

IEEE Vehicle Power and Propulsion Conference

August 27th - 30th, 2018 – Chicago, IL, USA http://www.ieee-vppc.org/2018

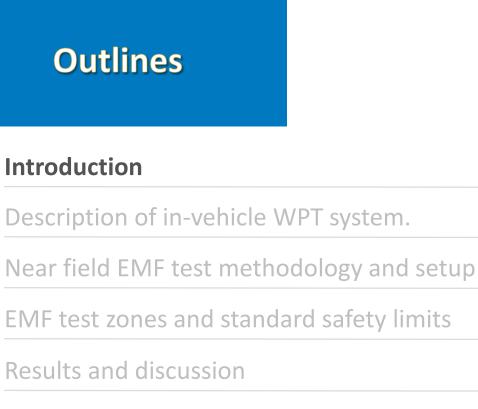
"Enlarging e-mobility network"

In-vehicle Assessment of Human Exposure to EMFs from 25-kW WPT System Based on Near-field Analysis

•<u>Ahmed Mohamed</u>¹, Andrew Meintz¹, Peter Schrafel², Anthony Calabro²

•¹ Transportation and Hydrogen Systems Center, NREL.

•² Momentum Dynamics.



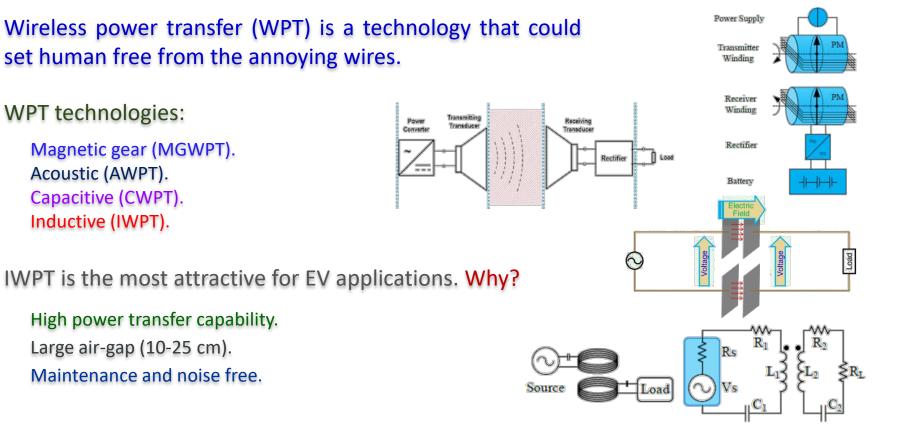
Introduction

 \checkmark

1.

2.

3.


4.

1.

2.

3.

 \checkmark

Visions of WPT for EV

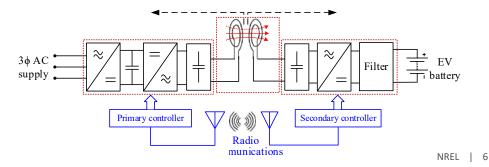
Quasi-dynamic WPT

https://www.nbcnews.com/mach/futuristic-roads-may-make-recharging-electriccars-thing-past-ncna766456

Description of in-vehicle WPT system

Near field EMF test methodology and setup

EMF test zones and standard safety limits


Results and discussion

System Description

Wirelessly Charged NREL's Shuttle

- Full electric on-demand
- o 16 passenger
- o 62.1 kWh battery capacity
- 100 miles range
- o 7600 curb weight, including VA
- 6.6 kW on-board charger
- ✓ Momentum Dynamics WPT system
 - 36"x36" symmetrical square pads
 - 25 kW maximum power transfer
 - 20 (19-21) kHz nominal operating frequency
 - o 62.1 kWh battery capacity

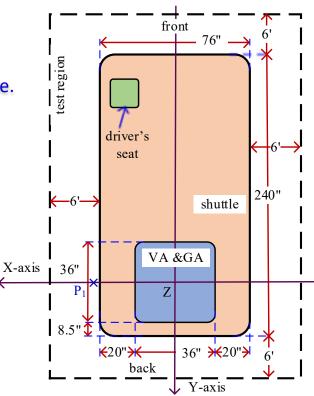
Near field EMF test methodology and setup

Test Device

Low frequency isotropic field probe-analyzer EHP-50D, Narda, Germany)

- o 5 Hz 100 kHz
- o XYZ field measurements
- o Built-in spectrum analyzer
- o connected to a PC by a fiber optic cable
- dedicated software manages the probe setting, data acquisition and storage

Parameter	Value
Span	3-100 kHz
Measurement mode	Max RMS over 30 sec.
Hold Maximum	Enable
Showing XYZ measurements	Enable
Measuring Range	Small range
Units	Β (μΤ) & Ε (V/m)

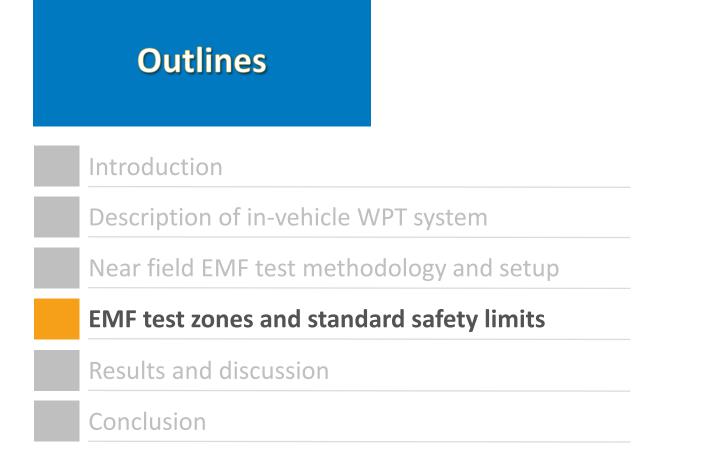


https://www.narda-sts.com/en/ http://www.eenewsautomotive.com/news/one-test-system-analysing-electromagneticfields-5-hz-60-ghz

Near field EMF test methodology and setup

Test Set-Up

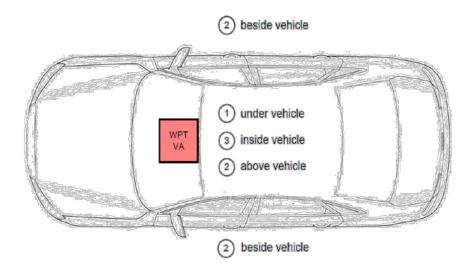
- Defining coordinates
 - GA reference coordinates for measurements outside the vehicle.
 - VA reference coordinates for measurements inside the vehicle.
- Defining a marked safety perimeter
 - Establishing a restricted area with a distance > 3m .
 - Measuring the EMFs at the perimeter with at full power operation.
 - Modifying the distance until the fields at the perimeter are with-in the recommended safe limits.
 - If the fields around the vehicle meet the standard limits, the perimeter need to be defined to allow enough test area for the workers (6-7 ft around the system).

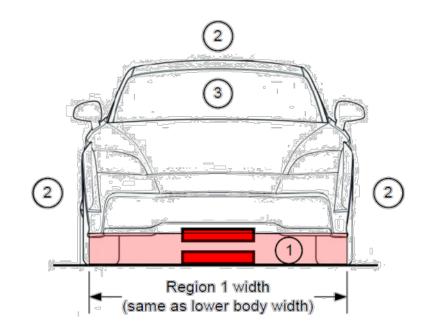

Near field EMF test methodology and setup

✓ Defining the Worst Operating Condition

For each test region, the worst alignment conditions need to be defined and considered during the tests.

- Applying different combinations of misalignments (X, Y, Z, pitch, roll and yaw).
- Measuring the EMFs at few points that represent the worst scenarios.
- Comparing the results to define the worst operating condition.


Coupler Offset & Gap		Max Mag	netic Field	Max Elec	tric Field	
dX	dY	dZ	Location	Β (μΤ)	Location	E (V/m)
+max	+max	max				
+max	-max	max				
-max	+max	max				
-max	-max	max				



EMF test zones and standard safety limits

✓ EMF Test Zones (SAE J2954)

- Region I: Under the vehicle
- Region II: Around and above the vehicle
- Region III: Inside the vehicle

"J2954A (WIP) Wireless Power Transfer for Light-Duty Plug-In/ Electric Vehicles and Alignment Methodology - SAE International."

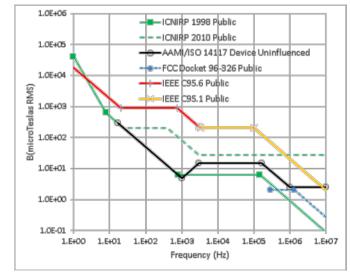
EMF test zones and standard safety limits

✓ J2954 Standard Exposure Limits (2010 ICNIRP guidelines)

Human Exposure

- General public
- Occupational
- IMD Coexistence
- ✓ EMF Standard Limits
- Basic Restrictions
- Reference Levels

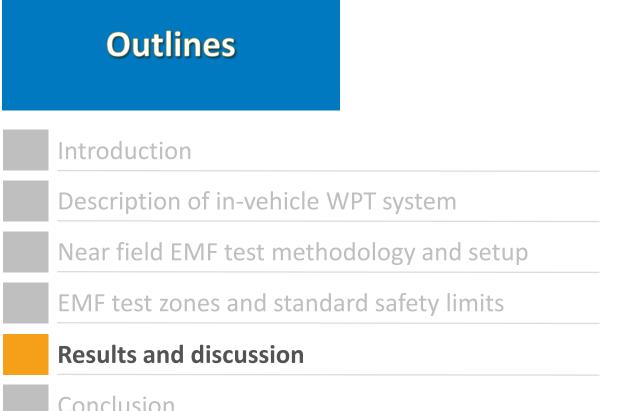
				Electric Field Limit			
Region		Human Exposure		IMD Coexistence		$(\Gamma) () (m)$	
		B _{peak}	(μΤ)	H _{peak} (A/m)	B _{peak} (μΤ)	H _{peak} (A/m)	(E _{peak}) (V/m)
	3	38.2	(27 RMS)	29.7 (21 RMS)	21.2 (15RMS)	16.9 (11.96 RMS)	117 (83 RMS)
	2	38.2	(27 RMS)	29.7 (21 RMS)	21.2 (15RMS)	16.9 (11.96 RMS)	117 (83 RMS)
		i) Active or passive access control.					
1	red	ii) Detection and shutdown.					
1		iii) Meet region 2 EMF limits.					
	green	Meet region 2 EMF limits.					


Ref. Limits for General Exposure

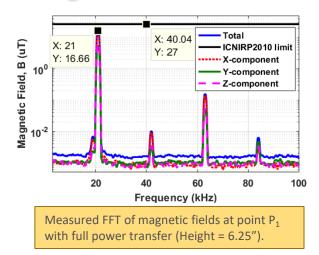
		Magneti	c Field Limit	Electric Field Limit
Re	egion	B _{peak} (μΤ)	H _{peak} (A/m)	E _{peak} (V/m)
	3	141.5 (100 RMS)	113.2 (80 RMS)	240.5 (170 RMS)
	2	141.5 (100 RMS)	113.2 (80 RMS)	240.5 (170 RMS)
i) Active or passive access control.			ol.	
1	red ii) Detection and shutdown.			
-		iii) Meet region 2 EMF limits.		
green Meet region 2 EMF limits.				

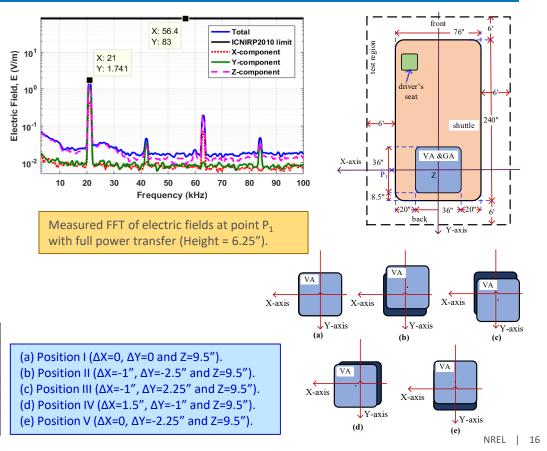
Ref. Limits for Occupational

EMF test zones and standard safety limits


- Other EMF Standards
- > 2010 ICNIRP guidelines
- > 1998 ICNIRP guidelines
- IEEE C.95.1-2014
- IEEE C.95.6
- ACGIH TLV 2017

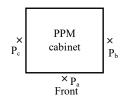
Ref. Limits for General Exposure & Occupational


"J2954A (WIP) Wireless Power Transfer for Light-Duty Plug-In/ Electric Vehicles and Alignment Methodology - SAE International."


standard	Magnetic field, B _{rms} (μΤ)		Electric field, E _{rms} (V/m)	
stanuaru	general public	occupational	general public	occupational
ICNIRP 2010	27	100	83	170
IEEE C.95.1-2014	205	615	614	1842
(3 kHz -5 MHz)				
ACGIH TLV 2017 (2.5-30) kHz		200		1842

Results and discussion

Region 2 Test


Max E_{rms} (V/m) Misalignment Max B_{rms} (µT) **Position I** 16.661 1.7414 Position II 18.380 2.4091 Position III 17.696 2.5345 **Position IV** 17.152 1.7147 Position V 18.526 2.0853

Results and discussion

Test Point	Max B _{rms} (μT)	Max E _{rms} (V/m)
P _{a,L}	0.7251	0.1617
P _{b,L}	0.3293	0.1469
P _{c,L}	0.2375	0.1416
P _{a,H}	1.1235	0.1839
P _{b,H}	0.5735	0.1125
P _{c,H}	0.3472	0.1106

EMF Test Results around PPM

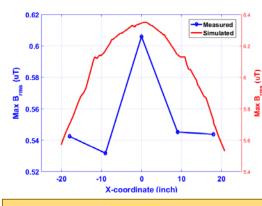
- (L) means 6.25" from the ground; and

 \checkmark

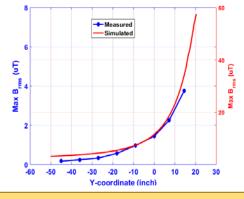
- (H), means 26.25" from the ground

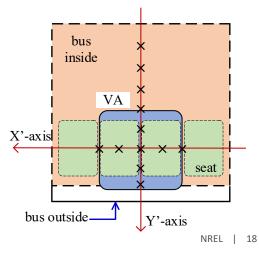
Results and discussion

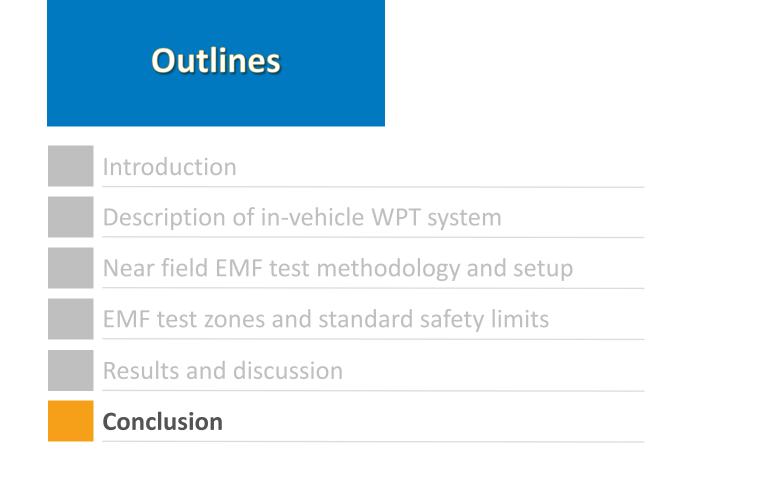
Region 3 Test Results


@ (ΔX=0, ΔY=2.25" and Z=9.5")

Driver seat test


Test Point	Max B _{rms} (μT)	Max E _{rms} (V/m)
P _A	0.0328	0.0633
P _B	0.0068	0.0380
P _c	1.0362	0.0257


Above the VA tests



Magnetic field along X'-axis at a height of 27.25" from the floor of the bus

Magnetic field along Y'-axis at a height of 6.25" from the floor of the bus

- The paper presents a methodology to assess the human exposure to invehicle WPT system.
- Near-field analysis for EMFs due to 25 kW WPT system for medium duty electric vehicles is presented.
- ✓ The tests are conducted with the WPT system physically installed in a NREL electric shuttle.
- Test results around (region 2), inside (region 3) the bus and around the PPM cabinet are investigated and compared with the standard reference levels 2010 ICNIRP.
- ✓ The experimental results show that the WPT system under test meets the requirements for the human exposure to the EMFs from the WPT system.

Thank you

www.nrel.gov

Ahmed Mohamed Email: Ahmed.Mohamed@nrel.gov

NREL/PR-5400-71902

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicles Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

