

HEV TCP Task 26 Workshop 9: Wireless Charging for EVs (6-7 Nov. 2018 in Detroit, Michigan USA)

"NREL's Managed WPT Experiences and Lessons Learned"

Presenter Ahmed Mohamed

Transportation and Hydrogen Systems Center, NREL.

Introduction/NREL's Vision for Demonstrating WPT for EV

Description of 25 kW WPT system at NREL's Shuttle

EMF Testing of On-Vehicle WPT System

Monitoring and Control of the Wireless Charging

Description of WPTsim Tool for WPT design

Design of Greenville AMD Project using WPTsim

Conclusions/Opportunities

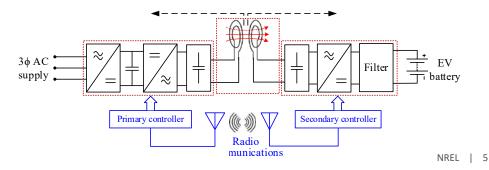
Visions of WPT for EV

Quasi-dynamic WPT

https://www.nbcnews.com/mach/futuristic-roads-may-make-recharging-electriccars-thing-past-ncna766456

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE


Stationary Wireless Charging: 25 kW Wireless Charger at NREL's Shuttle

WPT on NREL's Campus

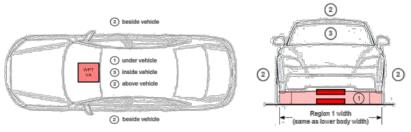
Wirelessly Charged Electric Shuttle

- Full electric on-demand service
- o 16 passenger
- o 62.1 kWh battery capacity
- 100 miles range
- 7600 curb weight, including VA
- 6.6 kW on-board conductive charger
- Momentum Dynamics WPT system
 - 35.5"x35.5"x2.25" (900x900x57 mm) symmetrical square pads
 - 25 kW maximum power transfer
 - 20 (19-21) kHz nominal operating frequency.
 - Automatic alignment capability.
 - o 5"-9.5" (125-240 mm) airgap

EMF Testing for In-Vehicle WPT System

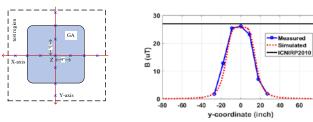
Test Methodology

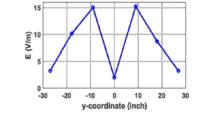
- 1. Define coordinates.
- 2. Define a marked safety perimeter.
- 3. Identify the worst misalignment condition (X, Y, Z, pitch, roll and yaw).
- 4. Define test zones and points

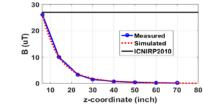

Region I: Under the vehicle Region II: Around and above the vehicle Region III: Inside the vehicle

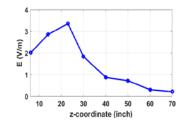
5. Define the standard limits for each zone (2010 ICNIRP)

https://www.narda-sts.com/en/ http://www.eenewsautomotive.com/news/one-testsystem-analysing-electromagnetic-fields-5-hz-60-ghz

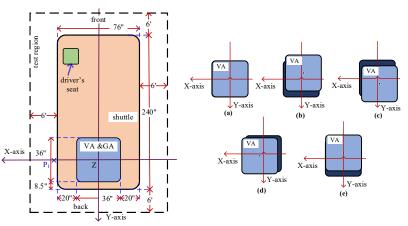

Coupler Offset & Gap			Max Magnetic Field		Max Electric Field	
dX	dY	dZ	Location	Β (μΤ)	Location	E (V/m)
+max	+max	max				
+max	-max	max				
-max	+max	max				
-max	-max	max				

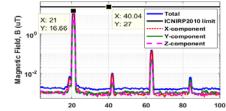


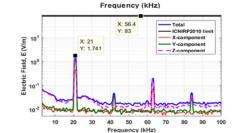

"J2954A (WIP) Wireless Power Transfer for Light-Duty Plug-In/ Electric Vehicles and Alignment Methodology - SAE International."


EMF Test Results

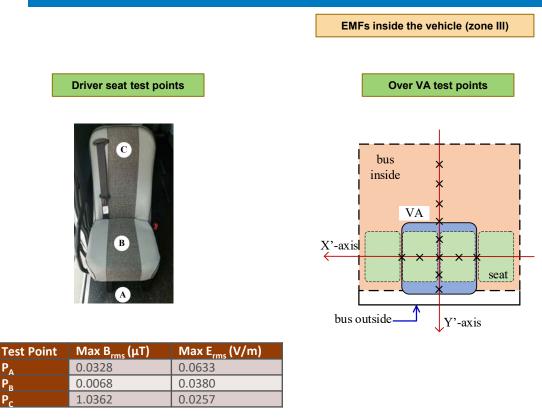
EMFs before/during alignment (Low Power Excitation)

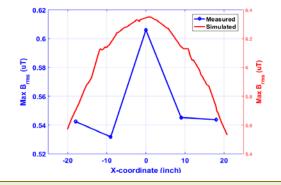


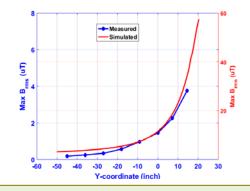




EMFs around the vehicle (zone II)

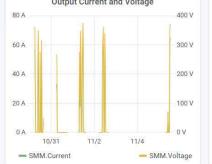

60 80




Misalignment	Max B _{rms} (μT)	Max E _{rms} (V/m)
Position I	16.661	1.7414
Position II	18.380	2.4091
Position III	17.696	2.5345
Position IV	17.152	1.7147
Position V	18.526	2.0853

EMF Test Results

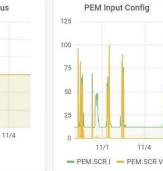
Magnetic field along Y'-axis at a height of 6.25'' from the floor of the bus



Magnetic field along X'-axis at a height of 27.25" from the floor of the bus

Wireless Charger Operation: Monitored and Managed

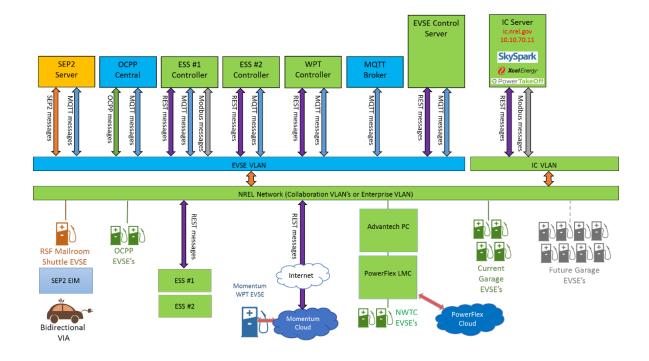
09


0.8

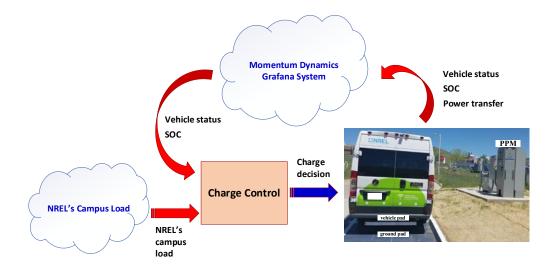
0.7

11/1

- PMM PMMOK

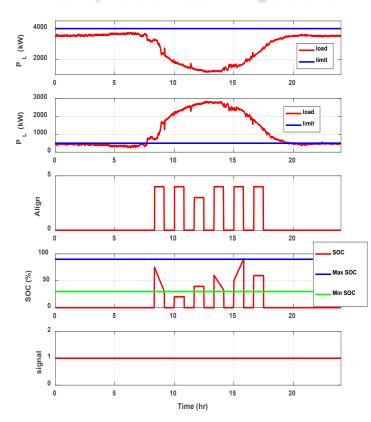

PMM.PEM10K

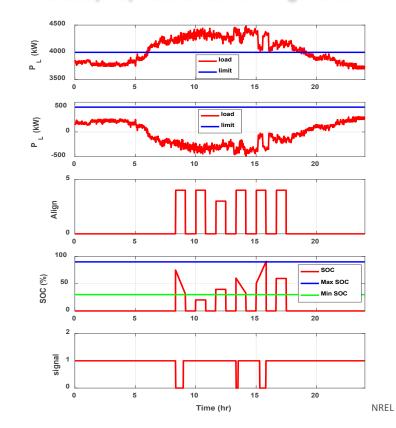
NREL's Intelligent Campus Energy Management Plan


NREL Intelligent Campus Integrates:

- **RESs**
- ESSs
- Building loads
- EVSEs
 - AC level 2
 - DC FC (50 kW)
 - Wireless Charger (25 kW)
 - Bidirectional EV

Wireless Charging Operation: Control


Objective: 'smart' integration of wireless charger with surrounding infrastructure on NREL campus (e.g. Renewable Generation, Loads, other EVSEs, etc.)


Block diagram for the data-flow of the wireless charging control

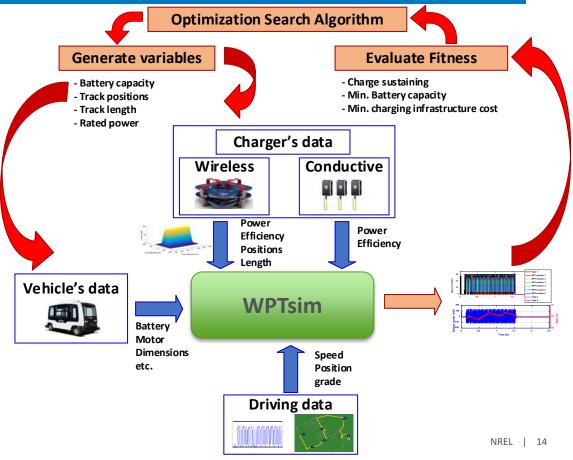
Results of the Wireless Charging Control

Nice day results: lots of PV generation

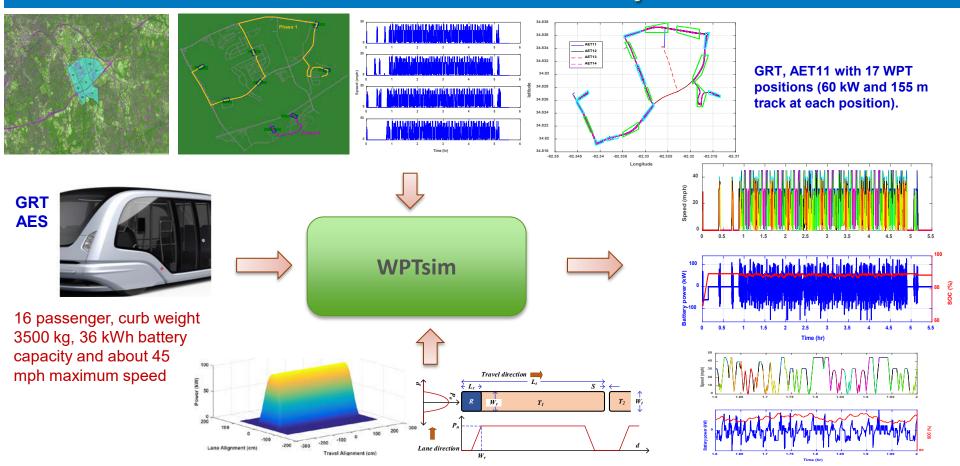
Cloudy day results: lack of PV generation

12

VEHICLE TECHNOLOGIES OFFICE



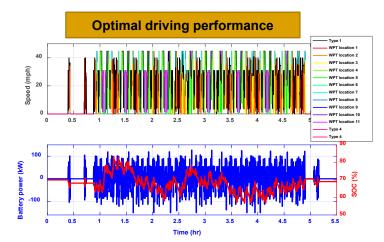
Dynamic Wireless Charging: Feasibility Analysis of DWPT for Autonomous Vehicles at AMDs



WPTsim Tool: Wireless Charging Design

- It is a design optimization tool that incorporates driving data, vehicle data with charging infrastructure parameters (conductive or wireless).
- It is capable of providing optimum design of wireless infrastructures (stationary, dynamic and quasidynamic) for certain road scenario.
- It is utilized to provide designs for multiple scenarios such as:
 - NREL's circulator shuttle.
 - Greenville AMD Project

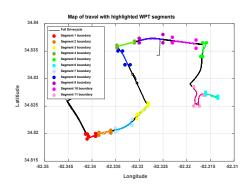
Greenville Automated Mobility District (AMD): WPTsim Scenario Analysis


Optimization Results of Greenville AMD

– Optimization Variables:

- Position of each wireless charger.
- Wireless charger power.
- EV's battery capacity.
- Number of track segments (track length).

Optimization Objectives:


- Minimum battery capacity.
- Minimum charging infrastructure cost.
- Achieve charge sustaining operation.

Optimal key design parameters

Parameter	Optimal value		
# wireless chargers	11 out of 17		
Positions	[3 4 5 7 8 9 11 13 14 15 17]		
Power	80 kW		
Battery capacity	12 kWh		
# segments per Track	25 (125-meter track length)		

Optimal WPT positions

Conclusion/Opportunities

- Extra effort is required for demonstrating the WPT technology in real world scenarios starting with closed campus scenarios.
- Collecting data from real-world projects, including NREL's shuttle one, to be utilized for better understanding the technology, control design and validating design tools.
- Updating and utilizing WPTsim tool for analyzing more complex charge design scenarios (e.g. interstate, urban and rural roads).
- Working to have an EasyMile autonomous shuttle operating at NREL campus with the possibility to install a wireless charger to it.

Thank you

www.nrel.gov

NREL/PR-5400-72805

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicles Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

