
Introduction
The U.S. Geological Survey (USGS) and the Bureau of Land Management (BLM) initiated a cooperative study through the Southern 

Nevada Public Land Management Act (Bureau of Land Management, 1998) to install six wells in the carbonate-rock and basin-fill aquifers of 
Clark County, Nevada, in areas of sparse groundwater data. This map uses water levels from these new wells, water levels from existing wells, 
and altitudes of spring discharge points to update a regional potentiometric map of the carbonate-rock aquifer and provide evidence to interpret 
the direction of regional groundwater flow. This potentiometric surface map is accompanied by drilling and borehole geophysical logs, well-
construction information, lithology, water chemistry, and water levels from the newly drilled wells.

Carbonate-Rock Aquifer and Regional Groundwater Flow

The carbonate-rock aquifer in Clark County consists of thick sequences of Paleozoic-age limestone and dolomite with thinner beds 
of shale, sandstone, and quartzite that are deformed and extended. Mountain blocks of carbonate rock, separated by intermountain basins, 
thicken westward from the Muddy Mountains toward the Las Vegas and Sheep Ranges (Dettinger and others, 1995; Prudic and others, 1995; 
Harrill and Prudic, 1998; Heilweil and Brooks, 2011). Groundwater in the aquifer flows through fractures and faults associated with regional 
deformation and through small-scale brittle fractures. 

The aquifer is primarily recharged through fractures in high-precipitation areas that are in high-altitude mountain ranges near groundwater 
divides. Regional discharge is from springs and riparian areas at low altitudes in major drainage basins. Discharge from springs at the regional 
scale is generally constant and less transient than from springs discharging from more localized flow systems (Toth, 1963). Active groundwater 
withdrawals (or pumping) can affect local spring discharge, producing fluctuations not characteristic of discharge from natural regional springs. 

Parts of three groundwater flow systems compose the carbonate-rock aquifer in Clark County: (1) the Colorado System, (2) Death Valley 
System, and (3) Mesquite Valley System (Harrill and others, 1988). In Clark County, groundwater flow in the Colorado System is principally 
to the southeast, discharging at the headwaters to the Muddy River. Flow in the Death Valley System is principally to the west, discharging 
to springs in Amargosa Valley and Death Valley (Faunt and others, 2010). Localized flow in the Mesquite Valley System discharges by 
evapotranspiration from phreatophytes and evaporation on the valley playa (Glancy, 1968). 

Groundwater flow directions and gradients are presented on potentiometric maps by Bedinger and Harrill (2010) and Brooks and others 
(2014). Both studies used available groundwater levels, spring altitudes, and discharge data to classify groundwater and springs as regional 
or local. Bedinger and Harrill (2010) generalized hydrogeologic and geologic characteristics as proxy data to define regional hydraulic heads, 
which are described as water levels that are (1) lower than the water table in areas of recharge, (2) above the altitude of intermediate and 
regional discharge areas, and (3) below the altitude of non-discharging dry playas. 

Brooks and others (2014) developed a regional-scale numerical groundwater flow model to evaluate groundwater availability in the Great 
Basin. The published potentiometric contours, representative of the carbonate-rock aquifer, were based on water-level observations from wells 
completed in basin fill and carbonate rock. These studies were conducted at a regional scale and included relatively few direct observations 
from wells in Clark County, which are completed in carbonate rock.

Selected Existing Hydrogeologic Data

Water levels, water chemistry, lithology, and construction data from monitoring wells were compiled from the USGS National Water 
Information System (NWIS) database (U.S. Geological Survey, 2016) and from Thomas and others (1996), and compared to information 
obtained from the six new wells. Sites near production wells were excluded from this selection because of the potential for pumping related 
drawdown to affect water levels, and monitoring wells were excluded if screened across multiple intervals. Wells were selected if they were 
screened in the carbonate-rock aquifer or in the basin-fill aquifer at depths greater than 500 feet. It is assumed that basin-fill wells at this depth 
are in hydraulic connection with the carbonate-rock aquifer (Prudic and others, 1995). In Clark County, 24 wells completed in carbonate rock, 
28 wells completed in deep basin-fill deposits, and 5 springs were selected from the USGS NWIS database (table 1) and included in this report.

Table 2.  Summary of well construction information for newly drilled wells in Clark County, Nevada. 

[USGS, U.S. Geological Survey; NWIS, National Water Information System; ID, identifier; NDWR, Nevada Division of Water Resources; OD, outside dimension; DCR, depth to 
consolidated rock; WP, water production; gpm, amount of water pumped from well in gallons per minute; SCH, schedule; PVC, polyvinyl chloride; CR, carbonate rock; BF, basin 
fill; MR, mud rotary; AH, air hammer; >, greater than; —, no data; NA, not applicable]

Screened 
interval depth

Well test data

Well name
USGS NWIS 

site ID
Map

ID
NDWR 
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depth  
(feet)
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depth 
(feet)

Diameter 
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material

DCR 
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Aquifer 
completion

Drilling 
method

WP 
(gpm)

Time 
(hours)

BW-01 364204114454501 A 109838 1,928 1,926 4.500 1,786 1,926 SCH 80 PVC 595 CR MR/
AH 3 to 5 24

LSC-01
362454115270201

B
112697 905 890 6.625

336 417
SCH 40 steel 65 CR MR 150 6

808 889

(nested) — — 210 2.250 190 210 SCH 80 PVC — BF MR 0
(dry)

0
(dry)

RB-01 362135114285401 C 113526 975 973 6.000 810 952 SCH 40 steel 755 CR MR/
AH >150 3

BUFPKTS-01 362352114414501 D 114409 1,200 1,198 4.500 988 1,198 SCH 40 steel 221 CR MR 20 10

IVPH-01 354849115225001 E 115275 1,295 1,290 4.500 1,065 1,275 SCH 40 steel 38 CR MR/
AH 30 10

JM-01 362901115220001 F 121811 1,103 1,080 4.500
200 300 SCH 40 steel

NA BF MR 50 to 
75 50

780 1,080 SCH 40 steel

Spontaneous potential (SP), natural gamma, caliper, and resistivity (borehole, 16- and 64-inch normal) wireline geophysical logs were 
obtained at each newly drilled borehole. The SP logs measure the voltage between the borehole and an electrode at the surface and are used 
to identify permeability changes and boundaries between formations at depth. Natural gamma logs show formation radiation intensity, which 
is generally higher for clay-rich rocks and sediments that tend to emit elevated levels of radiation from natural decay of uranium and thorium 
to potassium-40. Caliper logs measure borehole diameter and can indicate the presence of fractures along the borehole wall. Resistivity logs 
record the electrical resistivity of the formation and can indicate higher-porosity transmissive zones. These logs are used together to provide 
information on the subsurface geology. 

Drill cuttings (chips of broken geologic material brought to the surface by drilling fluids) were washed and analyzed. These cuttings, 
borehole geophysical data, and observations made during drilling provide an indication of the subsurface geologic characteristics at each new 
drill site. Borehole geophysical logs, drill penetration rate, and subsurface lithology are presented with the study area map. 

Wells were constructed of steel or polyvinyl chloride (PVC) well casing ranging from 4.5 to 6.625 inches in diameter. Vertically slotted 
screens were installed in water-bearing zones interpreted from borehole geophysics. A summary of well-construction information for each of 
the newly drilled wells is shown in table 2.

Figure 1.  A, Total dissolved solids and major-ion concentrations in water samples collected from wells and springs associated with regional 
groundwater flow, and B, isotopic ratios of delta deuterium (δ2H) and delta oxygen-18 (δ18O) in samples collected from new and reference wells and 
springs in Clark County, Nevada (Global Meteoric Water Line [δ2H = 8×δ18O + 10; Craig, 1961], and Local Meteoric Water Line [δ2H = 6.5×δ18O – 9.7; 
Friedman and others, 1992]).
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Variations in borehole direction during drilling (drift) are common and can require corrections 
to water-level measurements. Borehole drift was monitored, and deviation was measured where drift 
was detected during the drilling of all new wells. The borehole at well BUFPKTS–01 was the only 
site that needed correction because borehole drift occurred above the depth of the static water level. 
The water level for this well was corrected using the equation from Elliott and Fenelon (2010):

where
	 Vd	 is the corrected vertical depth,
	 Md	 is the measured depth,
	 Mtop	 is the measured depth to the top of the correction interval,
	 ΔVint	 is the difference in the true vertical depth between the top and bottom of the 

correction interval,
	 ΔMint	 is the difference in the measured top and bottom of the correction interval, and
	 Vtop	 is the corrected vertical depth to the top of the interval over which the correction 

applies.

Regional Potentiometric Surface

Groundwater levels from the six wells drilled for this project and wells fitting the criteria 
described in the section “Selected Existing Hydrogeologic Data,” were compiled and used to 
construct a groundwater-level map representing the regional potentiometric surface of the upper 
carbonate-rock aquifer in Clark County, Nevada, in 2009–2015. Data used to construct the 
potentiometric surface are published separately as a USGS data release (Wilson, 2019). This map 
is similar to the regional potentiometric surface shown on previous maps by Bedinger and Harrill 
(2010) and Brooks and others (2014). In general, the potentiometric surface on this map follows the 
overlying land-surface topography. Higher topographic altitudes typically have higher groundwater 
altitudes, hydraulic gradients generally are steep near mountain ranges and low (flatten) in basins, and 
water-level contours parallel and intersect surface-water features.

Area on map Description

A In the Las Vegas and Sheep Ranges, and the Spring Mountains, mountain 
block recharge contributes to and directs regional groundwater flow in 
Clark County.  

B Water-level contours generally indicate groundwater flow to the east, 
terminating at discharge points along the Las Vegas Wash in Las Vegas 
Valley, and the Muddy River near Moapa Valley.

C A low water-level gradient near Moapa Valley indicates slow groundwater 
movement toward the Muddy River and Lake Mead.

D A low water-level gradient in northeast Clark County indicates that 
groundwater in this area flows toward the Virgin River.

Summary and Conclusions
During 2009 and 2015, the U.S. Geological Survey in cooperation with the Bureau of Land 

Management installed six new wells in Clark County, Nevada. The wells were installed to address the 
spatial gaps of wells completed in the carbonate-rock aquifer. This map describes new and existing 
water-level and hydrologic data used to (1) develop a potentiometric map, and (2) provide additional 
supporting evidence for the direction of regional groundwater flow in the upper carbonate-rock 
aquifer in Clark County. Results from this study indicate that the Spring Mountains and the Las Vegas 
and Sheep Ranges provide primary recharge to the groundwater system in western Clark County. 
Additionally, potentiometric contours indicate eastward groundwater flow in much of Clark County 
that terminates at springs along Las Vegas Wash, the Muddy River, and the Virgin River. Previous 
maps by Bedinger and Harrill (2010) and Brooks and others (2014) show similar water-surface 
altitudes and gradients. This study introduces new water-level measurement sites that cover data gaps 
and support previous regional water-surface interpretations. Additionally, comparison of lithologic 
descriptions, geophysical logs, and groundwater chemistry from the six wells drilled during this study 
to existing data, substantiates that water levels in the new wells represent the regional carbonate-rock 
aquifer. 
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Table 3.  Total dissolved solids and concentrations of major ions in water samples collected from new wells in Clark County, Nevada.

[mm/dd/yyyy, month/day/year; mg/L, milligrams per liter; <, less than; CR, carbonate rock; BF, basin fill]

Well name
Date 

(mm/dd/yyyy)

Total 
dissolved

solids 
(mg/L)

Calcium 
(mg/L)

Magnesium 
(mg/L)

Sodium  
(mg/L)

Potassium 
(mg/L)

Chloride 
(mg/L)

Sulfate 
(mg/L)

Carbonate 
(mg/L)

Bicarbonate 
(mg/L)

Principal 
contributing 

aquifer

BW-01 04/30/2010 616 60.8 24.4 101 11.0 56.3 195 < 1.0 264 CR
LSC-01 06/14/2012 249 45.1 28.2 5.0 1.46 2.90 21.4 < 1.0 246 CR
RB-01 04/09/2014 2,980 399 135 272 18.5 312 1,570 < 1.0 145 CR
BUFPKTS-01 04/10/2014 234 7.6 4.8 72.4 5.68 17.9 20.6 8.4 166 CR
IVPH-01 04/11/2014 499 67.1 38.2 53.9 3.33 105 86.4 < 1.0 210 CR
JM-01 03/14/2013 283 35.7 28.5 33.4 1.82 5.85 19.0 < 1.0 299 BF

Table 4.  Isotopic ratios of deuterium (δ2H) and oxygen 
(δ18O) in water samples collected from new wells drilled 
in Clark County, Nevada.

[δ2H, deuterium (2H) to protium (1H) isotopic ratio relative to 
VSMOW; δ18O, oxygen-18 to oxygen-16 isotopic ratio relative to 
VSMOW; VSMOW, Vienna Standard Mean Ocean Water; ‰, per 
mil (parts per thousand)]

Well name
δ2H
(‰)

δ18O
(‰)

BW-01 –97.49 –12.89
LSC-01 –103.00 –13.98
RB-01 –91.70 –12.38
BUFPKTS-01 –82.50 –11.26
IVPH-01 –92.30 –12.71
JM-01 –95.67 –13.01

(1)

Table 1.  Existing monitoring wells representative of the carbonate-rock and basin-fill aquifers in Clark County, Nevada. 

 [ID, identifier; USGS, U.S. Geological Survey; NWIS, National Water Information System; mm/dd/yyyy, month/day/year; NGVD 29, National Geodetic Vertical Datum of 
1929; CR, carbonate rock; BF, basin fill; —, no data]

Map 
ID

USGS site ID USGS NWIS site name
Site 
type

Well 
depth 
(feet)

Hole 
depth 
(feet)

Contributing 
aquifer 

Date of 
water-level 

measurement 
(mm/dd/yyyy)

Water 
level, 
in feet 
below 
land 

surface

Water-level 
altitude, 
in feet 

above mean 
sea level 

(NGVD 29)

1 361816115241301 212  S19 E59 18AAC 1 Well 542 542 CR 09/01/1964 417.00 3,484
2 363500115400001 161  S16 E56 16    1    Indian Springs 

Sewage Co
Well 550 590 CR 06/01/1963 54.00 3,146

3 362846114495501 216  S17 E64 09DDCD1    CRYSTAL 2 Well 565 565 CR 08/21/2000 254.94 1,815
4 364741114532801 210  S13 E63 26AAAA1    USGS-MX 

CE-DT-5
Well 628 628 CR 08/13/1999 349.81 1,820

5 360016115361501 163  S22 E57 29DABC1    USBLM 
NDOT 01

Well 660 660 CR 09/07/2010 306.15 3,917

6 364743114533101 210  S13 E63 23DDDC1    USGS-MX 
CE-DT-4

Well 669 669 CR 10/15/2015 356.27 1,819

7 363212115240301 212  S16 E58 23DDD 1    USFWS SBH-1 Well 720 720 CR 05/28/2015 575.20 2,891
8 362531114524201 216  S18 E64 07BB  1    WELL (REPORT 

R50)
Well 793 793 CR 11/29/1956 226.40 1,819

9 355829115150601 212  S23 E60 03DBCB1    TORTOISE 
CENTER

Well 800 800 CR 03/19/1990 555.00 2,150

10 361736114531601 215  S19 E63 13DCAA1    EBM-3 Well 900 1,241 CR 02/20/2004 578.73 1,810
11 363308114553001 217  S16 E63 09DDAB1    USBLM 

SHV-1
Well 920 920 CR 10/01/2015 833.69 1,815

12 363332115244001 212  S16 E58 14A   1    USFWS DR-1 Well 930 960 CR 05/28/2015 813.40 2,760
13 364604114471301 219  S13 E64 35DCAD1    USGS-MX 

CE-DT-6
Well 937 937 CR 11/01/2002 456.00 1,819

14 364830115512601 160  S13 E55 19    1    TW- 3 Well 1,127 1,860 CR 08/25/2015 1,103.00 2,381
15 363407115215301 212  S16 E59 08    2    USGS - Cow Camp Well 1,403 1,403 CR 07/29/2015 1,330.30 2,856
16 362507114572701 216  S18 E63 05AADB1 Well 1,979 2,007 CR 03/01/2002 755.00 1,811
17 360946115421401 162  S20 E56 33CCAA1    TROUT 

CANYON 01
Well 718.5 720 CR 01/05/2015 467.30 4,794

18 364451114585001 210  S14 E62 01ADBD1    CSVM-5 Well 1,780 1,783 CR 09/20/2011 1,081.20 2,048
19 362700114564401 216  S17 E63 21DCCC1    HV-1 Well 2,480 2,480 CR 06/20/2000 882.00 1,820
20 361811115404401 212  S19 E56 15ABBD1 Well 660 660 CR 01/26/1981 214.40 8,500
21 364738114534001 210  S13 E63 26AABD1    CSV-RW-2 Well 710 720 CR 09/14/2011 383.40 1,819
22 364728114531001 210  S13 E63 25BDBB1    CSVM-1 Well 1,040 1,060 CR 09/21/2011 341.90 1,819
23 364529114492401 219  S13HE64 33DBBC1    UMVM-1 Well 1,200 1,200 CR 04/22/2003 247.00 1,831
24 363943114552301 210  S15 E63 03BBCC1    CSVM-2 Well 1,400 1,425 CR 09/20/2011 750.70 1,822
25 360201115204701 212  S22 E59 15DAAB1 Well 532 532 BF 03/14/1990 267.21 2,823
26 363201115333801 211  S16 E57 28B   1    Hwy95 Cons 1 Well 550 550 BF 04/22/1963 98.00 3,083
27 360247115224401 212  S22 E59 09CBDB1    HUMANE Well 570 570 BF 01/21/2009 354.80 2,898
28 363452115405101 161  S16 E56 08BAAC1    USAF Well 3 Well 600 600 BF 07/29/2015 68.00 3,062
29 363447115404601 161  S16 E56 08BAAD1    USAF Well 

106-2
Well 604 604 BF 07/29/2015 63.15 3,067

30 363255115515801 161  S16 E54 24BCBA1    Army 2 Well 627 658 BF 08/17/2015 495.20 3,318
31 355015115102601 166  S24 E61 20DDAC1    HIDDEN 

VALLEY
Well 640 640 BF 12/03/1956 605.00 2,423

32 354454115205401 164A S25 E59 27AACA1    JAIRPORT Well 650 650 BF 12/11/2008 280.90 2,499
33 361136115101401 212  S23 E61 03BCC 1    Sky Harbor 

Airport
Well 650 650 BF 04/18/2011 215.36 2,160

34 360941115104801 212  S20 E61 32CDC 1 Well 665 665 BF 04/18/2011 18.47 2,077
35 355923115174201 212  S22 E60 32CB  1 Well 700 700 BF 08/06/1979 460.00 2,420
36 360826115020001 212  S21 E62 10ACAA1    Nevada Power 

Company
Well 715 715 BF 04/20/2011 21.94 1,683

37 364601114514301 210  S13 E64 31DADA1    USGS CSV-1 Well 765 765 BF 07/31/2009 346.91 1,813
38 361939115154801 212  S19 E60 04DAB 2    NV Division of 

Forestry
Well 780 780 BF 04/21/2011 77.51 2,376

39 364127114553001 210  S14 E63 28AACD1    USGS CSV-3 Well 780 780 BF 09/20/2011 594.00 1,820
40 355947115163501 212  S22 E60 33BB  1 Well 785 785 BF 12/10/1976 585.00 2,120
41 360931115083802 212  S21 E61 03ABB 2 Well 807 807 BF 04/18/2011 9.08 2,005
42 361843115161001 212  S19 E60 09BCC 1 Well 830 830 BF 04/28/2011 155.76 2,354
43 361233115021501 212  S20 E62 15BBAB1    USAF Nellis 

12 (C)
Well 1,000 1,000 BF 04/27/2011 124.71 1,691

44 361346115115901 212  S20 E61 06CBDD1    CNLV Desert 
Aire

Well 1,000 1,000 BF 04/27/2011 60.72 2,150

45 361400115040901 212  S20 E62 05CAAA1    CNLV Wilshire Well 1,000 1,000 BF 10/01/2015 62.56 1,806
46 361303115140301 212  S20 E60 11CAAA1    LVVWD W028 Well 1,003 1,003 BF 01/18/2007 202.05 2,085
47 361232115061001 212  S20 E61 13ABDB1    CNLV Diana 

Terrace
Well 1,230 1,230 BF 10/01/2015 11.83 1,845

48 361626115090701 212  S19 E61 21DDB 1    CNLV Regional 
Park 1

Well 1,300 1,300 BF 09/01/2015 40.72 2,119

49 360809115252601 212  S21 E58 12DDDD1    RED ROCK 
WASH

Well 503 503 BF 11/07/2008 400.54 3,288

50 364014114315301 220 S14 E67 31DACD1 Well 387 620 BF 03/19/1987 116.00 1,574
51 364912114041201 222 S13 E71 09BDCA1 PS27 Well 1,450 1,493 BF 07/08/1994 84.00 1,573
52 364044114165201 222 S14 E69 33ABC 1 D & HA Well 880 880 BF 03/10/1985 37.26 1,341
53 362239114263501 215 S18 E67 12DDAD1 ROGERS 

SPRING
Spring — — CR — — 1,576

54 362321114252601 215 S18 E68 07ABBA1 BLUE POINT 
SPRING

Spring — — CR — — 1,562

55 09419625 CORN CK SPGS AT NATIONAL FISH & 
WILDLIFE HDQRS, NV

Spring — — CR — — 2,930

56 09415910 PEDERSON SPGS NR MOAPA, NV Spring — — CR — — 1,811
57 362450115442001 161 S18 E55 01DACC1 COLD CREEK 

SPRING
Spring — — CR — — 6,324

Water Chemistry
Water-quality samples for major-ion chemistry and the stable isotopes of water 

(deuterium, δ2H, and oxygen, δ18O) were collected at each new well site, and results 
of analysis were compared to existing values from springs and wells near the drill 
sites. Total dissolved solids (TDS) and concentrations of calcium (Ca), magnesium 
(Mg), sodium (Na), potassium (K), chloride (Cl), sulfate (SO4), carbonate (CO3), 
and bicarbonate (HCO3) were measured by the USGS National Water Quality 
Laboratory (NWQL), in Denver, Colorado (table 3). Deuterium (δ2H) and oxygen 
(δ18O) isotopes were analyzed by the USGS Radiogenic Isotope Facility in Denver, 
Colorado (table 4).

Standard three-well-casing volumes were purged from each well, and water 
samples were collected with a submersible pump except at two sites (wells 
IVPH–01 and BUFPKTS–01) where samples were obtained through bailing. 
A 20-foot-long bailer was used to purge water from the well and collect a 
representative water sample. 
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EXPLANATION

BUFPKTS-01

IVPH-01

JM-01

BW-01

LSC-01

RB-01

Rogers Spring

Blue Point Spring

Corn Creek Spring

Pederson Spring

Cold Creek Spring

CSV-2 well

CSV-3 well

MX-4 well

MX-6 well

Corn Creek well

Existing sites (Thomas and others, 1996)

New wells

Major-ion chemistry is important to an understanding of the migration of water through a groundwater flow system. A Piper diagram 
(fig. 1A) can be used to evaluate the chemical characteristics of groundwater and the effects of chemical processes occurring between minerals 
and water. Groundwater samples from newly drilled wells show similar major-ion chemistry to previously sampled wells and springs (Thomas 
and others, 1996) that are assumed to represent groundwater from the regional carbonate-rock aquifer. 

Isotopic ratios of δ2H and δ18O in water samples collected from wells drilled for this study and in samples previously collected from wells 
and springs, are compared to the Global Meteoric Water Line (GMWL) and a Local Meteoric Water Line (LMWL) on figure 1B. This plot 
provides a comparison of recharge from low-altitude and high-altitude precipitation sources to waters from previously published data (Thomas 
and others, 1996).

Water-Level Information
Water levels from newly drilled wells were measured periodically from 2009 to 2015 and stored in the USGS NWIS database 

(https://waterdata.usgs.gov/nwis). These data were quality assured, which included evaluating measurements for temporal irregularity and 
adjustments due to known borehole deviation. Water levels were relatively stable throughout the duration of this project except for well BW-01, 
which experienced a decline of approximately 3 feet from January 2010 to May 2013, and a subsequent recovery of approximately 1 foot from 
June 2013 to June 2014.
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Drilling, Borehole Geophysical Logs, Lithology, and Well Construction
Groundwater monitoring wells were installed at six locations in Clark County. Criteria for selecting drill sites included (1) the carbonate-

rock aquifer was relatively close to the surface, (2) there were no nearby groundwater withdrawals, and (3) access for drilling equipment was 
possible on existing roads. 

Drilling techniques were dependent upon borehole advancement rate and lithology. Mud rotary drilling was predominantly used 
when drilling through unconsolidated material consisting mostly of sand, gravel, and cobbles. At all sites, the drill penetration rate through 
unconsolidated material was relatively consistent and progressed rapidly with this technique. When penetration rate slowed in denser rock 
units, air-hammer drilling was used. A change in drilling method allowed for consistent downward progress and limited drill time and cost.
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