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Abstract

The need for distribution system state estimation is on
the rise because of the increased penetration of distributed
energy resources and flexible load. To manage the
distribution systems in real time, operators need to firstly
overcome the challenge of low observability in distribution
systems. Also, because of the amount of data present
from smart meters, distributed generation measurements,
switches, etc., the ideal distribution state estimation methods
need to be able to process heterogeneous data.

In this paper, an algorithm is developed for voltage
phasor estimation in low-observability distribution systems.
The algorithm is based on the matrix completion approach
from signal processing. The traditional matrix completion
formulation is augmented with power-flow constraints to
improve results while requiring less data. This method
can also use all types of measurements (voltage magnitude,
voltage angle, real power, reactive power) to complete the
state matrix.

1. Introduction

Power systems state estimation (SE) is a long-established
tool for bulk grid operation. It provides full visibility
and the best estimate of the entire network status. It
forms the foundational block for power system energy
management applications, such as real-time power flow,
real-time dispatch, and stability applications [1]. SE has not
been broadly used in distribution system operation largely
because traditionally distribution management systems are
a collection of individual applications that do not require
visibility of the entire system. Traditionally, power has
flowed from the transmission grid to distribution systems
and there were nearly no resources or controllable devices
to manage in real time.

However, distribution systems are undergoing dramatic
changes because of the fast adoption of the distributed energy
resources (DERs), especially distributed photovoltaic (PV)
systems. According to the SEIA report [2], the U.S. market
recently installed 10.6 GW of solar PV and it reached 55.9

GW of total installed capacity (at the end of Q1 2018). For
the new installations, 59% of the installed capacity came
from the utility PV, and 41% from distributed solar. For the
residential solar market, even though California and all major
Northeast markets experienced annual contractions, 25 of 44
states saw growth in annual residential PV installations [3].

The other major change happening in the distribution grid
is the implementation of demand response, which allows
loads to adjust their consumption according to either direct
control signals from the utility [4] or price signals [5].
Further, with the rapid development of smart appliances
and home automation, in-house home energy management
systems are developed that operate appliances based on
customers own control objective [6] [7].

To better manage distribution-level resources while
maintaining system reliability and stability, most advanced
distribution energy management systems propose to
implement distribution system state estimation (DSSE)
for real-time applications. Weighted least-square (WLS)
estimators are the most popular for DSSE [8]. There
are voltage-based WLS and branch current-based WLS
according to the selection of state variables. The algorithm
in [9] has a better computation efficiency because it has a
constant measurement Jacobian matrix at each iteration.
Dynamic DSSE methods [10] [11] generally apply a Kalman
filter to obtain a priori estimate, which is combined with
latest measurements to forecast the system state. This
method is based on several measurement snapshots in a time
sequence.

The biggest challenge for DSSE comes from the lack
of sensors [12]. Unlike the supervisory control and
data acquisition (SCADA) systems in transmission grids,
distribution systems normally do not have full observability
from the SCADA systems, which roughly speaking means
that the number of measurements is strictly less than that
of the quantities being estimated. Also, measurements in
distribution systems are truly heterogeneous. Bus voltage,
branch current, power flows and switch status are measured
from SCADAs, smart meters, autonomous switches,
distribution synchrophasor units and intelligent electronics
devices (e.g., inverters) in different time resolutions.

Several approaches in the literature tackle the issue of
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low observability. The works [13–16] proposed to improve
observability by optimizing the minimal number of locations
needed to perform the state estimation task. In [17], smart
meter data was used to enhance observability of the system
by solving the power flow over several consecutive time
instances. Pseudo measurements are normally used to
solve the mathematically underdetermined problem in DSSE
because of the limited number of measurements [18–20].

The advances in machine learning have allowed for
techniques such as neural networks to be used for state
estimation [19, 21, 22]. Although machine learning
techniques obtain accurate estimation results, they require a
significant amount of historical data to train the algorithm,
and this data might not be available.

Matrix completion is a well-known method in signal
processing for the estimation of missing values within
matrices [23]. Prior attempts to apply the algorithm to power
systems include [24, 25], which perform load forecasting
while accounting for missing data. Both of these approaches
transform the data in a way that it is suitable for use with the
matrix completion algorithm.

In this paper, we propose applying the matrix completion
algorithm to estimate voltage phasors in low-observability
distribution networks. To improve upon the algorithm’s
application to power systems, power flow equations are
added as constraints to the problem formulation.

This approach is advantageous compared to previous
works due to the large variety of situations in which it
can be applied. While many works, such as [17, 20, 26],
require voltage and power measurements to perform their
estimations, this approach can make use of any quantity
measured in the field. In this way, the algorithm can be used
for a larger number of systems. Additionally, while methods
such as [17] require collecting data over large time windows,
this matrix completion approach is capable of estimating the
state with a single time instance.

The paper is structured as follows. Section 2 overviews
matrix completion and its implementation. Section 3
discusses how to apply this algorithm to solve DSSE and
the modifications that were made. Section 4 demonstrates
illustrative numerical results of the algorithm and Section 5
provides conclusion of the work.

2. Matrix Completion

Matrix completion method has been developed to
estimate missing values of partially observed matrix [23].
It has been broadly used in signal processing community,
e.g., to complete missing pixels in images [27] and to detect
sensor location with partial distance information [28]. The
concept of matrix completion is, for a given low rank matrix
with a set of known elements Ω, to make use of its low
rank nature to estimate the missing values. When a matrix
is low rank, there is a direct connection between the row and

column elements within the matrix. This connection can then
be used to determine elements that are unknown. This does,
however, rely on the assumption that the matrix actually is in
fact low rank, and that there are enough known elements to
find the connection.

The matrix completion algorithm is first defined formally.
Consider the space of real-valued n1 × n2 matrices Rn1×n2 .
Let I := {1, . . . , n1} × {1, . . . , n2} denote the index set, so
that (i, j) ∈ I represents an element’s index. For any matrix
W ∈ Rn1×n2 and a subset Ω ⊆ I, let WΩ denote

WΩ =

{
Wi,j , (i, j) ∈ Ω

0, otherwise.
(1)

Define M as the matrix containing all measurements
and MΩ as the observation matrix, where Ω is the set
of known elements within the matrix. From [23], the
matrix completion problem can then be formulated as a rank
minimization problem:

min
X∈Rn1×n2

rank(X)

s.t. XΩ = MΩ,
(2)

However, it can be seen that the formulation of (2) is
a non-convex, NP-Hard optimization problem to solve,
therefore making it unsuitable for practical use. Thus, the
original problem is relaxed to that of minimizing the nuclear
norm:

min
X∈Rn1×n2

‖X‖∗

s.t. XΩ = MΩ,
(3)

where

‖X‖∗ =
n∑
i=1

σi(X), (4)

σi(X) is the ith singular value, and n := min{n1, n2}.
Due to the nature of the equality constraint, formulation

(3) is highly susceptible to noise. To alleviate this,
[29] proposed a robust algorithm which allows for the
matrix completion algorithm to account for noise in the
observations. The algorithm modifies the equality constraint
in (3) to

‖XΩ −MΩ‖F ≤ δ (5)

where ‖X‖F is the Frobenius norm of X which is defined as

‖X‖F =

√√√√ m∑
i=1

n∑
j=1

|Xi,j |2. (6)

The value of δ has a significant impact on the accuracy of the
estimations. Since the parameter δ corresponds to the amount
of noise on the data, the estimation accuracy will improve
as the value decreases as this is equivalent to the amount of
noise in the signal decreasing.
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3. Low-Observability DSSE

In this section, we first define the notion of low
observability. Then, the matrix completion algorithm is
proposed and applied to DSSE.

3.1. Power System Model

For brevity, we consider a balanced distribution network
with a single slack bus and N PQ buses. Let N =
{1, . . . , N} denote the set of the PQ buses, and L ⊆ N ×
N denote the set of distribution lines. We note that the
formulation proposed in this paper can be easily extended
to the general multiphase setting with both wye and delta
connections, as proposed, e.g., in [30].

3.2. Low observability

Consider a linear (or linearized) measurement model of
the form

y = Hx+ w (7)

where y denotes the measurement vector, x denotes the
state vector and w denotes the measurements error. Then
observability can be defined as invertibility ofHTH , namely
as the existence of the explicit least-square solution

x = (HTH)−1HT y. (8)

Therefore, we say that the system is under low-observability
conditions whenever HTH is not full rank, at which point
that conventional methods such as weighted least square are
not directly applicable.

3.3. Matrix Set-Up

Since matrix completion relies on the assumption of low
rank matrices, the choice of quantities with which the matrix
is created has a significant impact on the accuracy of the
results. The higher the link between the quantities and
voltage, the more accurate the resulting estimation will be.
However, as long as there is even a slight correlation between
the quantity and voltage, the quantity is able to be used in the
estimation algorithm.

In order to allow for the use of the largest number and
variety of variables, we set up the matrix in terms of system
connection lines rather than buses. In this way, each row of
the matrix represents one line in the system, and each column
represents one variable. The resultant matrix columns then
are the real and reactive voltage from the source bus of
the line; the total real and reactive power entering the line
source bus from all sources (generators and lines); the real
and reactive current flowing through the line; the load at the
source bus; and the voltage magnitude at the source bus.
Formally, for every line (f, t) ∈ L, the corresponding row

in the matrix M is given by

[Re(Vf ), Im(Vf ), Pinf
, Qinf

, Re(If,t), Im(If,t), Pflowf,t
,

Qflowf,t
, Ploadf , Qloadf , |Vf |].

We note that the proposed algorithm is not limited to
the variables chosen. In fact, any quantity which has a
correlation to voltage can be used to supplement and improve
the results. In this paper, the elements that will be included
in the matrix and their correlation with state variables will be
described in the follow section.

3.4. Power Flow Constraints

The standard matrix completion algorithm may be able
to return estimates of the voltage under specific conditions,
but the formulation can be significantly improved upon
through the inclusion of power flow constraints. We next
formulate several corresponding constraints to be included
to the original formulation detailed in Section 2.

First, since the objective matrix contains both the voltages
at each bus and the current flowing between buses, power
flow constraints can be introduced to the optimization in a
form of the following linear equality constraint:

(Vf − Vt)Yft = Ift, ∀(f, t) ∈ L. (9)

One potential issue when including new constraints is
ensuring the problem remains feasible. To avoid these
potential issues and increase the robustness of the algorithm,
the new constraints are relaxed and bounded by a tolerance
thus becoming

− εf,t ≤ (Vf − Vt)Yft − Ift ≤ εf,t, ∀(f, t) ∈ L, (10)

where εf,t is the error tolerance for line (f, t) ∈ L.
Next, it is a natural requirement for there to be net zero

power at each bus. Thus, the power flowing into the bus must
be equal to the power consumed at the bus in addition to the
power leaving the bus. This can be formulated as

Pinf
−
∑
t∈N

Pflowf,t
− Ploadf = 0, ∀f ∈ N ,

Qinf
−
∑
t∈N

Qflowf,t
−Qloadf = 0, ∀f ∈ N .

(11)

Similarly to constraint (10), we relax these equality
constraints as follows:

−τf ≤ Pinf
−
∑
t∈N

Pflowf,t
− Ploadf ≤ τf , ∀f ∈ N

−τf ≤ Qinf
−
∑
t∈N

Qflowf,t
−Qloadf ≤ τf , ∀f ∈ N

(12)
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where τf is the error tolerance for bus f ∈ N . Feasibility
can always be ensured by selecting tolerance values which
create a feasible problem. However, since the accuracy
of the resultant estimation is dependent on the tolerance
being minimal, the values used need to be included in
the optimization objective. Therefore, augmenting the
original (robust) matrix completion problem (3), (5) with the
power flow constraints, results in the following optimization
problem:

min
X∈Rn1×n2 ,{εf,t},{τf}

‖X‖∗ + w1

∑
(f,t)∈L

εf,t + w2

∑
f∈N

τf

(13a)

s.t. ‖XΩ −MΩ‖F ≤ δ (13b)
(10), (12) (13c)
εf,t ≥ 0, ∀(f, t) ∈ L (13d)
τf ≥ 0, ∀f ∈ N , (13e)

where w1, w2 > 0 are weighting parameters; n1 := |L| is
the number of lines in the network; and n2 is the number
of variables used for estimation. Observe that, since the
measurements are in rectangular coordinates, (13) is a convex
optimization problem and hence can be solved efficiently.

We note that, when the measurements of voltage
magnitudes and/or power injections are available,
formulation (13) can be augmented with additional
constraints to capture the dependence between these
variables.

The LinDistFlow approximation for power-flow
equations [31] can be used under the assumption that the
network is radial and of low power, as found in distribution
networks. The LinDistFlow voltage approximation is given
by

|Vt| = |Vf | − (rf,tPflowf,t
+ xf,tQflowf,t

)/|V0| (14)

where V0 is the voltage magnitude at the feeder head, and
rf,t and xf,t are the resistance and reactance of line (f, t),
respectively. This constraint is once again relaxed and added
to the optimization problem, resulting in:

min
X∈Rn1×n2 ,{εf,t},{τf},{γf,t}

‖X‖∗

+ w1

∑
(f,t)∈L

εf,t + w2

∑
f∈N

τf + w3

∑
(f,t)∈L

γf,t

(15a)

s.t. (13b)− (13e) (15b)∣∣∣|Vt| − |Vf |+ (rf,tPflowf,t

+ xf,tQflowf,t
)/|V0|

∣∣∣ ≤ γf,t, ∀(f, t) ∈ L (15c)

γf,t ≥ 0, ∀(f, t) ∈ L (15d)

All the tunning parameters are decided through trial and
error.

4. Simulation and Results

The test case for this work is the IEEE standard 33
bus system as shown in Figure 1. The system parameters
are chosen specifically to demonstrate the accuracy of the
proposed DSSE method over a large range of voltage
values, therefore the voltage profile range (1 p.u. - 0.82
p.u.) in the system does not reflect a normal distribution
voltage profile (see Figure 2). Unless otherwise stated, all
simulations are run under the assumption of a single voltage
phasor measurement and 50% of the remaining quantities.We
acknowledge that the test system is a three-phase balanced
distribution system. However the developed method can be
easily scaled to solve unbalanced system by utilizing the
linear power multiphase model in [30]

Figure 1. IEEE Standard 33 Bus System

Figure 2 shows the results of applying the matrix
completion formulation (15) to the entire IEEE 33 bus radial
system.

Figure 2. Voltage Estimation of Radial Network

It can be seen that the results of the estimation are
accurate, following the trend of the system properly. There
are occasional large deviations from the true value due to
the high dependence on which data was available to make
the estimation. These results were produced under the
assumption that the data available was uniformly randomly
sampled from the complete data set, which is not necessarily
the case for real systems.

Figure 3 shows the impact of observability on the mean
absolute percentage error(MAPE) of the estimations.
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Figure 3. MAPE as Observability Increases

The results in Figure 4 show that the approach is possible
for angle estimations as well, with a slight increase on the
noise of the estimations. Additionally, the amount of voltage
measurements required to obtain accurate results is increased
when estimating angle values. The plot in Figure 4 was
obtained with a voltage phasor measurement at Bus 1 and
the ending Bus of all branches(18,22,25,33) in the IEEE 33
Bus system.

Figure 4. Voltage Angle Estimation of Radial Network

While this approach results in accurate estimations, no
algorithm would be acceptable without being able to handle
error on the measurements. To show that this procedure
is robust against system errors, varying amounts of noise
were added to the data. All plots were run using 50 percent
data availability, while only a single voltage measurement
was used at bus 1. Additionally, the missing elements were
the same for each case such that the only difference in
estimations was the error.

From Figure 5 it can be seen that while measurement
errors do have some impact on the resultant estimation, the
availability of data has a much more significant impact. The
presence of data or lack thereof will determine the trend of
the estimations, while the differences in error only cause an
offset in the final estimations. Since the estimations are done
based upon the value of the measurement, rather than the type
of measurement, errors from one parameter, such as voltage
angle, will effect all other parameters as well.

Figure 5. Impact of Measurement Errors

5. Conclusion

Due to the rapid growth in distributed generation and
active load participation in system operation, the need for
state estimation in distribution networks can no longer be
ignored. However, the issue of scale and observability
has not gone away; thus it has become necessary to be
able to perform state estimation in systems that have low
observability using heterogeneous measurements input.

In this paper, a matrix completion approach is detailed
which makes use of supplemental measurements from smart
meters, distributed resources, and any data which are
available to perform state estimation. The traditional matrix
completion algorithm is improved through the inclusion of
power flow constraints which allows for accurate results
in the estimation while required less data than previously.
Through the estimation of voltage phasors, it is shown that
this approach obtains relatively accurate results under various
scenarios of low observability. The method theoretically
should work for a low rank matrix. From the numerical
tests, the data matrix is verified to be approximately low-rank
(there are few singular values that are close to zero). This
depends on the accuracy provided by the linear power flow
model that presented in [31].

As described at the beginning of the paper, the presented
method will work with any type of measurements. Currently,
the AMI data are assumed to be aggregated at the primary
side of the distribution transformer because the secondary
system topology and parameters are not always available.
However, some proposed work [32] uses AMI data to
estimate secondary systems should work nicely with the
matrix completion method for state estimation. The authors
will pursue such knowledge in the following works.
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