 3.0 3.0 3.0 mg/L 100 0 0 3.0 3.0 3.0 3.0	Dosage Level		Exposure volume	Вш	mg	Stock A	Stock B	Stock C	Code
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Dose			I				
$ \begin{array}{cccc} \mbox{control (well water blank)} & 100 & 0 & 0 & 3.0 \\ \mbox{water blank} & 100 & 0 & 0 & 0 & 0.0 \\ \mbox{mg/L} & 100 & 30 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	(mg/L)	concentration	(mL)	required	required	(mL)	(mL)	(mL)	Assignment
$ \begin{array}{cccccc} water blank & 100 & 0 & 0 & 0 \\ mg/L & 0 & 0 & 0 & 0 \\ mg/L & 100 & 30 & 0 & 0 \\ mg/L & 100 & 0 & 5 & 0 & 2.5 \\ mg/L & 100 & 0 & 20 & 0 & 0.0 \\ mg/L & 100 & 0 & 0 & 0.0 \\ mg/L & 100 & 0 & 30 & 0.0 \\ mg/L & 100 & 0 & 30 & 0.0 \\ \end{array} $		control (well)
$ \begin{array}{cccccc} mg/L \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0	water blank)	100	0	0	<u>Э</u> .0	0.0	0.0	White
		mg/L							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300	(Deactivated)	100	30	o	0.0	0.0	Q3.0	White/black stripes
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	mg/L	100	0	ю	A) 2.5	0.5	0.0	Yellow
mg/L 100 0 20 ⁽⁶) 1.0 mg/L 100 0 30 (6 8.5 25.5	100	mg/L	100	0	10	€) 2.0	1.0	0.0	Yellow/black stripes
mg/L 100 0 30 0.0 § 8.5 25.5	200	mg/L	100	0	20	1.0	2.0	0.0	Blue
8.5 25.5 76.5	300	mg/L	100	0	30	0.0	ر ک)3.0	0.0	Blue/black stripes
25.5 76 5	otal					8.5	6.5	3.0	
35 5	otal per species					25.5	19.5	9.0	
	Total per 3 species					76.5	58.5	27.0	

(1) 0557 Lunpleh et 131625 (2) 0557 Lunpleh et 1322 (2) 0557 Lunpleh et 1323 (2) 0557 Lunpleh et 1323 (3) 0557 Lunpleh et 1325 (151 to Hadnes read May 12, 2, 14

Pass 2 di 2

Study number: AEH-11-PSEUDO-01

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven different unionid species"

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot # 110601wB-12-Date Rec'd 14001 2011 Exp. Date 11/31/11

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
Deactive	1.00005	18 007 11/0725	KUN
WAS Active	1.00014	180011/0735	KIN
PPB Active	1.00072	18 OCT 11/ 0740	Kew
		2	

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
Deactive.	IODML	0855	Deactive and both 0835	180CTII/	KLW
WAS Active	100mL	12.50	WAS ALTER 1. 000 145 5	-18/20t/ Dps	51-
PPB Active	IDOML	1120	PPB action 1.0007-25	18 344/120	50

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared at least 1 hr prior to use to allow for deactivation and cooling.

1) Incontact date date should read 18 x 7 11 5A-

Study Title: "Effects of Ps	eudomonas fluorescens (Pf-CL145A) unionid mussel species"	to glochidia from se	even
St	udy number: AEH-11-PSEUDO-01	Item No.	Contraction of the second seco
Approved by	Date	5.5-11	Канан солашаната у 2
File Folder:L	ab book/pgs: 1/23 Proofed: 135 Rev 03FEB12-	viewed:	
Glochi	dia Exposure Dosing F	Form	
Species: L. Cardinm	UMESC lot num	nber: <u>//5400</u>	_
Test Block Assignment (circle	one):_12_3		
Estimated # glochidia/Chamb			
Date/time (military) of dosing	initiation: //37		
Date/time (military) of dosing	completion: 1146		
Additional information:			
	······		
Witness and form recorded by	:		,
Susan M Schleis		UMESC	180071
Printed Name	Signature	Affiliation	Date

Page Lord

Date of Dosing: 18 0071 Species Dosed: PPB

Fle Folder 16 Back 1 P. 35-36 Date: 10/17/11

Chemical Stock Solution Determination

Study Number <u>AEH-11-PSEUDO-01</u>

Approved by:

Stock C = 10,000 mg/L detoxified active material (1.0g/100 mL - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Stock A = Control (20 °C well water); Stock B = 10,000 mg/L active material (1.0g/100 mL product = 10.0mg/mL active ingredient);

					Well Water	Active Stock	Well Water Active Stock Deartine Stock	
Uosage Level (mg/L)	Dose concentration	Exposure Volume (mL)	Deactivated mg Required	Active mg required	Aliquot Stock A (mL)	Aliqot Stock B (mL)	Aliquot Stock Aliquot Stock Aliquot Stock A (mL) B (mL) C (mL)	Color Code Assignment
0	control (well water blank)	100	0	0	3.0	0.0	0.0	White
300	mg/L (Deactivated)	100	30	0	0.0	0.0	3.0	White/black stripes
50	mg/L .	100	0	5	2.5	0.5	0.0	Yellow
100	mg/L	100	0	10	2.0	1.0	0.0	Yellow/black stripes
200	mg/L	100	0	20	1.0	2.0	0.0	Blue .
300	mg/L	100	0	30	0.0	3.0	0.0	Blue/black stripes
Tota					8.5	6.5	3.0	
Total per species					25.5	19.5	0.6	

Total per 3 species

Proofed: 75 13 FEBIZ Reviewed:

27.0

58.5

76.5

Concentration	Time Dosing Started	Time Dosing Completed	Date	Initials
0 mg/1	11 37	1 38	1306711	alla
300 mg/L Deactive	1146	1146	18OCT 11	JKW
50 mg/L	1139	1140	1306711	CM/NE
100 mg/L	1141	1143	130551	140 UM
200 mg/L	1144	1145	112021	n XI-
300 mg/L Active	1145	1146	1806711	3KW

170CT2011/vs1.1

ð

5-01 Item A hte 5-5-11 Reviewed: 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17		
ate <u>5-5-1/</u> Reviewed: 312 1 g Form		
ig Form		
ıg Form		
-		
ot number: <u>//55</u>	<u></u>	
	· <u> </u>	
	- m	
		_
UMESC		1800T1

272

Species Dosed: WAS Date of Dosing: 1200711

File Folder 16 Book 1 p. 25-36

Date: <u>/////</u>//

Study Number <u>AEH-11-PSEU</u>DO-01

Approved by: _

Chemical Stock Solution Determination

Stock C = 10,000 mg/L detoxified active material (1.0g/100 mL - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Stock A = Control (20 °C well water); Stock B = 10,000 mg/L active material (1.0g/100 mL product = 10.0mg/mL active ingredient);

Dosage Level (mg/L)	Dose concentration	Exposure Volume (mL)	Deactivated mg Required	Active mg required	<i>Well Water</i> Aliquot Stock A (mL)	Active Stock Aliqot Stock B (mL)	Well Water Active Stock Deactive Stock Aliquot Stock Aliquot Stock A (mL) B (mL) C (mL)	Color Code Assignment
C	control (well water blank)	100	0	. 0	3.0	0.0	0.0	White
300	mg/L (Deactivated)	100	30	0	0'0	0.0	3.0	White/black stripes
50	mg/L	100	0	ъ	2.5	0.5	0.0	Yellow
100	mg/L	100	0	10	2.0	1.0	0.0	Yellow/black stripes
200	mg/L	100	0	20	1.0	2.0	0.0	Blue
300	mg/L	100	0	30	0.0	3.0	0.0	Blue/black stripes
Total					8.5	6.5	3.0	
Total per species					25.5	19.5	9.0	

Total per 3 species

Proofed: It's 03FEB12 Reviewed:

۰.

27.0

58.5

76.5

Concentration	Time Dosing	Time Dosing	C.	Initiala
	Started	Completed	חמוב	SIBUTI
0 mg/L	1305	1307	180010	CAKINO LAKINO
300 mg/L Deactive	1305	8061	130071	JKW
50 mg/L	1308	13(0	130670	arw
100 mg/L	CILE	1311	1\$0CT()	UXU
200 mg/L	1311	2/61	1806711	JKW
300 mg/L Active	1312	13 (3	120051	SRN.

ť

1 31

170CT2011/vs1.1

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven different unionid species"

Study number: AEH-11-PSEUDO-01

Item No.

ł

File Folder: <u>(6</u> Lab book/pgs: <u>1</u>31 Reviewed: <u>7x5</u> Verified: DAFEB12

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A Test Chemical Lot $\# \underline{4655} - \underline{10} - \underline{Mix}$ Date Rec'd <u>10 TAN 2012</u> Exp. Date <u>10 TAN 2017</u> Mussel Species <u>BLS + MUC</u> Block ID <u>BLS=1</u>; <u>Muc=</u>2 Instruments: <u>BAL 1, BAL 4</u> and <u>WTS 2</u>

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
Deadive	2.0013	17 JATWI 2/800	KIW
Active BLS	2,0037	17 JAN 18/0807	KIW
Active Muc_	2.0020	17 JAN 12/08/5	Kuv
		OKW 171AW.	
		I TAN.	610

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	· .
Sample I.D.	(ml)	time	HGE)	Time	Initials
Deactive	100mL	Into Next at 0545 Cut (2) 0935 Ensisted (2) 1000	Deactive stock BEST MUL	APJANULA 0845	KIW
Active BLS	100 mL	1035	Active stock for BLS	17 TANID 1035	Fin
Active Muc	loomL	1205	Active stock for MUC	175AN12 1205	Ta-s
			D KIN 17 TAN 2012		

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared prior to use to allow for deactivation and cooling.

This datasheet was approved by 11JAN2012/version 1.1

on 12 Jan 2-12

Page ___

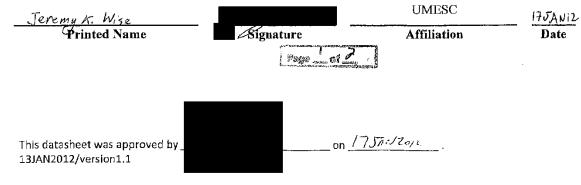
O only 2 species were dosed. Kini 17 Thro 2012

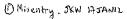
Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid species"

Study number: AEH-11-PSEUDO-01

STREET, STREET	Item	No.	9	
			i	

File Folder: <u>Lab book/pgs: 132</u> Reviewed: <u>Tr5</u> Verified: OTFEB12


Glochidia Exposure Dosing Form


Species: BLS	UMESC lot number: <u> 2 0800</u>
Test System Assignment (circle one): <u>(1)</u> 2	3
Estimated # glochidia/chamber_ < 500	_
Date/time (military) of dosing initiation: 110	٥
Date/time (military) of dosing completion:	. ⁰ illi

Additional information:

Chambers contained 96.5 mL Hbo. Added 5 100mL aliquots with glachidia (0.5 ml).
Each chamber received 3mL of a stock or combination of stocks. Control= 3mL
of well water; 50 mg/L= 25 m L of well water and D. 5 m L of 10, anomg/LA.I. stock;
Domy/L= 2.0m Lot well water and 1.0m L of 10, coomg/L A.I. Stock; 200mg/=
1. One of well water and 2. On L of 10,000 mall A.T. stuk; 300mg/L=
3mL of A.T. Stock; 300mall Deaphrated=3mL of 10,000mall deactivated
1.0 m of well water and 2.0 m L of 10,000 mg/L A.T. stuk; 300mg/L= 3mL of A.T. Stock; 300mg/L Deactivated=3mL of 10,000mg/L deactivated Stock. Kuno 17 JAN 2012

Witness and form recorded by:

EH-11-PSEUDO-01 TAS OFFEBIL Study Nun Reviewed: Verified:

Species: Black Sardshell Date of Dosing: 17 JAW 2013 3 File Folder: Lab book/pgs: _

> **Chemical Stock Solution Determination and Preparation** Stock A = Control (20 °C well water)

Formulation and lot #: MSI-491 SDP 4655-13-Mix AEH-11-PSEUDO-01

-'

Stock B = 10,000 mg/L active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient)

Stock C = 10,000 mg/L detoxified active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use)

Dosage Levei (mg/L)	Exposure Volume Deactivated mg (mL) Required	Deactivated mg Required	Active mg required	Weil Water Aliquot Stock A (mL)	Well Water Active Stock Aliquot Aliqot Stock A (mL) Stock B (mL)	Deactive Stock Aliquot Stock C (mL)	Color Code Assignment
0	100	0	0	3.0	0.0	0.0	White
300 HD	100	30	0	0.0	0.0	3.0	White/black stripes
50	100	0	N	2.5	0.5	0.0	Yellow
100	100	ο	10	2.0	1.0	0.0	Yellow/black stripes
200	100	0	20	1.0	2.0	0.0	Blue
300 Active	100	0	30	0.0	3.0	0.0	Blue/black stripes
Total per rep					8.5	6.5	3.0
Total per species					25.5	19.5	9.0
Total per 3 species					76.5	58.5	27.0

Concentration	Stock Preperation	Time Dosing Time Dosing	Time Dosing	4	-1-1-	
CONCENTIATION	Time	Started	Completed	nate	SIBLINI	
0 mg/L	0011	1100	11 00	LINALT!	J.K	
300 mg/L Deactive	1000	1107 -	2011	ZINNIS LI	346	
50 mg/L	1035	1102,435	1108	-ZINVTLI	SHI	
100 mg/L	1035	102	6011	ZINUCLI	Star	
200 mg/L	1036	∂011 Eatt	0111	TINOLTI	540	₹ \$ \$
300 mg/L Active	1035	1111	1111	17 JAN12	SUC	
1		mont fine () most in	Durots in)	
		recorded	Wread Slot			

17 JANZEIL

uo Uo

This datasheet was approved by

13JAN2012/vs1.2

INALTI 202

SUS IT JANIZ

Study Title: "Effects of *Pseudomonas fluorescens (Pf-*CL145A) to glochidia from seven unionid species"

Study number: AEH-11-PSEUDO-01

Ε.	tem	No.	10
----	-----	-----	----

File Folder: Lab book/pgs: 132_Reviewed: TS_Verified: 67F6B12 Glochidia Exposure Dosing Form

Species: MUC	UMESC lot number: 120700
Test System Assignment (circle one): 1 (2)	3
Estimated # glochidia/chamber ≤ 500	_
Date/time (military) of dosing initiation: 12.3	2 / 17JANI2
Date/time (military) of dosing completion: 123	8 / 17 JAN 12

Additional information:

Chambers contained 965mL H2O, Added 5 100mL aliquots with
glochidia (0.5ml) Each chamber received 3ml of a stock or combination
of stocks. Control = 3mL of well water: SDmg/L=2.5mL of well water
and 0.5mL of 100000 A.T. stock; 100mg/L=2.0mL of well water and
1. Oml of 10,000my/LA.T. stuck; 200mg/1=1. Onl of well water and 2.0 ml
of 10,000 mult A.T. stock; 300 mg/L Active=3mL of 10,000 mg/L A.T stock;
of 10,000 mg/LAT stock; 300 mg/L Active=3mL of 10,000 mg/LAT stock; 300 mg/L Deactivated = 3mL of 10,000 mg/L deactivated stock. KW 17-TAN 2015
J , J,

Witness and form recorded by:

Jeremy K. Wise		UMESC	17JANI2
Printed Name	Signature	Affiliation	Date
DRE. Should be 10,000mg/L -	KIW 17thW2012		
This datasheet was approved by 13JAN2012/version1.1		on 17 JANZOIL	

Study Nun EH-11-PSEUDO-01 Reviewed: 73.5 offe812-Verified:

File Folder: **46** Lab book/pgs: 1/31 Species: Mucket Date of Dosing: 17 THP 200

> Chemical Stock Solution Determination and Preparation Stock A = Control (20 °C well water)

 Stock B = 10,000 mg/L active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient)

 Stock C = 10 000 mg/L active lateral content is 0.0 g/100 mL active ingredient)

Stock C = 10,000 mg/L detoxified active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use)

Dosage Level (mg/L)	Exposure Volume Deactivated mg (mL) Required	Deactivated mg Required	Active mg required	<i>Well Water</i> Aliquot Stock A (mL)	Well Water Active Stock Aliquot Aliqot Stock A (mL) Stock B (mL)	<i>Deactive</i> <i>Stock</i> Aliquot Stock C (mL)	Color Code Assignment
0	100	0	0	3.0	0.0	0.0	White
300 HD	100	30	0	0.0	0.0	3.0	White/black stripes
50	100	0	5	2.5	0.5	0.0	Yellow
100	100	O	10	5.0	1.0	0.0	Yellow/black stripes
200	100	0	20	1.0	2.0	0.0	Blue
300 Active	100	0	30	0.0	3.0	0.0	Blue/black stripes
Total per rep					5.8	6.5	3.0
Total per species					25.5	19.5	9.0
Total per 3 species					76.5	58.5	27.0

Concentration	Stock Preperation	Time Dosing	Time Dosing Time Dosing	Date	Initials	
	lime	Started	Completed			
0 mg/L	1232	1132	1232	171AN12	ShiQ	
300 mg/L Deactive		1235	5821	1738N12	SNC	
50 mg/L	1205	1233	1236	17 JANIZ	SWY	
100 mg/L	1205	1233	12.37	FJAN12	× برج	
200 mg/L	SORI	1234	1238	173 &N 12	EWK	
300 mg/L Active	1305	1238	1238	LUANIZ	YNY	101182

17 JANZE/L

uo

This datasheet was approved by

. 13JAN2012/vs1.2

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven different unionid species"

Study number: AEH-11-PSEUDO-01

در در روسا <mark>د شناده ۱۹۹</mark> ۵ (بزن. ۲		
ltem	No.	

File Folder: 16 Lab book/pgs: 1/33,34 Reviewed: 775 Verified: 07FEB12

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot # MBI-401 SDP Date Rec'd 10JAN 13	Exp. Datelo JAN 2017 (nere provided)
Mussel Species HIC Block ID 3	(refe provided)
Instruments: BAL I BAL4, WTS	,

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/7	lime	Initials	
Deadlive Stock	2.0002	19 TANID	0756	KW	
Active Stock HIC	2.0014	19 JANUA	1	Kw	
		Only o	ne sto	ck needed bract	fre ad
			deact	ok heeded brack	e species
L	<u> </u>				KWO MITHWIA

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
Deactive Stark	100	Into head to orses	DE RE Deactive stark.	195AN12/0808	This
Deactive Stock Active Stock	100	0900	Active Stock for HIC	195AN 12/0900	D3
		(my one species	dosed, KW	
				- tw	19.5AN 12
			re use, except for heat deacti deactivation and cooling.	vated stock v	1 3

This datasheet was approved by 11JAN2012/version 1.1

on 12 JAN ZUIL

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to glochidia from seven unionid species"

Study number: AEH-11-PSEUDO-01

503481,-3647275 , 47445	~~~~~~	
tem	No.	12
		STATES AND

File Folder: 6 Lab book/pgs: 1/34 Reviewed: 75 Verified:

Glochidia Exposure Dosing Form

Species: HIC	<u></u>
Test System Assignment (circle one):1	2 (3)
Estimated # glochidia/chamber <u><1000</u>	
Date/time (military) of dosing initiation:	0925
Date/time (military) of dosing completion:	0929

Additional information:

Chambers contained 96.5 ml Hzo. Added 5 100 ul a liquots with
glochidia (0.5 mc). Each chamber received 3nd of a stock or concentration
of stocks. Control=3mL of uclluster: 50mell =2.5mi of well water and 0.5mi
of 10000mg/L active Stock; 100mg/L ator mild of well water ad 10mL of 10,000mg/L
active stock; 200mg/1= 1.0ml of well worter and 20ml of 10,000 mg/L active stock;
300 right active= 3mL of 10,000 right active stock; 300mg/L Deactivated= 3mL
of 10,000mg/L deaetwated stock. KIW 19-TAND

Witness and form recorded by:

Jerenny K. Wise		UMESC	19TAN 12
Printed Name	Signature	Affiliation	Date
Oshould be 2.0mg/L Khw	19JANIZ	BORT - ST June	
This datasheet was approved by		on 175ANZOIL.	

EH-11-PSEUDO-01 Tes 03FE012 111 Study Nun Reviewed: Verified: _

Date of Dosing: 19 JMW 13 134 2 I Species: _ File Folder: _ Lab book/pgs: _

> **Chemical Stock Solution Determination and Preparation** Stock A = Control (20 °C well water)

AEH-11-PSEUDO-01

Formulation and lot #: MB1-481 SDP 4655-12-141X

Stock B = 10,000 mg/L active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient)

Stock C = 10,000 mg/L detoxified active material (2.0 g/100 mL product = 1.0 g/100 mL active ingredient - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use)

Dosage Level (mg/L)	Exposure Volume Deactivated mg (mL) Required	Deactivated mg Required	Active mg required	<i>Weil Water</i> Aliquot Stock A (mL)	Well Water Active Stock Aliquot Aliqot Stock A (mL) Stock B (mL)	Deactive Stock Aliquot Stock C (mL)	Color Code Assignment
0	100	٥	0	3.0	0.0	0.0	White
300 HD	100	30	0	0.0	0'0	3.0	White/black stripes
50	100	0	5	2.5	0.5	0.0	Yellow
100	100	0	10	2.0	1.0	0.0	Yellow/black stripes
200	100	0	20	1.0	2.0	0.0	Blue
300 Active	100	0	30	0.0	3.0	0'0	Blue/black stripes
Total per rep					8.5	6.5	3.0
Total per species					25.5	19.5	0.0
Total per 3 species					76.5	58.5	27.0

••							200	
	Initials		よ で	skw	CNAE	JK W	N/N .	JKW
	Date		SINATP!	4			A	193AN 12
		Completed	9260	0723	0426	5927	0928	0929
	g	started	0925	0928	0926	6327	642-7	0728
	Stock Preperation	1 me	2260 @ 0425	2080	0060	0400	0400	04 <i>0</i> 0
	Concentration		0 mg/L	300 mg/L Deactive	50 mg/L	100 mg/L	200 mg/L	300 mg/L Active

Appendix 5. Test Animal Information

ltem number	Item description	Number of pages	Report page number
1	Test Organism Species List, Collection and Inclusion Criteria	1	283
2	Amended Test Organism Species List, Collection and Inclusion Criteria	2	284
3	Daily Care Worksheets (PPB, HGE, FAM, HIC, BLS, MUC)	6	286
4	Adult Mussel Holding Daily Algal Diet (1/13/2012)	1	292
5	Donor Mussel UMESC Lot Number Assignment Forms	8	293
6	USGS UMESC Fish/Animal History Forms (Donor Mussels)	8	301
7	Glochidia Test Organism UMESC Lot Number Assignment Forms	8	309
8	USGS UMESC Fish/Animal History Forms (Glochidia)	8	317

Study number: AEH-11-PSEUDO-01

Approved by

Date 29 APR 2011

Test Organism Species List, Collection and Inclusion Criteria

Common name	Scientific name
Black sandshell	Ligumia recta
Fatmucket	Lampsilis siliquoidea
Hickorynut	Obovaria olivaria
Higgins eye	Lampsilis higginsii
Mucket	Actinonaias ligamentina
Plain pocketbook	Lampsilis cardium
Washboard	Megalonaias nervosa

Collection and inclusion criteria (see protocol sections 4.1-4.2):

★ Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Glochidia from at least three gravid female mussels of each species will be extracted and evaluated for viability and if acceptable (≥80%) glochidia groups will pooled for use by the Genoa NFH according to the procedures outlined in ASTM E2455-06 and immediately transferred to the UMESC in a cooler at ~20°C. Glochidia will be acclimated to test water by the addition of 50% UMESC well water at the Genoa NFH and upon arrival at UMESC. Prior to exposure initiation, viability will be assessed in a subsample of glochidia by the addition of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]). Viability will be assessed ~1 minute after addition of sodium chloride and must exhibit > 80% viability for use in exposures.

* This section was updated due to Amendment #1. SEE Amended Test organism species List, Contection and Inclusion criteria detect 5-11-11 May 11, 2011 Joh

Study number: AEH-11-PSEUDO-01

Approved by

Date 5-11-2011

Amended Test Örganism Species List, Collection and Inclusion Criteria

Common name	Scientific name
Black sandshell	Ligumia recta
Fatmucket	Lampsilis siliquoidea
Hickorynut	Obovaria olivaria
Higgins eye	Lampsilis higginsii
Mucket	Actinonalas ligamentina
Plain pocketbook	Lampsilis cardium
Washboard	Megalonaias nervosa

Collection and inclusion criteria (see protocol sections 4.1- 4.2):

Gravid donor mussels will be collected by biologists from the Genoa National Fish Hatchery from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) and transported to the Genoa National Fish Hatchery. Approximately 72 h prior to test initiation the donor mussels will be transferred from the Genoa NFH to the UMESC and acclimated to test temperature. Glochidia from at least three gravid female mussels of each species will be extracted by personnel from the Genoa NFH. The viability of glochidia from each mussel will be assessed by drawing aliquots (e.g. 100 μ L) of settled glochidia from the stock container with an adjustable manual pipet fitted with a wide bore tip and placing it on a pre-labeled 35mm petri dish. The sample will be diluted with a known and consistent volume (e.g. 200 µL) of acclimated well water to enhance dispersion of glochidia for more accurate enumeration. The sample will be viewed under a dissecting microscope, adjusted for maximum clarity and magnification, and a photomicrograph will be recorded. Approximately one drop of a saturated sodium chloride solution (12 g NaCl/ 50 mL of D.I. H₂O [ASTM E2455-06]) will be added to the sample and after one minute a second photomicrograph will be recorded. Enumerations will be conducted for the total number of glochidia within the sample and the number of glochidia closed or open before and after sodium chloride addition. The percentage of viable glochidia (glochidia that respond to sodium chloride exposure by valve closure) will be calculated by the following method:

Percent viable = ([Total number of glochidia in sample – {total number of glochidia closed before addition of sodium chloride + number of glochidia open after sodium chloride addition}]/Total number of glochidia in sample) * 100

If viability is acceptable (\geq 80%) for a mussel, the glochidia from that mussel will be pooled with glochidia from other mussels of that species. An appropriate amount of settled glochidia (e.g.: 500 µL) will be randomly drawn from the pooled glochidia stock and aliquoted to an exposure chamber (80 mm x 40 mm crystallizing dish) containing exposure water to achieve

Page 1 of 2

Part care Of same

Study number: AEH-11-PSEUDO-01

a final volume of 100 mL. Between 500-1,000 glochidia will be transferred to each exposure chamber in a minimum of two allquots (dependent on number of glochidia per aliquot and the estimated number of glochidia available) per chamber (e.g. two 100 µL aliquots that contain ~250 glochidia each). Once all of the exposure chambers receive test animals the exposures will be initiated by the addition of the appropriate amount of MBI-401 SDP, deactivated MBI-401 SDP (positive control) or plain water (control) in a completely randomized design to achieve the desired test concentrations of 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, and 300 mg/L of active MBI-401 SDP. The exposure chambers will be gently mixed with a glass rod or stainless steel spatula to ensure uniform distribution of the test chemical. All concentrations will be held at 20°C in a water bath or controlled environment room and maintained on an 18.6 h light/dark cycle. Viability of a subsample of approximately 100 glochidia from each chamber will be assessed at 6, 12 and 24 h post exposure by enumeration from photomicrograph records pre- and post-sodium chloride addition. The study will be terminated after 24 h post exposure evaluations are completed.

TENTING STATE OF STREET

Page 2 of 2

Study Number AEH-11-PSEUDO-01

Book-#1

ļ

File Folder: 7a Lab book/pgs: 4.8 Proofed: 185 02FEB12 Reviewed:

Item No.

Daily Care Worksheet

Tank #: <u> A</u> Species: <u>L</u> Cardwm	Room #:	11 Month/Year: <u>05/2011</u>
Lot Number: 111/00		

	Feed		/ Rate /min)				
	Time	Inflow	Pump	Temperature	Dissolved		
Day	(military)	mnow	Pump	(°C)	Oxygen (mg/L)	рН -	Initials
1			<u>.</u> 		oxysen (mg/e)		
2			1	· · · · · · · · · · · · · · · · · · ·			+
3				0			
4							<u> </u>
5	-						
6							+
7							
8							
9	1330	1100	9.8	13.0	10.18	8.19	KUW
10	1335	1100	9.7	19.5	7.97	8.07	Tas
11	1240	100	9.5	19.4	7.81	7.90	TAS
12	0810	1100	9.3	20	8.15	7.98	KUN
13							
14				(1)			
15							
16	Note: M	ussel h	oldina t	anks IA, IB,	and IC ar	e three Se	tions
17	0-	Fone	tank	divided by	mesh Scr	eens. These	Water
18	91			ers were	measured	only in Se	ction
19	<u> </u>	C, yei		ed on sheet	5 for 1A an	d TB as	well.
20						175 12MI	AY11
_21							
22							
23							
24				\square		P360	130 24
25						Inthinics 2	Kenie :
26						Bays	VED DY
27						laitisis:	Date ¹
28						<u></u>	Disce
29	- -						41
31	<u> </u>			l	lassiosira weissflogii		

Page 1 of 1 Date: <u>5-9-11</u> DNo data recorded. The 12MAY 11 daily. Approved by

Study Number AEH-11-PSEUDO-01

Buok #I

Approved by:

File Folder: 79 Lab book/pgs: 4-8 Proofed: 725 02FEB12 Reviewed: _____

Tank #:	IB		Room #:	11	Month,	Year: 05/2011	
Species:	L. siliqu	oidea					
Lot Num	iber: 11120	00				·	
		Flow	Rate	· · · · ·			
	Feed	(mL/	/min)				
	Time	Inflow	Pump	Temperature	Dissolved		
Day	(military)			(°C)	Oxygen (mg/L)	pН	Initials
1							
2							
3				2			
4						· · · · · · · · · · · · · · · · · · ·	
5	1						- <u> </u>
6							
7					1		
8							
9	1330	100	9.8	13.0	10.18	8:19	KLW
10	1335	1100	97	19.5	7.97	8.19	TAS
11	1240	1100	9.5	19.4	7.81	7.90	773
12	0810	1100	9.3	210	8.15	7.98	KIW
13							
14				2)			
15						Othree.	
16	Note: M	ussel hi	Iding ta	nks IA. IB.	and IC are	there SIC	tions
17	04	One to	int div	ided by m	and IC are esh Screens measural or en sheets f	These Was	Le
18	a	ality	Caramet	is were	neasured a	ly in sect	1 ch
19	1	IC TAR	+ WERE	recorded	on sheeks f	in IA and	IR
2 0		as we	11. 77	5 12 mAy 11		<u>, , , , , , , , , , , , , , , , , , , </u>	
21							
22		_					
23							
2.4							
25) (E)			
26							
27						· ·	
28							
29			· ·			The second secon	
30						and the second s	47mm a 11 Aug
31	1						

() Spelling error. TJS 12MAY11 (2) No data recorded. Tr5 12 mAY11

Date: <u>5-9-11</u>

Study Number AFH-11-PSFUDO-01

Study Nt			01	Book #1			
File Fold	er: <u>7a</u>	Lab I	book/pgs: _	4-8 Pro	ofed: <u>BS 02FEB</u>	<u>2</u> Reviewed: _	
			Da	ily Care Works	heet	tem No.	3 :
Tank #: Species: Lot Num	C L. +[;qe ber:]]]300	ginsli S	Room #:	11	Month	/Year: <u>05 /ac</u>	<u></u>
	Feed Time		/ Rate /min) Pump	Temperature	Dissolved		
Day	(military)	1		(°C)	Oxygen (mg/L)	pH	Initials
2							
3				$\sim \hat{\mathbb{D}}$			
4							<u> </u>
5							
6							
7						and some some some	
8							
9	1330	Lian	9.8	13.0	10.19	9 10	
10	1335	1100	9.7	19.5	10,18	8,19 8,07	Kuw_
11	1395	1100	9.5	19.4	7,81	7.90	247 247
12	0510	100	9.3	21.0	8.15	7.98	Kew
13	0010		1. 4	D(1*V	0.13	1.10	pin
14						•	
15						· · · · ·	
16	Note: 0	AUSCAL	holding	toutes 1A 14	and IC a	a three 5	entime-
17		[And -	KOK d	inder hu	most scar	as Those i	10+0-
18	a	valite	Sarame A	Prs WPAD	nansurel a	phi in Se	44
1.9	7	IC Jse	- INANA	recorded 1	3, and / C. a Mesh scree peasured o n skeets f	NIA and	B
20		15 100	11 725	12 MAY 11	The second se		<u></u>
21		<u>q - po</u> ,	1	1~1.//		·	
22		<					-
2 3			· ··· ·-				
24							
25			,				-
26			·				+

Daily Food Prep: Mix 44.0g Shellfish diet, 35.3g Tetraselmis, and 92.4g Tholossiosira weissflogii with 14,400 mL well water each

 day, to be delivered by peristalic pump at 10 mL per minute. Target water inflow rate is 1,100 mL/min. Prepare fresh diet

 daily.

 Poge 1 g 1

 Date:

 5-9-11

Study Number AEH-11-PSEUDO-01

...

.-

			Da	aily Care Worksl			
			Do	onor Mussel Hol	ding İte	em No.	5
Tank #:		tion #:	🦾 Roo	m#: <u>16</u>	Month/Ye	ar: JAN Z	.012
				nt Number:1			
	ents: DO-						
msuum	lina. <u>- 90</u>	Flow			·····		1
	Feed	րոչ (mէ					
	Time		Pump	Temperature	Dissolved		Ì
Day	(military)	mmow	Fump	(°C)	Oxygen (mg/L)	рH	Initia
1						r'''	
2	·						
3	1						
4		· · · ·					
5						/	-
6			f	1			
7							
8							
9						-	
10						~~~~	
11				No Dat	a Entry pri	or to te:	st
12				Initiati	a Entry pri on. 725 17	JAN12	
13							
14							
15		<u>-</u>					
16							
17	0915	1100	10.0	20.1	8.50	7.97	JKW
18	0825	1100	9.9	19.9	7.98	7.93	TJS
19	0724	1100	10.0	20.0	7.88	7.89	725
20	<u> </u>						
21	├ · · · 						
22							
23				· · · ·		~	
24							
25							
26	↓ ↓				HIC myssels	were on!	y held
27					until 19JANI	2. 725 1951	an112
<u>28</u> 29			<u> </u>				
30							
31							

This datasheet was approved by 11JAN2012/version1.1

' J Z on 12 JAN 2-12

289

. .

File Forder: A tab book/pgs: $1/31$ Reviewed: $DS O2FEB/2$ Verified:	Study Nu	mber AEH-1	1-PSEUDO	-01		-		
Donor Mussel Holding Item No. 6 Tank #: 1. Section #: A Room #: 16 Month/Year: TAU 2012 Species: BLS Lot Number: 12 0 400 Instruments: DDy, pH3 THERM#S Instruments: DDy, pH3 THERM#S Initials Initials 1 Inflow Pump Temperature Dissolved Dissolved 0ay (mil/min) Initials Initials Initials Initials 1 Initial Initials Initials Initials 1 Initial Initials Initials 2 Initial Initials Initials 3 Initials Initials Initials 3 Initial Initials Initials 3 Initial Initials Initials 10 Initials Initials Initials 11 Initials Initials Initials 13 Initials Initials	File Folde	er: <u>7a</u>	Lab b	ook/pgs:	/31 Rev	iewed:775_02F6	B/2 Verified:	
Tank #: 1. Section #: A Room #: 16 Month/Year: $JAU 2012$ Species: BL5 Lot Number: $I2 \ 0 \ 400$ Instruments: $DQ4, pH3, THERMS Flow Rate (mL/min) Day (military) Inflow Pump Temperature Dissolved Oxygen (mg/L) Day (military) Inflow Rate (mL/min) Temperature (°C) Oxygen (mg/L) pH Initials 10 Oxygen (mg/L) pH Initials 10 Oxygen (mg/L) pH Initials Temperature Dissolved Oxygen (mg/L) pH Initials 10 N0 Data Entry Phior 10 test Initiation TBS I PJAN I2 13 Initiation Initiation Initiation Initiation Initiation Initiation Initiation Initiation Initiation Initiation $				Da	ily Care Worksh	leet		
Species: $BL5$ Lot Number: 12040 Instruments: $DD4$, $eH3$, $THERMS$ Flow Rate (mL/min) Dissolved (CXygen (mg/L)) pH Initials 1 Inflow Pump Temperature (C) Dissolved (Cxygen (mg/L)) pH Initials 2 Initial Initial Initial Initials Initials 3 Initial Initial Initials Initials Initials 3 Initial Initial Initials Initials Initials 3 Initial Initial Initials Initials Initials 3 Initial Initial Initial Initials Initials 9 Initial Initial Initial Initials Initials 11 Initial Initial Initial Initials Initials 13 Initial Initial Initial Initials Initials 16 Initial Initial Initial Initials Initials 19 Initial Initial Initials Initials Initials <td></td> <td></td> <td></td> <td>Do</td> <td>nor Mussel Hole</td> <td>ding ite</td> <td>em No</td> <td>6 :</td>				Do	nor Mussel Hole	ding it e	em No	6 :
Species: $BL5$ Lot Number: 12040 Instruments: $DD4$, $eH3$, $THERMS$ Flow Rate (mL/min) Dissolved (CXygen (mg/L)) pH Initials 1 Inflow Pump Temperature (C) Dissolved (Cxygen (mg/L)) pH Initials 2 Initial Initial Initial Initials Initials 3 Initial Initial Initials Initials Initials 3 Initial Initial Initials Initials Initials 3 Initial Initial Initials Initials Initials 3 Initial Initial Initial Initials Initials 9 Initial Initial Initial Initials Initials 11 Initial Initial Initial Initials Initials 13 Initial Initial Initial Initials Initials 16 Initial Initial Initial Initials Initials 19 Initial Initial Initials Initials Initials <td>Tank #:</td> <td>1. Sec</td> <td>tion #: A</td> <td>Roor</td> <td>n#: 16</td> <td> Month/Y</td> <td>ear: <u>JAN Z</u></td> <td>012</td>	Tank #:	1. Sec	tion #: A	Roor	n#: 16	Month/Y	ear: <u>JAN Z</u>	012
Instruments: $DU4$, ρ H 3, THE8/MS Flow Rate (mL/min) Temperature (°C) Dissolved Oxygen (mg/L) pH Initials Day (military) Temperature (°C) Dissolved Oxygen (mg/L) pH Initials 1 Image: Second Sec								
Feed Time Time Day (military)Flow Rate (ml/min) Temperature (°C)Dissolved Oxygen (mg/L)Initials1Inflow PumpPump (°C)Dissolved Oxygen (mg/L)pHInitials2Initial InflowInitial InitialsInitialsInitials3Initial InitialsInitialsInitials4Initial InitialsInitialsInitials3InitialsInitialsInitials3InitialsInitialsInitials4InitialsInitialsInitials5InitialsInitialsInitials6InitialsInitialsInitials9InitialsInitialsInitials10InitialsInitialsInitials11InitialsInitialsInitials12InitialsInitialsInitials13InitialsInitialsInitials14InitialsInitialsInitials15InitialsInitialsInitials16InitialsInitialsInitials17InitialsInitialsInitials18InitialsInitialsInitials19InitialsInitialsInitials20InitialsInitialsInitials21InitialsInitialsInitials22InitialsInitialsInitials23InitialsInitialsInitials24InitialsInitials					· · ·			
Feed Time (military)(mL/min) InflowTemperature ("C)Dissolved $Oxygen (mg/L)$ pHInitials1								
Time (military)InflowPumpTemperature ("C)Dissolved $Cxygen (mg/L)$ pHInitials1 <td< td=""><td></td><td>Feed</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Feed						
Day (military) (*C) $Cxygen (mg/L)$ pH Initials 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 5 1 1 1 1 1 1 1 6 1					Temperature	Dissolved		
2	Day	(military)				Oxγgen (mg/L)	pН	Initials
3								
4	2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
6	· · · · · · · · · · · · · · · · · · ·							
7			· · · ·					······
8 9								
9								
10 NO Data Entry Priver to test 11 Initiation. TOS IFJAN 12. 12 Initiation. TOS IFJAN 12. 13 Initiation. TOS IFJAN 12. 14 Initiation. TOS IFJAN 12. 15 Initiation. TOS IFJAN 12. 16 Initiation. 17 0915 18 Imitiation. 19 Imitiation. 20 Imitiation. 21 Imitiation. 22 Imitiation. 23 Imitiation. 24 Imitiation. 25 Imitiation. 26 for one day. 27 Imitiation. 28 Imitiation. 29 Imitiation.	J							
11 Initiation. TBS / DIAN /2. 12 Initiation. TBS / DIAN /2. 13 Initiation. TBS / DIAN /2. 14 Initiation. TBS / DIAN /2. 15 Initiation. TBS / DIAN /2. 14 Initiation. TBS / DIAN /2. 15 Initiation. TBS / DIAN /2. 16 Initiation. 17 0915 18 Initiation. 19 Initiation. 20 Initiation. 21 Initiation. 22 Initiation. 23 Initiation. 24 Initiation. 25 Initiation. 26 Initiation. 27 Initiation. 28 Initiation. 29 Initiation. 30 Initiation.					NIO N	1 (1 . 0	to to	4
12					1	tion Tas 1	1 Taxlin	//
13 14 15 15 16 17 17 0915 1100 18 100 19 100 20 100 21 100 22 100 23 100 24 100 25 115 26 100 27 1100 28 1100 29 100					19/7/	17/01: 10-37	5041012	
14 15 16 16 10.0 20.1 8.50 7.97 18 10.0 10.0 20.1 8.50 7.97 19 10.0 10.0 20.1 10.0 10.0 20 10.0 10.0 10.0 10.0 10.0 21 10.0 10.0 10.0 10.0 10.0 21 10.0 10.0 10.0 10.0 10.0 21 10.0 10.0 10.0 10.0 10.0 21 10.0 10.0 10.0 10.0 10.0 22 10.0 10.0 10.0 10.0 10.0 23 11.0 10.0 10.0 10.0 10.0 24 10.0 10.0 10.0 10.0 10.0 25 10.0 10.0 10.0 10.0 10.0 26 10.0 10.0 10.0 10.0 10.0 27 10.0 10.0 10.0 10.0 10.0 28 10.0 10.0 10.0 10.0 10.0 29 10.0 10.0 10.0 10.0 10.0 30 10.0 10.0			/					
16 17 0915 1100 10.0 20.1 8.50 7.97 NW 18 19 10.0 20.1 8.50 7.97 NW 20 20 20 20 20 20 20 21 22 23 24 25 25 21 25 26 6 6 6 7.97 Nussels 27 28 29 30 30 30 30	· · · · · ·							
17 0915 1100 10.0 20.1 8.50 7.97 JKW 18 19 10.0 20.1 8.50 7.97 JKW 20 20 20 20 20 20 20 21 22 23 24 25 25 21 25 26 For one day. 7JS 17JAN 12 27 28 29 30 30 30 30	15		,					
18	16							
18	17	0915	1100	10.0	20.1	8.50	7.97	JKW
20 21 21 22 23 24 25 BLS Mussels were only held 26 for one day. TJS ITJAN 12 27 28 29 30	18							
21 22 23 24 25 BLS Mussels were only held 26 for one day. TJS 17JAN 12 27 28 29 30	19							
22 23 23 24 25 BLS Mussels were only held 26 for one day. TJS ITJAN 12 27 28 29 30								
23 Image: state of the stat								
24 BLS Mussels were only held 25 For one day. 26 for one day. 27 Image: state of the s	·	~~~~~						
25 BLS Mussels were only held 26 for one day. TJS ITJS ITJ								
27						Mussala	hara anti	hold
27						ADD day	Trs 12 Tail	12
28					- <u>t</u> ur	VIC MUY.	785 7570	
29	1							
30			/					
31	30							
	31 -		· · · · ·					

.

This datasheet was approved by 11JAN2012/version1.1

Page 181

on 12 JAN 2412

290

Study Number AEH-11-PSEUDO-01

.-

				aily Care Works onor Mussel Hol			ana
					Month/Y	ear: JAN 2	012
				ot Number:}	20500		
nstrume	ents: <u>00</u>	1, pH3	, THERM	1-8			
	Feed	Flow (mL	/ Rate /min)				
	Time	inflow	Pump	Temperature	Dissolved		
Day	(military)		i annp	(°C)	Oxygen (mg/L)	рН	Initials
1							
2							
3							
4							
5							•
6							
. 7							
8							
9					No Data Eat	v Prior to	test
10					Initiation.	y Prior to DS 17JAN12	
11							
12							
13		/					
14							
15		-					
16			i				
17	6915	1100	10.0	20.1	8,50	7.97	JKW
18							
19							
20							
21							······································
22							
23							
24				_			
25					MUC MUSSE	15 Were on	ly hel
26					For one de	15 Were on 1y. TJS 170	HN/12-
27					venter, wetr ∓. Vel	7	, , , , , , , , , , , , , , , , , , ,
28							
29							
30	7						
31							
	r (pag	se 1 g 1 on 12 Jan 2	I	

AEH-11-PSEUDO-01

Adult Mussel Holding Daily Algal Diet 1/13/2012

File Folder: 7A Item No. 8

Tank Dimensions and volume 48"x 14" x 6" (121.92 cm x 35.56 cm x 15.24 cm) = 66,073 cm³ 6" (15.24 cm) standpipe: 66.073 L

Flow rate (1 turnover per hour): 1.1 L/m)

Daily water volume: 1.1 L/m X 60 m/h X 24 h/d = 1584 L/d

Diet weights (50% Tetraselmis and 50% Nannochloropsis) to achieve 10 mg/L by dry weight:

Tetraselmis: Target 5.0 mg/L (17.93% Dry Wt); Nannochloropsis: Target 5.0 mg/L (20.48% Dry Wt)

Tetraselmis: 27.89 mg/L; Nannochloropsis: 24.41mg/L

X 1584 L/d

Tetraselmis: 44.2 g/d; Nannochloropsis: 38.7g/d

Diet Inflow Rate: 10 mL/min X 60 m/h X 24 h/d = 14400 mL/d

Daily Care:

Mix 44.2g Tetraselmis and 38.7g Nannochloropsis with 14,400 mL well water each day, to be delivered by peristaltic pump at 10 mL per minute. Prepare fresh diet daily.

_ Date: 13 Jan 2012 Approved by:

PEGOFEL BY aikiais: <u>JMS</u> Date: 217/12 Page of BEVIEWED BY Intelety: Date: Date: 217/12

Study Title: "Effects of <i>Pseudomonas fluorescens</i> (<i>Pf</i> -CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 Item No
Approved by Date $5-5-77$ File Folder: 773 Lab book/pgs: $\rho, 3$ Proofed: 773 Reviewed: D2FEB12
File Folder: <u>μ_{5}</u> Lab book/pgs: ρ_{3} Proofed: ρ_{3} Reviewed: <u>$\nu_{2}FEB12$</u>
Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: Plain Pockethook (Lampsilis Centium)
Number of Donor Mussels: 4 Collection Date: 4/29/11
Collection Location: St. Croix River & Hadson Narrows
Species Identification performed by: Nathan Eclert
Title/affiliation of identifier: Mussel Biologist / Genoa NFA
UMESC Arrival Date: 5-9-11 1130 h
Receiving UMESC tank/room # 1 A Room 11
Additional information: <u>Recieved B 53°F (11.7°C)</u> Ramp stated from 12°C to 20°C <u>C</u> 1230 set to raw for 60h
umesc lot number designation: 11/100
Witness and form recorded by: James A. Lhome James A. Lhome James A. Lhome UMESC 70121712 5/9/11
Printed Name Signature Affiliation Date
page 181

293

Study Title: "Effects of <i>Pseudomonas fluorescens</i> (<i>Pf</i> -CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 Item No. 2
Approved by Date $5-5-1/$ File Folder: $7/3$ Lab book/pgs: $\rho_3 \cdot 3$ Proofed: 775 Reviewed:
File Folder: 713 Lab book/pgs: pg. 3 Proofed: 775 Reviewed:
Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: Fat Mucklet (L. Siliquoidec)
Number of Donor Mussels: 4 Collection Date: 4/29/4
Collection Location: St. Croix River C Hadson Narrows
Species Identification performed by: Nather Eckert
Title/affiliation of identifier: Mussel Biologist / GeNon WFH
UMESC Arrival Date: 5-9-11 1130 h
Receiving UMESC tank/room # 1 B Room II
Additional information:
Received C. 59°F(11.7°C) Ramp started from 12°C to 20°C C 1230h st to run for 60h
UMESC LOT NUMBER DESIGNATION: 1/12.00

Witness and form recorded by:			
James A. L'home		UMESC	5/9/11
Printed Name	Signature	Affiliation	Date
	pagel of 1		

Study Title: "Effects of <i>Pseudomonas fluorescens (Pf</i> -CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 item No. <u>3</u>
Approved by Date 5-5-11
Approved by Date $5-5-11$ File Folder: 713 Lab book/pgs: ρ . 3 Proofed: 175 Reviewed: σ_2 FeB 12
Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: Higgins Eye (L. higginsti)
Number of Donor Mussels: 4 Collection Date: 4/24/4
Collection Location: st. Croix River @ Kudson Nerrows
Species Identification performed by: Mithin Eckirt
Title/affiliation of identifier: Mussel Biologist Gewon NEH
UMESC Arrival Date: 5-9-11 C 1130 hr
Receiving UMESC tank/room # Rown 11
Additional information:
Noverved Q 53°F (11.7°C) Ramp Stanted Q 1230 h to ramp from 12°C
to 202 over 60 h.

UMESC LOT NUMBER DESIGNATION: 1/300

Witness and form recorded by:

Tames A. Lewine		UMESC	5-9-4
Printed Name	Signature	Affiliation	Date
	page 171		

Study Title: "Effects of <i>Pseudomonas fluorescens (Pf-</i> CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 Item No. 4
Approved by Date Date File Folder: 7B Lab book/pgs: p, 32 Proofed: 75 0 2 FEB 12 Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: [amp Silis Continum (Plan Pallethould)
Species: <u>lamp Silis</u> Condium (Plan Paluthout) Number of Donor Mussels: <u>3</u> Collection Date: <u>10/8/11</u>
Collection Location: UMA Port 9
Species Identification performed by: Genon NFA Nothin Eckert
Title/affiliation of identifier: Mussel Balagist
UMESC Arrival Date: 10-18-11
Receiving UMESC tank/room #5
Additional information:

UMESC LOT NUMBER DESIGNATION: 115200

Witness and form recorded by:			
James K. Linomy		UMESC	Ishsti.
Printed Name	Signature	Affiliation	Date
	page 171		

Study Title: "Effects of <i>Pseudomonas fluorescens (Pf-</i> CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 Item No. 5
Approved by Date $5-5-1/$ File Folder: $7+3$ Lab book/pgs: $p.33-2$ Proofed: $7+5$ Reviewed: o_2 FCB 12
File Folder: 7B Lab book/pgs: p. 37 Proofed: 775 Reviewed:
Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: Washbourd (Mugalonaias Nervosa)
Number of Donor Mussels: 4 Collection Date: 10-17-11
Collection Location: UMR Pool 9
Species Identification performed by: Nathan Ecllich
Title/affiliation of identifier: Mussel Biologist Gawa NTD
UMESC Arrival Date: /3-18-11
Receiving UMESC tank/room #
Additional information:
UMESC LOT NUMBER DESIGNATION: 115300

Witness and form recorded by:

James LuomA		UMESC	Ishshi
Printed Name	Signature	Affiliation	Date
	page 1 g 1		

Study Title: "Effects of <i>Pseudomonas fluorescens (Pf-</i> CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 Item No. 6
File Folder: <u>H</u> Lab book/pgs: $\frac{1}{31}$ Reviewed: <u>75</u> Verified: <u>02 FEB 12</u>
Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: Black Sandshell
Number of Donor Mussels: 4 Collection Date: 25 007 2011
Collection Location: Chippensa River
Species Identification performed by: Nathan Eckert
Title/affiliation of identifier: Mussel Biologist /GNFH
UMESC Arrival Date: 17 JAW 2012
Receiving UMESC tank/room # UHESC Rm 15
Additional information: Arrived at 0915 @ 18°C. Placed in 30% UMBIC water followed by 100% UMESC water @ 20°C.
UMESC LOT NUMBER DESIGNATION: 20400

Witness and form recorded by:

· · · · ·

UMESC Kerny LU 17-JANNIA Signature) Printed Name Affiliation Date page 181 This datasheet was approved by on 12 JANZAR 11JAN2012/Version 1.1

Study Title: "Effects of <i>Pseudomonas fluorescens</i> (<i>Pf</i> -CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 Item No
File Folder: $\frac{75}{16}$ Lab book/pgs: $\frac{1}{31}$ Reviewed: $\frac{75}{02 \ FEB12}$ Verified:
Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: Mucket
Number of Donor Mussels: 4 Collection Date: 20 SEP 2011
Collection Location: St. Croix River
Species Identification performed by: Nathan Eckert
Title/affiliation of identifier: MUSSEL Biologist / GWFH
UMESC Arrival Date: 17 JAN 2012
Receiving UMESC tank/room # UMESC Rm 15
Additional information: Arrived at 0915@18°C. Placed in 50% UMESC worker followed by 100% UMESC worker @ 20°C.
UMESC LOT NUMBER DESIGNATION: 20500
Witness and form recorded by:

Kerry L. Weber J Printed Name	Signature	UMESC Affiliation	<u>HJAW</u> IJ Date
	page 191		
This datasheet was approved by		on_1257642472	

Study Title: "Effects of <i>Pseudomonas fluorescens (Pf</i> -CL145A) to glochidia from seven unionid mussel species"
Study number: AEH-11-PSEUDO-01 Item No. 8
File Folder: <u>7</u> <u>b</u> Lab book/pgs: <u>1/3</u> Reviewed: <u>7</u> <u>5</u> Verified:
Donor Mussel UMESC Lot Number Assignment Form
DONOR MUSSEL INFORMATION:
Species: <u>Hickorynut</u>
Number of Donor Mussels: 4 Collection Date: 25 Oct 201
Collection Location: Chippensa River
Species Identification performed by: Nathan Eckevt
Title/affiliation of identifier: Mussel Biologist / GWFH
UMESC Arrival Date: 17 JAN 204
Receiving UMESC tank/room # UMESC_ Rm 15
Additional information: Apriled at 09/5@ 18°C. Placed in 50°% unter followed by 100°% UMESC water @ 20°C.
UMESC LOT NUMBER DESIGNATION: 20600

UMESC L. Weber RVM 17-JANID Signature Printed Name Affiliation Date 181 page This datasheet was approved by on 12 JANZON. 11JAN2012/Version 1.1

Witness and form recorded by:

the state of the s	AEł	I-11-PSEUDO-01	Page_ 1 of 2
USGS Uppe	<u>r Midwest En</u>	vironmental Scie	
	<u>Fish/Anima</u>	History Form	CERTIFIED COPY
			Rm = room T = tank
F	RW = raceway	Est = estimat	File Folder <u>76</u> Date <u>AFF</u> 2014
UMESC Lot Number:	/2	0600	4
			· · · · · · · · · · · · · · · · · · ·
Origin/Source:	Gen	NFH	
Species/Strain:	Hic	Kory No	+
Number Received:		4	
Date received/lot #assigned:		<i>i i i i i i i i i i</i>	juvenile adult
Life stage at receipt/lot #:			
Health certificate:	·		s (NO)
lf egg, di sinfected:			
Date spawn:	Actual/Estim	ate	
	Actual/Estim		······································
First UMESC rearing unit:	<u> </u>	nk, raceway, por	id and rearing unit number)
			iprova River 10/25/11
			· · · · · · · · · · · · · · · · · · ·
Date completed:		17/12	·
FILE FOLDER $\rightarrow 7b$			
ITEM $\gg - 9$		-	PROOFED BY
г г Г ы И _к — 1			Initialis: <u>725</u> , Date 1 <u>09FEB</u> 72 REVIEWED BY Initialis: Date

	AEH-11-1	PSEUDO-01	Page / of
USGS Upper	Midwest Envi	ronmental Sci	ences Center
	Fish/Animal	History Form	CERTIFIED COPY Initials: <u>735</u> Date: <u>0954812</u>
NA = not applicable	N = inside O	UT = outside	Rm = room T = tank
F	₹W = raceway	Est = estima	te Log Book / Pages 1/314 File Folder <u>30</u> Initials <u>FIN</u> Date <u>Date 500</u>
			4
Source Facility Lot #:			1
Origin/Source:	54. Craix	River (Co	(L. S. 1: quidie Maria
Species/Strain:	FAt Muc	keff	(L. S. / iquidia pusid
Species Verified:			· · · · · · · · · · · · · · · · · · ·
Number Received:	4		
Date received/lot # assigned:	5/9/1	1	
Life stage at receipt/lot #:		egg larval	juvenile adult
Health certificate:		V.	es No
If egg, disinfected:			
Date spawn:	Actual/Estima	te	
Date hatch:	Actual/Estima	te	
First UMESC rearing unit:	<u>Room</u> // (e.g. room, tar	HANKL	nd and rearing unit number)
Comments:	Collected	4/29/11	by benog NRH 5/9/11
	trasferd	+ Umerc	5/9/11
	.11	,	· ·
Date completed:	5/9/1	/	
Date completed: Completed by:			,,,,
- OLDER -> +B			PROOFED BY
$ITEM \# \rightarrow \mathcal{X} IO$ wrote incorrec	ct item numb	r. 725 09FEBI	z Initials: <u>775</u> Date : <u>09668</u> 2, REV:EWED BY Initials: <u>Date</u>

-	AEH-11-PSEUDO-01
	Page of
<u>USGS Upper</u>	Midwest Environmental Sciences Center CERTIFIED COPY
·	Fish/Animal History Form
NA = not applicable	N = inside OUT = outside Rm = room T = tank
R	W = raceway Est = estimate Log Book / Pages 1344 File Folder 12 Jaitials 100 Date 29 FFAU
UMESC Lot Number:	11/100
Source Facility Lot #:	
Origin/Source:	St. COIX River (from Gence NGH)
Species/Strain:	plain pocket book (C cardium)
Species Verified:	
Number Received:	4
	r la l. l
Date received/lot # assigned:	
Life stage at receipt/lot #:	egg larval juvenile adult Yes (No ⁷)
Health certificate:	fes (No.)
If egg, disinfected:	
Date spawn:	Actual/Estimate
Date hatch:	Actual/Estimate
First UMESC rearing unit:	Rm II tak 1A
	(e.g. room, tank, raceway, pond and rearing unit number)
Comments:	Collecter on 4/20/11
	Pour behow from formed to amase
	/ /
Date completed:	5/9/11
FILE FOLDER $\rightarrow 7b$	
ATTENN SALAN A	PROOFED BY Initiate: 77.5 Date 1.09FEB12
ITEM # -> \$ 11 Wrote incorrec	t item number. The OFFEBIL BEVIEWED BY

1	
	AEH-11-PSEUDO-01
USGS Uppe	er Midwest Environmental Sciences Center
	Fish/Animal History Form Initials: <u>Trs Date</u> : <u>ogréenze</u>
	IN = inside OUT = outside Rm = room T = tank
	RW = raceway Est = estimate
	File Folder <u>76</u> Date <u>24468.200</u>
UMESC Lot Number	: <u>120500</u>
Source Facility Lot #	
Origin/Source	1 Court
	MUCKett MUSSEL
Species Verified:	11
Number Received:	
Date received/lot # assigned:	1/17/17
Life stage at receipt/lot #:	
Health certificate:	Yes No
If egg, disinfected:	
Date spawn:	Actual/Estimate
Date hatch:	Actual/Estimate
First UMESC rearing unit:	Rm 15
	(e.g. room, tank, raceway, pond and rearing unit number)
Comments:	collevel from ST. Cro. x River
	9/20/11 by Genes NFH
Date completed:	
Completed by:	
FILE FOLDER \rightarrow 76	PROOFED BY
ITEM # -> 1Z	Initiale: TAS Date : 09FEB12_ REVIEWED BY
·	Initialar Date

	· · · · · · · · · · · · · · · · · · ·	-
Harmonitz recovered 1	AEH-11-PSEUDO-01 Page	. 7 .
USGS Upp	per Midwest Environmental Sciences Center	
	Fish/Animal History Form	OPFEBIZ_
NA = not applicable	Initials 7/3 Date IN = inside OUT = outside Rm = room T = tank	
	RW = raceway Est = estimate	
	Log Book / Pages3 File Folder Initials	1PEB.2012
UMESC Lot Numbe	er: 120400 Initials <u>Kiw</u> Date Of	
Source Facility Lot		
Origin/Sourc		
Species/Strai	in: BLACK SANDSKell Musher	
Species Verifie	ed:	
Number Received		
Date received/lot # assigned		
	ena lanval invenilo adult	
Life stage at receipt/lot #		
If egg, disinfected		<u> </u>
	n: Actual/Estimate	
	h: <u>Actual/Estimate</u>	
First UMESC rearing unit	it: // // / // (e.g. room, tank, raceway, pond and rearing unit number)	<u> </u>
Comments		
	Collected on 10/25/11	
Date completed	d: 1/17/12	
FILE FOLDER \rightarrow 76 Completed by	/:	
17Em №> 3	- PROOFED	BY
	Tehlels: <u>723</u> D. REVIEWE Initiale: D.	D BY

F

	AEH-11-PS	EUDO-01		
USGS Upper	Midwest Envi		Science	Page / of
<u></u>	Fish/Animal			CERTIFIED COPT
NA = not applicable	N=inside O			Dittate \mathcal{D} Date $OPFEBIZ$ n = room T = tank
R	W = raceway	Est = est	imate	Die Book/Pages 1/23 File Folder 76 Aitials 40 Date 04 Fr B 2010
UMESC Lot Number:	115	300		Aitials <u>40</u> Date <u>041778/200</u>
Source Facility Lot #:			. .	
Origin/Source:	- Pool	<u> 9 C</u>	Man 1	NISS: River
Species/Strain:	Washboard	(miga	lorara	Nervoso)
Species Verified:	L	(benor)	us t	Nothern Ec (cert)
Number Received:	- 4			
Date received/lot # assigned:	10/ 18	/// egg la	rval i	venile adult
Life stage at receipt/lot #:		099 10	Yes	<u>ح</u>
Health certificate:	<u> </u>			
If egg, disinfected:	<u>.</u>			
Date spawn:	Actual/Estima	ite		<u>_</u>
Date hatch:	Actual/Estima	ite	<u> </u>	
First UMESC rearing unit:	km /	5 pk racowa	, pond	and rearing unit number)
Comments:	Collect			
Date completed: FILE FOLDER $\rightarrow \frac{\text{Completed by:}}{7b}$	18/20	/ (]		
		,		PROOFED BY
······ • •				REVIEWED BY

ŀ

Januar my contai	AEH-11-PSEUDO-01	1 7
USGS Upper	Midwest Environmental Sciences Cente	
	Fish/Animal History Form	IIIFILU CUPI
NA = not applicable	initia I = inside OUT = outside Rm = roor	
R	W = raceway Est = estimateg Book/Pag	es 1/23
	Elle Fold running	Top State any first and the second state of th
UMESC Lot Number:	115200	
Source Facility Lot #:		
Origin/Source:	POOL 9 UMR	·····
Species/Strain:	Plain Pocketbook	•
Species Verified:	V (Genog Bilgist	Mythan Eckert
Number Received:	.3	
	······································	
Date received/lot # assigned:	10/18/11	
Life stage at receipt/lot #:		adult
Health certificate:	Yes (No)	
If egg, disinfected:	· · · · · · · · · · · · · · · · · · ·	
Date spawn:	Actual/Estimate	
Date hatch:	Actual/Estimate	
First UMESC rearing unit:	Room 15	
	(e.g. room, tank, raceway, pond and rear	
Comments:	Collectur on 10/8/14	
	lat	
Date completed:		
FILE FOLDER $\rightarrow \frac{\text{Completed by:}}{7b}$		BROOFER BY
ITEM N -> 15		PROOFED BY Initials: <u>775</u> Date : <u>09FEB</u> 12 REVIEWED BY
		Initioler Datel

i .	AEH-11-PSEUDO-01
NA = not applicable II	Midwest Environmental Sciences Center of Midwest Environmental Sciences Center UERTIFIED COPY Fish/Animal History Form Inilials: 77-5 Date: 09766/2_ N = inside OUT = outside Rm = room T = tank W = raceway Est = estimate Log Book / Pages 1/3+4 Ipitials 1/3 1/3+4 Ipitials 1/3 1/3
	Initials In Date Offenzain
Source Facility Lot #: Origin/Source:	& Croix River (collected by Genog NAH) Higgins eye (L. higginst)
Species/Strain:	Higgins eye (L. higginst)
Species Verified:	
	4
Date received/lot # assigned:	5/9/11
Life stage at receipt/lot #:	egg larval juverille aduit
Health certificate:	Yes No
lf egg, disinfe cted:	
Date spawn:	Actual/Estimate
Date hatch:	Actual/Estimate
First UMESC rearing unit:	Rn // +An/L / C (e.g. room, tank, raceway, pond and rearing unit number)
Comments:	collected on 4/20/11 by Genorg NEH
	fransferrel to Omesi an 3/0/11
Date completed:	5/9/11
Completed by:	
FILE FOLDER \rightarrow 76	PROOFED BY Initialist 775 Date : 07FC612
T E M Nº>/6	REVIEWED BY

unionid mussel species"
Study number: AEH-11-PSEUDO-01
Approved by Date 5~5-11 File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C Lab book/pgs: 1-11_ Proofed: 13 0216012 Reviewed: File Folder: 7C File Folder: 7C
Form
Species: Lampsilis Cardium
Number of Donor Mussels: <u>3</u> Donor Mussel Lot #: 11100
Extraction Date: 05 / 12 /201 Extraction Time (military) 0900 to 0922
Extraction Location: UMESC rm 15 Container ID: Pool Block
Approximate Number of glochidia: 40,000
Glochidia extracted by: Nathan Eckert Affiliation: Genoa NFH
Additional information:

UMESC GLOCHIDIA LOT NUMBER DESIGNATION: 1140

Witness and form recorded by:

Kerry L. Weber		UMESC	05/12/2011
)Printed Name	Signature	Affiliation	Date

ITEM 1 --- 9

unionid mussel species"	, ,	
Study number: AEII-11-PSEUD	00-01	
Approved by File Folder: <u>1</u> Lab book/pgs: <u>1-11</u> Proofed: <u>02FE</u> Glochidia Test Organism UMESC Lot	Date 5~5~11 612 Reviewed: hssignwart Number Assignme	ent
Form	_	
Species: L. higginsii		
Number of Donor Mussels: <u>3</u> Donor Mussel Lot #:		
Extraction Date: <u>05 / 10 /</u> 201 <u>Extraction Time (milita</u>		
Extraction Location:UMESC rm 15Container ID ©RE XL/2 204 Approximate Number of glochidia: 40,000 25,000	: Pool Block-2	
Glochidia extracted by: Nathan Eckert Affilia	tion: Genca NFH	<u>.</u>
Additional information:		
	<u></u>	
	······	

UMESC GLOCHIDIA LOT NUMBER DESIGNATION:	11500	
Witness and form recorded by:		
Varia Villopar	UMESC	article
Printed Name Signature	Affiliation	$\frac{05 12 200}{\text{Date}}$
Owing Number Recorded 12 MAY 2011 KLW		
There are a set of a		

1TEM 10 ---- 10

Page ____ of ___

	Study number: AEH-11-PSEUDO-01
Appi File Fo Glochidia	Date 5-5-11 Date
	Form
Species: L. Sili	quoidea
Number of Dono	r Mussels: <u>3</u> Donor Mussel Lot #: 111200
Extraction Date:	05 / 12 /201 \ Extraction Time (military) 1215 10 1229
Extraction Locat	ion: UMESC rm 15 Container ID: Pool Block 3
Approximate Nu	mber of glochidia: <u>40,000</u>
Glochidia extrac	ted by: Nathon Ector+ Affiliation: Genoa NFH
Additional inform	nation:

UMESC GLOCHIDIA LOT NUMBER DESIGNATION: 111600

Witness and form recorded by:

:

Kerry L. Weber Printed Name	Signature	UMESC Affiliation	05/12/2011 Date
	 7.		
		ITEMN	ē → 11

Page ______ of ___

Study Title: "Effects of <i>Pseudomonas fluorescens</i> (<i>Pf</i> -CL145A) to glochidia from seven unionid mussel species"	
Study number: AEH-11-PSEUDO-01	
Approved by Date $5 - 5 - 11$ File Folder: $7C$ Lab book/pgs: $3 - 35$ Proofed: $7r5$ Reviewed: 02 FEB12	
Glochidia Test Organism UMESC Lot Number Assignment Form	
Species: L. Cardum	
Number of Donor Mussels: <u>3</u> Donor Mussel Lot #: <u>1152.00</u>	
Extraction Date: 18 /2011 Extraction Time (military) 0945	
Extraction Location: UMESC rm 15 Container ID: 1, 2.43	
Approximate Number of glochidia: ± 5,000 from each	
Glochidia extracted by: Jim Lhoma Affiliation: UMESL	
Additional information:	
UMESC GLOCHIDIA LOT NUMBER DESIGNATION: //5400	
Witness and form recorded by:	
JAMES A. LUOMA UMESC 18	800.111
Printed Name Signature Affiliation	Date

17EM # -> 12

Page __ of __

Study number: AEH-11-PSEUDO-01		
Approved by Date 5-5-11 File Folder: 7-4_ Lab book/pgs: pg. 23-9400fcd: 75- Reviewed: 02FEB12		
Glochidia Test Organism UMESC Lot Number Assignment		
Form Species: <u>Wash bound (Megalonanas Menosa</u>) Number of Donor Mussels: <u>H</u> Donor Mussel Lot #: <u>H5500</u> <u>115300</u> Extraction Date: <u>10 / 18 /201 /</u> Extraction Time (military) /015		
Number of Donor Mussels: 4 Donor Mussel Lot #: #5500 115300		
Extraction Date: 10 / 18 /201 / Extraction Time (military) /015		
Extraction Location:UMESC rm 15 Container ID: _1, 2, 3 +4		
Approximate Number of glochidia: 3-4,000 Each		
Glochidia extracted by: Jurge Burly Affiliation: Gena. NFA		
Additional information:		
· · · · · · · · · · · · · · · · · · ·		
UMESC GLOCHIDIA LOT NUMBER DESIGNATION: 115500		

 Witness and form recorded by:
 UMESC
 Image:
ITEM N -> 13

Page 1 of

Study number: AEH-11-PSEUDO-01

File Folder: 72 Lab	book/pgs: $\frac{ 3 }{2}$ Reviewed:	125 Verified:	
Glochidia Test Orga	-, -,	-0	ient
	Form		
species: Black Sandsh	ell		
Number of Donor Mussels:	Donor Mussel Lot #:	120400	
Extraction Date: 01 /17 /20	LA Extraction Time (military	y) <u>0945</u>	
Extraction Location:	Run 5 Container ID:	Bis1,2+3	
Approximate Number of glochi	dia:20,000	•	
Glochidia extracted by:-	Affiliat	tion: Genna NEH	
Additional information;			
<u> </u>	·	· · · · · · · · · · · · · · · · · · ·	
UMESC GLOCHIDIA LOT N	JMBER DESIGNATION:	120800	
Witness and form recorded by:			
Kern L. Weby		UMESC	17 the
Printed Name	Signature	Affiliation	<u> </u>
		ITEM No	► 14
This datasheet was approved by		on 12 JAN 2012.	
11JAN2012/Version 1.1		1	Page _ of _

Study number: AEH-11-PSEUDO-01

File Folder: $\frac{1}{2}$ Lab book/pgs: $\frac{1}{31}$ Reviewed: $\frac{175}{0.2 FEB/2}$ Verified:	
Glochidia Test Organism UMESC Lot Number Assignment	
Form	
Species: Mucket	
Number of Donor Mussels: 4 Donor Mussel Lot #: 120500	
Extraction Date: 01 / 17 / 2013 Extraction Time (military) 1100	
Extraction Location: UMESC Rm 15 Container ID: MUC 1, 2, 3	
Approximate Number of glochidia: <u>20,000</u>	
Glochidia extracted by:	
Additional information:	
UMESC GLOCHIDIA LOT NUMBER DESIGNATION: 120700	
Witness and form recorded by:	
UMESC 17	JANIZ
	Date
	5

 This datasheet was approved by ______ on <u>2.5km 2012</u>.

 11JAN2012/Version 1.1

Study number: AEH-11-PSEUDO-01

File Folder: 7c Lab book/pgs: 1/34 Reviewed: 75 Verified:

Glochidia Test Organism UMESC Lot Number Assignment Form

Species: Hickory nut		
Number of Donor Mussels: Donor Mussel Lot	#: 120600	
Extraction Date: 01 / 19 /2018 Extraction Time (milits	ary <u>) 0832</u>	
Extraction Location: UMESC Rm. 15 Container ID	HIC 1, 2+3	
Approximate Number of glochidia: <u>20,000</u>		
Glochidia extracted by: Jim Luoma Affil	iation: UMESC	
Additional information:		
	<u> </u>	
UMESC GLOCHIDIA LOT NUMBER DESIGNATION:	120900	
Witness and form recorded by:		
Kern 1 With	UMESC	too too a
JPrinted Name Signature	Affiliation	Date
	ITEM	№ -> 16
This datasheet was approved by	on 12 SAN 2112	_
11JAN2012/Version 1.1		Pageot

فسيستغسبنا	AEH-11-PSEUDO-01
USGS Upper	Midwest Environmental Sciences Center
	Fish/Animal History Form
NA = not applicable	N ≕ inside OUT = outside Rm = room T = tank
Log Book / Pages 131-4 File Folder 40 01FEB2012	W = raceway Est = estimate CERTIFIED COPY
Initials the Date	Initials, 725 Date: 09FEB12
UMESC Lot Number:	120900
Source Facility Lot #:	
	Umesc
Species/Strain:	Hickory Not MUSLIC
Species Verified:	
Number Received:	220,000 glochitis
	(halasi)
Date received/lot # assigned:	and land (invenie) adult
Life stage at receipt/lot #:	Yes (No)
Health certificate:	
If egg, disinfected:	
Date spawn:	Actual/Estimate 1/19/2012
Date hatch:	Actual/Estimate
First UMESC rearing unit:	(e.g. room, tank, raceway, pond and rearing unit number)
Comments	extracted 1/19/2012 at Unesc
	tiph Actes flip d' i suite
Date completed:	1/19/2012
Completed by:	
FILE FULDER> +C	PROOFED BY Initiats: <u>TRS</u> Date : <u>09FEB</u> 12.
	REVIEWED BY

AEH-11-PSEUDO-01
USGS Upper Midwest Environmental Sciences Center
Fish/Animal History Form
NA = not applicable IN = inside OUT = outside Rm = room T = tank
Log Book / Pages 1/31 RW = raceway Est = estimate CENTIFIED COPY File Folder +C -04FEB 2010 Initials Initials Initials Initials 200 PFEBI2 UMESC Lot Number: 126800
Source Facility Lot #:
Origin/Source: Umesc
Species/Strain: Black Sandshall glochiding Mossel
Species verified:
Number Received: 1 4 Jorn - 20, 000
Date received/lot # assigned://////
Life stage at receipt/lot #: egg larval (juvenile) adult
Health certificate: Yes No
If egg, disinfected:
Date spawn: <u>Actual/Estimate</u> Ado 14: Space of Son
Date hatch: Actual/Estimate
First UMESC rearing unit: f_m 15 Cont to BLS 1, 2, 3 (e.g. room, tank, raceway, pond and rearing unit number)
Comments:
glochipiz extracted 1/17/12_ at Umesc
Date completed:////////////////////////////////
Completed by:
FILE FOLDER \rightarrow 7C ITEM $\# \rightarrow 2$ PROOFED BY Initials: $\frac{795}{100}$ Date: $\frac{07566}{2}$ REVIEWED BY Initials: Date:

Regulation and	AEH-11-PSEUDO-01	Page 1 of
<u>USGS Upp</u>	er Midwest Environmental Scien	ces Center
	Fish/Animal History Form	CERTIFIED COPY
NA = not applicable	IN = inside OUT = outside	Rm = room T = tank
	RW = raceway Est = estimate	Lóg Book/Pages 1/32 -
		Initials <u>Kw-</u> , e <u>09.668.401</u>
UMESC Lot Numbe	r: <u>/20700</u>	·
Source Facility Lot	#:	·
Origin/Sourc	e: Umesc	
Species/Strai	n: Muckett glocher	in mussels
Species Verifie	d:	
Number Receive	d: <u>·2 20 0</u>	دىن
D-to received/lot # assigned	d:/ 17/12	
Life stage at receipt/lot	ego larval (juvenile adult
Health certificat	Yes	s No
If egg, disinfected	wrong evoly 11.	1/12 son diata
		500 Hz 11177 11 L-
	n: Actual/Estimate	
First UMESC rearing uni	t: <u>RM 15</u> <u>fank</u> (e.g. room, tank, raceway, pon	<u>μ/c / ζ 3</u> d and rearing unit number)
	s: Glochitin Extracted	
,	Adolts Spowned gt wrong Entry 1/11/12	
	wrong Early 1/11/12	501
Date complete	1:////~	
Completed by		
FILE FOLDER $\rightarrow 7c$		PROOFED BY

ITEM N -> 3

PROOFED BY Initials: <u>76</u> Date 1 <u>0768</u>12 REVIEWED BY Initials: Date¹

		AEH-11-P	SEUDO-01	Page of2
-1	USGS Upper	Midwest Envir	onmental Sci	GERTIFIED COPY
		<u>Fish/Animal (</u>		1000000000000000000000000000000000000
	NA = not applicable II	N=inside O	UT = outside	ŭ
	R	W = raceway	Est = estima	Log Book / Pages 1/25 File Fold r 4 Initials 100 e 01 PEG 2012
		1	k	Initials <u>fun</u> e <u>MPEB 2012</u>
	UMESC Lot Number:	1550	<u> </u>	4
	Source Facility Lot #:	,	<u> </u>	
	Origin/Source:			
				(M. Nevosa)
	Species Verified:		(Jin	Luoma)
	Number Received:	16,000	3,000 -	4,000 / grains female
		int int	11	
	Date received/lot # assigned: Life stage at receipt/lot #:	10/ 18/	egg (larva)	Djuvenile adult
	Life stage at receipt/lot #:		Y	res No
•	Health certificate:			
	If egg, disinfected:	\frown		
	-	Actual/Estima	1	/.
		Actual/Estima		
	First UMESC rearing unit:	(e.g. room, tai	nk, raceway, p	nd and rearing unit number)
	Comments:	flade 1 13	Estected	by (bearse B). (bearse NEd)
		<u>[]</u>		
		. <u> </u>		
	Date completed:	introl a		
FILE	$\begin{array}{c} \text{Completed by:} \\ \text{FOLDER} \longrightarrow 7c \end{array}$,	PROOFED BY
ITEN	1 he 4			Altain 735 Date
				laitieia Datei

er-

and an and a second a	AEH-11-PSEUDO-01
USGS Upper	Page of Midwest Environmental Sciences Center TIFIFD CODV
	Fish/Animal History Form
NA = not applicable	= inside OUT = outside Rm = room T = tank
R	W = raceway Est = estimate
	File Folder <u>4C</u> Initials <u>Low</u> Usie 09 Fell 2012
UMESC Lot Number:	115400
Source Facility Lot #:	
Origin/Source:	
Species/Strain:	Plain pockedbook (L. CANTIUN)
Species Verified:	plain podetbook (L. CANJUN) (Tim Como)
Number Received:	± 15,000
	infra lu
Date received/lot # assigned:	egg (Jarval) juvenile adult
Life stage at receipt/lot #:	Yes No
	Actual/Estimate 10/18/4
	Actual/Estimate
First UMESC rearing unit:	(e.g. room, tank, raceway, pond and rearing unit number)
Comments:	Extracted from Gross female of Umarc
	5,000/gmin f
	/ °
Date completed:	10/20/11
Completed by:	
FILE FOLDER \rightarrow 7c	PROOFED BY ANNale: 7-5 Date : 09f5812 REVIEWED BY
ITEM 1 -> 5	initialar Datel

and the second	AEH-11-PSEUDO-01	Page of
	Sich/Animal History Form	als: 7-5 Date: 09FEB12-
	W = raceway Est = estimate Log Book / File Folde Initials	Pages Jul W Dave Daren Jou
		· · · · · ·
Orig in/Source:		
Species/Strain:	Fat muckett (L. S.T.gorda) Moral glathiding
Species Verified:		
Number Received:	a 40,000	
Health certificate: If egg, disinfected: Date spawn: Date hatch: First UMESC rearing unit:	egg larval (uvenile Yes ()	Block 43 aring unit number)
Date completed: FILE FOLDER $\rightarrow \frac{\text{Completed by:}}{Fc}$ ITEM * $\rightarrow \zeta_{c}$	5/12/11	PROOFED BY Initials: <u>725</u> Date : <u>07FGB</u> [2 BEV: EWED BY Initials: Date!

Security Control of Co	AEH-11-PSEUDO-01	
		Page / of 2
USGS Upper	r Midwest Environmental Scienc	CERTIFIED COPY
	Fish/Animal History Form	Initials, 775 Date: 09FEB/2
NA = not applicable I	N = inside OUT = outside R	m = room T = tank
Я	RW = raceway Est = estimate	Log Book / Pages //// File Folder Initials Date
		Initials Date March 2013
UMESC Lot Number:	111500	4
Source Facility Lot #:		
Origin/Source:	Umesc	
Species/Strain:	hissons eyes model	glochidiq
Species Verified:		
Number Received:	~ 25,000	
	r-loo lu	
Date received/lot # assigned:		
Life stage at receipt/lot #:		uvenile) adult
Health certificate:	Yes	
If egg, disinfected:		
Date spawn:	Actual/Estimate 5//2/	//
Date hatch:	Actual/Estimate	
First UMESC rearing unit:	RM 15 Cont to B (e.g. room, tank, raceway, pond	Incle & 2 and rearing unit number)
Comments:	Dower mouse Lovi H	11300
	glochitis extracted in k	2m 15 Block #2.
	by genue me 4	
	()	
Date completed:	5/12/11	<u> </u>
Completed by:		
FILE FOLDER -> 7c		PROOFED BY
ITEMN-> 7		Initials: <u>7-S</u> Date : <u>09FEBIZ</u> REV:EWED BY
		Initials: Date:

	AEH-11-P	SEUDO-01	1 7
	r Midwest Envir	ronmental Scie	
	Fish/Animal H	-	Initials: <u>723 Date</u>
NA = not applicable	N = inside O	UT = outside	woma date.
F	RW = raceway	Est = estima	te .
			Log Book / Pages File Folder <u>70</u> Initials <u>Vin</u> vole <u>09755</u> 2017
UMESC Lot Number:	111400		Initials Vin Dale Offer 2017
Source Facility Lot #:			
Origin/Source:	Umesc		
Species/Strain:	Pecket book	(1.00	indium)
Species Verified:			
Number Received:	ä 40,00	w	
Date received/lot # assigned:	5/12	1	
Life stage at receipt/lot #:		egg larval	(juvenile) adult
Health certificate:	<u></u>	Ye	es No
If egg, disinfected:			
Date spawn:	Actual/Estimat	te 5/12	/11
Date hatch:	Actual/Estimat	e	· · · · · · · · · · · · · · · · · · ·
First UMESC rearing unit:			nd and rearing unit number)
Commontes	DGPOR MUSSE		
SIDCHICH	b Car Ale		at phil Black 41
	y bence 10 1	<u> </u>	
Date completed:	clini	10	
Completed by:			
ILE FOLDER \rightarrow $7c$			PROOFED BY
TEM N> 8			BEVIEWED BY
) 6 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			Initialar Date'

Appendix 6. Water Quality

ltem number	Item description	Number of pages	Report page number
1	Initial (Pre Exposure) Water Chemistry – Data Summary	2	326
2	Exposure Water Chemistry – Data Summary	9	328
3	Exposure Light Intensity – Data Summary	2	337
4	Termination Water Chemistry – Data Summary	2	339
5	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report Dated November 9, 2011	1	341
6	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report Dated February 3, 2012	1	342
7	T otal Ammonia Nitrogen – Data Summary	10	343

Study Numbe	er: AEH-11-P	SEUDO-01	Action	Date	Initials
Lab Noteboo	k:1		Created	3-Mar-15	TJS 16
Data Source:	File Folder:	10a	Revised	4-Mar-15	TJS 119
	Forms:	Water Quality - Form 1	Reviewed	4-MAR-15	1
		Initial (Dilution Water Hardness, Alkalinity, and Temperature) [Conductivity]	Certified	Fr \$13.5	31-
			W14	3-13-15	
File Name:	:\AEH-11-F	SEUDO-01\Data\Water Chemistry\[Initial (Pre Exposure) Water Chemistry Summary.xlsx]Initial (Coversheet	3-13-11	
				50-	

Initial (Pre Exposure) Water Chemistry

Test Article: *Pseudomonas fluorescens (Pf*-CL145A) spray dried powder (SDP) and freeze dried powder (FDP) Article Lot #s: SDP = MBI-401-110308AI-BD-3 and MBI-401 SDP 4655-12-Mix; FDP = 110607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Data Explanation:

Species Abbreviations

- PP3 plain pocketbook (Lampsilis cardium) FAM - fatmucket (Lampsilis siliquoidea) HGE - Higgins eye (Lampsilis higginsii)
- WAS washboard (Megalonaias nervosa) BLS - black sandshell (*Ligumia recta*)
- MUC mucket (Actinonalas ligamentina)
- HIC hickorynut (Obovaria olivaria)

Data anomalies and deviations:

1) Initial conductivity reading was not measured on 12-MAY-11.

2) Only one replicate sample of conductivity was measured on 18-Oct-11.
 3) Initial water chemistry parameters were measured in triplicate for each exposure day (12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12) but not separately for each species, therefore, for species that were tested on the same day the data is transcribed for clarity.

Item Number Page _ - ì of

St.dy Number: AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10a Forms: Water Quality - Form 1 Initial (Dilution Water Hardness, Alkalinity, and Temperature) [Conductivity]
 Test Article: MBI 401 (#F-CL 145A [SDP] and (FDP])

 Article Lot #:
 MBI-401-130308AI-BD-3, MBI-401 SDP 4853-12-Mix, 110607WB-FD-E

 Exposure Dates:
 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12

 Species Tested:
 PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Initial (Pre Exposure) Water Chemistry

Species	Formulation	Test Date	Replicate	Hardness (mg/L CaCO ₃)	Alkalinity (mg/L CaCO3)	Conductivity (µS/cm)	Temperature (°C)
PPB	SDP	12-May-11	1	170	130	ND	19.4
			2	172	130	ND	19.3
			3	170	130	ND	19,3
			Mean	171	130	٨D	19.3
			SD	1	0	ND	0.1
			Min	170	130	ND	19.3
			Max	172	130	ND	19.4
FAM	SOP	12-May-11	1	170	130	AD.	19.4
			2	172	130	ND	19.3
			3	170	130	ND	19.3
*****		10000000000000000000000000000000000000	Mean	171	130	٨D	19,3
		ĺ	SD		0	ND	
			Min	1 170			0.1
					130	AD ND	19.3
1165	CD 2	17.14.11	Max	172	130	ND	19,4
HGE	SDP	12-May-11	1	170	130	ND	19,4
			2	172	130	ND	19.3
			3	170	130	ND	19.3
			Mean	171	130	ND	19.3
			5Đ	1	٥	ND	0.1
			Min	170	130	ND	19,3
			Max	172	130	ND	19.4
PPB	FDP	18-Oct-11	1	174	126	391	18.4
			2	174	126	ND	18.4
			3	174	127	ND	18.4
		1	Mean	174	126	391	18.4
			SD	D	1	ND	0,0
			Min	174	126	391	18.4
			Max	174	127	391	18.4
WAS	FDP	18-Oct-11	1	174	126	391	18.4
			2	174	126	ND	18,4
		1	3	174	127	ND.	18,4
	******		Mean	174	126	391	18.4
		l	SD	0	1	AD.	0.0
			Min	174	126	391	
		-	Max	174			18.4
BLS	SDP	17-Jan-12			127	391	18,4
DLS	SUP	17-Jan-12	1	172	125	412	19.9
		1	2	171	124	425	19.9
			3	170	124	429	19.9
		l	Mean	171	124	422	19,9
		-	62	1	1	9	0,0
		1	Min	170	124	412	19.9
		1	Max	172	125	429	19.9
MUC	SDP	17-Jan-12	· 1	172	125	412	19.9
			2	171	124	425	19.9
			3	170	124	429	19.9
			Mean	171	124	422	19,9
			SD	1	1	9	0.0
			Min	170	124	412	19.9
			Max	172	125	429	19,9
HIC	SDP	19-Jan-12	1	174	121	382	20,1
			2	174	122	381	19.9
			3	176	122	385	19.9
			Mean	175	122	383	19.8
			SD				
				1	1	2	0.Z
		1	Min	174	121	381	19.8
		1	Max	176	122	385	20.1

on 18-Oct-11.

-					
Study Numb	er: AEH-11-	PSEUDO-01	Action	Date	Init
Lab Notebo	ok: 1		Created	3-Mar-15	TJS
Data Source	: File Folder	: 10b	Revised	9-Mar-15	TJS
	Forms:	Water Quality - Form 2	Reviewed	9-MAR-15	
		During Exposure (Dissolved Oxygen, pH, Temperature) [Light Intensity]		3/10/15	1

File Name: I:\AEH-11-PSEUDO-01\Data\Water Chemistry\[Exposure Water Chemistry Summary.x'sx]Exposure Coversheet

Exposure Water Chemistry

,

Test Article: Pseudomonas fluorescens (Pf-CL145A) spray dried powder (SDP) and freeze dried powder (FDP) Article Lot #s: SDP = MBI-401-110308AI-BD-3 and MBI-401 SDP 4655-12-Mix; FDP = 110607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, B.S, MUC, and HIC

Data Explanation:

300 HD = 300 mg/L Heat Deactivated

Species Abbreviations

PPB - plain pocketbook (Lampsilis cardium) FAM - fatmucket (Lampsilis siliquoidea) HGE - Higgins eye (Lampsilis higginsii) WAS - washboard (Megalonalas nervosa) BLS - black sandshell (Ligumia recta) MUC - mucket (Actinoncias ligamentina) HIC - hickorynut (Obovaria olivaria)

Water chemistry was measured twice during exposure: 1) Upon exposure initiation 2) Prior to exposure termination

For PPB, FAM, and HGE (SDP), water chemistry parameters were measured in all replicates (3) for controls (0 mg/L) and 300 mg/L treatments, however, only one replicate was measured for 50, 100, 200 mg/L, and 300 mg/L heat deactivated (HD). All other species had all replicates measured for all treatment concentrations.

pH means calculated on hydrogen ion concentration; pH standard deviations calculated on pH values.

Data anomalies and deviations:

None

ltem Number_ Page _____ of

Study Number: AEH-31-PSE JDD-01 Lab Votebook 1 Data Source: File Folder: 10b Forms: Water Qua(hy - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature)

 Test Article:
 MBI 401 (Pf-CL 145A [SDP])

 Article Lot #:
 MBI-401-110308A1-8D-3

 Exposure Date:
 12-May-11

 Species Tested:
 PPB

 Glochidla Lot #
 111400

Exposure Water Chemistry - Plain Pocketbook SDP

Test	Treatment	Sample	Dissolved		Temperature
Chamber	(mg/L)	Time	Oxygen (mg/L)	рН	(°C)
1A3	0	1	8.57	8.42	19.3
		2	8.39	8,23	19.1
181		1	8,43	8.30	20,0
		2	8.55	8,35	19.5
1C3		1	8.65	8.39	20,0
		2	8.39	8.41	19.0
		Mear.	8.50	8,35	19,5
		SD	0,11	0.07	0.4
		Mln	8.39	8,23	19.0
		Max	8,66	8.42	20.0
185	50	1	8.23	8,39	20.2
1A1		2	8.07	8.25	19,2
		Mean	8,15	8,33	19.7
		50	0.11	0.10	D.7
		Min	8.07	8.25	19.2
		Max	8.23	8,39	20.2
184	100	1	8.68	8.39	19.6
1A4		2	7.40	8.03	19.0
		Mean	8.04	8.25	19,3
		SD	0.91	0.25	0,4
		Min	7.40	8.03	19,0
		Max	8.68	8.39	19.6
1C6	200	1	8.27	8.36	19.5
1C3 1C4	200	2	7,04	8.09	19.0
		Mean	7.66	8.25	19.0
		SD			
		Min	0.87	0.19	0.4
		Max	7.04 8,27	8.09	19.0
1A5	300	1		8,36	19.5
THO	300	2	8.80	8.27	20.0
1C2		1	6.20	7.85	19.0
102		2	8.54	8.29	20.0
1C5			5.83	7.87	19.5
703		1	8.68	8.27	20.0
		<u> </u>	5.22	7.74	19.1
		Mean	7.21	8.11	19.6
		SD	1.63	0.25	0.5
		Min	5,22	7.74	19.0
		Max	8.80	8.29	20.0
183	300 HD	1	8.29	8.37	20.0
1A5		2	6.63	8.07	19,1
		Mean	7.46	8.25	19.6
		cz	1.17	0.21	0.6
		Min	6.63	8.07	19.1
		Max	8.29	8.37	20.0

Just prior to exposure termination.

Item Number 17 Page 2 of 9

329

Study Number: AFH-11-PSEUDO-01 Lab Notebook 1 Data Source: File Fo der: 10b Forms: Water Quality - Form 2 During Exposure (Clssolved Oxygen, pH, Temperature)
 Test Article:
 MBI 401 (Pf.C. 145A [SDP])

 Article Lot #:
 MBI-401-110308A+8D-3

 Exposure Date:
 12-May-11

 Spacles Tested:
 FAM

 Glochvida Lot #
 111600

Exposure Water Chemistry - Fatmucket SDP

Test	Treatment	Sample	Dissolved		Temperature
Chamber	(mg/L)	Time	Oxygen (mg/L)	p⊀	(°C)
3A2	0	1	8.65	8,39	19.7
		2	8.85	8.47	19.0
3B2		1	8.56	8.48	19.4
		2	8.05	8.43	19,0
383		1	8.67	8,44	20.0
		2	8.75	8.42	19.1
		Mean	8.59	8.44	19.4
		SD	0.28	C.03	0.4
		Min	8.05	8.39	19.0
		Max	8.96	8.48	20.0
3C5	50	1	8.11	8.36	19.5
385		2	7,31	8.05	19.0
		Mean	7.71	8.23	19.3
		SD	0.57	0.22	0.4
		M'n	7.31	8.05	19.0
		Max	B.11	8.36	19,5
3A5	100	1	8.15	8,35	20.0
3A3	B-1	2	7.01	8.09	18.9
		Mean	7.58	8.24	19.5
		SÐ	0.81	0.18	0.8
		Min	7.01	8.09	18.9
		Max	8.15	8.35	20.0
3C4	200	1	8.60	8.20	19.9
384		2	6.02	7.73	19.1
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Mean	7,31	8.07	19.5
		SD	1.82	0.37	0.6
		Min	6.02	7.73	19.1
		Max	8.60	8.25	19.9
381	300	1	8.52	8,24	20.3
		2	4.97	7.57	19.0
3C1		1	8.50	8.37	20.3
		2	7.31	7.92	19.0
3C3		1	8.50	8,27	20.2
		2	3.71	7.52	19.1
		Mean	6.92	8,10	19.7
		SD	2.09	0.37	0.7
		Min	3.71	7.52	19.0
		Max	8.52	8.37	20,3
3C2	300 HD	1	8.36	8.31	19.2
3A4		2	5.19	7.68	19.0
-		Меал	6.78	8.10	19.1
		SD	2.24	0.45	0.1
		Min	5.19	7.68	19.0
		Max	8.36	8.31	19.2

Sample time 1 was measured upon exposure initiation and Samp Just prior to exposure termination.

11 tem Number_ Page ____ 4

330

Study Number: AFH-k1-PS-UDO-01 Leb Notebook 1 Data Source: File Folder: 10b Forms: Water C

yuo Water Quality - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature)

 Test Article:
 MEI 401 (Pf-CL 145A (SDP))

 Article Lot #
 MEI-401-110308AI-8D-3

 Exposure Date:
 12-May-11

 Species Tested:
 HGE

 Giochidia Lot #
 111500

Exposure Water Chemistry - Higgins Eye SDP

Test	Treatment	Sample	Dissolved		Temperatur
Chamber	(mg/L)	Time	Oxygen (mg/L)	p٦	(°C)
281	0	1	7.82	8.41	19.9
		2	8 28	8.39	19.0
2C3		1	7.85	8.38	19,0
		2	7.97	8,44	18.5
206		1	8.23	8.46	20.1
		2	8.15	8.44	19.0
		Mean	8.05	8,42	19.3
		SD	0.20	0.03	0.6
		Min	7.82	8,38	18.5
		Max	8.28	8.46	20,1
2A4	50	1	7.77	8,38	19.4
2A2		2	7.40	8.08	19.1
	*******	Mean	7.59	8.26	19.3
		5D	0.26	0.21	0.2
		Min	7.40	8.08	19.1
		Max	7.77	8,38	19,4
2C5	100	1	8.55	8.29	19.7
zc4	100	2	7.48	8.00	18.2
ne is in an	11	Mean	8.02	8,17	19.0
		SD .	0.76	0.21	19.0
		Min			
			7.48	8.00	18.2
282	200	Max	8,55	8,29	19,7
	200	1	7.97	8,30	19.3
282		2	7.01	8.03	18.0
		Mean	7.49	8,19	18.7
		SD	0,68	0.19	0,9
		Mln	7.01	8.03	18.0
		Max	7.97	8.30	19.3
283	300	1	7.70	8.26	20.2
		2	4.08	7.58	18.5
2C1		1	7.77	8.41	19.8
		2	7,78	7.99	18.5
2C2		1	7.81	8,39	20.0
		2	8.11	8.05	18.5
		Mean	7.21	8.19	19.3
		SD	1.54	0.31	0.8
		Min	4.08	7.58	18,5
		Max	8.11	8.41	20.2
284	300 HD	1	7.97	8.34	20,0
284		2	6.07	7.85	19.0
		Mean	7.02	8.15	19,5
		SD	1.34	0.35	0.7
		Min	6.07	7.85	19,0
		Max	7.97	8.34	20.0
			sure Initiation and Sa		

Study Yumber: AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10b Forms: Water Quality - Form 2 During Exposure (Dissolved Oxyger, pil₁ Tamperature)
 Test Article:
 MBI 401 (PI-CL 145A [FDP])

 Artic e Lot #:
 110607WB-FD-E

 Exposure Date
 18-Oct 11

 Species Tested:
 WAS

 Glochidia Lot #
 115500

ļ

Exposure Water Chemistry - Washboard FDP

Test	Freatment	Sample	Olssolved		Temperatur
Chamber	(mg/L)	Time	Oxygen (mg/L)	pH	(°C)
1A5	0	1	7.58	8.41	18.6
182		2 1	7.36 7.66	8.41	18.3
162		2		8.39	18.7
184		1	7.37	8.39	18.6
104		2	7.45 7.13	8,40 8,40	18.7
		Mean	7.43	8,40	18.7 18.6
		SD	0.19	0.01	0.2
		Min	7.13	8,39	18.3
		Max	7.66	8.41	18,7
1A1	50	1	7.75	8.40	18.1
1/11	50	2	5.80	8.35	17.7
101		1	8.11	8.40	17.4
		2	7.11	8,40	17.3
1C2		1	8.55	8,39	18.3
200		2	7.54	8.40	18.1
		Mean	7.64	8.40	17.8
		SD	0.64	0.01	0,4
		Min	6.80	8.39	17.3
		Max	8,55	8.40	18.3
1A2	100	1	9.25	8.41	18.8
		2	8.00	8.39	18.6
1A6		1	9.11	8,41	18.6
		2	7.68	8,39	18.1
1C6		1	8.90	8.41	18.2
		2	7.40	8.39	17.7
		Mean	8.39	8,40	18.3
		SD	0.79	0.01	0.4
		Min	7.40	8.39	17.7
		Max	9.25	8,41	18.8
105	200	1	9.09	8.40	18.7
		2	7.44	8.49	18.5
1C3		1	8.30	8.37	18.0
		2	7.60	8.37	18.2
1C4		1	8,72	8.35	18,8
		2	7.59	8,35	18.7
		Mean	8,12	8,39	18.5
		SD	0.69	0.05	0.3
		Min	7.44	8,35	18.0
		Max	9.09	8.49	18.8
1A4	300	1	8.64	8,38	18.5
		2	7.37	8.37	18.2
181		1	8.09	8,39	17.9
		2	7.36	8.36	17.6
1C5		1	8.23	8.37	18.3
		2	7.55	8.35	18.3
		Mean	7.87	8,37	18.1
		5D	0.53	0.01	0.3
		Min	7.36	8.35	17.6
		Max	8.64	8.39	18.5
1A3	300 HD	1	8.44	8.40	18.6
		2	7.42	8.37	18.3
183		1	8.09	8.39	18.3
		2	7.27	8,37	18.0
186		1	8.74	8.37	18.6
		2	7.07	8,37	18.3
		Mean	7,84	8.38	18.4
		SD	0.68	0.01	0.2
		Min	7.07	8.37	18.0
		Max	8.74	8.40	18.6

Just prior to exposure termination.

Study Number: AEH-11-9/SEUDO-01 Lab Notebook 1 Data Source: File Folder: 10b Forms: Wator Quality - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature)
 Test Article:
 MBI 401 (Pf CL 145A (FDP))

 Article tol 4:
 110607WB-FD-E

 Exposure Date
 18-Oct-11

 Species Tested:
 PPB

 Giochidia Lot 4/
 115400

٠

ъ

Exposure Water Chemistry - Plain Pocketbook FDP

Test Chamber	Treatment	Sample Time	Dissolved		Temperatur
	(mg/L)		Oxygen (mg/L)	pH	(°C)
3A6	0	1 2	8,43 8.00	8.3Z 8.29	18,3 17.7
385		1	9.10	8.29 8.12	17.7
565		2	7.74	8.22	17.2
3B6		1	8.72	8.19	17.2
200		2	8.04	8,25	17,6
		∠ Меал	8.34	8.24	17.8
		SD	0.51	0.07	0.4
		Min	7.74	8.12	17.2
		Max	9.10	8.32	18.3
3A4	50	1	8.70	8.25	18.1
3/44	50	2	7.81	8,27	17.4
3C1		1	8.64	8.28	17.4
301		2	7.54	8.31	15.8
3C2		1	8,50	8.26	17.2
342		2	7.59	8.31	16.6
				8.28	17.2
		Mean SD	8.13 0.54	0.02	0.5
			1		
		Min	7.54	8,26	16.6
3B1	100	Max 1	8.70 8.90	8.31	<u>18.1</u> 17.9
301	100	2	7.46	8.31	17.9
3B3		1	8.88	5.31	
303		2	7.25	8.31	17.8 17.3
3C6		1	8.65	8.34	. 17.5
360					
		2 Mean	7.31 8.08	8.31 8.32	17.1 17.5
		SD	0.81	0.02	0.3
		Min	7,25	8.31	17,1
		Max	8,90	8.34	17,1
3A2	200	1	8,50	8,31	17.7
564.	200	2	7.55	8.31	17.1
3C3		1	8.41	8.34	17.3
545		2	7.21	8.31	16.8
365		1	8.55	8.31	18.1
565		2	7,29	8.31	17.4
		Mean	7.92	8.32	17.4
		SD	0,63	0.01	0.5
		Min	7,21	8.31	16.8
		Max	8.55	8.34	18.1
3A3	300	1	8.47	8.29	18.2
		z	7.71	8.29	17,6
384		1	8.45	8.31	18.0
		2	7.54	8,30	17.3
3C4		1	7.88	8.33	17.5
		2	6.81	8.51	15.8
	r	Mean	7.81	8.31	17.6
		SO	0,62	0.02	0.5
		Min	6.81	8.29	16.8
		Max	8.47	8.33	18.2
3A1	300 HD	1	8.04	8.34	18.2
2.1.2		2	6.04	8.31	17.7
3A5		1	7.85	8.36	18.C
		2	6.90	8.32	17.5
382		1	7.97	8,34	17.7
502		2	6.32	8,34	17.2
	K.N. 1041. 1041.11.11.11.11.11.11.11.11.11.11.11.11.1	Mean	7.19	8.34	17.7
		SD	0.89	0.02	0.4
		Min	6.04	8.31	0.4 17.2
		321 71		0.51	27.2

just prior to exposure termination.

Study Number: AEH-31-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10b Forms Water Quality - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature)
 Test Article:
 MB1 403 (Pf-CL 14SA (SDP))

 Article Lot #
 MB1-401 SDP 4655-12-MIK

 Exposure Date:
 17-Jan-12

 Species Tested:
 BLS

 Glochdla Lot #
 120800

÷

Exposure Water Chemistry - Black Sandshell SDP

Test	Treatment	Sample	Dissolved		Temperatu
Chamber	(mg/L)	Time	Oxygen (mg/L)	pH	(°C)
1A5	0	1	8.69	8.27	20.2
		2	8,90	8.55	20.0
181		1	9.39	8.40	21.2
		2	9.27	8.56	20.1
1C6		1	9.50	8,42	20.6
		2	9.24	8.55	20.4
		Vlean	9.17	8.47	20.4
		SD	0.31	0.12	0.4
		Min	8.69	8.27	20.0
		Max	9.50	8.56	21.2
1A1	50	1	9.47	8.41	21.0
		2	9.67	8.42	20.4
1A3		1	9,68	8.41	20.6
		2	9.68	8.44	20.0
101		ĩ	8.45	8.39	21,9
		2	9.18	8,34	20.4
		Mean	9.35	8.40	20.7
		SD	0.48	0.03	0.7
		Min	8,45	8,34	
			i		20.0
40.0		Max	9.68	8.44	21.9
1B2	100	1	10.68	8.36	21.3
		2	8.97	8.33	20.5
183		1	10.49	8.37	20.1
		2	8.90	8.38	20.3
105		1	10.03	8.37	20.4
		2	8.44	8.32	20.3
		Mean	9.59	8.36	20,5
		5D	0.94	0.02	0.4
		Min	8,44	8.32	20.1
		Мах	10.68	8.38	21.3
1A6	200	1	9,15	8.31	20,4
		2	8.46	8.30	20.2
185		1	9.10	8.36	19.8
		Z	8.34	8.37	19.8
186		1	9.37	8.31	20,3
		2	7.90	8.21	20.5
		Mean	8.72	8.31	20.2
		SO	0.57	0.06	0,3
		Min	7.90	8,21	19.8
		Max			
1A2	300	1	9.37	8.37	20.5
142	500		3		20.8
		2	7,86	8.15	20.5
164		1	8.11	8.31	20.2
		2	8.44	8.30	20,5
1C2		1	10.02	8,28	21.2
		2	7.85	8.15	20.5
		Mean	8.75	8.25	20.6
		SD	1.09	0.07	0.4
		Min	7.85	8.15	20.2
		Max	10.23	8.31	21.2
1A4	300 HD	1	8.34	8.33	18.3
		2	8.65	8.50	18.5
1C3		1	10.30	8.37	20.4
		2	9.11	8,39	20.0
1C4		1	10.45	8.37	20.3
		2	8.68	8.27	20.1
		Mean	9.29	8.38	19.6
		SD	0,88	0.08	0,9
		Min	1		
		Min	8.34 10,45	8.27 8.50	18.3 20.4

just prior to exposure termination.

Study Number: AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10b Forms: Water Quality - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature)

Article Lat #: Exposure Date Species Tester

 Test Article:
 MBI 401 (Pf-CL 145A (SDP))

 Article Lot #:
 MBI-401 SD-2 4655-12+Mfx

 Exposure Date:
 17-Jan 12

 Species Testad;
 MUC

 Giochdia Lot #:
 120700

Exposure Water Chemistry - Mucket SDP

Test	Treatment	Sample	Dissolved		Temperatur
Champer	(mg/L)	Time	Oxygen (mg/L)	pН	('C)
284	D	1	8.64	8.34	20,1
		2	7.44	8.52	20.1
2B5		1	8.02	8.37	20,0
		2	8.32	8.53	20.0
2C1		1	9.30	8,38	20.2
		2	8.66	8.52	20.3
		Mean	8,40	8,45	20.1
		SD	0.63	0.09	C.1
		Min	7.44	8.34	20.0
		Max	9.30	8.53	20,3
2A4	50	1	9.85	8.33	20.0
L A-	10	2	8.89	8,38	20.3
286		1	9.55	8,36	20.5
200		2	•		
			8,80	8,38	20.3
2C3		1	9.43	8.36	20.0
		2	8,70	8,43	20.0
		Mean	9.20	8.37	20,1
		SD	0.47	0.03	C.1
		Min	8.70	8.33	20,0
		Max	9.85	8.43	20.3
2A2	100	1	8.88	8,32	20,1
		2	8.72	8.37	20.3
282		1	- 8.72	8.34	19.7
		2	8.44	8.91	20.2
2C6		1	8.72	8,35	19.3
		2	8.43	8.43	19.2
		Mean	8.65	8.36	19.8
		SD	0.18	0.04	0.5
		Min	8.43	8.31	19.2
		Max	8,88	8.43	20.3
2A5	200		·		
ZMG	200	1 2	9.44	8.32	19,9
			8,46	8,35	19.8
2A6		1	9.14	8.30	19.9
		2	8,56	8,35	19.5
2C2		1	9.60	8.26	19.6
		2	8.57	8.40	19.7
		Mean	8.96	8.33	19.7
		SD	0.50	0.05	0,2
		Min	8.46	8.25	19.5
		Məx	9.60	8.40	19,9
281	300	1	8,33	8,29	20.1
		2	8.78	8.34	20.3
283		1	8.85	8,29	19.6
		2	8.83	8.32	19.6
2C4		ĩ	9.07	8.3C	19.8
201			1		
	****	2	8.60	8.38	19.6
		Mean	8,74	8,32	19.8
		5D	0.25	0.04	0.3
		Min	8.33	8.29	19.6
		Max	9.07	8.38	20.3
2A1	300 HD	1	8.93	8,30	20.0
		2	8.33	8.54	19.9
2A3		1	8.71	8.32	18.8
		2	8,26	8,23	20.5
2C5		1	9.00	8.33	19.7
		2	8.55	8,47	19.4
B(B)/90/0000000000000000000000000000000000		Mean	8,63	8.33	19.7
		SD	0.31	0.06	0,6
		Min	8.26	8.23	18.8
		Max	9.00	8.42	20.5

just prior to exposure termination.

Study Number: AEH-11-PSEUDO-01 Leb Notebook 1 Data Source: File Folder: 10b Forms: Water Quality - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature)
 Test Arkole:
 MBI 401 (Pf-CL 145A (SDP))

 Artible Lot #:
 MBI-401 SDP 4655-12-Mix

 Exposure Date:
 19-Jan 12

 Species Testee:
 HIC

 Glochidla Lot #:
 120900

Exposure Water Chemistry - Hickorynut SDP

Test Chamber	Treatment (mg/L)	Sample Time	Dissolved Oxygen (mg/L)	pН	Temperatur (°C)
3A2	0	1		8.3¢	
2744	U	2	10.32 10.73	8.5¢ 8.51	20.1
201					19,9
3C1		1	8,46	8.36	20.1
		2	9.55	8.43	19.8
3C4		1	9.88	8.36	20.0
		2	9.95	8.50	19,5
		Mean	9.82	8.42	19.9
		5D	0.78	0.07	0.2
		Min	8.46	8.36	19.5
		Max	10.73	8,51	20.1
3A5	50	1	10.37	8.33	20.0
		2	10.05	8.42	19.5
383		1	11.00	8,37	19.7
		2	10.43	8.48	18.8
386		1	10.36	8,32	20.0
		2	10.23	8.34	19.9
		Mean	10.41	8.38	19.7
		5D	0.32	0.06	0,5
		Min	10.06	8.32	18.8
		Мах	11.00	8.48	20.0
381	100	1	10.91	8.34	20.1
	200	2	10.03	8.38	19.7
3C2		1	10,00	8.36	19.5
JUZ		2	9.91	8.45	
3C5		1			18,6
305			10.35	8.32	20.0
		2	9.74	8.30	19.6
		Mean	10.16	8.36	19.6
		SD	0.42	0.05	0,5
		Min	9.74	8,50	18.6
		Max	10.91	8.45	20.1
3A3	200	1	9,95	8.24	20.0
		2	9.08	8.1C	19.9
3A4		1	9.87	8.27	19,9
		2	9.49	8.24	19.7
3C6		1	9.96	8.32	19,9
		2	9,65	8.35	18.6
		Mean	9.67	8.26	19.7
		SD	0.34	0.09	0.5
		Min	9.08	8.10	18.6
		Max	9.95	8.35	20.0
3A6	300	1	10.70	8.18	19.9
		2	8.58	8,10	19.8
382		4	10.45	8.21	19.8
		2	8.96	8,15	19.7
385		1	10.31	8.30	19.7
		2	8.95	8.26	19.4
		Mean	9.65	8.21	19.4
		SD	0.93	0.07	0.2
		Min	8.58	8.10	19.4
	700.00	Max	10.70	8.30	19.9
3A1	300 HD	1	10,75	8.11	20.1
		2	9.97	8.14	19.7
3B4		1	10.64	8.13	20.0
		2	10.68	8.36	17.4
3C3		1	10.76	8,15	19.8
		2	10.61	8.32	19.0
		Mean	10.57	8,21	19.3
		SD	0,30	0.11	1.0
		Min	9.97	8.11	17,4

Sample Time 1 was measured upon expluse prior to exposure termination.

Study Number: AEH-11-PSEUDO-01 Lab Notebook: 1 Data Source: File Fo der: 10b Forms: Water Quality - Form 2 During Exposure (Dissolved Oxygen, pH, Temperature) [Light Intensity]

Action	Date	Initials
Created	9-Mar-15	TIS THS
Revised	9-Mar-15	TIS TTS
Reviewed	9-MAR-15	THS
Certified		

File Name: I:\AEH-11-PSEUDO-01\Data\Water Chemistry\[Exposure Water Chemistry Summary.xlsx]Light Intensity Coversheet

Exposure Light Intensity

Test Article: *Fseudomonas fluorescens (Pf-CL145A)* spray dried powder (SDP) and freeze dried powder (FDP) Article Lot #s: SDP = MBI-401-110308AI-BD-3 and MBI-401 SDP 4655-12-Mix; FDP = 110607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Data Explanation:

Light intensity was measured twice during exposure:

1) Upon exposure initiation 2) Prior to exposure termination

Species Abbreviations

PPB - plain pocketbook (Lampsilis cardium) FAM - fatmucket (Lampsilis siliquoidea) HGE - Higgins eye (Lampsilis higginsil) WAS - washboard (Megalonaias nervosa) BLS - black sandshell (Ligumia recta) MUC - mucket (Actinonaias ligamentina) HIC - hickorynut (Obovaria olivaria)

Data anomalles and deviations:

none

Item Number 18 Page _ 1

Study Number: AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10b

Forms:

Water Quality - Form 2

During Exposure (Dissolved Oxygen, pH, Temperature) [Light Intensity]

Test Article: M.BI 401 (Pf-CL 145A [SDP] and [FDP]) Article Lot #: MBI-401-110308AI-BD-3, MBI-401 SOP 4655-12-MIx, 113607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Exposure Light Intensity

			Sample	Light
Species		100000	Time	Intensity (lux)
PPB	SDP	12-May-11	1	204
			2	242
			Mean	223
			SD	27
FAM	SDP	12-May-11	1	239
			2	211
			Mean	225
			SD	20
HGE	SDP	12-May-11	1	218
		-	2	220
			Mean	219
			SD.	1
РРВ	FDP	18-Oct-11	1	120
			2	96
		***************	Mean	108
			SD	17
WAS	FDP	18-0ct-11	1	500
			2	571
		************	Mean	536
			SD	50
BLS	SDP	17-Jan-12	1	283
			2	465
			Mean	374
			\$D	129
MUC	SDP	17-Jan-12	1	176
			2	277
			Mean	227
			SD	71
HIC	SDP	19-Jan-12	1	228
			2	295
			Mean	262
			\$D	47
			Grand Mean	272
			SD	132
			Min	96
			Max	571

Time 2 was measured just prior to exposure termination.

Item Number_ Page 2

Study Number: AEH-11-PSEUDO-01 Lab Notebook: 1 Data Source: File Folder: 10c Forms: Water Quality - F

Water Quality - Form 3 Upon Termination (Hardness, Alkalinity, Conductivity, and Ammonia)

Action	Date	Initials
Created	9-Mar-15	TJS TH
Revised	9-Mar-15	TJS 13
Revlewed	9-MAR-15	775
Certifled	3/10/15	5.2-

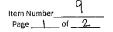
File Name: I:\AEH-11-PSEUDO-01\Data\Water Chemistry\[Termination Water Chemistry Summary.xlsx]Termination Coversheet

Termination Water Chemistry

Test Article: *Pseudomonas fluorescens (Pf-CL145A)* spray dried powder (SDP) and freeze dried powder (FDP) Article Lot #s: SDP = MBI-401-110308AI-BD-3 and MBI-401 SDP 4655-12-Mix; FDP = 110607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Data Explanation:

300 mg/L HD = Heat Deactivated


Species Abbreviations

PPB - plain pocketbook (Lampsilis cardium) FAM - fatmucket (Lampsilis siliquoldea) HGE - Higgins eye (Lampsilis higginsil) WAS - washboard (Megalonaias nervosa) BLS - black sandshell (Ligumia recta) MUC - mucket (Actinonaias ligamentina) HIC - hickorynut (Obovaria olivaria)

Upon termination, all replicate treatment chambers (3) were pooled and water chemistry was measured from pooled sample.

Data anomalies and deviations:

Upon termination of 12-May-11 SDP exposure, one control replicate from chamber 2B1 (HGE) was accidentally pooled with control replicates from block 1 (PPB); this resulted in controls for PPB having 4 pooled control replicates and controls for HGE having only 2 pooled replicates.

Study Number: ADI-11-PSEUDO-02 Lab Ketebook 1 Data Source: File Folder: 10c Forms: Water Cuality - Form 3 Upon Termination (Hardness, Alkalinity, Canductivity, and Ammonia)

Test Article: MBI 401 (9'-CL 145A (SDP) and (FDP)) Article Eo Ik MBI-401 310306AI-80-3, MBI-403 SD2 4635-12-Mik, 110607WB-F3-E Sposure Dates: 12-May-11, 18-Oct-11, 12-Jan-12, and 13-Jan-12 Species Tested: PFB, FAM, KCE, WAS, BL3, MUC, and HC

ł

Termination Water Chemistry

Speckes	Formulation	Test Date	Pooled Concentration	Hardness (mg/L CaCO3)	Alkalinity (mg/L CaCO ₃)	Conductivity (µS/cm)
PPB	5DP	12-May-11	0 mg/L	182	134	380
			50 mg/L	180	134	383
			100 mg/L	180	136	374
			200 mg/L 300 mg/L	179 178	136 138	394
				178	138	403 411
			300 mg/L HD Mean	150	144	411
			SD	1	3	14
			Min	178	134	374
			Max	178	142	
HGE	SDP	12-May-11	0 mg/L	180	138	411
noc	306	12-may-11	50 mg/L	182	138	375
			100 mg/L	101		
				186 185	141 144	384
			200 mg/L 300 mg/L	190	144	389 409
	0.0000000000000000000000000000000000000	***********	300 mg/LHO Mean	186 185	147	403
			SD	3	42	
			SD Min	180	4	17
						369
FAM	500	40.44	Max	190	147	409
TAM	50P	12-May-11	0 mg/L	180	135	354
			50 mg/L	180	135	350
		i	100 mg/L	182	135	367
			200 mg/l.	178	139	362
			300 mg/L	183	139	377
		*********	300 mg/1 -10	181	140	370
			Mean	181	197	367
			50	2	2	13
		1	Min	178	195	350
			#/lax	183	140	382
PPB	FDP	18-Oct-11	0 mg/L	190	138	410
		1	50 mg/L	197	144	424
			100 mg/L	194	145	432
			200 mg/L	200	145	437
			300 mg/L	200	147	. 443
			300 mg/L HD	195	143	439
			Mean	196	144	431
			SD	4	э	12
			Min	190	138	410
			Маж	200	147	443
WAS	FDP	18-Oct-11	0 mg/L	198	139	413
			50 mg/L	198	148	431
			100 mg/L	200	147	434
			200 mg/i	202	150	447
			300 mg/_	203	152	454
			300 mg/L HD	203	153	463
			Mean	201	148	440
			SD	2	5	18
			Min	198	139	413
			Mex	203	153	463
BLS	SDP	17-Jan-12	D mg/L	196	143	414
			50 mg/l.	195	147	412
			100 mg/.	192	148	423
			200 mg/.	200	156	434
		1	300 mg/.	198	161	445
			300 mg/L HD	210	164	468
			Mean	199	153	433
			SD	6	8	21
			Min	192	143	412
			Мах	710	164	468
MUC	5CP	17-Jan-12	0 mg/t	196	146	403
		-	5D mg/L	195	148	420
		i	100 mg/.	159	153	437
			200 mg/	197	156	448
			300 mg/	198	159	465
			300 mg/L HD	202	156	467
			Mean	198	153	440
			SD	2	5	25
			Min	196	146	403
			Max	202	159	467
HIC	SDP	19-Jan-12	0 mg/L	202	135	467
	201	23-2011-12	50 mg/L	208	135	414
		i	100 mg/t	208	145 146	
		1		209	146	460
			200 mg/L 300 mg/L	208	148	400
					150	456
			300 mg/L HĐ Mean	219 210	<u>156</u> 147	498 457
			Mean 5D	210	147	
			SD Min	4 208	7 135	27 414
		1	Min Max	208	135 156	414 498

•

File Folder : 10d

Sample Description: 3 mL acidlfied exposure water (0.45 μm filtrated) Study fi: AEH-11-PSEUDO-D1

Upper Midwest Environmental Sciences Center attn: James Luoma 2630 Fanta Reed Road La Crosse, WI54603 Water Quality Laboratory Upper Midwest Environmental Sciences Center USGS 2630 Fanta Reed Road La Crosse, WI 54603

Analyzing Date: 11/07 /2011 Report Date: 11/09/2011

REPORT OF ANALYSIS

Sample Code	Results (Total Ammonia Nitrogen, mg NH3-N/L)
PPB3A1	0.193
PPB3A2	0.226
РРВЗАЗ	0.299
PPB3A4	0.104
PPB3A5	0.204
РРВЗАб	0.059
PPB3B1	0.148
PPB3B2	0.181
PPB3B3	0.136
PPB384	0.306
PPB3B5	0.074
PPB3B6	0.042
PPB3C1	0.122
PP83C2	0.096
РРВЗСЗ	0.238
PPB3C4	0.283
PPB3C5	0.210
PPB3C6	0.126
WAS1A1	0.054
WAS1A2	0.035
WAS1A3	0.096
WAS1A4	0.111
WAS1A5	0.027
WAS1A6	0.059
WAS1B1	0.185
WAS1B2	0.022
WAS1B3	0.100
WAS1B4	0.030
WAS1B5	0.053
WAS1B6	0.063
WAS1C1	0.058
WAS1C2	0.039
WAS1C3	0.056
WAS1C4	0.033
WAS1C5	0.074
WAS1C6	0.073

USGS Water Quality Laboratory Laboratory Director

Xiaoli Yuan

Pg _/_ of _/

File Folder: 10 d Sample Description: 3 mL acidified exposure water (0.45 µm filtrated) Study #: AEH-11-PSEUDO-01

Upper Midwest Environmental Sciences Center attn: James Luoma 2630 Fanta Reed Road La Crosse, WI54603

Laboratory Director

Xiaoli Yuan

Water Quality Laboratory Upper Midwest Environmental Sciences Center USGS 2630 Fanta Reed Road La Crosse, WI54603

Analyzing Date: 01/25/2012 Report Date: 02/03/2012

Sample Code	Results (Total Ammonia Nitrogen, mg NH
BL51A1T24	0.215
BLS1A2T24	1,661
BLS1A3T24	3.241
BL51A4T24	0.247
BLS1A5T24	0.082
BLS1A6T24	1.078
BL51B1T24	0.079
BL51B2T24	0.698
BLS1B3T24	0.719
BLS1B4T24	1.187
BLS185T24	0.916
BL5186T24	1.167
BLS1C1T24	0.436
BLS1C2T24	1.509
BL51C3T24	0.245
BLS1C4T24	0.197
BLS1C5T24	0.724
BLS1C6T24	0,08
HIC3A1T24	0.885
HIC3A2T24	0.082
HIC3A3T24	0.254
HIC3A4T24	0.263
HIC3A5T24	0.265
HIC3A6T24	0.482
HK381724	0.533
HIC3B2T24	0.231
HIC3B3T24	0.098
HIC384T24	0.107
HIC3B5T24	0,192
HIC3B6T24	0,265
HIC3C1T24	0.084
HIC3C2T24	0.094
HIC3C3T24	0.474
HIC3C4T24	0.032
HIC3C5T24	0.473
HIC3C6T24	0.213
MUC2A1T24	0.537
MUC2A2T24	0.694
MUC2A3T24	0.795
MUC2A4T24	0.088
MUC2A5T24	0.861
MUCZA6T24	0.777
MUC2B1T24	1.136
MUC2B2T24	0.43
MUC283124	0.916
MUC2B4T24	0.037
MUC2B5T24	0,052
MUC2B6T24	0.533
MUC2C1T24	0.11
MUCZC2T24	0.921
MUC2C3T24	0.183
MUC2C4T24	1.088
MUC2C5T24	0.409
MUC2C6T24	0.212
USGS	
Water Quality Laboratory	
aboratory Director	

REPORT OF ANALYSIS

Pg ____ of ____

Study Number: AEH-11-PSEUDO-01 Lab Notebook: 1 Data Source: File Folder: 10b, 10c, and 10d Forms: Water Quality - Form 2 and 3; LTRM Water Quality Laboratory Report

Action	Date	Initials
Created	9-Mar-15	TIS TK
Revised	12-Mar-15	LIS TS
Reviewed	12: MAR-15	15
Certified	3/0/15	59-
	• • •	

File Name: I:\AEH-11-PSEUDO-01\Data\Water Chemistry\[Ammonia Summary.xlsx]TAN Coversheet

Total Ammonia Nitrogen Coversheet

Test Article: Pseudomonos fluorescens (Pf-CL145A) spray dried powder (SDP) and freeze dried powder (FDP) Article Lot #s: SDP = MBI-401-110308AI-BD-3 and MBI-401 SDP 4655-12-Mix; FDP = 1.10607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Data Explanation:

Species Abbreviations

PPB - plain pocketbook (Lampsilis cardium) FAM - fatmucket (Lampsilis siliquoidea) HGE - Higgins eye (Lompsilis higginsii) WAS - washboard (Megalonalas nervosa) BLS - black sandshell (Ligumia recto) MUC - mucket (Actionalas ligamentina) HIC - hickorynut (Obovario olivaria)

For SDP treatments initiated on 12-May-11 (FAM, PPB, and HGE), total ammonia hitrogen was measured using a YSI 9000 photometer. For, all other treatments (SDP and FDP), total ammonia hitrogen analyses were conducted by the UMESC LTRM Water Quality Laboratory using the authomated phenate method.

pH means were calculated on hydrogen ion concentration; pH standard deviations were calculated on pH values.

TAN toxicity is determined according to U.S. Environmental Protection Agency, 2013, Ambient Water Quality Criteria for Ammonia—Freshwater 2013. Washington, D.C., Office of Water, EPA 822-R-13-001, 242 p. The EPA document sets the acute criterion magnitude at 17 mg TAN/L (1 hour average, pH 7, 20 °C) and a chronic criterion magnitude at 1.9 mg TAN/L (30-day rolling average, pH 7, 20 °C) with the stipulation that the chronic criterion cannot exceed a 4-day average of 4.8 mg/L.

Data anomalies and deviations:

For the PPB (SDP) exposures on 12-May-11, pH and temperature data were not measured on pooled samples used to measure total ammonia nitrogen. Therefore, the mean pH and temperature of each treatment group measured at the end of exposure period (24 hour) were used to calculate the TAN toxicity.

3 Item Number 1 of 10 Page

Study Number: AEH-11-PS	Study Number: AEH-11-PSEUDO-01		Test Article:	MBI 401 (PF-CL 145A [SDP])
Lab Notebook 1			Article Lot #:	MBI-401-110308AI-BD-3
Data Source: File Folder:	10d		Exposure Date:	12 -May-11
Forms:	Water Quality - Forms 2 and 3		Species Tested:	ррв
	During Exposure (Dissolved Oxygen, pH, Temperature)		Glochidia Lot #	111400
	Upon Termination (Hardness, Alkalinity, Conductivity, and Ammonia)			

Plain Pocketbook (SDP) Total Ammonia Nitrogen

Treatment (mg/L)	Temperature (°C)'	рН ¹	Total Ammonia Nitrogen (mg NH ₃ -N/L)	Ammonia Toxicity
0	19.2	8.34	0.06	NT
50	19.2	8.25	0.08	NT
100	19	8.03	0.13	NT
200	19	8.09	0.24	NT
300	19.2	7.82	0.44	NT
300 HD	19.1	8.07	0.51	NT
Grand Mean	19.1	8.10	0.24	NT
SD	0.1	0.18	0.19	NA

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels).

Note: Control water sample from 2B1 (HGE) was accidentally pooled with the Block 1 (PPB) Control group, therefore four control samples were pooled for determination of PPB control TAN.

Plain Pocketbook (SDP) End of Exposure pH and Temperature

Test	Treatment		Temperature
Chamber	(mg/L)	ρН	(°C)
1 A 3	0	8.23	19.1
1B1		8.35	. 19,5
1.C3		8.41	19.0
	Mean	8.34	19 .2
1 A 1	50	8.25	19.2
	Mean	8.25	19.2
1A4	100	8.03	19.0
	Mean	8.03	19.0
1C4	200	8,09	19.0
	Mean	8.09	19.0
1A5	300	7.85	19.0
1C2		7.87	19.5
1 C 5		7.74	19.1
	Mean	7.82	1 9.2
1A6	300 HD	8.07	19,1
	Mean	8.07	19.1

¹pH and temperature data measured at the end of exposure period (24 hour) are used for making total ammonia nitrogen toxicity determinations since there was no termination pH and temperature data taken for PPB (SDP) exposure.

3 Item Number 3 Page 2 of 70

Study Number: AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: Fie Folder: 10d Forms: Water Quality - Form 3

Upon Termination (Hardness, Alkalinity, Conductivity, and Ammonia)

 Test Article:
 MBI 401 (Pf-CL 145A [SDP])

 Article Lot #:
 MBI-401-110308A1-8D-3

 Exposure Date:
 12-May-11

 Species "rested:
 HGE

 Glochidia Lot #
 111500

Higgins Eye (SDP) Total Ammonia Nitrogen

Treatment (mg/1)	Temperature (°C)	pН	Total Ammonia Nitrogen (mg NH ₃ -N/L)	Ammonia Toxicity
0	19.5	8.47	0.09	NT
50	19.6	7.99	0.17	NT
100	19.5	7.93	0.31	NT
200	19.6	7.40	0.53	NT
300	19.3	7.34	0.45	NT
300 HD	19.5	7.20	0.50	NT
Grand Mean	19.5	7.95	0.34	NT
SD	0.1	0.49	0.18	NA

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels). Note: Control water sample from 2B1 (HGE) was accidentally pooled with the Block 1 (PPB) Control group, therefore only two control samples were pooled for determination of HGE control TAN.

> Item Number_____3 Page ____3_ of ____6

Study Number: AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10d Forms: Water C

Water Quality - Form 3 Upon Termination (Hardness, Alkalinity, Conductivity, and Ammonia)
 Test Article:
 MBI 401 (Pf-Cl. 145A (SDP))

 Article Lot #:
 MBI-401-110308AI-BD-3

 Exposure Date:
 12-May-11

 Species Tested:
 FAM

 Glochidla Lot #
 11600

Fatmucket (SDP) Total Ammonia Nitrogen

Treatment (mg/L)	Temperature (°c)	рН	Total Ammonia Nitrogen (mg NH ₃ -N/L)	Ammonia Toxicity
0	20	8.45	0.10	NT
50	20	8.11	0.25	NT
100	19.8	7.61	0.24	NT
200	19.9	7.48	0.44	NT
300	19.7	7.25	0.63	NT
300 HD	19.7	7.17	0.55	NT
Grand Mean	19.9	7.93	0.37	NT
SD	0.1	0.50	0.20	NA

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels).

Item Number____3 Page ____4__ of ___70___ Study Number: AEH-11-FSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10d

,

Forms: Water Quality - Form 3 Upon Termination (Hardness, Alkalinity, Conductivity, Temperature, and pH) LTRM Water Quality Laboratory Report
 Test Article:
 MBI 401 (Pf-CL 145A [FOP])

 Artic e Lot #:
 110607WB-FB-E

 Exposure Date:
 18-Oct-11

 Speces Tested:
 PPB

 Glochidla Lot #
 115400

Plain Pocketbook (FDP) Total Ammonia Nitrogen

reatmen	t	Temperature		Total Ammonia	Ammonia
(mg/L)	Rep	(°C)	pН	Nitroger. (mg NII3-N/L)	Toxicity
0	1	18.2	8.33	0.059	NT
	2	18.1	8.31	0.074	NT
	3	18.2	8.35	0.042	NT
	Mean	18.2	8.33	0.058	NT
	SD	0.1	0.02	0.016	NA
50	-	18,2	8.39	0.122	NT
	2	17.8	8.41	0.096	NT
	3	18.1	8.39	0.104	NT
	Mean	18.0	8.40	0.107	NT
	so	0.2	0.01	0.013	NA
100	1	18.2	8.38	0.148	NT
	2	18.3	8.36	0.136	NT
	3	18.2	8.38	0.126	NT
	Mean	18.2	8.37	0.137	NT
	SD	0.1	0.01	0.011	NA
200	1	18.3	8.34	0.226	N۲
	2	18.2	8.39	0.238	NT
	3	18.3	8.30	0.210	NT
	Mean	18.3	8.34	0.225	NT
	SD	0.1	0.05	0.014	NA
300	1	18.6	8,27	0.299	NT
	2	18.6	8.30	0.306	NT
	3	18.5	8.31	0.283	NT
nan magdarakanan	Mean	18.6	8.29	0.296	NT
	SD	0.1	0.02	0.012	NA
3C0 HD	1	18.2	8.34	0.181	NT
	2	18.2	8.31	0.204	NT
	3	18.2	8.28	0.193	NT
	Mean	18.2	8.31	0.193	NT
	SD	0.0	0.03	0.012	NA
	Grand Mean	18.2	8,34	0.169	NT
	\$D	0.2	0.04	0.081	NA

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels).

Rem Number 3 Page 5 of 70

Study Number: A&H-11-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 10d Forms: Water 0

Water Quality - Form 3 Opon Termination (Hardness, Alkalinity, Conductivity, Temperature, and pH) LTRM Water Quality Laboratory Report
 Test Art de;
 MBJ 4C1 (Pf-CL 145A (FDP))

 Article Lot 4:
 110607W8-FB-5

 Exosure Date:
 18-Oct-11

 Species Tested:
 WAS

 Glochidia Lot #
 115500

Washboard (FDP) Total Ammonia Nitrogen

Treatment		Temperature		Total Ammonia	Ammonia
(mg/L)	Rep	(°C)	рН	Nitrogen (ing NH3-N/L)	Toxicity
0	1	18.7	8.47	0.027	NT
	2	18.7	8.49	0.022	NT
	3	18.6	8.48	0.030	NT
	Mean	18.7	8.48	0.026	٧T
	SD	0.1	0.01	0.004	NA
50	1	18.5	8.45	0.054	NT
	2	18.1	8.47	0.058	NT
	3	18.7	8.44	0.039	NT
	Mean	18.4	8.45	0.050	NT
	SD	0.3	0.02	0.010	NA
100	1	18.9	8.43	0.035	NT
	2	18.7	8.46	0.059	NT
	3	18.6	8.44	0.073	NT
	Mean	18.7	B.44	0.056	NT
	SD	0.2	0.02	0.019	NA
200	1	19.1	8,41	C.053	NT
	2	18.6	8.40	C.056	NT
	3	19.1	8.42	0.033	NŤ
	Mean	18.9	8.41	0.047	NT
	SD	0.3	0.01	0.013	NA
300	1	18.0	8.42	0.111	NT
	2	18.8	8.38	0.185	NT
	3	19.2	8.35	0.074	NT
	Меал	18.7	8.38	0.123	NT
	SD	0.6	0.04	0.057	NA
300 HD	1	18.6	8.42	0.096	NT
	2	18.3	8.45	0.100	NT
	3	18.6	8.40	0.063	NT
	Mean	18.5	8.42	0.086	NT
	SD	0.2	0.03	0.020	NA
	Grand Mean	18.7	8.43	0.065	NT
	SD	0.3	0.04	0.039	NA

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels).

Item Number_____3 Page____6__of___0

Study Number: AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: Fl e Folder: 10d

Forms:

Water Quality - Form 3 Upon Termination (Hardness, Alkalinity, Conductivity, Temperature, and pH) LTRM Water Quality Laboratory Report

 Test Article:
 M8i 401 (Pf-CL 14SA [SDP])

 Article Lot #:
 MBI-401 SDP 4655-12-Mix
 Exposure Date: 18-Oct-11 Species Tested: BLS Glochidia Lot # 120800

Black Sandshell (SDP) Total Ammonia Nitrogen

Treatment		Temperature		Total Ammonia	Ammonia
(mg/L)	Rep	(°C)	pН	Nitrogen (mg NH ₃ -N/L)	Toxicity
0 .	1	20.1	8.36	0.082	NT
	2	20.3	8.43	0.079	NT
	3	20.5	8.45	0.080	NT
	Mear	20.3	8.42	0.080	NT
	SD	0.2	0.05	0.002	NA
50	1	20.4	8.30	0.215	NT
	2	20.1	8.33	0.241	NT
	3	20.5	8.2,4	0.436	NT
	Mean	20.3	8,29	0.297	NT
	SO	0.2	0.05	0.121	NA
100	1	20.3	8.15	0.724	Chronic
	2	20.5	8.17	0.698	Chronic
	3 [21.0	8.23	0.719	Chronic
	Mean	20.6	8.18	0.714	Chronic
	SD	0.4	0.04	0.014	NA
200	1	20.0	8.24	0.916	Chronic
	2	20.6	8.03	1,167	Chronic
	3	20.5	8.12	1.078	Chronic
	Mean	20.4	8.14	1.054	Chronic
	SD	0.3	0.11	0.127	NA
300	1	20.6	7.95	1.509	Chronic
	2	20.6	8.13	1.187	Chronic
	3	20.8	7.96	1.661	Chronic
	Mean	20.7	8.02	1.452	Chronic
	SD	0.1	0.10	0.242	NA
300 HD	1 1	20.3	8.28	0.245	NT
	2	20.2	8.1.6	0.197	NT
	3	18.4	8.46	0.247	NT
	Mean	19.6	8.32	0.230	NT
	SD	1.1	0.15	0.028	NA
	Grand Mean	20.3	8,25	0.638	Chronic
	SD	0.5	0.15	0.514	NA

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels).

item Number_ Page 7 З 10 Page_ of

Study Number: AEH-11-PSEUDO-01 Lap Notebook 1 Data Source: File Folder: 10d

Forms: Water Quality - Form 3 Upon Termination (Hardness, A kalinity, Conductivity, Temperature, and pH) LTRM Water Quality Laboratory Report
 Test Article:
 MBI 401 (Pf-CL 145A [SDP])

 Article_of#:
 MBI-401 SDP 4655-12-MIx

 Exposure Oate:
 17-Jan-12

 Species Tested:
 MUC

 Glochidla Lot #
 120700

Mucket (SDP) Total Ammonia Nitrogen

Treatment		Temperature		Total Ammonia	Ammonia
(mg/L)	Rep	(°C)	pН	Nitrogen (mg NH ₃ -N/L)	Toxicity
0	1	19.8	8.60	0.037	NT
	2	19.8	8.57	0.052	NT
	3.	20.1	8.56	0.110	NT
	Mean	19.9	8.58	0.066	NT
	SD	0.2	0.02	0.039	NA
50	1	19.9	8.42	0.183	NT
	2	20.1	8.36	0.533	Chronic
	3	20.1	8.39	0.088	NT
	Меап	20.0	8.39	0.268	NT
	SD	0.1	0.03	0.234	NA
100	1	20.4	8.29	0.694	Chronic
	2	20.2	8.25	0.430	NT
	3	19.2	8.43	0.212	NT
	Mean	19.9	8.33	0.445	NT
	SD	0.6	0.09	0.241	NA
200	1	20.1	8.27	0.861	Chronic
	2	19.9	8.28	0.777	Chronic
	3	19.9	8.33	0.921	Chronic
	Mean	20.0	8.29	0.853	Chronic
	SD	0.1	0.03	0.072	NA
300	1	20.7.	8.30	1.136	Chronic
	2	19.8	8.21	0.916	Chronic
	3	19.9	8.25	1.088	Chronic
	Mean	20.1	8.25	1.047	Chronic
	SD	0.5	0.05	0,116	NA
300 HD	1	19.9	8.19	0.537	NT
	2	20.7	8.13	0.796	Chronic
	з	19.7	8.37	0.409	NT
	Mean	20.1	8.24	0.581	Chronic
	SD	0.5	0.12	0.197	NA
	Grand Mean	20.0	8.36	0.543	Chronic
	SD	0,4	0.13	0.371	NA

NT = non-toxic levels of total ammon a nitrogen (below chronic and acute levels),

Item Number_____3 Page ______ of _____ Study Number; AEH-11-PSEUDO-01 Lab Notebook 1 Data Source: File Folder: 100 Forms: Water 0

Water Quality - Form 3 Upon Termination (Hardness, Alkalinity, Conductivity, Temperature, and pH) LTRM Water Quality Laboratory Report
 Test Article;
 MBI 401 (Pf-CL 145A [SDP])

 Article Lot #:
 MBI-401 SDP 4655-12-Mix

 Exposure Date:
 19-Jan-12

 Species Tested:
 HC

 Glochkila Lot #:
 120500

Hickorynut (SDP) Total Ammonia Nitrogen

Freatment	Temperature			Total Ammonia	Ammonia
(mg/l.)	Кер	(°C)	рН	Nitrogen (mg NH ₃ -N/L)	Toxicity
0	1	20.1	8,42	0.082	NT
	2	20.0	8.47	0.084	NT
	3	19.7	8.48	0.032	NT
	Vean	19.9	8.46	0.066	NT
	\$D	0.2	0.03	0.029	NA
50	1	20.0	8.45	0.265	NT
	2	20.1	8.29	0.266	NT
	3	19.2	8.45	0.098	NT
	Mean	19.8	8.40	0.210	NT
	SD	0.5	0.09	0.097	NA
100	1	19.0	8.42	0.094	NT
	2	19.9	8.35	0.533	Chronic
	3	19.8	8.27	0.473	NT
	Mean	19.6	8.35	0.367	NT
	SD	0.5	0.08	0.238	NA
200	1	19.7	8.33	0.213	NT
	2	20.7	8.03	0.254	NT
	3	20.4	8.13	0.263	NT
	Mean	20.3	8.18	0.243	NT
	SD	0.5	0.15	0.027	NA
300	1	20.6	8.05	0.231	NT
	2	20.1	8.08	0.192	NT
	3	20.3	7.98	0.482	NT
	Mean	20.3	8.04	0.302	NT
	SD	0.3	0.05	0.157	NA
300 HD	1	20.3	8.05	0.885	Chronic
	2	19.0	8.33	0.107	NT
	3	19.7	8.26	0.474	NT
	Mean	19.7	8.23	0.489	NT
	\$D	0.7	0.15	0.389	NA

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels).

Item Number_____3 Page _____0 of ___/0___ .

Study Number: AEH-11-PSEUDO-01 Lab Notebook 1 Data Sourca: File Folder: 10d

.

Forms:

Water Quality - Forms 2 and 3 During Exposure (Dissolved Oxygen, pH, Temperature) Upon Termination (Hardness, Alkalinity, Conductivity, and Ammonia) LTRM Wate: Quality Laboratory Report

Test Article: MB 401 (Pf-CL 145A [SDP and FDP]) Article Lot #: MB 401-110908AI-BD-3,MBI-401 SDP 4555-12-Mix, 110607WB-FB-E Exposure Date: 12-May-11, 18-Oct-11, 17-Jan-12, 19-Jan-12 Spacies Tested: PPE, HGE, FAM, WAS, BLS, MUC, HIC

Glochidia Lot # 111400, 111500, 111600, 115400, 115500, 120700, 120800,

120900

Total Ammonia Nitrogen Summary

Treatment	Species	Mean Temperature	Mean	Mean Total Ammonia	Ammonia
(mg/L)	(Formulation)	(°C)	pH	Nitrogen (mg NH ₃ -N/L)	Toxicity
0	PPB (SDP)	19.2	8.34	0.060	NT
v	HGE (SDP)	19,5	8.47	0.090	NT
	FAM (SDP)	20.0	8.45	0.100	NT
	PPB (FDP)	18.2	8.33	0.058	NT
	WAS (FDP)	18.7	8.48	0.026	NT
	BLS (SDP)	20.3	B.42	0.080	NT
	MUC (SDP)	19.9	8.58	0.066	NT
	HIC (SDP)	19.9	B.46	0.066	NT
progit can sense recent of a literation	Mean	19.5	8.45	0.068	NT
	SD	0.7	0,08	0.023	NA
50	PPB (SDP)	19.2	8.25	0.080	NT
	HGE (SDP)	19.6	7.99	0.170	NT
	FAM (SDP)	20.0	8.11	0.250	NT
	PPB (FDP)	18.0	8.40	0.107	NT
	WAS (FDP)	18.4	8.45	0.050	NT
	BLS (SDP)	20.3	8.29	0.297	NT
	MUC (SDP)	20.0	8.39	0.268	NT
	HIC (SDP)	19.6	8.40	0.210	ŅŢ
	Mean	19.4	8.31	0.179	NT
	SD	0,8	0.16	0.092	NA
100	PPB (SDP)	19.0	8.03	0.130	NT
	HGE (SDP)	19.5	7.93	0.310	NT
	FAM (SDP)	19.8	7.61	0.240	NT
	PPB (FDF)	18.2	8.37	0.137	ΝT
	WAS (FDP)	18.7	8.44	0.056	NT
	BLS (SDP)	20.6	8.18	0.714	Chronic
	MUC (SDP)	19.9	8.33	0.445	NT
	HIC (SDP)	19.6	8,35	0.367	NT
	Mean	19.4	8.22	0.300	NE
	SD	0.7	0,28	0,212	NA
200	PPB (SDP)	19.0	8.09	0.240	NT
	HGE (SDP)	19.6	7.40	0.530	NT
	FAM (SDP)	19,9	7.48	0,440	NT
	PPB (FDP)	18.3	8.34	0.225	NT
	WAS (FDP)	18,9	8.41	0.047	NT
	BLS (SDF)	20.4	8.14	1.054	Chronic
	MUC (SDP)	20.0	8.29	0,853	Chronic
1991 - 1991 - 1992 - 1993 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	HIC (SDF)	20.3	8.18	0.243	NT
	Mean	19.5	8,15	0.454	NT
	SD	0.7	0.39	0.345	NA
300	PPB (SDP)	19.2	7.82	0.440	NT
	HGE (SDP)	19.3	7.34	0.450	NT NT
	FAM (SDP)	19.7	7,25 8.29	0.630 0.296	NT
	PPB (FDP)	18.6			NT
	WAS (FDP)	18.7	8,38	0.123	
	3_S (SDP)	20.7	8.0Z 8(25	1.452 1.047	Chronic Chronic
	MUC (SDP)	20.1		0.302	NT
	HIC (SDP) Mean	20.3 19.6	8.04 8.07	0.593	NT
	sD	0.8	0.43	0.593	NA
300 HD	PPB (SDP)	19.1	8.07	0.510	NT
300 HD	HGE (SDP)	19.1	7.20	0.510	NT
	FAM (SDP)	19.7	7.20	0.550	NT
	PPB (FDP)	18.2	8,31	0.193	NT
	WAS (FDP)	18.2	8,42	0.086	NT
	BLS (SDP)	19.6	8,42 8,32	0.230	NT
	MUC (SDP)	20.1	8.24	0.581	Chronic
		19.7		0.489	NT
	HIC (SDP) Mean	19.7	8.23 8.17	0.392	NT
	SD	0.7	0.51	0.191	NA
	30	1	10.01	0,171	

NT = non-toxic levels of total ammonia nitrogen (below chronic and acute levels).

Item Number<u>3</u> Page /0_of<u>/0</u>

Appendix 7. Glochidia Viability

ltem number	Item description	Number of pages	Report page number
1	Initial (Pre exposure) Glochidia Viability – Data Summary	2	354
2	SAS program for glochidia viability	2	356
3	SAS log for glochidia viability	4	358
4	SAS output for glochidia viability	81	362
5	Glochidia Viability Assessment – 6 hour – Data Summary	7	443
6	Glochidia Viability Assessment – 12 hour – Data Summary	7	450
7	Glochidia Viability Assessment – 24 hour – Data Summary	8	457
8	Glochidia Distribution Counts – Data Summary	10	465

Study Number: AEH-11-PSEUDO-01 Lab Notebook: 1 Data Source: File Folder: 11 Forms: Initial Viability and Concentration Determination of Glochidia

Action	Date	Initials
Created	13-Mar-15	TJS TK
Revised	13-Mar-15	TJS TÌK
Reviewed,	13 MAR-15	76
Certifled	3/18/17	Ja

File Name: I:\AEH-11-PSEUDO-01\Data\Glochidia Viability Summary\fglochidia viability initial.xlsxjinitial Viability Coversheet

Initial (Preexposure) Glochidia Viability

Test Article: Pseudomonas fluorescens (Pf-CL145A) spray dried powder (SDP) and freeze dried powder (FDP) Article Lot #s: SDP = MBI-401-11030BAI-BD-3 and MBI-401 SDP 4655-12-Mix; FDP = 110607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Data Explanation:

Species Abbreviations

PPB - plain pocketbook (Lampsilis cardium) FAM - fatmucket (Lampsilis siliquoidea) HGE - Higgins eye (Lampsilis higginsii) WAS - washboard (Megalonalas nervosa) BLS - black sendshell (Ligumio recta) MUC - mucket (Actinonaias ligamentina) HIC - hickorynut (Obovaria olivaria)

Glochidia "closed before salt" and "open after salt" are considered non-viable.

Data anomalies and deviations:

Washboard used four donor mussels for glochidia; all other species used three donor mussels.

Glochidia from black sandshell mussel #2 was evaluated three times for viability; the combined value of all three samples is reported.

Item Numbe Page

Study Number: AEH-11-2SEUDO-01 Lab Notebook 1 Data Source: File Folder: 11 Forms: Initial Viability and Concentration Determination of Glochidia Test Article: MBI 401 (PI-CL 145A [SDP] and [FDP]) Article Lot #: MBI-401-110308AI-8D-3, MBI-401 SDP 4655-12-Mix, 110607WB-FD-E Exposure Dates: 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12 Species Tested: PPB, FAM, HGE, WAS, 8LS, MUC, and HIC

Initial (Preexposure) Viability Summary

			Mussel	Total	Glochidia closed	Glochidia open	Percent
Species	Formulation	Test Date	number	glochidia	before salt	after salt	Viability
РРВ	SDP	12-May-11	1	467	14	22	92.3
			2	537	8	19	95.0
			3	927	10	45	94.1
			Grand Mean				93.8
			SD				1.4
HGE	SDP	12-May-11	1	129	32	17	62.0
			2	168	6	14	88.1
TP: MARINE IN	lad isa tad i dhici i bi bir bachada a laaka		3	357	13	14	92.4
			Grand Mean				80.8
			sə	1.1			16.5
FAM	SDP	12-May-11	1	548	22	48	87.2
			2	297	53	27	73.1
			3	456	34	55	80.5
			Grand Mean				80.3
			SD				7.1
PPB	FDP	18-Oct-11	1	212	4	12	92.5
			2	222	26	13	82.4
			3	150	15	16	79.3
			Grand Mean				84.7
_			SD				6,9
WAS	FDP	18-Oct-11	1	124	1	1	98.4
			2	155	1	0	99.4
			3	51	4	1	90.2
			4	104	0	0	100.0
			Grand Mean				96.5
			SD				5.5
BLS	SDP	17-Jan-12	1	312	10	22	89.7
			2	1083	51	199	76.9
			9	405	12	41	86.9
			Grand Mean				84.5
			SD .			_	6.7
MUC	SDP	17-jan-12	1	161	6	8	91.3
			2	153	6	3	94.1
			3	287	3	18	92.7
			Grand Mean				92.7
			SD				1,4
HIC	SDP	19-Jan-12	1	366	15	39	85.2
			2	352	20	31	85.5
			3	309	27	12	87.4
			Grand Mean				86.0
			SD				1.2

1 Item Number Page

DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;

FOOTNOTE1 'Performed by J. Luoma; SAS version' &SYSVER &SYSTIME &SYSDATE;

options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;

```
title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel spec
title2 h=2 'Statistical analysis of unadjusted glochidia viability following 24-h static exposure to \
title3 h=2 'Analysis Completion Date:18March2015 Analysis prepared by: JAL, SAS Version:';
title4 h=2 &SYSVER &SYSTIME &SYSDATE;
* SAS ver 9.4 Analysis prepared by: JAL
* Analysis completion date: 18March2015 54-
                                        ,
**************
*********
* Variable Names:
* sps = three letter code for mussel species
          BLS = Black sandshell (Ligumia recta)
          FAM = Fatmucket (Lampsilis siliquoidea
          WAS = Washboard (Megalonaias nervosa)
          HGE = Higgins eye (Lampsilis higginsii)
          PPB = Plain pocketbook (Lapsilis cardium)
          HIC = Hickorynut (Obovaria olivaria)
          MUC = Mucket (Actinonaias ligamentina)
* form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
 conc = concentration (in mg/L)
          0 = control (0 mg/L)
          50 = 50 mg/L active ingredient
*
          100 = 100 mg/L active ingredient
          200 = 200 mg/L active ingredient
          300 = 300 mg/L active ingredient
          400 = 300 \text{ mg/L} heat deative
* cham = exposure chamber ID
            i.e., 3A5 = test system (1, 2 or 3), Block ID (A or B), and Position in Block (1 - 6)
* time = time post exposure assessment occurred
* tot = total number of glochidia within sample
* cbs = number of glochidia closed prior to salt solution
* oas = number of glochidia open after salt solution
***********
                                                *****************
data glochidia; set Pseudo01.viability;
via_glo = tot - cbs - cas;
pctvia_glo = via_glo/tot*100;
run:
proc sort data=glochidia; by sps form conc; run;
proc print data=glochidia; run;
Title2 'Mean Unadjusted Viability of Glochidia by Species, Time, Form (SDP or FDP) and Treatment Group
proc means data = glochidia mean std clm fw=8;
by sps form:
class conc time;
var tot cbs oas via_glo pctvia_glo;
run:
```

```
* The exposure concentrations were renamed to place an alpha character in front of all concentrations.
* variable string to be first to set the variable character length (ie: 300HD vs 0). SAS assumes the
* therefore, the control was given the last alpha character and thereby other concentrations will be (
* 50 mg/L = a
* 100 mg/L = b
* 200 \text{ mg/L} = c
* 300 \text{ mg/L} = d
* 300 mg/L HD (coded as 400 in dataset) = e
* 0 mg/L = f
*****
data glochidia2; set glochidia;
If conc = '0' then conca = 'f';
 If conc = '50' then conca = 'a';
 If conc = '100' then conca = 'b';
 If conc = '200' then conca = 'c';
If conc = '300' then conca = 'd':
If conc = '400' then conca = 'e';
run;
proc sort data=glochidia2; by form sps conca time; run;
proc glimmix data = glochidia2;
title2 'Overall Model: Glochidia Viability (unadjusted) - At 6, 12 and 24 h';
by form sps;
class conca time;
model via_glo/tot = conca|time / d = bin link = logit noint s or;
 lsmeans conca / pdiff cl ilink or;
 lsmeans time / pdiff cl ilink or;
 lsmeans conca*time / pdiff cl ilink or;
 random _residual_;
 run;
```

```
quit;
```

```
89
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
90
91
     FOOTNOTE1 'Performed by J. Luoma; SAS version' &SYSVER &SYSTIME &SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
92
93
     options 1s=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
94
    title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid
95
95 ! mussel species';
96 title2 h=2 'Statistical analysis of unadjusted glochidia viability following 24-h static
96 ! exposure to various concentrations of Pf-CL145A';
    title3 h=2 'Analysis Completion Date:18March2015 Analysis prepared by: JAL, SAS Version:';
97
98
    title4 h=2 &SYSVER &SYSTIME &SYSDATE;
WARNING: The TITLE statement is ambiguous due to invalid options or unquoted text.
99
   ******
100 * SAS ver 9,4
                      Analysis prepared by: JAL
101 * Analysis completion date: 18March2015
                                                          *
102
     103
104! **********
105 * Variable Names:
105!
               *
106 * sps = three letter code for mussel species
1061
107 *
               BLS = Black sandshell (Ligumia recta)
1071
108 *
              FAM = Fatmucket (Lampsilis siliquoidea
1081
109 *
               WAS = Washboard (Megalonaias nervosa)
1091
110 *
               HGE = Higgins eye (Lampsilis higginsii)
110!
111 *
               PPB = Plain pocketbook (Lapsilis cardium)
1111
112 *
              HIC = Hickorynut (Obovaria olivaria)
1121
113 *
               MUC = Mucket (Actinonaias ligamentina)
1131
114 * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
114!
115 * conc = concentration (in mg/L)
1151
116 *
              0 = control (0 mg/L)
116!
117 *
              50 = 50 mg/L active ingredient
1171
              100 = 100 mg/L active ingredient
118 *
1181
119 *
              200 = 200 mg/L active ingredient
1191
120 *
              300 = 300 mg/L active ingredient
1201
121 *
              400 = 300 mg/L heat deative
1211
122 * cham = exposure chamber ID
```

1221 123 * i.e., 3A5 = test system (1, 2 or 3), Block ID (A or B), and Position in Block * 1231 (1 - 6) 124 * time = time post exposure assessment occurred 124! 125 * tot = total number of glochidia within sample 1251 * 126 * cbs = number of glochidia closed prior to salt solution 126! * 127 * oas = number of glochidia open after salt solution 1271 * 128! **********/ 129 130 data glochidia; set Pseudo01.viability; 131 via_glo = tot - cbs - oas; 132 pctvia_glo = via_glo/tot*100; 133 run; NOTE: There were 397 observations read from the data set PSEUD001.VIABILITY. NOTE: The data set WORK.GLOCHIDIA has 397 observations and 11 variables. NOTE: DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds 134 135 proc sort data=glochidia; by sps form conc; run; NOTE: There were 397 observations read from the data set WORK.GLOCHIDIA. NOTE: The data set WORK.GLOCHIDIA has 397 observations and 11 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds 0.01 seconds cpu time 136 proc print data=glochidia; run; NOTE: Writing HTML Body file: sashtml1.htm NOTE: There were 397 observations read from the data set WORK.GLOCHIDIA. NOTE: PROCEDURE PRINT used (Total process time): 0.62 seconds real time cpu time 0.39 seconds 137 Title2 'Mean Unadjusted Viability of Glochidia by Species, Time, Form (SDP or FDP) and 137! Treatment Group'; 138 proc means data = glochidia mean std clm fw=8; 139 by sps form; 140 class conc time; 14: var tot cbs oas via_glo petvia_glo; 142 run; NOTE: There were 397 observations read from the data set WORK.GLOCHIDIA. NOTE: PROCEDURE MEANS used (Total process time):

real time 0.35 seconds

cpu time 0.34 seconds

```
143
145 * The exposure concentrations were renamed to place an alpha character in front of all
145! concentrations. SAS requires the longest
                                               *
146 * variable string to be first to set the variable character length (ie: 300HD vs 0). SAS
146! assumes the last entry to be the control,
                                         *
147 * therefore, the control was given the last alpha character and thereby other concentrations
147! will be compared to it.
148 * 50 mg/L = a
1481
149 * 100 mg/L = b
1491
150 * 200 mg/L = c
1501
151 + 300 \text{ mg/L} = d
1511
152 * 300 mg/L HD (coded as 400 in dataset) = e
1521
153 * 0 mg/L = f
1531
                                            *
155 data glochidia2; set glochidia;
156 If conc = '0' then conca = 'f';
157 If conc = '50' then conca = 'a';
158 If conc = '100' then conca = 'b';
159 If conc = '200' then conca = 'c';
    If conc = '300' then conca = 'd';
160
161
     If conc = '400' then conca = 'e';
162 run;
NOTE: Character values have been converted to numeric values at the places given by:
     (Line):(Column).
     156:12 157:12 158:12 159:12 160:12 161:12
NOTE: There were 397 observations read from the data set WORK.GLOCHIDIA.
NOTE: The data set WORK.GLOCHIDIA2 has 397 observations and 12 variables.
NOTE: DATA statement used (Total process time):
     real time
                    0.01 seconds
     opu time
                     0.01 seconds
163 proc sort data=glochidia2; by form sps conca time; run;
NOTE: There were 397 observations read from the data set WORK.GLOCHIDIA2.
NOTE: The data set WORK.GLOCHIDIA2 has 397 observations and 12 variables.
NOTE: PROCEDURE SORT used (Total process time):
     real time
                  0.00 seconds
     cpu time
                     0.00 seconds
164
165 proc glimmix data = glochidia2;
```

166 title2 'Overall Model: Glochidia Viability (unadjusted) - At 6, 12 and 24 h';

- 167 by form sps;
- 168 class conca time; 169 model via_glo/tot = conca/time / d = bin link = logit noint s or;
- 170 lsmeans conca / pdiff cl ilink or;
- 171 Ismeans time / pdiff cl ilink or;
- 172 Ismeans conca*time / pdiff cl ilink or;
- 173 random _residual_;
- 174 run;
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The above message was for the following BY group: form=FDP sps=PPB
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (ABSGCONV=0.00001) satisfied.
- NOTE: The above message was for the following BY group: form=FDP sps=WAS
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The above message was for the following BY group: form=SDP sps=BLS
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (GCONV=1E-8) satisfied.
- NOTE: The above message was for the following BY group: form=SDP sps=FAM
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The above message was for the following BY group: form=SDP sps=HGE
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (GCONV=1E-8) satisfied.
- NOTE: The above message was for the following BY group: form=SDP sps=HIC
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (GCONV=1E-8) satisfied.
- NOTE: The above message was for the following BY group: form=SDP sps=MUC
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (GCONV=1E-8) satisfied.
- NOTE: The above message was for the following BY group: form=SDP sps=PPB
- NOTE: PROCEDURE GLIMMIX used (Total process time): real time 1.42 seconds cpu time 1.29 seconds

175

176 quit;

Page 1 of 81

Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from sever	n unionid mussel species
Statistical analysis of unadjusted glochidia viability following 24-h static	exposure to various concentrations of Pf-CL145A
Analysis Completion Date:18March2015 Analysis prepared by: JAL, SAS	Version:
9.3 08:43 1BMAR15	2-18.15

5n

Obs	sps	form	conc	cham	time	tot	cbs	oas	F9	via_glo	potvia_glo
1	BLS	SDP	0	1A5	6	241	8	28	•	205	85.0622
2	BLS	SDP	0	131	6	337	B	42		287	85.1632
3	BLS	SDP	0	106	6	314	8	33		273	86.9427
4	BLS	SDP	Q	1A5	12	262	3	26		233	88,9313
5	BLS	SDP	0	1B1	12	231	6	18		207	89,6104
6	BLS	SDP	0	106	12	139	2	12		125	89.9281
7	BLS	SDP	o	1A5	24	612	12	83		517	84.4771
8	BLS	SDP	0	1B1	24	206	4	24		178	86.4078
9	BLS	SDP	0	1C6	24	572	26	74		472	82.5175
10	BLS	SDP	50	1A1	6	252	183	32		37	14.6825
11	BLS	SDP	50	1A3	6	290	284	3		3	1.0345
12	BLS	SDP	50	101	6	206	132	34	-	40	19.4175
13	BLS	SDP	50	1A1	12	223	157	22		44	19.7309
14	BLS	SDP	50	1A3	12	399	293	30		76	19.0476
15	BL\$	SDP	50	1 C1	12	248	221	з		24	9.6774
16	BLS	SDP	50	1A1	24	353	287	17		49	13,8810
17	BLS	SDP	50	1A3	24	137	98	16		23	16.7883
18	BLS	SDP	50	1 C1	24	111	92	4		15	13.5135
19	BLS	SDP	100	182	6	166	164	2	Ì	0	0.0000
20	BLS	SDP	100	1 B 3	6	351	330	16		5	1.4245
21	BLS	SDP	100	1C5	6	144	136	8		0	0.0000
22	BLS	SDP	100	1B2	12	250	208	20	j	22	8.8000
23	BLS	SDP	100	183	12	198	155	19		24	12.1212
24	BLS	SDP	100	105	12	125	97	21		7	5.6000
25	BLS	SDP !	100	1B2	24	181	166	12		3	1.6575
26	BLS	SDP	100	163	24	252	221	11		20	7.9365
27	BLS	SDP	100	1C5	24	222	179	18		25	11.2613
28	BLS	SDP	200	1A6	6	352	275	69		B	2.2727
29	BLS	SDP	200	185	G	168	138	25		5	2.9762
30	BLS	SDP	200	186	6	224	222	2		0	0.0000
31	BLS	SDP	200	1A6	12	242	235	5	1	2	0.8264
32	B_5	SDP	200	185	12	210	201	8		3	1.4286
33	BLS	SDP	200	1B6	12	304	280	20	"	4	1.3158
34	BLS	SDP	200	1A6	24	351	338	8	•	5	1.4245
35	BLS	SDP	200	1 B 5 i	24	302	256	38		8	2.6490
36	BLS.	SDP	200	166	24	352	299	33		20	5.6818
37	BLS	SDP	300	1A2	6	159	117	42		0	0.0000
38	BLS	SDP	300	184	6	312	286	17	{	9	2.8846
39	BLS	SDP	300	1C2	6	250	234	15	••••	1	0.4000
40	BLS	SDP	300	1A2	12	135	135	0		0	0.0000
41	BLS	SDP	300	1B4	12	93	86	7		- 0	0.0000
								-		*	0.0000

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

42	BLS	SDP	300	102	12	165	151	14		0	0.0000
43	BLS	SDP	300	1A2	24	284	270	14		0	0.0000
44	BLS	SDP	300	184	24	255	247	5	•	3	1.1765
45	BLS	SDP	300	102	24	383	373	6		4	1.0444
46	BLS	SDP	400	1A4	6	219	208	11		0	0.0000
47	BLS	SDP	400	1C3	6	254	213	41		0	0.0000
48	BLS	SDP	400	1C4	6	237	195	36		6	2.5316
49	BLS	SDP	400	1A4	12	281	268	13		0	0.0000
50	BLS	SDP	400	1C3	12	157	147	8		2	1.2739
51	BLS	SDP	400	1C4	12	133	119	12		2	1.5038
52	BLS	SDP	400	1A4	24	485	471	11		3	0.6186
53	BLS	SDP	400	1C3	24	381	367	8		6	1.5748
54	BLS	SDP	400	1C4	24	302	295	7		0	0.0000
55	FAM	SDP	0	3A2	6	273	36	46		191	69.9634
56	FAM	SDP	0	3B2	6	210	29	34		147	70.0000
57	FAM	SDP	0	3B3	6	265	32	29		204	76.9811
58	FAM	SDP	0	3A2	12	282	54	32		196	69.5035
59	FAM	SDP	o	3B2	12	328	55	79		194	59.1463
60	FAM	SDP	0	3B3	12	521	63	88		370	71.0173
61	FAM	SDP	0	3A2	24	307	48	55		204	66.4495
62	FAM	SDP	D	3B2	24	247	50	41]	156	63,1579
63	FAM	SDP	0	383	24	244	19	33		192	78.6885
_ 64	FAM	SDP	50	385	6	456	93	98		265	58.1140
65	FAM	SDP	60	3C5	6	276	57	71		148	53.6232
66	FAM	SDP	50	3C6	. 6	239	42	57	ł	140	58.5774
	FAM	SDP	50	3B5	12	430	146	36		248	57.6744
68	FAM	SDP	50	3C5	12	368	109	53		206	55.9783
69	FAM	SDP	50	3C6	12	207	33	42		132	63,7681
70	FAM	SDP	50	3B5	24	327	38	86	[203	62.0795
71	FAM	SDP	50	3C5	24	334	64	76		194	58.0838
72	FAM	SDP	50	3C6	24	278	70	68		140	50.3597
73	FAM	SDP	100	3A1	6	237	126	37		74	31.2236
74	FAM	SDP	100	3A3	6	303	238	25	(-	40	13.2013
75	FAM	SDP	100	3A5	6	351	119	83		149	42.4501
	FAM	SDP	100	3A1	12	409	183	48		178	43.5208
. 77	FAM	SDP	100	3A3	12	221	64	53	.	104	47.0588
78	FAM	SDP	100	3A5	12	159	68	27		Б4 	40.2516
79	FAM	SDP	100	3A1	24	112	41	20		51	45.5357
80	FAM	SDP	100	3A3		208	60	54		. 94	45.1923
81	FAM.	SDP	100	3A5	24	313	146	60		107	34.1853
82	FAM	SDP	200	384	6	380	308	47	.	25	6.5789
83	FAM	SDP	200	3B6	6	526	407	53		66	12.5475
84		SDP	200	3C4	6	201	59	64		78	38,8060
85		SDP	200	3B4	12	198	127	40	.	31	15.6566
86	FAM	SDP	200	386	12	134	69	19		46	34.3284
87	FAM	SDP	200	3C4	12	214	172	23		19	8.8785

.

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 2 of 81

1		1000	1 000	1.004	:		1.00	1			
L	FAM	SDP	200	[24	271		···		38	14.0221
89		SDP	200	3B6	24	205	147	28		30	14.6341
90		SDP	200	3C4	24	271	193	61		17	6.2731
91	FAM	SDP	300	381	6	482	422	56		4	0.8299
92	FAM	SDP	300	3C1	6	501	224	121		156	31.1377
93	FAM	SDP	300	3C3	ß	242	204	29		9	3,7190
94	FAM	SDP	300	3B1	12	298	233	55		10	3.3557
95	FAM	SDP	300	3C1	12	240	195	29		16	6.6667
96	FAM	SDP	300	3C3	12	206	173	26		7	3.3981
97	FAM	SDP	300	3B1	24	217	170	35		12	5.5300
98	FAM	SDP	300	3C1	24	176	145	23		8	4.5455
99	FAM	SDP	300	3C3	24	215	130	68		17 :	7.9070
100	FAM	SDP	400	3A4	6	216	155	56		5	2.3148
101	FAM	SDP	400	3A6	6	212	164	38		10	4.7170
102	FAM	SDP	400	3C2	6	205	166	39	•••••	D	0.0000
103	FAM	SDP	400	3A4	12	310	252	52	• •	6	1.9355
104	FAM	SDP	400	3A6	12	298	229	54		15	5.0336
105	FAM	SDF	400	3C2	12	187	131	56		0	D.0000
106	FAM	SDP	400	3A4	24	281	250	29		2	0.7117
107	FAM	SDP	400	3A6	24	86	69	15	•••••	2	2.3256
108	FAM	SDP	400	3CZ	24	336	293	36		7	2,0833
109	HGE	SDP	D	2B1	6	258	18	31		209	81,0078
110	HGE	SDP		2C3	6	248	18	76		154	62,0968
111	HGE	SDP	0	2C6	6	168	10	34		124	73.8095
112	HGE	SDP	0	2B1	12	254	29	57		168	66.1417
113	HGE	SDP	5	2C3	12	481	48	124		309	64.2412
114	HGE	SDP	0	2C6	12	210	13	38	• •• •	159	75,7143
115	HGE	SDP	: 0	2C3	24	318	28	66		224	70.4403
116	HGE	SDP	- 0	2C3-R2	24	377	46	108		223	59,1512
117	HGE	SDP	0	2C6	24	557	61	70		426	76.4811
118	HGE	SDP	0	2C6-R2	24	408	44	73		291	71.3235
119	HGE	SDP	50	2A1	6	224	11	39		174	77.6786
	HGE	SDP	50	2A2	6	616	26	88		502	81,4935
121	HGE	SDP	- 50	2A4	6	204	20	29		151	74.0196
122	HGE	SDP	50	2A1	12	225	38	48		139	
123	HGE	SDP	50	2A2	12	230	21	40		160	61.7778
124	HGE	SDP	50 50	2A4	12	339	36	49 50	· ·		69.5652
124	HGE	SDP	50	2A4 2A1	12 24	506	49	67		253 390	74.6313
126	HGE	SDP	50	2A1 2A2	· · · · · · ·						77.0751
	L				24	514	55	68	1	391	76.0700
127	HGE	SDP	50	2A4	24	464	34			328	70,6897
128	HGE	SDP	100	2A3	6	261	47	51		163	- 62.4521
129	HGE	SDP	100	204	6	396	40	101		255	64.3939
130		SDP	100	2C5	6	414	103	51	-	260	62.8019
131	HGE	SDP	100	2A3	12	235	50	38		147	62.5532
132	HGE	SDP	100	2C4	. 12	273	35	60 :		178	65.2015
133	HGE	SDP	100	2C5	12	362	4 1	72		249	68.7845
		. ,			1	į	1		1		ł

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 3 of 81

Page 4 of 81

1	HGE	SDP	100	2A3	24	629	95	87	447	71.0652
13	HGE	SDP	100	204	24	423	87	69	267	63,1206
136	HGE	SOP	100	205	24	413	105	51	257	62,2276
137	HGE	SDP	200	2A6	6	492	120	62	310	63.0081
136	HGE	SDP	200	2B2	В	357	73	93	191	53.5014
139	HGE	SDP	200	2B5	6	512	121	117	274	53.5156
140	HGE	SDP	200	2A6	12	266	146	51	69	25.9398
141	HGE	SDP	200	2B2	12	344	65	73	206	59.8837
142	HGE	SDP	200	2B5	12	274	81	48	145	52.9197
143	HGE	SDP	200	2A6	24	296	83	56	157	53.0405
144	HGE	SDP	200	2B2	24	369	135	54	180	48.7805
145	HGE	SDP	200	2B5	24	441	272	56	113	25.6236
148	HGE	SDP	300	2B3	6	297	251	25	21	7.0707
147	HGE	SDP	300	2C1	6	279	148	48 ;	83	29.7491
148	HGE	SDP	300	2C2	6	422	98	111	213	50.4739
149	HGE	SDP	300	283	12	240	107	60	73	30.4167.
150	HGE	SDP	300	2C1	12	267	67	95	105	39.3258
151	HGE	SDP	300	2C2	12	215	52	63	100	46.5116
152	HGE	SDP	300	2B3	24	171	109	54	8	4.6784
153	HGE	SDP	300	2C1	24	354	287	34	33	9.3220
154	HGE	SDP	300	2C2	24	140	38	28	74	52.8571
155	HGE	SDP	400	2A5	6	327	216	60	51	15.5963
156	HGE	SDP	400	284	6	276	168	41	67	24.2754
157	HGE	SDP	400	2B6	6	139	102	37	0	0.0000
158	HGE	SDP	400	2A5	12	229	161	44	24	10.4803
159	HGE	SDP	400	2B4	12	192	143	32	17	8.8542
160	HGE	SDP	400	2B6	12	206	142	45	19	9.2233
161	HGE	SDP	400	2A5	24	137	89	42	6	4.3798
162	HGE	SDP	400	284	24	216	88	74	54	25,0000
163	HGE	SDP	400	286	24	330	229	60	41	12.4242
164	HIC	SDP_	0	3A2	G	258	65	21	172	66.6667
	HIC	SDP	. 0	3C1	6	156	8	12	136	87.1795
166	HIC	SDP	0	3C4	6	259	12	24	223	86,1004
167	HIC	SDP	0	3A2	12	257	6	22	229	89.1051
168	÷	SDP	0	301	12	216	19	26	171	79.1667
169	HIC	SDP		3C4	12	144	5	8	131	90.9722
170	HIC	SDP	0	3A2	24	192	8	14	170	88.5417
171	HIC	SDP	0	3C1	_24	376	22	34	320	85.1064
172	HIC	SDP	0	3C4	24	359	14	31	314	87.4652
173	HIC	SDP	50	3A5	6	267	16	21	230	86.1423
174	HIC	SDP	50	3B3	6	191	21	10	160	83.7696
	HIC HIC	SDP	50	386	6	274	26	13	235	85.7664
176		SDP	50	3A5	12	172	21	10	141	81.9767
177	HIC	SDP	50	3B3	12	197	24	8	165	83,7563
178	HIC	SDP	50	3B6	12	186	9	14	163	87.6344
179	пц	SDP	. 50	3A5	24	223	9	8	206	92.3767

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

	ініс	SDP	50	383	24	303	18	22	263	86.7987
181	HIC	SDP	50	386	24	233	18	9	206	BB.412C
182	FIC	SDP	100	3B1	6	232	39	32	161	69.3966
183	HIC	SDP	100	3C2	6	231	114	13	104	45.0216
184	HIC	SDP	100	305	6	292	81	11	200	68,4932
185	HIC	SDP	100	3B1	12	214	36	6	172	80.3738
186	ніс	SDP	100	3C2	12	195	18	6	171	87.6923
187	ніс	SDP	100	3C5	12	216	75	4	137	63,4259
188	ніс	SDP	100	3B1	24	404	36	21	347	85,6911
189	ніс	SDP	100	3C2	24	278	59	17	202	72.6619
190	HIC	SDP	100	3C5	24	257	51	10	196	76.2646
191	HIC	SDP	200	3A3	6	231	142	19	70	30.3030
192	HIC	SDP	200	3A4	. 6	176	90	18	- 68	38.6364
193	нс	SDP	200	3C6	6	285	117	17	151	52.9825
194	HIC	SDP	200	3A3	12	134	86	3	45	33.5821
195	ніс	SDP	200	3A4	12	186	84	8	94	50.5376
196	HIC	SDP	200	3C6	12	138	41	5	92	66.6667
197	HIC	SDP	200	3A3	24	349	114	10	225	64.4699
198	ніс	SDP	200	3A4	24	203	78	12	113	55.6650
199	HIC	SDP	200	3C6	24	197	66	91	122	61.9289
200	ніс	SDP	300	3A6	6	293	192	13	B8	30.0341
201	HIC	SDP	300	3B2	6	173	160	3	10	5.7803
202	HIC	SDP	300	3B5	6	266	226	10	30	11.2782
203	HIC	SDP	300	3A6	12	204	123	8	73	35.7843
204	HIC	SDP	300	3B2	12	200	107	12	81	40.500D
205	HIC	SDP	300	385	12	206	98	23	85	41.2621
206	нс	SDP	300	3A6	24	191	138	9	44	23.0366
207	HIC	SDP	300	382	24	140	98	4	38	27.1429
208	HIC	SDP	300	385	24	231	156	7	68	29,4372
209	HIC	SDP	400	3A1	6	362	262	25	75	20,7182
210	HIC	SDP	400	384	6	317	274	16	27	8,5174
211	HIC	SDP	400	3C3	6	246	209	7	30	12.1951
212	HIC	SDP	400	3A1	12	249	231	15	3	1.2048
213	HIC .	SDP	400	3B4	12	338	313	22	3	0.8876
214	HIC	SDP	400	3C3	. 12	251	244	3	4	1,5936
	HIC	SDP	400	3A1	24 	290	287	2		0.3448
216	HIC	SDP	400	3B4	24	314	307	6	1	0.3185
217	HIC	SDP	400	303	24	226	221	3	2	0.8850
218	MUC	SDP	0	284	6	198	_15	17	166	63.8384
219	MUC	SDP	0	285	6	132	2	12	118	89.3939
220	MUC		0	2C1	6	257	7	12	238	92.6070
	MUC	SDP	0	2B4		178	2	11	165	92.6966
222	MUC	SDP	0	2B5	12	213		12	201	94.3662
223	MUC	SDP	0	2C1	12	254	6	5	243	95.6693
	MUC	SDP	0	2B4	24	261	. 7	19	235	90.0383
225	MUC	SDP	С	2B5	24	361	1	20	340	94.1828

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 5 of 81

I	мьс	SDP	1 0	201	24	251	8	8	235	93.6255
227		SDP	50		: 6	349		36	200	93.6255 75.0716
226		SDP	50	286	6	128				
							+	3	82	64.0625
229		SDP	50	203	6	295	59	12	224	75,9322
230		SDP	50	2A4	12	221	63	14	144	65.1584
231		SDP	50	286	12	113	1	4	56	49.5575
232		SDP	50	2C3	12	193	17	12	164	84.9741
233		SDP	50	2A4	24	328	49	. 14	265	80.7927
234	MUC	1	50	236	24	146	49	8	89	60.9589
235	. j	SDP	50	2C3	24	194	19	9	166	85.5670
236	MUC	SDP	100	2A2	6	190		13	1 16	61.0526
237	MUC	SDP	100	2B2	6	154	26	7	121	78,5714
238	MUC	SDP	100	206	6	466	78	29	359	77.0386
239	MUC	SDP	100	2A2	12	210	91	10	109	51.9048
240	MUC	SDP	100	282	12	138	46	14	76	56.5217
241	MUC	SDP	100	2C6	12	215	26	7	182	84.6512
242	MUC	SDP	100	2A2	24	191	42	5	144	75.3927
243	MUC	SDP	100	2B2	24	209	87	11	111	53,1100
244	MUC	SDP	100	2C6	24	213	71	10	132	61.9718
245	MUC	SDP	200	2A5	6	116	48	8	60	51.7241
246	MUC	SDP	200	2A6	6	202	82	23	97	48.0198
247	MUC	SDP	200	2C2	6	399	291	21	87	21.8045
248	MUC	SDP	200	2A5	12	175	83	17	75	42.8571
249	MUC	SDP	200	2A6	12	179	92	11	76	42,4581
260	MUC	SDP	200	2C2	12	362	227	9	126	34,8066
251	MUC	SDP	200	2A5	24	251	170	16	65	25.8964
252	MUC	SDP	200	2A6	24	407	241	10	156	38.3292
253	MUC	SDP	200	2C2	24	497	355	14	128	25.7545
254	NUC	SDP	300	2 B 1	6	265	199	14	52	19.6226
255	MUC	SDP	300	283	6	251	232	6	13	5.1793
256	I MUC	SDP	300	2C4	6	323	283	6	34	10.5263
257	MUC	SDP	300	281	12	247	212	4	31	12,5506
258	мис	SDP	300	283	12	198	181	2	15	7.5758
259	MUC	SDP	300	2C4	12	116	102 1	2	12	10.3448
260	MUC	SDP	300	2B1	24	192	171	3	18	9.3750
261	MUC	SDP	300	2B3	24	297	281	9	7	2.3569
262	MUC	SDP	300	2C4	2.4	451	417	6	28	6,2084
263	MUC	SDP	400	2A1	6	292	272	4	16	5.4795
264	MUC	SDP	400	2A3	6	355	342	8	5	1.4085
265	мос	SDP	400	2C5	6	280	259	10	11	3,9286
266	мис	SDP	400	2A1	12	237	201	14	22	9.2827
267	MUC	SDP	400	2A3	12	127	100	11	16	12.5984
268	мис	SDP	400	2C5	12	184	175	4	5	2.7174
269	мис	SDP	400	2A1	24	292	278	6	8	2.7397
270	MUC	SDP	400	2A3	24	308	276	4	28	9,0909
271	MUC	SDP	400	2C5	24	157	149	2	6	3.8217
·- ·			· · · }		1	· · }	.	- [-	-	

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 6 of 81

	PPB	FDP	0	3A6	. 6	214	17	16		181	84.5794
273	РРВ	FDP	0	3B5	6	89	7	6		76	85.3933
274	PPB	IFDP	0	336	6	125	18	11		96	76,8000
275	PPB	FDP	0	3A6	12	- 33	3	20		110	82,7068
276	PPB	FDP	0	3B5	12	314	8	61		245	78.0255
277	PPB	FDP	0	3B6	12	182	. 5	23		154	84.6154
278	PPB	FDP	0	3A6	24	573	21	74		478	83,4206
279	PPB	FDP	0	3B5	24	279	7	47		225	80.6452
280	PPB	FDP	0	386	24	278	17	34		227	81,6547
281	PPB	FDP	50	3A4	6	157	16	17		124	78,9809
282	PPB	FDP	50	3C1	6	74	27	5		42	56,7568
	PPB	FDP	50	302	6	144	22			44 105	
284	PPB	FDP	50		. j			17			72.9167
				3A4	12	290	24	62		204	70.3448
285	PPB	FDP	50	3C1	12	160	8	29		123	76,8750
286	PPB	FDP	50	3C2	.12	606	34	70		502	82.8383
287	PPB	FDP.	50	3A4	24	164	39	21		104	63.4146
288	PPB	FDP	50	3C1	24	368	33	45		290	78.8043
289	PPB	FDP	50	3C2	24	384	30	46		308	80.2083
290	PPB	FDP	100	3B1	6	259	70	21		168	64.8649
291	PPB	FDP	100	3B3	6	190	33	25		132	69.4737
292	PPB	FDP	100	3C6	6	161	47	13		101	62.7329
293	PPB	FDP	100	3B1	12	179	46	22		111	62,0112
294	PPB	FDP	100	3B3	12	130	20	18		92	70.7692
295	PPB	FDP	100	3C6	12	142	15	15		112	78.8732
296	PPB	FDP	100	381	24	467	85	60		322	68,9507
297	PPB	FDP	100	3B3	24	405	93	55		257	63.4568
298	PFB	FDP	100	3C6	24	288	38	46		204	70.8333
299	PPB	FDP	200	3A2	6	256	86	52		118	46.0938
300	PPB	FDP	200	3C3	6	299	141	42		116	38.7960
301	PPB	FDP	200	3C5	8	157	47	14	•••		61,1465
302	PPB	FDP	200	3A2	12	249	161	38			20.0803
303	PPB	FDP	200	3C3	12	815	104	140		571	70.0613
304	PPB	FDP	200	3C5	12	200	151	20		29	14,5000
	PPB	FDP	200	3A2	24	144	96	27	•••	21	14.5833
306	PPB	FDP	200	3C3	24	592	157	98	•	337	56.9257
307	PPB	FDP	200	3C5	24	386	281	39	·	66	17.0984
308	PPB	FDP	300	3A3	2~ 6	259	63	64		132	50,9653
309	PPB	FDP	300	3B4	6	272	149	58		65	23,8971
310	PPB	FDP	300	3C4	6	655	218	128		309	47.1756
	PPO	FDP	300	304 3A3	12	655 251	218	66			
										11	4.3825
312		FDP	300	3B4	12	223	145	35	i	43	19.2825
313	PPB	FDP	300	3G4	12	348	289	46		13	3,7356
314	PPB	FDP	300	3A3	24	199	132	45		22	11.0553
315	PPB	FDP	300	364	24	714	442	171		101	14.1457
316	PPB	FDP	300	3C4	24	440	330	62		48	10,9091
317	PPB	FDP	400	3A1	6	200	144	45		11	5,5000
	1	· · · i						i.	i	i	

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 7 of 81

	PPB	FDP	400	3A5	6	379	87	114	:	178	46.9657
319	PPB	FDP	400	3B2	. 3	418	321	60		37	8.8517
320	ł	1	400				1				
	PPB	FDP		3A1	12	72	58	11		3	4.1667
321	PPB	FDP	400	3A5	12	. 48	38	7		3	6.2500
322	PPB	FDP	400	3B2	12	242	211	21		10	4.1322
323	PPB	FDP	400	3A1	24	370	277	78		15	4.0541
324	PPB	FDP	400	3A5	24	253	207	38		8	3.1621
326	PPB	FDP	400	3B2	24	267	198	49		20	7.4906
326	PPB	SDP	0	1A3	6	160	2	12		146	91.2500
327	PPB	SDP	0	1 B 1	6	312	jз	18		291	93.2692
328	PPB	SDP	0	1 C 3	6	426	7	25		394	92.4883
329	PPB	SDP	0	1A3	12	626	39	54		533	85.1438
330	PPB	SDP	0	1B1	12	599	39	53		507	B4.6411
331	PPB	SDP	D	103	12	604	18	52		534	88.4106
332	PPB	SDP	0	1A3	24	429	12	26	•	391	91.1422
333	PPB	SDP	0	1B1	24	514	15	22		477	92,8016
334	PPB	SDP	0	1C3	24	276	12	9	-	255	92.3913
335	PPB	SDP	50	1A1	6	189	16	10		163	86.2434
336	PPB	SDP	50	1B5	6	344	59	13		272	79.0698
337	PPB	SDP		101	6	447	129	12		306	68.4564
338	PPB	SDP	50	1A1	12	265	24	14		227	
339	PPB	SDP		·	12	205	37				85,6604
			50	1B5	4 - L			14		175	77.4336
340	PPB	SDP	50	101	12	624	104	67	ļ	453	72.5962
341	PPB	SDP	50	1A1	24	459	55	28		376	81.9172
342	PPB	SDP	50	1B5	24	270	27	16	-	227	84.0741
	PPB	SDP	50	101	24	339	78			249	73.4513
344	PPB	SDP	100	1A2	6	116	16	9		91	76.4483
345	PPB	SDP	100	1A4	. 6	535	. 70	42		424	79.1045
346	PPB	SDP	100	184	6	170	43	11		116	68.2353
347	PPB	SDP	100	1A2	12	353	321	32		D	0.0000
348	РРВ	SDP	100	1A4	12	504	75	40	i	389	77.1825
349	PP8	SDP	100	1B4	12	354	40	28	Ì	286	80,7910
350	PP8	SDP	100	1A2	24	210	33	16	•••••	161	76.6667
351	PPB	SDP	100	1A4	24	310	34	125		151	48.7097
352	PPB	SDP	100	1B4	24	324	56	24		244	75.3086
363	PPB	SDP	200	162	6	252	60	21		171	67.8571
364	PPB	SDP	200	104	6	238	165	6		67	28.1513
355	PPB	SDF	200	106	6	145	47	10		88	60,6897
356		SDP	200	182	12	152	47	15	···	90	59.2105
357		SDP	200	1C4	12	380	116	36	İ	228	60,0000
358	PPB	SDP	200	1C6	12	177	129	11		37	20.9040
359	PPB	SDP	200	1B2	24	187	50	-			66.3102
	PPB	SOP			:	i		13		124	
360			200	104	24	506	267	14	.	225	44.4664
361	PPB	SDP	200	106	24	242	64	16]	162	66.9421
	PPB	SDP	300	1A5	6	114	. 75	14		25	21.9298
363	PP3	SDP	300	1C2	6	512	464	31	j.	17	3.3203

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 8 of 81

Page 9 of 81

i	i	1	1	i		1	ı			
	PPB	SDP	300	1C5	6	268	234	22	12	4.4776
365	PPB	SDP	300	1A5	12	1177	938	109	130	11.0450
366	PPB	SDP	300	102	12	305	284	13	8	2.6230
367	PP3	SDP	300	1C5	12	460	403	30	27	5.8696
368	PPB	SDP	300	1A5	24	493	399	23	71	14.4016
369	PPB	SDP	300	1C2	24	226	218	4	4	1.7699
370	PPB	SDP	300	1C5	24	295	274	15	6	2.0339
371	PPB	SDP	400	1A6	6	147	108	30	9	6.1224
372	PPB	(SDP	400	1B3	6	119	9 1	23	5	4.2017
373	PPB	SDP	400	1B6	6	210	192	18	0	0.0000
374	PPB	SDP	400	1A6	12	242	193	32	17	7.0248
375	bbB	SDP	400	1B3	12	225	171	37	17	7.5556
376	PPB	SDP	400	1B6	12	322	280	33	9	2,7950
377	PPB	SDP	400	1A6	24	204	147	40	17	8.3333
378	PPB	SDP	400	1B3	24	257	245	4	8	3.1128
379	PPB	SDP	400	1B6	24	322	293	20	9	2.7950
380	WAS	FDP	0	1A5	24	55	9	11	35	63.6364
381	WAS	FDP	C	1B2	24	140	49	19 i	72	51.4286
382	WAS	FDP	0	1B4	24	73	32	11	30	41.0959
383	WAS	FDP	50	1A1	24	55	16	14	25	45.4545
384	WAS	FDP	50	1C1	24	65	19	9	37	56.9231
385	WAS	FDP	50	102	24	56	9	11	36	64.2857
386	WAS	FDP	100	1A2	24	67	23	23	21	31.3433
387	WAS	FDP	100	1 A6	24	99	15	37	47	47.4747
388	WAS	FDP	100	1 C 6	24	104	23	13	68	65,3846
389	WAS	FDP	200	1B5	24	54	16	21	17	31.4815
390	WAS	FDP	200	1 C 3	24	60	12	19	29	48,3333
391	WAS	FDP	200	1 C 4	24	64	14	6	44	68.7500
392	WAS	FDP	300	1A4	24	52	8	11	33	63.4615
393	WAS	FDP	300	1B1	24	55	24	18	13	23.6364
394	WAS	FOP	300	1C5	24	69	8	38	23	33.3333
395	WAS	FDP	400	1A3	24	80	62	5	13	16.2500
396	WAS	FDP	400	1B3	24	80	34	16	30	37.5000
397	WAS	FDP	400	1B6	24	83	37	24	22	26.5060
·		······	!		I.		. !) . U.	······

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

Page 10 of 81

Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species Mean Unadjusted Viability of Glochidia by Species, Time, Form (SDP or FDP) and Treatment Group

The MEANS Procedure

sps=BLS form=SDP

		N Ob-	 				Lower 95%	Upper 95%
conc	time		Variable	Label	Mean		CL for Mean	CL for Mear
0	6	3	tot	tot	297.3	50.1232	172.8	421,8
			cbs	cbs	8,0000	0		
			oas	oas	34,3333	7.0946	16.7094	51.9573
			via_gio	ł	255.0	43.8634	146.0	364.0
		÷ .	pctvia_glo	[85.7227	1,0577	83.0952	88,3503
	12 ;	3	tot	tot	210.7	63.9713	51.7530	369,5
			cbs	cbs	3.6667	2.0817	-1.5045	8,8378
			oas	oas	18.6667	7.0238	1.2187	36.1147
			via_glo	1	188.3	56,3678	48.3079	328.4
			pctvia_glo		89.4899	0.5092	88.2250	90,7548
	24	3	tot	tot	463.3	223.8	-92.4995	1019.2
			cbs	cbs	14.0000	11.1355	-13.6622	41.6622
i			oas	oas	60.3333	31.7857	-18.6268	139.3
			via_glo		389.0	184.1	-68.3580	846.4
			pctvia_glo		84,4675	1.9452	79.6354	89.2995
50	6	3	tot	tot	249.3	42.0634	144.8	353.8
	- 1	- U		cbs	199.7	77.3585	7.4976	391.8
				DAS	23.0000	17.3494	-20.0982	66,0982
		1	via_glo		26.6667	20.5508	-24.3842	77.7176
ł			pctvia_glo	i	11.7115	9.5448		35.4222
	12	3	tot	tot	290.0	95.2208	53.4584	526,5
1	12	31	cbs	cbs	230.0	68.0392	54,6479	326,5 392,7
	İ		Cas	oas	18.3333	13.8684	-16.1178	52,7844
1			via_glo		48.0000	26.2298	-17.1583	113.2
		i i	pctvla_plo	1	16.1520	5.6175	2.1972	30.1067
	24		·		000.0	400.0		
	24	3	tol cbs	tot cbs	200,3 159.0	132.9 110.9	-129,7	530.4
			oas	oas	12.3333	7.2342	-116.5 -5.6374	434.5 30,3040
	ĺ	Ì	via_gio	Uda	29.0000	17.7764	-15.1590	73,1590
		ł	pctvla_glo		14,7276	1.7941	10.2709	19,1843
100	6		tot	tot	220.3	113.7	-62.0983	502.8
		(cbs	cbs	210.0	104.9	-50.4912	470.5
ł	Í		oas vie ele	oas	8.6667	7.0238	-8.7813	26.1147
		i	via_gio petvia gio		1.6667 0.4748	2.8868 0.8224	-5.5044 -1,5682	8.8378
	• · · ·		perna_gio			•••••	-1.5002	2.5179
	12		tot	tot	191.0	62,7933	35.0128	347.0
			cbs .	cps	153.3	55.5188	15.4171	291.2
	1		oas	oas	20,0000	1.0000	17.5159	22.4841
			via_glo		17.6667	9.2916	-5.4149	40.7482
			petvia_glo		8.8404	3,2608 '	0.7401	16.9407
	24	I	tot	tot	218.3	35.6417	129.8	306.9
- 1		I	cbs	cbs	188,7	28,7460	117.3	260.1
			oas	089	13.6667	3.7859	4.2619	23.0715
	1		via_glo	1	16.0000	11.5326	-12.6485	44.6485
			pctvla_glo		6.9517	4.8770	-5,1635	19.0670
200	6	3	tot	tot	248.0	94.3186	13.6996	482.3
			cbs	cbs	211.7	69.0821	40.0573	383,3
			oas	oas	32,0000	34.0441	-52.5702	116.6
			via_glo		4.3333	4.0415	-5.7062	14.3729
	. 1	i	pctvia_glo		1.7496	1.5555	-2.1145	5.6138
Ľ	12	3	tot	tot	252,0	47.7912	133.3	370.7
	[cbs	cbs	238.7	39,6274	140.2	337.1
	ł		oas	oas	10.3333	8,3865	-10.4999	31,1665
						1.0000	0.5159	

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 11 of 81

			pctvia_gio		1.1903	0.3201	0.3951	1.9854
	24	3	tot	tot	335.0	28.5832	264.0	406.0
			cbs	cbs	297.7	41.0163	195.8	399.6
1			oas	oas	26.3333	16.0728	-13.5936	66,2603
			via_gio	1	11.0000	7.9373	-8.7172	30.7172
			pctvla_glo	ļ	3.2518	2.1917	-2.1928	8.6963
300	6	Э		tot	240.3	76.9567	49.1623	431.5
			cbs	cbs	212.3	86,5583	-2,6893	427.4
			oas	oas	24.6667	15.0444	-12.7056	62,0390
;			via_g o		3,3333	4.9329	-8.9206	15.5873
	1		pctvia_glo		1.0949	1,5628	-2.7874	4.9771
1	12;	3	tot	tot	131.0	36,1663	41.1580	220.8
			cbs	cbs	124.0	33,6674	39,8687	208,1
i			oas	oas	7.0000	7.0000	-10.3890	24.3890
			via_gic		. 0	0		
			pctvia_glo		0	0		
	24	3	tot	tot	307.3	67.1143	140.6	474.1
			cbs	cbs	296.7	67.0994	130.0	463.4
			oas	oas	8,3333	4.9329	-3.9206	20.5873
			via_glo		2,3333	2,0817	-2.8378	7.5045
			pctvia_glo		0.7403	0.6445	-0.8607	2.3413
400	6	3	tot	tot	236.7	17.5024	193.2	280.1
			cbs	cbs	205.3	9.2916	182.3	228.4
			085	oas	29.3333	16.0728	-10.5936	69.2603
- 1			via_glo		2.0000	3.464 1	-6,6053	10.6053
			pctvla_glo		0.8439	1.4616	-2.7870	4.4748
	12	3	tot	tot	190.3	79.4313	-6,9850	387,7
	í		cbs	cþs	178.0	79,1896	-18.7180	374.7
	i	į	oas	oas	11.0000	2.6458	4.4276	17.5724
ł			via_glo		1.3333	1.1547	-1.5351	4,2018
			pctvia_glo		0,9259 i	0.8100	-1.0864	2.9381
	24	з		tot	389.3		161.3	617.3
			cbs	cbs	377.7		157.9	597.5
1				oas	8.6667	2.0817	3.4955	13.8378
- 1			via_gio		3.0000	3.0000	-4.4524	10.4524
			pctvia_glo i	1	0.7311	0.7934	-1.2398	2.7021

sps=FAM form=SDP

conc	tima	N Obs	Variable	Label	Mean	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean	
0	6	3	tot	tot	249.3	34.2977	164.1	334.5	
			cbs	cbs	32.3333	3.5119	23,6093	41.0573	
			oas	oas	36.3333	8.7369	14.6297	58,0370	
		ł	via_glo		180.7	29,8719	106.5	254.9	
			pctvia_glo		72.3148	4.0412	62.2760	82.3537	
	12	3	tol	tot	377.0	126.8	61.9843	692.0	
			cbs	cbs	57.3333	4.9329	45.0794	69,5873	
			oas	oas	66,3333	30.0721	-8.3700	141.0	
				i	via_glo	ł	253.3	101.0	2,3330
			pctvia_glo		66.5557	6,4612	50,5052	82.6062	
	24	3	tol	lot	266.0	35.5387	177,7	354.3	
				cbs	cbs	39.0000	17.3494	-4.0982	82.0982
			oas	oas	43,0000	11.1355	15,3378	70.6622	
			via_glo		184.0	24.9800	121.9	246.1	
			pctvia_gio		69.4320	8.1836	49.1028	89.7612	
50	6	3	to t	tot	323.7	116.1	35.2891	612.0	
			cbs	cbs	64.0000	26.2107	-1.1110	129.1	
			oas	oas	75.3333	20.8407	23.5623	127.1	
			via_glo		184.3	69.9738	10.5088	358.2	
			pctvia_g o		56.7715	2.7364	49.9740	63.5691	
	12	3	tot	tot	335.0	115.1	49,0651	620.9	
		:	cbs	cbs	96,0000	57.6108	-47.1131	239.1	
			oas	oas	43.6667	8.6217	22.2492	65.0841	

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

49.4374 48.9638 341.2 69.3167 237.2 15.0786 54.2635 94.3569 42.0407 388.8 99.5880 99.0699 263.6 71.6413

ĺ			via_gio pctvia_gio		195.3 59.1403		49.4374 48.9638	341.2 69.3167
	24	3	tot	lot	313.0	30.5123	237.2	388.8
1			cbs	cbs	57.3333	17.0098	15,0786	99,5880
1			oas	085	76.6667	9,0185	54.2635	99,0699
			via_glo		179.0	34.0735	94.3569	263.6
t	_] .		pctvla_glo		56.B410	5.9579	42.0407	71.6413
100	6	3	tot	tot	297.0	57.2364	154.8	439.2
ł			cbs	cbs	161.0	66.7757	-4.8801	326.9
			oas	oas	48.3333	30.6159	-27.7208	124.4
			via_gio		87.6667	55,7704	-50.8746	226,2
			pctvia_glo		28.9584	14.7554	-7,6961	65.6128
	12	3		tot	263.0	130.2	-60,3962	586.4
			cbs	cbs	105.0	67.5796	-62.8770	272.9
			oas	oas	42.6667	13.7961	6.3952	76,9382
			∶ via_glo ∶ pctvia_glo	[115.3 43.6104	57.8389 3.4045	-28.3464 35.1531	259.0 52.0677
			· · · · · · · · · · · · · · · · · · ·					
	24	3	, lot	tot	211.0	100.5	-38,7392	460.7
1	ĺ		cbs	1	82.3333	55,9494	-56,6526	221,3
			.oas via_glo	oas	44,6667	21,5716 29.3087	-8.9201 11.1931	98.2535 156.6
Ì			pctvia_glo		41.6378	6.4563	25,5994	57.6761
				h	· · · · · • · = · =	···		
200	6		∣tot ⊧cbs	tot	369.0 258.0	162.8	-35.3654	773.4
ł			085	COS	54.6667	8.6217	-187.4 33.2492	703.4 76.0841
			via_glo	000	56,3333	27.7909	-12.7031	125.4
			pctvia_glo		19.3108	17.1450	-23.2798	61,9014
	12	3		tot	182.0	· -		
	12	3	tot cbs	cbs	182.0	42.3320	76.8414 -5,6056	287.2 250.9
			036	oas	27.3333	11.1505	-0.3660	55,0327
			via_glo		32.0000	13.5277	-1.6048	65.6048
			pctvia_glo	ł	19.6211	13.1800	-13.1198	52.3621
į	24 !	з	lot	tot	249.0	38.1051	154,3	343.7
		•	cbs	cbs	176.7	25,7358	112.7	240.6
			oas	oas	44.0000	16,5227	2.9553	85,0447
	1		via_glo		28.3333	10.5987	2.0046	54.6621
. i			pctvia_glo		11.6431	4.6607	0.0654	23.2208
300	6	з	tot	tot	408.3	144.4	49.7187	766,9
1			cbs	cbs	283.3	120.5	-16.0164	582.7
1			oas	oas	68.6667	47.2899	-48,8079	186.1
	ļ		vla_glo		56,3333	86.3501	-158.2	270.8
	.		pctvia_glo		11.8955	16.7267	-29.6559	53,4470
	12	3		tot	248.0		132.4	363.6
ł	ł			cbs	200,3	30.3535	124.9	275.7
i	i		085	oas	36.6667	15,9478	-2,9499	76.2833
	į.		via_glo pctvia_glo		11.0000 4.4735	4.5826 1.8995	-0.3837 -0.2451	22.3837 9.1920
••••	· · · - · · · ·							
	24	3	tot	tot	202.7	23.1157	145,2	260.1
	1		cbs oas	cibs oas	148.3 42.0000	20.2073 23.3024	98.1357	198,5
-			via_glo	Das	42.0000	23.3024	-15.8863 1.1317	99.8863 23.5349
ł			pctvia_glo		5.9941	1.7282	1.7011	10,2871
400						···		
400	6	3	tot aba	tot cbs	211.0	5,5678	197.2	224.8
1			cbs cas	oas	161.7 44.3333	5.8595 10.1160	147.1 19.2038	176,2 69,4629
1			via glo	Jas	5.0000	5.0000	-7.4207	17.4207
	ļ	ĺ	potvia_gio		2.3439	2.3586	-3.5152	8.2031
	12	2	tot	lot	265.0	67.8159	96,5359	433.5
	16	3	cbs	cbs	205.0	64.2573	44.3760	433.5 363.6
		i	cas	085	54.0000	2,0000	49.0317	58.9663
		3	via_glo		7.0000	7.5498	-11.7548	25.7548
			pctvia_g o		2.3230	2.5391	-3.9844	8.6304
	24	3	tot	lot	234.3	131.4	-92.0103	560.7
1	AM							

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

373

Page 12 of 81

Page 13 of 81

			' cbs oas : via_glo : pctvia_glo	cbs cas	204.0 26.6667 3.6667 1.7069	118.9 10.6927 2.8868 0.8703	-3,5044	499,3 53,2287 10,8378 3,8688	
sps=H	GE for	m=SDP							
conc	time	N Obs	Variable	Label	Mean	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean	
0	6	-	tot cbs oas vla_glo pctvia_glo	toi cibs cas	224.7 15.3333 47.0000 162.3 72.3047	49.3288 4.6188 25.1595 43.1084 9.5449	102.1 3.8596 -15.4996 55.2462 48,5939	347.2 26.8071 109.5 269.4 96.0155	
	12	з	tot cbs	tot cbs	315.0 30.0000	145.4 17.5214	-46.2777 -13.5256	676.3 73.5256	

l I			vao vio nio	1000	162.3	43.1084	55,2462	100.0
			via_glo		72.3047	9.5449	48,5939	269.4 96.0155
			pctvia_glo		12.0041	9.0449	40,0939	90.0100
	12	з	tot	tot	315.0	145.4	-46.2777	676,3
			cbs	cbs	30.0000	17.5214	-13.5256	73.5256
			oas	oas	73.0000	45.1774	-39.2270	185.2
			via_glo		212.0	84.1249	3,0221	421.0
	 		pctvia_glo		68,6991	6.1492	53.4235	83,9746
1	24	4	tot	tot	415.0	101.8	253.1	576.9
i			cbs	cbs	44.7500	13.5000	23.2685	66.2315
	1		088	oas	79.2500	19.3800	48,4121	110.1
			l via_glo netvia_ale	1	291.0	95.4603	139.1	442.9
			pctvla_glo		· } · · · · -	7.3019	57.7301	80.9680
50	6	3	tot	tot	348.0	232.3	-229.1	925,1
			cbs	cbs	20.3333	8.1445	0.1012	40.5655
			Cas	oas	52.0000	31.5753	-26.4374	130.4
1			i via_gio • pctvia_gio	i	275.7 275.7 277.7306	196.3 3.7372	-212.1 68.4468	763.4 87.0143
			· · · · · · · · · · · · · · · · · · ·					
	12	3	lot	tot		64.4231	104.6	424.7
			cbs	cbs	31.6667	9.2916	8.5851	54.7482
ļ	1		oas via_glo	oas	49.0000	1.0000 60.6712	46.5159 33.2843	51.4841 334.7
			pctvia_glo		68.6581	6.4746	52.5743	84,7418
			in a Time					
	24	3		lot	494.7	26.8576	427.9	561.4
	ł		cbs oas	cbs pas	46.0000	10,8167	19.1299 29.5039	72.8701 128.5
1	ł		via glo	Uda	369.7	36.0879	280.0	459,3
	ł		pctvla_gio	i	74.6116	3.4335	66.0824	83.1408
100	6	3	tot	tot	357.0	83.6242	149.3	564.7
	-	-	cbs	cbs	63.3333	34.5302	-22,4444	149.1
ł			oas	oas	67.6687	28,8675	-4.0442	139.4
ł	į		via_glo		226.0	54.6168	90.3242	361.7
ł			pctvia_glo		63.2160	1.0350	60.6449	65,7871
- 1	12	3	tot	tot	290.0	65.1844	128.1	451.9
1			cbs	cbs	42.0000	7.5498	23.2452	60,7548
			oas	oas	56.6667	17.2434	13.8318	99.5015
			via_glo		191.3	52.2909	61.4357	321.2
		.	pctvia_glo		65.5131	3.1273	57,7443	73.2818
	24	3	tot	lot	488.3	121.9	185.5	791.2
			cbs	cbs	95,6667	9.0185	73.2635	118.1
			oas	oas	69.0000	18.0000	24.2855	113.7
			via_glo		323.7	106.9	58.0459	589.3
			pctvia_g o		65.4711	4.8651	53.3855	77.5568
200	6	з	tot	tot	453,7	84.3109	244.2	663,1
			cbs	cbs	104.7	27.4287	36.5300	172.8
		f	oas	oas	90.6667	27.5741	22.1687	159.2
			via_glo pclvia_glo		258,3 56.6751	61.0273 5.4846	106.7 43,0505	409.9
							· · · · · · · · · · · · · · · · · · ·	70.2996
ł	12	3	tol	tol	294.7	42.9108	188.1	401.3
1	1		cbs	cbs	97.3333	42,8991	-9.2340	203.9
			oas vie ele	oas	57.3333 140.0	13.6504	23.4239	91.2428
	1		via_glo pctvla_glo		46.2478	68.6367 17.9285	-30,5031 1,7106	310.5
	1		Persia_Ain		10.2410	17,0200	1.(100	90.7847

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 14 of 81

	24	3	tot cbs . pas	tot cbs cas	368,7 163,3 55,3333	97.6337	188.6 -79.2021 52.4649	548. 405. 58.201
			via_glo pctvia_glo		150.0 42.4815	34.0441	65.4298 5.8306	234,0
300	6	3	i tot	tol	332.7	77.8867	139,2	526.
	1	1	cbs	cbs	165,7	78.0150	-28,1332	359.
			oas	oas	61.3333	44.5234	-49.2689	171.0
			via_glo		105.7	97.9864	-137.7	349.
			pctvla_glo		29.0979	21.7089	-24.8301	83.025
	. 12	3	tot	tot	240,7	26.0064	176.1	305.3
	1		cba	cbs	75.3333	28,4312	4.7063	146.0
		:	oas	oas	72.6667	19.3993	24.4761	120,9
	i	:	via_gio pctvia_gio		92,6667 38,7514	17.2143	49,9039	135.4
			- 		38.75 4	8.0628	18.7222	58.7800
	24	3	tot	tot	221.7	115.6		509.0
	1		cbs pas	cbs	144.7	128.3	-174.0	463.3
	1		via_glo	oas	38,6667	13.6137 33.3217	4.8483 -44.4423	72.4850
			petvia glo		22.2658	26.5771	-44.4423	88.3071
400			Prins and a second	1.01	1	<		
400	6	3	tot chs	tot	247.3	97.2231	5.8177 19.8170	488.8
		i	oas	oas	46.0000	12.2882	15.4744	76.5256
	1		via_glo		39.3333	34.9905	-47.5878	126.3
		•	pctvia_glo	!	13.2906	12.3008	-17.2664	43.8476
	12	3	tot	tot	209.0	18.6815	162.6	255.4
	[cbs	cbs	148.7	10.6927	122.1	175.2
	ł		oas	oas	40,3333	7.2342	22.3626	58.3040
	ļ		via_glo		20.0000	3,6056	11.0433	28.9567
			pctvia_glo		9.5193	0.8525	7.4015	11.6371
	24	3	tot	tot	227.7	97.0275	-13.3630	468.7
		1	cbs	cbs				1 336.8
			000		135,3	81.1193	-66.1781	
			oas via nio	oas	58.6667	16.0416	18.8171	98.5162
s=Hi	l IC forr	n=SDP	oas via_glo pctvia_glo			16.0416 24.8261	18.8171 -28.0047	98,5162 95,3380
	IC forr time	n=SDP N Obs	vía_glo		58.6667 33.6667 13.9346	16.0416 24.8261	18.8171 -28.0047	98.5162 95.3380 39.7519 Upper 95%
	r		via_glo pctvia_glo Variable	oas	58.6667 33.6667 13.9346	16.0416 24.8261 10.3929 Std Dev	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean	98.5162 95.3380 39.7519 Upper 95% CL for Mean
onc	timə	N Obs	via_glo pctvia_glo Varfable	oas Labe	58.6667 33.6667 13.9346 Mean	16.0416 24.8261 10.3929	18.8171 -28.0047 -11.8827 Lower 95%	98.5162 95.3380 39.7519 Upper 95% CL for Mean 371.3
onc	timə	N Obs	via_glo pctvia_glo Variable tot cbs oas	oas Label tot	58.6667 33.6667 13.9346 Mean 224.3 28.3333 19.0000	16.0416 24.8261 10.3929 Std Dev 59.1805 31.8172 6.2450	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4866	98.5162 95.3380 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134
onc	timə	N Obs	via_glo pctvia_glo Variable tot cbs cas via_glo	Label tot cbs	58.6667 33.6667 13.9346 Mean 224,3 28.3333 19.0000 177.0	16.0416 24.8261 10.3929 Std Dev 59.1805 31.8172 6.2450 43.7150	18.9171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4866 68.4060	98,5162 95,3360 39,7519 Upper 95% CL for Mean 371.3 1074 34,5134 285.6
onc	time ß	N Obs 3	via_glo pctvia_glo Variable tot cbs cas via_glo pctvia_glo	Label tot cbs cas	58.6667 33,6667 13,9346 13,9346 224,3 28,3333 19,0000 177,0 79,9622	16.0416 24.8261 10.3929 Std Dev 59.1805 31.8172 6.2450 43.7150 11.5442	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4866	98,5162 95,3360 39,7519 Upper 95% CL for Mean 371.3 1074 34,5134 285.6
onc	timə	N Obs	via_glo pctvia_glo Variable tot cbs cas via_glo pctvia_glo tot	oas Label tot cbs cas tot	58.6667 33.6667 13.9346 Mean 224.3 28.3333 19.0000 177.0 79.9822 205.7	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043	18.9171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633	98,5162 95,3390 39,7519 Upper 95% CL for Mean 371.3 107.4 34,5134 285.6 108.7 347.8
onc	time ß	N Obs 3	via_glo pctvia_glo tot cbs cas via_glo pctvia_glo tot cbs	Label tot cbs cas tot cbs	58.6667 33.6667 13.9346 Mean 224.3 28.333 19.0000 177.0 79.9622 205.7 10.0000	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4666 68.4060 51.3048 63.5633 -9.4017	98,5162 95,3390 39,7519 Upper 95% CL for Mean 371.3 107.4 34,5134 285.6 108.7 347.8 29,4017
onc	time ß	N Obs 3	via_glo pctvia_glo Varfable tot cbs oas via_glo pctvia_glo pctvia_glo cbs oas	oas Label tot cbs cas tot	58.6667 33.6667 13.9346 Mean 224.3 28.3333 19.0000 177.0 79.9822 205.7 10.0000 18.6667	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4060 68.4060 51.3048 63.5633 -9.4017 -4.8125	98,5162 95,3390 39,7519 Upper 95% CL for Mean 371.3 107 4 34,5134 285.6 108.7 347.8 29,4017 42,1458
onc	time ß	N Obs 3	via_glo pctvia_glo Variable tot cbs oas via_glo pctvia_glo tot cos oas via_glo	Label tot cbs cas tot cbs	58.6667 33.6667 13.9346 24.3 28.3333 19.0000 177,0 79.9622 205,7 10.0000 18.6667 177,0	16,0416 24,8261 10,3929 59,1605 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948	96.5162 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4
onc	time 6 12	N Obs 3 3	via_glo pctvia_glo Varfable tot cbs cas via_glo pctvia_glo pctvia_glo pctvia_glo	Label tot cbs oas tot cbs oas	58.6667 33.6667 13.9346 224.3 28.3333 19.0000 177.0 79.9822 205.7 10.0000 18.6667 177.0 86.4146	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504	96.5162 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4 102.2
onc	time ß	N Obs 3 3	via_glo pctvia_glo Variable tot cbs oas via_glo pctvia_glo tot cos oas via_glo	Label tot cbs cas tot cbs	58.6667 33.6667 13.9346 224.3 28.3333 19.0000 177.0 79.9622 205.7 10.0000 18.6667 177.0 66.4146 309.0	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4666 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504 56.4107	98.5162 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4017 42.1458 299.551.6
onc	time 6 12	N Obs 3 3	via_glo pctvia_glo Variable tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot	Label tot cbs cas tot cbs vas vas	58.6667 33.6667 13.9346 224.3 28.3333 19.0000 177.0 79.9822 205.7 10.0000 18.6667 177.0 86.4146	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504	98,5162 95,3390 39,7519 Upper 95% CL for Mean 371.3 107 4 34,5134 285.6 108.7 347.8 29,4017 42,1458
onc	time 6 12	N Obs 3 3	via_glo pctvia_glo Variable tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cbs cbs cbs cbs cbs cbs cbs cbs cbs	Label tot cbs cas tot cbs vas tot cbs	58.6667 33.6667 13.9346 224.3 28.3333 19.0000 177.0 79.9622 205.7 10.0000 18.6667 177.0 86.4146 66.4145	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7 7,0238	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4060 68.4060 51.3048 63.6633 -9.4017 -4.8125 54.5948 70.6504 56.4107 -2.7813	98.5162 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4 102.2 561.6 32.1147
onc	time 6 12	N Obs 3 3	via_glo pctvia_glo Variable tot cbs cas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo cbs coas	Label tot cbs cas tot cbs vas tot cbs	58.6667 33.6667 13.9346 224.3 28.3333 19.0000 177.0 79.9822 206.7 10.0000 177.0 86.4146 309.0 14.6667 26.3333	16.0416 24.8261 10.3929 59.1805 31.8172 6.2450 43.7150 11.5442 57.2043 7.8102 9.4516 49.2747 6.3460 101.7 7.0238	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504 56.4107 -2.7813 -0.4601	96.5162 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4 102.2 551.6 32.1147 53.1267
onc	time 6 12	N Obs 3 3 3	via_glo pctvia_glo Vartable tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot	Label tot cbs cas tot cbs vas tot cbs cas tot	58.6667 33.6667 13.9346 224.3 28.3333 19.0000 177.0 79.9622 206.7 10.0000 18.6667 177.0 86.4146 309.0 14.5667 26.3333 268.0 87.0377 2244.0	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 9,4516 9,4516 9,454 10,7858 10,7858 84,9235 1,7571 46,0326	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.6633 -9.4017 -4.8125 54.5948 70.6504 56.4107 -2.7813 -0.4601 57.0383 82.0729 129.6	98.5162 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4 102.2 561.6 32.1147 53.1267 479.0
onc 0	time 6 12 24	N Obs 3 3 3	via_glo pctvia_glo Variable tot cbs cas via_glo pctvia_glo tot cbs cas via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cas via_glo pctvia_glo tot cbs cas via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cas cas via_glo pctvia_glo pctvia_glo tot cbs cas cas via_glo pctvia_glo	Label tot cbs cas tot cbs cas tot cbs cas tot cbs cas	58.6667 33.6667 13.9346 13.9346 24.3 28.3333 19.0000 177.0 79.9822 206.7 10.0000 18.6667 177.0 66.4146 309.0 14.5667 26.3333 268.0 87.0377 244.0 21.0000	16,0416 24,8261 10,3929 59,1605 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7 7,0238 10,7868 84,9235 1,7571 46,0326 5,0000	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504 56.4107 -2.7813 -0.4601 57.0363 82.6729 129.6 8.5793	98.5182 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4 102.2 551.6 32.1147 53.1267 479.0 91.4026 358.4 33.4207
onc 0	time 6 12 24	N Obs 3 3 3	via_glo pctvia_glo tot tot cbs oas via_glo pctvia_glo tot cbs oas oas via_glo pctvia_glo tot cbs oas oas tot cbs oas oas oas oas oas tot cbs oas oas oas via_glo pctvia_glo tot cbs oas oas oas oas oas via_glo pctvia_glo pco pco pco pco pco pco pco pco pco pc	Label tot cbs cas tot cbs vas tot cbs cas tot	58.6667 33.6667 13.9346 13.9346 24.3 28.3333 19.0000 19.0600 19.0667 177.0 79.9822 205.7 177.0 86.4146 309.0 14.6667 26.3333 268.0 87.0377 244.0 21.0000 14.667	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7 7,0238 10,7858 84,9235 1,7571 46,0326 5,0000	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4666 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504 56.4107 -2.7813 -0.4601 57.0383 82.6729 129.6 8.5703 0.5413	98.5182 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4 102.2 561.6 32.1147 53.1267 479.0 91.4026 358.4 33.4207 28.7921
onc 0	time 6 12 24	N Obs 3 3 3	via_glo pctvia_glo Variable tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo	Label tot cbs cas tot cbs cas tot cbs cas tot cbs cas	58.6667 33.6667 13.9346 28.3333 19.0000 177.0 79.9622 206.7 10.0000 18.6667 177.0 86.4146 309.0 14.5667 26.333 264.0 21.0000 14.6667 204.3	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 9,4516 9,4516 9,4516 9,4516 9,4516 9,4518 10,7858 84,9235 1,7571 46,0326 5,0000 5,88925	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504 55.4107 -2.7813 -0.4801 57.0383 82.6729 129.6 8.5793 0.5413 104.2	98.5182 95.3380 39.7519 Upper 95% CL for Mean 371.3 107.4 34.78 295.6 108.7 29.4017 42.1458 299.4017 42.1458 299.4 102.2 551.6 32.1147 53.1267 479.0 91.4026 358.4 33.4207 28.7921 312.5
onc 0	time 6 12 24 5	N Obs 3 3 3 3	via_glo pctvia_glo tot cbs cas via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo	Label tot cbs cas tot cbs cas tot cbs cas tot cbs cas cas	58.6667 33.6667 13.9346 28.3333 19.0000 177.0 79.9622 206.7 10.0000 18.6667 177.0 86.4146 309.0 14.5667 26.3333 286.0 87.0377 244.0 21.0000 14.6667 26.2261	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7 7,0238 84,9235 1,7571 46,0326 5,0802 41,9325 5,6802 1,2753	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504 56.4107 -2.7813 -0.4601 57.0383 82.6729 129.6 8.5793 0.5413 104.2 82.0581	98.5182 95.3380 39.7519 39.7519 Upper 95% CL for Mean 3113 107 4 34.5134 285.6 108.7 347.8 29.4017 42.1458 299.4 102.2 551.6 32.1147 53.1267 479.0 91.4026 358.4 33.4207 28.7921 312.5 88.3941
onc 0	time 6 12 24	N Obs 3 3 3 3 3	via_glo pctvia_glo tot cbs via_glo pctvia_glo tot cbs via_glo pctvia_glo tot cbs via_glo pctvia_glo tot cbs via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cbs cbs cbs cbs cbs cbs cbs cbs cbs	Label tot cbs cas tot cbs oas tot cbs cas tot cbs cas tot	58.6667 33.6667 13.9346 13.9346 24.3 28.3333 19.0000 177.0 79.9622 206.7 10.0000 18.6667 177.0 66.4146 309.0 14.6667 26.3333 268.0 87.0377 244.0 21.0000 14.6667 244.0 21.0000 14.667 26.3241 21.0000 14.667 24.0 21.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.00000 25.0000 25.000000 25.00000 25.00000 25.00000 25.000000 25.000000 25.0000000000	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7 7,0238 10,7868 84,9235 1,7751 46,0328 5,0000 5,8802 41,9325 1,2753 12,2530	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.6833 -9.4017 -4.8125 54.5948 70.6564 56.4107 -2.7813 -0.4601 57.0383 82.6729 129.6 8.5793 0.5413 104.2 82.0581 153.9	98.5182 95.3300 39.7519 Upper 95% CL for Mean 371.3 107.4 34.5134 285.6 108.7 34.5134 285.6 108.7 34.5134 29.4017 42.1458 29.9.4 102.2 561.6 32.1147 53.1267 479.0 91.4026 358.4 33.4207 28.7921 312.5 88.3941
onc 0	time 6 12 24 5	N Obs 3 3 3 3 3	via_glo pctvia_glo tot cbs cas via_glo pctvia_glo tot cbs cas via_glo pctvia_glo	Label tot cbs cas tot cbs cas tot cbs cas tot cbs cas tot cbs cas tot cbs cas	58.6667 33.6667 33.6667 13.9346 24.3 28.3333 19.0000 19.0600 19.0667 10.0000 18.6667 177.0 86.4146 309.0 14.6667 26.333 268.0 87.0377 244.0 21.0000 87.0377 244.0 21.0000 87.0377 244.0 21.0000 87.0377 244.0 21.0000 87.0377 244.0 21.0000 87.0377 244.0 21.0000 87.0377 244.0 21.0000 14.6667 14.667 26.333 268.0 87.0377 244.0 21.0000 14.667 14.667 26.333 268.0 87.0377 244.0 21.0000 14.667 21.0000 14.667 21.0000 14.667 21.0000 14.667 21.00000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.00000 21.00000 21.00000 21.00000 21.00000 21.00000 21.000000 21.0000000000	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7 7,0238 10,7858 84,9235 1,7571 46,0326 5,0000 5,6852 1,2753 12,5300 7,9373	18.8171 -28.0047 -11.8827 Lower 95% CL for Mean 77.3208 -50.7049 3.4666 68.4060 51.3048 63.5633 -9.4017 -4.8125 54.5948 70.6504 56.4107 -2.7813 -0.4601 57.0363 82.6729 129.6 8.6793 0.5413 104.2 82.0581 153.9 -1.7172	98.5182 95.3300 39.7519 Upper 95% CL for Mean 371.3 1074 34.5134 285.6 108.7 347.8 29.4017 42.1458 2994 102.2 561.6 32.1147 479.0 91.4026 358.4 33.4207 28.7921 312.5 88.3941 216.1 37.7172
0	time 6 12 24 5	N Obs 3 3 3 3 3	via_glo pctvia_glo tot cbs via_glo pctvia_glo tot cbs via_glo pctvia_glo tot cbs via_glo pctvia_glo tot cbs via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cbs cbs cbs cbs cbs cbs cbs cbs cbs	Label tot cbs cas tot cbs oas tot cbs cas tot cbs cas tot	58.6667 33.6667 13.9346 13.9346 24.3 28.3333 19.0000 177.0 79.9622 206.7 10.0000 18.6667 177.0 66.4146 309.0 14.6667 26.3333 268.0 87.0377 244.0 21.0000 14.6667 244.0 21.0000 14.667 26.3241 21.0000 14.667 24.0 21.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.00000 25.0000 25.000000 25.00000 25.00000 25.00000 25.000000 25.000000 25.0000000000	16,0416 24,8261 10,3929 59,1805 31,8172 6,2450 43,7150 11,5442 57,2043 7,8102 9,4516 49,2747 6,3460 101,7 7,0238 10,7868 84,9235 1,7751 46,0328 5,0000 5,8802 41,9325 1,2753 12,2530	18.8171 -28.0047 -11.8827 CL for Mean 77.3208 -50.7049 3.4866 68.4060 51.3048 63.6833 -9.4017 -4.8125 54.5948 70.6564 56.4107 -2.7813 -0.4601 57.0383 82.6729 129.6 8.5793 0.5413 104.2 82.0581 153.9	98.5162 95.330 39.7516 39.7516 107.4 34.5134 285.6 108.7 34.5134 285.6 108.7 34.5134 285.6 108.7 34.5134 29.4017 42.1458 29.4017 42.1458 29.4017 45.3.1267 47.90 91.4026 358.4 33.4207 28.7921 312.5 88.3941 216.1

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 15 of 81

			pelvia_glo		84.4558	2.8930	77.2693	91.642
	24	3	tot	tot	253.0	43.5890	144.7	361.
			cbs	cbs	15.0000	5,1962	2.0920	27,908
			oas	oas	13.0000	7.8102	-6.4017	32.401
			via_glo		225.0	32.9090	143.2	306.
			pctvia_glo		89.1958	2.8704	82.0653	96.326
100	6	3	tot	tot	251.7		164.9	338.
			cbs	cbs	78.0000	37.5899	-15.3785	171.
			oas	oas	18,6667	11.5902	-10.1251	47,458
			via_glo		155.0	48.2804	35.0648	274.
			octvla_gio		60.9704		26.6410	95,299
	12	3	tol cbs	toi cbs	208.3	11.5902	179.5 -29 3818	237, 115.
			oas	cas	5.3333	1.1547	2.4649	8.201
[via_glo	Juas	160.0	19.9249	110.5	209.
			pctvia_glo		77.1640	12.4475	46.2426	108.
	24	3	tet	tot	313.0	79.5047	115.5	510,
	- 1	-	cbs	cbs	48.6667	11.6762	19.6614	77.671
			oas	Cas	16.0000	5,5678	2.1689	29,631
			: vla_glo	1	248.3	85,5005	35.9383	460.
			pclvla_glo		78.2725	6.8394	61.2826	95,262
200	6	3	tot	tot	230,7	54.5008	95.2793	366.
	1		cbs	cbs	116,3	26.0064	51.7298	180,
			0as	oas	18.0000	1.0000	15.5159	20.484
			vla_gio		96.3333	47.3533	-21.2987	214.
			pctvia_glo	_	40.6406	11.4718	12,1431	69.138
:	12	Э		tot	152.7	28.9367	80.7839	224.
ĺ			cbs oas	cbs	70.3333	25.4231	7.1789	133.
			via glo	oas	77.0000	2.5166	-0.9183 8.1128	11,584
	1		pctvla_glo		50.2621	16.5440	9.1645	145. 91,359
	24		tot	tot	249.7	86.0775		
	2-	3	cbs	cbs	86,0000	24.9800	35.8383 23,9463	463. 148.
			oas	oas	10.3333	1.5275	6.5388	14.127
			vla_glo		153.3	62.2281	-1.2498	307.
			pclvla_glo		60,6880	4.5317	49.4305	71.945
300	6	З		• tot		62.9524	87.6177	400.4
				obs	192.7		110.7	274.
			oas	oas	8.6667	5.1316	-4.0809	21.414
İ			via_glo pctvia_glo		42.6667	40.5134	-57.9741 -15,8920	143.: 47.287
• • • •	12	. ,	tot	·	203.3	3,0551		
1			cbs	cbs	109.3	12.6623	195.7 77.8785	210. 140.
	[oas	oas	14.3333	7.7675	-4,9621	33.628
			via_glo	j	79.6667	6.1101	64.4883	94.845
			pctvla_glo		39,1821	2.9672	31.8113	46,553
	24	3	tot	lot	187.3	45.6107	74.0301	300.0
	i	i	cbs	CDS	130,7	29.6873	56,9194	204,4
			oas	085	6.6667	2.5166	0.4151	12.918
			vla_g/o		50.0000	15.8745	10.5655	89.434
			pctvia_glo		26.5389	3.2427	18.4835	34,594
400	6	3	tot	tot	308.3	58.4836	163,1	453.0
	1		cbs	cbs	248.3	34,5881	162.4	334.3
ł			oas via_gio	oas	16.0000	9.0000	-6.3572	3B.3572
			via_gio petvia_gio		13.8102	26.8887	-22.7951 -1.7373	110.8 29.3578
	12		tot	lot	279.3	50.8167	153.1	405.6
			cbs	cbs	262.7	44.0719	153.2	372.1
	1	ļ	oas	oas	13,3333	9.6090	-10.5368	37.2036
t i		1	via_gto		3,3333	0.5774	1.8991	4.7670
		ĺ	pctvia_glo		1.2287	0.3536	0.3502	2,1071
					te anna a la la			
	24	3	tot	tot	276.7	45.4899	163,7	389.7

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 16 of 81

		Ì	oas via_glo pctvia_glo	048	3.6667 1.3333 0.5161	2.0817 0.5774 0.3197	-1.5045 -0.1009 -0.2782	8.8378 2.7676 1.3103
>s=M	UC foi	rm=SDF		1		1		1.0100
onc	time	N Obs	Varlable	Label	Mean	S1d Dev	Lower 95% GL for Mean	Upper 95% CL for Mean
 0	6	3	tot	tot	195.7	62.5327	40.3269	351.0
	Ű	Ĩ	cbs	cbs	8,0000	6,5574	-8.2896	24,2896
			oas	oas	13,6667	2,6868	6.4956	20.8378
			via_glo	1	174.0	60.3987	23.9614	324.0
		· · -	pctvia_glo		88.6131	4.4362	77.5931	99,6331
	12	3	tot	tot	215.0	38.0395	120,5	309.5
			cbs oas	cbs oas	2.6667 9.3333	3.0551 3.7859	-4.9225 -0.0715	10.2558 18.7381
			via_glo	Vaa	203.0	39.0384	106.0	300,0
			pctvia_gio	[94.2440	1.4901	90.5424	97.9456
	24	3	fet	tot	291.0	60.8276	139.9	442.1
	- '	, U	cbs	cbs	5.3333	3,7859	-4.0715	14.7381
			oas	oas	15.6667	6.6583	-0.8735	32,2069
			via_glo	{	270.0	60.6218	119,4	420.5
	ļ		pctvia_glo		92.6155	2,2493	87.0280	98.2031
50	6	3	tot	tot	267.3	115.2	-28.8748	543.5
			cba	cbs	51.0000	8.0000	31.1269	70.8731
			ioas via_gio	oas	17.0000 189.3	17.0587 94.8754	-25.3762 -46,3501	59.3762 425.0
			pctvia_glo	[71.6888	6.6186	55.2474	88.1302
•	12	3	tot	tot	175.7	56.0478	36.4367	
1		v	cbs	cbs	44,3333	24.1937	-15.7671	314.9 104.4
	Í		oas	oas	10.0000	5,2915	-3.1448	23.1448
	i		vla_glo		121.3	57.4572	-21.3983	264.1
			pctvla_glo		66,5633	17.7500	22.4698	110,7
1	24	3	tot	tol	222.7	94.3257	-11.6513	467.D
i			cbs	cbs	39.0000	17,3205	-4.0265	82.0265
1	1		oas via glo	oas	10.3333 173.3	3.2146 86.2289	2.3479 -45.8393	18,3187 392.5
	-		pctvia_glo		75.7729		43.3562	108.2
100	6	3	lo:	lot	270.0	170.7	-154.0	694.0
	-		cbs	cbs	55,0000	26.5141	-10.8648	120.9
			oas	oas	16.3333	11.3725	-11.9175	44.5841
	1		via_glo		198.7	138.9	-146.3	543.7
	·····		pctvla_glo		72.2209	9.7023	48.1190	96,3228
	12	3		tot	187.7	43.0852	80.6371	294.7
			cbs oas	cbs cas	54.3333 10.3333	33.2916 3.5119	-28,3677 1.6093	137.0 19.0573
			via_gio	JQS	123.0	53.3948	-9.6399	19.0573
	İ	1	pctvla_glo		64.3592	17.7243	20.3298	108.4
	24	3	tot	lot	204.3	11.7189	175.2	233.4
	-[cbs	cbs	66.6667	22.8108	10.0015	123.3
	-		oas	oas	8.6667	3.2146	0.6813	16.6521
			vla_glo		129.0	16.7033	87.5067	170.5
		!	pctvia_glo		63.4915	11.2188	35,6225	91.3605
200	6	3	tot	tot	239.0	145.1	-121.4	599.4
1			cbs oas	cbs oas	140.3 17.3333	131.6 8.1445	-186.5	467.2
ł			via_glo	uau I	81.3333	19.1398	-2.8968 33,7873	37,5655 123.9
			pctvia_glo		40.5162	16.3103	-0.00078	81.0331
	12	3;	tot	tot	238.7	106.8	-26.7101	504.0
	[• 	cos	cbs	134.01	80.6660	-66,3854	334.4
	ł		oas		12.3333	4.1633	1.9910	22.6756
			via_gio		92,3333 40,0406	29.1605 i	19.8947	164.8
			pctvia_gio			4.5372	28.7697	51.3116

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

1	24	з	cbs	cbs	255.3	93.3292	23,4908	487.2
			oas	oas	13.3333	3.0551	5.7442	20.9225
			vla_gio	l	116.3	46.6083	0.5519	232.1
			pctvia_glo	•	29.9934	7.2194	12.0594	47.9274
300 -	6	3	tot	tot	279.7	38.1750	184.8	374.5
1			cbs	cbs	238.0	42.3202	132.9	343,1
- i			oas	oas	8.6667	4.6188	-2.8071	20.1404
			ivia_gio		33,0000	19.5192	-15.4884	81.4884
			pctvia_glo		11.7761	7,3023	-6.3639	29.9161
	12	3	tot	tol	187.0	66.1891	22.5771	351.4
			cios	cbs	165.0	56.7186	24.1032	305,9
	1		oas	oas	2.6667	1.1547	-0.2018	5.5351
			via_glo		19.3333	10.2144	-6.0406	44.7072
			pctvla_gto		10 .1 57 1	2.4927	3.9648	16,3494
	24	3	tot	tot	313.3	130.3	-10.2759	636,9
			cba	cbs	289.7	123.2	-16.4506	595,8
			OAS	oas	6.0000	3.0000	-1.4524	13.4524
			via_glo		17.6667	10.5040	-8.4266	43.7600
į			pctvia_glo		5,9801	3.5146	-2.7507	14.7109
400	6	3	to:	tot	309.0	40.2865	206.9	409,1
			cbs	cbs	291.0	44.6430	180.1	401.9
	ł		oas	oas	7.3333	3.0551	-0,2558	14.9225
			via_glo		10,6667	5.5076	-3.0149	24.3482
. 1			pctvia_glo		3,6055	2.0546	-1.4986	8.7095
1	12	3	tot	tot	182.7	55.0121	46.0090	319.3
1	1		cbs	cbs	158.7	52.4436	28,3895	288.9
Í			029	oas	9,6667	5.1316	-3.0809	22,4143
			via_glo		14.3333	8.6217	-7.0841	35.7508
l			pctvia_glo		8,1995	5.0288	-4.2927	20.6917
	24	3	tot	tot	252.3	82.9478	46.2798	458.4
+			cbs	cbs	234,3	73.9076	50.7367	417.9
			Cas	085	4.0000	2,0000	-0.9683	8.9683
1	ł		via_glo		14.0000	12.1655	-16.2208	44.2208
	1		pctvla_glo		5.2174	3.3979	-3.2233	13.6582

sps=PPB form=FDP

conc	time	N Obs	Variable	Label	Mean	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean						
0	6	3	tot	lot	142.7	64.3454	-17.1762	302.5						
	-		cbs	cbs	14.0000	6.0828	-1.1104	29,1104						
		l .	oas	Das	11.0000	5.0000	-1.4207	23.4207						
			via_gio		117.7	55.7524	-20,8300	256.2						
			pctvia_g o		82.2576	4.7439	70.4731	94.0420						
	12	3	tot	tot	209.7	93.6180	-22.8934	442.2						
		l	cbs	cbs	5.3333	2.5166	-0.9183	11.5849						
				oas	oas	34.6667	22.8546	-22.1073	91,4407					
			via_glo		169,7	68.8501	-1.3664	340.7						
			pctvia glo	l	81.7825	3.3908	73.3594	90.2057						
	24	3	tol	tot	376.7	170.0	-45.7122	799.0						
			cbs	cbs	15.0000	7.2111	-2.9134	32.9134						
			oas	oas	51,6667	20.4042	0.9797	102.4						
				İ	i				via_glo		310.0	145.5	-51.4314	671.4
			pctvla_glo		81.9068	1.4048	78.4171	85.3965						
50	6	3	tol	tot	125.0	44.6430	14.1006	235.9						
			cbs	cbs	21.6667	5.5076	7.9851	35.3482						
			oas	oas	13.0000	6,9282	-4.2106	30.2106						
			via_gio	İ.	90.3333	42.9224		197.0						
			pctvia_glo		69,5514	11.4879	41.0139	98.0889						
	12	3	tot	tot	352.0	229.4	-217.8	921.8						
		.	COS	cbs	22.0000	13.1149	-10.5792	54,5792						
			oas	oas	53.6667	21.7332	-0,3217	107.7						
	1		via_glo		276.3	199.6		772.1						
			pctvia_glo		76.6860	0.2489	61,1630	92.2091						

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 17 of 81

	24	3	tol cbs cas via_glo pcivia_glo	tot cbs cas	305.3 34.0000 37.3333 234.0 74.1424	4.5826	0.6304 22.6163 2.1731 -46.5646 50.9976	610.0 45.3837 72.4936 514.6 97.2872
100	6		tot cbs cbs via_glo pctvia_glo	tot cbs cas	203.3 50.0000 19.6667 133.7 65.6905	50.3422	78,2765 3,5925 4,4883 50,3708 57,1317	328.4 96.4076 34.8450 217.0 74.2493
	12	3	tet cbs oas via_glo petvia_glo	tot cbs cas	150.3 27.0000 18.3333 105.0 70.5512	25.5408 16.6433 3.5119 11.2694 8.4331	86.8864 -14.3443 9.6093 77.0052 49.6021	213.8 68.3443 27.0573 133.0 91.5003
	24	3	tot cbs cas via_glo pctvla_glo	tot cbs oas	386.7 72.0000 53.6667 261.0 67.7470	90.8974 29.7153 7.0946 59.1016 3.8328	160.9 -1.8169 36.0427 114.2 58.2258	612.5 145.8 71.2906 407.8 77.2681
200	6,	3	tot cbs oas via_glc pctvla_glo	lot cbs oas	237.3 91.3333 36.0000 110.0 48.6787	72.8171 47.2264 19.6977 12.1655 11.3973	56.4456 -25.9836 -12.9318 79.7792 20.3663	418.2 208.7 84.9316 140.2 76.9912
	12	3	tot cbs oas via_glo pctvia_glo	tol cbs cas	421.3 138.7 66.0000 216.7 34.8806	341.8 30.4357 64.7148 307.0 30.5950	-427.8 63.0601 -94.7604 -546.1 -41.1215	1270.4 214.3 226.8 979.4 110.9
	24	3	tot obs oas via_glo pcivia_glo	tot cbs oas	374.0 178.0 54.6667 141.3 29.5358	94.2709 38.0044 170.9	-183.0 -56.1819 -39.7415 -283.3 -29.4715	931.0 412.2 149.1 566.0 88.5431
300	6	3	to: cbs oas via_glo pctvla_glo	iot cbs oas	395.3 143.3 83,3333 168.7 40,6793	225.0 77.6552 38.7986 126.1 14.6568	-163.5 -49.5729 -13.0478 -144.5 4.2697	954.2 336.2 179.7 481.8 77.0889
	12	3	tot cbs cas via_glo pctvia_glo	tol cbs cas	274.0 202.7 49.0000 22.3333 9.1335	65.5973 76.1599 15.7162 17.9258 8.7952	111.0 13.4749 9.9587 -22.1968 -12.7150	437.0 391.9 88.0413 66.8634 30.9821
	24	3	tot cbs cas via_glo pctvia_g o	lot cbs oas	451.0 301.3 92.6667 57.0000 12.0367	257.7 157.0 68,3691 40,2616 1.6279	-189.1 -88.6156 -77.1716 -43.0155 7.4959	1091.1 691.3 262.5 157.0 16.5774
400	6	3	tot cbs oas via_glo petvia_glo	tot cbs oas	332.3 184.0 73.0000 75.3333 20.4391	116.3 122.0 36.2905 89.8573 23.0337	43.5494 -119.1 -17.1506 -147.9 -36.7798	621.1 487.1 163.2 298.6 77.6581
	12	3	tot cbs oas via_glo pctvia_glo	tot cbs oas	120.7 102.3 13.0000 5.3333 4.8496	105.8 94.6379 7.2111 4.0415 1.2129	-142.1 -132.8 -4.9134 -4.7062 1,8367	383.4 337.4 30.9134 15.3729 7.8626
	24	3,	tol cbs oas v a_glo	tot cbs oas	296.7 227.3 55.0000 14.3333	63.8931 43.2474 20.6640 6.0277	137.9 119.9 3.6678 -0.6403	455.4 334.8 106.3 29.3070

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 18 of 81

.

		1	pctvia_glo	1	1	2.2855	-0.7754	10.579
ips=Pi	PB for	m=SDP						
солс	time	N Obs	Variable	Label	Mean	Std Dev	Lower 95% CL for Mean	Upper 959 CL for Mea
0	6	3	:ot	tot	299.3	133.5	-32.1789	630.
			cbs	cbs	4.0000	2.6458	-2.5724	10.572
			oas	oas	18.3333	6.5064	2.1705	34.496
			· via_gio ; pcivia_gio		277.0	124.6 1.0182	-32.5020 89.8065	586. 9 4.86 5
	12	3	tot	tot -	609.7	14.3643	574.D	645.
			cbs	cbs	32.0000	12,1244	1.8814	62,11B
			oas	oas	53.0000	1.0000	50,5159	55.484
			, vla_glo	1	524.7	15.3060	486.6	562.
			pctvia_glo		86.0651	2.0467	80.9808	91.149
	24	3	1ot	tol	406.3	120.6	106.7	705,
			cbs	cbs	13.0000	1.7321	8.6973	17,302
			oas	oas	19,0000	8.8882	-3.0795	41.079
			via_glo potvia_glo		374.3 92.1117	111.9 0.8643	96.2726 89.9646	652. 94,258
50	6	з		tot	326.7	129.9	4.0506	649.
50		3	cbs	cbs	68.0000	57.0351	-73,6830	209.1
			085	oas	11.6667	1.5275	7.8721	15,461
			via_g'o		247.0	74,7061	61,4198	432,1
			pctvia_gio		77.9232	8.9488	55.6932	100.3
	12	3	lot	tot	371.7	219.4	-173.3	916
	i		cbs	cbs	55.0000	42.9302	-51.6445	161.(
	İ		oas	oas	31.6667	30.5996	-44.3469	107.1
1			via_glo pctvia_glo		285.0 78.5634	147.8 6.6050	-82,1485 62,1557	652.1 94.971
	24		tot	tot	356.0		118.4	
	24	3	cbs	cbs	53,3333		-10.1136	593.0 116,8
ĺ			oas	oas	18.6667	6.3267	-2.0179	39.3512
			via_gko		264.0	80,4301	84.2006	483.8
			pctvia_glo	۰. <u></u>	79.8142	5.6150	65.8659	93.762
100	6	3	tot cbs	tot cbs	274.0 43.0000	228.5 27.0000	-293.6 -24.0717	841.0 110.1
]	1	oas	oas	20.6667	18.5023	-24.0717 -25.2955	66.6288
	ļ		via_glo		210.3	185.5	-250.4	671.0
			pctvla_glo		75 2627	6.0947	60,1225	90.4026
	12	3	tol	tot	403.7	66.8927	187.8	619.6
1			cbs oas	cbs	145.3	153.1	-235,1	525.7
		i	via_gio	oas	33.3333 225,0	6.1101 201.5	18.1550 -275.7	48,5117 725.7
			pctvia_glo		52.6578	45.6387	-60.7150	166.0
	24	3	tot	tot	281.3	62,1718	126.9	435.8
		j	cbs	cbs	41.0000	13.0000	8.7062	73.2938
		1	oas	oas	55.0000	60.7536	-95,9203	205.9
		•	via_glo pctvia_glo	:	185.3 66.8950	51.0523 15.7636	58.5125 27.7361	312.2 106.1
200	6	3	tol	tot	211.7	58.1578	67,1946	356.1
200	۲,	Ŭ	cbs	cbs	90.6667	64.7019	-70.0617	251.4
[oas	oas	12.3333	7,7675	-6.9621	31,6288
[-	via_gio		108.7	54,9939	-27.9459	245.3
.			pctvla_glo		52,2327	21.1608	-0.3337	104.8
	12		tot	lot	236.3	125.0	-74.2965	547.0
	ł		cbs .	cbs	97.3333	44.0719	-12.1474	206.8
			oas via_glo	oas	20.6667	13.4288	-12.6924 -126.6	54.0257 363.3
			pctvia_glo		46.7048	22,3477	-8.8099	303.3
· ·	24	3		tot	311.7	170.5	-112.0	735.3
			cbs	cbs	127.0	121.4	-174.7	428.7
	1		oas	oas	14,3333	1.5275	10.5368	18,1279

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 19 of 81

Page 20 of 81

			via_gio pctvia_gio		170.3 59,2396	51.0131 12.7978	43.6098 27.4480	297. 91.031
300	6	3	tot	tol	298.0	200.7	-200.5	796.
			cbs	cbs	257.7	195.6	-228.2	743.
			cas	oas	22.3333	8.5049	1.2060	43.460
			via_gio ; pctvia_gio		18.0000	6.5574 10.4262	1.7104	34.2890 35.8093
	12	3	• == == == == == ==	tot	647.3	465.2	-508.3	1803.0
		-	cbs	cbs	541.7	348.4	-323.7	1407.0
			oas	oas	50.6667	51.2282	-76.5914	177.0
		i	via_g o	ŧ	55.0000	65.6430	-108.1	218.1
		: 	pctvia_glo		6.5125	4.2477	-4.0393	17.0644
	24	3	tot cbs	tot	338.0	138.6	-6.2929	682.3
			oas	cbs oas	297.0 14.0000	92.6661	66,8047 -9,6972	527.2 37.6972
			via_gio	043	27.0000	38.1182	-67,6910	121.7
			pctvia_glo		6.0685	7.2179		23,9986
400	6	3	tot	tot	158.7		42,8852	274.4
		l	cbs	cbs	130.3		-4.0016	264.7
			oas	oas	23,6667	6.0277	8,6930	38.6403
			via_glo pctvia_glo		4.6667 3.4414	4.5092 3.1312	-6.5349 -4.3370	15.8683
	12	3		tot	253.0	51.7977	-4,5570	391,7
	12		cbs	cbs	214.7	57.6397	71,4818	357.9
			oas	oas	34.0000	2,6458	27.4275	40.5724
			via_glo		14.3333	4.6188	2.8595	25.8071
			pctvia_glo		5,7918	2.6088	-0,6888	12.2724
	24	3	tot	tot cbs	261.0 228.3	59.1016 74.4133	114,2	407.8
							43.4805	413.2
1			cbs					66 1207
			cas	oas	21.3333	18.0370	-23.4731	
os=W	AS fo	m=FDP						66.1397 23.5873 12.4724
l	AS for	m=FDP N Obs	oas via_gio		21.3333 11.3333	18.0370 4.9329	-23.4731 -0.9206 -2.9782 Lower 95%	23.5873 12.4724 Upper 95%
l		N Obs	oas via_gio pctvia_gio	OAS	21.3333 11.3333 4.7471	18.0370 4.9329 3.1099	-23.4731 -0.9206 -2.9782	23.5873 12.4724 Upper 95% CL for Mean
one	time	N Obs	oas via_gio pctvia_gio Variable	oas Label	21.3333 11.3333 4.7471 Mean	18.0370 4.9329 3.1099 Std Dev	-23.4731 -0,9206 -2,9782 Lower 95% CL for Mean	23.5873 12.4724 Upper 95% CL for Mean 200.6
one	time	N Obs	cas vla_glo pctvla_glo Variable tot	oas Label fot	21.3333 11.3333 4.7471 Mean 89.3333 30.0000 13.6667	18.0370 4.9329 3.1099 Std Dev 44.7921	-23.4731 -0,9206 -2,9782 Lower 95% CL for Mean -21.9364	23.5873
one	time	N Obs	cas via_glo pctvla_glo Variable tot cbs cas via_glo	Label tot cbs	21.3333 11.3333 4.7471 Mean 89.3333 30.0000 13.6667 45.6667	18.0370 4.9329 3.1099 Std Dev 44.7921 20.0749 4.6188 22.9420	-23.4731 -0.9206 -2.9782 Lower 95% CL for Mean -21.9364 -19.8687 2.1929 -11.3243	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8687 25.1404 102 7
onc 0	time 24	N Obs 3	cas via_glo pctvla_glo tot cbs cas via_glo pctvia_glo	Label tot cbs oas	21.3333 11.3333 4.7471 Mean 89.3333 30.0000 13.6667 52.0536	18.0370 4.9329 3.1099 Std Dev 44.7921 20.0749 4.6188 22.9420 11.2832	-23.4731 -0.9206 -2.9782 CL for Mean -21.9364 -19.8687 -2.1929 -11.3243 24.0245	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8687 25.1404 102 7 80.0827
one	time	N Obs 3	oas via_glo pctvla_glo tot cbs oas via_glo pctvia_glo tot	Label tot cbs oas tot	21.3333 11.3333 4.7471 Mean 89.3333 30.0000 13.6667 45.6667 52.0536 58.6867	18.0370 4.9329 3.1099 Std Dev 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076	-23.4731 -0.9206 -2.9782 Lower 95% CL for Mean -21.9364 -19.8667 2.1929 -11.3243 24.0245	23.5973 12.4724 Upper 96% CL for Mean 200.6 79.8687 25.1404 102 7 80.0627 72.3482
onc 0	time 24	N Obs 3	cas via_glo pctvla_glo tot cbs cas via_glo pctvia_glo	Label tot cbs oas	21.3333 11.3333 4.7471 Mean 89.3333 30.0000 13.6667 52.0536	18.0370 4.9329 3.1099 Std Dev 44.7921 20.0749 4.6188 22.9420 11.2832	-23.4731 -0.9206 -2.9782 CL for Mean -21.9364 -19.8687 -2.1929 -11.3243 24.0245	23.5873 12.4724 CL for Mean 200.6 79.8687 25.1404 102 7 60.0627 72.3482 27.4143
onc 0	time 24	N Obs 3	cas vla_glo pctvla_glo tot cbs oas via_glo pctvla_glo pctvla_glo tot cbs	Label tot cbs oas tot cbe	21.3333 11.3333 4.7471 09.3333 30.0000 13.6667 45.6667 52.0536 58.6867 14.6667	18.0370 4.9329 3.1099 Std Dev 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316	-23.4731 -0.9205 -2.9782 CL for Mean -21.9384 -19.8687 2.1929 -11.3243 24.0245 44.9851 1.9191	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8687 25.1404 102 7 80.0627 72.3482 27.4143 17.5649
onc 0	time 24	N Obs 3	cas via_glo pctvla_glo Variable tot cbs oas via_glo pctvia_glo tot cbs oas	Label tot cbs oas tot cbe	21.3333 11.3333 4.7471 Mean 89.3333 30.0000 13.6667 45.6667 52.0536 58.6667 14.6667 11.3333	18.0370 4.9329 3.1099 Std Dev 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 2.5166	-23.4731 -0.9206 -2.9782 Lower 95% CL for Mean -21.9364 -19.8687 2.1929 -11.3243 24.0245 44.9851 1.9191 5.0817	23.5873 12.4724 Upper 96% CL for Mean 200.6 79.8687 25.1404 102 7 80.0627 72.3482 27.4143 17.5649 49.2069
onc 0	time 24	N Obs 3	oas vla_glo pctvla_glo Variable tot cbs oas vla_glo pctvla_glo pctvla_glo pctvla_glo pctvla_glo pctvla_glo pctvla_glo pctvla_glo pctvla_glo pctvla_glo pctvla_glo	Label tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 58.6867 14.6667 11.333 32.6667 55.5544 90.0000	18.0370 4.9329 3.1099 3.1099 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 5.1316 5.6583 9.4899 20.0749	-23.4731 -0.9208 -2.9782 -2.9782 CL for Mean -21.9384 -19.8687 2.1929 -11.3243 24.0245 44.9851 1.9191 5.0817 16.1265 31.9802 40.1313	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8657 25.1404 102 7 80.0827 72.3482 27.4143 17.5649 49.2069 79.1286 139.9
50	time 24 24	N Obs 3 3	oas vla_glo pctvla_glo tot cbs oas vla_glo pctvla_glo cbs oas vla_glo pctvla_glo lot cbs oas vla_glo pctvla_glo pctvla_glo	Label tot cbs oas tot cbs oas tot cbs	21.3333 11.3333 4.7471 Mean 89.3333 30.0000 13.6667 52.0536 58.6667 14.6667 11.3333 32.6667 55.5544 90.0000 20.3333	18.0370 4.9329 3.1099 3.1099 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.5076 5.51316 2.5166 9.6583 9.4699 20.0749 4.6188	-23.4731 -0.9206 -2.9782 CL for Mean -21.9384 -19.8667 2.1929 -11.3243 24.0245 44.0245 1.9191 5.0817 16.1265 31.9802 40.1313 8.85596	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8687 25.1404 1027 60.0827 72.3482 27.4143 17.5649 49.2069 79.1286 139.9 31.8671
50	time 24 24	N Obs 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia pctvia	Label tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 52.0536 58.6667 14.6667 11.3333 32.6667 55.5544 90.0000 20.3333 24.3333	18.0370 4.9329 3.1099 5td Dev 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 2.5166 6.6583 9.4899 20.0749 4.6188 22.0554	-23.4731 -0.9208 -2.9782 CL for Mean -21.9364 -19.8687 2.1929 -11.3243 24.0245 44.9851 1.9191 5.0817 16.1265 31.9802 40.1313 8.6596 -5.6140	23.5873 12.4724 Upper 96% CL for Mean 200.6 79.8687 25.1404 102 7 80.0827 72.3482 27.4143 17.5649 49.2069 79.1286 139.9 31.8C71 54.2807
50	time 24 24	N Obs 3 3	oas vla_glo pctvla_glo tot cbs oas vla_glo pctvla_glo pctvla_glo pctvla_glo tot cbs oas vla_glo pctvla_glo pctvla_glo	Label tot cbs oas tot cbs oas tot cbs	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 58.6667 55.5544 90.0000 20.3333 24.3333 45.3333	18.0370 4.9329 3.1099 5td Dev 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 5.5136 6.6583 9.4699 20.0749 4.6188 12.0554 23.5443	-23.4731 -0.9205 -2.9782 -2.9782 -2.9782 -2.9782 -1.9364 -1.98687 -2.1929 -11.3243 24.0245 -4.9851 -1.9191 -5.0817 -16.1265 -3.1.9802 -4.0.1313 -8.6596 -5.6140 -13.1539	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8857 25.1404 102 7 80.0827 72.3482 27.4143 17.5849 49.2069 79.1286 139.9 31.8071 54.2807 103.8
:onc 0 50	time 24 24 24 24	N Obs 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo	Label fot cbs oas tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 58.6667 51.6667 11.3333 32.6667 55.5544 90.0000 20.3333 24.3333 48.0675	18.0370 4.9329 3.1099 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 5.5136 6.6583 9.4699 20.0749 4.6188 12.0554 23.5443 17.0284	-23.4731 -0.9206 -2.9782 -2.9782 CL for Mean -21.9364 -19.8687 2.1929 -11.3243 24.0245 34.9265 1.9191 5.0817 16.1265 31.9802 40.1313 8.8596 -5.6140 -13.1539 5.7666	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8857 25.1404 102 7 80.0827 72.3482 27.4143 17.5649 49.2069 79.1286 139.9 31.8071 54.2807 103.8 90.3685
50	time 24 24	N Obs 3 3 3	oas vla_glo pctvla_glo tot cbs oas vla_glo pctvla_glo pctvla_glo pctvla_glo tot cbs oas vla_glo pctvla_glo pctvla_glo	Label tot cbs oas tot cbs oas tot cbs	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 58.6667 55.5544 90.0000 20.3333 24.3333 45.3333	18.0370 4.9329 3.1099 5td Dev 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 5.5136 6.6583 9.4699 20.0749 4.6188 12.0554 23.5443	-23.4731 -0.9205 -2.9782 -2.9782 -2.9782 -2.9782 -1.9364 -1.98687 -2.1929 -11.3243 24.0245 -4.9851 -1.9191 -5.0817 -16.1265 -3.1.9802 -4.0.1313 -8.6596 -5.6140 -13.1539	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8857 25.1404 102 7 80.0827 72.3482 27.4143 17.5849 49.2069 79.1286 139.9 31.8071 54.2807 103.8
:onc 0 50	time 24 24 24 24	N Obs 3 3 3	oas via_glo pctvla_glo tot cbs oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot	Label fot cbs oas tot cbs oas tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 14.6667 11.3333 32.6667 55.5544 90.0003 20.0303 24.3333 45.3333 45.3333	18.0370 4.9329 3.1099 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 2.5166 6.6583 9.4699 9.4699 9.4698 12.0554 23.5443 23.5443 23.5443	-23.4731 -0.9208 -2.9782 CL for Mean -21.9364 -19.8687 2.1929 -11.3243 24.0245 44.9851 1.9191 5.0817 16.1265 31.9802 40.313 8.8596 -5.6140 -13.1539 5.7666 46.8301	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8687 25.1404 102 7 60.0627 72.3462 27.4143 17.5646 49.2069 79.1286 139.9 31.8C71 54.2807 103.8 90.3685 71.8366
:onc 0 50	time 24 24 24 24	N Obs 3 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs cbs oas via_glo pct	Label fot cbs oas tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 14.6667 14.6667 11.3333 32.6667 55.5544 90.0000 20.3333 24.3333 24.3333 24.8.0675 59.3333 14.0000 15.3333 30.0000	18.0370 4.9329 3.1099 8.1098 8.10098 8.10098 8.10098 8.10098 8.10098 8.10098 8.	-23.4731 -0.9208 -2.9782 -2.9782 -2.9782 -2.19364 -19.8687 -2.1929 -11.3243 24.0245 -44.9851 1.9191 5.0817 -1.8687 -2.1929 -11.3243 24.0245 -44.9851 1.9191 5.0817 -1.1539 5.7666 -46.8301 9.0317 -4.9088 -3.8048	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8687 25.1404 102 7 60.0627 72.3462 27.4143 17.5646 49.2069 79.1286 139.9 31.8C71 54.2807 103.8 90.3685 71.8366 18.9683 35.5655 63.6048
50 200	time 24 24 24 24	N Obs 3 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs cbs oas via_glo pct	Label fot cbs oas tot cbs oas tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 58.6667 14.6667 11.3333 32.6667 55.5544 90.0003 22.6657 55.5544 90.0003 24.3333 44.0675 59.3333 14.0000 15.3333 14.0000 15.3333	18.0370 4.9329 3.1099 8.1099 8.1099 8.1099 8.1099 4.6188 22.9420 11.2832 5.5076 5.1316 2.5166 5.6583 9.4899 20.0749 4.6188 12.0554 23.5443 17.0284 5.0332 2.0000 8.1445 13.5277 18.5627	-23.4731 -0.9208 -2.9782 -2.9782 -2.9782 -2.19364 -19.8687 -2.1929 -11.3243 24.0245 -44.9851 1.9191 5.0817 -16.1265 31.9802 -40.313 8.8596 -5.6140 -13.1539 5.7666 -46.8301 9.0317 -4.8988 -3.6048 3.1610	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8667 25.1404 1027 60.0627 72.3462 27.4143 17.5646 49.2069 79.1286 139.9 31.8C71 54.2807 103.8 90.3665 71.8366 18.9683 35.5655 63.6048 95.8622
:onc 0 50	time 24 24 24 24	N Obs 3 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs oas via_glo pctvia pctvia p	Label fot cbs oas tot cbs oas tot cbs oas	21.3333 11.333 4.7471 89.333 30.0000 13.6667 45.6667 52.0536 58.6667 14.6667 11.333 32.6667 55.5544 90.0000 20.3333 45.3333 45.0333 48.0675 59.3333 48.0675 59.3333 14.0000 15.3333 30.0000 49.5215 58.6667	18.0370 4.9329 3.1099 8.1098 8.1008 8.1008 8.1008 8	-23.4731 -0.9205 -2.9782 -2.9782 CL for Mean -21.9364 -19.6667 2.1929 -11.3243 24.0245 44.9851 1.9191 5.0817 16.1265 31.9802 40.1313 8.8596 -5.6140 -13.1539 5.7666 46.6301 9.0317 4.9098 -3.6046 3.6046 3.6046	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8867 25.1404 102 7 80.0627 72.3482 27.4143 17.5848 49.2069 49.2069 139.9 31.8071 54.2807 103.8 90.3835 71.8366 18.9683 35.5655 63.6048 95.8622 81.2072
50 200	time 24 24 24 24	N Obs 3 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs cos cas via_glo pctvia_glo tot cbs cos cas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cos cas cos cos cos cos cos cos cos cos cos co	Label tot cbs oas tot cbs oas tot cbs oas tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 55.5544 90.0000 20.3333 24.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 49.5216 58.6667 59.3333 40.0000 59.3333 50.0000 50.555 50.5554 50.55555 50.55555 50.55555 50.55555 50.55555 50.55555 50.55555 50.5555555 50.55555555	18.0370 4.9329 3.1099 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 2.5166 6.6583 9.4899 20.0749 4.6188 12.0554 2.5548 2.5443 17.0284 5.0332 2.0000 8.1445 13.5277 18.6627 9.0378	-23.4731 -0.9208 -2.9782 -2.9782 -2.9782 -2.9782 -2.19364 -19.8687 -2.1929 -11.3243 24.0245 -4.9851 -1.9191 -5.0817 -16.1265 -3.1.9802 -40.1313 8.8596 -5.6140 -13.1539 -5.7666 -46.8301 -9.0317 -4.6968 -3.6046 -3.61262 -9.6144	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8857 25.1404 102 7 80.0827 72.3462 27.4143 17.5849 49.2069 79.1286 139.9 31.8C71 54.2807 103.8 90.3685 71.8366 18.9683 35.5655 63.6048 95.8622 81.2072 36.2806
50 200	time 24 24 24 24	N Obs 3 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs cas via_glo pctvia_glo tot cbs cas via_glo pctvia_glo tot cbs cas oas oas oas oas oas oas oas oas oas o	Label fot cbs oas tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 58.6667 11.3333 24.6687 55.5544 90.0003 22.6667 59.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 24.3333	18.0370 4.9329 3.1099 8.1099 8.1099 8.1099 8.1099 4.6188 22.9420 11.2832 5.5076 5.1316 2.5166 5.6583 9.4699 20.0749 4.6188 12.0554 23.5443 17.0284 4.51032 2.0000 8.1445 13.5277 18.5627 9.0738 9.2376	-23.4731 -0.9208 -2.9782 -2.9782 -2.9782 -2.19354 -19.8687 -2.1929 -11.3243 24.0245 -44.9851 1.9191 5.0817 -5.0817 -5.0817 -5.0817 -5.0817 -5.6140 -13.1539 -5.7666 -46.8301 9.0317 -4.9088 -3.6048 3.1610 -36.4262 -9.6141 -12.4742	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8667 79.8667 79.8667 79.8667 79.8667 79.8667 79.8667 79.8667 79.8667 79.8667 79.8667 79.1286 139.99 31.8071 54.2807 103.8 90.3665 71.8366 18.9683 35.5655 63.6048 95.8622 81.2072 36.2808 57.1408
50 200	time 24 24 24 24	N Obs 3 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia_glo tot cbs cos cas via_glo pctvia_glo tot cbs cos cas via_glo pctvia_glo pctvia_glo pctvia_glo pctvia_glo tot cbs cos cas cos cos cos cos cos cos cos cos cos co	Label tot cbs oas tot cbs oas tot cbs oas tot cbs oas tot cbs oas	21.3333 11.3333 4.7471 89.3333 30.0000 13.6667 45.6667 52.0536 55.5544 90.0000 20.3333 24.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 45.3333 49.5216 58.6667 59.3333 40.0000 59.3333 50.0000 50.555 50.5554 50.55555 50.55555 50.55555 50.55555 50.55555 50.55555 50.55555 50.5555555 50.55555555	18.0370 4.9329 3.1099 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 2.5166 6.6583 9.4899 20.0749 4.6188 12.0554 2.5548 2.5443 17.0284 5.0332 2.0000 8.1445 13.5277 18.6627 9.0378	-23.4731 -0.9208 -2.9782 -2.9782 -2.9782 -2.9782 -2.19364 -19.8687 -2.1929 -11.3243 24.0245 -4.9851 -1.9191 -5.0817 -16.1265 -3.1.9802 -40.1313 8.8596 -5.6140 -13.1539 -5.7666 -46.8301 -9.0317 -4.6968 -3.6046 -3.61262 -9.6144	23.5873 12.4724 Upper 95% CL for Mean 200.6 79.8857 25.1404 102 7 80.0827 72.3462 27.4143 17.5849 49.2069 79.1286 139.9 31.8C71 54.2807 103.8 90.3685 71.8366 18.9683 35.5655 63.6048 95.8622 81.2072 36.2806
50 50 200	time 24 24 24 24	N Obs 3 3 3 3 3	oas via_glo pctvia_glo tot cbs oas via_glo pctvia_glo pctvia_glo tot cbs oas via_glo pctvia pctvia p	Label tot cbs oas tot cbs oas tot cbs oas tot cbs oas tot cbs oas	21.3333 11.333 4.7471 89.333 30.0000 13.6667 45.6667 52.0536 58.6667 14.6667 11.333 32.6667 55.5544 90.0000 20.333 45.3333 45.3333 45.0355 59.3333 45.0355 59.3333 45.0000 15.3333 30.0000 49.5216 58.6667 13.3333 22.3333 22.3333	18.0370 4.9329 3.1099 44.7921 20.0749 4.6188 22.9420 11.2832 5.5076 5.1316 2.5186 6.6583 9.4899 20.0749 4.6188 12.0554 23.5443 17.0284 23.5443 17.0284 23.5443 17.0284 23.0000 8.1445 13.5277 18.6627 9.0738 9.2376 14.0119 10.0000	-23.4731 -0.9205 -2.9782 -2.9782 -2.9782 -2.9782 -2.1938 -10.8687 -2.1939 -11.3243 -24.925 -44.9851 1.9191 5.0817 -16.1265 -31.9802 -40.1313 8.8596 -5.6140 -13.1539 5.7666 -46.8301 -9.0317 -4.9688 -3.6048 -3.6048 -3.6141 -2.4742 -9.6141 -1.2.4742 -1.8414	23,5873 12,4724 Upper 95% CL for Mean 200,6 79,8667 25,1404 1027 72,3482 27,4143 17,5849 49,2069 79,1286 139,9 31,8071 54,2807 103,8 90,3665 71,8366 18,9683 35,5655 63,6048 95,8622 81,2072 36,2608 57,1408

file:///C:/Uscrs/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 21 of 81

oas	oas	15,0000	9.5394	-8.6972	38.6972
via_glo		21.6667	8.5049	0.5393	42.7940
pctvia_glo		26.7520	10.6271	0.3527	53.1513

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 22 of 81

Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species Overall Model: Glochidia Viability (unadjusted) - At 6, 12 and 24 h

.

The GLIMMIX Procedure

form=FDP sps=PPB

Data Set WORK GLOCHIDIA2 Response Variable (Events) via_glo Response Variable (Trials) tot Response Distribution Binomial Link Function Logit Variance Function Default Variance Function Default Variance Matrix Diagonal Estimation Tochnique Maximum Likelihood Degrees of Freedom Method Residual Class Levels Variance function Residual Class Levels Values conca 6 - a b c d o f time 3 Soborvations Read 54 Number of Observations Used 54 Number of Cosservations Used 54 Number of Trials 15463 Dimensions 27 Columns in X 27 Columns in X 27 Columns in X 27 Columns in X 1 Subjects (Blocks in V) 1 Nax Obs per Subject 64 Cover Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Variance Parameters 1 Codeffects Not Profiled <	Dete C	Model Infor		
Response Variable (Triais) tot Response Distribution Binomial Link Function Logit Variance Function Default Variance Matrix Diagonal Estimation Tochnique Maximum Likelihood Degrees of Freedom Method Residual Class Level Information Class Class Level Information Class Class Levels Values conca 6 · a b c d o f time 3 · 6 12 24 Number of Observations Read 54 Number of Deservations Used 54 Number of Trials 15463 Dimensions 27 Columns in X 27 Columns in Z 0 Subjects (Elocks in V) 1 Nax Obs per Subject 64 Optimization Information 0 Parameters 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 0 4 0 4 0 2 0 4 0 2 0 3 62.810657322 20.1307/1303 2.90<				A2
Response Distribution Binomial Link Function Logit Variance Function Default Variance Matrix Diagonal Estimation Tochnique Maximum Likelihood Degrees of Freedom Method Residual Class Class Level Information Residual Class Level Information Class Level Natures conca 6 a b c d e f time 3 6 12 24 Number of Observations Read 54 Number of Observations Used 54 Number of Deservations Used 54 Number of Trials 15463 Dimensions 27 Columns in X 27 Optimization Information 1 Optimization Information 1 Optimization Information 18 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 0 4 0 3 <th></th> <th></th> <th>and a second sec</th> <th></th>			and a second sec	
Link Function Logit Variance Function Dofault Variance Matrix Diagonal Estimation Tochnique Maximum Likelihood Degrees of Freedom Method Residual Class Level Information Gass Class Level Information Gass Class Level Information Gass Class Level Normation 54 Number of Observations Read 54 Number of Observations Used 54 Number of Deservations Used 54 Number of Events 7526 Number of Trials 15463 Dimensions 27 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 64 Optimization Information 0 Optimization Information 0 Paramotors In Optimization 118 0 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 0 4 0 4 0 4 0 3 0 2 0 3 0 2			1	i.
Variance Function Dofault Variance Matrix Diagonal Estimation Tochnique Maximum Likelihood Degrees of Freedom Method Residual Class Level Information Class Levels Values conca 6 · a b c d of time 3 · 6 12 24 Number of Observations Read 54 Number of Observations Used 54 Number of Observations Used 54 Number of Trials 15463 Dimensions 15463 Outmins in X 27 Golumns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 64 Dydimization Information 18 Cover Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 0 4 644.13728715 4 044.13728715 40.244 1 0 3 623.9131154 0 3 623.9131154 0.09345792 0 3 623.9131154 0.09345792				
Variance Matrix Diagonal Estimation Tochnique Maximum Likelihood Degrees of Freedom Method Residual Class Level Information Class Level Information Class Level Normation Columns of Deservations Read Mumber of Observations Used Number of Trials Dimensions Columns in X Columns in Z Optimization Information Optimization Information Optimization Information Optimization Information Paramotors In Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 0 0 1 1 1 1 2 2 3 62 2 2 2 3 62 3	Link Fu	nction	the second second second	
Estimation Tochnique Maximum Likelihood Degrees of Freedom Method ; Residual Class Level Information Class Levels Values conca 6 + a b c d o f time 3 0 bosorvations Read 54 Number of Obsorvations Read 54 Number of Obsorvations Read 54 Number of Obsorvations Used 54 Number of Obsorvations Used 54 Number of Trials 15463 Dimensions 27 Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Nax Obs per Subject 54 Optimization Information 0 Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 0 4 0 4 0 2 0 3 0 2 0 3 0 2 0 3 0 3 0 3 0 3 0 3				
Degrees of Freedom Method Residual Class Level Information Glass Levels Values conca 6 · a b c d e f time 3 612 24 Number of Observations Read 54 Number of Observations Used 54 Number of Observations Used 54 Number of Trials 15463 Dimensions 1 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Max Obs per Subject 54 Optimization Information 0 Subjects (Blocks in V) 1 Nax Obs per Subject 54 Optimization Information 0 Paramotors In Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Upper Restarts Evaluations Function Change Magrade 0 0 4 644.13728715 40.244 1 0 3 623.9131154 0.09345/92 </td <td></td> <td></td> <td></td> <td></td>				
Class Level Information Class Levels Values conca 6 · a b c d o f time 3 612 24 Number of Observations Read 54 Number of Observations Used 54 Number of Doservations Used 54 Number of Events 7526 Number of Trials 15463 Dimensions 27 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 54 Optimization Information 0 Subjects (Blocks in V) 1 Nax Obs per Subject 54 Optimization Information 0 Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Veration Restarts Evaluations Function Change Magrade 0 0 4 644.13728715 0 3 623.9131154 0.09345792 0.20265 2 0 3 623.9131154	···			od
Class Levels Values conca 6 a b c d e f time 3 6 12 24 Number of Observations Read 54 Number of Observations Used 54 Number of Observations Used 54 Number of Observations Used 54 Number of Trials 15463 Dimensions 15463 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 64 Optimization Information Optimization Technique Newton-Rephson Paramotors in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Verailon Restarts Evaluations Paramotors Chieffects Not Profiled Iteration Restarts Evaluations Change 0 0 4 0 3 623.9131154 0.09345/92 0.02055 2 0 3 623.9131	Degrees	s of Freedom Method	I ; Residual	
conca 6 · a b c d o f time 3 6 12 24 Number of Observations Read 54 Number of Observations Used 54 Number of Observations Used 54 Number of Observations Used 54 Number of Deservations Used 54 Number of Deservations Used 54 Number of Trials 7526 Number of Trials 15463 Dimensions 27 Columns in X 27 Golumns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 64 Optimization Information Optimization Technique Newton-Rephson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Change Grade Vertailon Restarts Evaluations Change Grade 0 0 4 0 10 3 0 2 0 0 3 623.9131154 0 3 623.9131154 0 3 623.9131154	Class L	evel information		
time 3 6 12 Number of Observations Read 54 Number of Observations Used 54 Number of Observations Used 54 Number of Events 7526 Number of Trials 15463 Dimensions 15463 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 54 Optimization Information Optimization Technique Newton-Rephson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration Restarts Evaluations Function O 4 64.13728715 40.244 1 0 3 2 0 3 623.9131154 0.09345/92 0.03467/92 0.2085	Class			
time 3 6 12 Number of Observations Read 54 Number of Observations Used 54 Number of Observations Used 54 Number of Events 7526 Number of Trials 15463 Dimensions 15463 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 54 Optimization Information Optimization Technique Newton-Rephson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration Restarts Evaluations Function O 4 64.13728715 40.244 1 0 3 2 0 3 623.9131154 0.09345/92 0.03467/92 0.2085	conca	6 abcdef		
Number of Observations Read 54 Number of Observations Used 54 Number of Observations Used 54 Number of Events 7526 Number of Trials 15463 Dimensions 15463 Observations In X 27 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 54 Optimization Information 0 Optimization Technique Newton-Rephson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration History Iteration Restarts Evaluations 0 0 4 0 4 644.13728715 40.244 3 623.9131154 0 3 623.9131154		3 6 12 24		
Number of Observations Used 54 Number of Events 7526 Number of Trials 15463 Dimensions 15463 Covariance Parameters 1 Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 54 Optimization Information 0 Optimization Technique Newton-Rephson Parameters 0 Upper Boundaries 0 Upper Boundaries 0 Pitoretifects Not Profiled Iteration History Iteration Sective Change Grade 0 0 4 0 4 644.13728715 40.244 3 623.9131154 0.09345792 2 0 3 623.9131154				
Number of Events 7526 Number of Trials 15463 Dimensions 15463 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Max Obs per Subject 54 Optimization Technique Newton-Raphson Parameters 0 Upper Boundaries 0 Upper Boundaries 0 Pitteration History Iteration History Iteration Change Max Obs Per Subject 64 Optimization Technique Newton-Raphson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Vertation History Iteration Restarts Evaluations Change Max 623.9131154 0 3 623.9131154 0.09345/82 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3			·· ··	
Number of Trials 15463 Dimensions 15463 Covariance Parameters 1 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Max Obs per Subject 64 Optimization Information Optimization Information Optimization Technique Newton-Raphson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration History Iteration Kestarts Evaluations 60 0 0 4 0 4 644.13728715 40 3 623.9131154 0 3 623.9131154				
Dimensions 1 Covariance Parameters 1 Columns in X 27 Columns in X 0 Subjects (Elocks in V) 1 Nax Obs per Subject 64 Optimization Information Optimization Technique Newton-Raphson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration History Iteration History Iteration Restarts Evaluations 60 0 0 4 64.13728715 40.244 3 62.9131154 0.09345782 0 3 62.39131154 0.09345782 0 3 0 3	Number	of Events	7526	
Dimensions Covariance Parameters 1 Columns in X 27 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Nax Obs per Subject 64 Optimization Information Optimization Information Optimization Information Optimization Information Paramotors In Optimization Iteration History Upper Boundaries Objective Eteration History Objective Colspan="2">Material Objective Paramotors In Optimization Iteration History Objective Colspan="2">Colspan="2">Material Objective Paramotors In Optimization Iteration History Objective Change Objective Colspan="2">Colspan="2">Objective Colspan="2">Objective Colspan="2">Colspan="2">Colspan="2">Colspan="2" Objective	Number	of Triais	15463	
Covariance Parameters 1 Columns in X 27 Columns in X 0 Subjects (Blocks in V) 1 Max Obs per Subject 64 Optimization Information Optimization Technique Newton-Rephson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Objective Function Change Max 0 0 4 644.13728715 40.244 1 0 3 623.9131154 0.09345782 0.20265				
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Subjects (Blocks in V) 54 Optimization Information Optimization Technique Newton-Rephson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Noi Profiled Heration History Iteration History Iteration Section 0 0 4 0 0 4 0 0 4 1 0 3 2 0 3 623.9131154 0.09345/92 0.2085				
Columns in Z 0 Subjects (Blocks in V) 1 Subjects (Blocks in V) 64 Optimization Information Optimization Technique Newton-Rephson Paramotors in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Objective Function Change Grade 0 0 4 0 0 4 0 0 4 0 0 4 1 0 3 2 0 3 623.9131154 0.09345/92 0.2085				
Subjects (Blocks in V) 1 Max Obs per Subject 64 Optimization Information Optimization Technique Newton-Rephson Paramotors in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Objective Function Change Max 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 1 0 3 2 0 3 62.93131154 0.09345/82 0.02085				
Nax Obs per Subject 64 Optimization Information Optimization Technique Newton-Rephson Paramotors in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Objective Function Restarts Evaluations 0 0 4 0 0 4024/2 1 0 3 624,00657322 2 0 3 623,9131154				
Optimization information Optimization Technique Newton-Rephson Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration History Iteration History Iteration History Iteration Restarts Evaluations Objective Function Change Change Mage 0 0 4 644.13728715 40.244 40.244 1 0 3 623.9131154 0.09345/82 0.02085	· · · · -			
Optimization Technique Newton-Rephson Paramoters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration History Iteration History Iteration Restarts Evaluations Objective Function Change Mail 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84393 2 0 3 623.9131154 0.09345782 0.02085				
Parameters in Optimization 18 Lower Boundaries 0 Upper Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration History Iteration Restarts Evaluations Objective Function Change Change Mail Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84393 2 0 3 623.9131154 0.99345/82 0.02085		Optimization infor	mation	
Lower Boundaries 0 Upper Boundaries 0 Fixed Effects Not Profiled Iteration Restarts Evaluations Objective Function Mit Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84393 2 0 3 623.9131154 0.09345782 0.02085	Optimizi	ation Technique	Newton-Raphson	
Opper Boundaries 0 Fixed Effects Not Profiled Iteration Restarts Evaluations Objective Function Change Mail Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84392 2 0 3 623.9131154 0.09345782 0.02055	Paramot			
Opper Boundaries 0 Fixed Effects Not Profiled Iteration Restarts Evaluations Objective Function Change Mail Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84392 2 0 3 623.9131154 0.09345782 0.02055	Lower B	oundaries	0	
Iteration History Iteration Restarts Evaluations Objective Function Change Mail Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84393 2 0 3 623.9131154 0.09346782 0.02085	Upper B	oundarles	0	
Iteration Restarts Evaluations Objective Function Change Mu Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84392 2 0 3 623.9131154 0.09345782 0.02055	Fixed Ef	fects	Not Profiled	
Iteration Restarts Evaluations Objective Function Change Mu Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071393 2.84392 2 0 3 623.9131154 0.09345782 0.02055				
Iteration Restarts Evaluations Function Change Gradie 0 0 4 644.13728715 40.244 1 0 3 624.00657322 20.13071933 2.84393 2 0 3 623.9131154 0.09345782 0.02055				
1 0 3 624.00657322 20.13071393 2.84393 2 0 3 623.9131154 0.09345792 0.02085	teration	Restarts Evaluati		
1 0; 3 624.00657322 20.13071393 2.8439; 2 0 3 623.9131154 0.09345792 0.0206;				
2 0 3 623.9131154 0.09345782 0.02063				
	2	0	3 623.9131154	0.09345782 0.02063

 $file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS\% 20 Temporary\% 20 Files/ \ TD4836... \ 3/18/2015$

Convergence criterion (ABSGCONV=0.00001) setisfied.

Fit Statistics	
-2 Log Likellhood	1247.83
AIC (smaller is better)	1283.83
AICC (smaller is bottor)	1303,37
BIC (smaller is better)	1319.63
CAIC (smaller is better)	1337.63
HQIC (smaller is better)	1297.63
Pearson Chi-Square	932.56
Pearson Chi-Square / DF	25.90

Effect	conca	tíme	Estimate	Standard Error	DF	t Value	Pr >
conca	a		1.1880	0,3974	36	2.99	· ·
	b		0,7309	0.3191	36	2.29	0.027
conca	c		-0.4985	0.3134	36	-1.59	0.120
conca	d	1	-1.9333	0.4164	36	-4.64	<,000
conca	e	!	-2.9805	0.7958	36	-3.75	0.000
conca	† f		1.5369	0.3967	36	3.87	0.000
time		6	0.01211	0.7590	36	0.02	0.987
time		12	-0.09191	D.6513	36	-0.14	0.888
time		24	0	•		•	
conca*time	a	6	-0.2423	1.0386	36	-0.23	0.816
conca*time	а	12	0.1992	0.8529	36	0.23	0.816
conca*time	a	24	0	•	•		
conca*time	b	16	-0.09137	0.9309	36	-0.10	0.922
conca*time	b	12	0.2009	0.8937	36	0,22	0.823
conca*time	b	24	0	-	.		
concatiime	с	6	0.3400	0.9059	36	0,38	0,709
conca*time	c	12	0.6474	0.7774	36	0.83	0.410
conca*time	c	24	Ø		• • •		
conca*time	d	6	1.6256	0.9159	36	1.77	0.084
conca*time	d	12	-0.3968	1.0092	36	-0.39	0.696
conca*time	d	24	0				
conca*time	e	6	1.7412	1.1651	36	1.49	0.1438
conca*time	8	12	-0, 001 44	1.6586	36	-0.00	0.999
conca*tim o	e	24	0	•		·	
conca*time	f	6	0				
conca*time	f	12	0				
conca*time	f	24	0		•		
Residual			25,9044		•		
····· ····-							
			ixed Effect				
Effect	Num D	Den	DF F Val	ue Pr>F			
conca		5	36 20.	90 <,0001			
time		2	36 2.	0880.0			

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 23 of 81

		· · · · - ·	•••••••						····· •••						
			Odds	Ratic	> Esti	mates									
conca	time	_conca	time	Estir	mate	DF	95% Confi	idence L	.imits						
a		f]	0	0.695	36	0.30	5	1.588						
b	ļ	f		0	0.463	36	0.20	3	1.033						
C	I	f		0	0.182	36	0.08	7 İ 	0.377						
d		f	ļ	0	0.047	36	0.020) 	0.108						
e		f		0	019	36	0.006	3 _.	0.067						
	6		24	1	.776	36	1.024	!	3.081						
	12		24		.016	36	0.508	3	2,033						
- · · · ·							conca Le	ast Sou	ares Ne:	ne					1
	11				T - 1				ai es mer		7	Standar			
conca	Estim	ate Sta	ndard	Error	DF	t Valu	.e Pr > t	Alpha	Lowe	r Uppe	nri Mea	Enc	or Lowe		
a	1.1	470 :	0	2683	36	4.2	7 1 0.0001	0.05	0,602	B 1.691	2 0.759	0 0.0490	9 0.646	3 0.8444	1
b	0.7	408	0	2501	36	2.9	0.0054	0,05	0,233	5 1.248	1 0.677	2 0.0546	8 0.558	1 0.7770	
a	-0.1	959	0	1905	36	-1.0	0,3108	0.05	-0.582	3 0.190	4 D.451	0.0471	7 0.358	4 0.5475	1
d	-1.5	503	0	2756	36	-5.6	3 <.0001	0.05	-2.109	3 -0.991	3 0.178	ic 0.0398	0 0,108;	2 0.2706	
e	-2.4	272	0.	5244	36	-4.6	3 <.0001	0,05	-3.490	7 -1.363	6 0. C81 1	2 0.0390	9 0.0295	8 0.2037	i
f	1.5	103	0.	.3060	36	4.9	3 <.0001	0.05	0,889	3 2.130	9 0.819	0.0453	5 0.708	8 0.8939	
	••••				•••••		D1/0			ast Squar					
conca	_cond	a Estin	nate	Sta	andar Erro		t Value	Pr > [t]	Alpha	Lower	Upper	Odds Ratio	Limit	Lower ntidence for Odds Ratio	Upp: Confidenc Limit for Odc Rati
a	b	0.4	062		0.366	8 36	1.11	0,2755	0.05	-0.3378	1.1501	1.501	Ì	0.713	3.16
9	c	1.3	429		0.329	1 36	4.08	0.0002	0.05	0.6756	2.0103	3.830	•	1.965	7.46
а	d	2.6	973		0.384	7 36	7.01	<.0001	0.05	1.9172	3.4774	14.839	-	6.802	32.37
a 	6	3.5	742		0.589	1 36	6.07	<.0001	0.05	2.3794	4,7689	35.664		10,799	117.78
a	f	-0,3	633		0.407	0 36	-0.89	0.3780	0.05	-1.1887	0.4622	0.695		0.305	1.58
þ	c	0.9	368		0,314	4 36	2.98	0.0051	0,05	0.2991	1.5744	2,552	1	1.349	4.82
b	d	2.2	9 11		0.372	2 36	6.16	<.0001	0.05	1.5363	3.0459	9.886		4.647	21.03
b	e	3.1	680		0,581	0 36	5.45	<.0001	0.05	1,9896	4.3463	23.759		7.313	77.19
b	f		695		0.395		-1.95	0.0594		- 1 .5710	0.03214	0.463		0.208	1.03
۰	d	:	543		0.335		4.04	0,0003	0.05	0.6749	2.0338	3.874		1,964	7.64
с	e		312	·	0.557		4.00	0.0003	·	1.0997	3,3628	9.311	· •	3.003	28.86
с	f	-1.7			0,360		-4.73	<.0001	0.05	-2.4373	-0.9751	0.182		0.087	0.37
d	e		769		0.592		1.48	0.1475		-0.3246	2.0784	2.403		0.723	7.99
; 	f	-3.0			0.411		-7.43	<.0001	-	-3.8958	-2.2253	0.047	1	0.020	0.10
•	f	-3.9	374		0.607	2 36	-6.48	<.0001	0.05	-5.1689	-2.7060	0.019	1	0.006	0.06
	····· • •		••••••	••••	• • •	ti	me Least	Square	s Means]	
		· · · · · · · · · · · · · · · · · · ·			1									lpper	
 				1-	_		-	- · · ·							
				· · · • {·· ·			Pr > [t]	· · · · · ·	Lower		Mean	Mean		Vean	
time E 3	stimat 0.248 -0.309	2	lard En 0,19 0.28	26 3	36	1.29	Pr > t 0.2058 0.2808	0.05	Lower 0.1425 0.8836	Upper 0.6389 0.2640	0.5617		0.4644 0		

Page 24 of 81

conca*time 10 36 1.60 0.1449

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 25 of 81

SAS Output

24 -0.3261

time	time	Estimate	Standard Error		t Value	Pr > [t]	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
6	12	0.5580	0.3423	36	1.63	0.1118	0,05	-0.1362	1.2522	1.747	0.873	3.498
6	24	0.5743	0.2717	36	2.11	0.0415	0.05	0.02328	1.1253	1.776	1.024	3.081
12	24	0.01630	0.3417	36	0.05	0.9622	0.05	-0.6767	0.7093	1.016	0,508	2.033

0.1916 36 -1.70 0.0974 0.06 -0.7147 0.06251 0.4192 0.04665 0.3266 0.5156

conca	time	Estimate	Standard Error	DF	: tValue	Pr > t	Alpha	Lower	i Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean
a	6	0.9577	0.5871	36	1.63	0.1115	0.05	-0.2329	2.1484	0.7227	0.1177	0.4420	0.8955
a	12	1.2953	0.3813	36	3.40	0.0017	0.05	0.5220	2.0685	0.7850	0.06434	0,6276	0.8878
a	24	1,1880	0,3974	36	2.99	0.0050	0.05	0.3819	1.9940	0.7664	0.07116	0,5943	0.8802
b	6	0.6516	0.4342	36	1.50	0.1422	0.05	-0.2290	1.5323	0.6574	0.09780	0.4430	0.8223
b	12	0,8399	0.5222	36	1.61	0.1165	0.05	-0.2192	1.8990	0.6984	0,1100	0.4454	0.8698
b	24	0.7309	0.3191	36	2.29	0 0279	0,05	0.08382	1.3780	0.6750	0.06999	0.5209	0.7987
5	6	-0.1463	0.3825	36	-0.38	0.7043	0.05	-0.9221	0.6294	0.4635	0.09512	0,2845	0.6524
3	12	0.05698	0.2864	36	0.20	0.8434	0.05	-0.5239	0.6379	0,5142	0.07155	0.3719	0.6543
0	24	-0.4985	0.3134	36	-1.59	0.1204	0.05	-1.1341	0.1371	0.3779	0.07367	0.2434	0.5342
a	6	-0.2956	0.2988	36	-0.99	0.3292	0 .05	-0.9016	0,3105	0.4266	0.07310	0.2887	0.5770
d	12	-2.4220	0.6488	36	-3.73	0.0007	0.05	-3.7379	-1.1062	0.08151	0.04857	0.02325	0.2486
3	24	-1.9333	0.4164	36	-4.64	<.0001	0,05	-2.7778	-1.0888	0.1264	0.04598	0.05853	0.2519
B	6	-1.2272	0.3850	36	-3.19	0.0030	0,05	-2.0080	-0.4464	0.2267	C.06749	0.1184	0.3902
Ð	12	-3.0739	1.3015	36	-2.36	0.0237	0.05	-5.7134	-0.4343	0,04420	0.05498	0.003291	0.3931
3	24	-2.9805	0.7956	36	-3.75	0.0006	0.05	-4.5941	-1.3669	0.04831	0.03658	0.01001	0.2031
r	6	1.5490	0.6471	36	2.39	0.0220	0.05	0.2365	2.8614	0.8248	0.09353	0.5589	0,9459
	12	1.4450	0.5165	36	2,80	0.0082	0.05	0.3975	2.4924	0.8092	0.07974	D.5981	0.9236
r i	24	1.5369	0.3967	36	3.87	0.0004	0.05	0.7323	2.3414	0.8230	0.05779	0.6753	0.9123

conca	time	_conca	time	Estimate	Standard Error		t Value	Pr> t	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
a	6	a	12	-0.3375	0.7000	36	-0.48	0.6326	0,05	-1.7573	1.0822	0.714	0.173	2.951
a	6	a	24	-0,2302	0.7090	36	-0.32	0.7473	0,05	-1.6681	1.2076	0.794	0.189	3.345
a	6	b	6	0.3061	0.7302	36	0.42	0.6776	0.05	-1.1748	1.7870	1.358	0.309	5,972
a	6	b	12	0.1178	0,7857	36	0,15	0.8817	0.05	-1.4757	1.7114	1.125	0,229	5,536
a	6	b	24	0.2268	0,6682	36	0.34	0.7362	0.05	-1.1283	1.5820	1.255	0.324	4.865
a	6	C	6	1. 104 1	0.7007	36	1.58	0.1239	0.05	-0.3170	2.5251	3.016	0.728	12.493
a	6	C	12	0,9008	0.6532	36	1.38	0.1764	D.05	-0.4241	2.2256	2.461	0.654	9.259
a	6	c	24	1.4562	0.6655	36	2.19	0.0352	0.05	0.1055	2,8059	4.290	1.112	16.542
a	6	d	6	1.2533	0.6588	36	1.90	0.0651	0.05	-0.08273	2.5893	3,502	0,921	13.320
a	6	d	12	3.3798	0.8750	36	3.86	0.0004	0.05	1.6052	5.1543	29,364	4,979	173,178
a	6	d	24	2,8910	0.7198	36	4.02	0.0003	0.05	1.4313	4,3508	18.012	4,184	77.540

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 26 of 81

а	6	e	6	2.1849	0.7021	36	3.11	0.0036	0.05	0.7610	3.6087	8.890	2.140	36.919
a	6	е	12	4.0316	1.4278	36	2.82	0. 0 077	0.05	1.1359	6.9273	56.350	3.114	>999.999
a	6	e	24	3,9382	0.9888	36	3.98	0.0003	0.05	1.9329	5,9436	51.328	6.909	381.290
а	6	; f	6	-0.5913	0.8738	36	-0,68	0.5029	0.05	-2.3633	1.1808	0.554	D,094 (3.257
a	6	ff	12	-0.4872	0.7819	36	-0.62	0.5371	0.05	-2.0731	1.0986	0.614	0.126	3.000
а	6	ſ	24	-0.5791	0.7086	36	-0.82	0.4191	0.05	-2.0161	0.8579	0.560	0.133	2.358
a	12	a	24	0.1073	0.5507	36	C.19	0.8466	0,05	-1.0096	1.2243	1.113	0.364	3.402
a	12	b	6	0,6436	0,5778	36	1.11	0.2727	0.05	-0.5283	1.8156	1.903	0.590	6.145
a	12	b	12	0.4554	0.6466	36	0.70	0.4858	0,05	-0.8560	1.7667	1.577	0.425	5,85
а.	12	b	24	0.5644	0.4972	36	1.14	0.2638	0,05	-0.4439	1.5727	1,758	0.642	4.819
a	12	C	6	1.4416	0.5401	36	2.67	0.0113	0.05	D,3463	2.5369	4.227	1.414	12.641
a	12	c	12	1.2383	0.4769	36	2,60	·	0.05	0.2712	2.2054	3,450	1,311	9.074
а. а	12	c	24	1.7938	0.4935	36	3.63	0.0009	0.05	0.7928	2.7947	6.012	2,210	16.357
	12	d	6	1,5908	0.4844	36	3.28	0.0023	0.05	0.6084	2.5733	4.908	1.837	13,108
Г а	12	d	12	3,7173	0.7525	36	4.94	<.0001	0.05	2,1911	5.2435		···· · · · · ·	·····
a	12	d	24	3.2286	0,5646	36	5.72	<.0001	0.05	2.0835		41.153	8.945	189.332
	12		6	2,5224		ļ					4.3736	25.244	8.033	79.330
a 		- I C			0.5418		4.66	<.0001	0,05	1.4235	3.6213	1	4.152	37.387
a 	12	. e	12	4.3691	1.3562		3.22	0.0027	0.05	1.6186	7.1196		5.046	>999,998
a • •	12	e	24	4.2758	0.8823	36	4.85	<.0001	0.05	2.4865	6.0651	71.936	12.019	430.552
a	12	ſ	6	-0.2537	0.7511	36	-0.34	0.7375	0.05	-1.7770	1.2696	0.776	0.169	3.559
a	12	. f	12	-0.1497	0.6420	36	-0.23	0.8170	0,05	-1.4617	1.1523	0,861	0.234	3.165
a 	12	f	24	-0.2416	0.5502	36	-0,44	0.6632	0.05	-1.3575	0.8743	0.785	0.257	2.397
a	24	. b	6	0.5363	0.5886	36	0,91	0.3683	0.05	-0.6575	1.7301	1.710	0.518	5.641
a	24	b	12	0,3480	0.6562	36	0.53	0.5991	0.05	-0.9829	1.6790	1.416	0.374	5.360
а	24	b	24	0.4571	0 5097	36	0.90	0.3758	0.05	-0.5766	1.4907	1.579	0,562	4.440
a	24	c	6	1.3343	0.5516	36	2.42	0.0207	0,05	0.2156	2.4530	3,797	1.241	11.623
a	24	c	12	1.1310	0.4899	36	2.31	0.0268	0.05	0.1374	2.1245	3.099	1.147	8.369
a	24	c	24	1.6864	0.5061	36	3,33	0.0020	D, 05	0.6600	2.7129	5,400	1.935	15.073
a.	24	d	6	1.4835	0.4972	36	2.98	0.0051	0.05	0.4751	2.4919	4.408	1.608	12.085
а	24	d	12	3,6100	0.7608	36	4.74	<.0001	0.05	2.0669	5,1531	36.965	7.900	172,959
a	24	d	24	3.1213	0.6756	36	5.42	<.0001	0.05	1.9538	4.2887	22.675	7.056	72.871
a	24	e	6	2.4151	0.5533	36	4.36	0.0001	0.05	1.2929	3.5373	11,191	3.643	34.374
a – .	24	e	12	4.2618	1.3608	36	3.13	0.0034	0.05	1.5019	7.0217	70.938	4.490	>999.999
a	24	e	24	4.1685	0.8894	36	4.69	<.0001	D.05	2.3648	5.9722	64.616	10.641	392.353
 9	24	ſ		-D.3610	0.7594	36		0.6374	0.05	-1.9012	1.1792	0.697	0.149	3.252
a	24	f	12	-0.2570	0.6517	36	!	0.6956	0.05	-1,5787	1.0647	0.773	0.206	2,900
9	24	f	24	-0.3489	0.5615	36		0.5383	0.05	-1.4878	0,7899	0.705	0.226	2,203
b	6	b	12	-0,1883	0.6792	36		0.7832	0.05	-1,5657	1.1891	0.828	0.209	3.284
)	6	b	24	-0.07926	0.5388	36		0.8839	0.05	-1.1721	1.0135	0.924	0.310	2.755
	6			0.7980	0,5787	36		0.1764	0.05	-0.3756				· · · · · · · · · · · · · · · · · · ·
, 	6		12	0.5946	0.5202	36	•••••	0.2605		· · · · · · · · · · · · · · · · [1.9715	2.221	0.687	7.182
, 	6	C	24	1.1501		36			0.05	-0.4603	1.6496	1.812	0.631	5.205
))	6	c d			0.5355			0.0385	0.05	0.06409	2,2361	3.159	1.066	9,357
		·		0.9472	0.5271	36		0.0807	0.05	-0.1218	2.0162	2.578	0.885	7.510
,	6	d	12	3.0737	0.7807	36	· · · · ·	0.0004	0.05	1.4903	4.6570	21.621	4.439	105.317
) 	6	d	24	2.5849	0.6016	36		0.0001	0.05	1.3648	3.8051	13.262	3.915	44.928
	6	e	6	1,8788	0.5803	36	3.24	0.0026	0.05	0.7019	3,0557	6.546	2.017	21.236

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 27 of 81

	6	6	12	3.7255	1.3720	36	2,72	0.0101	0.05	0.9429	6 5081	41.491	2.567	670.525
b	6	e	24	3.6321	0.9064	36	4.01		0.05	1 <u>.</u> .	5.4704	37.793	6.013	237.552
	6	f	:6	-0.8974	0.7793	36	-1.15	0.2571	0.05	-2.4779	0,6832	0.408	0.013	1.980
<u>р</u>	6	f	12	-0,7933	0.6748	36	-1.18	0.2474	0.05	-2.1518	0.5752	0.408	0.064	1.777
р	6	f	24	-0.8852	0.5881	36		0.1410	0.05	-2.0781	0.3076	0.432	0,125	1.360
	12	b	24	0,1090	0.6120	36	0.18		0.05	-1.1321	1.3502	1,115	0.123	
b	12	c	6	0.9862	0.6473	36	1.52	0.1363	0.05	-0.3266	2.2991	2.681		3.858
b	12	c	12	0.7829	0.5956	36	1.31	0.1970	0.05	-0.4250	1.9909	2,188	0.721	9.965 7.322
Ď.	12		24	1.3384	0.6090	36	2,20	0.0345	0.05	0,1032	2.5736	3.813		
 b	12	d	6	1.1355	0.6017	36	1.89	0.0672	0.05	-0.08476	2.3557			13.113
b	12	d	12	3,2619	0.8329	36		0.0072	0.05	1.5728		3.113	0.919	10.546
b	12	d	24								4.9511	26.100	4,820	141.324
				2.7732	0.6679	36		0,0002	0.05	1.4168	4,1278		4,131	62.042
b	12	e	6	2.0671	0,6488	36	3.19	0.0030	0.05	0.7513	3,3829	7.902	2.120	29.455
b	12	8	12	3.9138	1,4024	36	2.79	0.0084	0,05	1.0697	6,7579	50.087	2.914	860.813
b	12		24	3.8204	0.9517	36	4.01	0.0003	0.05	1.8903	5.7505	45.623	6,621	314.361
b	12	Ľ-	6	-0.7091	0.8316	36	-0.85	0.3995	0,05	-2.3955	0.9774	0.492	0.091	2.658
b	12	. [f	12	-0.6050	0.7345	36	-0.82	0.4155	0.05	-2.0946	0.8846	0.546	0.123	2.422
b	12	f	24	-0.6969	0.6558	36	-1.06	0.2950	0.05	-2,0270	0.6331	0.498	0.132	1.883
b 	24	C	6	0.8772	0,4981	36	1.76	0.0867	0.05	-0.1330	1.8874	2.404	0,875	6.602
b	24	C	12	0.6739	0,4288	36	1.57	0.1248	0.05	-0.1957	1.5435	1.962	0,822	4.681
b	24	0	24	1.2294	0.4472	36	2.75	0.0093	0.05	0.3224	2.1364	3.419	1.380	8.469
b	24	d	6	1,0264	0.4371	36	2.35	0.0245	0.05	0.1399	1.9130	2,791	1.150	6,773
o	24	d	12	3.1529	0.7230	36	4.36	0.0001	0.05	1.6866	4.6192	23,404	5.401	101.417
)	24	d	24	2.6642	C.5246	36	5.08	<,0001	0.05	1.6003	3,7281	14.356	4.954	41.601
5	24	e	6	1.9580	0,5000	36	3.92	0.0004	0.05	0.9440	2.9721	7.085	2.570	19.533
>	24	е	12	3.8047	1.3400	36	2.84	0.0074	0,05	1.0870	6.5224	44.913	2.965	680.243
>	24	e	24	3,7114	0.8572	36	4.33	0.0001	0,05	1.9729	5.4499	40.911	7.191	232.732
)	24	1	6	-0.8181	0.7215	36	-1.13	0.2643	0.05	-2.2814	0.6452	0.441	0.102	1.906
)	24	1	12	-0.7141	0.6071	36	-1.18	0.2472	0.05	-1.9453	0.5172	0.490	0.143	1.677
 D	24	f	24	-0.8060	0.5091	36	-1.58	0.1221	0.05	-1.8385	0.2265	0.447	0,159	1.254
3	6	c	12	-0.2033	0.4779	36	-0.43	0.6730	0,05	-1.1725	0.7658	0.816	0.310	2.151
;	6	c	24	0.3522	0.4945	36	0.71	0.4810	0.05	-0.6507	1,3550	1,422	0.522	3.877
	6	d	6	0.1492	0.4854	36	0.31	0.7603	0.05	-0.8352	1.1336	161	0.434	3.107
ŝ	6	d	12	2.2757	0,7532	36	3.02	0.0046	0.05	0.7482	3.8032	9.735	2.113	44.844
;	6	d	24	1.7870	0,5654	36		0.0032	0.05	0.6402	2.9337	5.971	1.897	18.797
•	e	e	6	1.0808	0.5427	36		0.0540	0.05	-0.01983	2.1815	2.947	0,980	8,859
	6	e	12	2.9275	1.3565	36		0.0377	0.05	0.1763	5.6787	18.681	1,193	292.573
- 	6	e .	24	2.8342	0.8828	36		0.0028	0.05	1.0438	4.6246	17.016	2.840	101.958
	6	1		-1.6953	0.7517	36		0.0303	0.05	-3.2199	-0,1707	0.184	0.040	0.843
	6	f	12	-1.5913	0.6427	36	-2.48		. 1	· · · · · · · · · ·				
	6	r f	24	-1.6832	0.5511	36			0.05	-2.8948	-0.2878	0.204	0.055	0.750
	12	C	24	0.5555	0.4246	36		0.0042	0.05	-2,8008	-0.5656	0.186	0.061	0,568
		- ···	· · · · · · · · · · · · · · · · · · ·			· · · · ·		0.1991	0.05	-0.3056	1.4165	1.743	0.737	4.123
	12	d	6	0.3525	0.4139	36		0.4000	0.05	-0.4869	1.1920	1.423	0.615	3.294
•	12	d	12	2.4790	0.7092	36	a series	0.0013	0,05	1.0406	3.9174	11.929	2,831	50.267
•	12	ď.	24	1.9903	0.5054	36	· · · · · · · ·	0.0004	0.05	0.9652	3.0153	7.318	2.625	20.395
;	12	e 	6	1.2841	0.4799	36	2.68	0.0111	0.05	0.3109	2.2573	3.612	1,365	9.557

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

Page 28 of 81

	L	1	1	1			1	[1		•		
	12	e 	. 12	3.1308	1.3326	36		0.D244	0.05	0.4281	5.8336	· ·	1.534	341.569
c	12	e	24	3.0375	0.8456	36		0.0010	0.05	1.3225	4.7525	20.853	3,753	115.868
C	12	f	6	-1.4920	0.7077	36		0.0420	0.05	-2.9273	-0.05675	0.225	0,054	0.945
¢	12	_ f	:2	-1.3880	0.5906	36	-2.35	0.0244	0.05	-2.5858	-0.1902	0.250	0,075	0.827
C	12	f	24	-1.4799	0.4893	36	-3.02	0.0046	0.05	-2.4722	-0.4875	0.228	0.084	0.614
c	24	d	6	-0.2029	0.4330	36	-0.47	0.6421	0.05	-1.0811	0.6753	0.816	0.339	1.965
c	24	d	12	1,9235	0,7205	36	2.67	0.0113	0.05	0.4623	3,3848	6,845	1.588	29.513
C	24	d	24	1.4348	0.5212	36	2.75	0.0092	0.05	0.3778	2.4918	4.199	1.459	12.083
C	24	e	6	0.7287	0.4964	36	1.47	D,1508	0.05	-0.2781	1.7354	2.072	0.757	5.671
с	24	e	12	2.5754	1.3387	36	1.92	0.0623	0.05	-0.1396	5.2904	13,136	0.870	198.415
с	24	e	24	2.4820	0.8551	36	2.90	0,0063	0,05	0.7478	4.2163	11.965	2.112	67.780
¢	24	f	6	-2.0475	0.7190	36	-2.85	0.0072	0,05	-3.5057	-0.5892	0.129	0.030	0.555
c	24	f	12	-1.9434	0.6041	36	-3.22	0.0027	0.05	-3,1687	-0.7182	0.143	0.042	Q.488
с	24	f	24	-2.0354	0,5056	36	-4.03	0.0003	0.05	-3.0607	-1.0100	0.131	0.047	0,364
d	6	d	12	2.1265	C.7143	36	2.98	0.0052	0.05	0.6778	3,5751	8,385	1.970	35,700
d	6	d	24	1.6377	0.5125	36	3.20	0.0029	0.05	0.5983	2.6772	5.144	1.819	14.545
d	6	e	6	0.9316	0.4873	36	1.91	0.0639	0.05	-0.05679	1.9200	2,539	0.945	6.821
ď	6	6	12	2.7783	1.3354	36		0.0447	0,05	0.07006	5.4865	16.092	1.073	241.417
ď	6	e	24	2.6849	0.8499	36		0.0032	0.05	0.9613	4.4086	14.657	2.615	82.153
ď	6	ľ	6	-1.8445	0,7128	36	-2.59	0.0138	0.05	-3.2901	-0,3989	0.158	0.037	0.671
d	6		12	-1.7405	0.5967	36	-2.92	0.0138	0.05	-2.9507	-0.5303			
d d		- <mark>'</mark>	·····									0.175	0.052	0.588
	6		24	-1.8324	0.4967	36	-3.69	0.0007	0.05	-2.8397	-0.8252	0.160	0,058	0.438
d	12	¢ d	24	-0.4887	0.7709	36	-0.63	0,5301	0,05	-2.0523	1.0748	0,613	0,128	2.929
 1	12	e	6	-1,1949	0.7544	36	-1.58	0.1220	0.05	-2.7249	0.3352	0.303	. 0.066	1.398
d 	12	e	12	0,6518	1.4542	36		0.6567	0.05	-2,2975	3.6012	1.919	0,101	36.641
; 	12	e	. 24	0.5585	1.0266	36		0.5898	0.05	-1.5236	2.8406	1.748	0.218	14.021
1	12	1		-3.9710	0.9164	36	-4.33	0.0001	0.05	-5.8295	-2.1125	0,019	0.003	0.121
. k	12	f	12	-3.8670	0.8293	36	-4.66	<.0001	0,05	-5.5488	-2.1851	0.021	C.004	0.112
ł	12	f	24	-3.9589	0.7605	36	-5.21	<.0001	0.05	-5.5012	-2.4166	0,019	0.004	0.089
1	24	e	6	-0,7061	0,5671	36	-1.25	0.2211	0, 0 5	-1.8563	0.4440	0.494	0,156	1.559
1	24	e	12	1.1406	1.3665	36	0.83	0.4094	0.05	-1.6308	3.9119	3.128	0,196	49.995
1	24	e	24	1.0472	0.8980	36	1.17	0.2512	0.05	-0.7740	2.8684	2.850	0.461	17.610
1	24	f	6	-3.4823	0.7695	36	-4.53	<.0001	0.05	-5.0430	-1.9216	0.031	0.006	0.146
3	24	f	12	-3.3783	0.6634 '	36	-5.09	<.0001	0.05	-4.7238	-2.0327	0.034	0.009	0.131
ł	24	1	24	-3.4702	0.5751	36	-6.03	<.0001	0,05	-4.6366	-2.3037	0.031	0.010	0.100
•	6	e	12	1.8467	1.3572	36	1.36	0.1821	0.05	-0.9059	4.5993	6.339	0.404	99.416
•	6	e	24	1.7533	0,8839	36	1.98	0.0550	0.05	-0.03923	3.5459	5.774	0.962	34.672
 }	6	f	6	-2.7761	0.7530	36	-3.69	0.0007	0.05	-4.3033	-1.2490	0.062	0.014	D.287
)	6	f	12	-2.6721	0.6442	36	-4.15	0,0002	0.05	-3.9786	-1.3656	0.069	0.019	0.255
•	6	f	24	-2.7640	0,5528	36	-5.00	<.0001	0.05	-3.8852	-1.6429	0.063	0.021	0.193
	12	e	24	-0.09335	1.5254	36		0.9515	0,05	-3.1870	3.0003	0.911	0.041	20.092
	12	- I f	6	-4.6228	1.4535	36		0.0030	0.05	-7.5707	-1.6750	0.010	<0.001	0.187
	12	r f	12	-4.5188	1.4002	36	-3.23	0.0027	0.05	-7,3586	-1.6790	0.010	<0.001	
	+	f			1									0.187
) 	12	· · · · · · ·	24	-4.6107	1.3606	36	-3,39	0.0017	0.05	-7.3702	-1,8513	0.010	<0.001	0.157
•	24	f	В	-4.5295	1.0256	36	-4.42	<.0001	0.05	-6.5094	-2.4495	0.011	0.001	0.086
3	24	f	12	-4.4255	0.9486	36	-4 67	<.0001	0.05	-6.3492	-2.5017	0.012	0,002	0.082

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

.

Page 29 of 81

.

	24	F .	24	-4.5174	0.8890	36	-5.08	<.0001	0.05	-6.3204	-2.7143	0.011	0.002	0.066
f	6	f	12	0.1040	0.8280	36	0.13	0.9007	0.05	-1.5752	1.7832	1.110	0.207	5,949
f	6	f	24	0.01211	0.7590	36	0.02	0.9874	0.05	-1.5273	1 .5515	1.012	0.217	4.719
ſ.	12	f	24	-0.09191	0.6513	36	-0.14	0.8886	0.05	-1.4127	1.2289	0.912	0.243	3,417

.

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15

Page 30 of 81

Effects of Pseudomonas fluorescens (PI-CL145A) to glochidia from seven unionid mussel species Overall Modol: Glochidia Viability (unadjusted) - At 6, 12 and 24 h

The GLIMMIX Procedure

form=FDP sps=WAS

·	ation		
Data Set	WORK.GLOCHID	NA2	
Response Variable (Events)	via_glo		
Response Variable (Trials)	tot		
Response Distribution	Binomial		
Link Function	Logit		
	Default		
Variance Matrix	Diagonal		
	Maximum Likeliho	od	
Degrees of Freedom Method	Residual		
Class Level Information Class Levels Values conca 6 a b c d o f time 1 24 Number of Obsorvations Rea Number of Observations Use	1 ·		
Number of Events	595		
Number of Trials	1311		
Dimensions			
Covariance Parameters 1			
Columns In X 13			
Columns in Z 0			
Subjects (Blocks in V) 1			
Max Obs per Subject 18			
Optimization inform	lation		
in the second se	Newton-Raphson		
Parameters in Optimization 6			
Lower Boundaries)		
Upper Boundaries ()		
Fixed Effects	lot Profiled		
lin .	ration History		•••••
	Objective		Ма
teration Restarts Evaluation			
	4 79.355639344		1.38524
0 0			
1 0	3 79.297918426	0.05772092	0.0140
1 0	3 79.297918426 3 79.297913227	1	

Page 31 of 81

	F	t Statis	tics										
-2 Log	j Likel	ihood		158.60									
AIC (s	malle	r is bet	er)	170.60									
AICC	(small	er is be	tter)	178.23									
BIC (s	malle	ls bet	er)	175.94									
CAIC	(small	er is be	tter)	181.94									
HQIC	(small	er is be	tter)	171.33									
Pearso	on Ch	Squar	6	74,96									
Pearse	on Chi	-Squar	e / DF	6.25									
									· • ·	. 1			
Effect			مىسار ا	Paramete			D						
		conca	time	Estimate	Standa								
conca		a	ł	0.2283	ļ	0.3792	1		0.558	1			
conca		b	1 7	0.01482	i	0.3042			0.9620				
conca		с	1	0.02247	; ; ·	0.3747		· · · · · · · · · · · · · · · · · · ·	0.953				
conca		d		-0.4387		0.3859		-1.14		}			
conca		a -		-1.0074		0.3622		-2.78		-			
conca		f		0.04478		0.3054	12	0.15	0.8859	B			
time			24	0	· · · · ·			· · · · · ·	·····	<u>· </u>			
conca		a	24				•	•		·			
conca'			24	0				'		:			
conca'		a	24	0		•	•			·			
conca'		· ·	24	0	 	•	1			<u>.</u>			
conca'		e	24	0			•	<u>.</u>		·			
conca		F	24	O				·					
Residu	al		l	6.2465		<u> i</u> i	:İ			1			
	Тур	e III Te	sts of I	Ixed Effec	ts								
Effect				DFFVa		> F							
conca	-		5		61 0.2								
time			D			لیت۔ ا							
conca*	time :		0	··· =i ···									
			· I										
			Ödi	is Ratio Es	timates								
conca	time	_cond	a tim	e Estimat	e DF 1	95% Conf	dence	Limits					
a	_	f		1.20	1 12	0.410	3	3,471	İ				
b		f	_	0.97	0 12	0.379	2	2,482					
c		f		0.97	8 12	0.34	1	2.804	!				
		f		0.61	7 12	0.211	1	1.802					
d	1	ſ		0,34	9 12	0.124	4	0.980	;				
			••••••										
	•					onca Lea	st Squ	ares Mi	eans		ł ·	0.0	
		Ι		1	1	1		1			ĺ	Standard Error	
8					l								
e conca			tandar	d Error D			·		new	Upper		Mean	Mean M
d e conce	0.2	283	· · · · · · · · · · · · · · · · · · ·	0.3792 1	2 0.6	0.558	5 0.0	5 -0.5	980	1.0546	0.5568	Mean 0.09359	Mean M 0.3548 0.7
e conca		283 482	· · · · · · · · · · · · · · · · · · ·		2 0,6 2 0,0	0.558 0.9620	5 0.0 0 0.0	05 -0.5 05 -0.6	980 i 480 :			Mean	Mean M

Page 32 of 81

SAS Output

d	-0.	4367	•	0.385	9 12	-1.	14 0.277	8 0.0	5 -1.27	95 0.40	20 0.39	20	0.09197	0.21	76 0,59	192	
e	-1.	0074	ļ	0.362	2 12	-2,	78 0.016	6 0.0	5 -1.79	66 -0.21	82 0.26	75	0.07097	0.14	23 0.44	57	
1	0.0	4478		0.305	4 12	C.	15 0.885	9 0.0	5 -0.62	07 0.710	02 0.51	12	0.07632	0.349	96 0.67	05	
							Differe	nces of	conca L	east Squa	aros Moa	ans					
conc	a _cor	nca	Estimat		tandaro Erro		t Value	Pr>		Lowe	vr Up	peri	Odd Rati		Confid mit for (Upper Confidence Limit for Odds Ratio
a	b	l	0.213	4	0.486	2 12	0.44	0.6684	0.05	-0.845	8 1.2	727	1.23	8	(0.429	3.571
a	c		0.205	в	0.533	1 12	2 0.39	, 0.7062	0.05	-0.955	8 1.3	673	1.22	8	(0.385	3.925
a	d	Ì	0.667	0	0.5410	12	1.23	0.2413	0.05	-0.511	9 1.8	458	1.94	8	· (0.599	8 ,333
a	8		1.235	7	0.5244	12	2.36	0.0363	0.05	0.0930	4 2.3	783	3.44	1		1.098	10.786
a	f		0.183	5	0.4869	12	0.38	0.7129	0.05	-0.877	5 1.2	444 i	1.20	1	(0.416	3.471
b	C		-0.0076	3	0.4826	3 12	-0.02	0.9876	0.05	-1.059	2 1.0-	439	0.99	2	(0.347	2.840
b	d		0.453	5	0.4914	1 12	0.92	0.3742	0.05	-0.617	1 1.5:	242	1.57	4	(0.540	4,591
b	e		1.022	2	0.4730	12	2.16	0.0516	0. 0 5	-0.0083	9 2.0	528	2.77	9	(0.992	7,790
b	f		-0.0299	7	0.4311	12	-0.07	0.9457	0.05	-0,969;	2 0.90	093	0.97	0	(0.379	2.482
С	d		0.461	2	0.5379	12	0.86	D.4080	0.05	-0.710	7 1.63	331	1.58	6	(0.491	5.120
c	e		1.029	•	0.5211	12	1.98	0.0716	0.05	-0.105	8 2.16	653	2.80	1		0.900	8.717
C .	1		-0.0223	1	0,4834	12	-0.05	0.9639	0.05	-1.075	5 1.03	309	0.97	8	(0.341	2.804
d	e		0.568	7	0,5292	12	1.07	0.3037	0.05	-0.584	5 1.72	218	1.76	6	(0.557	5.595
d	f		-0,483	5	0.4921	12	-0.98	0.3453	0.05	-1.5558	8 0.58	387	0.61	7	(). 2 11	1.802
e	1		-1.0522	2	0.4738	12	-2.22	0.0464	0,05	-2.0845	5 -0.019	989 :	0.34	9	(0.124	0.980
		• •		- · · · - ·		ti	me Least	Square	s Means	· ·						, i	
time	Estima	ite 1	Standard	l Error	DFtV	'aiue	; Pr > [t]	Alpha	Lower	Upper	Məan	į I		ower Mean	Upper Mean		
24	-0,18	93		0.1444	12	-1.31	0.2143	0.05	-0.5038	0.1252	0.4528	0,0	3577 0	.3766	0.5313		
														••••	' 		
	· · ··	r · …		· ·		c I Í	onca*tim	e Least	Squaree	s means						[
conca	time	Est	imate S	standard	l Error	DF	t Value	Pr >]t	Alpha	Lower	Uppor	Ме		ndard Error Mean	Lower Mean	Upp Mea	
a	24	0	.2283		0,37 9 2	12	0.60	0.5585	0.05	-0.5980	1.0546	0.55	68 0.	09359	0.3548	0.74	6
b	24	0.0	01482		0.3042	12	0.05	0.9620	0.05	-0.6480	0.6776	0.50	37 0,	07605	0.3434	0.663	32
c	24	0,0	02247		0,3747	12	0.06	0.9532	0.05	-0,7939	0.8388	0.50	56 0.	09366	0.3113	0.698	12
d	24	-0	.4387	(0.3859	12	-1.14	0.2778	0.05	-1.2795	0.4020	0.39	20 0 .1	09197	0.2176	0.599	2
e 	24	-1	.0074	(0.3622	12	-2.78	0.0166	0.05	-1.7966	-0.2182	0.26	75 0.	07097	0.1423	0.445	57
1	24	0.0	04478	. (0.3054	12	0.15	0.8859	0.05	-0.6207	0.7102	0.51	12 0.	07632	0.3496	0.670	15

					1.1
		time Lea			
	 		· · · · · · ·		

	conca	time	_conca	time	Estimate	Standard Error		t Value	Pr > [t]	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
1	а	24	b	24	0.2134	0.4862	12	0.44	0.6684	0.05	-0.8458	1.2727	1.238	0.429	3.571
	a	24	c	24	0.2058	0.5331	12	0.39	0.7062	0.05	-0.9558	1.3673	1.228	0.385	3.925
ļ	a	24	d	24	0.6670	0.5410	12	1.23	0.2413	0.05	-0.5119	1.8458	1.948	0.599	6.333
	a	24	e	24	1.2357	0.5244	12	2.36	0.0363	0.05	0.09304	2.3783	3.441	1.098	10,786

Page 33 of 81

SAS Output

a	24	f	24	0.1835	0.4869	12	0.38	0.7129	0.05	-0.8775	1.2444	1.201	0.416	3.471
b	24	c	24	-0.00766	0.4826	12	-0.02	0.9876	0.05	-1.0592	1.0439	0.992	0.347	2.840
b	24	d	24	D.4535	0.4914	12	0.92	0.3742	0.05	-0.6171	1.5242	1.574	0.540	4.591
b	24	e	24	1.0222	0.4730	12	2.16	0.0516	0.05	-0.00839	2.0528	2.779	0.992	7.790
b	24	f	24	-0.02997	0.4311	12	-0.07	0.9457	0.05	-0.9692	0.9093	0.970	0.379	2.482
c	24	d	24	0.4612	0.5379	12	0.86	0.4060	0.05	-0.7107	1.6331	1.586	0.491	5.120
C	24	8	24	1.0299	0.5211	12	1.98	0,0716	0.05	-C.1056	2.1653	2.801	0.900	8.717
C	24	f	24	-0.02231	0.4834	12	-0.05	0.9639	0.05	-1.0755	1.0309	0.976	0.341	2.804
d	24	e	24	0,5687	0.5292	12	1.07	0.3037	0.05	-0.5845	1.7218	1.766	0.557	5.595
d	24	f	24	-0.4835	0.4921	12	-0.98	0.3453	0.05	-1.5558	0.5887	0.617	0.211	1.802
е	24	f	24	-1.0522	0.4738	12	-2.22	0.0464	0.05	-2.0845	-0.01989	0.349	0.124	0.980

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15

Page 34 of 81

.

Effects of Pseudomonas fluorescens (PI-CL145A) to glochidia from seven unionid mussel species Overall Model: Glochidia Vlability (unadjusted) - At 6, 12 and 24 h

The GLIMMIX Procedure

form=SDP sps=BLS

Model Inform	nation
Data Set	WORK.GLOCHIDIA2
Response Variable (Events)	via_glo
Response Variable (Trials)	tot
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Variance Matrix	Diagonal
Estimation Technique	Maximum Likelihood
Degrees of Freedom Method	Residual
Class Level Information	
Class Levels Values	
conca 6 a b c d e f	
time 3 6 12 24	
Number of Observations Rea	ad 54
Number of Observations Use	d 54
Number of Events	3005
Number of Trials	14012
Dimensions	
Covariance Parameters 1	
Columns in X 27	
Columns in Z 0	
Subjects (Blocks in V) 1	
Max Obs per Subject 54	
Optimization Inform	nation
Optimization Technique	Newton-Raphson
Parameters in Optimization	18
Lower Boundaries	0
Upper Boundaries	0
Fixed Effects	Not Profiled
	eration History
	Objective Max
Iteration Restarts Evaluation	ons Function Change Gradient
0 0	4 184.62071378 18.79475
1 0	3 173.98809789 10.63261589 2.104118
2 0	3 173.64686027 0.34123762 0.045959
` <u>3</u> 0	3 173,59835279 0.04850748 0.01659
4 0	3 173.58069969 0.01765310 0.006103

Page 35 of 81

5	0	3	173.57420591	0.00649377	0.002245
6	0	3	173.57181704	0.00238887	0.000826
; 7	0	3	173.57093823	0.00087881	0.000304
8	0	3	173,57061494	0.00032329	0.000112
9	0	3	173.57049601	0.00011893	0.000041
10	0	3	173.57045225	0.00004375	0.000015
. 11	0	3	173.57043616	0.00001610	5.565E-6

Convergence criterion (ABSGCONV=0.00001) satisfied.

Fit Statistics	
-2 Log Likellhood	347.14
AIC (smaller is better)	383.14
AICC (smaller is better)	402.68
BIC (smaller is better)	418.94
CAIC (smaller is better)	436.94
HQIC (smaller is better)	396.95
Pearson Chi-Square	137.50
Pearson Chi-Square / DF	3.82

			Parameter	· Estimatos		· ····	
Effect	conca	time	Estimate	Standard Error	DF	t Value	Pr > t
conca	a		-1.7763	0.2266	36	-7.84	<.0001
conca	b		-2.5373	0.2930	36	-8.66	<.0001
conca	c		-3.3828	D.3459	36	-9,78	<.CC01
conca	d		-4.8730	0.7415	36	-6.57	<.0001
conca	e		-4.8581	0.6540	36	-7.43	<.0001
conca	f		1,6550	0.1428	36	11.59	<.0001
time		6	0.1407	0.2355	36	0,60	0.5541
time		12	0.4771	0,2901	36	1.64	0,1088
time		24	0	,			,
conca*time	a	6	-0.4866	0.4003	36	-1.22	0.2321
conca*time	a	12	-0.3185	0.4090	36	-0.78	0.4412
conca*time	a	24	O				-
conca*time	b	6	-2.4801	0.9545	36	-2.60	0.0135
conca*time	b	12	-0.2233	0.4994	36	-0.45	0.6575
conca*time	b	24	0				
conca*time	C	6	-0,7873	0.6886	36	-1.14	0.2605
conca*time	C	12	-1.5131	0.7958	36	-1.90	0.0653
conca*time	c	24	٥			,	
conca*time	d	6	0.4683	0.9963	36	0.47	0.6412
conca*time	d	12	-13.1562	638,55	36	-0.02	0,9837
conca*time	d	24	0		.	•	•
conca*time	e	6	-0 .04760	1.0607	36	-0.04	0,9645
conca*time	C	12	-0.5731	1.2139	36	-0.47	0.6397
conca*time	e	24	0				
conca*time	f	6	0	• •			

Page 36 of 81

-

,

SAS Output

ł

conca.	time	f	2	0		•	
conca*	time	f 2	24	0		•	
Residu	ai	ļ		3.8195		•	•! •!
	Тур	oe III Test	s of Fib	ced Effects			
Effect		Num DF	Den I	DF F Valu	e F	Pr > F	
conca		5		36 164.0	7 <	.0001	
time		2		36 0,9	0 0	4153	
conca*	time	10		36 1.1	9 0	3275	
			Odds	Ratio Esti	mate	8	
conca	time	_conca	time	Estimate	DF	95% Confid	ence Limits
	time	_conca f	time	Estimate 0.025	DF 36	95% Confid 0.018	ence Limits 0.035
3	time	_conca f f	timə				
3	timə	conca f f	timə	0.025	36 36	0.018	0.035
a b 3	time	conca f f f f	l timə	0.025 0.006	36 36	0.018	0.035 0.012
conca a b c d	time	_conca f f f f	timə	0.025 0.006 0.003	36 36 36	0.018 0.003 0.002	0.035 0.012 0.006
a b c d	time 6	_conca f f f f f	time 24	0.025 0.006 0.003 <0.001	36 36 36 36	0.018 0.003 0.002 <0.001 (0.035 0.012 0.006 >999.999

conca	Estimato	Standard Error	DF		conca Le Pr > t				Mean	Standard Error Mean	Lower Mean	Upper Mean
a	-1.8388	0.1232	36	-14.93	< 0001	0.05	-2.0886	-1.5889	0.1372	0.01458	0,1102	0.1695
b	-3.2325	0.3223	36	-10.03	< 0001	0.05	-3.8862	-2.5788	0.03796	0.01177	0.02011	0.07051
c	-3.9437	0.3070	36	-12.85	<.0001	0.05	-4.5663	-3.3211	0.01901	0.005724	0.01029	0.03485
d	-8.8964	212.85	36	-0.04	0,9669	0.05	-440.57	422.78	0.000137	0.02913	459E-194	1.0000
e	-4 8591	0.4751	36	-10.23	<.0001	0.05	-5.8226	-3.8956	0.007698	0.003629	0.002951	0.01993
1	1.8609	D.1151	36	16.17	<.0001	0.05	1.6275	2,0944	0.8654	0.01341	0,8358	0.8904

conca	_conca	Estimate	Standard Error	DF	t Value	Pr > t	Aipha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
a	b	1.3938	0.3451	36	4.04	0.0003	0.05	0.6940	2.0936	4,030	2.002	8,114
a	c	2.1049	0.3308	36	6.36	<.0001	0.05	1.4341	2.7758	8,207	4.196	16.052
a	d	7.0576	212.85	36	0.03	0.9737	0.05	-424.62	438.73	>999,999	<0.001	>999.999
a	e	3.0203	0.4908	36	6.15	<.0001	0.05	2.0249	4.0157	20.497	7.576	55.459
a	f	-3.6997	0,1686	36	-21.94	<.0001	D.05	-4.0416	-3.3578	0.025	0.018	0.035
b	c	0.7112	0.4451	36	1.60	0,1188	0.05	-0.1916	1.6139	2.036	0.826	5.023
b .	đ	5.6639	212.85	36	0.03	0,9789	0.05	-426.01	437.34	288,261	<0.001	>999.999
b	6	1.6265	0.5741	36	2,83	0.0075	0.05	0.4622	2.7908	5.086	1.588	16.295
b	f	-5,0935	0,3423	36	-14.88	<.0001	0.05	-5.7876	-4.3994	0.006	0.003	0.012
c	d	4.9527	212.85	36	0.02	0.9816	0.05	-426.72	436,63	141.553	<0.001	>999.999
c	e	0.9153	0,5656	36	1.62	0.1143	0.05	-0.2318	2.0625	2.498	0.793	7.866
c	ſ	-5.8047	0.3279	36	-17.70	<.0001	0.05	-6,4696	-5.1397	0.003	0.002	0.006
d	Ð	-4.0373	212.85	36	-0.02	0.9850	0.05	-435.72	427.64	0.018	<0.001	>999,999

Page 37 of 81

SAS Output

d e	f	-10.7 -6.7		212 0,49	88		05 0.96 75 <.00		15 -442. 15 -7.71			<0.00 0.00		<0.001 <0.001	>999.99
	1.								····		0.7200		•	-0.001	
₁						time	Least Sq	uares M	eans				- 1		
lime	Estim	ate Stand	lard Er	ror DF	t Valı	ie Pr>	ti Alpha	Low	or Upp)er	Mear	Standar Erro Mea	or Lowe		
3	-3.04	136	0.24	165 36	-12.3	35 <.000	1 0,05	5 -3.543	5 -2.54	38	0.04549	0.0107	0 0.02810	0.07284	
12	-4.78	324	106.	42 36	-0.0	0.964	4 0.05	-220.6	2 211.	06 0	0.008307	0.876	7 1.53E-96	5 1.0000	
24	-2,62	288	0.18	67 36	-14.0	8 <.000	1 0.05	3.007	4 -2.25	01:	0.06731	0.0117	2 0.04709	0.09534	
			•			Diffe	rences c	of time L	east Squ	Jares	Means				
líme	time	Estimate	5	Standard Error	DF	t Value i	Pr > [t]	Alpha	Lower	Upp)er	Odds Ratio		Lower dence Odds Ratio	Uppe Confidenc Limit for Odd Rati
3	12	1.7397		106.42	36	0.02	0.9871	··	214.10	217.		5.690		<0.001	>999.99
5	24	-0.4149		0.3092	36	-1.34	0.1880	0.05	1.0419	0.21	22	0.660		0.353	1.23
12	24	-2,1536		106.42	36	-0.02	0.9840	0.05	217.99	213.	69	0.116		<0.001	>9999.99
				·····		con	ca*time L	.east Sq	uares M	Ieans					
onca	time	Estimate	Stan	dard Erro	r DF		Pr > t		Low		Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean
	6	-2.1223	-	0.231	2 36	-9.18	.0001	0.05	-2.59	12 -	1.6533	0.1070	0.02208	0.06971	0.1607
	12	-1.6177		0.178	з зе	-9.07	<.0001	0.05	-1.97	93 -	1.2562	0.1655	0.02462	0.1214	0.2216
	24	-1.7763		0.226	6 36	-7.84	4 <.0001	0.05	-2.23	58 -	1.3168	0.1448	0.02805	0.09658	0.2113
1	6	-4.8767		0.877	3 36	-5.56	6 < 0001	0.05	-6.65	60 -	3.0974	0.007564	0.006586	0.001285	0.04321
	12	-2.2835		0.281	8 36	-8.10	<.0001	0.05	-2.85	51 -	1.7120	0.09250	0.02365	0.05442	0.1529
	24	-2.5373	1	0.2930	1		4		-3.13	16 -	1.9430	0.07328	0.01990	0.04182	0.1253
	6	-4.0295		0,5468		de la la	<.0001		-5.13		2.9204	0.01747	0.009388	0.005832	0.05115
	12	-4.4188		0.6554		-	: <.0001		-5.74		3.0897	0.01190	0.007709	0.003179	0.04353
	24 6	-3.3828		0.3459				0.05	-4.08		2.6813	0.03284	0.01099	0.01655	0.06409
	12	-17.5521		0.6223 638.55	· · · ·		· · · · · · · · · · · · · · · · ·	0.05	-5.520		3.0019	0.01387	0.008512		0.04734
	24	-4.8730		0.7419	1		- · - · ·		-6.376		277.48 3.3892	2.384E-8	0.000015	0	1.0000
	6	-4.7650		0.8013				0.05	-6.390			0.007592	0.005587 0.006714	0.001698	0.03327
	12	-4.9541	1	0.9806				0.05	-6,942			0.007005	0.006821		0.04149
	24	-4.8581	<u>†</u>	0.6540	· · · · · · ·	-7.43		0.05	-6.184			0.007705	0.005000		0.02842
	6	1,7957		0.1873		9.59	1	0.05	1.415		2,1755	0.8576	0.02287	0.8047	0.8980
	12	2.1321	1	0.2525	3 36	8.44	<.0001	0.05	1.620		2.6443	0.8940	0.02393	0.8348	0.9337
	24	1.6550	ļ.,	0.1428	3 36	11.59	<.0001	0.05	1.365	53	1.9447	0.8396	0.01924	0.7966	0.8749
· ·		-				Differenc		ncattim			mr Maa			· · · · ·	
onca	time	_conca	time E	stimate	Stan	dard Error Di					Lower	upper	Odds Ratio	Lowe Confidenc Limit fo Odd Rate	e Confidenc r Limit fo s Odd
	6	a	12	-0.5045	0	2920 3	6 -1.7	3 0.092	6 0.0	5 -	1.0967	0.08762	0.604	0.33	4 1.09
	6	a	24	-0.3459	0,	3237 3	6 -1.0	7 0.292	3 0.0	5 -	1.0025	0.3106	0.708	0.36	7 1.36
	6	b	5	2.7545	0.	9073 3	3 3,0	4 0.004	4 0.0	5	0.9144	4,5945	15.713	2.49	5 98,94

Page 38 of 81

a	6	b	12	0.1613	0.3645	36	0.44	0.6608	0.05	-0.5780	0.9005	1.175	0,561	2,481
а	6	b	24	0.4151	0.3733	36	1.11	0.2735	0.05	-0.3419	1.1721	1.514	C.71D	3.229
a	6	c	6	1.9072	0.5937	36	3.21	0.0028	0.05	0.7031	3.1113	6.734	2.020	22,450
а	6	c	12	2.2966	C.6950	36	3.30	0.0022	0.05	0.8871	3,7060	9.940	2.428	40.691
a	6	с	24	1.2606	0.4161	36	3.03	0,0045	0.05	0.4167	2.1045	3.527	1.517	8,203
a	6	d	6	2.1418	0.6639	36	3.23	0.0027	0.05	0.7953	3.4883	8.515	2.215	32,730
a	6	d	12	15,4298	638,55	36	0.02	0.9809	0.05	-1279.60	1310.46	>999.999	<0.001	>999.999
a	6	d	24	2.7508	0,7767	36	3.54	0.0011	0,05	1.1755	4.3260	15.654	3.240	75.640
a	6	е	6	2.6428	0.8339	36	3.17	0.0031	0.05	0.9514	4.3341	14.052	2,589	76.254
a	6	e	12	2.8318	1.0075	36	2.81	0.0079	0.05	0,7885	4.8751	16.976	2.200	130.989
a	6	e	24	2.7358	0.6936	36	3.94	0.0004	0.05	1.3291	4.1426	15.422	3.777	62.966
a	6	r	6	-3.9180	0.2975	36	-13,17	<,0001	0.05	-4.5214	-3.3145	0.020	0.011	0,036
8	6	f	12	-4.2544	0.3424	36	; -12.43	<.0001	0.05	-4.9458	-3.5600	0.014	0.007	0.028
a	5	f	24	-3.7773	0.2718	36	-13.90	<.0001	0,05	-4.3285	-3.2261	0.023	0.013	0.040
9	12	a	24	0.1586	0.2883	36	0.55	0.5857	0,05	-0.4261	0.7433	1.172	0.653	2.103
a	12	b	6	3.2590	0.8953	36	3.64	0.0008	0.05	1.4433	5.0747	26.023	4,235	159.919
а	12	þ	12	0.6658	0.3335	36	2.00	0.0535	0.05	-0.01049	1.3421	1.946	D.990	3.827
a	12	b	24	0.9196	0.3430	36	2.68	0.0110	0.05	0.2240	1.6152	2.508	1.251	5.029
9	12	c	6	2.4117	0.5752 ;	36	4.19	0.0002	0,05	1.2452	3.5782	11.153	3.474	35,810
8	12	C	12	2.8011	0.6792	36	4.12	0.0002	0.05	1.4237	4.1785	16.463	4.152	65,271
а	12	C	24	1.7651	0.3892	36	4.54	<.0001	0.05	0,9758	2.5544	5.842	2,653	12.863
а.	12	ıd	6	2.6464	0.6474	36	4.09	0.0002	0.05	1.3334	3.9593	14.102	3,794	52.421
a	12	d	12	15.9343	638.55	36	0.02	0.9802	0.05	-1279.10	1310.96	>999.999	<0.001	>999.999
a	12	ď	24	3.2553	0.7626	36	4.27	0.0001	0.05	1.7086	4.8020	25.927	5.521	121.748
9	12	e	6	3.1473	0 8208	36	3.83	0.0005	0.05	1.4825	4.8120	23.273	4,404	122.982
9	12	e	12	3.3363	0 9967	36	3.35	0.0019	0, 05	1.3150	5.3577	28,116	3.725	212,237
a	12	6	24	3.2404	0.6778	36	4.78	<.0001	0.05	1.8656	4.6151	25.543	6,460	100.995
а	12	1	6	-3.4134	0.2586	36	-13,20	<.0001	0.05	-3.9378	-2.8890	0.033	0.019	0.056
a	12	f	12	-3.7499	0.3091	36	-12.13	<.0001	0.05	-4.3768	-3.1230	0.024	0,013	0.044
9	12	f	24	-3.2728	0.2284	36	-14.33	<.0001	0.05	-3.7361	-2.8095	0.038	0.024	0.060
a i	24	b	6	3,1004	0.9061	36	3.42	0.0016	0.05	1.2627	4.9381	22,207	3.535	139,505
3	24	b	12	0.5072	0.3616	36	1.40	0.1692	0.05	-0.2261	1.2405	1.661	0.798	3.458
9	24	b	24	0.7610	0.3704	36	2.05	0.0472	D.05	0.009803	1.5122	2.140	1.010	4.537
3	24	c	6	2,2531	0.5919	36	3.81	0,0005	0.05	1.0527	3.4536	9.518	2.865	31.614
3	24	C	12	2.6425	0.6934	36	3.81	0.0005	0.05	1.2362	4.0488	14.049	3.443	57.331
a	24	c	24	1.6065	0.4135	36	3.88	0.0004	0.05	0.7679	2.4452	4.985	2.155	11.533
a	24	d	6	2.4878	0.6623	36	3.76	0.0003	0.05	1.1446	3.8310	12.034	3.141	46,108
3	24	d	12	15.7758	638.55	36	0.02	0.9804	0.05	-1279,25	1310.81	>999.999	<0.001	>999.995
3	24	d	24	3.0967	0.7753	38	3.99	0,0003	0.05	1.5242	4.6692	22.125	4.592	106.607
1	24	e	6	2.9887	0.8327	36	3.59	0,0010	0.05	1.3000	4.6774	19.860	3,669	107.494
)	24	e	12	3.1777	1.0064	36	3.16	0.0032	0.05	1.1366	5,2189	23,993	3.116	184.734
. <u>.</u>	24	e	24	3.0818	0.6921	36	4.45	<.0001	0.05	1.6781	4,4854	21.797	5.355	88.715
1	24	f	6	-3.5720	0.2939	36	-12.15	<.0001	0,05	-4.1681	-2,9759	0,028	0.015	0.051
	24	f	12	-3.9084	0.3393	36	-11.52	<.0001	0.05	-4.5965	-3.2204	0.020	0.010	0.040
	24	f	24	-3.4313	0.2678	36	-12.81	<.0001	0.05	-3,9745	-2.8881	0.032	0.019	0.056
··· -··- }	6	b	12	-2.5932	0.9215	36	-2.61	0.0079	0.05	-4.4620	-0.7243	0.075	0.012	0.485

Page 39 of 81

SAS Output

	6	b	24	-2.3394	0.9250	36	-2.53	0.0160	0.05	-4.2153	i -0.4635	0,096	0.015	0.629
b	6		6	-0.8473	1.0338	36	1	· · · ·	0.00	-2,9439		-	0.053	3,488
- b	6	c	12	-0.4579	1.0951	36		·{···		-2.6788			0.069	
b	6	c	24	-1.4939	0.9431	36			0.05	-3.4065				5.830
b	6	- d	6	-0.6126	1.0757	36		+···		-2.7942			0.033	1.520
b	6	d	12	12.6754	638.55	36	0.02	·{ · · ·	0.05				0.061 <0.001	4.801
b	6	. d	24	-0.00371	1.1487	36	-0.00		0.05	-2,3334	2.3260		· · · · · · · · · · · · · · · · · · ·	>999.999
ñ. b	6	e	6	-0.1117	1.1882	36		0.9256	0.05				0,097	10.237
р b	6	- e	12	0.07734	1.3158	36	0.06	0.9535		-2.5214	2.2980	1	0.080	9.954
b	6	e	24	-0.01863	1.0943	36	h		0.05	-2.5912	2.7459		0.075	15.579
	6	f	6	···· ··· ··· ···		···	-0.02	0.9865	0.05	-2,2379	2.2006	0.982	0.107	9.031
b	6	· • • • • • • • • • • • • • • • • • • •	·-····	-6.6724	0.8971	36	-7.44	<.0001	0.05	-8.4918	i	D.001	<0.001	0.008
b	. 6	-	12	-7,0089	C.9130	36	-7.68	<.0001	0.05	-8.8604	-5.1573	<0.001	<0.001	0.005
				-6.5317	0.8889	36	-7.35	<.0001	0.05	-8.3345	-4.7290	0.001	<0.001	0.009
b 	12	b	24	0.2538	0.4065	36	0,62	0.5364	0.05	-0.5707	1.0783		0.565	2.940
b	12	c	6	1.7459	0.6152	36	2.84	0.0074	0.05	0.4983	2.9936	9 - 14	1.646	19.957
b	12	°.	12	2.1353	0.7134	36	2.99	0.0050	0.05	0.6885	3.5821	8,460	1.991	35.949
b	12	C	24	1.0993	0.4462	36	2.46	0.0187	0.05	0.1944	2.0042	3,002	1.215	7.420
b	12	d	6	1.9806	0.6832	36	2.90	0.0063	0.05	0.5950	3.3661	7.247	1.813	28.965
b	12	d	12	15.2685	638,55	36	0.02	0.9811	0.05	-1279.76	1310.30	>999.999	<0.001	>999,999
b	12	d	24	2.5895	0.7932	36	3.26	0.0024	0.05	0.9807	4,1982	13.323	2.666	66.569
b	12	e	6	2,4815	0.8494	36	2.92	0.0060	0.05	0,7589	4.2041	11.959	2.136	66.958
b	12	e	12	2.6705	1.0203	36	2.62	0.0129	0.05	0.6013	4.7398	14.448	1.824	114.4 11
b	12	e	24	2.5746	0.7121	36	3.62	0.0009	0.05	1.1303	4.0188	13,125	3,097	55,632
b	12	1	6	-4.0792	0.3383	36	-12.06	<.0001	0,05	-4.7654	-3.3930	0.017	0.009	0.034
b	12	₿f	12	-4.4157	0 3784	36	-11,67	<.0001	0.05	-5.1831	-3.6483	0.012	0 .00 6	0.026
b	12	11	24	-3.9386	0.3159	36	-12.47	<.0001	0.05	-4.5793	-3.2978	0.019	0.010	0.037
þ	24	C	6	1.4921	0.6204	36	2.41	0,0214	0.05	0.2339	2.7504	4.447	1.264	15.648
b .	24	C	12	1.8815	0.7179	36	2.62	0.0128	0.05	0.4256	3.3375	6,563	1.530	28,147
b	24	c	24	0.8455	0,4534	36	1.87	0.0703	0.05	-0.07394	1.7650	2,329	Q 929	5.841
b	24	d	6	1.7268	0.6879	36	2.51	0.0167	0.05	0.3317	3.1219	5.622	1.393	22.688
o 	24	d	12	15.0148	638.55	36	0.02	0.9814	D.05	-1280.02	1310.04	>999.999	<0.001	>999.999
)	24	d	24	2.3357	0.7973	36	2.93	0.0059	0.05	0.7187	3.9527	10.337	2.052	52.074
)	24	e	6	2.2277	0.8532	36	2.61	0.0131	0.05	0,4974	3.9580	9.278	1.644	52,351
,	24	e	12	2.4167	1.0235	36	2.36	0.0237	0.05	0.3411	4.4924	11.209	1.406	89,336
)	24	e	24	2.3208	0.7166	36	3.24	0.0026	0.05	0.8674	3.7741	10,183	2.381	43.560
>	24	f	6	-4.3330	0.3478	36	-12.46	<.0001	0.05	-5.0383	-3.6277	0.013	0.006	0.027
,	24	1	12	-4.6695	0.3868	36	-12.07	<.0001	0.05	-5.4540	-3.8849	0.009	0.004	0.021
)	24	f	24	-4.1923	0.3260	36	-12.86	<.0001	0.05	-4.8535	-3.5312	0.015	0.008	0.029
••••••	6	c	12	0.3894	0.8535	36	0,46	0.6510	0.05	-1.3417	2.1204	1.476	0.261	8.335
:	6	c –	24	-0.6466	0.6471	36	-1.00	0.3243	0.05	-1.9589	0.6657	0.524	0,141	1.946
	6	d	6	0.2346	0.8285	36	0.28	0.7786	0.05	-1.4456	1.9148	1.264	0.236	6.786
••••	6	d	12	13.5226	638.55	36	0.02	0.9832	0.05	-1281.51	1308.55	>999.999	<0.001	>999.999
	6	d	24	D.8435	0.9213	36	0.92	0.3660	0.05	-1.0250	2.7121	2,325	0,359	15.061
• •	6	e	6	0.7356	0.9701	36	0.76	0.4532	0.05	-1.2318	2.7029	2.087	0,359	14,924
	6	e	12	0,9246	1.1228	36	0,82	0.4156	0.05	-1.3525	3.2017	2.521 ;	0.292	
	6	e	24	0.8286		36		0.3375	0.05					24.574
	- `	ļ .		0.0200	0,0020			0.0070	0.00	-0.9003	2.5575	2.290	0.406	12.904

Page 40 of 81

	6	f	6	-5,8252	0.5780	36	-10.08	<.0001	0.05	-6.9974	-4.6529	0.003	<0.001	0.010
c	e	f	12	-6.1616	0.6023	36	-10.23	<.0001	0.05	-7.3832	-4.9400	0,002	<0.001	0.007
c	6	f	24	-5.6845	0.5652	36	-10.06	<.0001	0.05	-6,8307	-4.5382	0.003	0.001	0.011
C	12	c	24	-1.0360	0.7411	36	-1.40	0.1707	0,05	-2,5389	0.4669	0.355	0.079	1.695
c	12	d	6	-0.1548	0.9038	36	-0.17	0.8650	0.05	-1.9877	1,6782	0.857	0.137	5.356
C	12	d	12	13.1332	638.55	36	0.02	0.9837	0.05	-1281.90	1308.16	>999.999	<0.001	>999.999
c	12	d	24	0,4542	0.9896	36	0.46	D.6490	0.05	-1.5528	2.4612	1.575	0.212	11.719
c	12	e	6	0.3462	1.0351	36	0.33	0,7400	0.05	-1.7532	2.4455	1,414		11.537
c	12	e	12	0,5352	1.1794	36	0.45	0.6527	0,05	-1.8568	2.9273	1.708	0,156	18,676
c	12	e	24	0.4392	0.9258	36	0.47	0.6381	0.05	-1.4384	2.3169	1.552	0.237	10.145
С	12	f	6	-6.2145	0.6816	36	-9.12	<.0001	0.05	-7,5969	-4.8322	0.002	<0.001	0.008
с	12	f	12	-6.5510	0.7023	36	-9.33	<.0001	0.05	-7,9754	-5.1266	0.001	<0.001	0.000
с	12	f	24	-8.0739	C.6707	36	-9.06	<.0001	0.05	-7.4342	-4,7135	0.002	<0.001	0.009
с	24	d	6	0.8812	0.7120	36	1.24	0,2239	0.05	-0.5628	2,3253	2,414	C.570	10.230
c	24	d	12	14,1692	638.55	36	0.02	0.9824	0.05	-1280.86	1309.20	>999.999	<0.001	>999.999
c	24	d	24	1,4902	0.8182	36	1.82	0.0769	0.05	-0.1693	3.1496	4,438	0.844	23,327
с	24	e	6	1.3822	0.8727	36	1.58	0.1220	0,05	-0.3878	3.1522	3.984	0.679	23.387
с.	24	e	12	1.5712	1.0398	36	1.51	0.1395	0,05	-0,5377	3.6801	4.812	0.584	
c	24	e	24	1.4752	0.7398	36	1,99	0,0538	0.05	-0.02521	2.9757	4.372	0.975	19.603
 c	24		6	-5.1785	0.3934	36	سندت ومتروحها	<.0001	0.05	-5.9763	-4.3808	0.006	0,0/3	
 C	24	F	12	-5.5150	0,4283	36		<.0001	0.05	-6.3836	-4.6464	0.000	0.003	0.013
с	24	F	24	-5.0379	0.3743	36	-13.46	<.0001	0,05	-5.7969	-4.2788	0.004	0.002	0,010
Ы	6	d	12	13,2880	638,55	36	0.02	0.9835	0.05	-1281.74		>999.999	<0.003	
	6	d	24	0,6089	0.9681	36	0.63	0.5333	0.05	-1.3544	2,5722	1.838	0,258	>999,999
" d	6	нч ө	6	0.5009	1.0146		0.49	0.6245	0.05	-1.5567	2,5585	1.650		13.095
	6	e	12	0.6900	1.1614	36	0.49	0.5562	0.05	-1.6655			0.211	12.917
d	6	e	24	0.5940	0.9028		0.66	0.5147	0.05	-1.2369	3.0455 2.4249	1,994	0.189	21,020
 1		 f	6	-6.0598	0.6499	36	-9.32	<.0001	0.05	-7.3779	-4.7417	1.811	0.290	11.301
3	6	f	12	-6.3962	0.6716	36	-9.52	<.0001	0.05	-7.7583		0.002	<0.001	0.009
u d	6	¦	24	-5.9191	0.6385	36	-9.52	<.0001	0.05		-5.0341	0.002	<0.001	0.007
d	12	d	24	-12.6791	638.65	36	-0.02	0.9843	0.05			0.003	<0.001	0.010
а 	12	te	6	-12,7871	638.55	36				-1307.71	· · · · · · · ·	<0.001	<0.001	>999.999
) d	12	· • · · · · ·	12		1		-0.02	0.9841	0.05	-1307.82		<0.001	<0.001	>999.999
4 	12	e e	24	-12,5980 -12,6940	638.55 638.55	36 36	-0.02	0.9844	0,05	-1307.63	1282.43	<0.001	• <0.001	>999.999
L	12	е 1				30		0.9842	0.05		1282.34	<0.001	<0.001	>999,999
		· - · - ·	6	-19.3478	638.55		-0.03	0.9760	D.05		1275.68	<0.001	<0.001	>999,999
1 	12	f,	12	-19.6842	638.55	36	-0.03	0.9756	D.05		1275,35	<0.001	<0.001	>999.999
1	12	1	24	-19.2071	638.55	36	-0.03	0.9762	D.05		1275.82	<0.001	<0,001	>999.999
1 1	24	e	6	-0.1080	1.0917	36	-0.10	0.9217	0.05	-2 3221		0.898	0.098	8,216
	24	e	12	0.06105	1.2294	36	0.07	0.9478	0.05	-2.4123	2.5744	1.084	0.090	13.123
1	24	e	24	-0.01493	0.9887	36	-0,02	0.9880	0.05	-2.0201	1.9902	0.985	0,133	7.317
l 	24	Ľ	6	-6,6687	0.7648	36	-8.72	<,0001	0.05	-8.2197	-5.1177	0.001	<0.001	0.006
l 	24	1	12	-7.0051	0.7833	36	-8.94	<.0001	0.05	-8.5938	-5,4165	<0.001	<0.001	0.004
i	24	ļf	24	-6.5280	0,7551	36	-8.64	<.0001	0.05	-8.0595	-4.9966	0.001	<0.001	0.007
)	6	e	12	0.1890	1.2663	36	0.15	0.8822	0.05	-2.3792		1.208	0.093	15.757
) · · -	6	e	24	0.09307	1.0343	36	0.09	0.9288	0.05	-2,0045	2.1906	1,098	0 135	8.941
•	6	1	6	-6.5607	0.8228	36	-7.97	<.0001	0.05	-8.2295	-4.8919	0.001	<0.001	0.008

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 41 of 81

SAS Output

	6	j –	12	-6.8972	0.8401	36	-8.21	<.0001	0.05	-8.6010	-5,1933	0.001	<0.001	0.006
e	6	1	24	-6,4200	0.8139	36	-7.89	<.0001	0.05	-8,0707	-4.7694	0.002	<0.001	0.008
θ	12	e	24	-0.09598	1.1787	36	-0.08	0.9356	0.05	-2.4864	2,2945	0.908	0,083	9.919
9	12	ſ	6	-6.7498	0,9983	36	-6.76	<.0001	0.05	-8.7745	-4.7250	0.001	<0.001	0.009
e	12	t	12	-7.0862	1.0126	36	-7.00	<.0001	0.05	-9.1399	-5,0325	<0.001	<0.001	0.007
e	12	f	24	-6.6091	0.9910	36	-6.67	<.0001	0.05	-8.6188	-4.5993	0.001	<0.001	0.010
е	24	f	6	-6.6538	0.6803	36	-9.78	<.0001	0.05	-8.0334	-5.2742	0.001	<0.001	0.005
e	24	f	12	-6.9902	0.7010	38	-9.97	<.0001	0.05	-8.4120	-5.5685	<0.001	<0.001	0.004
e	24	ſ	24	-6.5131	0.6694	36	-9.73	<.0001	D.05	-7.8707	-5.1555	0,001	<0.001	0.006
f	6	f	12	-0.3364	0.3144	36	.07	0.2917	0.05	-0.9740	0.3011	0.714	0.378	1.351
f	6	ſ	24	0.1407	0.2355	36	0.60	0.5541	0.05	-0,3370	0.6183	1.151	0.714	1,856
f	12	f	24	0.4771	0.2901	36	1.64	0.1088	0.05	-0.1113	1.0655	1.611	0.895	2.902

.

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15

Page 42 of 81

Effects of Pseudomonas fluorescons (Pf-CL145A) to glochidia from seven unlonid mussel species Overall Model: Glochidia Viability (unadjusted) - At 6, 12 and 24 h

The GLIMMIX Procedure

form=SDP sps=FAM

Model Inform	ation
Data Set	WORK.GLOCHIDIA2
Response Variable (Events)	via_glo
Response Variable (Trials)	tol
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Variance Matrix	Diagonal
Estimation Technique	Maximum Likelihood
Degrees of Freedom Method	Residual
Class Level Information	
Class Levels Values	
conca 6 abcdef	
1lme 3 6 12 24	
Number of Observations Read	54
Number of Observations Used	
Number of Events	5027
Number of Trials	15013
· · · · · · · · · · · · · · · · · · ·	i =
Dimensions	
Covariance Parameters 1	
Columns in X 27	
Columns in Z 0	
Subjects (Blocks in V) 1	
Max Obs per Subject 54	
Optimization Inform	ation
Optimization Technique	
Parameters in Optimization 1	Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Car
Lower Boundaries 0	1
Upper Boundaries 0	
Fixed Effects	lot Profiled
lte	ration History
	Objective Max
Iteration Restarts Evaluation	ns Function Change Gradlent
	4 460.01101939 . 77,99063
······	3 411.74220165 48.26881773 11.63871
	3 410.4642484 1.27795325 0.487795
3 0	3 410.46192819 0.00232021 0.000989
4 0	3 410.46192818 0.00000001 4.089E-9

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics	
-2 Log Likelihood	820.92
AIC (smaller is better)	856.92
AICC (smaller is better)	876.47
BIC (smaller is better)	892,73
CAIC (smaller is better)	910.73
HQIC (smaller is better)	870.73
Pearson Chi-Square	530.92
Pearson Chi-Square / DF	14.75

				Estimates			
Effect	conca	time	Estimate	Standard Error	DF	t Value	Pr >
conca	a	 	0.2895	0.2533	36	1.14	0.260
conca	b		-0.4134	0.3118	36	-1.33	0.193
conca	C		-2,0526	0.4425	36	-4.64	<.000
conca	d		-2.7365	0.6515	36	-4.20	0.000
conca	e		-4.1417	1.1671	36	-3.55	0.001
conca	f		0.8082	0.2944	36	2,75	0.009
time		6	0.1592	0.4307	36	0.37	0.7138
time		12	-0,09110	0.3819	36	-0.24	0,8128
time		24	0				
conca*time	a	6	-0.1688	0.5582	36	-0.30	0.7640
conca*time	а	12	0.1370	0.5199	36	0,26	0.7937
conca*time	а	24	0				
conca*time	b	6	-0,6162	0.6019	36	-1.02	0.3128
conca*timo	b	12	0.2573	0.5648	36	0.46	0,6514
conca*time	Ь	24	0			•	
conca*time		6	0.1796	0,6959	35	0.26	0.7976
conca*time	c	12	0.5988	D.7266	36	0,82	0.4153
conca*time	c	24	0		•		
conca*time	d	6	0.7450	0.8433	36	0.88	0.3829
conca*time	đ	12	-0.2426	1.0188	36 ;	-0.24	0.8131
conca*time	ď	24	0				• • • •
conca*time	e	6	0.2641	1.5983	36	0.17	0.8697
conca*time	e	12	0,6257	1.4930	36	0.42	0.6776
conca*time	e	24	Dj	•••	•		••••
conca*time	f	6	0	•			••••••
conca*time	f	12	0	· · · · · · · · · · · · · · · · · · ·	••••		• •
conca*time	1	24	0				
Residual			14.7478		-		· · · ·
	1		·		.1		
Тур	e II Tes	ts of F	ixed Effect	9			
Effect	Num DF	Den	DF F Valu	ie Pr>F			
onca			36 37.	58 < 0001			

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 43 of 81

į.

Page 44 of 81

SAS Output

	-1.1480		0.2008	36	-5.72	<.0001	0.05	1.5552	-0,7407	0.2409	0.03672	0.174			
me	Estimate j	Standard	Error	DF t	Value	Pr > [t]	Alpha	Lower	Upper	Mean	Standard Error Mean	Low Mea			
in.				- 	tli	ne Least	Squaros	Means	, - · · · ·						
	ŧ!	-4.0030	, .	0.008	1 30	-7.04	~.0003	0.05	-5.8879	-3.418		10	0.00	13	0.0
	f	-3.3772		0.370		i	<.0001	0,05	-4.1294	-2,625	i da el contra	34	0.01	[0.0
	le f	1.2761 -3.3772		0.673			0.0662	0.05	-0.09007	2.642	*** * * * * *	683	0.91	••••	14.0
	f	-2.6014		0.284		3	<.0001	0.05	-3.1789	-2.023		74	0.04		0.1
	e	2.0519		0.630			0,0025	0.05	0.7736	3.330	and a second	783	2.16	8	27.9
	d	0.775		0.405			0.0636	0.05	-0.04613	1.597	9 2.1	172	0.95	55	4.9
	f	-1.3412		0.235		-5.71	<.0001	0,05	-1.8180	-0.864	5 0.	262	0.16	32	0.4
	e	3,312	•	0.609	5 36	5.43	<.0001	0.05	2.0760	4.548	2 27.4	143	7.97	73	94 .4
	đ	2,0360	5	0,372	1 36	5.47	≺.0001	0,05	1.2814	2.790	6 7.	360	3.60)2	16.2
	C	1.260	z	0.286	3 36	4.40	<.0001	0.05	D.6795	1,840	9 3.	526	1.97		6.3
	1	-0.529		0.218			0.0208	0.05	-0.9731	-0.0854		589	0.37		0.9
	e	4.124		0.603			<.0001	0.05	2.9003	5,347			18.17		210.1
	d	2,848		0.362			<.0001	0.05	2.1137	3.582			4.50		35.9
	c	2.072	-{ - ·	0.220		3.68	0.0008	0.05	0.3639	1.259	- 1 <u>-</u> -	252 ! 941	1.43		3,8 13,8
onca	_conca	Estimat	•	Standa Erro 0.220	or DF	t Value			Lower	Upp	er Ra	atio	Low Confidence Limit for Ode Rat	ce ds Li Jo	Up Confiden mit for Od Ra
	Г	·	· · · · · · · · ·			Differen	ces of c	onca Le	ast Squar	res Moar	IS		· · · · · · · · · · · · · · · · · · ·	- · f - · · ·	·· · · · · · ·
	0.030	~L	0.164	06 50	5.0		1 0.08	vi 0.4	965 1.16	03 U. 6	965 0.0	3485	0.6216	0.7623	
	-3.822		0,586		-6.£		· · · ·		108 -2.63			1228	· ·	06698	
- · ·	-2.546		0,332			36 <.000			201 -1.87			2239		0.1332	
	-1,770		0.232			33 ; < 000		- +	413 -1.29	[· ··· · - ·	2666	0.09610 0	0.2142	
•	-0.510)3 :	0.167	6 36	-3.0	0.004	3 0.05	5 -0.8	501 -0.17	05 0.3	751 0.0	3928	0.2994 (0.4575	
	0.301	6	0.143	9 36	2.	0 0.043	2 0.05	5 0.009	703 0.59	35 0.6	748 0.0	3518	0.5024 (0.6442	I
conce	Estimat	te Stand	ard Erro	or DF	t Vali	1e Pr >	ij Alpha	a Lo	wer Upp	er M		idard Error Viean	Lower Moan	Upper Mean	
	·	- 1			r	conca	Least Se	quares ! !	Aeans		· · ··	7			l
	1.111L		L				I 	لــــــــــــــــــــــــــــــــــــ							
	12			1.148	36	0.65		2.399							
• •••••	6	2	4	0.010	36	0,00 0.65		0.033							
i	f			0.034	4 1	0.01		D.072							
; 	f			0.074	36	0.04		0.132							
)	. f			0.262	36	0.16	2	0.421							
3	f			0,589	36	0.37	8	0.918							
onc	a time _	conca ti	r		1 1	95% Cont	idence	lmits							
		· ·	dds Ra	tio Est	imates										

Page 45 of 81

SAS Output

12	-1.2		0.2089 36		2 <.000		ŧ		25 0.225	· · · ·	4 0.1598	0.3074		
24	-1.3	744	0,2489 36	-5.5	2 <.000	1 0.05	-1.879	-0.86	96 0.201	9 0.0401	1 0.1325	0.2953		
					Diffe	rences o	f time L	east Squ	ares Mea	กร				
time	time	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Odds Ratio	Limit	Lower onfidence for Odds Ratio	Lir	Uppe Confidenc nit for Odd Rati
6	12	0.08815	0.2898	36	0.30	0.7627	0.05	-0.4995	0.6758	1.092		0.607		1.96
6	24	0.2264	0.3198	36	0.71	0.4835	0.05	-0.4222	0.8750	1.254		0,656		2,39
12	24	0.1383	0,3249	36	0.43	0.6730	0,05	-0.5207	0.7973	1.148		0,594		2,22
						*time i e:	ast Sau	ares Mea						
conca	time	Estimate	Standard Error	DF]		1	1		r Mean	Standard Error Mean		Uppe Mea	
a.	6	0.2799	0.2489	36	1.12	0.2683	0.05	-0.2249	9 0.7847	0.5695	0.06102	0.4440	0.686	7
8	12	0.3354	0.2457	36	1.37	C.1806	0.05	-0.162	8 0.8337	0.5831	0.05973	0.4594	0.697	1
3	24	0.2895	0,2533	36	1.14	0.2605	0.05	-0.224	1 0.8032	0.5719	0.06201	0.4442	0.690	7
)	6	-0.8704	0.2821	36	-3.09	0.0039	0.05	-1.4424	4 0.298	0.2952	0.05868	0.1912	0.426	0
b	12	-0.2471	0.2755	36	-0,90	0,3757	0.05	-0.8059	9 0.3117	0.4385	0.06784	0.3088	0.577	3
3	24	-0.4134	0,3118	36	-1.33	0.1933	0.05	-1.0458	3 0.2190	0.3981	0.07472	0.2600	0.554	5
5	6	-1.7139	0,3209	36	-5.34	<.0001	0.05	-2.3647	7 -1.0630	0.1527	C.04151	0.08590	0.256	7
2	12	-1.5449	0.4317	36	-3.58	0.0010	0.05	-2.420	-0.6693	0.1758	0.06256	0.08162	0.338	7
;	24	-2.0526	0.4425	36	-4.64	<.0001	0.05	-2,9500	-1.1552	0.1138	0.04462	0.04974	0.239	5
1	6	-1.8323	0.3182	36	-5.76	<.0001	0.05	-2.4776	3 -1.1871	0.1380	0.03784	0.07744	0 233	8
ł	12	-3.0702	0.6838	36	-4.49	<.0001	0.05	-4.4571	1 -1,6833	0.04435	0.02899	0.01146	0.156	7
1	24	-2.7365	0,6515	36	-4.20	0.0002	0.05	-4.0577	-1.4152	0.06086	0.03723	0.01699	0.195	4
e	6	-3.7184	1.0035	36	-3.71	0.0007	0.05	-5.7537	-1.6832	0.02370	0.02322	0.003161	0.156	7 !
	12	-3.6070	0.8493	36	-4,25	0.0001	0.05	-5.3295	5 -1.8846	0.02642	0.02184	0.004823	0.131	9
3	24	-4.1417	1.1671	36	-3.55	0.0011	0.05	-8.5086	5 -1.7748	0.01565	0.01798	0.001488	D.144	9
	6	0.9674	0.3143	36	3.08	0.0040	0.05	0.3299	1.6049	0.7246	0,06273	0.5817	0.832	7
	12	0.7171	0.2432	36	2.95	0.0056	0.05	0.2238	1.2104	0.6720	0.05361	0.5557	0.770	4
	24	0.8082	0.2944	36	2.75	0.0094	0.05	0.2112	1.4053	0.6917	0.06278	0.5526	0.803	٥
			· · · -	···· ,	lifforono			o I ooot f	Souares A					
-		· · · · · · · · · · · · · · · · · · ·	-1	··· - •	an erenc		isa un	e Least t	squares /	heans	· · · · ·			
	i i						1		1			Confide	Wer	Upp Confiden

conca	time	_conca	timo	Estimate	Standard Error	DF	t Value	Pr> t	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
a	6	а	12	-0.05557	0.3497	36	-0.16	0,8746	D.05	-0.7649	0.6537	0.946	0.465	1.923
a	6	a	24	-0.00967	0.3551	36	-0.03	0.9784	0.05	-0.7299	0.7105	0.990	0.482	2.035
a	6	b	6	1.1503	0.3762	36	3.05	0.0042	0.05	0.3873	1.9132	3.159	1.473	6.775
a	6	b	12	0.5270	0.3713	36	1.42	0.1644	0,05	-0.2260	1.2600	1.694	0.798	3.597
a	6	b	24	0.6932	0.3990	36	1.74	0.0908	0.05	-0.1159	1.5024	2.000	0.891	4.492
a	6	c	6	1.9937	0.4061	36	4.91	<.0001	0.05	1.1701	2.8174	7.343	3.222	16.733
a	6	c	12	1.8248	0.4983	36	3.66	0.0008	0.05	0.8141	2.8355	6.201	2.257	17.038
а	6	c	24	2,3325	0.5077	36	4.59	<.0001	0.05	1.3029	3,3621	10.304	3,680	28,850
a	6	d	6	2,1122	C.4040	36	5,23	<.0001	0.05	1.2930	2.9315	8,267	3.644	18.755
a	6	d	12	3.3500	0.7277	36	4.60	<.0001	0.05	1.8741	4.8260	28.504	6.515	124.705

.

Page 46 of 81

8	6	d	24	3.0163	0.6974	36	4.33	0.0001	0,05	1.6020	4.4307	20.417	4.963	83.994
a	6	e	6	3,9983	1.0339	36	3.87	0.0004	0,05	1.9014	6.0952	54.506	6.695	443.729
a	6	e	12	3.8869	0.8850	36	4.39	<.0001	0.05	2.0920	5.6819	48,761	8,101	293.493
a	6	e	24	4,4216	1.1933	36	3.71	0.0007	0,05	2.0014	6.8417	83,227	7.400	936.079
а	6	f	6	-0.6875	0.4009	36	-1.71	D.0950	0.05	-1.5007	0.1256	0,503	0.223	1.134
а	6	f	12	-0.4372	0.3480	36	-1.26	0.2171	0.05	-1.1430	0.2685	0,646	0.319	1.308
a	6	f	24	-0.5283	0.3655	36	-1.37	0.1790	0.05	-1.3102	0.2535	0.590	0.270	1.289
а	12	a	24	0.04590	0.3529	36	0.13	0.8972	0.05	-0.6697	0.7615	1.047	0.512	2.142
a	12	b	6	1.2058	0.3741	36	3.22	0.0027	0.05	0.4472	1.9645	3.340	1.564	7.131
а	12	b	12	0.5826	0.3692	36	1.58	0.1233	0.05	-0.1661	1,3313	1.791	0.847	3,766
a	12	b	24	0.7488	0.3970	36	1.89	0.0673	0.05	-0.05630	1.5539	2.115	0.945	4.730
a	12	c	6	2.0493	0.4042	36	5.07	<.0001	0.05	1.2295	2.8690	7.762	3.420	17.619
a	12	c	12	1.8803	0.4968	36	3.79	0.0006	0.05	0.8729	2.8878	6.556	2.394	17.954
a	12	c	24	2.3881	0.5061	36	4.72	<.0001	0.05	1.3616	3.4145	10.892	3.903	30.402
а	12	d	6	2.1678	0.4020	36	5.39	<,0001	0.05	1.3525	2.9831	8.739	3.867	19,748
a	12	d	12	3.4056	0.7266	36	4.69	<.0001	0.05	1.9319	4.8793	30,133	6.903	131,541
a	12	đ	24	3.0719	D.6963	36	4.41	<.0001	0.05	1.6598	4.4840	21.583	5.258	88,589
a	12	6	6	4.0539	1.0332	36	3.92	0.0004	0.05	1.9585	6.1492	57.621	7.089	468.357
а	12	e	12	3.9425	0.8841	36	4.46	<.0001	0.05	2,1494	5.7356	51.547	8.580	309.701
a	12	e	24	4.4771	1.1926	36	3.75	0.0006	0.05	2,0584	6.8959	87.983	7.833	988.238
a	12	f	6	-0.6319	0.3990	36	-1.58	0.1219	0.05	-1.4411	0.1772	0.532	0.237	1.194
а	12	f	12	-0,3817	0.3457	36	-1.10	0.2769	0.05	-1.0828	0.3195	C.683	0.339	1,376
a	12	f	24	-0.4728	0.3834	36	-1.23	0.2256	0.05	-1.2504	0.3049	0.623	0.286	1.356
a	24	Þ	6	1.1599	0.3791	36	3.06	0.0042	0.05	0.3911	1.9288	3,190	1,479	6.881
a	24	b	12	0.5367	0.3743	36	1.43	0.1602	0.05	-0.2223	1.2957	1.710	0,801	3.654
а	24	b	24	0,7029	0.4017	36	1.75	0.0887	0.05	-0.1118	1.5176	2.020	0.894	4.561
а	24	c	6	2.0034	0.4088	36	4.90	<.0001	0.05	1.1743	2.8325	7.414	3.236	16,988
a	24	c	12	1.8344	0,5005	36	3,66	8000.0	0.05	0.8193	2.8496	6.262	2.269	17.281
а	24	c	24	2.3422	0,5098	36	4.59	<.0001	0.05	1.3082	3.3762	10.404	3,699	29,258
a	24	đ	6	2.1219	0.4067	36	5.22	<.0001	0.05	1.297:]	2.9467	8.347	3.659	19.042
а	24	d	12	3,3597	0.7292	36	4.61	<.D001	0.05	1.8807	4.8387	28,781	6.558	126,303
а	24	d	24	3.0260	0.6990	36	4.33	0.0001	0.05	1.6084	4.4436	20.6*5	4.995	85.061
a	24	0	6	4.0080	1.0350	36	3.87	0.0004	0.05	1.9089	6.1070	55.036	6.746	449.007
8	24	e	12	3.8966	0.8863	36	4.40	<.0001	0.05	2.0991	5.6940	49.235	8.159	297.092
a	24	e	24	4.4312	1,1942	36	3.71	0.0007	0.05	2.0092	6.8532	B4.035	7.458	946.941
a	24	f	6	-0.6778	C.4037	36	-1.68	0.1018	0.05	-1.4965	0.1408	0,508	0.224	1.151
a	24	f	12	-0,4276	0.3511	36	-1.22	0.2313	0.05	-1.1397	0.2846	0.652	0.320	1.329
а	24	f	24	-0.5187	0.3884	36	-1.34	0.1901	0.05	-1.3063	0.2689	0.595	0.271	1.309
b	6	b	12	-0.6233	0.3943	36	-1.58	0.1227	0.05	-1.4229	0.1764	0.536	0.241	1.193
!b	6	b	24	-0.4570	0.4205	36	-1.09	0.2843	0.05	-1.3098	0.3957	0.633	0.270	1.485
d l	6	C	в	0.8435	0.4273	36	1.97	0.0561	0.05	-0.02305	1.7100	2.324	0,977	5,529
b	6	c	12	0.6745	0.5157	36	1.31	0.1992	0.05	-0.3714	1.7204	1.963	0.690	5,587
b	6	c	24	1.1822	0.5247	36	2.25	0.0304	0.05	D.1180	2.2464	3.262	1.125	9.454
b	6	d	6	0.9620	0.4252	36	2.26	0.0298	0.05	0.09962	1.8243	2.617	1,105	6.198
b	6	d	12	2.1998	0.7397	36	2.97	0.0052	0.05	0.6995	3.7000	9.023	2.013	40.448
b	6	d	24	1.8661	0.7099	36	2.63	0.0125	0.05	0.4263	3.3059	6.463	1.532	27.272
1.	. 1		r	T		1	7.							

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 47 of 81

	6	е	6	2.8481	1.0424	36	2.73	0.0097	0.05	0.7340	i 4,9622	17.254	2.083	142.90
þ	6	е	12	2.7367	0,8949	36	3,06	0.0042	0.05	0.9217	4.5517	15.435	2.513	94.789
b	6	e	24	3.2713	1.2007	36	2.72	0.0099	0.05	0.8363	5.7064	26.346	2.308	300.773
b	6	1	6	-1.8378	0,4223	36	-4.35	0.0001	0.05	-2.6943	-0.9813	0.159	0.068	0.378
b	6	1	12	-1,5875	0.3724	36	-4.26	0.0001	0.05	-2.3429	-0.8321	0.204	3e0,C	0.435
b	6	f	24	-1.6786	0.4077	36	-4.12	0.0002	0.05	-2,5055	-0.8517	0.187	0.082	0.42
b	12	b	24	0.1662	0.4161	36	0.40	0.6919	0.05	-0.6777	1.0101	1.181	0 508	2.74
b	12	C	6	1.4667	C.4230	36	3.47	0.0014	0.05	0.6089	2.3245	4.335	1.838	10.222
Ь	12	c	12	1.2978	0.5122	36	2,53	0.0158	0.05	0.2591	2.3365	3.661	1.296	10.34
ь	12	c	24	1.8055	0.5212	36	3.46	0.0014	0.05	0.7483	2.8626	6,083	2.114	17.507
b	12	d	6	1.5852	0.4209	36	3,77	0.0006	0.05	0.7316	2,4388	4.880	2.078	11.459
5	12	d	12	2.8230	0.7373	36	3.83	0.0005	0.05	1.3278	4.3183	16.828	3.773	75.069
b	12	d	24	2.4893	0.7073	36	3.52	0.0012	0,05	1.0548	3.9239	12.053	2.871	50.597
b	12	e	6	3,4713	1.0407	36	3.34	0.0020	0.05	1.3608	5.5819	32.179	3.899	265.564
b	12	6	12	3,3599	0.8929	36	3.76	0.0006	0.05	1.5491	5.1708	28.787	4.707	176.051
3	12	e	24	3.8946	1.1991	36	3.25	0.0025	0.05	1.4626	6.3265	49,134	4.317	559.212
)	12	f	6	-1.2145	0.4180	36	-2.91	0.0062	0.05	-2.0622	-0.3668	0,297	0.127	0,693
» •	12	f	12	-0.9642	0,3675	36	-2,62	0.0127	0,05	-1.7096	-0,2189	0.381	0.181	0.803
,	12	f	24	-1.0553	0.4032	36	-2.62	D.0129	0.05	-1.8731	-0.2376	0.348	0.154	0.78
3	24	c	6	1,3005	0.4475	36	2.91	0,0062	0.05	0.3930	2.2080	3.671	1,481	9,09
	24	c	12	1.1315	0.5326	36	2.12	0.0405	0.05	0.05143	2.2116	3,100	1.053	9.13
	24	c	24	1.6392	D.5413	36	3.03	0.0045	0,05	0.5414	2,7371	5.151	1.718	15.442
	24	d	6	1.4190	0.4455	36	3.19	0.0030	0.05	0.5155	2.3225	4.133	1.674	10.201
•	24	d	12	2.6568	0.7516	36	3.53	0.0011	0.05	1.1325	4.1811	14.251	3.103	65.43
)	24	d	24	2.3231	0.7223	36	3.22	0.0027	0.05	0.8583		10.207	2.359	44.163
	24	e	6	3.3051	1.0508	36	3,15	0.0033	0.05	1.1738	5.4363	27.250	3.234	229,586
	24	e	12	3.1937	0.9047	36	3.53	0.0012	0.05	1,3588	5.0286	24.378	3.891	152.717
	24	e.	24	3.7283	1.2080	36	3.09	0.0039	0.05	1.2784	6.1783	41.609	3.591	482.148
	24	f	6	-1.3808	0.4428	36	-3.12	0.0036	0.05	-2.2787	-0.4828	0.251	0.102	0.617
· · · · ·	24	!r	12	-1.1305	0.3955	36	-2.86	0.0070	0.05	-1.9325	-0.3285	C.323	0,145	0.720
	24	f	24	-1,2216	0.4288	38	-2.85	0.0072	0.05	-2.0913	-0,3519	0.295	C.124	0.703
	6	c	12	-0.1690		36	-0.31	0.7553	0.05	-1.2600	0.9220	0.845	0.284	2,514
	6	c	24	0.3388	0.5466	36	0.62	0.5393	0.05	-0.7698	1.4473	1.403	0,463	4.252
•••	6	d	6	0.1185	0.4519	36	0.26	0.7947	0.05	-0.7980	1.0350	1.126	0.450	2.815
	6	ď	12	1.3563		36		0.0810	0.05	-0.1757	2.8883	3.882	0.839	17.964
	6	d	24	1.0228		36	1.41	0,1677	0.05	-0.4502	2.4955	2.780	0.637	12,128
	6	e	6	2,0046		36		0.0651	0.05	-0.1322	4.1414	7.423	0.876	62,888
	6	e	12	1.8932		36		0.0442	0.05	0.05185	3.7345	6,641	1,053	41.869
••••	6	e	24	2.4278		36	2.01	0.0524	0.05	-0.02692	4.8826	11.334	0.973	
	6	f	6	-2.6812	· · · · ·	36	-5.97	<.0001	0.05	-3.5923		0.068		131.973
	6	r	12	-2.4310	· · · · · · · · · · · · · · · · · · ·	36		<.0001	0.05	-3.2476		0.088	0.028	0.170
	6	f	24	-2.5221		36		<.0001	0.05	·····	-1.6388		0.039	0.199
	12	c	24	0.5077		36		0.4169	0.05	-0.7461		0.080	0.033	0.194
	12	d	6	0.2874	i i	36	· · · · - · - •	0.5953	0.05		1.7615	1.661	0.474	5,821
	12	d	12	1.5253		36		0.5953		-0.8002 ;		1.333	0,449	3.956
		1.1.1.1.1.1		• • • • •	— — — — — — — — — — — — — — — — — — —				0.05	-0.1149	3.1654	4.596	0.891	23.699
	12	d	24	1.1916	0.7815	36	1.52	0.1361	0.05	-0.3935	2.7766	3.292	0.675	16.065

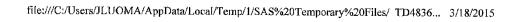
Page 48 of 81

	12	e	6	2.1735	1.0925	36	1.99	0.0543	0.05	-0.04205	4,3891	8.789	0.959	80.570
c	12	e	12	2.0622	0,9527	36	2.16	0,0371	0.05	0.1299	3,9944	7.863	1.139	54.294
c	12	e	24	2.5968	1.2444	36	2.09	0.0440	0.05	0.07312	5,1205	13.421	1,076	167.412
с	12	1	6	-2.5123	0.5340	36	-4.70	<.0001	0.05	-3 5954	-1.4292	0.081	0.027	0.239
c	12	f	12	-2.2620	0.4955	36	-4.56	<.0001	0.05	-3.2670	-1.2570	0.104	0.038	0.284
c	2	f	24	-2.3531	0.5226	36	-4.50	<.0001	0,05	-3.4129	-1.2933	0.095	0.033	0.274
c	24	d	6	-0.2203	0.5450	36	-0.40	0.6885	0.05	-1.325€	0.8850	0.8C2	0.266	2.423
C	24	d	12	1.0176	0.8145	36	1,25	0.2196	0.05	-D,6344	2.6695	2.766	0.530	14.432
c	24	d	24	0.6839	0,7875	36	0.87	0.3909	0.05	-0.9133	2.2810	1.982	0.401	9.787
¢	24	e	6	1.6658	1.0967	36	1.52	0.1375	0.05	-0.5585	3.8901	5.290	0.572	48.916
c .	24	θ	12	1.5544	0.9577	36	1.62	0.1133	0.05	-0.3878	3,4967	4.732	0.679	33.005
C	24	e	24	2,0891	1.2481	36	1.67	0.1028	0.05	0.4422	4.6204	8.077	0.643	101.533
¢	24	f	6	-3,0200	0.5428	36	-5,56	<.0001	0,05	-4.1208	-1.9192	0.049	0.016	0.147
c .	24	f	12	-2.7697	0.5049	36	-5.49	<.0001	0.05	-3.7937	-1.7457	0.063	0.023	0.175
C	24	f	24	-2,8608	0.5315	36	-5.38	<.0001	0.05	-3.9387	-1.7830	0.057	0,019	0.168
d	6	d	12	1.2378	D.7542	36	1.64	0.1095	0.05	-0.2918	2.7675	3.448	0.747	15.919
ď	6	d	24	0.9041	0.7250	36	1,25	0.22C4	0.05	-0.5663	2.3745	2.470	0,568	10.746
d	6	e	6	1.8861	1.0528	36	1.79	0.0816	0.05	-0.2490	4.0212	6.594	0.780	55.766
d	6	e	12	1.7747	0.9070	36	1.96	0.0582	0,05	-0.06468	3.6141	5.899	0.937	37,118
d	6	e	24	2,3093	1.2097	36	1.91	0.0642	0,05	-0.1439	4.7626	10.068	0,866	117.053
d	6	f	6	-2.7997	0.4472	36	-6.26	<.0001	0.05	-3.7068	-1.8927	0.061	0.025	0.151
d	6	f	12	-2.5495	0.4005	36	-6.37	<.0001	0.05	-3,3617	-1.7372	0.07B	0.035	0.176
d	6	f	24	-2.6406	0.4335	36	-6.09	<.0001	0.05	-3.5197	-1.7614	0.071	0.030	0.172
1	12	d	24	-0.3337	0,9445	36	-0.35	D.7259	0.05	-2.2492	1.5818	0.716	0.105	4.864
1	12	e	6	0.6483	1.2144	36	0,53	0.5967	0.05	-1.8146	3.1111	1.912	0.163	22.446
d	12	е	12	0.5369	1.0904	36	0.49	0.6254	0.05	-1.6746	2.7483	1.711	0.187	15.616
Ŀ	12	e	24	1.0715	1.3527	36	0.79	0.4335	0.05	-1.6718	3.8148	2.920	0.188	45.369
k	12	f	6	-4.0376	0.7526	36	-5.36	<.0001	0.05	-5.5640	-2.5112	0.018	0.004	0.081
t	12	f.	12	-3.7873	0.7258	36	-5.22	<.0001	0.05	-5.2593	-2.3153	0.023	0.005	0.099
1	12	f	24	-3.8784	0.7445	36	-5.21	<.0001	0.05	-5.3883	-2.3684	0.021	0.005	0.094
1 	24	e	6	0.9820	1.1964	36	0.82	0.4172	0.05	-1.4445	3,4085	2.670	0.236	30,219
1 	24	B	12	0.8706	1.0704	36	0.81	0.4214	0.05	-1,3003	3.0414	2.388	C.272	20,935
¥	24	e	24	1.4052	1.3366	36	1.05	0.3001	0.05	-1.3055	4.1159	4.076	0.271	61,309
1 	24	f	6	-3.7039	0.7233	36	-5.12	<.0001	0.05	-5.1709	-2.2369	0.025	0.006	0.107
!	24	f	12	-3.4536	0.6954	36	-4.97	<.0001	0.05	-4.8639	-2.0433	0.032	0.008	0.130
i	24	1	24	-3.5447	0.7149	36	, 4,96	<.0001	0.05	-4.9946	-2.0948	0.029	0.007	0.123
;	6	e	12	-0.1114	1.3147	36	-0.08	0.9329	0.05	-2.7777	2.5549	0.895	0.062	12.870
•	6	e	24	0.4233	1.5392	36	0.27	0.7849	0.05	-2.6983	3.5449	1.527	0.067	34.635
	6	f.	6	-4.6858	1.0516	36	-4.46	<.0001	0.05	-6.8186	-2.5531	0,009	0.001	0.078
	6	f	12	-4.4356	1.0326	36	-4.30	0.0001	0.05	-6.5297	-2.3414	0.012	0.001	0.096
	6	1	24	-4.5267	1.0458	36	-4.33	0.0001	0.05	-6.6477	-2.4057	0.011	0.001	0.090
	:2	e	24	0.5346	1.4434	36	0,37	0.7132	0.05	-2.3927	3.4620	1.707	0.091	31.879
	12	f	6	-4.5744	0.9056	36	-5.05	<.0001	0.05	-6.4111	-2.7378	0.010	0.002	0.065
	12	ſ	12	-4.3242	0.8835	36	-4.89	<.0001	0.05	-6,1159	-2.5324	0.013	0.002	0.079
	12	f	24	-4.4153	0,8989	36	-4.91	<.0001	0.05	-6.2383	2.5922	0.012	0.002	0.075
	24	f	6	-5.1091	1.2086	20	-4.23	0.0002	0.05	-7.5603		0.006	<0.001	0.070

Page 49 of 81

	24	f	12	-4.8588	1.1921	36	-4.08	0.0002	0.05	-7.2766	-2.4411	0,008	<0.001	0.087
e	24	f	24	-4.9499	1.2036	36	-4,11	0.0002	0.05	-7.3910	-2.5089	0.007	<0.001	0.081
f	6	f	12	0.2503	0.3974	36	0.63	0.5329	0.05	-0.5558	1.0563	1.284	0,574	2,876
f	6	ſ	24	0,1592	0.4307	36	0.37	0.7138	0.05	-0,7142	1.0326	1.173	0.490	2,808
f	12	f	24	-0.09110	0.3819	36	-0.24	0.8128	0.05	-0.8656	0.6834	0.913	0.421	1.981

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15


Page 50 of 81

Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidla from seven unlonid mussel species Overall Model: Glochidia Viability (unadjusted) - At 6, 12 and 24 h

The GLIMMIX Procedure

form=SDP sps=HGE

	- 1
Data Set	WORK.GLOCHIDIA2
Response Variable (Events)	via_glo
Response Variable (Trials)	tot
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Variance Matrix	Diagonal ,
Estimation Technique	Maximum Likelihood
Degrees of Freedom Method	Residual
Class Level Information	
Class Levels Values	
conca 6 a b c d e f	
time 3 6 12 24	
Number of Observations Rea	ad 55
Number of Observations Use	ed 55
Number of Events	9632
Number of Trials	17795
Covariance Parameters 1	
Columns in X27Columns in Z0Subjects (Blocks in V)1	
Columns in X 27 Columns in Z 0	
Columns in X27Columns in Z0Subjects (Blocks in V)1	mation :
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Information	mation Newton-Raphson
Columns in X 27 Columns in Z D Subjects (Blocks in V) 1 Max Obs per Subject 55 OptImization Inforr OptImization Technique	Newton-Raphson
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Infor Optimization Technique Parameters in Optimization	Newton-Raphson
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Inforr Optimization Technique Parameters in Optimization Lower Boundaries	Newton-Raphson 18
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Inforr Optimization Technique Parameters in Optimization Lower Boundaries Upper Boundaries	Newton-Raphson 18 0
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Inform Optimization Technique Parameters in Optimization Lower Boundaries Upper Boundaries Fixed Effects	Newton-Raphson 18 0 0 Not Profiled
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Inform Optimization Technique Parameters in Optimization Lower Boundaries Upper Boundaries Fixed Effects	Newton-Raphson 18 0 0 Not Profiled terration History
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Infor Optimization Technique Parameters In Optimization Lower Boundaries Upper Boundaries Fixed Effects	Newton-Raphson 18 0 0 Not Profiled teration History Objective
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Inform Optimization Technique Parameters in Optimization Lower Boundaries Upper Boundaries Fixed Effects	Newton-Raphson 18 0 0 Not Profiled teration History Objective
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Infor Optimization Technique Parameters in Optimization Lower Boundaries Upper Boundaries Fixed Effects Itoration Restarts Evaluation	Newton-Raphson 18 0 0 Not Profiled teration History Objective Function Change Gradi
Columns in X 27 Columns in Z 0 Subjects (Blocks in V) 1 Max Obs per Subject 55 Optimization Infor Optimization Technique Parameters In Optimization Lower Boundaries Upper Boundaries Fixed Effects Itoration Restarts Q D	Newton-Raphson 18 0 0 Not Profiled teration History Diffective Function 4 510.81807464 22.344

Convergence criterion (ABSGCONV=0.00001) satisfied.

····	Fit Statis	tics					
-2 Log Like	lihood		989.10				
AIC (smaile		er)	1025.10				
AICC (smal			1044,10				
BIC (smalle			1061,23				
CAIC (small			1079,23				
HQIC (small		'	1039.07				
Pearson Ch			652.18				
Pearson Ch			17.63				
			1/1001				
			Paramete	r Estimates			
Effect	conca	time	Estimate	Standard Error	DF	t Value	Pr >
conca	а		1.0843	0.2508	37	4.32	0.000
conca	b		0.6758	0,2320	37	2.91	D.006
conca	C		-0.3769	0,2570	37	-1.47	C.150
conca	d		-1,5650	0.4305	37	-3.64	0.000
conca	e		-1,7513	0.4526	37	-3.87	0.000
conca	f		0.8530	0.2251	37	3.79	0.000
time		6	0.1041	0.4256	37	0.24	0.808
time		12	-0.1312	0.3680	37	·······	
time		24	. 0		L	-11	
conca*time	a	6	0.1495	0.5887	37	0.25	0.800
conca*time	а	12	-0.1285	0.5505		• • • • • • • • • • • • •	0.816
conca*time	a	24	0				
conca*time	b	6	-0.2346	0.5530	37	-0.42	0.673
conca [*] time	b	12	0.1177	0.5287	• • • • •	0.22	
conca*time	b	24	O				
conca*time	с	5	0.5523	0.5477	37	1.01	0.3198
conca*time	c	12	0.4085	0.5305	37	0.77	0.446
conca*time	c	24	0			• • • • • •	
	d	6	0.6962	0.6693	37	1.04	0,3050
conca*time	d	12	1.2280	0.6510			0.067
		24	0				
conca*time	e	6	-0.01823	0.7507	37	-0.02	0.980
	е ,	12	-0.3635	0.8155	37	-0.45	0.6584
conca*time	e	24	0				
	(6	σ				
conca*time	. 1	12	0		··]	·····	
onca*time	· ····	24		···		····· ·	
Residual	1		17.6264	•			
	I. 			· · · · · · · · · · · · · · · · · · ·	i	· · · · · · · · · · · · · · · · · · ·	••••••
Тур	e III Tes	ts of F	ixed Effect	5			
ffect	Num DF	Den	DF ' F Val	ue Pr>F			
onca			37 97	10 - 0001			

Effect	Num DF	Den DF '	F Value	Pr>F
conca	5	37	27.49	<.0001
time	2	37	1.34	0.2736

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 51 of 81

Page 52 of 81

SAS Output

		Odd	is Ratio i	Estii	mates									
conca	time _	conca tim	e Estim	ate	DF 95	5% Confi	dence L	Imits						
a	T T		1.2	269	37	0.774	ı :	2.081						
ь	f		0.8	306	37	0,504	i en e	1.287						
	f			103	37	0.254		0.638						
d	f		0.1	69	37	0,099		0.290						
 e	f		0.0	065	37	0,033		0.127						
	6	24	1.3	343	37	0,922		1.956						
•	12	24		82	37	0,725		1.617						
-	di													
	,				cc	onca Leas	st Squa	res Mea	ns					
								-			Standard			
conca	Estimat	e Standar	d Error	DF	t Value	Pr > t	Alpha	Lowe	r Upper	Mean	Error Mean	Mean	Upper Mean	
a	1.082	3	0.1733	37	6.25	<.0001	0.05	0.731	2 1.4333	0.7469	0.03275	0.6751	0.8074	
b	0.627	8	0,1545	37	4.06	0.0002	0.05	0.314	7 0.9409	0,6520	0.03506	0.5780	0,7193	
C	-0,0656	7	0.1486	37	-0.44	0.6612	0.05	-0.366	8 0.2355	C.4836	0.03712	0.4093	0.5586	
d	-0.932	6	0.2027	37	-4.60	<.0001	0.05	-1.343	4 -0.5218	0.2824	0.04108	0.2070	0.3724	
e	-1,887	6	0.2803	37	-6.73	<.0001	0.05	-2.455	6 -1.3198	0,1315	0.03202	0.07903	0.2109	
ſ	0.844	0	0.1719	37	4.91	<.0001	0.05	0.495	8 1.1923	0,6993	0.03614	0.6215	0.7671	
onca	conca		Stan	idaro Erro		+ Value		L I		1	Odds	⊥ Limiti	for Odds	Limit for Odd
10110a				-110			Pr> t	Alpha	Lower	Upper	Ratio		Ratio	Rat
a	b	0.4545	0.	232	2 37	1.96	0.0579	0.05	-0.01596	0.9249	Ratio 1.575		0.984	2.5
a a	b c	0.4545 1.1479	0. 0.	232	2 37 3 37	1.96 5.03	0.0579 <.0001	0.05 0.05	-0,01596 0.6854	0.9249 1.6105	Ratio 1.575 3.152		0.984 1.985	2.53
a a a	b c d	0.4545 1.1479 2.0149	0, 0. 0.	232 228 266	2 37 3 37 7 37	1.96 5.03 7.56	0.0579 <.0001 <.0001	0.05 0.05 0.05	-0.01596 0.6854 1.4745	0.9249 1.6105 2.5553	Ratio 1.575 3.152 7.500	· · · · · · · ·	0.984 1.985 4.369	2.53 5.00 12.83
a a a	b c d	0.4545 1.1479 2.0149 2,9699	0, 0. 0. 0.	.232 .228 .266 .329	2 37 3 37 7 37 6 37	1.96 5.03 7.56 9.01	0.0579 <.0001 <.0001 <.0001	0.05 0.05 0.05 0.05	-0,01596 0.6854 1.4745 2,3021	0.9249 1.6105 2.5553 3.6376	Ratio 1.575 3.152 7.500 19.490		0.984 1.985 4.369 9.995	2.53 5.00 12.83 38.00
a a a a	b c d e	0.4545 1.1479 2.0149 2.9699 0.2383	0. 0. 0. 0.	.232 .228 .266 .329 .244	2 37 3 37 7 37 6 37 1 37	1.96 5.03 7.56 9.01 0.98	0.0579 <.0001 <.0001 <.0001 0.3353	0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563	0.9249 1.6105 2.5553 3.6376 0.7328	Ratio 1.575 3.152 7.500 19.490 1.269		0.984 1.985 4.369 9.995 0.774	2.53 5.00 12.83 38.00 2.04
a a a a a	b c d f c	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935	0. 0. 0. 0. 0. 0.	.232 .228 .266 .3290 .244 .214	2 37 3 37 7 37 6 37 1 37 4 37	1.96 5.03 7.56 9.01 0.98 3.23	0.0579 <.0001 <.0001 <.0001 0.3353 0.0026	0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279	Ratio 1.575 3.152 7.500 19.490 1.269 2.001		0.984 1.985 4.369 9.995 0.774 1.296	2.53 5.00 12.83 38.00 2.00 3.00
a a a a a	b c d e f c d	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604	0. 0. 0. 0. 0. 0. 0.	232 228 266 3290 244 214 2549	2 37 3 37 7 37 6 37 1 37 4 37 9 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12	0.0579 <.0001 <.0001 <.0001 0.3353 0.0026 <.0001	0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769	Ratio 1.575 3.152 7.500 19.490 1.269 2.001 4.761		0.984 1.985 4.369 9.995 0.774 1.296 2.840	2.53 5.01 12.87 38.00 2.00 3.06 7.99
a a a a a a a a a a a a a a a a a a a	b c d f c	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604 2.5154	0. 0. 0. 0. 0. 0. 0. 0. 0.	.232 .228 .266 .329 .244 .214 .214 .2548 .320	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86	0,0579 <,0001 <,0001 <,0007 0,3353 0,0026 <,0001 <,0001	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640	Ratio 1.575 3.152 7.500 19.490 1.269 2.001 4.761 12.372		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468	2.53 5.00 12.87 38.00 2.00 3.00 7.94 23.61
a a a a a a a b b b b b b b b b b b b b	b c d e f c d e f	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604 2.5154 -0.2162	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	232: 228: 266 329(244 214/ 254(320' 231'	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94	0,0579 <.0001 <.0001 <.000' 0.3353 0,0026 <.0001 <.0001 0.3556	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01598 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521	Ratio 1.575 3.152 7.500 19.490 1.269 2.001 4.761 12.372 0.806		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504	2.55 5.00 12.87 38.00 2.00 3.00 7.99 23.60 1.26
	b c d e f c d	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604 2.5154	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2322 2283 266 3299 244 2544 320 231 231	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 1 37 1 37 4 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45	0,0579 <,0001 <,0001 <,0007 0,3353 0,0026 <,0001 <,0001	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763	Ratio 1.575 3.152 7.500 19.490 1.269 2.001 4.761 12.372 0.806 2.380		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430	2.55 5.00 12.83 38.00 2.00 3.00 7.94 23.64 1.22 3.94
a a a a a a a a a a a a a a a a a a a	b c d e f c d e , f f d	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604 2.5154 -0.2162 0.8670	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	232: 228: 266 329(244 214/ 254(320' 231'	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 1 37 4 37 3 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74	0.0579 <.0001 <.0001 <.0007 0.3353 0.0026 <.0001 <.0001 0.3556 0.0014	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01598 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521	Ratio 1.575 3.152 7.500 19.490 1.269 2.001 4.761 12.372 0.806		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251	2.55 5.00 12.83 38.00 2.00 3.00 7.99 23.64 1.22 3.99 11.76
a a a a a a a a a a a a a a a a a a a	b c d e f c d e , f f d	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604 2.5154 -0.2162 0.8670 1.8219	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	2322 2283 266 3296 244 2548 320 2311 2514 3173	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 1 37 1 37 1 37 4 37 2 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74 -4.00	0.0579 <.0001 <.0001 <.0007 0.3353 0.0026 <.0001 <.0001 0.3556 0.0014 <.0001	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576 1.1790	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763 2.4649	Ratio 1.575 3.152 7.500 19.480 1.269 2.001 4.761 12.372 0.806 2.380 6.184 0.403		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251 0.254	2.55 5.00 12.83 38.00 2.00 3.00 7.90 23.60 1.22 3.90 11.77 0.63
a a a a a a a a a a a a a a a a a a a	b c d f c d e f d e f f d	0.4545 1.1479 2.0149 0.2383 0.6935 1.5604 2.5154 0.2162 0.8670 1.8219 -0.9097	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	2323 2283 266 3299 244 2548 320 231 2514 3173 22512 3460	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 1 37 1 37 1 37 4 37 2 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74 -4.00	0.0579 <.0001 <.0001 <.0007 0.3353 0.0026 <.0001 0.3556 0.0014 <.0001 0.0003 0.0059	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576 1.1790 -1.3701	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763 2.4649 -0.4493 1.6560	Ratio 1.575 3.152 7.500 19.490 2.001 4.761 12.372 0.806 2.380 6.184		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251 0.254 1.289	2.55 5.00 12.85 38.00 2.00 7.96 23.86 1.26 3.96 11.77 0.63 5.22
a a a a a a a a a a a a a a a a a a a	b c d e f c d e f d e f f d e f f e	0.4545 1.1479 2.0149 2.9693 0.2383 0.6935 1.5604 2.5154 -0.2162 0.8670 1.8219 -0.9097 0.95550	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	2323 2283 266 3299 244 2548 320 231 2514 3173 22512 3460	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 1 37 4 37 9 37 1 37 1 37 2 37 2 37 3 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74 -4.00 2.76	0.0579 <.0001 <.0001 <.0007 0.3353 0.0026 <.0001 0.3556 0.0014 <.0001 0.0003 0.0059 <.0001	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576 1.1790 -1.3701 0.2540	0,9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763 2.4649 -0.4493	Ratio 1.575 3.152 7.500 19.480 1.269 2.001 4.761 12.372 0.806 2.380 6.184 0.403 2.599		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251 0.254	2.55 5.00 12.83 38.00 2.06 3.09 23.66 1.25 3.96 11.77 0.63 5.23 0.25
	b c d e f c d e f d e f f d e f f e	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604 2.5154 -0.2162 0.8670 1.8219 -0.9097 0.9550 -1.7766	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	2323 2283 266 3290 244 2548 320 231 2514 3173 2272 3460 2658	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 1 37 4 37 9 37 1 37 1 37 2 37 2 37 3 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74 -4.00 2.76 -6.68	0.0579 <.0001 <.0001 <.0007 0.3353 0.0026 <.0001 0.3556 0.0014 <.0001 0.0003 0.0059 <.0001	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576 1.1790 -1.3701 0.2540 -2.3152	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763 2.4649 -0.4493 1.6560 -1.2381	Ratio 1.575 3.152 7.500 19.490 1.269 2.001 4.761 12.372 0.806 2.380 6.184 0.403 2.599 0.169		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251 0.254 1.209 0.099	2.55 5.00 12.83 38.00 2.00 7.96 23.66 1.26 3.96 11.77 0.63 5.22 0.22
	b c d e f c d e f d e f f d e f f e	0.4545 1.1479 2.0149 2.9699 0.2383 0.6935 1.5604 2.5154 -0.2162 0.8670 1.8219 -0.9097 0.9550 -1.7766	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	2323 2283 266 3290 244 2548 320 231 2514 3173 2272 3460 2658	2 37 3 37 7 37 7 37 1 37 4 37 4 37 1 37 1 37 1 37 1 37 3 37 3 37 3 37 3 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74 -4.00 2.76 -6.68	0.0579 <.0001 <.0001 <.0007 0.3353 0.0026 <.0001 <.0001 0.3556 0.0014 <.0001 0.0003 0.0089 <.0001 <.0001	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576 1.1790 -1.3701 0.2540 -2.3152	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763 2.4649 -0.4493 1.6560 -1.2381	Ratio 1.575 3.152 7.500 19.490 1.269 2.001 4.761 12.372 0.806 2.380 6.184 0.403 2.599 0.169		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251 0.254 1.209 0.099	2.55 5.00 12.83 38.00 2.00 7.94 23.84 1.24 3.96 11.77 0.63 5.22 0.25
	b c d e f c d e f d e f f d e f f f f f f	0.4545 1.1479 2.0149 2.9699 0.2383 0.6995 1.5604 2.5154 -0.2162 0.8670 1.8219 -0.9097 0.9550 -1.7766 -2.7316		2322 2283 266 3299 244 2548 320 231 2514 3173 2272 3460 2658 3288	2 37 3 37 7 37 6 37 1 37 4 37 9 37 1 37 4 37 9 37 1 37 4 37 9 37 1 37 3 37 3 37 3 37 tim	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74 -4.00 2.76 -6.68 -8.31 = Least S	0.0579 <.0001 <.0001 0.0353 0.0026 <.0001 0.03566 0.0014 <.0001 0.0556 0.0014 <.0001 0.0569 <.0001 <.0001 0.0589 <.0001 3.0006 <.0001 3.0006 3.000	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576 1.1790 -1.3701 0.2540 -2.3152 -3.3979	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763 2.4649 -0.4493 1.6560 -1.2381 -2.0654	Ratio 1.575 3.152 7.600 19.490 1.269 2.001 4.761 12.372 0.806 2.380 6.184 0.403 2.599 0.169 0.066 Standard Error I		0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251 0.254 1.209 0.099 0.033	2.55 5.00 12.83 38.00 2.00 7.96 23.66 1.26 3.96 11.77 0.63 5.22 0.22
	b c d e f c d e f d e f f d e f f f f f f	0.4545 1.1479 2.0149 2.9693 0.2383 0.6935 1.5604 2.5154 0.2162 0.8670 1.8219 0.9097 0.9550 -1.7766 -2.7316		2322 2283 266 3299 244 2144 2548 320 2311 2514 3173 2272 3460 2658 3288	2 37 3 37 7 37 6 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 3 37 3 37 1 37	1.96 5.03 7.56 9.01 0.98 3.23 6.12 7.86 -0.94 3.45 5.74 -4.00 2.76 -6.68 -8.31 = Least S	0.0579 <.0001 <.0001 0.3353 0.0026 <.0001 0.3556 0.0011 0.3556 0.0014 <.0001 0.0058 0.0058 <.0001 2.0058 4.0001 2.0058 3.0001 2.0000000000	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.01596 0.6854 1.4745 2.3021 -0.2563 0.2590 1.0439 1.8668 -0.6846 0.3576 1.1790 -1.3701 0.2540 -2.3152	0.9249 1.6105 2.5553 3.6376 0.7328 1.1279 2.0769 3.1640 0.2521 1.3763 2.4649 0.4493 1.6560 -1.2381 -2.0654 Mean	Ratio 1.575 3.152 7.600 19.490 1.269 2.001 4.761 12.372 0.806 2.380 6.184 0.403 2.599 0.169 0.066 Standard Error I Mean	Lower U Mean	0.984 1.985 4.369 9.995 0.774 1.296 2.840 6.468 0.504 1.430 3.251 0.254 1.289 0.099 0.033	Rat 2.52 5.00 12.83 38.00 2.06 3.00 7.96 23.66 11.76 0.63 5.22 0.22 0.12

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 53 of 81

time	time	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Odds Ratio		Lower ofidence or Odds Ratio	Con Limít fe	Upp Ifiden or Odd Rat
6	12	0.2158	0.1974	37	1.09	0.2814	0.05	-0.1842	0.6159	1.241		0.832		1.85
6	24	0.2950	0.1855	37	1.59	0.1204	0.05	-0,08096	0.6709	1.343		0.922		1.9
12	24	0.07917	0.1980	37	0.40	0.6916	0.05	-0.3220	0.4803	1.082		0.725		1.6
			- ·		conca	*time Le	ast Sq	lares Mea	ns					
conce	a time	Estimate	Standard Erro	r DF	t Value	Pr> t	Alph	a Low	er Upp	ər Mean	Standard Error Mean	Lower Mean	Upper Mean	
a	6	1.3379	0,320	2 37	4.18	0.0002	0.0	5 0.68	1,986	0.7921	0.05272	0.6658	0.8794	
a	12	0,8246	0.323	7 37	2.55	0.0151	0.0	5 0.16	8 1.480	04 D.6952	0.06858	0.5421	0.8146	
a	24	1.0843	0.250	3 37	4.32	0.0001	0.0	5 0.570	61 1.592	4 0,7473	0.04736	0.6402	0.8310	
b	6	0.5453	0.2662	2 37	2,05	0.0476	0.0	5 0.0060	9 1.084	7 0.6331	0.06183	0.5015	0.7474	
b	12	0.6623	0.3004	1 37	2.20	0.0338	0.0	5 0.053	5 1.271	0 0.6598	0.06744	0.5134	0.7809	
ь	24	0.6758	0,2320	37	2.91	0.0060	0.0	5 0.208	7 1.145	9 0.6628	0.05186	0.5512	0.7588	
¢	6	0.2795	0.2298	3 37	1.22	0.2316	0.0	5 -0.186	0.745	2 0.5694	0.05635	0.4536	0.6781	
c	12	-0.09963	0.2828	3 37	-0.35	0.7266	0,0	5 -0.672	6 0.473	3 0.4751	0.07052	0.3379	0.6162	
c	24	-0.3769	0.2570	37	-1.47	0,1509	0.0	-0.897	6 0.143	8 0.4069	0.06202	0.2895	0.5359	
d	6	-0.7647	0.2855	5 37	-2.68	0.0110	0.0	5 -1.343	1 -0.186	3 D.3176	0.06187	0.2070	0.4536	
d	12	-0.4682	0,3211	37	-1.46	0,1532	0.0	5 -1.118	8 0.182	4 0.3850	0.07603	0.2462	0.5455	
d	24	-1,5650	0.4305	37	-3.64	0.0008	0.0	5 -2.437	2 -0.692	7 0.1729	D.06157	0.08038	0.3334	
e	6	-1.6655	0.4215	37	-3.95	0.0003	0,0	-2.519	4 -0.811	5 0.1590	0.05636	0.07451	0.3076	
e	12	-2.2460	0.5700	37	-3.94	0.0003	0.0	5 -3.400	9 -1.091	2 0.09569	0.04932	0.03227	0.2514	
8	24	-1.7513	0.4526	37	-3.87	0.0004	0.D	-2,668	3 -0.834	4 0.1479	0.05703	0.06487	0.3027	
t	6	0,9572	0.3612	37	2.65	0.0118	0.0	0.225	3 1,689	0 0.7226	0.07241	0.5561	0.8441	
f	12	0.7219	0.2911	37	2.48	0.0178	0,0	0.132	0 1.311	7 0.6730	0.06407	0.5329	0.7878	
F	24	0.8530	0.2251	37	3,79	0.0005	0.0	0,396	9 1.309	2 0.7012	0.04717	0.5979	0.7874	

24	-0,1800	0.1316 37	-1.37	0.1796 0.05	-0.4467	0.08665 0.4551	0.03264	0.3901	0.5216	

Differences of time Least Squares Means

conca	time	_conca	time	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
a	6	a	12	0.5133	C.4553	37	1.13	0.2669	0.05	-0.4093	1 .4358 i	1.671	0.664	4.203
a	6	а	24	0.2536	0.4067	37	0.62	0.5368	0.05	-0.5705	1.0778	1.289	0,565	2.938
a	6	b	6	0.7926	0.4164	37	1.90	0.0648	0,05	-0.05114	1,6363	2,209	0.950	5.136
а	6	b	12	0.6756	0.4391	37	1.54	0.1324	0.05	-0.2140	1.5653	1.965	0,807	4.784
a	6	þ	24	0.6621	0.3954	37	1,67	0.1025	0.05	-0.1391	1.4634	1.939	0.870	4.320
a	6	C	6	1.0584	0.3942	37	2.69	0.0108	0.05	0.2597	1.8570	2,882	1.297	6.405
a	6	۵	12	1.4375	0.4272	37	3.37	0.0018	0.05	0.5720	2.3031	4.210	1.772	10.005
a	6	c	24	1.7148	0.4106	37	4.18	0.0002	0,05	0.8829	2,5467	5.556	2.418	12.765
a	6	d	6	2.1026	0.4290	37	4,90	<.0001	0.05	1.2334	2.9718	8,187	3.433	19,527
a	6	d	12	1.8061	0,4535	37	3.98	0.0003	0.05	0.8873	2.7249	6,087	2.428	15.256
a	6	d	24	2,9029	0.5365	37	5.41	<.0001	0.05	1.8158	3.9900	18.227	6.146	54.055

a	6	e	6	3.0034	0.5293	37	5.67	<.0001	0.05	1.9309	4.0758	20.153	6.896	58,900
a	5	e	12	3,5839	0.6538	37	5.48	<.0001	0.05	2.2593	4.9086	36.015	9,576	135,445
a	6	e	24	3.0893	0.5544	37	5,57	<.0001	0.05	1.9660	4.2126	21,961	7,142	67.529
а	6	ſ	6	0.3808	0.4827	37	0.79	0.4353	0,05	-0.5973	1,3588	1.463	0,550	3.891
а	6	f	12	0.6161	0,4328	37	1.42	0.1630	0.05	-0.2608	1.4929	1.852	0.770	4,450
a	6	f	24	0.4849	0.3914	37	1.24	0.2233	0.05	-0,3083	1.2780	1,624	0.735	3.589
a	12	а	24	-0.2597	0.4095	37	-0.63	0.5299	0.05	-1.0893	0.5700	0.771	0.336	1.768
8	12	b	6	0.2793	0.4191	37	0.67	0.5093	0.05	-0.5698	1,1284	1,322	0.566	3.091
a	12	b	12	0.1623	0.4416	37	0.37	0.7153	0,05	-0,7325	1,0571	1.176	0.481	2,878
a	12	b	24	0.1488	0.3982	37	0,37	0.7108	0.05	-0.6581	0.9557	1.160	0.518	2.601
а	12	C	6	0.5451	0.3970	37	1.37	0.1780	0.05	-0.2593 (1.3494	1,725	0.772	3,855
а	12	c	12	0.9242	0,4298	37	2.15	0.0381	0.05	D.05339	1,7951	2.520		6.020
a	12	c	24	1,2015	0.4133	37	· · · · · ·	0.0061	0.05	0.3641	2.0389	3.325	1.439	7.682
a	12	d	6	1.5893	0.4316	37	3.68	(** * ·	0.05	0.7148	2.4637	4.900	2.044	11.748
а	12	d	12	1.2928	0.4559	37	2.84	0.0074	0,05	0.3690	2.2166	3.643	1.446	9.176
a -	12	d	24	2.3896	0.5386	37	4.44	<.0001	0,05	1.2983	3,4809	10.909	3,663	32,489
a	12		6	2.4901	0.5314	37	4.69	< 0001	0,05	1.4133	3.5668	12.062	4.110	32.489
а	12	e	12	3.0706	0.6555	37	4.68	<.0001	0.05	1.7425	4.3987	21.555	5.712	81,346
a	12	e	24	2,5760	0.5564	37	4.63	<.0001	0.05	1.4486	3.7033	13.144	4.257	
a	12	f	6	-0.1325	0.4850	37	-0.27	0.7861	0.05	-1.1152	0.8501	0.876		40.582
a	12	:' 11	12	0.1028	0.4353	37	0.27		0.05	-0.7793			0.328	2.340
a	12		24	-0.02843	0,3943	37	-0.07	0.9429			0,9848	1.108	0.459	2.677
a	24	 b	6	0.5390	0.3657	37	-0,07		0.05	-0.8273	0.7704	0.972	0.437	2.161
a	24	b	12	0.4220	0.3913	37	1.08	0.1490	0,05 0.05	-0.2021	1,2800	1.714	0.817	3.596
а.	24	b	24	0.4220	0.3417	37			0.05	-0.3709	1.2150	1,525	C,690 i	3,370
а	24	c	- 6	0.4085				0.2394		-0.2838	1.1008	1.505	0,753	3.006
	24			••••••••••••••••••••••••••••••••••••••	0.3402	37	2.37	0.0233	0.05	0.1155	1.4940	2,236	1.122	4.455
a a	24	c c	12 24	1.1839 1.4612	0.3780	37	3.13	0.0034	0.05	0.4181	1.9497	3.267	1.519	7.027
a	24	d	-24 		0.3591	37	4.07	0.0002	0,05	0.7336	2.1888	4.311	2.083	8.924
	24	d		1.8489	0.3800	37	4.87	<.0001	0.05	1.0790	2,6189	6.353	2.942	13.720
a a	24	d	12 24	1.5525 2,6493	0.4074	37	3.81	0.0005	0.05	0.7270	2.378D	4.723	2.069 !	10.784
a	24	ч	6			37		<.0001	0.05	1.6398	3.6588	14.144		38.813
· · · ·				2.7498	0,4904	37		< 0001	0.05	1.7560	3.7435		5.790	42.244
a 	24 24	e	12	3,3303	0.6227	37	5.35	<.0001	0.05	2.0686	4.5920	27.947	7.914	98.693
a	24	e	24	2.8356	0.5174	37	5.48	<,0001	0.05	1.7873	3.8840	17.041	5.973	48.618
-	24	r f	6	0.1271	0.4397	37	0.29	0.7741	0.05	-0.7638	1.0181	1.136	0,466	2.768
a -			12	0.3624	0.3843	37		0.3517	0.05	-0,4162	1.1410	1.437	0.660	3.130
a 	24 6	1 	24	0.2312	0.3370	37		0.4969	0.05	-0_4516	0.9141	1.260	D.637	2,496
b		b	12	- D .1169	C.4014	37		0.7724	0.05	-0.9302	0,6963	0.890	0.394	2.006
b	6	b	24	-0.1305	0,3531	37		0.7139	0.05	-0.8459	0.5850	0.878	0.429	1.795
b 	6	c	6	0.2658	0.3517	37		0.4545	0.05	-0.4468	0,9783	1.304	0.640	2.660
b	6	C	12	0.6450	0.3883	37		0,1052	0.05	-0.1419	1.4318	1.906	0.868	4.186
b	6	C	24	0.9223	0.3700	371		0.0173	0.05	C.1726	1.6719	2.515	1.188	5.322
b 	6	d	6	1.3100	0.3903	37		0.0018	0,05	0.5192	2.1008	3.706	1.681	8.173
b 	6	d	12	1.0135	0.4171	37	an a sanda	0.0201	0.05	0.1685	1.8586	2.755	1.183	6.415
b	6	d	24	2.1103	0.5061	37		0.0002	0.05	1.0848	3,1358	8.251	2.959	23.008
b	6	e	6	2.2108	0.4985 ;	37	4.44	<.0001	0.05	1.2008	3.2208	9.123	3.323	25.048

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 55 of 81

ļ	6	e	12	2.7914	0.6291	37	4.44	<.0001	0.05	1.5168	4.0659	16.303		50.010
b	6	e	24	2,2967	0.5250	37	4.44	ł.	0.05	1.2329	· · · · ·		4,557	58.319
b	6	 f	6	-0.4118	0.3230	37	-0.92		0.05			9.941	3.431	28.803
b	- 6	¦	12	-0.1765	0.3945	37		·]· · ·		-1.3209		C.662	D.267	1.644
b	6	. ' f	24	-0.3077	C.3486	37	-C.45 -0.88		0.05	-0.9758		0.838	0.377	1.864
ь р	12	b	24	-0.01352	0.3796				0.05	-1.0141	0.3986	0.735	0.363	1.490
ь Б	12	c	6	0.3827	0.3798	37	-0.04	0.9718	0.05	-0.7826	- 	0.987	0.457	2.129
ь. b	12	c	12	0.3627		37	1.01	0.3182	t	-0.3837	1.1492	1.466	0.681	3,156
b	12	c	24		0.4126	}	1.85	÷ -	0.05	-0.07404	1.5978	2.142	0.929	4.942
b	12	+		1.0392	0.3953	37	2.63	0.0124	0.05	0.2381	1.8402	2.827	1,269	6.298
b	12	d	6 12	1, 4 269	0.4144	37	3.44	0.0014	0.05	0.5872	2.2666	4.166	1.799	9,647
· - ···		• • • • • • • • • • • • • • • • • • • •			0.4397			0.0143	0.05	0.2395		3.097	1.271	7.549
b	12	d 	24	2.2273	0.5260	37		0.0001	0.05	1.1636	3.2909	9,274	3.201	26.867
b	12	e	6	2.3277	0.5176	37	4.50	<.0001	0.05	1.2790	3.3764	10.255	3.593	29.266
b	12	e	12	2.9083	0.6443	37		<.0001	0.05	1.6028	4.2138	18.325	4.967	67.610
b .	12	e	24	2.4138	0.5432	37	4.44	<.0001	0.05	1.3130	3.5142	11,174	3.717	33.590
b	12	1	6	-0.2949	0.4698	37	-0.63	0.5341	0.05	-1.2468	0,6570	0.745	0.267	1.929
b	12	. f	12	-0.05959	0.4183	37	-0.14	0.8875	0.05	-0.9072	0.7881	0.942	0.404	2,199
b 	12	1	24	-0.1908	0.3754	37	-0.51	0.6144	0. 0 5	-0 9514	0.5699	0.826	0,386	1.768
b	24	c	6	0.3962	0.3266	37	1.21	0.2327	0.05	-0.2655	1.0580	1.486	0.767	2.881
b	24	C	12	0.7754	0.3658	37	2.12	0.0408	0. 05	0.03430	1.5165	2.172	1.035	4.556
b	24	C	24	1.0527	0.3462	37	3.C4	0.0043	0.05	0.3512	1.7542	2.865	1.421	5.779
b	24	d	6	1.4405	0.3679	37	3.92	D.0004	0.05	D.6951	2,1858	4.223	2.004	8.898
b	24	d	12	1.1440	0.3962	37	2,89	0.0064	0.05	0.3413	1,9467	3.139	1.407	7.005
b	24	d	24	2.2408	0.4890	37	4.58	<,0001	0.05	1,2499	3.2317	9.401	3.490	25.322
b	24	e	в	2.3413	0.4811	37	4.87	<.0001	0.05	1,3665	3.3161	10,394	3,921	27.552
b	24	е	12	2.9218	0.6154	37	4.75	<.0001	0.05	1.6749	4.1687	18.575	5.338	64.630
b	24	e	24	2.4271	0.5086	37	4.77	<.0001	0.05	1.3967	3.4576	11,326	4,042	31.740
b	24	f	6	-0.2814	0.4293	37	-0,66	0.5162	0.05	-1.1512	0,5885	0.755	0.316	1.801
b	24	f	12	-0.04607	0.3723	37	-0.12	0.9022	0.05	-0.8004	0,7082	0.955	0.449	2.030
b	24	f	24	-0.1773	0.3233	37	-0.55	0,5868	0.05	-0.8323	0.4778	0,838	0.435	1.613
c	6	c	12	0.3792	0.3644	37	·.04	0,3048	0.05	-0.3591	1.1175	1.461	0,698	3.057
c	6	c	24	0.6565	0.3448	37	1.90	0.0647	0.05	-0.04210	1.3550	1.928	0,959	3.877
с	6	d	6	1.0442	0.3665	37	2.85	0.0071	0.05	0.3016	1.7868	2.841	1.352	5.970
¢	6	d	12	0.7477	0.3949	37	1.89	0.0661	0.05	-0.05235	1,5478	2.112	0.949	4.701
C	6	d	24	1.8445	0.4880	37	3,78	0.0006	0.05	0,8557	2.8333	6,325	2,353	17,002
с	6	e	6	1.9450	0,4800	37	4.05	0.0003	0.05	0.9723	2.9177	6.994	2.644	18.498
с	6	е	12	2.5256	0.6146	37	· ·	0.0002	0,05	1.2803	3,7708		3.598	43.414
c	6	e	24	2.0309	0.5076	37	4.00	0.0003	0.05	1,0025	3.0593	7.621	2.725	
 C	6	f	6	-0.6776	0.4281	37	-1.58	0.1220	0.05	-1.5450	0.1898	0.508	0.213	21.313
с. С	6	f	12	-0.4423	0.3709	37		0.2407	0.05	-1.1939	0.3092	0.643	0.213	
- C	6	f	24	-0.5735	0.3217	37	· · · · · · · · · · · · · · · · · · ·	0.0829	0.05	-1,2254	0.07836		· · · · · · · · · · · · · · · · · · ·	1.362
	12	.' c	24	0.2773	0.3821	37	· -	0.4726	0.05	-0.4969	· •	0.564	0.294	1.082
 3	12	d	6	0.6650	0.362	37					1.0515	1.320	0.608	2,862
		d		0.3686	· · · · · · · · · · · · · · · · · · ·			0.1064	0,05	-0.1491	1.4792	1.945	0.861	4,389
, 	12		12 24			37		0.3945	0.05	-0.4983	1.2355	1.446	0.608	3.440
		d 	· · • • • • • • • • • • • • • •	1,4654		37		0.0072	0.05	0.4218	2.5089	4.329	1.525	12.292
3	12	e	6	1.5658	0.5075	37	3.09	0.0038	0.05	0.5375	2.5942	4.787	1.712	13.386

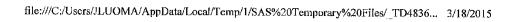
Page 56 of 81

	12	e	12	2.1464	0.6363	37	3.37	0.0018	0.05	0.8572	3.4356	8.554	2.357	31,04
c	12	e	24	1.6517	0.5336	37	3.10	0.0037	0.05	0.5705	2,7330	5.216	1.769	15,37
C	12	f	6	-1.0568	0.4587	37	-2.30	0.0269	0,05	-1.9862	-0.1274	0.348	0.137	0.88
c	12	f	12	-0.8215	0.4058	37	-2.02	0.0502	0.05	-1.6438	0.000840	0.440	0.193	1.00
c	12	f	24	-0.9527	0.3614	37	-2.64	0.0122	0.05	-1,6850	-0.2203	0.386	0.185	0.80
C .	24	d	6	0.3877	0.3841	37	1.01	0.3193	0.05	-0.3905	1.1660	1.474	0,677	3.20
c	24	d	12	0.09129	0.4113	37	0.22	D,8256	0.05	-0.7420	0.9246	1.096	0.476	2.52
c	24	d	24	1,1881	0.5014	37	2.37	0.0231	0.05	0.1722	2.2039	3.281	1.188 ;	9.06
c	24	e	6	1.2886	0.4936	37	2.61	0.0130	0.05	0.2884	2.2887	3.628	1.334	9,86
c	24	e	12	1.8691	0.6252	37	2.99	0.0049	D,05	0.6023	3.1359	6,482	1.826	23.01
c	24	е	24	1.3744	0.5204	37	2.64	0.0120	D.05	0.3200	2.4289	3.953	1.377	11,34
c	24	f	6	-1.3341	0.4433	37	-3.01	0.0047	0.05	-2.2322	-0.4369	0.263	0.107	0.64
c.	24	f	12	-1.0988	0.3883	37	-2.83	0.0075	0.05	-1.8856	-0.3119	0.333	0.152	0.73
c	24	f	24	-1.2300	0.3416	37	-3,60	0.0009	0.05	-1.9222	-0.5377	0,292	0,146	0.58
d	6	d	12	-0.2965	0.4296	37	-0,69	0,4945	0.05	-1,1670	0.5741	0.743	0.311	1.77
d	6	d	24	0,8003	0.5165	37	1.55	0,1298	0.05	-0.2463	1,8469	2.226	0.782	6.34
d	6	e	6	0.9008	0.5090	37	1.77	0.0850	0.05	-0.1306	1,9322	2.462	0,878	6.90
d	6	e	12	1.4814	0.6375	37		0.0257	0,05		2,7730	4.399	1.209	16.00
d	6	0	24	0.9867	0.5351	37	1.84	0.0732	0.05	-0.09745	2.0708	2.682	0.907	7,93
3	6	din -	6	-1.7218	0.4604	37	-3,74	0.0006	0.05	-2.6546	-0.7890	0.179	0.070	0.45
- 1	6	f	12	-1.4865	0,4077	37	-3.65	0.0008	0.05	-2.3127	-0,6604	0.226	0,099	. 0.51
	6	f	24	-1.6177	0,3635	37	-4.45	< 0001	0.05	-2.3543	-0.8811	0.198	0.095	0.31
t.	12	d	24	1.0968	0,5371	37		0.0483	0.05	0.008614	2.1850	2.995	1.009	8.89
1	12	6	6	1,1973	0.5298	37	2.26	0.0298	0.05	0,1237	2.2708	3.311	1.132	9.68
	12	e	12	1.7778	0.6542	37	2,72	0.0099	0.05	0.4523	3.1033	5,917	1.572	22.27
 1	12	e	24	1,2831	0,5549	37	2.31	0.0264	0.05	0.1588	2,4075	3.60B	1.172	11.10
 1	12		6	-1.4254	0.4833	37	-2.95	0.0055	0.05	-2.4046	-0,4461	0.240	0.090	0.64
 1	12	f	12	-1.1901	0.4334	37	-2.75	0.0093	0.05	-2.0683	-0.3118	0.304	0.126	0.73
1	12	 f	124	-1.3212	0.3922	37	-3.37	0.0018	0,05	-2.0003	-0,5267	0.304		
1	24	e	6	0,1005	0.6024	37	0.17	0.8684	0.05	-1.1202	1.3212	1,106	0,121	0.59 3.74
 I	24	e	12	0.6810	0.7143	37	0.95	0.3465	0.05	-0,7662	2.1283	1.976	0.326	
• • • • •	24	 e	24	0.1864	0,6246	37	0.30	0.3465	0.05	-1,0792		1.205		8.40
1	24	f	6	-2.5221	0.5619	37	-4.49	<.0001	0.05	-3,6607	1.4519		0.340	4.27
	24	¦	12	-2.2868	0.5197	37	-4.49	<.0001	0.05	-3,3398	-1.3835	0.080	0.026 !	0.25
	24	r					· · · · · · · ·				-1.2339	0.102	0.035	0.29
	6	e .	24 12	-2.4180 0,5805	0.4858	37	-4.98	<.0001	0.05	-3.4023	-1.4337	0.069	0.033	0.23
	6	e	24	0.08588		37		0.4180	0.05	-0,8557	2.0160 (1.787	0.425	7.51
- · ·	6 6	e f		-2.6226	0.6184			0.8903	0.05	-1.1671	1.3389	1.090	0.311	3.81
		· · · ·	6		0,5550	37	-4.73	<.0001	0.05	-3.7473	-1.4980	0.073	D.024	0,22
•••• ·	6	f 	- 12	-2.3873	0.5122	37	-4.66	<.0001	0,05	-3.4252	-1.3494	0.092	0,033	0.25
	6		24	-2.5185	0.4778	37	-5,27	<.0001	0.05	-3,4866	-1.5504	0.081	0.031	0.21
	12	e	24	-0.4947	0.7278	37		0.5009	0.05	-1,9693	0.9800	0.610	0.140	2.66
	12	f	6	-3.2032	0.6748	37	-4.75		0.05	-4.5704	-1.8360	0.041	0.010	0.15
	12	f	12	-2.9679	0,6400	37		<.0001	0.05	-4.2647	-1.67 11	0.051	0.014	0,18
	12	f.	24	-3.0991	0.6128	37 _\	-5.06	<.0001	0.05	-4.3407	-1.8574	0.045	0.013	0.15
		, f	6	-2.7085	0.5790	37	-4.68	<.0001	0,05	-3,8817	-1.5353	0,067	0 021	0.21
	24	Ìf	12	-2.4732	0.5361	37	-4.60	<.0001	0.05	-3.5635	-1.3829	0.084	0.028	0.25

Page 57 of 81

	 24	f	24	-2,6044	0.5055	37	-5.15	<.0001	0,05	-3.6285	-1.5802	0.074	0.027	0.206
f	 6	f	12	0.2353	0.4639	37	0.51	0.6150	0.05	-0.7047	1.1753	1.265	0.494	3.239
f	6	f	24	0.1041	0.4256	37	0.24	0.8081	0.05	-0.7582	0.9665	1.110	0,468	2.629
f	12	!f	24	-0.1312	0,3680	37		0.7235	0.05	-0.8769	0.6145	0.877	0.416	1.849

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15


Page 58 of 81

Effects of Pseudomonas fluorescens (PF-CL145A) to glochidia from seven unionid mussel spocies Overall Model: Glochidia Viability (unadjusted) - At 6, 12 and 24 h

The GLIMMIX Procedure

form=SDP sps=HIC

	M	del Infor	mati	on		
Data Set			۷	ORK.GLOCHID	IA2	
Respons	e Varlable	(Events)	v	a_glo		
Respons	e Variable	(Trials)	to	K.		
Respons	e Distribu	tion	B	inomial	1	
Link Fun	ction		Ŀ	ogil		
Variance	Function		D	efault		
Variance	Matrix		D	iagonal		
Estimatio	on Techni	que	M	aximum Likeliho	od	
·····	of Freedo		IR	esidual		
	evel Inform					
Class L	evels Va	lues				
conca	6 a t	cdef				
time	3 6 1					
	· · · · · · · · · · · · · · · · · · ·	··	1			
	of Observ			e e construction de la construction de la construction de la construction de la construction de la construction		
	of Observ	ations Us	ed	54		
				6968		
Number	of Trials		1	12978		
	Imension					
	ce Parame	· · · · · - · ·				
Columns	ln X	27				
Columns		0				
Subjects	(Blocks Ir	V } 1				
	per Suble					
	· · · · · ·					
	Optimiza	tion infor	mat	on		
Optimizat	tion Techr	lque	Nev	vton-Raphson :		
Paramete	rs in Opti	nization	18			
Lower Bo	undarles	!	0			
Upper Bo	undarles		0			
Fixed Effe	octs	į	Not	Profiled		
		n	ei at	on History	·	
lieration	Restarts	Evaluatio	ons	Objective Function		M Gradie
0	0		4	290.37887854		11.893
- 1	0			287.15844725		
2	0			287.1529168		
3	0			287.15291675		

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics	
-2 Log Likelihood	574.31
AIC (smaller is better)	610.31
AICC (smaller is better)	629.85
BIC (smaller is better)	646.11
CAIC (smaller is better)	664.11
HQIC (smaller is better)	824.11
Pearson Chi-Square	298.77
Pearson Chi-Square / DF	8,30

Effect	conca	timo	Estimate	Standard Error	DF	t Value	Pr > [1
conca	а		2.0839	0.3333	36	6.25	<.000
conca	ъ]	1.3455	0.2322	36	5.79	<.000
conca	c	1	0.4648	0.2162	36	2.15	0.0384
conca	d		-1.0104	0.2747	36	-3.68	0.0008
conca	e		-5.3303	1.4439	36	-3.69	0.0007
conca	ſ		1.8774	0.2789	36	6.73	<.0001
time		6	-0.5585	0,3897	36	-1.43	0.1608
time		12	-0.05700	0.4358	36	-0.13	0.8967
time		24	0	•			
conca*time	a	6	0,2395	0.5948	36	0.40	0,6896
conca*time	a	12	-0,3306	0.6444	36	-0.51	0.6110
conca*time	a	24	C		•		
conca*time	b	6	-0.3149	0.5023	36	-0.63	0.5346
conca*time	b	12	-0.09147	0.5642	36	-0.16	0.8721
conca*time	b	24	0	.!			
conca*time	C	6	-0.2388	0.4979	36	-0,48	0.6344
conca*time	c	12	-0.3903	0.5560	36	-0.70	0,4872
conca*time	c	24	0				
conca*time	d	6	0.01732	0.5531	36	0.03	0.9752
conca"time	d	12	0.6276	0.5679	36	1.11	0.2764
conca*time	đ	24	0			,	
conca*time	e	6	4.0958	1.5199	36	2.69	0.0106
conca*time	e	12	0.9709	1.7649	36	0.55	0.5856
conca*time	e	24	0	•	• •		•
conca*time	f	6	٥			· .	•
conca*time	f	12	0		•	· i	•
conca*time	f i	24	0				
Residual	• •••••		8,2993				

1	fype III Test	s of Fixed	Effects	
Effect	Num DF	Den DF	F Value	Pr > F
conca	5	36	55,04	<.CC01
time	2	36	0.04	0,9645
1				

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

.....

Page 59 of 81

Page 60 of 81

SAS Output

conca*time

10

36 2.55 0.0193

conca Hme a b b c c - d - e 6 12 - conca EstIm a 1.8- b 1.00 conca -3.64 d -1.00 conca -3.64 conca -3.64 conca -0.04 d -1.07 conca -0.04 d -1.07 conca -0.04 d -1.07 conca -0.04 d -1.07 conca -0.04 d -0.04 d -0.04 i -0.04 i -0.04 i -0.04 i -0.04 i -0.04 i -0.04 i -0.04 i -0.04 <	184 049 092 006 1866 723 a Estim 0.84 1.75	24 24 24 0.18 0.13 0.13 0.15 0.57 0.17 0.17	874 36 394 36 369 36 532 36 772 36 713 36 Standar Errc 0.233	36 36 36 36 36 36 36 36 36 36 36 36 36 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	713 328 127 043 001 608 561 a Least a Least 001 001 174 001 001 001 001 001	1.5 0.6 0.3 0.1 1 0.0 1.5 2.0 1 5 2.0 1 5 2.0 1 5 2.0 0.05 0.05 0.05 0.05 0.05 0.05 0.0	996 803 308 110 014 909 067 1.4683 0.7222 0.2276 -1.3112 -5.0171 1.3249	Uppe 3 2.228 2 1.287 3 0.327 2 -0.689 -2.676 0 2.019	6 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091	0.0220 0.0273 0.0341	or I n 3 C 5 C 9 C 1 C 1 C 0 C	L.7900	_ower dence Odds	n 8 7 7 1 1 1 0 8 2 0 0 8 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b c c d d f c c c c c c c c c c c c c c c	ato Star 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 0.18 0.13 0.13 0.15 0.67 0.17 0.17	0.513 0.197 0.069 0.004 1.078 1.077 874 36 394 36 399 39 532 36 772 36 713 36 Standar Errc 0.233	36 36 36 36 36 36 36 36 36 36 36 36 36 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	328 127 (43) 001 608 561 a Least a Least 001 001 174 001 001 001 001 001 001 001 00	0.6 0.3 0.1 0.0 1.5 2.0 2 2 2 0.0 5 0.05 0.05 0.05 0.05 0	603 308 110 014 909 067 1.4683 0.7222 0.2276 -1.3112 5.0171 1.3249	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c	ato Star 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 0.18 0.13 0.13 0.15 0.67 0.17 0.17	0.197 0.069 0.004 1.078 1.077 874 36 394 36 395 38 395 38 512 36 713 36 Standar Errc 0.233	36 36 36 36 36 36 36 7, 0, -6, -6, 9, -7, 0, -6, -6, -6, -6, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	127 Q43 Q001 608 561 a Least > t A 001 001 174 001 001 001 001 001 001 001 00	0.3 0.1 0.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9 0.05 0.0	308 110 014 909 909 1067 1.4683 0.7222 0.2276 -1.3112 5.0171 1.3249 ICa Lea	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d 6 6 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f ato Star 184 249 292 2006 1466 723 203 203 203 203 203 203 203 203 203 2	24 0.18 0.13 0.13 0.15 0.67 0.17 0.17	0.069 0.004 1.078 1.077 874 36 394 36 399 38 532 36 772 36 773 36 Standar Errc 0.233	36 36 36 36 36 36 36 36 36 36 36 36 36 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	043 0001 608 561 a Least 561 a Least 001 001 001 001 001 001 001 001 001 00	0.11 0.0 1.5 2.0 t Squar 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	110 014 909 067 1 cres Me 0.7222 0.2276 1.3112 5.0171 1.3249 sca Lea	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 6 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 15 15 100 100 -3.64 1.57 1.57	f ato Star 184 249 292 2006 1466 723 203 203 203 203 203 203 203 203 203 2	24 0.18 0.13 0.13 0.15 0.67 0.17 0.17	0.004 1.078 1.077 574 36 394 36 399 38 532 36 772 36 713 36 Standar Errc 0.233	36 36 36 36 36 7. 0. -6. -6. 9. -6. DF	0 0 conc 86 <.0 21 <.0 21 <.0 36 0.7 53 <.0 0 6 <.0 76 <.0	001 608 608 561 a Least 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001	0.00 1.9 2.0 t Squar lpha 0.05 0.05 - - 0.05 - - - - - - - - - - - - -	014 909 067 1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 sca Lea	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 12 conca Estim a 1.8- b 1.00 c 0.044 d -1.00 b -3,64 1.67 c -3,64 1.67 c -3,64 f - c - d - f - c - d -	ato Star 184 249 392 2006 1466 723 23 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	24 0.18 0.13 0.13 0.15 0.67 0.17 0.17	1.078 1.077 574 36 394 36 399 38 532 36 772 36 713 36 Standar Errc 0.233	36 36 t Val 9, 7. 0. -6, -6, 9, 7. 0. -6, -6, -6, -6, -6, -6, -6, -6, -6, -6,	0 0 0 0 0 0 0 0 0 0 0 0 0 0	608 a Least > t A 001 001 174 001 001 001 001 001 001 001	1.5 2.0 t Squar lpha 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	909 909 1067 1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 1.3249 1.3249 1.3249	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 conca Estim a 1.8- b 1.00 c 0.044 d -1.00 c -3.64 d -1.00 c -3.64 d -1.00 c -3.64 d -0.00 c -3.64 d -0.00 c -0.00 d -0.00 c -0.00 d -0.00	184 049 092 006 1866 723 a Estim 0.84 1.75	24 0.18 0.13 0.13 0.15 0.67 0.17 0.17	1.078 1.077 574 36 394 36 399 38 532 36 772 36 713 36 Standar Errc 0.233	36 36 t Val 9, 7. 0. -6, -6, 9, 7. 0. -6, -6, -6, -6, -6, -6, -6, -6, -6, -6,	0 0 0 0 0 0 0 0 0 0 0 0 0 0	608 a Least > t A 001 001 174 001 001 001 001 001 001 001	1.5 2.0 t Squar lpha 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	909 909 1067 1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 1.3249 1.3249 1.3249	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 conca Estim a 1.8 b 1.00 c 0.044 d -1.00 c -3.64 d -1.00 c -3.64 d -1.00 c -3.64 d -0.00 c -3.64 d -0.00 c -0.00 d -0.00 c -0.00 d -0.00	184 049 092 006 1866 723 a Estim 0.84 1.75	24 0.18 0.13 0.13 0.15 0.67 0.17 0.17	1.077 rror DF 874 36 394 36 399 38 532 36 772 36 773 36 Standar Erro 0.233	36 t Val 9, 7, 0.0 -6, -6, -6, -6, -6, -6, -0 -7 DF	0 conc B6 <.0. 21 <.0. 36 0.7. 53 <.0 76 <.0 Differ t Val	561 a Least a Least b [t] A 001 001 001 001 001 001 001 001 001 00	2.0 t Squar 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	067 res Me 1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 0ca Lea	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
conca Estim a 1.5/ b 1.0/ c 0.044 d -1.0/ a -3.6/ 1.57 c 1.57 c 0.04 b -1.0/ c -3.6/ d -1.0/ c -3.6/ d -1.0/ c -3.6/ c	184 049 092 006 1866 723 a Estim 0.84 1.75	1dard Er 0.18 0.13 0.13 0.15 0.57 0.57 0.17	rror DF 674 36 394 36 369 36 532 36 772 36 713 36 \$tandar Erro 0.233	t Val 9, 7, 0, -6, -6, -6, 9, 7	conc ue Pr B6 <.0 21 <.0 36 0.7 53 <.0 66 <.0 76 <.0 Diffen t Val	a Least > t A 001 174 001 174 001 001 001 001 001 001 001 00	Ipha 0.05 0.05 0.05 - 0 - 0.05 - 0 0.05 - 0.05 - 0 0 - 0.05 - 0 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	Lower 1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 bca Lea	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a 1.84 b 1.04 c 0.044 d -1.00 a -3.84 1.67 concaconc a b c c b c d e f c c d	184 049 092 006 1866 723 a Estim 0.84 1.75	0.18 0.13 0.13 0.15 0.57 0.57 0.17	874 36 394 36 369 36 532 36 772 36 713 36 Standar Errc 0.233	9, 7, -6, -6, 9, -6, 9, -6, 10, -6, 10, -7, DF	ue Pr 86 <.0 21 <.0 36 0.7 53 <.0 66 <.0 76 <.0 Diffen t Val	> t A 001 174 001 001 001 001 001 001	Ipha 0.05 0.05 0.05 − 0.05 − 0.05 − 0.05 − 0.05 − 0.05 − 0.05	Lower 1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 Dica Lea	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a 1.84 b 1.04 c 0.044 d -1.00 a -3.84 1.67 concaconc a b c c b c d e f c c d	184 049 092 006 1866 723 a Estim 0.84 1.75	0.18 0.13 0.13 0.15 0.57 0.57 0.17	874 36 394 36 369 36 532 36 772 36 713 36 Standar Errc 0.233	9, 7, -6, -6, 9, -6, 9, -6, 10, -6, 10, -7, DF	ue Pr 86 <.0 21 <.0 36 0.7 53 <.0 66 <.0 76 <.0 Diffen t Val	> t A 001 174 001 001 001 001 001 001	Ipha 0.05 0.05 0.05 − 0.05 − 0.05 − 0.05 − 0.05 − 0.05 − 0.05	Lower 1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 Dica Lea	Uppe 2.228 1.287 0.327 -0.689 -2.676 2.019 st Squar	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a 1.84 b 1.04 c 0.044 d -1.00 a -3.84 1.67 concaconc a b c c b c d e f c c d	184 049 092 006 1866 723 a Estim 0.84 1.75	0.18 0.13 0.13 0.15 0.57 0.57 0.17	874 36 394 36 369 36 532 36 772 36 713 36 Standar Errc 0.233	9, 7, -6, -6, 9, -6, 9, -6, 10, -6, 10, -7, DF	86 <.0 21 <.0 36 0.7 53 <.0 66 <.0 76 <.0 Differ	001 001 174 001 001 001 001 001	0.05 0.05 0.05 - 0.05 - 0.05 - 0.05 - 0.05	1.4683 0.7222 -0.2276 -1.3112 -5.0171 1.3249 oca Lea	3 2.228 2 1.287 3 0.327 2 -0.689 -2.676 2 2.019 4 2.019	5 0.8639 6 0.7320 5 0.5125 9 C.2688 0 0.02091 5 0.8419 res Means	Errc Maa 0.0220 0.0273 0.0341 0.0301 0.0118 0.0228	or I n 3 C 5 C 9 C 1 C 1 C 0 C	Mean 0.8128 0.6731 0.4433 0.2123 06580 0.7900 0.7900	Mea) 0.902t 0.783 0.581 0.334 0.06440 0.8828 0.8828	n 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1.00 2 0.044 3 -1.00 3 -3.84 1.67 -3.84 conca	049 992 906 1466 723 a Estim 0.8/ 1.75	0.13 0.13 0.15 0.67 0.17	394 36 369 36 532 36 772 36 713 36 Standar Errr 0.233	7. 0. -6.(9. -6.0	21 <.0 36 0.7 53 <.0 66 <.0 76 <.0 Differ	001 174 001 001 001 001 001	0.05 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05	0.7222 -0.2276 -1.3112 -5.0171 1.3249 Dica Lea	2 1.267 0.327 -0.689 -2.676 2.019 st Squar	6 0.7320 5 0.5125 9 C.2688 0 0.02091 6 0.8419	0.0273 0.0341 0.0301 0.0118 0.0228 Odds	5 C 9 C 1 C 1 0.00 0 0	D.6731 D.4433 D.2123 06580 D.7900 D.7900	0.783 0.581 0.334 0.06440 0.8828	Up D Confider Limit for Od
c 0.044 d -1.00 a -3.84 1.67 conca _conc a b c c b d c d e f c d d d	2992 2006 723 a Estim 0.8/ 1.75	0.13 0.15 0.57 0.17 0.17	369 36 532 36 772 36 713 36 Standar Errc 0.233	0.: -6.(9.; rd	36 0.7 53 <.0 66 <.0 76 <.0 Differ	174 001 001 001 7ences	0.05 - 0.05 - 0.05 - 0.05 - 0.05 -	-0.2276 -1.3112 -5.0171 1.3249 Dica Lea	-2.676 -2.676 -2.019 st Squar	5 0.5125 9 C.2688 0 0.02091 3 0.8419 res Means	0.0341 0.0301 0.0118 0.0228 Odds	9 C 1 C 1 0.00 0 0	D.4433 D.2123 06580 D.7900 Confic mit for	0.5811 0.334 0.06440 0.8828 0.8828	Upp Confiden Limit for Od
d -1.00 -3.64 1.67 conca _conc b c c d f c d d	006 1466 123 a Estim 0.8/ 1.75	0,15 0.57 0.17 ate	532 36 772 36 713 36 Standar Errx 0.233	-6. -6. 9. 9. год	53 <.0 66 <.0 76 <.0 Differ t Val	001 001 001 ences ue Pr	0.05 - 0.05 - 0.05 - of con- > 1] A	-1.3112 -5.0171 1.3249 Dica Lea	-2.676 -2.676 2.019 st Squar	9 C.2688 0 0.02091 5 0.8419 res Means	0.0341 0.0301 0.0118 0.0228 Odds	9 C 1 C 1 0.00 0 0	D.4433 D.2123 06580 D.7900 Confic mit for	0.5811 0.334 0.06440 0.8828 0.8828	Upp Confiden Limit for Od
-3.84 1.67 conca _conc b b c c t d e f c c d d	466 723 a Estim 0.84 1.75	0.57 C.17 ate	772 36 713 36 Standar Erro 0.233	-6.0 9.1 9.1	53 <.0 66 <.0 76 <.0 Differ t Val	001 001 001 ences ue Pr	0.05 - 0.05 - 0.05 - of con- > 1] A	-1.3112 -5.0171 1.3249 Dica Lea	-2.676 -2.676 2.019 st Squar	9 C.2688 0 0.02091 5 0.8419 res Means	0.0301 0.0118 0.0228 Odds	1 0.00 0 0 0	0.2123 06580 0.7900 0.7900	0.334 0.06440 0.8828 0.8828	Upp Confiden Limit for Od
-3.64 1.67 conca _conc b b c c t d f c d d	466 723 a Estim 0.84 1.75	0.57 C.17 ate	772 36 713 36 Standar Erro 0.233	-6.0 9.1 9.1	66 < .0 76 <.0 Differ	001 001 'ences ue Pr	0.05 - 0.05 of con- > 1] A	-5.0171 1.3249 Inca Lea	-2.676	0 0.02091 5 0.8419 res Means	0.0118 0.0228 Odds	1 0.00 0 0	06580 0.7900 L Confic mit for	0.06440 0.8828 Lower Jence Odds	D B Confiden Limit for Od
conca _conc b c d c d f c d d	723 a Estim 0.84 1.75	C.17 ate	Standar Erro 0.233	g, rd ог DP	76 <.0 Differ t Val	oo1 rences	0.05 of con > 1] A	1.3249 Ica Lea	I 2.019 Ist Squai	3 0.8419 res Means	0.0228 Odds	o c	L.7900	0.8828 Lower dence Odds	Upp Confiden Limit for Od
conca _conc a b c c t d f c f c d	a Estim 0.84 1.75	ate 134	Standar Erro 0.233	rd or DF	Differ t Val	rences ue Pr	of con	ica Lea	ist Squai	'es Means	Odds	Lin	L Confic mit for	_ower dence Odds	Upj Confiden Limit for Od
a b c a d f c d d	0.84 1.79	ate 134	Erro 0.233	or DF	t Val	ue Pr	> 1] A						Confic mit for	dence Odds	Confiden Limit for Od
a b c a d f c d d	0.84 1.79	ate 134	Erro 0.233	or DF	t Val	ue Pr	> 1] A						Confic mit for	dence Odds	Confider Limit for Od
a b c a d f c d d	0.84 1.79	ate 134	Erro 0.233	or DF		· · · · · - ·		Alpha	Lower	Upper					
d d f c d	1.79			36 36	3 3.	61 0.0	000	•••••						Ratio	Ra
e d e f c d		984						0,05	0.3697	1,3172	2.324			1.447	3.7
f c d		1	0.232	21 36	3, 7,	75 <.0	001	0.05	1.3278	2.2691	6.040			3,773	9.6
f c d	2.84	189	0.242	20 36	, 3 11.		001	0.05	2,3580	3.3398	17.269	· · · · · · · ·		0.570	28,2
f c d	5.69	49	0.606			38 <.0		0.05	4.4642	6.9257	297.359				
c d	0.17		0.253					- + t				4		6.853	>999.9
d	0.95				-	69 0.4		··· ··	-0.3388	0.6910	1.193			0.713	1.9
	-+ · · ·		0.195			89 < 0		0.05	0.5588	1.3512	2.599			1.749	3.8
e	2.00		0.207			er de ser e		0.05	1.5854	2.4255	7.430			4.881	11.3
	4.85		0.593		- · · · ·	17 <.0	001	0.05	3.6473	6.0557	127.931		3	8.370	426.5
!f	-0.66	73	0.220	8.36	-3,1	0.0	046	0.05	-1.1152	-0.2195	0.513].		0.328	0,8
d	1,05	05	0.205	4 36	5.	11 < 0	001	0.05	0.6339	1.4670	2.859	1		1,885	4.3
e	3.89	65	0.593	2 36	6.	57 <.00	001	0.05	2,6935	5.0995	49.230	1	1	4,783	163.9
1	-1.62	23	0.219	2 36	-7.4	40 < 00	001	0.05	-2,0670	-1.1777	0.197	1	(0.127	0,3
e	2.84	60	0.597	2 36	4	77 <.00	001	0.05	1.6349	4.0571	17.219			5.129	57.8
f	-2.67	28	0.229	8 36	-11.6	3 - CO	CC1	0.05	3,1388	-2.2068	0.069			0.043	0.1
f	-5.51	88	0.602	0 36			· · · · • • • ·		6.7398	-4.2978	0.004	†* • •		0.001	
	L	anialan sas			.1. "."					1.6010	0.004			0.001	0.0
				tlr	nə Lea	st Squa	ires Me	eans						 I	
			.			÷		j		Sta	andard			-	
me Estimate	Standa	rd Error		/alue	Pr > 1	 Almb	i al Io	werli	Uppor	Mean	Error L	ower Mean	Upper Mean		
-0.02018	1	0.1071			0.8510		5 -0.2]			
2 -0.02083	· ·	0.1879	i de la composición de la composición de la composición de la composición de la composición de la composición de	-0.15),1969 0),3602 0			4410 4009	0.5491		

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

Page 61 of 81

SAS Output

lme	time	Estimate		ndard Error	DF	Value	Pr > t	Alpha	Lower	Upper	Odds . Ratio	Con Limit fo	Lower fidence ir Odds Ratio	Confi Limit for	
3	12	0.000653	0	2162	36	0.00	0.9976	0.05	0,4379	0.4392	1,001		0.645		1.5
3	24	0.07467	0	.2820	36	0.26	0,7927	0.05	0,4972	0.6466	1.078		0.603		1.9
12	24	0.07401	0	.3215	36	0.23	0.8192	0.05	0.5780	0.7260	1.077		0.561		2.0
						conc	a*time L	east Sq	uares M	eans					
onca	time	Estimate	Standar	d Error	DF	t Value	9 Pr > t	Alpha	Lowe	er Uppe	r Mean	Standard Error Mean	Lower Mean	Upper Mean i	
	6	1.7649		0.3014	36	5.86	<.0001	0.05	1.153	7 2.376	2 0.8538	0.03762	0.7602	0.9150	
	12	1.6963		0,3379	36	5.02	<.0001	0.05	1.010	9 2.381	6 0.8450	C.04425	0.7332	0.9154	
	24	2,0839		0.3333	36	6.25	<.0001	0.05	1.407	9 2.759	9 0.8893	0.03281	0.8034	0.9405	
	6	0,4722		0.2156	36	2.19	0.0351	0.05	0.0349	8 0.909	3 0.6159	0.05099	0.5087	0.7129	ł
	12	1.1971		0.2730	36	4.3B	<.0001	0.05	0.643	4 1.750	7 0.7680	0.04864	0.6555	0.8520	
	24	1.3455		0.2322	36	5.79	<.0001	0.05	0.874	6 1.816	5 0,7934	0.03806	0.7057	0.8601	
	6	-0.3325		0.2221	36	-1.50	0.1430	0.05	-0.782	9 0.117	8 0.4176	0.05401	0.3137	0.5294	
	12	0.01747		0.2692	36	0.06	0.9486	0.05	-0.528	6 0,563	5 0.5044	0.06730	0.3709	0.6373	
	24	0.4648		0.2162	36	2.15	0.0384	0.05	0.0262	5 0.903	4 0.6142	0.05124	0.5066	D.7116	
	6	-1.5515		0.2803	36	-5,53	<.0001	0.05	-2.120	1 -0.983	0.1749	0.04045	0.1072	0.2723	
.	12	-0.4397		0.2389	36	-1.84	0.0740	0.05	-0.924	3 0.0448	0.3918	0.05694	0.2841	0.5112	
	24	-1.0104		0.2747	36	-3.68	0.0008	0.05	-1.567	6 -0.453	0.2669	0.05375	0.1726	0.3886	
	6	-1.7930		0.2708	36	-6.62	<.0001	0.05	-2.342	3 -1.243	0.1427	0.03313	0.08768	0.2238	
	12	-4.4164		0.9165	_36	-4.82	<.0001	0.05	-6.275	2 -2.557	0.01193	0.01081	0.001879	0.07191	
	24	-5.3303]	1.4439	36	-3,69	0.0007	0.05	-8.258	7 -2.4019	0.004819	0.006925	0.000259	0.08303	
	8	1.3189		0.2722	36	4.85	<.0001	0.05	0.7670	1.870	0.7890	0.04531	0,6829	0.8666	
	12	1.8204		0.3349	36	5.44	< 0001	0.05	1.141	3 2.499	0.8606	0.04017	0.7579	0.9241	
	24	1,8774		0.2789	36	6.73	<.0001	0.05	1.311	2.443	0.8673	0.03210	0.7878	0.9201	
	• • •				C	lfføranc	es of cor	nca*time	Least S	Squares N	leans				
		: [<u> </u>]	1		1	Lowe		Upp
anca	time	_conca	time Esti	mate	Stanc E	lard rror DF	t Value	Pr > 1	l] Alpha	Low	er Upper	Odds Ratio	Confidenc Limit fo Odd Rati	s Lin	den nit f Od Rai
	6	a	12 0.0	6867	0.4	528 36	0.15	0.880	3 0.05	-0.849	0.9870	1.071	0.42	8	2.6
	6	a	24 -0.	3190	0.4	494 36	-0,71	0.482	4 0.05	-1.230	0.5924	0.727	0.29	2	1.8
	6	b	6 1.	2928	0.3	706 36	3.49	0.001	3 0.05	0.541	3 2.0443	3.643	1.71	8	7.7
	6	b	12 0.	5679	0.4	067 36	1.40	0.171	1 0.05	-0.256	9 1.3926	1.765	0.77	3	4.0
	6	Ь	24 0,	4194	0.3	805 36	1.10	0.277	3 0,05	-0.352	2 1.1910	1.521	0.70	3	3.2
	6	c I	6 2.	0974	0.3	744 36	5.60	<.000	0.05	1.338	2 2,8567	8.145	3.81	2 1	7.4
	6	c	12 1.	7475	0.4	041 36	4.32	0.000	0.05	0.927	8 2.5671	5.740	2.52	9 1	3.0
	6	c	24 1.3	3001		709 36	3.50	0.001:	2 0.05	0.547	B 2.0524	3.670	1.72	••[•••	7.7

24 -0.09484 0.2609 36 -0.38 0.7183 0.05 -0.6239 0.4342 0.4763 0.06667 0.3439 0.6069

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

8.05 <.0001

5,73 <.0001

6.31 <.0001

0.05

0.05

0.05

2.4817

1.4246

1.9482

4.1512

2.9847

3,6024

27.563

9.067

16.044

11.961

4.156

7.016

63.513

19.781

36.686

3.3165

2.2047

2.7753

6

12

24

6

6 d

6 d

á

d

0.4116 36

0.3846 36

0.4078 36

Page 62 of 81

a	6	e	6	3,5579	0.4052	36	8,78	<.0001	0.05	2.7362	4.3797	35.091	15.428	79.815
a	6	e	12	6.1814	0.9548	36	6.41	<.0001	0.05	4.2247	8.1380	483.645	68.354	>999.999
a	6	e	24	7.0952	1.4750	36	4.81	<.0001	0.05	4.1037	10.0867	>999.999	60,566	>999,999
а	6	ſ	6	0.4460	0.4061	36	1.10	0.2794	0.05	-0.3776	1.2696	1,562	0.685	3.559
a	6	f	12	-0.05549	0,4505	36	-0.12	0,9027	0.05	-0.9692	0.8582	0.946	0.379	2.359
а	6	f	24	-0.1125	0.4107	36	-0.27	0.7857	0.05	-0.9453	0.7204	0.894	0.389	2.055
. а	12	a	24	-0.3876	0.4747	36	-0.82	0.4195	0.05	-1.3503	0,5750	0.679	0.259	1.777
a	12	b	6	1.2241	0.4008	36	3.05	0.0042	0,05	C.4112	2.0370	3.401	1.509	7,668
а	112	b	12	0,4992	0.4344	36	1.15	0.2581	0.05	-0,3819	1.3803	1.647	0.683	3.976
e	12	b	24	0.3507	C.4100	36	C.86	0.3960	0.05	-0,4808	1.1823	1.420	0.618	3.262
a	12	c	6	2.0288	0.4044	36	5.02	<.0001	0.05	1,2087	2.8489	7,605	3.349	17.268
a	12	c	12	1.6788	0,4321	36	3.89	0,0004	0.05	0.8025	2.5551	5.359	2.231	12.872
a	12	c	24	1.2315	0.4012	36	3.07	0.0041	0.05	0.4178	2.0451	3,426	1.519	7.730
а	12	d	6	3.2478	0.4391	36	7.40	<.0001	0.05	2.3573	4.1383	25.734	10,563	62,694
a	12	d	12	2,1360	0,4139	36	5.16	<.0001	0.05	1.2966	2.9754	8.465	3.657	
<u>~</u>	12	d .	24	2.7066	0.4355		6,21	<.0001	0.05	1.8234	3,5899	6.465 14,979	· · · · · · · · · · · · · · · · · ·	19.597
a	12	e	6	3.4893	0.4331	36	8.06	<.0001	0.05			±	6,193	36.231
a	12	e	12	6.1127	0.433	36	6.26	<.0001		2.6110	4.3576	32.762	13.613	78.851
	12		24						0.05	4.1316	8.0937	451.549	62.279	>999.999
a		e		7.0266	1.4829	36	4.74	<.0001	0.05	4.0190	10.0341	>999.999	55.648	>999.999
a	12	ſ	6	0.3773	0.4339	36	0.87	0.3903	0.05	-0.5027	1.2573	1.458	0.605	3.516
a 	12	1	12	-0.1242	0.4757	36	-0,26	0.7956	0.05	-1.0890	0.8407	0.883	0,337	2.318
a	12	f	24	-0.1812	0.4382	36	-0,41	0.6817	0.05	-1.0698	0.7075	0.834	0.343	2,029
a	24	b	6	1.6117	0.3969	36	4.06	0.0003	0.05	0,8067	2.4168	5.012	2,241	11.210
a	24	b	12	0.8868	0.4308	36	2.06	0.0468	0.05	0.01306	1.7606	2,427	1.013	5.816
a	24	b 	24	0.7384	0.4062			0.0774	0 .0 5	-0.08548	1.5622	2,093	0.918	4.769
a 	24	c	6	2.4164	0.4005	36	6.03	< 0001	0,05	1.6041	3,2287	11.206	4.974	25.246
a	24	C	12	2.0664	0.4285	36	4.82	<.0001	0.05	1.1975	2.9354	7.897	3.312	18.829
a	24	c	24	1.6191	D.3973	36	4.08	0.0002	0.05	D.8133	2.4249	5.049	2,255	11.301
а	24	1 d	6	3.6354	0.4355	36	8.35	<.0001	0.05	2.7522	4.5187	37.919	15.677	91.717
a	24	d	12	2.5236	0.4101	36	6.15	<.0001	0.05	1.6919	3.3554	12,474	5.430	28.656
a	24	d	24	3.0943	0.4319	36	7.16	<.0001	0.05	2.2183	3.9703	22.071	9.191	53.000
а	24	e	6	3.8769	0.4295	36	9,03	<.0001	0.05	3.0059	4.7479	48.275	20,205	115.342
a	24	6	12	6.5003	0.9752	36	6,67	<.0001	0.05	4.5225	8.4782	665.357	92,065	>999.999
а	24	e	24	7.4142	1,4819	36	5.00	<.0001	0.05	4.4088	10.4196	>999.999	82.172	>999.999
а	24	1	6	0.7650	0.4303	36	1.78	0,0839	0.05	-0.1078	1.6377	2.149	0.898	5.143
a	24	1	12	0.2635	0.4725	36	0.56	0.5805	0.05	-0.6947	1.2217	1.301	0.499	3.393
a	24	f	24	0.2065	0.4346	36	0.48	0.6376	0.05	- 0 .6750	1.0879	1.229	0.509	2.968
b	6	b	12	-0.7249	0.3478	36	-2,08	0.0443	0.05	-1.4303	-0.01944	0.484	0.239	0.981
b	6	Þ	24	-0.8734	0.3168	30	-2,78	0.0091	0.05	-1.5159	-0.2308	0.418	0.220	0.794
b	6	c	6	0.8047	0,3095	36	2.60	0.0134	0.05	0,1770	1.4323	2.236	1.194	4.188
b	6	c	12	0.4547	0.3449	36	1.32	0,1957	0.05	-0.2448	1.1542	1.576	D.783	3.171
b	6	C	24	0.007357	0.3053	36	0.02	0,9809	0.05	-0.6119	0.6266	1.007	0.542	1.871
b	6	đ	6	2,0237	0.3536	36	5,72	<.0001	0.05	1.3065	2.7409	7.566	3.693	15.500
b	6	d	12	0.9119	0.3218	36	2.83	0.0075	0.05	0.2592	1.5646	2.489	1.296	4.781
. b	6	d	24	1.4825	0,3492	36	4.25	0.0001	0.05	0.7743	2.1907	4.404	2.169	6.942
b	6	e	6	2.2652	0.3461	36	6,54	<.0001	0,05	1.5632	2.9672	9.633	4.774	19.437
••••••	-	····· -· -	· • • • • •			· · ŀ								

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 63 of 81

	6	e	12	4.8886	0,9415	36	5,19	<.0001	0.05	2.9791	6.7980	132.766	19.671	896.07
b	6	e	24	5.8025	1.4599	36	3,97	0.0003	0.05	2.8416	8.7633	331.112	17.144	>9999.99
b	6	f	6	-0.8468	0.3472	36	-2.44	0.0198	0.05	-1.5509	-0.1426	0.429	0.212	0.86
b	6	f	12	-1.3483	0.3982	38	-3.39	0.0017	0.05	-2.1559	-0.5406	0,260	0.116	0.58
Þ	6	1	24	-1.4053	0.3525	36	-3.99	0.0003	0.05	-2.1202	-0.6903	0.245	0,120	0.50
b	12	b	24	-0.1485	0.3584	36	-0.41	0.6811	0.05	-0.8753	0.5784	0.862	0 417	1.78
b	12	c	6	1.5296	0.3519	36	4.35	0.0001	0.05	0,8159	2.2433	4.616	2.261	9.42
b	12	c	12	1.1796	0.3834	36	3.08	0.0040	0.05	0.4020	1.9572	3.253	1.495	7.08
b	12		- 24	0.7323	0.3463	36	2.10	0.0426	0.05	0.02595	1.4386	2.080	1.026	4.21
b	12	d	6	2.7486	0.3913	36	7.02	<.0001	0.05	1,9550	3,5422	15.621	7.064	34.54
b.	12	d	12	1.6368	0.3628	36	4.51	<.0001	0.05	0.9010	2.3726	5,139	2.462	10.72
b	12	d	24	2.2074	0.3873	36	5.70	<.0001	0,05	1.4220	2.9929	9,092	4.145	
 b	12		6	2.9901	0.3845	36	7.78	<.0001	0.05	2.2102	3,7699			19.94
" Ь	12	e	12	5,6135	0.9563	36	5.87	<.0001	0.05	· · ·		19.8B7	9.118	43.37
~ b	12	e	24	6.5274	1.4695	o op				3.6741	7,5529	274.097	39.411	>999.99
Б. — . Б	12		6			· •	4.44	<.0001	0.05	3,5471	9.5076	683.586	34.712	>9999.99
		f f	• j	-0.1219		36	-0.32	0.7537	0.05	-0.9037	0.6599	0.885	0.405	1.93
b 	12	- f	12	-0.6234	0.4320		-1.44	0.1577	0.05	-1.4996	0.2529	0.536	0.223	1.28
b 	12	-1.	24	-0.6804	0.3903	36	-1.74	0.0898	0.05	-1.4719	0.1112	0.506	0,229	1.11
	24	c	6	1.6780	0.3213	36	5.22	<.0001	0.05	1.0264	2.3297	5.355	2.791	10.27
b 	24	C	12	1.3281	0.3555	36	3.74	0.0006	0.05	0.6070	2.0491	3.774	1.835	7.78
2	24	c	24	0.8807	0.3173	36	2,78	0.0087	0.05	0.2372	1.5242	2.413	1.268	4.59
) 	24	đ	6	2.8971	0.3640	36	7.96	<.0001	0.05	2.1588	3.6353	18.121	8.661	37.91
·	24	d	12	1,7853	0.3332	36	5.36	<.0001	0.05	1.1095	2.4610	5,961	3.033	11.71
)	24	d.	24	2,3559	0.3597	36	6.55	<.0001	0.05	1.6264	3.0854	10.548	5.085	21.87
	24	е	6	3.1385	0.3567	36	8.80	<.0001	0.05	2.4151	3.8620	23,070	11,190	47.56
·	24	е	12	5.7620	0.9454	36	6.09	<.0001	0.05	3.8445	7.6794	317.969	46.735	>999.99
\$	24	6	24	6.6758	1.4625	36	4.56	< 0001	0.05	3,7098	9.6418	793.003	40.847	>999,99
>	24	f	6	0.02659	0.3578	36	0.07	0.9412	0.05	-0,6990	0.7522	1.027	0.497	2.12
)	24	f	12	-0.4749	0.4075	36 (-1.17	0.2515	0.05	-1.3013	0.3515	0.622	0.272	1.42
,	24	1	24	-0.5319	0.3629	36	-1.47	0.1514	0.05	-1.2679	0.2042	0.587	0.281	1.226
;	6	C	12	-0,3500	0.3490	36	-1.00	0,3226	0.05	-1.0578	0,3578	D.705	D.347	1.43
	6	c	24	-0.7973	0.3100	38	-2.57	0.0144	0.05	-1.4259	-0.1687	0.451	0.240	0,84
	6	d	6	1.2190	0.3576	36	3.41	0.0016	0.05	0,4938	1.9443	3.384	1.638	6.98
	6	d	12	0.1072	0.3262	36	· · · · ·	0.7443	0.05	-0.5543	0.7688	1.113	0.574	2.15
	6		24	0.6779	0.3532	36		0.0629	0.05	-0.03854	1.3943	1.970	· · + -	
	6	e	6	1.4605	0,3502	36	4.17	0.0002	0.05	0.7502	2.1708	4.308	0,962	4.03
	6	e	12	4.0839	0.9430	36	4.33	0.0001	0.05	2.1714	5.9964		2.118	8.76
	6	e	24	4.9978	1.4609 (36		0.0016	0.05	2.0350		59.378	8.771	401.98
	6	 f	6	-1.6514							7.9606	148.086	7.652	>999.999
	6	 			0.3513	36		<.0001	0.05	-2.3638	-0.9391	0.192	0.094	0.39
			12	-2.1529		36 i		<.0001	0.05	-2.9678	-1.3380	0.116	0.051	0.262
••••	6	f	24	-2.2099		36	-6.20	<.0001	0.05	-2.9330	-1.4869	0.110	0,053	0.226
	12	c	24	-0.4473		36	}	0.2034	0.05	-1.1477	0.2530	0,639	0.317	1.288
	12	d	6	1.5690	0.3887	36	4.04	0.0003	0.05	0,7807	2.3573	4.802	2.183	10.562
	12	d	12	0.4572 i	· · · · · ·	36		0.2122	0.05	-0.2729	1.1873	1.580	0.761	3.278
	12	d	24	1.0279	0.3847	36	2.67	0.0113	0,05	0.2477	1.8080	2.795	1.281	6.098
	12	е	6	1.8105	0.3819	36	4.74	<.0001	0.05	1.0360	2.5850	6.113	2,818	13.263

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 64 of 81

SAS Output

	12	е	12	4.4339	0.9552	36	4.64	<.0001	0.05	2.4966	6.3712	84.259	12.141	584.738
c	12	; e	24	5.3478	1.4688	36	3.64	0.0008	0.05	2.3689	8.3266	210.139	10.686	>999,999
c	12	f	6	-1.3015	0.3828	36	-3.40	0.0017	0.05	-2.0779	-0.5250	0.272	0.125	0.592
¢	12	f	12	-1.8029	0.4297	36	-4,20	0.0002	0.05	-2.6744	-0.9315	0.165	0.069	0,394
с	12	f	24	-1.8599	0,3877	36	-4.80	<.0001	0.05	-2.6462	-1.0737	0,156	0.071	0.342
c	24	d	6	2.0163	0.3540	36	5.70	<.0001	0.05	1.2983	2.7344	7.511	3,663	15.400
6	24	d	12	0.9045	0.3223	36	2.81	0.0080	0.05	0.2510	1.5581	2.471	1.285	4.750
c	24	d	24	1.4752	0.3496	36	4.22	0.0002	0.05	0.7661	2.1842	4.372	2.151	8.884
c	24	e	6	2,2578	0.3466	36	6,52	<.0001	0.05	1.5550	2,9607	9.562	4.735	19.311
c	24	Ð	12	4,8812	0.9417	36	5,18	<.0001	0.05	2.9715	6,7910	131.792	19.521	889.791
3	24	e	24	5.7951	1.4500	36	3,97	0.0003	0.05	2.8341	8.7561	328.685	17.015	>999,999
c	24	f	6	-0.8541	0.3476	36	-2,46	0.0190	0.05	-1.5591	-0.1491	0.426	0.210	D.861
5	24	f	12	-1.3556	0.3986	36	-3.40	0.0017	0.05	-2.1640	-0.5472	0.258	0.115	0,579
c	24	f	24	-1.4126	0.3529	36	-4.00	0,0003	0.05	-2.1284	-0.6969	0.244	0.119	0.498
d	6	d	12	-1.1118	0.3683	36	-3.02	0.0046	0.05	-1.8588	-0.3648	0.329	D,156	0.694
d	6	d	24	-0.5412	0.3925	36	-1.38	0.1765	0.05	-1.3372	0.2549	0,582	0.263	1.290
d	6	e	6	0.2415	0.3898	36	0.62	0.5395	0.05	-0.5490	1.0320	1.273	0.578	2.807
d	6	6	12	2.8649	C.9584	36	2,99	0.0050	0,05	0.9212	4,8086	17.547	2.512	122.561
d	6	e	24	3.7788	1.4709	36	2.57	0.0145	0.05	C,7957	6.7618	43.762	2.216	864.202
d	6	f	5	-2.8705	0.3907	36	-7.35	<.0001	0.05	-3,6629	-2.0781	0.057	0,026	0.125
d	6	t	12	-3.3720	0.4367	38	-7.72	<.0001	0,05	-4.2576	-2.4863	0.034	0.014	0.083
d	6	f	- 24	-3.4290	0.3954	36	-8,67	<.0001	0.05	-4.2310	-2.6270	0.032	0.015	0.072
d	12	d	24	0.5706	0.3641	36	1,57	0,1258	0.05	-0.1678	1.3091	1.769	0.846	3.703
d	12	е	6	1.3533	0.3612	36	3.75	0,0006	0.05	0,6208	2.0857	3.870	1.860	8.051
d	12	e	12	3,9767	0.9471	36	4.20	0.0002	0.05	2.0558	5.8975	53.340	7.813	364.143
d	12	e	24	4.8906	1.4635	36	3.34	0.0020	0,05	1.9224	7.8588	133.028	6.837	>999.999
d	12	f	6	-1.7587	0.3622	36	-4.86	<.0001	0.05	-2,4932	-1.0242	0.172	0,083	0.359
d	12	ſ	12	-2.2602	0.4114	36	-5.49	<.0001	0.05	-3,0945	-1.4259	0.104	0.045	0.240
1	12	f	24	-2.3172	0.3673	36	-6,31	<.0001	0.05	-3.0620	-1.5723	0.099	0.047	0.208
d	24	е	6	0.7826	0.3858	36	2.03	0.0499	0.05	0.000275	1.5650	2.187	1.000	4.783
3	24	e	12	3,4060	0.9568	36	3.56	0.0011	0.05	1.4656	5.3465	30,146	4.330	209.867
 X	24	e	24	4.3199	1.4698	36	2.94	0.0057	0.05	1.3390	7.3008	75,182	3.815	>999.999
 1	24	1 f	6	-2,3293	0.3867	36	· · · - · ·	< 0001	0,05	-3.1136	-1.5450	C.097	0.044	0.213
	24	f	12	-2.8308	0.4331	36	-6.54	<.0001	0.05	-3.7092	-1.9524	0.059	0.024	0.213
 1	24	f	24	-2.8878	0.3915	36	-7,38	<.0001	0,05	-3.6818	-2.0938	0.056	C.025	0.142
	6	i	12	2,6234	0.9557	36		0.0094	0.05	0.6852	4.5616	13.783	1.984	95.734
 9	6	e	24	3.5373	1.4691	36	2.41	0.0213	0.05	0.5578	6.5167	34.373	1.747	676,353
 3	6	f	6	-3.1120	0.3839	36	-8.11	<.0001	0.05	-3.8906	-2.3333	0.045	0.020	
	6	f	12	-3.6134	0.4307	36		<.0001	0.05	-4.4869	-2.7400	0.043	[0,097
	6	f.	24	-3,6704		36		<.0001	0.05		-2.8820	··· •···•	0.011	0,065
;	12	0	24	0.9139		36		0.5964	0.05	-4.4569	4.3823	0.025	0.012	0.056
	12	с г	6	-5.7354		36	-6.00	<.0001	0.05	-2.0040		2.494	0.078	80.025
	12	' f	12	-6.2368	{	36	-6.39	<.0001	0.05		-3:7964	0.003	<0.001	0.022
	12		24	-6.2938	· · · · · · · · · · · · · · · · · · ·	36		<.0001		-8.2157	-4.2579	0.002	<0.001	0.014
-	24	'	6	-6.6492		36	· · · - · - · - · - · - · - · - · - · -		0.05	-8.2367	-4.3509	0.002	<0,001	0.013
• • - • • • • •	· · · · · •	· · · · · ·	- []-					<.0001	0.05	-9.6292	-3.6693	0.001	<0.001	0.025
	24	f	12	-7.1507	1.4822	36	-4.82	<.0001	0.05	-10.1568	-4.1446	<0.001	<0.001	0.016

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

Page 65 of 81

		24	f	24	-7,2077	1.4708	36	-4.90	<.0001	0.05	-10,1902	-4.2252	<0.001	<0.001	0.015
	f	6	f	12	-0.5015	0.4315	36	-1.16	0.2528	0.05 .	-1.3766	0.3737	0.606	0,252	1.453
	f	6	f	24	-0.5585	0.3897	36	-1.43	0.1605	0.05	-1.3488	0.2319	0.572	0.260	1.261
l	f	12	I.	24	-0 .05700	0.4358	36	-0.13	0.8967	0.05	-0.9409	0.8269	0.945	0,390	2.286

Performed by J. Luome; SAS version 9,3 08;43 18MAR15

file:///C:/Users/JI.UOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 66 of 81

Effects of Pseudomonas fluorescens (PF-CL145A) to glochidia from seven unionid mussel species Overall Model: Glochidia Vlability (unadjusted) - At 6, 12 and 24 h

The GLIMMIX Procedure

form≕SDP sps≕MUC

		Model Info	mati	on		
Data S	et		V	ORK GLOCHID	IA2	
Respo	nse Varla	able (Events	} vi	a_glo		
Respo	nse Varia	able (Trials)	to	t		
Respo	nse Distr	bution	B	inomial	1	
Link F	unction		L	ogit		
Varian	ce Funct	lon	D	efault		
Varian	ce Matrix	ι	D	iagonal		
Estima	tion Tec	hnique	M	aximum Likeliho	od	
Degree	s of Free	edom Metho	dR	esidual		
Class	Lovei inf	formation				
Class	Levels	Values				
conca	6	abcdef				
time	3	6 12 24				
·	·	· · · · · · · · · · · · · · ·	т			
		ervations Re		54		
		ervations Us	ed	54		
Numbe	r of Ever	nts		5942		
Numbe	r of Trial	6	f	13218		
• • • • • •	Dimensi	lons				
Covaria	ance Para	ameters 1	-			
Colum	ns In X	27	-			
Colum	ns in Z	0				
Subject	ts (Block	sinV) 1				
Max Ob	s per Su	bject 54				
	Optim	ization Info	rmati	on		
Optimiz	ation Te	chnique	Nev	vton-Raphson		
Parame	ters in O	ptimization	18			
Lower	Boundarl	es	0			
Upper E	Boundarl	es	0			
Fixed E	ffects		Not	Profiled		
	····· ·		• .			
			terat	ion History		
Iteration	n Resta	rts Evaluati	ions	Objective Function		Ma Gradlen
	2	0	. 4	321.3189661		8,46644
	1	0	3	317.52390205	3.79506405	0.29221
	2	0	3	317.51903284	0.00486921	0.0009
	1	1				0.0000
	3	0	3	317.5190328	0.00000004	

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Convergence criterion (GCONV=1E-8) satisfied.

	'it Statis	tice	· · · · · · -]				
-2 Log Like			635.04				
AIC (smalle			671.04				
AICC (small			690.58				
BIC (smalle			706.84				
CAIC (small		- ¹	724.84				
HQIC (sma			684.85				
Pearson Cl			355.52				
Pearson Cl			9,88				
	n-oquan		5,00				
			Parameter	Estimates			
Effect	conca	timə	Estimate	Standard Error	DF	t Value	Pr >
conca	a		1.2566	0.2928	36	4.29	0.000
conca	b		0.5379	0.2631	36	2.04	0.048
conca	c		-0.8370	0.2014	36	-4.16	0.000
conca	d.		-2.8176	D.4444	36	-6.34	<.000
conca	e	1	-2.8346	0.4989	36	-5.68	<.000
conca	f	L	2.5539	0.4110	36	6.21	<.000
time		6	-0.4706	0.5829	36	-0.81	0.4248
time		12	0.2744	0.6779	36	0.40	0.6880
time		24	C				
conca*time	а	6	0.2380	0.7009	36	0.34	0.7362
conca*time	a	12	-0.7276	0.7956	36	-0.91	0.3665
conca*time	a	24	0				
conca*time	b	6	0.9570	0.6868	36	1.39	0.1721
conca*time	Þ	12	-0.1694	0.7787	36	-0,22	0,8291
conca*time	b	24	٥			,	
conca*time	c	6	D.6457	0.6646	36	0.97	0,3378
conca*time	c	12	0.1021	0.7471	36	0.14	0.8920
conca*time	c	24	0			· ·	
conca*time	đ	6	1.2766	0.8065	36	1.58	0.1222
conca*time	d	12	0.3830	0.9202	36	0.42	0.6797
conca*time	d	24	0				
conca*time	e	6	-0.02586	0.9531	36	-0.03	0.9785
conca*time		12	0.09685	0.9786	36	0.10	0.9217
conca*time		24	0		•		
conca [*] time	f	6	0		• :		
conca*time		12	0				
conca*time	1	24					. •
Residual	l		9.8757			•	
Tvr	c Tes	ts of F	Ixed Effect	s			
Effect		1	DF F Valu				
conca		- i	36 72.				
·							

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 67 of 81

Page 68 of 81

SAS Output

	E.,	ı		s Ratio		· · · r ·									
onca	tíme	_conc	a time	Estin		İ	5% Con	1							
•		<u> </u>	_		.232	36	0,12	-	0.436						
) 		1 				36	0,09		0.322						
c d		f f				36	0.02		0.079						
u 8	<u> </u>					36 36	0.00		0.017						
	6		24		[-	36	0.00		0.011						
	12	••	24	{ · −		36	0.79		1.956						
	J	L		ŧ			0.7.0	· · · · · · · · · · · ·	1.000						
							conca L	east Squ	iares Me	ans)
												Standa			
onca	Estim	nate S	tandard	Error	DF	t Valu	e Pr>	t Alphi	a Lowe	or Uppe	r Mea	n Mea			
a	1.0	280	0	.1630	36	6,3	1 <.000	1 0.0	5 0.697	3 : 1.358	7 0.736	0.0316	4 0.66	76 0.7955]
3	0.7	350	0	.1526	36	4,8	2 <.000	1 0.0	5 0,425	5 1.044	5 0.675	0.0334	3 0.60	48 0.7397	
>	-0.6			.1334	36	-4.9			5 -0.923	6 -0,382	7 0.342	3 0.0300	2 0.28	42 0.4055	ļ
1	-2.3			.2358	36	-9.8						9 0.0190	6 0.056	89 0,1357	
	-2.8			.3014	36	-9.5				7 -2.265	0,0533	0.0152	2 0.029	66 0.09406	•
	2.4	885	0	.2646	36	9.4	0 <.000	1 0.05	5 1.951	8 3.025	2 0.923	0.0187	3 0.87	56 0.9537	
							Differor	ices of c	onca Le	ast Squa	es Mean	 S		••••	
						1	1	T	1	[1	1 .	Lower	Upp
				Sta	Indarc							Odds		onfidence	Confiden
onca	_cond		imate		Erro	·· -	·{ ·- · ·			Lower	Upper	Ratio	· ·	Ratio	Ra
	b .		.2930		D.2233	1.1	1.31	0.1978		-0.1599	0,7459	1.340	ł	0.852	2.1
	C		,6811		0.2106		7,98		0.05	1.2540	2.1083	5,372		3,504	8.2
	d e		.3578 .9044		0.2867 0,3427	1	4 · · · ·	<.0001	0.05	2.7763	3.9392	28,725	<u>-</u>	16.060	51.3
• 	f		.4605		· · · · · · · ·				0.05	3.2093		49.618		24.762	99.4
	с.		3882		0.3108 0.2027	· • · ·	-4.70	1	0.05	0.9772	-0.8301 1.7992	0.232 4.008		0.124	0.4
	d		.0648		0.2609		10.91	<.0001	0.05	2.4951	3.6344	21.430		2.657 12.123	6.0
		·	5114		0.3379		10.69		0.05	2.9261	4.2966	37.017	}	12.123	73.4
	f		7535		0.3055		-5.74	<.0001	0.05	-2.3730	-1.1339	0.173	1	0.093	0.3
;	d	i	6766		0.2709	· · · · · · · · · · · · · · · · · · ·	6.19	<.0001	0.05	1.1272	2.2260	5.347	1	3.087	9.2
;;	е	2	2232	G),3296	36	6.74	<.0001	0.05	1.5547	2.8917	9.237		4.734	18.0
	f	-3.	.1416	0).2963	36	-10.60	<.0001	0.05	-3.7427	-2.5406	0.043		0.024	0.0
1	е	0	5466	0).3827	36	1.43	0.1618	0.05	-0.2296	1.3228	1.727		0.795	3.7
1	ſ	-4.	8182	0	0.3545	i 36	-13.59	<.0001	0.05	-5.5371	-4.0993	0.008		0.004	0.0
	f	-5	364B	0	.4011	36	-13.37	<.0001	0.05	-6.1784	-4.5513	0,005		0,002	0.0
			• •								• • • •		·····		
						tii ''''	me Least	Square	s Means		ľ		,		
		1			F + 14	alue	Pr > t	Alpha	Lower	Upper	Mean	Standard Error Mean		Upper Mean	
lmə E	stimat	e Stan	idard Er												
lmə E	stimat -0.312:	+	0.14			}	0.0426	0.05	-0.6133	-0.01107	0.4226	0.03623	0.3513	0.4972	

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 69 of 81

SAS Output

			· ··· ····		Diff	erences	of time	Least Sq	uares Me	ans		
timə	time	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Odds Ratio	Lower Confidence (Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
6	12	-0.1773	0.2203	36	-0.80	0.4262	0.05	-0.6240	0.2695	0.838	0.536	1,309
6	24	0.04463	0.2111	36	0.21	0.8338	0.05	-0.3835	0.4728	1.046	0,681	1.604
12	24	0.2219	0.2214	36	1.00	0.3228	0.05	-0.2270	0.670B	1.248	0.797	1,956

1			i		
24	-C.3568	0,1501 36	-2.38 0.0229	0.05 -0.6612 -0.05242 0.4117	0.03635 0 3405 0 4869
					0.00000 0.0100 0.4000

					conca	time Lea	ıst Squa	ires Means	•				
conca	time	Estimate	Standard Error	DF	t Value	Pr > jtj	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean
a	6	1.0240	0.2565	36	3.99	0.0003	0.05	0.5038	1.5442	0,7358	0.04987	0.6233	0.8241
a	12	0.8034	0.2962	36	2.71	0.0102	0.05	0.2027	1.4041	0.6907	C.06327	0.5505	0.8028
a	24	1.2566	0.2928	36	4.29	0.0001	0.05	0.6628	1.8504	0.7784	0.05050	0,6599	0.8642
b	6	1.0243	0.2504	36	4.09	0.0002	0,05	0.5164	1.5322	0.7358	0.04868	0.6263	0.8223
b	12	0.6429	0.2787	36	2.31	0.0269	0.05	0.07773	1.2082	0.6554	0.06294	0.5194	0.7700
b	24	0.5379	0.2631	36	2.04	0.0483	0.05	0.004319	1.0715	D.6313	0.06124	0.5011	0.7449
с	6	-0.6619	0.2477	36	-2.67	0.0112	0.05	-1.1643	-0.1596	0.3403	0.05561	0.2379	0.4602
c	12	-0.4605	0.2411	36	-1.91	0.0642	0.05	-0.9495	0.02857	0,3869	0.05720	0.2790	0.5071
c	24	-0.8370	0,2014	36	-4.16	0.0002	0.05	-1.2454	-0.4286	0.3022	0.04246	0.2235	0.3945
d	6	-2.0115	0.3363	36	-5.98	<.0001	0.05	-2.6936	-1.3295	0.1180	0.03500	0.06335	0.2092
d	12	-2,1601	0.4358	36	-4.96	<.0001	0.05	-3.0439	-1.2763	0.1034	0.04040	0.04548	0.2182
đ	24	-2.8176	0.4444	36	-6.34	<.0001	0.05	-3.7188	-1.9163	0.05638	0.02364	0.02369	0.1283
e	6	-3.3311	0.5654	36	-5.89	<.0001	0.05	-4.4777	-2.1845	0.03452	0.01884	0.01123	0,1012
e	12	-2.4634	0.4992	36	-4.93	<.0001	0,05	-3.4758	-1.4509	0.07847	0.03610	0.03001	0.1899
e	24	-2.8346	0.4989	36	-5.68	<.0001	0.05	-3.8465	-1.8227	0.05548	0.02615	0.02091	0.1391
f	5	2.0833	0.4133	36	5.04	<,0001	0.05	1.2450	2.9216	0.8893	0.04070	0.7764	0.9489
f	12	2.8283	0,5390	36	5.25	<.0001	0.05	1.7351	3.9215	0.9442	0 02841	0.8501	0.9806
1	24	2.5539	0.4110	36	6.21	<.0001	0.05	1.7203	3.3875	0.9278	0.02752	0.8482	0.9673

					Differe	nce	s of cond	a*time L	east Sq	lares Meal	ns			
conca	time	_conca	time	Estimate	Standard Error	DF	t Value	Pr > ‡	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Uppe Confidence Limit fo Odds Ratio
a	6	a	12	0,2206	0.3918	36	0.56	0.5769	0,05	-0.5740	1.0152	1.247	0.563	2.760
a	6	a	24	-0.2326	0.3893	36	-0,60	0.5538	0,05	-1.0221	0.5568	0.792	0.360	1.745
a	6	b	6	-0.00026	0.3585	36	-0.00	0,9994	0.05	-0.7273	0.7268	1.000	0.483	2.068
a	6	b	12	0.3811	0.3788	36	1.01	0.3211	0.05	-0.3871	1.1492	1.464	D.679	3,156
а	6	b	24	0.4861	0,3674	36	1.32	0.1942	0.05	-0.2591	1.2313	1.626	0.772	3.426
a	6	c	6	1.6859	0.3566	36	4.73	<.0001	0.05	0.9627	2.4091	5.397	2.619	11.124
a	6	C	12	1.4845	0.3521	36	4.22	0.0002	0.05	0.7705	2.1985	4.413	2.161	9.0 11
a	6	c	24	1.8610	0.3261	36	5.71	<.0001	0.05	1.1996	2.5224	6.430	3.319	12.458
a	6	d	6	3.0355	0.4230	36	7.18	<.0001	0.05	2.1777	3.8933	20.812	8.826	49,074
a	6	đ	12	3,1841	0,5057	36	6,30	<.0001	0.05	2.1586	4.2097	24,147	8.659	67.336
a	6	d	24	3.8416	0.5131	36	7.49	<.0001	0.05	2.8010	4.8822	46.598	16.460	131.915

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 70 of 81

а	6	, e	6	4.3551	0.6208	36	7.01	<.000*	0.05	3.0960	5.6142	77,874	22.108	274.298
a	6	e	12	3.4874	0.5613	36	6.21	<.0001	0.05	2.3491	4.6257	32,699	10.476	102.070
а	6	е	24	3.8586	0,5610	36	6.88	<,0001	0.05	2.7208	4.9964	47,400	15,193	147.882
a	6	f	6	-1.0593	0.4865	36	-2.18	0.0361	0.05	-2.0459	-0.07268	0.347	0,129	0,930
a	6		12	-1.8043	0.5969	36	-3.02	1	0.05	-3.0149	-0.5936	0.165	0.049	0,552
a	6	1	24	-1,5299	0.4845	36	-3.16	0.0032	0.05	-2.5125	-0.5473	0.217	0.081	0.579
а	12	. a	24	-0.4532	0.4165	36	-1.09		0,05	-1.2978	0.3914	0.636	0.273	1.479
а	12	Ь	6	-0.2209	0.3879	36		0.5726	0.05	-1.0075	0.5658	0.802	0.365	1.761
a	1.2	b	12	0.1605	0.4067	36	{ · ··	0.6955	0.05	-0.6643	0.9852		0.515	
8	12	b	24	0.2655	0.3961		<u>⊢</u>	0.5070	0.05	-0.5379	1.0689	1,304		2.678
-	12	c	6	1,4653	0.3861	36	3.80	0.0005	0.05	0.6823			0.584	2.912
a	12	c	12	1.2639	0.3819	36		\		··	2.2484	4.329	1.978	9.472
a	12	c	24	1.8404	0.3581	36	3.31	0.0021	0.05	0.4893	2.0385	3.539	1.631	7.679
	12	· • · · · · · · ·					4.58	<.0001	0.05	0.9141	2,3668	5.157	2.494	10.663
a 			6	2.8149	0 4481	36	6.28	<.0001	0.05	1.9061	3.7238	16.692	6.727	41.421
a	12	d	12	2,9636	0.5269	36	5.62	<.0001	0.05	1.8950	4.0321	19.367	5.652	56.382
a	12	d	24	3.6210	0.5340	36		<.0001	D,05	2.5379	4,7040	37.373	12.653	110,389
a	12	e	6	4.1345	0.6383	36	6.48	<.0001	0.05	2.8401	5.4289	62.458	17,117	227.905
a	12	e	12	3.2668	0.5805	36	5.63	<.0001	0.05	2.0895	4.4440	26,226	8,081	85.115
a	12	0	24	3,6380	0.5802	36	6.27	<.0001	0.05	2.4613	4.8148	38.016	11.720	123.319
a	12	f	6	-1.2799	0.5085	36	-2.52	0.0164	0.05	-2.3112	-0.2486	0.278	0.099	0.780
a	12	f.	12	-2.0249	0.6150	36	-3,29	0.0022	D.05	-3.2722	-0.7776	0.132	0.038	0.460
a	12	f	24	-1.7505	0.5066	36	-3.46	0.0014	0.05	-2.7780	-0.7230	0.174	0.062	0.485
a	24	b	6	0.2324	0,3853	36	0.60	0.5502	0.05	-C.5490	1.0137	1.262	0.578	2,756
a	24	þ	12	0.6137	0.4042	36	1.52	0.1377	0.05	-0.2061	1.4335	1.847	0.814	4.193
а	24	b	24	0.7187	0.3936	36	1.83	0.0762	0.05	-0.07957	1.5170	2,052	0.924	4.559
a	24	с	6	1.9185	0.3835	36	5.00	<.0001	0,05	1.1408	2,6963	6.811	3.129	14.825
a	24	c	12	1.7171	0.3793	36	4,53	<.0001	0.05	0.9478	2.4864	5.568	2.580	12.017
a	24	с	24	2.0936	0.3553	36	5.89	<.0001	0.05	1,3730	2.8143	B.114	3.947	16.681
a	24	d	6	3.2681	0.4459	36	7.33	<.0001	0.05	2,3638	4.1725	26,263	10.632	64.875
а	24	d	12	3.4168	0.5250	36	6.51	<.0001	0.05	2.3520	4.4815	30.471	10.507	88,368
a	24	d	24	4.0742	0.5322	36	7.66	<.0001	0,05	2.9949	5.1534	58.802	19.984	173.023
а	24	e	6	4.5877	0.6367	36	7.21	<.0001	0.05	3.2964	5.8790	98.269	27.016	357,438
a	24	e	12	3.7200	0.5787	36	6.43	<.0001	0.05	2,5462	4,8937	41.263	12,759	133,449
a	24	8	24	4.0912	0.5785	36	7.07	<,0001	0.05	2.9180	5.2645	59.813	18.504	193.347
а	24	1 1	6	-0.8267	0.5065	36	-1.63	0.1114	0.05	-1,8540	0.2006	0,438	0.157	1.222
a	24	f	12	-1.6717	0.6134	36	-2.56	0.0147	0,05	-2.8157	-0.3277	0.208	0.060	0.721
a	24	f	24	-1.2973	C.5046	36	-2.57	0.0144	0.05	-2.3208	-0.2738	0.273	0.098	0.760
b	6	 b	12	0.3813	0,3747	36		0.3156	0.05	-0.3786	1,1412	1.464	0.685	3,131
b	6	b	24	0.4864	0.3632	36	· · · · · · · · · · · · · · · · · · ·	0.1890	0.05	-0 2503	1.2230	1.626	0.779	3,397
b	6	C	6	1.6862	0.3522	36	4.79	<.0001	0.05	0.9718	2.4006	5,399	2.643	11.029
b	6	с.	12	1,4847	0.3477	36		0.0001	0.05	0.7797	2.1898	4.414	2.181	8.934
b	6	с	24	1.8613	0.3214	36	5.79	<.0001	0.05	1.2095	2.1090	6,432	3.352	
.~ b	6	d	6	3.0358	0.4193	36		<.0001	0.05	2,1854	3.8862	20.818		12.342
5 b	6	d	12	3,1844	0,5026	36		<.0001	0,05				8.894	48.725
5 b	6	d	24	3,1044	0.5101	36 36			-	2.1651	4.2038	24.153	8.715	66,938
b	6		6					<.0001	0.05	2,8073	4.8763	46,610	16,565	131.146
		e	°	4.3554	0.6184	36	7.04	<.0001	0,05	3.1013	5.6094	77.894	22.226	272.992

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 71 of 81

.

	6	e	12	3.4876	0.5585	36	6.24	+≤.0001	0.05	2.3549	4.6203	32.708	10.537	101.529
b	6	6	24	3,8589	0.5583	36	6.91	<.0001	0,05	2.7267	4.9911	47.412	15.282	147.098
þ	6	f	6	-1.0590	0.4833	, 36	-2.19	0.0350	0.05	-2.0392	-0.07886	0.347 i	0.130	0.924
b	6	f	12	-1.8040	D.5944	36	-3.04	0.0044	0.05	-3.0094	-0.5986	0.165	D.049	0,550
b	6	f	24	-1.5296	0.4813	36	-3.18	0.0030	0.05	-2,5058	-0.5535	0,217	0.082	0.575
b	12	b	24	0.1050	0.3833	36	0.27	0.7856	0.05	-0.6722	0.8823	1.111	0.511	2.417
b	12	c	6	1.3049	0.3729	36	3.50	0.0013	0.05	0.5487	2.0611	3.687	1.731	7.854
b	12	c	12	1.1034	0.3685	36	2.99	0.0050	0.05	0.3560	1.8508	3.014	1.428	6.365
b	12	C	24	1.4800	0.3438	36	4.30	0.0001	0.05	0.7826	2.1773	4.393	2.187	8.822
b .	12	d	6	2.6545	0.4368	36	6.08	<.0001	0.05	1.7687	3,5403	14.217	5.863	34.477
Þ	12	d	12	2.8031	0.5173	36	5.42	<.0001	D.05	1.7540	3,8522	16.495	5.778	47.095
b	12	d	24	3.4605	0.5245	36	6.60	<.0001	0,05	2.3967	4.5243	31.833	10.987	92,231
b	12	e	6	3.9740	0.6303	36	6.30	<.0001	0.05	2,6957	5.2524	53,198	14,815	191.024
b	12	e	12	3.1063	0.5717	36	5.43	<.0001	0.05	1,9467	4.2658	22,338	7.006	71.225
b	12	e	24	3.4776	0.5715	36	6.08	<.0001	0.05	2.3185	4.6366	32.380	10.160	103,194
b	12	٢	6	-1.4403	0.4985	36	-2.89	0.0065	0.05	-2.4514	-0.4293	0.237	0.086	0.651
b	12	1	12	-2.1854	0.6068	36	-3.60	0.0009	0.05	-3.4160	-0.9547	0.112	0.033	0.385
b	12	f	24	- 1 .9110	0.4966	36	-3.85	0.0005	0.05	-2.9181	-0,9038	0.148	0.054	0.405
 b	24	c	6	1.1998	0.3613	36	3.32	0.0021	0.05	0,4670	1.9327	3.320	1.595	6.908
b	24	c	12	0.9984	0.3569	36	2.60	0.0082	0.05	0.2746	1.7222	2.714	1,316	5,597
b	24	с	24	1.3749	0.3313	36	4.15	0.0002	0.05	0,7030	2.0468	3.955	2.020	7.743
b	24	d	6	2,5494	0.4270	36	5,97	<.0001	0.05	1.6835	3.4154	12.800	5.384	30.429
b	24	đ	12	2.6980	0.5090	36	5.30	<.0001	0.05	1.6657	3,7304	14.851	5.289	41.696
2	24	d	24	3.3554	0.5164	36	6,50	<.0001	0.05	2.3081	4,4028	28.658	10.055	81.677
	24	e	6	3.8690	0.6236	36	6.20	<.0001	0.05	2.6043	5,1337	47.893	13.521	169.640
о. С	24	6	12	3.0012	0.5643	36	6.32	<.0001	0.05	1,8568	4.1457	20.111	6,403	63,162
)	24	e	24	3.3725	C.5641	36	5.98	<,0001	0.05	2.2285	4.5165	•	9.286	91.512
>	24	1	6	-1.5454	0.4900	36	-3.15	0.0032	0.05	-2.5391	-0.5517	0.213	0,079	0.576
,	24	1	12	-2.2904	0.5998	36	-3.82	0.0005	0,05	-3.5069	-1.0740	0.101	0,030	0.342
,	24	f	24	-2.0160	0.4880	36	-4.13	0.0002	0,D5	-3.0058	-1.0263	0.133	0.050	0.358
;	6	c	12	-0.2014	0.3457	36	-0.58	0.5637	0.05	~0.9025	0,4996	0.818	0.408	1.648
:	6	c	24	0,1751	0.3192	36 ;	0.55	0.5868	0.05	-D.4723	0.8225	1.191	0.624	2.276
;	6	d	6	1,3496	0.4177	36	3.23	0.0026	0.05	0.5025	2.1967	3.856	1,653	8.995
;	6	d	12	1.4982	0,5013	36	2.99	0.0050	0,05	0.4816	2.5148	4.474	1.619	12.364
;	6	d	24	2.1556	0.5087	36	4.24	0.0002	0,05	1.1238	3,1874	8.633	3.077	24.225
:	6		6	2.6692	0.6173	36	4.32	0.0001	0.05	1.4173	3.9210	14.428	4,126	50.451
	6	e	12	1.8014	0.5573 !	36	· • · · · ·	0.0026	0.05	0.6712	2.9317	6.058	1.957	18.759
	6	e	24	2.1727	0.5570	36	3.90	0.0004	0.05	1.0429	3.3024	8,782	2.838	27.179
	6	f	6	-2.7452	0 4819	36		<.0001	0.05	-3.7225	-1.7679	0.064	0.024	0,171
	6	f	12	-3.4902	0,5932	36	-5.88	<.0001	0,05	-4.6933	-2.2871	0.030	0.009	0.102
	6	f	24	-3.2158	0.4799	36		< 0001	0.05	-4.1891	-2.2425	0.040 i	0.015	0.102
•••	12	c	24	0.3765	0.3142	36		0.2385	0.05	-0.2608	1.0137	1.457	0.015	2.756
	12	d	6	1,5510	0.4138	36		0.0006	0.05	0.7118	2.3903	4.716	2.038	10.917
	12	d	12	1.6997	0.4980	36		0.0016	0.05	0.6896	2.3903 2.7098 j	5.472	2.038	15.026
	12	d	24	2.3571	0,5056	36		<.0001	0.05	1.3317	3.3824	10,560	3.787	· ·· ·· ··
• •	12	e	6	2.8706	0.6147	36	4,67		0.05	1.6240		17,648	3.101	29.443

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 72 of 81

	40	1.	Lan	1 0000		1	1		1		·	1	
	12	e	12	2,0029	0.5544	36	3.61 0.00				·	2.407	22.812
c	12	e	24	2.3741	0,5542	36	4.28 0.00				10.742	3.491	33.050
C	12	1	6	-2.5438	0.4785	36	-5.32 <.00		··{-· · · · · · · · · · · · · · · · · ·	-1.5732	0.079	0.030	0.207
с -	12		12	-3.2888	0.5905	36	-5.57 <.00			-2.0912	0.037	0.011	0.124
c	12	- <u>†</u>	24	-3.0144	0.4765	36	-6,33 <.00			-2.0479	0.049	0.019	0,129
c	24	ď	6	1.1745	0.3920	36	3.00 0.00	19 0.05	0.3795	1.9695	3.237	1.462	7.167
с	24	d	12	1.3231	0.4801	36	2.76 0.00	0.05	0.3495	2.2967	3.755	1.418	9.942
С.	24	d	24	1.9805	0.4879	36	4.06 0.00	0.05	0.9911	2.9700	7.247	2.694	19.492
c	24	6	6	2.4941	0.6002	36	4.16 0.00	0.05	1.2769	3.7113	12.111	3,585	40.906
c	24	e	12	1.6263	0,5383	36	3.02 0.00	6 0.05	0.5348	2.7181	5.065	1.707	15.151
с	24	е	24	1.9976	0.5380	36	3 71 0.00	07 0,05	0.9064	3.0888	7.371	2.475	21.951
c	24	f	6	-2.9203	0.4598	36	-6.35 <.00	01 D.05	-3.8528	-1.9878	0.054	0.021	0.137
C	24	f	12	-3.6653	0.5754	36	-6.37 <.000	01 D,05	-4.8323	-2.4983	0.026	0.008	0.082
c	24	f	24	-3.3909	0.4577	36	-7.41 <.000	0.05	-4.3192	-2.4626	0.034	0.013	0.085
d	6	d	12	0.1486	0.5505	36	0.27 0.78	7 0.05	-0.9678	1.2650	1.160	0.380	3.543
d	6	d	24	D,8060	0.5573	36	1.45 0.156	0.05	-0.3242	1.9362	2.239	0.723	6.933
d	6	6	6	1.3196	0.6578	36	2.01 0.05		-0.01460	2.6537	3.742 ;	0.986	14.207
d	6	e	12	0.4518	0.6019	36	0.75 0.45			1.6726	1.571	0.366	5,326
d	6		24	0,8231	0.6017	36	1.37 0.179		-0.3972	2.0434	2.278	0.672	7.717
d.	6	f	6	-4.0948	0.5329	36	-7,68 < 000		-5.1755	-3.0141	0.017	0.072	
ď	6	f	12	-4.8398	0,6353	36	-7.62 <.00		-6,1283				0.049
d	6	f	24	-4.5654	0.5311	38			· · · · · · · · · · · · · · · ·	-3.5513	0.008	0.002	0.029
d		d	•						-5.6425	-3.4883	0.010	D.004	0.031
ч d	12		24	0.6574	0.6224	36	1.06 0.297		-0.6049	1.9197	1.930	0.546	6.819
	12	е	6	1.1709	0.7138	36	1.64 0.109		-0.2768	2.6187	3.225	0.758	13.717
d	12	e	12	0.3032	0.6627	36	0.46 0.650		-1.0407	1.6472	1.354	0,353	5,192
d	12	e	24	0.6745	0,6625	36	1.02 0.315		-0,6691	2.0180	1.963	0.512	7.523
d	12	i r	6	-4.2434	0,6006	36	-7.06 <.000		-5.4616	-3.0253	0.014	0.004	0.049
d	12	ļf	12	-4.9884	0.6931	36	-7.20 <.000	1 0,05	-6.3942	-3,5827	0.007	0.002	0.028
d 	12	f	24	-4.7140	0.5990	36	-7.87 <.000	1 0,05	-5.9290	-3.4991	0.009	0.003	0.030
d	24	e	6	0,5135	0.7191	36	0.71 0.479	8 0.05	-0,9449	1.9720	1.671	0,389	7.185
d	24	е	12	-0,3542	0.6683	36	-0.53 0.599	4 0.05	-1,7097	1.0013	0.702	0.181	2.722
ď	24	e	24	0.01706	0.6681	36	0.03 0.979	8 0.05	-1.3380	1.3721	1.017	0.262	3.944
d	24	f	6	-4.9008	0.6069	36	-8.08 <.000	1 0.05	-6.1317	-3.6700	0.007	0.002	0.025
d	24	f .	12	-5.6459	0.6986	36	-8.08 <.000	1 0.05	-7.0626	-4.2291	0.004	<0.001	0.015
d	24	1	24	-5.3715	0.6053	36	-8.87 <.000	1 0.05	-6.5991	-4.1438	0.005	0.001	0.016
e	6	C	12	-0.6677	0,7542	36	-1.15 0.267	6 0.05	-2.3974	0.6619	0.420	0.091	1.939
e	6	e	24	-0.4965	0.7541	36	-0.66 0.514	5 0,05	-2.0258	1.0328	0.609	0.132	2.809
8	6	f	6	-5.4144	0.7004	36	-7.73 <.000	1 0.05	-6.8348	-3.9940	0.004	0.001	0.018
	6	f	12	-6,1594	0.7811	36	-7.89 <.000		-7.7436	-4.5751	0.002	<0.001	0.010
e	6	1	24	-5.8850	0,6990	36	-8,42 <.000		-7.3026	-4,4674	0.003	<0.001	0.010
B	12	e	24	0.3713	0.7058	36	0.53 0.602		-1.0602	1.8027	1.450	0.346	6.066
	12	f.	6	-4.5466	0.6481	36	-7.01 <.000		-5.8611	-3.2322	0.011	···· · · · · · · · · · · · · · · · · ·	
	12	1 1	12	-5,2917	0.7347	36	-7.20 <.000			· · · ·		0.003	0.039
3 	12		24						-6.7817	-3.8016	0.005	0.001	0.022
	· · ·	4	1 1	-5.0173	0.6467	36	-7.76 <.000		-6.3287	-3,7058	0,007	0.002	0.025
) 	24	ſ	6	-4.9179	0.6479	36	-7,59 <.000		-6.2319	-3,6039	0.007	0.002	0.027
) 	24	f	12	-5.6629	0.7345	36	-7.71 <.000	1 0.05	-7.1525	-4.1733	0.003	<0.001	0.015

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

Page 73 of 81

ĺ		24	f	24	-5.3885	0.6464		-8.34	<.0001	0.05	-6.6996	-4.0775	0.005	0.001	0.017
	f	6	f	12	-0.7450	0.6793	36	-1.10			-2.1226	0.6326	0.475	0.120	1.882
	f	6	f	24	-0.4706	0.5829	36	- C.8 1	0.4248	0.05	-1.6528	0.7116	0.625	0.192	2.037
	f	12	f	24	0.2744	0.8779	36	0.40	0.6880	0.05	-1.1004	1.6492	1.316	0.333	5.203

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 74 of 81

Effects of Pseudomonas fluorescens (Pf-CL145A) to glochidia from seven unionid mussel species Overall Model: Glochidia Viability (unadjusted) - At 6, 12 and 24 h

The GLIMMIX Procedure

form=SDP sps=PPB

Model Inform	atlo	n		
Data Set	wo	RK,GLOCHID	IA2	
Response Variable (Events)	via	glo		
Response Variable (Trials)	tol			
Response Distribution	Bin	omial		
	Log			
Variance Function	Def	fault		
Variance Matrix	Dia	igonal		
Estimation Technique	Ма	ximum Likeliho	bd	
Degrees of Freedom Method	Rea	slduał		
Class Level Information				
Class Levels Values				
conca 6 a b c d e f				
time 3 6 12 24				
Number of Observations Read	1	54		
Number of Observations User	1	54		
Number of Events	1	9421		
Number of Trials	18	8163		
Dimensions				
Covariance Parameters 1				
Columns in X 27				
Columns in Z 0				
Subjects (Blocks in V) 1				
Max Obs per Subject 54				
Optimization inform	atio	'n		
Optimization Technique	lewt	on-Raphson		
Parameters in Optimization	8			
Lower Boundaries 0				
Upper Boundaries 0				
Fixed Effects	lot P	rofiled		
į it		on History		
Iteration Restarts Evaluation	16	Objective Function		Max Gradlent
0 0	4	945.32974473		160.8709
1 0	3	795.60767544	149.72206929	47.7343
2 0	3	784.76560931	10.84206612	0.165926
3 0	3	784.7653506	0.00025872	0.000055
4 0	3	784.7653506	0.00000000	1.78E-10

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Convergence criterion (GCONV≍1E-8) satisfied.

Fit Statistics	
2 Log Likellhood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)	1569.53
AIC (smaller is better)	1605.53
AICC (smaller is better)	1625.07
BIC (smaller is better)	1641.33
CAIC (smaller is better)	1659.33
HQIC (smaller is better)	1619,34
Pearson Chi-Square	1144.64
Pearson Chi-Square / DF	31.80

Parameter Estimates Effect conca time Estimate Standard Error DF t Value Pr > tt													
Effect	conca	time	Estimate	Standard Error	DF	t Value	Pr > t						
conca	a	ĺ	1.3723	0.4296	36	3.19	0.0029						
conca	b		0.6578	0.4094	36	1.61	0.1168						
conca	c		0.1866	0.3704	36	0.50	0.6174						
conca	d		-2.4440	0.6532	36	-3.74	0,0006						
conca	0		-3.0924	0,9887	36	-3.13	0.0035						
conca	ſ		2.4594	0.5996	36	4.10	0.0002						
time		6	0.05853	0.9340	36	0.06	0.9504						
time		12	-0 .6393	0.7102	36	-0.90	0.3740						
time		24	0			•							
conca*time	a	6	-0.2993	1.1103	36	-0.27	0.7890						
conca*time	а	12	0.4574	0.9211	36	0.50	0.6225						
conca*time	a	24	0		•	,							
conca*time	b	6	0.4787	1.1211	36	0.43	0.6719						
conca*time	b	12	0.2121	0.8823	36	0.24	0.8114						
conca*time	b	24	0			•	••••						
conca*time	c	6	-0.1916	1.1000	36	-0.17	0.8627						
conca*time	C	12	0.4555	0.9061	36	0.50	0.6182						
conca*time	c	24	0	· · · · · · · · · · · · · · · · · · ·	•								
conca*time	d	6	-0.3590	1.3877	36	-0.26	0.7973						
conca*time	d	12	0.7065	1,0685	36	0.66	0.5127						
conca*time	d	24	0		_,i								
conca*time	e	6	-0.4627	2.0469	36	-0.23	0,8225						
conca*time	e	12	0.8782	1.6047	36	0.58	0.5631						
conca*time	e	24	0	•	•		· .						
conca*time	f	6	0	•••••••••••••••••••••••••••••••••••••••	- î		• •						
conca*time	r	12	0		•••		•						
conca*time	f	24	0	•	· .	•							
Residual			31.7956	•									
	·····												
··· ··· · · · · · · · · · · · · · · ·			ixed Effect	ing the state									
Effect	Num DF	Den	DF F Val	ue Pr>F									
conca	5	5	36 26.9	90 <.0001									

file:///C:/Uscrs/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 75 of 81

Page 76 of 81

SAS Output

time			2	36	0.1	7 0.8	456							
conca	*time		10	36	0,3	3 0.9	682							
··· - · <i>·</i> ·			Odd	s Ratio	o Est∣	mates								
conca	time	_con	ca time	Esth	mate	DF	5% Confle	ience L	imits					
a	1	f		(c	.355	36	0.15	4 0	.822					
b		f		C	208	36	0.09	1 0	.477					
с		f		C	.112	36	0.04	9	.260					
d	1	ł		0	800.	36	0.00	3 6	0.023					
e	-	f	-	0	.004	36	<0.00	(· (021					
	6		24	0	,923	36	0.394	1 2	.159					
	12		24				0.40		007					
	12		24	1 0	.829	36	0.428	ו וי	.607					
		. .	[2 4		.829		·····	L						
	 	 }			.829		conca Lea	L		15		Chandrad	·	
conca		nate S					conca Lea	st Squa	res Mear	is Upper	Mean	Standard Error Mean	Lower Mean	
	Estin	oate S	- Standard			LL	conca Lea le Pr > [t]	st Squa	res Mear Lower	Upper	Mean 0.7741	Error	Lower	Mea
a	Estin 1.2		Standard C	Error	DF	t Valu 5.1	conca Lea le Pr > [t] 2 <.0001	st Squa Alpha	res Mear Lower	Upper 1.7189		Error Mean	Lower Mean	Mea 0.848
a b	Estin 1.2	314 945	Standard C O	Error	DF 36	t Valu 5.1	conca Lea le Pr > [t] 2 <.0001 17 0.0052	st Squa Alpha 0.05	res Mear Lower 0.7440 D.2208	Upper 1.7189	0.7741	Error Mean 0.04204	Lower Mean 0.6779	Mea 0.848 0.762
a b c	Estin 1.2 0.6	314 945 100	Standard C O O	Error .2404 .2335	DF 36 36 36	t Valu 5.1 2.9	conca Lea le Pr > [t] 2 <.0001 17 0.0052 14 0.7374	st Squa Aipha 0,05 0,05	res Mear Lower 0.7440 0.2208 -0.4051	Upper 1.7189 1.1681	0.7741 0.6670 0.5202	Error Mean 0.04204 0.05187	Lower Mean 0.6779 0.5550	Mea 0.848 0.762 0.638
conca a b c d	Estim 1.2 0.6 0.08	314 945 100 217	Standard C O O O	Error 2404 2335 2397	DF 36 36 36	t Valu 5.1 2.9 0.3	conca Lea le Pr > [t] 2 <.0001 17 0.0052 14 0.7374 3 <.0001	st Squa Alpha 0,05 0,05	res Mear Lower 0.7440 0.2208 -0.4051 -3.2817	Upper 1.7189 1.1681 0.5671	0.7741 0.6670 0.5202 0.07435	Error Mean 0.04204 0.05187 0.05982 0.02579	Lower Mean 0.6779 0.5550 0.4001	Mea 0.848 0.762 0.638 0.146
a b c	Estim 1.2 0.6 0.08 -2.5 -3,1	314 945 100 217	Standard C O O O O O O	Error 0.2404 0.2335 0.2397 0.3747	DF 36 36 36 36	t Valu 5.1 2.9 C.3 -6.7	conca Lea le Pr > [1] 2 <.0001 7 0.0052 14 0.7374 3 <.0001 6 <.0001	st Squa Alpha 0,05 0,05 0,05 0.05	res Mear Lower 0.7440 0.2208 -0.4051 -3.2817	Upper 1.7189 1.1681 0.5671 1-1.7617	0.7741 0.6670 0.5202 0.07435	Error Mean 0.04204 0.05187 0.05982 0.02579	Lower Mean 0.6779 0.5550 0.4001 0.03620	Nie 0.84 0.76 0.63 0.14
a b c	Estim 1.2 0.6 0.08 -2.5 -3,1	314 945 100 217 475	Standard C O O O O O O	Error .2404 .2335 .2397 .3747 .6749	DF 36 36 36 36 36	t Valu 5.1 2.9 0.3 -6.7 -4.6	conca Lea le Pr > [1] 2 <.0001 7 0.0052 14 0.7374 3 <.0001 6 <.0001	st Squa Alpha 0,05 0,05 0,05 0,05 0,05	res Mear Lower 0.7440 0.2208 -0.4051 -3.2817 -4.5163 1.5840	Upper 1.7189 1.1681 0.5671 -1.7617 -1.7787 2.9477	0.7741 0.6670 0.5202 0.07435 0.04119 0.9060	Error Mean 0.04204 0.05187 0.05982 0.02579 0.02666	Lower Mean 0.6779 0.5550 0.4001 0.03620 0.01081	Mea 0.848 0.762 0.638 0.146

conca	_conca	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Límit for Odds Ratio
a	b	0,5369	0.3351	36	1.60	0.1178	0.05	-0.1427	1.2166	1.711	0.867	3.376
a	0	1,1504	0.3394	36	3.39	0.0017	0.05	0.4620	1.8388	3.160	1.587	6.289
a	d	3.7531	0.4452	36	8.43	< 0001	0,05	2.8502	4.6560	42.654	17.292	105.217
a	e	4.3789	0.7164	36	6.11	<.0001	0.05	2.9259	5,8319	79,750	18.651	341,004
a	f	-1.0344	0.4133	36	-2.50	0.0170	0.05	-1.8726	-0.1962	0.355	0.154	0.822
b	C	0.6135	0.3346	36	1.83	0.0751	0.05	-0.06523	1.2922	1.847	0.937	3.641
b	d	3.2162	0.4416	36	7.28	<.0001	0.05	2,3207	4.1117	24,933	10,182	61.050
b	e	3.8419	0.7142	36	5.38	<.0001	0.05	2.3935	5.2904	46.616	10,952	198.116
b	1	-1.5713	0.4093	36	-3,84	0.0005	0,05	-2.4015	-0.7411	0.208	0.091	0.477
c	d	2.6027	0.4448	36	5.85	<.0001	0.05	1.7005	3.5049	13.500	5.477	33.277
c	e	3.2285	0.7162	36	4.51	<.0001	0.05	1.7759	4.6810	25.241	5.906	107.880
c	f	-2.1848	0.4129	36	-5.29	<.0001	0.05	-3,0222	-1.3474	0.112	0.049	0.260
d	e	0.6258	0.7720	36	D.81	0.4229	0.05	-0,9399	2.1914	1.870	0.391	8.948
d	1	-4.7875	0.5034	36	-9.51	<.0001	0.05	-5,8086	-3.7665	0.008	0.003	0.023
e	f	-5.4133	0.7540	36	-7.18	<.0001	0.05	-6.9425	-3.8841	0.004	<0.001	0.021

[time Least Squares Means													
time	Estimate	Standard Error i DF		Pr > t		Lower	Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean			
6	-0,2238	0.3363 36		0.5100		- 0 .9060	0.4583	0,4443	0.08304	0.2878	0.6126			

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

Page 77 of 81

SAS Output

12	-0.3			0.2097 36	-1.5	8 0.12	31 0.0	5 -0.75	63 0.09	120 0.41	80 0.051	01 0.3194	0.5235		
24	-0.1	434	0	0.2502 36	-0.5	7 0.57	02 0.0	5 -0.65	07 0.36	640 0.46	42 0.062	22 0.3428	0.5900		
						Diff	erences	of time	.east Sq	uares Me	สกร				
time	time	Estimate		Standard Error	DF	t Value	Pr > [t]	Alpha	Lower	Upper	Odde	Limit	Lower onfidence for Odds Ratio	Lir	Upp Confiden nit for Od Rai
6	12	0.1072	i.	0,3964	36		0.7883	0.05	-0.6966	0.9111	1.113		0.498		2.4
6	24	-0.08045		0.4192	36	-0.19	0.8489	0.05	-0.9306	0.7697	D.923	· • · · · · · · · · ·	0.394		2.1
12	24	-0.1877		0,3264	36	-0.57	0,5689	0.05	-0,8497	0.4743	0.829		0.428		1.6
•••••							***						·····		
		i			1	Conc	arome Le	astsqu	ares Mea	ans T			I	r · · ·	
conca				andard Erro	···-	t Valu	e Pr>(t Alph	a Lowo	r Uppe	r Mean	Standard Error Mean	Lower Mean	Uppe Mea	
a	6	1.131		0,419		2.7					2 0.7561	0.07735	0.5698	0.878	9
a	12	1.190		0.399		2.9			5 0,380	5 2.000	3 0.7668	0.07141	0.5940	0.880	8
a	24	1.372		0.429		3.1				1 2.243	5 0.7978	C.06931	0.6227	0.904	1
b 	6	1.195		0.465	-	2.5		od i i i				0.08306	0,5623	0.894	
b	12	0.230		0.326		! 0.7	[· • · · · · · · · · · · · · · · · · · ·				0.08048	0.3939	0.709	-1
b c	24 6	0.657		0.409		1.6	1				·	0.09202	0.4570	0.815	<u> </u>
с С	12	0.00282		0.447		0.1		· + · ·	· · · · · · · · · · · ·			0.1118	0.2985		
	24	0.186		0.423		0.0						0.1059	D.2981	+	·· · ·
d	6	-2.744	•••	0.791	- i	-3.4			-4.349			0.09180	0.3625	0.718	
 d	12	-2.376	i de la	0.4589		-5.1				.		0.04493	0.01274	0.242	- i
d	24	-2.444		D,653;			4 0.0006		+			D.04801	0.02256	0.246	i
 9	6	-3.496	5	1.5297	7 36		9 0.0283						0.001360	0.402	1
ə Ə	12	-2,853	5	D.884	3 36	-3,2	3 0.0027	7 0.05	-4.6470	-1.0600	0.05450	0.04557	0.009499	0.257	
8	24	-3.092	4	0.9887	36	-3.1	3 0.0035	5 0.08	5.0976	3 -1.0871	0.04342	0.04107	0.006074	0.252	2
F	6	2.517	9	0.716	36	3,5	2 0.0012	2 0,05	1.0656	3.9703	0.9254	0.04944	0.7438	0.981	5
[12	1.820	1	0.3806	36	4.7	<.0001	0.05	1.0481	2.5921	0.8606	0.04567	0.7404	0,930	4
· ·	24	2.459	4	0.5996	36	4.1	0.0002	2 0.05	1.2434	3.6755	0.9212	0.04350	0.7762	0.975	3
						lifferen	ces of co	anca*tim	e least f	Squares I	leans				
]		[1		1	1		1			·	Lo	ower	Upp
onca	time	_солса	time	Estimate	Stand	ard rror D	F t Valu	.e Pr>	t Alph	a Lov	ver Upp	Odd or: Ratio			Confidenc Limit fo Odc Rat
a	6	a	12	-0.05888		· · · 4.	6 -0.1	-			en de constate			.291	3.0
a	6	a	24	-0.2408	0,6	3004 3	6 -0,4		· • • • • • • •	···· ·· ··	····			.233	2.65
 a	6	b	6	-0.06350	0.6	267 3	6 -0.1	10 0.91	99 0.0	5 -1.33	46 1.20			263	3.34
1	6	b	12	0.9010	0,8	314 3	6 1.7	0.09	86 0.0	5 -0.17			··· ··· ··· ···	.838	7.23
1	6	þ	24	0.4737	0.5	861 3	6 0.8	0.42	43 0.0	5 -0.71	50 1.663	4 1.60	3 0	489	5.27
1	6	c	6	1.0780	0.6	135 3	6 1.7	6 0.08	74 0.0	5 -0.16	62 2.32	2 2.93	0	.847	10.19
۱ <u> </u>	6	C	12	1.1287	0.5	961 3	6 1,8	9 0.06	63 0,0	5 -0.080	22 2.33	7 3.09	2 0	923	10.38
t	6	C	24	0.9449	0.5	596 3	6 1.6	9 0.10	0.0	5 -0.19	00 2.079	8 2.57	0	.827	8.00
I	6	d	6	3.8760	0,8	959 3	6 4.3	3 0.00	0.0	5 2.05	90 5,69;	9 48.229	7	.838	296.74
	6	d	12	3.5083	0.6	217 3	6 5.6	4 <.00	0.0	5 2.24	74 : 4.769	33,39	0	463	117.82

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

Page 78 of 81

а	6	d	24	3.5755	0.7762	36	4.61	<.0001	0.05	2.0012	5.1498	35.712	7.398	172.397
а	6	е	6	4.6280	1.5862	36	2.92	0.0060	0.05	1.4112	7.8449	102.314	4.101	>9999.999
a	6	e	12	3.9851	0.9788	36	4.07	0.0002	0.05	2.0000	5.9701	53,789	7.389	391,548
а	6	e	24	4.2239	1.0740	36	3.93	0,0004	0.05	2.0457	6,4022	68.300	7.734	603,151
а	6	1	6	-1.3864	0.8299	36	-1.67	0.1035	0.05	-3.0696	0.2968	0,250	0.046	1,345
а	6	1	12	-0.6886	0.5664	36	-1.22	0.2320	0.05	-1.8373	0.4602	0,502	0,159	1.584
а	6	f	24	-1.3279	0.7318	36	-1,81	0.0779	0.05	-2.8119	0.1562	0.265	0.060	1.169
 а	12	a	24	-0.1819	0.5865	36	-0.31	0.7583	0.05	-1.3714	1.0076	0.834	0.254	2.739
а а	12	b	6	-0.00461	0.6135	36	-0.01	0.9940	0.05	-1,2488	1,2395	0.995	0.287	
a	12	b	12	0.9598	0.5157	36	1.86	0.0709	0.05	-0.08596	2.0056	2.611	0.207	3.454
a	12	ь	24	0.5326	0.5719	36	0.93	0.3579	0.05	-0.6272	1,6925	1.703	0,534	7.431 5.433
a	12	c	6	1.1369	0.5999	36	1.90	0.0661	0.05	-0.07984	2.3536			
а а	12	c	12	1.1876	0.5821	36	2,04	0.0487	0.05	0.007008	2.3682	3.117	0,923	10.523
	12	с	24	1,0038	0.5447	36	1.84	0.0487				3,279	1.007	10.678
.а		d							0.05	-0.1009	2.1085	2.729	0.904	8.236
a a	12		6	3,9348	0.8866	36	4.44	<.0001	D,05	2.1366	5.7330	51.154	8.471	308,906
	12	d	12	3,5672	0,6083	36	5,86	<.0001	0.05	2,3334	4.8009	35.416	10.313	121.622
a	12	d	24	3,6344	0.7656	36	4,75	<.0001	0.05	2.0817	5.1870	37.878	8.018	178.935
а	12	e	6	4.6869	1,5810	36	2.96	0,0053	0.05	1.4836	7.8933	108.519	4.396	>999.999
8	12	8	12	4.0439	0.9703	36	4.17	0.0002	0.05	2.0760	8.0119	57.051	7.973	408.241
а	12	e	24	4.2828	1.0663	36	4.02	0.0003	0.05	2.1201	6,4454	72.443	8,332	629,829
a	12	ļ !	6	-1.3275	0.8199	36	-1.62	0.1142	0.05	-2,9904	0.3354	0 265	0.050	1.398
a	12	f	12	-0.6297	0.5517	36	-1.14	0.2612	0.05	-1.7486	0.4892	0.533	0.174	1.631
a 	12	f	24	-1,2690	0.7204	36	-1.76	0.0866	0.05	-2.7301	0.1921	0,281	0.065	1.212
a	24	b	6	0.1773	0.6335	36	0.28	0.7612	0.05	-1.1076	1.4622	1.194	0.330	4.315
a	24	b	12	1.1417	0.5394	36	2.12	0.0413	0.05	0.04779	2.2357	3.132	1.049	9,353
a	24	b	24	0.7145	0.5934	36	1.20	0.2364	0,05	-0.4889	1.9179	2.043	0.613	6.807
a	24	c	6	1.3188	0.6204	36	2.13	0.0405	0,05	0.06043	2.5771	3.739	1.062	13,159
a	24	c .	12	1.3695	0.6032	36	2.27	0.0293	0.05	0,1461	2.5929	3.933	1.157	13.369
8	24	C	24	1.1857	0.5672	36 :	2.09	0.0437	0.05	0.03531	2.3360	3.273	1.036	10.340
a	24	d	6	4.1167	0.9007	36	4.57	<.0001	0.05	2.2901	5.9433	61.358	9.876	381,206
a	24	d	12	3.7490	0.6286	36	5.96	<.0001	0.05	2.4742	5.0239	42.480	11.872	151.998
a	24	d	24	3.8163	0.7818	36	4.88	<.0001	0.05	2.2308	5.4017	45,434	9.307	221.790
a	24	e	6	4.8688	1.5889	36	3.06	0.0041	0.05	1.6465	8.0912	130.167	5.189	>999.999
а	24	8	2	4.2258	0.9831	36	4.30	0.0001	0.05	2,2319	6.2197	68.432	9.318	502.575
8	24	. 0	24	4.4647	1,0780	36	4.14	0,0002	0.05	2.2784	6.6510	86.894	9.761	773.574
a	24	, 'f	6	-1.1456	0.8351	36	-1.37	0.1786	0.05	-2.8392	0.5480	0.318	0.058	1.730
a	24	f	12	-0.4478	0.5739	36	-0.78	0.4404	0.05	-1.6118	0.7162	0.639	0.200	2.047
a	24	t	24	-1.0871	0,7376	36	-1.47	0.1492	0.05	-2.5830	0.4088	0,337	0.076	1.505
b	6	b	12	0.9645	0.5686	36	1.70	0.0985	0.05	-0.1887	2.1176	2.623	0.628	8.311
b	6	b	24	0.5372	0.6200	36	0.87	0.3920	0.05	-0.7203	1.7947	1.711	0.487	6.018
	6	с	6	1,1415	0.6460	36		0.0857	0.05	-0,1686	2.4516	3.131	0.845	11.607
	6	с	12	1.1922	0.6295	36		0.0663	0.05	-0.08443	2.4689	3.294	0.919	11.809
,	6		24	1,0084	0.5950	36		0.0988	0.05	-0.1984	2.2152	2.741	0.820	9.163
>	6	d	6	3,9395	0.9184	36	i-	0.0001	0.05	2.0768	5.8021	51.390	7.979	331,000
,)	6	ď	12	3.5718	0,6538	36	5.46	<.0001	0.05	2.2458	4.8977	35.579	9.448	133,986
, 	6	d	24	3.6390	· · · · · · ·							[
•	·		24	0.0000	0.8022	36	4.54	<.0001	0.05	2.0121	5.2659	38.053	7.479	193.613

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD4836... 3/18/2015

ł

Page 79 of 81

1	6	e	6	4.6915	1.5990	36	2.93	0.0058	0.05	1.4486	7,9345	109.021	4.257	>999.999
b	6	e	12	4.0486	0.9995	36	4.05	0.0003	0.05	2.0216	6.0755	57.315	7.550	435.088
ь	6	e	24	4.2874	1.0929	36	3.92	0.0004	0.05	2.0709	6,5040	72.778	7.932	687.777
ь	6	1	6	-1.3229	0.8542	36	-1.55	0.1302	0.05	-3.0553	0.4095	0.266	0.047	1.506
b	6	f	12	-0,8251	0.6015	36	-1.04	0.3056	0.05	-1.8449	0,5947	0.535	0.158	1.813
b	6	f	24	-1,2644	0.7592	36	-1.67	0.1045	0.05	-2.8041	0.2753	0.282	0.061	1,317
b	12	b	24	-0.4272	0.5235	36	-0.82	0.4198	0.05	-1.4889	0.6344	0.652	0,226	1.886
b	12	c	6	0.1770	0.5539	36	0.32	0.7511	0.05	-0.9464	1.3005	1.194	0.388	3.671
b	12	c	12	0.2278	0,5346	36	0.43	0.6726	0.05	-0,8565	1.3120	1,256	0.425	3.714
b	12	c	24	0.04394	0,4936	36	0.09	0.9296	0.05	-0.9571	1.0450	1.045	0.384	2,843
b	12	d	6	2.9750	0.8562	36	3.47	0.0014	0.05	1.2385	4.7115	19,590	3.451	111.214
b	12	d	12	2.6073	0.5830	36	4.63	<.0001	0.05	1.4654	3.7492	13.553	4,329	42.488
b -	12	d	24	2.6745	0.7301	36	3.66	0.0008	0.05	1.1938	4,1552	14.506	3,300	63,767
b	12	0	6	3.7271	1,5641	36	2.38	0.0226	0.05	0,5550	6.8992	41.558	1.742	991.478
b -	12		12	3.0841	0.9426	36	3.27	0.0024	0.05	1.1724	4.9958	21.848	3,230	147.786
b	12	e	24	3.3230	1.0412	36	3.19	0.0029	0.05	1.2114	5,4346	27.742	3.358	229.190
b	12	f	6	-2.2874	0.7869	36	-2.91	0.0062	0.05	-3.8833	-0.6914	0.102	0.021	0.501
b	12	lf	12	-1.5895	0.5013	36	-3.17	0.0031	0.05	-2.6062	-0.5728	0.204	0.021	0.564
b	12	f	24	-2.2288	0.6826	36	-3.27	0.0024	0.05	-3.6132	-0.8445	0 108	0,027	0.364
b	24	c	6	0.6043	0.6066	36	1.00	0.3259	0.05	-0.6261	1.8346	1.830		
b	24	c	12	0.6550	0.5890	36	1.11	0.2735	0.05	-0.5396	1.8496		0.535	6,263
Б	24	c	24	0.4712	0.5521	36	0.85	0.3991	0.05	-0.5396	1.5909	1.925	0,583	6.357
b.	24	d	6	3.4022	0.8912	36	3.82	0,0005	0.05	1,5948		1.602 30.031	0,523	4.908
b	24	đ	12	3,0345	0.6150	36	4,93	<.0001	0.05	1.7873	5.2097		4,927	183.034
b	24	d	24	3.1018	0.7708	36	4.02	0.0003	0.05	1.5384	4.2817	20.791	5.974	72.367
b	24	e	6	4.1543	1.5835	36	2,62	0.0003	0.05	0.9428	7.3658	22,237	4.657	106.178
ь	24	e	12	3.5113	0.9745	36 ;	3.60	0.0009	0.05			63.708	2.567	>999,999
b	24	e	24	3.7502	1.0701	36	3.50	0.0012	0.05	1.5350	5.4877	33.493	4.641	241.701
b	24	f	6	-1.8601	0.8249	36	-2.26	0.0303		1.5798	5.9205	42.529	4.854	372.611
b	24	ſ	12	-1.1623	0.5590	36	-2.20	0.0303	0.05	-3.5330	-0.1872	0,156	0.029	0.829
b	24	f	24	-1.8016	0.3390		-2.48		· · ·}	-2.2960	-0.02861	0.313	0.101	0.972
с		G	12	0,05074	0.6163		··· ··	0.0179	0.05	-3.2740	-0,3292	0.165	0.038	0.720
c	6	c	24	-0.1331	0.5811	36	0.08 -0.23	0.9348	0.05	-1.1992	1.3006	1.052	0.301	3,672
с.	6	d	6	2.7980	0.9094	36	3.08	0.0040	0.05	-1.3115	1.0454	0,875	0,269	2,844
с	6	 d	12	2.4303	0.6411	36	3,00			0.9535	4.6424	16.411	2.595	103.795
c	6	d	24	2.4303	0.7919	36		0.0006	0.05	1.1301	3,7305	11.362	3.096	41.701
č	6	e	6	3.5501	1.5939	36		0.0032	0.05	0.8915	4.1035	12.152	2.439	60.551
c	6	e	12	2.9071	0.9912	36		0.0323	0.05	0.3176	6.7825	34.816	1.374	882,313
с	6		24	3.1459					0,05	0.8968	4.9173	18,303	2.452	136.638
	6	f	6	}	1.0854	36	· · · ·	0.0063	0,05	0.9447	5.3472	23.241	2,572	210.016
C C	6	f	12	-2.4644	0.8445	36		0.0060	0.05	-4.1772	-0.7516	0.085	0.015	0.472
	6	f	24	-2.4059		36		0.0048	0.05	-2.9583	-0.5748	0.171	0.052	0.563
с.	12	C	24	-2.4059	0.7483	36 36		0.0028	0.05	-3.9235	-0.8882	0.090	0.020	0.411
с с					0.5627			0.7458	0.05	-1,3250	0.9573	0.832	0.266	2.605
c c	12 12	d	6	2.7472	0.8978	36		0.0042	0.05	0.9264	4.5681	15.599	2.525	96.357
		н .	12	2.3796	0.6245	36		0.0005	0.05	1.1131	3.6461	10,800	3.044	38.324
с	12	d	24	2.4468	0.7785	36	3.14	0.0033	0.05	0.8680	4.0256	11.551	2.382	56.012

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 80 of 81

	12	e	6	3.4993	1.5872	36	2.20	0.0340	0.05	0.2803	6.7184	33,093	1.323	827.48
c	12	e	12	2,8563	0.9805	36	2 91	0.0061	0.05	0.8677	4.8450	17.398	2.382	127.09
c	12	e	24	3.0952	1.0756	36	2.88	0,0067	0.05	0.9137	5.2767	22.092	2.494	195.72
c	. 12	f	6	-2.5151	0.8320	36	-3.02	0.0046	0.05	-4.2025	-0.8278	0.081	0.015	0.43
c	12	f	12	-1.8173	D.5694	36	-3.19	0.0029	0.05	-2.9722	-0,6624	0.162	0.051	0.51
c	12	f	24	-2.4566	0.7341	36	-3.35	0.0019	0.05	-3.9454	-0.9678	0.086	0.019	0.38
¢	24	d	6	2,9311	0.8740	36	3.35	0.0019	0.05	1.1585	4.7036	18.747	3.185	110.34
c	24	d	12	2.5634	0.5898	36	4.35	0.0001	0.05	1.3673	3.7594	12.980	3.925	42.92
G	24	d	24	2,6306	0.7509	36	3.50	0.0012	0.05	1.1077	4.1535	13.882	3.027	63.65
С	24	e	6	3,6831	1.5739	36	2,34	0.0249	0.05	0.4911	6.8752	39,771	1.634	967.92
c	24	в	12	3.0402	0,9588	36	3.17	0.0031	0.05	1.0957	4.9847	20.909	2.991	146.15
C	24	е	24	3.2790	1.0559	36	3.11	0.0037	0.05	1.1376	5.4204	26.550	3.119	225,96
c	24	f	6	-2.3313	0,8062	36	-2.89	0.0065	0.05	-3.9664	-0.6962	0.097	0.019	0.48
C	24	f	12	-1.6335	0.5311	36	-3.08	0.0040	0.05	-2.7107	-0.5563	0.195	0.066	0.57
c	24	f	24	-2.2728	0,7048	36	-3.22	0.0027	0.05	-3.7022	-0.8434	0.103	0.025	0.43
ď	6	d	12	-0.3677	0.9150	36	-0.40	0.6902	0.05	-2.2234	1.4881	0.692 (0,108	4.42
d	6	d	24	-0,3005	1.0263	36	-0.29	0.7714	0.05	-2.3819	1.7810	0.740	0,092	5.93
d	6	e	6	0.7521	1.7224	36	0.44	0.6650	0.05	-2.7411	4.2452	2.121	0.065	69.77
d	6	e	12	0.1091	1.1869	36	0.09	0.9273	0.05	-2.2980	2,5162	1.115	0,100	12.36
d	6	6	24	0.3480	1.2666	36	0.27	0.7851	0.05	-2.2208	2.9167	1.416	0.109	18.48
d	6	f	6	-5.2624	1.0675	36	-4.93	<.0001	0.05	-7.4273	-3,0974	0.005	<0,001	0.04
d	6	f	12	-4.5645	0.8784	36	-5.20	<.0001	0.05	-6.3460	-2.7831	0.010	0.002	0.06
 d	6	f	24	-5.2038	0.9931	36	-5.24	<.0001	0.051	-7.2179	-3.1898	0.005	<0.001	0.04
ď	12	d	24	0.06722	0.7983	36	0,08	0.9334	0.05	-1.5517	1.6862	1.070	0.212	5,39
d	12	e	6	1.1198	1.5970	36	0.70	0.4877	0.05	-2.1192	4.3587	3.064	0.120	78.15
d	12	e	12	0.4768	0.9963	36	0.48	0.6352	0.05	-1.5438	2,4974	1.611	0.214	12.15
	12	e	24	0.7156	1.0900	36	0.66	0.5157	0.05	-1.4951	2.9264	2.045	0.224	18.66
d	12	f f	. 6	-4.8947	0.8505	36	-5.75	<.0001	0.05	-6.6196	-3.1697	0.007	0.001	0.04
 d	12	f	12	-4,1968	0.5962	36	-7.04	<.0001	0.05	-5,4060	-2.9877	0.015	0.004	0.05
 d	12	f	24	-4.8361	0.7551	36	-6.41	<.0001	0.05	-6.3675	-3,3048	0.008	0.002	0.03
d	24	е	6	1.0526	1,6633	36	0.63	0.5309	0.05	-2.3208	4,4259	2.865	0.098	83,58
 d	- 24	e	12	0,4096	1.0994	36	0.37	0.7117	0.05	-1.8201	2.6392	1.506	0.162	14.00
d	24	e	24	0.6484	1.1850	36	0.55	0.5876	0.05	-1.7549	3,0517	1.913	0.102	21.15
 d	24	ſ	6	-4.9619	0,9692	36	-5.12	<.0001	0.05	-6.9276	-2.9962	0,007	<0.001	0.05
 d		'f	12	-4.2641	0.7560	36	-5.64	<.0001	0.05	-5.7973	-2.7309	0.014	0.003	
ч. Ч	· · · ·	, if	24	4.9034	0.8866	36	-5.53	<.0001	0.05	-6.7016	-3.1052	0.007		0.06
	6	e	12	-0.6430	1.7669	36	-0.36	0.7181	0.05	-4.2265	2,9405	0.526	0.001 0.015	0,04
	6	e	24	-0.4041	1.8214	36	-0.22	0.8257	0.05	-4.0981	3,2899	0.668	0.015	
2	6	f	6	-6.0144	1.6890	36	-3.56	0.0011						26.83
	6	<u> </u>	12	-5.3166	1.5763	36	-3.37	0.0018	0.05	-9.4399	-2.5890	0.002	<0.001	0.07
	6	' f	24	-5.9559	1.6430	36	·			-8.5136	-2.1197	0.005	<0.001	0.12
	12	1	24				-3.63	0.0009	0.05	-9.2881	-2.6238	0,003	<0.001	0.07
)	-	e 1		0.2389	1.3265	36		0.8581	0.05	-2.4515	2.9292	1.270	0.086 '	18.71
€	12	[. 6 .	-5.3715	1.1379	36	-4.72	<.0001	0.05	-7.6793	-3,0636	0.005	<0.001	0.04
3 	12	1	12	-4,6736	0.9628	36		<.0001	0,05	-6.6262	-2.7210	0.009	0.001	0.06
•	12		24	-5.3129	1.0684	36	-4.97		D.05	-7 4798	-3.1460	0.005	<0.001	0.04
2	24	[1	6	-5.6103	1.2208	36	-4.60	<.0001	0.05	-8.0863	-3.1343	0.004	<0.001	0.04

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Page 81 of 81

	 24	f	12	-4.9125	1.0595	36	-4.64	<.0001	0.05	-7.0612	-2.7638	0.007	<0.001	0.063
е	 24	f	24	-5.5518	1.1563	36	-4.80	<.0001	0.05	-7.8970	-3.2066	0.004	<0.001	0.040
1	 6	1	12	0.6978	0.8110	36	D.8 6	0.3952	0.05	-0.9469	2.3426	2.009	0.388	10.408
f	 6	f	24	0.05853	0.9340	36	0.06	0.9504	0.05	-1.8357	1.9527	1.060	0.160	7.048
f	 12	f	24	-0.6393	0.7102		-0.90	0.3740	D,05	-2.0797	0.8011	0.528	0.125	2.228

Performed by J. Luoma; SAS version 9.3 08:43 18MAR15

3/18/15 Jn-

file:///C:/Users/JLUOMA/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD4836... 3/18/2015

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials ,
Lab Notebook	1	Created	7-Jun-12	TMS 1
File Folder	12A	Revised	15-Mar-15	JAL TH
Raw Data Location	12A	Reviewed	3-11-15	715
		Cert'fied	3-18-15	51
File Name:	I:\AEH-11-PSEUDO-01\Data\Gloc	hidia Viability Summary (glochidia viability assessment 6h	(adjusted) xisx] Pocketb	ock SDP

Mussel species: Pocketbook Glochidia Lot number: 111400 Mean Initial viability = 93.8%

Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot #: MBI-401-110308AI-6D-3

Exposure Date: 12-May-11 Test System Location: Block 1

Page 1 of 1

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 6h vlability (%)	Adjusted 6 h viability (%)	Mean adjusted viability (%)	Standard Deviation (SD)
Pocketbook	181	0	312	3	18	93.3	99.4	98.4	1.1
Pocketbook	1C3	0	425	7	25	92.5	58.6		
Pocketbook	1A3	0	160	2	12	91.3	97.3		
Pocketbook	185	50	344	59	13	79.1	84.3	83.1	9.5
Pocketbook	1 A 1	50	189	16	10	86.2	91.9		
Pocketbook	1C1	50	447	129	12	68.5	73.0		
Pocketbook	1B4	100	170	43	11	68.2	72.7	80.2	6.5
Pocketbook	1A2	100	116	16	9	784	83.6		
Pocketbook	1A4	100	536	70	42	79.1	84,3		
Packetbook	1C5	200	145	47	10	60.7	64.7	55.7	22.6
Pocketbook	182	200	252	60	21	67.9	72.3		
Pocketbook	1C4	200	238	165	6	28.2	30.0		
Pocketbook	1A5	300	114	75	14	21.9	23.4	10.6	11.1
Pocketbook	1C2	300	512	454	31	3.3	3.5		
Pocketbook	1C5	300	268	234	22	4.5	4.8		
Pockétbook	1A6	300HD	147	108	30	6.1	6.5	3.7	3.3
Pocketbook	1 B 3	300HD	119	91	23	4.2	4.5		
Pocketbook	185	300HD	210	192	18	0.0	0.0		

.

¹ If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCi))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	7-Jun-12	TMS 1
File Folder	12A	Revised	16-Mar-15	JAL THS
Raw data location	12A	Reviewed	3-11-15	This
		Certified	3-18-15	50-
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidla Viab	ility Summary Iglochidla viability assessment	Sh (adjusted).xls	xIFatmucket

Mussel species: Fatmucket Glochidia Lot number: 111600 Mean initial viability = 80.3% Test Chemical: Pseudomonas fiorescens PF-CL 145A (SDP) Chemical lot #: MBI-4C1-110308AI-BD-3 Exposure Date: 12-May-11

Test System Location: Block 3

Page 1 of 1

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 6h viabliity (%)	Adjusted 6 h viability (%)	Mean adjusted viability (%)	Standard Deviation (SD)
Fatmucket	382	0	210	29	34	70.0	87.2	90,1	5.0
Fatmucket	383	0	265	32	29	77.0	95.9		
Fatmucket	3A2	0	273	36	46	70.0	87.1		
Fatmucket	385	50	456	93	98	58.1	72.4	70.7	3.4
Fatmucket	3C5	50	276	57	71	53.6	66.8		
Fatmucket	3C6	50	239	42	57	58.6	72.9		
Fatmucket	3A1	100	237	126	37	31,2	38,9	36.1	18.4
Fatmucket	3A3	100	303	238	25	13.2	16.4		
Fatmucket	3A5	100	351	119	83	42.5	52.9		
Fatmucket	384	200	380	308	47	6.6	8.2	24.0	21,4
Fatmucket	385	200	526	407	53	12,5	15.6		
Fatmucket	3C4	200	201	59	64	38.8	48.3		
Fatmucket	3C1	300	501	224	121	31.1	38.8	14.8	20.8
Fatmucket	3C3	300	242	204	29	3.7	4.6		
Fatmucket	381	300	482	422	56	0.8	1.0		
Fatmucket	3 A 4	300HD	216	155	56	2.3	2.9	2.9	2.9
Fatmucket	ЗАБ	300HD	212	164	38	4.7	5.9		
Fatmucket	3C2	300HD	205	166	39	0.0	0.0		

1 If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCI))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	7-Jun-12	TMS 1
File Folder	12A	Revised	16-Mar-15	JAL 17-
Raw data location	12A	Reviewed	3-11-15	115
		Certif ed	3.18-15	Jiv
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia V	iability Summary\{glochidia viability assessm	ient 6h (adjusted).x	 Isx]Higgins E

Mussel species: Higgins Eye Gloch dia Lot number: 111500 Test Chemical: Pseudomonas florescens PF-CL 145A (SDP) Chemical lot #: MBI-401-110308AI-BD-3 Exposure Date: 12-May-11 Mean Initial viability = 80.8% Test System Location: Block 2

÷

Page 1 of 1

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCi	Unadjusted 6h vlability (%)	Adjusted 6h Viability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Higgins Eye	2C3	0	248	18	76	62.1	76.9	89.5	11.8
Higgins Eye	2C6	0	168	10	34	73.8	91.3		
Higgins Eye	2B1	0	258	18	31.	81.0	100.3		
Higgins Eye	2A1	50	224	11	39	77.7	96.1	96.2	4.6
Higgins Eye	2A2	50	616	25	88	81,5	100.9		
Higgins Eýe	2A4	50	204	24	29	74.0	91.6		
Higgins Eye	243	100	261	47	51	62.5	77.3	78.2	1.3
Higgins Eye	2C4	100	396	40	101	64.4	79.7		
Higgins Eye	2C5	100	414	103	51	62.8	77.7		
Higgins Eye	2A6	200	492	120	62	63.0	78.0	70,1	6.8
Higgins Eye	2B2	200	357	73	93	. 53.5	66.2		
Higgins Eye	285	200	512	121	117	53.5	66.2		
Higgins Eye	2C2	300	422	98	111	50.5	62.5	35.0	26.9
Higgins Eye	201	300	279	148	48	29.7	36.8		
Higgins Eye	283	300	297	251	25	7.1	8.8		
Higg'ns Eye	2A5	300HD	327	216	60	15.6	19.3	16.4	15.2
Higgins Eye	234	300HD	276	168	41	24.3	30.0		
Higgins Eye	236	300HD	139	102	37	0.0	0.0		

¹ If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	7-Jun-12	TMST
File Folder	12A	Revised	16-Mar-15	JAL Th
Raw data location	12A	Reviewed	3-17-15	ns
		Certified	3-18-15	T'A -
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia V	ability Summary/[glochidia viability assess	sment 6h (adjusted).xlsx]Pock

Mussel species: Pocketbook Glochidia Lot number: 115400 Mean initial viability = 84.7% Test Chemical: Pseudomonas florescens Pf-CL 14SA (FDP) Chemical lot number: 110607WB-FD-E Exposure Date: 18-Oct-11

Page 1 of 1

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 6h vlability (%)	Adjusted 6h Viability {%} ²	Mean adjusted viability (%)	Standa Deviatio (SD)
Pocketbook	3A6	0	214	17	16	84.6	99.9	97.1	5.6
Pocketbook	3B5	0	89	7	6	85.4	100.8		
Pocketbook	386	0	125	18	11	76.8	90.7		
Pocketbook	3A4	50	157	16	17	79,0	93.2	82.1	13.6
Packetbook	3C1	50	74	27	5	56.8	67.0		
Pocketbook	3C2	50	144	22	17	72.9	86.1		
Pocketbook	3B1	100	259	70	21	64.9	76.6	77.6	4.1
Pocketbook	3B3	100	190	33	25	69.5	82.0		
Pocketbook	3C6	100	161	47	13	62.7	74,1		
Pocketbook	3A2	200	256	86	52	46.1	54.4	57.5	13,5
Pocketbook	3C3	200	299	141	42	38.8	45.8		
Packetbook	3C5	200	157	47	14	61.1	72.2		
Pocketbook	3A3	300	259	63	64	51.0	60.2	48.0	17.3
Pocketbook	384	300	272	149	58	23.9	28.2		
Pocketbook	3C4	300	655	218	128	47.2	55.7		
Pocketbook	3A1	300HD	200	144	45	5.5	6.5	24.1	27.2
Pocketbook	3A5	300HD	379	87	114	47.0	55.4		
Pocketbook	382	300HD	418	321	60	8.9	10.5		

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

AEH-11-PSEUDO-01	Action	Date	Initials
1	Created,	7-Jun-12	TMS TH
12A	Revised	16-Mar-15	JAL 775
12A .	Reviewed	3-11-15	TIS
	Certified	5-18-15	J
I:\AEH-11-PSEUDO-01\Data\GlochIdia Viability Sum	mary\[glochidia vlability assessment 6h (ac	justed).xlsx]Black Sar	ndshell
	12A .	12A Revised 12A Reviewed 12A Certified I:AEH-11-PSEUDO-01\Data\Glochidia Viability Summary(glochidia viability assessment 6h (ac	12A Revised 16-Mar-15 12A Reviewed 3-10-15 Certified 5-13-15 I:AEH-11-PSEUDD-01\Data\Glochidia Viability Summary\glochidia viability assessment 6h (adjusted).xlsx]Bisck Sar

Mean initial viability = 84.5%

Page 1 of 1

Glochidia Viability Assessment - 6 hour

Mussel species: Black Sandshell Glochidia Lot number: 120800

Test Chemical: Pseudomonas f orescens Pf-CL 145A (SDP) Chemical lot #: MBI-401 SDP 4655-12-Mix Exposure Date: 17-Jan-12

Test System Location: Block 1

Glochidia Total Glochidia Closed Treatment Number Open Unadjusted Mean Standard Adjusted 6h before Test Group Glochida after 6h vlability adjusted Deviation Viability (%)² Chamber (mg/L) NaCl¹ Mussel Species Counted NaCí (%) viability (%) (SD) Black Sandshell 1A5 0 241 8 28 85,1 100.7 101.4 1.3 Black Sandshell 131 0 337 8 42 85.2 100.8 Black Sandshell 1C6 ٥ 314 8 33 86.9 102.9 Black Sandshell 1A1 50 252 1.83 32 14.7 17.4 13.9 11.3 Black Sandshell 1A3 50 290 284 3 1.0 1.2 Black Sandshell 101 50 206 132 34 19.4 23.0 Black Sandshell 1B2 100 166 164 2 0.0 0.0 0.6 1.0 100 Black Sandshell 1B3 351 330 16 1.4 1.7 Black Sandshell 1C5 100 144 136 8 0.0 0.0 Black Sandshell 1A6 200 352 275 69 2.3 2.7 2.1 1.8 Black Sandshell 1B5 200 168 138 25 3.0 3.5 Black Sandshell 186 200 224 222 0.0 2 0.0 Black Sandshell 1A2 300 159 117 42 0.0 0.0 1.3 1.8 Black Sandshell 184 300 312 286 17 2.9 3.4 Black Sandshell 1C2 300 250 234 15 0.4 0.5 Black Sandshell 1A4 300HD 219 208 11 0.0 0.0 1.0 1.7 Black Sandshell 1C3 300HD 254 213 41 0.0 0.0 Black Sandshell 1C4 300HD 237 195 36 2.5 3.0

' If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

Glochidla viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

AEH-11-PSEUDO-01	Action	Date	Initials
1	Created	7-Jun-12	TMS T
12A	Revised	16-Mar-15	JAL TB
12A	Reviewed	3-19-15	TYS
	Certified	3-18-15	57.0
I:\AEH-11-PSEUDO-01\Data\Glochidia Viability S	ummary\[glochidla viability assessme	ont 6h (adjusted) xlsx])	Muckel
	1 12A 12A	1 Created 12A Revised 12A Reviewed Certified	1 Created 7-Jun-12 12A Revised 16-Mar-15 12A Reviewed ター・パントラ

Mussel species: Mucket Glochidia Lot number: 120700 Mean initial viability = 92.7%

Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot #: MBI-401 SDP 4655-12-Mix Exposure Date: 17-Jan-12

Page 1 of 1 Test System Location: Block 2 Glochidia Total Glochidia Unadjusted Adjusted 6h Treatment Number Closed Mean Standard Viability Group Glochida before Open 6h viability adjusted Deviation Test Chamber (mg/L)Counted NaCl¹ after NaCl (%) (%)² vlability (%) (SD) Species 198 15 17 83.8 90.4 95.6 4,8 Mucket 2B4 0 Mucket 2B5 0 132 2 12 89.4 96.4 7 Mucket 2C1 ۵ 257 12 92.6 99.9 Mucket 2A4 50 349 51 36 75.1 81.0 77.3 7.1 Mucket 2B6 50 128 43 3 64.1 69.1 2C3 50 295 59 75.9 81.9 Mucket 12 Mucket 2.A.2 100 190 61 13 61.1 65.9 77.9 10.5 Mucket 2B2 100 154 26 7 78.6 84.8 2C6 100 466 78 29 77.0 83.1 Mucket Mucket 2A5 200 116 48 8 51.7 55.**8** 43.7 17.6 200 202 82 23 48.0 51.8 Mucket 2A6 Mucket 2.C2 200 399 291 21 21.8 23.5 265 12.7 7.9 281 300 199 14 19.6 21.2 Mucket 2B3 300 251 232 5.6 Mucket б 5,2 Mucket 204 300 323 283 6 10.5 11.4 2A1 300HD 292 272 5.9 3.9 2,2 Mucket 4 5.5 Mucket 2A3 300HD 355 342 8 1.4 1.5 205 300HD 280 259 10 3.9 4.2 Mucket

¹ If the number counted was glochidia open, the number of glochidia closed – total glochidia - open glochidia counted before NaCl.

Glochidia viability: (total #glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date	Init]als
Lab Notebook	1	Created		TIVS 17
File Folder	12A	Revised	17-Mar-15	TJS 725
Raw Data Location	12A	Reviewed	3-11-15	Tis
		Certified	3-18-15	J71~
File Name:	I:VAEH-11-PSEUDO-01\Data\Glochidi	a Viability Summary/[glochidia viability as	sessment 6h (adjuste	d).xlsx]Hick

Mean initial viability = 86.0%

Page 1 of 1

Glochidia Viability Assessment - 6 hour

Mussel species: Hickorynut Glochid a Lot number: 120900

Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical jot number: MBI-401 SDP 4655-12-Mix

Exposure Date: 19-Jan-12

Test System Location: Block 3

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unad]usted 6h vlability (%)	Adjusted 6h Viability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Hickorynut	3A2	0	258	65	21	66.7	77.5	93.0	13,4
Hickorynut	3C1	0	156	8	12	87.2	101.4		
Hickorynut	3C4	0	259	12	24	86.1	100.1		
Hickorynut	3A5	50	267	16	21	86.1	100.2	99.1	1.5
Hickorynut	3B3	50	191	21	10	83.8	97.4		
Hickorynu:	3B6	50	274	26	13	85.8	99.7		
Hickorynut,	3B1	100	232	39	32	69.4	80.7	70.9	16.1
Hickorynut	BC2	100	231	114	13	45.0	52.4		
Hickorynut	3C5	100	292	81	11	68.5	79.6		
Hickorynut	3A3	200	231	1 42	19	30.3	35.2	47.3	13.3
Hickorynut	3A 4	200	176	90	18	38.6	44,9		
Hickorynut	3C6	200	285	117	17	\$3.0	61,6		
Hickorynut	3A5	300	293	192	13	30.0	34.9	18.3	14.8
Hickorynut	3B2	300	173	160	3	5.8	6.7		
Hickorynut	3B5	300	266	226	10	11.3	13.1		
Hickorynut	3A1	300HD	362	262	25	20.7	24.1	16.1	7.3
Hickorynut	384	300HD	317	274	16	8.5	9.9		
Hickorynut	3C3	300HD	246	209	7	12.2	14.2		

¹if the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

 $\label{eq:Glochidia viability: (total \# glochidia - (glochidia closed before + open after NaCl))/total glochidia *100$

Study Number	AEH-11-PSEUDO-01	Action	Date	Initiais
Lab Notebook	1	Created	7-Jun-12	TMS 17
File Folder	12A	Revised	16-Mar-15	JAL TIS
Raw Data Location	12A	Reviewed	17-mAR-15	TK
		Certified	315/15	JA-
File Name:	I:\AEH-11-PSEUDO-01\Data\Gloc	hldia Viability Summary\(Glochldia viability assessment 1	2h (adjusted).xisx] Pocket	book SDP

Mussel species: Pocketbook Glochidia Lot number: 111400 Mean Initial viability = 93.8%

Test Chemical: Pseudomonas florescens Pf-CL 145A (SOP) Chemical lot #: MBI-401-110308AI-BD-3 Exposure Date: 12-May-11

Test System Location: Block 1

Page 1 of 1

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 12h viability (%)	Adjusted 12h vlability (%)	Mean adjusted viability {%}	Standard Devlation (SD)
Pocketbook	181	0	599	39	53	84.6	90.2	91.8	2,2
Pocketbook	1C3	0	604	18	52	88.4	94.3		
Pocketbook	1A3	0	626	39	54	85.1	90.8		
Pocketbook	185	50	226	37	14	77.4	82.6	83.8	7.0
Pocketbook	1A1	50	265	24	14	85.7	91.3		
Pocketbook	101	50	624	104	67	72.5	77.4		
Pocketbook	184	100	354	40	28	80.8	86.1	56.1	48.7
Pocketbook	1A2	100	353	321	32	0.0	0.0		
Pocketbock	,1 A4	100	504	75	40	77.2	82.3		
Pocketbook	1C6	260	177	129	11	20.9	22.3	49.8	23.8
Pocketbook	182	200	152	47	15	59.2	63.1		
Pocketbook	1C4	200	380	116	36	60.0	64.0		
Packetbook	1A5	300	1177	938	109	11.0	11.8	6.9	4.5
Pocketbook	1C2	300	305	284	13	2.6	2.8		
Pocketbook	105	300	460	403	30	5.9	6.3		
Pocketbook	1A6	300HD	242	193	32	7.0	7.5	6.2	2.8
Pocketbook '	153	300HD	225	171	37	7.6	8.1		
Pocketbook	186	300HD	322	280	33	2,8	3.0		

Lif the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaC.,

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCi))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date Initia	als
Lab Notebook	1	Created	7-Jun-12 TMS	25
File Folder	12A	Revised	17-Mar-15 TJS 1	2
Raw data location	12A	Reviewed	12 MAR-15 DX	6
		Certifled	3/18/15 51-	-
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia Viability Summary\[Glo	chidia viability assessme	ent 12h (adjusted).xlsx]Fatn	nuck

Mussel species: Fatmucket Glochidia Lot number: 111600 Mean initial viability = 80.3% Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot #: MBI-401-110308AI-BD-3

Exposure Date: 12-May-11 Test System Location: Block 3

Test System Location	n: Block 3							Page 1 of 1	
Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 12h vlability (%)	Adjusted 12h viabllity (%)	Mean adjusted viability (%)	Standard Deviation (SD)
Fatmucket	3B2	0	328	55	79	59.1	73.7	82.9	8.0
Fatmucket	383	O	521	63	88	71.0	88.4		
Fatmucket	3A2	0	282	54	32	69.5	86.6		
Fatmucket	385	50	430	146	36	57.7	71.8	73.6	5.1
Fatmucket	3C5	50	368	109	53	56.0	69.7		
Fatmucket	3C6	50	207	33	42	63.8	79.4		
Fatmucket	3A1	100	409	183	48	43.5	54,2	54,3	4.2
Fatmucket	3A3	100	221	64	53	47.1	58.6	,	
Fatmucket	3A5	100	159	68	27	40.3	50.1		
Fatmucket	3B4	200	198	127	40	15.7	19.5	24.4	16.4
Fatmucket	3B6	200	134	69	19	34.3	42.8		
Fatmucket	3C4	200	214	172	23	8.9	11.1		
Fatmucket	3C1	300	240	195	29	6.7	8.3	5.6	2.4
Fatmucket	3C3	300	206	173	26	3.4	4.2		
Fatmucket	3B1	300	298	233	55	3.4	4.2		
Fatmucket	3A4	300HD	310	252	52	1.9	2.4	2.9	3,2
Fatmucket	3A6	300HD	298	229	54	5.0	6.3		
Fatmucket	3C2	300HD	187	131	56	0.0	0,0		

1 if the number counted was glochidia open, the number of glochidia closed -- total glochidia - open glochidia counted before NaCl.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

² Viability adjustments were calculated by dividing the observed viability by the mean initial viability for each species

Study Number	AEH-11-PSEUDO-01	Action	Date	nitials
Lab Notebook	1	Created	7-Jun-12	TMST
File Folder	12A	Revised	16-Mar-15	JAL TYS
Raw data location	12A	Reviewed	17-MAR-15	TO
		Certified	3/18/17	ゴルー
File Name:	I;VAEH-11-PSEUDO-01\Data\Glochidia VI	ability Summary\[Glochidia viability assess	ment 12h (adjusted).	xlsx]HiggIns

 Mussel species: Higgins Eye
 Clochidia Lot number: 111500

 Test Chemical: Pseudomonas florescens PF-CL 145A (SDP)
 Chemical lot #: MBI-401-110308AI-BD-3

 Exposure Date: 12-May-11
 Mean initial viability = 80.8%

Test System Location: Block 2

Page 1 of 1

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 12h vlability (%)	Adjusted 12h Viability (%) ²	Mean adjusted viability (%)	Standard Devlation (SD)
Higgins Eye	2C3	0	481	48	124	64.2	79.5	85.0	7.6
Higgins Eye	2C6	0	210	13	38	75.7	93.7		
Higgins Eye	2B1	0	254	29	57	66.1	81.9		
Higgins Eye	2A1	50	225	38	48	61.8	76.5	85.0	8.0
Higgins Eye	2A2	50	230	21	49	59.6	86.1		
Higgins Eye	2A4	50	339	36	50	74.6	92.4		
Higgins Eye	2A3	100	235	50	38	62.6	77.4	81.1	3.9
Higgins Eye	2C4	100	273	35	60	65.2	80.7		
Higgins Eye	2C5	100	362	41	72	68.8	85.1		
Higgins Eye	2A6	200	266	146	51	25.9	32.1	57.2	22.2
Higgins Eye	282	200	344	65	73	59.9	74.1		
Higgins Eye	285	200	274	81	48	52.9	65.5		
Higgins Eye	2C2	300	215	52	63	46.5	57.6	48.0	10.0
Higgins Eye	2C1	300	267	67	95	39.3	48.7		
Higgins Eye	2B3	300	240	107	60	30.4	37.6		
Higgins Eye	2A5	300HD	229	161	44	10.5	13.0	11.8	1.1
Higgins Eye	2B4	300HD	192	143	32	8.9	11.0		
Higgins Eye	2B6	300HD	206	142	45 ·	9.2	11,4		

¹ If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

² Viability adjustments were claculated by dividing the observed viability by the mean initial viability for each species

		· · · · · · · · · · · · · · · · · · ·		
Study Number	AEH-11-PSEUDO-01	Action	Date	nitials
Lab Notebook	1	Created	7-Jun-12	TM5 7)
File Folder	12 A	Revised	16-Mar-15	JAL 735
Raw data location	12A	Reviewed	19-MAR.15	The
		Certified	3/18/15	J4-
File Name:	I:\AEH-11-PSEUDO-01\Data\	Glochidia Viability Summary\[Glochidia viability assess	ment 12h (adius)	ted).xisxlPod

Name: I:VAEH-11-PSEUDO-01\Da:a\Glochidia Viability Summary\Glochidia viability assessment 12h (adjusted).xisx]Pocketbook FDP Glochidia Viability Assessment - 12 hour

Mussel species: Pocketbook Glochidla Lot number: 115400 Mean Initial visibility = 84.7% .

Test Chemical: Pseudomonas florescens Pf-CL 145A (FDP) Chemical lot number: 110607WB-FD-E Exposure Date: 18-Oct-11

Test System Location: Block 3

Page 1 of 1

Specles	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 12h vlability (%)	Adjusted 12h Viability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Pocketbook	3A6	C	133	3	20	82.7	97.6	96.6	4.0
Pocketbook	3B5	0	314	8.	61	78.0	92.1		
Pocketbook	3B6	0	182	5	23	84.6	99.9		
Pocketbook	3A4	50	290	24	62	70.3	83.1	90.5	7,4
Pocketbook	3C1	50	160	8	29	76.9	90.8		
Pocketbook	3C2	50	606	34	70	82.8	97.8		
Packetbook	381	100	179	46	22	62.0	73.2	83.3	10.0
Packetbook	383	100	130	20	18	70.8	83.6		
Packetbook	306	100	142	15	15	78.9	93.1		
Pocketbook	3A2	200	249	161	38	20.1	23.7	41.2	36.1
Pocketbook	3C3	200	815	104	140	70.1	82.7		
Pocketbook	3C5	200	200	151	20	14.5	17.1		
Pocketbook	3A3	300	251	174	66	4.4	5.2	10.8	10.4
Pocketbook	3B4	300	223	145	35	19.3	22.8		
Packetbook	3C4	300	348	289	46	3.7	4.4		
Pocketbook	3A1	300HD	72	58	11	4.2	4.9	5.7	1.4
Pocketbook	3A5	300HD	48	38	7	6.3	7.4		
Pocketbook	382	300HD	242	211	21	4.1	4.9		

If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

² Viability adjustments were calculated by dividing the observed viability by the mean initial viability for each species

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1 '	Created	7-Jun-12	TMST
File Folder	12A	Revised	16-Mar-15	JAL DS
Raw Data Location	12A	Reviewed	11-MAR-15	TYS
		Certifled	3118 115	52.∽
File Name:	I:\AEF-11-PSEUDO-01\Deta\Glochidia	Viability Summary)(Glochidia viability assessment 12h (adjusted) xisx1Black S	andshell

Page 1 of 1

Glochidia Viability Assessment - 12 hour

Mussel species: Black Sandshell Glochidia Lot number: 120800

Mean initial viability = 84.5% Test Chemica : Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot #: MBI-401 SDP 4655-12-Mix

Exposure Date: 17-Jan-12

Mussel Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 12h viability (%)	Adjusted 12h Vlability (%) ²	Mean adjusted viability (%)	Standaro Deviation (SD)
Black Sandshell	1/\5	0	262	3	26	88.9	105.2	105.9	0,6
Black Sandshell	181	0	231	6	18	89.6	106.0		
Black Sandshell	1C6	0	139	2	12	89.9	106.4		
Black Sandshell	1A1	50 ·	223	157	22	19.7	23.4	19.1	6.6
Black Sandshell	1A3	50	399	293	30	19.0	22.5		
Black Sandshell	1C1	50	248	221	3	9.7	11.5		
Black Sandshell	182	100	250	208	20	8.8	10.4	10.5	3.9
Black Sandshell	183	100	198	155	19	12.1	14.3		
Black Sandshell	105	100	125	97	21	5.6	5.6		
Black Sandshell	1 A 6	200	242	235	5	0.8	1.0	1.4	0.4
Black Sandshell	185	200	210	201	6	1,4	1.7		
Black Sandshell	186	200	304	280	20 ·	1.3	1.6		
Black Sandshell	1A2	300	135	135	0	0.0	0.0	0.0	0.0
Black Sandshell	164	300	93	86	7	0.0	0.0		
Black Sandshell	1C2	300	165	151	14	0,0	0.0		
Black Sandshell	1A4	300HD	281	268	13	0.0	0.0	1.1	1.0
Black Sandshell	1C3	300HD	157	147	8	1.3	1.5		
Black Sandshell	1C4	300HD	133	119	12	1.5	1.8		

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *200

File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidla Via	ability Summary/[Glochidia viability assessment	nt 12h (adjusted).xlsx]	Mucket
		Certified	3/18/15	500
Raw Data Location	12A	Reviewed	17-mAR-15	The
File Folder	1 2 A	Revised	16-Mar-15	JALTIS
Lab Notebook	1	Created	7-Jun-12	TMS T
Study Number	AEH-11-PSEUDO-01	Action	Date	Initials

Mussel species: Mucket Glochidia Lot number: 120700 Mean initial viability = 92.7%

Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot #: MBI-401 SDP 4655-12-Mix Exposure Date: 17-Jan-12 Test System (postion: Block 2

Specles	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 12h viability (%)	Adjusted 12h Vlability (%) ²	Mean adjusted vlabillty (%)	Standard Deviation (SD)
Mucket	2B4	0	178	. 2	11	92.7	100.0	101.7	1.6
Mucket	2B5	0	213	0	12	94.4	101.8		
Mucket	2C1	0	254	6	5	95.7	103.2		
Mucket	2A4	50	221	63	14	65.2	70.3	71.8	19.1
Mucket	286	50	113	53	4	49.6	53.5		
Mucket	2C3	50	193	17	12	85.0	91.7		
Mucket	2A2	100	210	91	10	51.9	56.0	69.4	19.1
Mucket	2 B 2	100	138	46	14	56.5	61.0		
Mucket	206	100	215	26	7	84.7	91.3		
Mucket	2A5	200	175	83	17	42.9	46.2	43.2	4.9
Mucket	2A6	200	179	92	11	42.5	45.8		
Mucket	2C2	200	362	227	9	34.8	37.5		
Mucket	231	300	247	212	4	12.6	13,5	11.0	2.7
Mucket	283	300	198	181	2	7.6	8.2		
Mucket	2C4	300	116	102	2	10.3	11.2		
Mucket	2A1	300HD	237	201	14	9.3	10.0	8.8	5.4
Mucket	2A3	300HD	127	100	11	12.6	13.6		
Mucket	2C5	300HD	184	175	4	2,7	2.9		

¹ If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCi.

Glochidia vlability: (total # glochidia - (glochidia closed before + open after NaCi))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date	initials
Lab Notebook	1	Created	7-Jun-12	TMS 7
File Folder	12A	Revised	16-Mar-15	JAL 77√5
Raw Data Location	12A	Reviewed	17-m AR-15	775
		Certified	3/18/15	JA-
File Name:	I:VAEH-11-PSEUDO-01\Data\Glochidia	a Viability Summary/(Glochidia viability a	assessment 12h (adjus	ted).x sx]Hick
		-		

Page 1 of 1

Glochidia Viability Assessment - 12 hour

Mussel species: Hickorynut Glochidia Lot number: 120900 Mean Initial Viability = 86.0%

Test Chemical: Pseudornonas florescens Pf-CL 145A (SDP) Chemical lot number: MBI-401 SDP 4655-12-Mix

Exposure Date: 19-Jan-12

Species	Test Chamber	Treatment Group (mg/l)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unad]usted 12h viability (%)	Adjusted 12h Viability (%) ²	Mean adjusted viability (%)	Standard Devlation (SD)
Hickorynut	3A2	0	257	6	22	89.1	103.6	100.5	7.4
Hickorynut	3C1	0	216	19	26	79.2	92.1		
Hickorynut	3C4	0	144	5	8	91.0	105.8		
Hickorynut	3A5	50	172	21	10	82.0	95.3	98.2	3.4
Hickorynut	3B3	50	197	24	8	83.8	97.4		
Hickorynut	3B6	50	186	9	14	87.6	101.9		
Hickorynut	381	100	214	36	6	80.4	93.5	89.7	14.5
Hickorynut	3C2	100	195	18	6	87.7	102.0		
Hickorynut	3C5	100	216	75	4	63.4	73.8		
Hickorynut	3A3	200	134	86	3	33.6	39.0	58.4	19.2
Hickorynut	3A4	200	186	84	8	50.5	58.8		
Hickorynut	3C6	200	138	41	5	66.7	77.5		
Hickorynut	3A6	300	204	123	8	35.8	41.6	45.6	3.5
Hickorynut	3B2	300	200	107	12	40.5	47.1		
Hickorynut	3BS	300	206	98	23	41.3	48.0		
Hickorynut	5A1	300HD	249	231	15	1.2	1.4	1.4	0.4
Hickorynut	3B4	300HD	338	313	22	0.9	1.0		
Hickorynut	3C3	300HD	251	244	3	1.6	1.9		

¹If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCI.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

Study Number AEH-11-PSEUDO-01	Action	Date	initials						
Lab Notebook 1	Created	7-Jun-12	TMST						
File Folder 12A	Revised	16-Mar-15	JAL 75						
Raw data locatio 12A	Reviewed	M-MAR-15	75						
	Certified	3/15/17	571-						
File Name: I:\AEH-11-PSEUDO-01\Data\Glochidla Vlability Summary\[Glochidla vlability assessment 24h (adjusted).xisxiHiggins Eye									

Mussel species: Higgins Eye Glochidia Lot number: 111500

 Test Chemical : Pseudomonas florescens Pf-CL 145A (SDP)
 Chemical lot II: MGI-401-110338AI-BD-3

 Exposure Date: 12-May-11
 Mean Initial viability = 80.8%

Test System Location: Block 2

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Głochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 24h viability (%)	Adjusted 24h Vlability (%) ²	Mean adjusted vlability (%)	Standard Deviation (SD)
Higgins Eye	2C3	Ö	318	28	66	70.4	87.2	85,8	9,0
Higgins Eye	2C3-R24	0	377	46	108	59.2	73.2		
Higgins Eye	206	٥	557	61	70	76.5	94.7		
Higgins Eye	2C6-R24	0	408	44	73	71.3	88.3		
Higgins Eye	281	0	lost ³	-		-			
Higgins Eye	2A1	50	506		67	77.1	95.4	92.3	4.2
Higgins Eye	2A2	50	514	55	68	76.1	94.1		
HiggIns Eye	ZA4	50	464	34	102	70,7	87.5		
Higgins Eye	2A3	100	629	95	87	71.1	88.0	81.0	6.0
Higgins Eye	2C4	100	423	87	69	63.1	78.1		
Higgins Eye	2C5	100	413	105	51	62.2	77.0		
Higgins Eye	2A6	200	296	83	56	53,0	65.6	52.6	18.3
Higgins Eye	282	200	369	135	54	48.8	6C.4		
Higgins Eye	2B5	200	441	272	56	25.6	31.7		
Higgins Eye	2C2	300	140	38	28	52.9	65.4	27.6	32.9
Higgins Eye	2C1	300	354	287	34	9.3	11,5		
Higgins Eye	283	300	171	109	54	4.7	5,8		
Higgins Eye	2A5	300HD	137	89	42	4.4	5.4	17.2	12.9
Higgins Eye	284	300HD	216	88	74	25.0	30.9		
Higgins Eye	286	300HD	330	229	60	12.4	15.4		

¹ If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

² Viability adjustments were calculated by dividing the observed viability by the mean initial viability for each species

³ Sample lost, the 281 chamber was accidentally pooled with control chambers from Block 1 before the 24 h glochidia sample collected.

⁴ Two replicate samples were collected from the control samples 2C3 and 2C6 since sample 2B1 was lost.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

Page 1 of 1

Study Number	AEH-11-PSEUDO-01	Action	Date	nitials
Lab Notebook	1	Created	7-Jun-12	TM97)5
File Folder	12A ·	Revised	16-Mar-15	JAL TA
Raw data location	12A	Reviewed	17-MAR-15	TIS
		Certified	2/18/15	<u></u>
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia Viab	ility Summary\[Glochidia viability assessmen	t 24h (adjusted).x	lsx]Fatmuck

Page 1 of 1

Glochidia Viability Assessment - 24 hour

 Mussel species: Fatmucket
 Glochidia Lot number:
 111600
 Mean initial viability = 80.3%

 Test Chemical: Pseudomonas florescens PF-CL 145A (SUP)
 Chemical lot #:
 MBI-401-110308AI-BD-3

Test Chemical: Pseudomonas fibrescens Pf-CL 145A (SDP) Chemical lot #: MBI-401-110308AI-BD-3 Exposure Date: 12-May-11

Test System Location: Block 3

								-	
Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 24h viability (%)	Adjusted 24h Vlability (%) ²	Mean adjusted vlability (%)	Standard Deviation (SD)
Fatmucket	3B2	0	247	50	41	63.2	78.7	86.5	10,2 ·
Fatmucket	3B3	0	244	19	33	78.7	98.0		
Fatmucket	3A2	٥	307	48	55	66.4	82.8		
Fatmucket	385	50	327	38	85	62.1	77.3	70.8	7.4
Fatmucket	3C5	50	334	64	76	58.1	72.3		
Fatmucket	3C6	50	278	70	68	50,4	62.7		
Fatmucket	3A1	100	112	41	20	45.5	56.7	51.9	8.0
Fatmucket	BAB	100	208	60	54	45.2	56.3		
Fatmucket	3A 5	100	313	146	60	34.2	42.6		
Fatmucket	364	200	271	190	43	14.0	17.5	14.5	5.8
Fatmucket	386	200	205	147	28	14.6	18.2		
Fatmucket	3C4	200	271	193	61	6.3	7.8		
Fatmucket	3C1	300	176	145	23	4.5	5.7	7.5	2.2
Fatmucket	3C3	300	215	130	68	7.9	9.8		
Fatmucket	381	300	217	170	35	5.5	6.9		
Fatmucket	3A4	300HD	281	250	29	0.7	0.9	2.1	1.1
Fatmucket	3A6	300HD	86	69	15	2.3	2.9		
Fatmucket	3C2	30011D	336	293	36	2.1	2.6		

1 If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

Glochidia vlability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	7-Jun-12	TMST
File Folder	12A	Revised	16-Mar-15	JAL TH
Raw Data Location	12A	Reviewed	11-MAR-15	TVS
		Certified	3/18/5	Jra
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia	viability Summary/(Glochidia viability assessment	24h (adjusted).xlsx	Pocketbook

 Mussel species:
 Pocketbook
 Glochidia Lot number;
 111400
 Mean Initia: viability = 93.8%

 Test Chemical:
 Pseudomonas florescens
 Pf-CL 145A (SDP)
 Chemical lot #:
 MBI-401-110308AI-8D-3

Exposure Date: 12-May-11

Test System Location: Block 1

Page 1 of 1

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaQ ¹	Glochidla Open after NaCl	Unadjusted 24h viability (%)	Adjusted 24h Viability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Pocketbook	161	0	514	15	22	92.8	98.9	98.2	1.0
Pocketbook	1C3	0	276	12	9	92.4	98.5		
Pocketbook	1A3	0	367	9	24	91.0	97.0		
Pocketbook	185	50	270	27	16	84.1	89.6	85.1	6.0
Pocketbook	1A1	50	459	55	28	81.9	87.3		
Packetbook	1C1	50	339	78	12	73.5	78.3		
Packetbook	184	100	324	56	24	75.3	80.3	71.3	15.8
Pocketbook	1A2	100	210	33	16	76.7	81.7		
Pocketbook	1A4	100	310	34	125	48.7	51.9		
Pocketbook	106	2.00	242	64	16	66.9	71.4	63.2	13.6
Pocketbook	182	200	187	50	13	66.3	70.7		
Focketbook	104	200	505	267	14	44.5	47.4		
Pocketbook	1A5	300	493	399	23	14.4	15.4	6.5	7.7
Pocketbook	1C2	300	226	218	4	1.8	1.9		
Pocketbook	1C5	300	295	274	15	2.0	2.2		
Pocketbook	1A6	300HD	204	147	40	8.3	8.9	5.1	3.3
Pocketbook	1B3	300HD	257	245	4	3.1	3.3		
Pocketbook	186	300HD	322	293	20	2.8	3.0		

.

³ If the number counted was glochidia open, the number of glochidia closed ≈ total glochidia - open glochidia counted before NaCl.

Glochidla viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	7-Jun-12	TMSTIS
File Folder	12A	Revised	16-Mar-15	JAL TAS
Raw data location	12A	Reviewed	M-MAR-15	Trs T
		Certified	3/18/15	571-
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia	Viability Summary\[Glochidia viability as	sessment 24h (adjus	ted).xlsx]Poo
				· · · ·

Page 1 of 1

Glochidia Viability Assessment - 24 hour

Mussel species: Pocketbook Glochidia Lot number: 115400 Mean initial viability = 84.7% Test Chemical: Pseudomonas florescens PF-CL 145A (FDP) Chemical lot number: 110607WB-FD-E

Exposure Date: 18-Oct-11

Test System Location: Block 3

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 24h viability (%)	Adjusted 24h Vlability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Pocketbook	3A6	0	573	21	74	83.4	98.5	96.7	1.7
Pocketbook	3B5	0	279	7	47	80.6	95.2		
Pocketbook	3B6	0	278	17	34	81.7	96.4		
Pocketbook	3A4	50	164	39	21	63.4	74.9	87.5	11.0
Pocketbook	3C1	50	368	33	45	78.8	93.0		
Pocketbook	3C2	50	384	30	46	80,2	94.7		
Pocketbook	381	100	467	85	60	69.0	81.4	80.0	4.5
Pocketbook	3B3	100	405	93	55	63.5	74.9		
Pocketbook	3C6	100	288	38	46	70.8	83.6		
Pocketbook	3A2	200	1 44	96	27	14.6	17.2	34.9	28.0
Pocketbook	3C3	200	592	157	- 98	56.9	67.2		
Pocketboo<	3C5	200	386	281	39	17.1	20.2		
Pocketbook	3A3	300	199	132	45	11.1	13.1	14.2	2.2
Pocketbook	384	300	714	442	171	14.1	16.7		
Pocketbook	3C4	300	440	330	62	10.9	12.9		
Pocketbook	3A1	300HD	370	277	78	4,1	4.8	5.8	2,7
Pocketbook	3A5	300HD	253	207	38	3.2	3.7		
Pucketbook	382	300HD	267	198	49	7.5	8.8		

If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCL.

Glochidia vlability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	30-May-12	TJSTK
File Folder	12C	Revised	16-Mar-15	JALTA
Raw Data location	12C	Reviewed	11-MAR-15	Trs
		Certified	3/18/15	51-
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochicia	Viability Summary\[glochidia viability assessm	nent 24h.xlsx]Washb	oard

Glochidia Viability Assessment - 24 hour

Mussel species: Washboard Glochidia Lot number: 115500

Mean initial viability = 96.5%

Test Chemical: Pseudomonas florescens Pf-CL 145A (FDP) Chemical lot number: 110607WB-FD-E

Exposure Date: 18-Oct-11 Test System Location: Block 1

t System Location:			Total	Glochidia				Page 1 of 1	
Species	Test Chamber	Treatment Group (mg/L)	Number Glochida Counted ²	Closed before NaCl ^{1,2}	Glochidia Open after NaCl ²	Unadjusted 24h viability (%)	Adjusted 24h Viability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Washboard	1A5	0	55	9	11	63.6	65.9	53.9	11.7
Washboard	1B2	D	140	49	19	51.4	53.3		
Washboard	1B4	0	73	32	11	41,1	42.6		
Washboard	1A1	50	55	16	14	45.5	47.1	57.6	9.8
Washboard	1C1	50	65	19	9	56.9	59.0		
Washboard	1C2	50	56	9	11	64,3	66.6		
Washboard	1A2	100	67	23	23	31,3	32.5	49.8	17.6
Washboard	1A6	100	99	15	37	47.5	49.2		
Washboard	1C6	100	104	23	13	65.4	67,8		
Washboard	185	200	54	16	21	31.5	32.6	51.3	19.3
Washboard	1C3	200	60	12	19	48.3	50.1		
Washboard	104	200	64	14	6	68.8	71.2		
Washboard	1A4	300	52	8	11	63.5	65.8	41.5	21.5
Washboard	181	300	55	24	18	23.6	24.5		
Washboard	1C5	300	69	8	38	33.3	34.5		
Washboard	1A3	300HD	80	62	5	16.3	16.8	27.7	11.0
Washboard	1B3	300HD	80	34	16	37.5	38.9		
Washboard	1B6	300HD	83	37	24	26.5	27.5		

1 If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

2 Washboard samples were manual processed with a dissection scope, chambers with multiple replicates were pooled for one value.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

³ Viability adjustments were calculated by dividing the observed viability by the mean initial viability for each species

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	7-Jun-12	TMS-116
File Folder	12A	Revised	16-Mar-15	JAL TK
Raw Data Location	12 A	Reviewed	17-MAR-15	
		Certified	3/18/15	5.10
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia Viabil	ity Summary)(Glochidia viability assessment 24b)	adjusted) xisxiBlack Sa	indsheli

Glochidia Viability Assessment - 24 hour

Mussel species: Black Sandshell Glochidia Lot number: 120800

Mean Initial viability = 84.5% Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot #: MBI-401 SDP 4655-12-Mix

Exposure Date: 17-Jan-12 Test System Location: Block 1

Page 1 of 1

Mussel Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 24h viability (%)	Adjusted 24h Viability (%) ²	Mean adjusted viability (%)	Standard Devlation (SD)
Black Sandshell	1A5	0	612	12	83	84.5	100.0	100.0	2.3
Black Sandshell	1B1	0	206	4	24	86.4	102.3		
Black Sandshell	1C6	0	572	26	74	82.5	97.7		
Black Sandshell	1A1	50	353	287	17	13.9	16.4	17.4	2.1
Black Sandshell	1A3	50	137	98	16	15.8	19.9		
Black Sandshell	1C1	50	111	92	4 ·	13.5	16.0		
Black Sandshell	1B2	100	181	166	12	1.7	2.0	8,2	5.8
Black Sandshell	183	100	252	221	11	7,9	9.4		
Black Sandshell	1C5	100	222	179	18	11.3	13,3		
Black Sandshell	1A5	200	351	338	8	1.4	1.7	3.8	2.6
Black Sandshell	165	200	302	255	38	2.5	3.1		
Black Sandshell	186	200	352	299	33	5.7	6.7		
Black Sandshell	1A2	300	284	270	14	0.0	0.0	0.9	0.8
Black Sandshelf	184	300	255	247	S	1.2	1.4		
Black Sandshell	1C2	300	383	373	6	1.0	1.2		
Black Sandsheil	1A4	300HD	485	471	11	0.6	0.7	0.9	0.9
Black Sandshell	1C3	300HD	381	367	8	1.6	1.9		
Black Sandshell	1C4	300HD	302	295	7	0.0	0.0		

1 If the number counted was glochidia open, the number of glochidia closed = total glochidia - open glochidia counted before NaCl.

Glochidia viability: (total # glochidia - (glochidia closed before + open after NaCI))/total glochidia *100

² Viability adjustments were calculated by dividing the observed viability by the mean initial viability for each species

File Name:	I:VAEH-11-PSEUDO-01\Data\Glochidla Vlability	Summary/[Glochidla vlability assessm	ent 24h (acjusted).xisx	Mucket
		Certifled	3/1×/15	J71-
Raw Data Location	12A	Reviewed	19-m AR-15	'∕r∖s
File Folder	12A	Revised	16-Mar-15	JALTS
Lab Notebook	1	Created	7-Jun-12	TMS1
Study Number	AEH-11-PSEUDO-01	Action	Date	Initials

Glochidia Viability Assessment - 24 hour

Mussel species: Mucket Glochidia Lot number: 120700 Mean initial viability = 92.7%

Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot #: MBI-401 SDP 4655-12-Mix Exposure Date: 17-Jan-12

Test System Location:	Block 2								Page 1 of :
Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl		Adjusted 24h Vlability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Mucket	284	0	261	7	19	90.0	97,1	99.9	2.4
Mucket	2B5	0	361	1	20	94.2	101.6		
Mucket	2C1	0	251	8	8	93.6	101.0		
Mucket	2A4	50	328	49	14	80.8	87.2	81.7	14.1
Mucket	2B6	50	146	49	8	61.0	65.8		
Mucket	2C3	50	194	19	9	85.6	92.3		
Mucket	2A2	100	191	42	5	75.4	81.3	68.5	12.1
Mucket	282	100	209	87	11	53.1	57.3		
Mucket	206	100	213	71	10	62.0	66.9		
Mucket	2A5	200	251	170	16	25.9	27.9	32.4	7.8
Mucket	2A6	200	407	241	10	38.3	41.3		
Mucket	2C2	200	497	355	14	25.8	27.8		
Mucket	2B1	300	192	171	3	9.4	10.1	6.5	3.8
Mucket	2B3	300	297	281	9	2.4	2.5		
Mucket	2C4	300	451	417	6	6.2	6.7		
Mucket	2A1	300HD	292	278	6	2.7	3.0	5.6	3.7
Mucket	2A3	30011D	308	276	4	9.1	9.8		
Mucket	2C5	300HD	157	149	2	3.8	4.1		

¹ If the number counted was glochidia open, the number of glochidia closed = total glochidia - cpen glochidia counted before NaCl.

Glochidia vlability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

² Viability adjustments were calculated by dividing the observed viability by the mean initial viability for each species

Study Number	AEH-11-PSEUDO-01	Action	Date	Initials
Lab Notebook	1	Created	7-Jun-12	TMSTB
File Folder	12A	Revised	16-Mar-15	JAL"T
Raw Data Location	12A	Reviewed	17-MAR-15	Ths
		Certified	3 8/15	Jn-
File Name:	I:\AEH-11-PSEUDO-01\Data\Glochidia	a Viability Summary [Glochidia viability a	ssessment 24h (adju	sted) xisx]Hic

Page 1 of 1

Glochidia Viability Assessment - 24 hour

Mussel species: Hickorynut - Glochidia Lot number: 120900 Mean initial viability = 85.0%

Test Chemical: Pseudomonas florescens Pf-CL 145A (SDP) Chemical lot number: MBI-40L SDP 4655-12-Mix

Exposure Date: 19-Jan-12

em Location: Block 3 Te

Species	Test Chamber	Treatment Group (mg/L)	Total Number Glochida Counted	Glochidia Closed before NaCl ¹	Glochidia Open after NaCl	Unadjusted 24h viability (%)	Adjusted 24h Viability (%) ²	Mean adjusted viability (%)	Standard Deviation (SD)
Hickorynut	3A2	0	192	8	14	88.S	103.0	101.2	2.0
Hickorynut	3C1	0	376	22	34	85.1	99.0		
Hickorynut	3C4	0	359	14	31	87.5	101.7		
Hickorynut	3A5	50	223	9	8	92.4	107.4	103.7	3,3
Hickorynut	383	50	303	18	22	86.8	100.9		
Hickorynut	386	50	233	18	9	88.4	102.8		
Hickorynut	381	100	404	36	21	85.9	99.9	91.0	8.0
Hickorynut	3C2	100	278	59	17	72.7	84,5		
Hickorynut	3C5	100	257	51	10.	76.3	88.7		
Hickorynut	3A3	200	349	114	10	64.5	75.0	70.5	5.3
Hickorynüt	3A4	200	203	78	12	55.7	64.7		
Hickorynut	3C6	200	197	66	9	61.9	72.0		
Hickorynut	3A6	300	191	138	. 9	23.0	26.8	30.9	3.8
Hickorynut	3B2	300	140	98	4	27.1	31.6		
Hickorynut	385	300	231	156	7	29,4	34.2		
Hickorynut	3A1	300HD	290	287	2	0.3	0.4	0.6	0.4
Hickorynut	384	300HD	314	307	5	0.3	0.4		
Hickorynut	3C3	300HD	226	221	3	0.9	1.0		

.

Glochidia vlability: (total # glochidia - (glochidia closed before + open after NaCl))/total glochidia *100

² Viability adjustments were calculated by dividing the observed viability by the mean initial viability for each species

	17-Mar-15	
Data Squrce: File Folder: 12d		
Deta Sources The Forders 120	18-Mar-15	TJS TAS
Forms: Glochidia Photomicrograph Counting Record Reviewed	18-MAR-15	TO
Certified	2/12/15	57

E:\AEH-11-PSEUDC-01\Data\Glochidla Viability Summary\[glochidla distribution counts.xlsx]Distribution Coversheet

Glochidia Distribution Counts

 Test Article:
 Pseudomonos fluorescens (Pf-CL145A) spray dried powder (SDP) and freeze dried bowder (FDP)

 Article Lot #s:
 SDP = MBI-401-110308AI-B0-3 and MBI-401 SDP 4655-12-Mix; FDP = 110607WB-FD-E

 Exposure Dates:
 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12

 Species Tested:
 PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Data Explanation:

File Name:

Species Abbreviations

PPB - plain pocketbook (Lampsilis cardium) FAM - fatmucket (Lampsilis siliquoldea) HGE - Higgins eye (Lampsilis higginsil) WAS - washboard (Megalonaias nervosa) BLS - black sandshell (Ligumla recta) MUC - mucket (Acthonalas ligamentina) H C - htckorynut (Obvaria olivaria)

Throughout distribution of glochidia to test chambers, n=16 100 µL samples of glochidia were collected, photographed, and enumerated (from photomicrographs) to estimate the number of glochidia distributed to test chambers.

These enumerations were used to calculate the mean number of glochidia distributed to each chamber (5 x 100µL mean = estimated glochidia per 500 µL test chamber).

Data anomalles and deviations:

Hickorynut samples contained large numbers of glochidia, and therefore, some samples were divided and multiple photographs were captured for enumeration.

Item Number 10 Page_ / of

Test Article: VBI 401 (Pf-CL 145A [5DP]) Article Lot #: MBI-401-11030BAI-BD-3 Exposure Dates: 12-May-11 Species Tested: PPB

1

Plain pocketbook (SDP) Distribution Glochidia Count

			Distribution	Rep	Total glochidia
Species	Formulation	Test date	round	number	per 100 µL
PPB	SDP	12-May-11	1	1	689
				2	715
				3	450
			2	1	577
				2	1136
				3	1056
			3	1	679
				2	544
				3	667
			4	1 .	731
				2	787
				3	520
			5	1	249
				2	659
				3	770
				4	506
				Mean (per 100 µL)	671
				SD	215
	Glochidi	a Distribution	Estimate	Mean (per 500 µL)	3355

Item Number____9___ Page __2__of __/0__

į

Test Article: MBI 401 (PF-CL 145A [SDP]) Article Lot #: MBI-401-110308A -8D-3 Exposure Dates: 12-May-11 Species Tested: FAM

Fatmucket (SDP) Distribution Glochidia Count

			Distribution	Rep	Total glochidia
Species	Formulation	Test date	round	rumber	per 100 µL
FAM	SD P	12-May-11	1	1	677
				2	1211
				3	630
			2	1	552
				2	635
				3	413
			3	1	399
				· 2	329
				3	508
			4	1	481
				2	381
				3	350
			5	1	450
				2	436
				3	423
				4	771
	P4E+1111010101010101010101010101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Mean (per 100 µL)	540
				SD	219
	Glochidi	a Distribution	Estimate	Mean (per 500 µL)	2702

Item Number 9 Page 3_ of 10

Test Article: MBI 401 (PF-CL 145A [SDP]) Article Lot #: MBI-401-110308AI-BD-3 Exposure Dates: 12-May-11 Species Tested: HGE

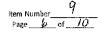
Higgins eye (SDP) Distribution Glochidia Count

			Distribution	Rep	Total glochidia
Species	Formulation	Test date	round	number	per 100 µL
HGE	SDP	12-May-11	1	1	1107
				2	823
				3	636
			2	1	843
				2	871
				3	812
			3	1	746
				2	640
				3	549
			4	1	802
				2	59 3
				3	357
			5	1	724
				2	684
				3	481
				4	298
				Mean (per 100 µL)	685
				SD	204
	Glochidia	Distribution	Estimate	Mean (per 500 µL)	3427

Item Number Page __ 10

Tiest Article: MBI 401 (PF-CL 145A (FDP)) Article Lot #: 110607WB-FD-E Exposure Dates: 18-Oct-11 Species Tested: PPB

Plain pocketbook (FDP) Distribution Glochidia Count


			Distribution	Rep	Total giochidia
Species	Formulation	Test date	round	number	per 100 µl.
PPB	FDP	18-Oct-11	1	1	762
				2	1075
				3	501
				4	620
			2	1	986
				2	1023
				3	493
			3	1	1152
				2	968
				3	1221
			4	1	1278
				2	1033
				3	971
			5	1	718
				2	1126
unarra riandatana and				3	800
				Mean (per 100 µL)	920
				SD	245
	Glochidia	Distribution	Estimate	Mean (per 500 µL)	4602

Item Number 9 Page 5 of 10

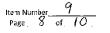
Test Article: MBI 401 (Pf-CL 145A [FDP)) Article Lot #: 110607WB-FD-E Exposure Dates: 18-Oct-11 Species Tested: WAS

Washboard (FDP) Distribution Glochidia Count

			Distribution	Rep	Total glochidia
Species	Formulation	Test date	round	number	per 100 µL
WAS	FDP	18-Oct-11	1	1	115
				2	7
				3	139
				4	110
			2	1	215
				2	149
				3	255
			3	1	204
				2	179
				3 .	288
			4	1	201
				2	303
				3	171
			5	1	131
				2	152
				3	80
		, ,		Mean (per 100 µL)	169
				SD	75
	Glochidia	Distribution	Estimate	Mean (per 500 µL)	843

Test Article: MBI 401 (Pf-CL 145A [SD²]) Article Lot #: MBI-401 SDP 4655-12-Mix Exposure Dates: 17-Jan-12 Species Tested: BLS

Black sandshell (SDP) Distribution Glochidia Count


			Distribution	Rep	Total glochidia
Species	Formulation	Test date	round	number	per 100 µL
PPB	SDP	17-Jan-12	1	1	322
				2	456
				3	382
			2	1 .	468
				2	546
				3	430
			3	1	309
				2	367
				3	235
			4	1	453
				2	348
				3	514
			5	1	604
				2	415
				3	324
				4	295
,				Mean (per 100 µL)	404
				SD	100
	Glochidia	Distribution	Estimate	Mean (per 500 µL)	2021

Test Article: MBI 401 (Pf-CL 145A 'SDP)) Article Lot #: MBI-401 SDP 4555-12-Mix Exposure Dates: 17-:an-12 Species Tested: MUC

Mucket (SDP) Distribution Glochidia Count

	,		Distribution	Rep	Total glochidia
Species	Formulation	Test date	round	number	per 100 µL
MUC	SDP	17-Jan-12	1	1	97
				2	576
				3	727
			2	1	521
				2	754
				3	218
			3	1	531
				2	350
				3	780
			4	1	618
				2	470
				3	285
			5	1	309
				2	198
				3	278
				4	329
				Mean (per 100 µl.)	440
				SD	212
	Glochidia	Distribution	Estímate	Mean (per 500 µL)	2200

472

Test Article: MBI 401 (Pf-CL 145A [SDP]) Article Lot #: MBI-401 SDP 4655-12-Mix Exposure Dates: 19 Jan-12 Species Tested: HIC

Hickorynut (SDP) Distribution Glochidia Count

			Distribution	Rep	Total glochidia
Species	Formulation	Test date	round	number	per 100 µL
HIC	SDP	19-Jan-12	1	1	779
				2	995
				3	2555
			2	1	593
				2	1105
				3	521
			з	1	359
				2	853
				3	708
			4	1	637 ·
				2	748
				3	1067
			5	1	630
				2	545
				3	701
				4	603
				Mean (per 100 µL)	837
				SD	501
	Glochídia	Distribution	Estimate	Mean (per 500 µL)	4187

٢

Item Number____9 Page ____9 of __/_0__

 Test Article:
 MBI 401 (Pf-CL 145A [SDP] and [FDP])

 Article Lot #:
 MBI-401-110308AI-BD-3; MBI-401 SDP 4655-12-Mix, 110607WB-*D-E

 Exposure Dates:
 12-May-11, 18-Oct-11, 17-Jan-12, and 19-Jan-12

 Species Tested:
 PPB, FAM, HGE, WAS, BLS, MUC, and HIC

Distribution Glochidia Count Summary

			Mean glochidia	Mean glochidia
Species	Formulation	Test date	per sample (100 µL)	per chamber (500 ul.)
PPB	SDP	12-May-11	671	3355
FAM	SDP	12-May-11	540	2702
HGE	SDP	12-May-11	685	3427
PP8	FDP ·	18-Oct-11	920	4602
WAS	FDP	18-Oct-11	169	843
BLS	SDP	17-Jan-12	404	2021
MUC	SDP	17-Jan-12	440	2200
HIC	SDP	19-Jan-12	837	4187

Itom Number ______ Page _____ of _____0

ISSN 2331-1258 (online) http://dx.doi.org/10.3133/ofr20151094