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Conversion Factors
U.S. customary units to International System of Units

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)

Area

acre 0.4047 hectare (ha)
Volume

acre-foot (acre-ft) 1,233.48 cubic meter (m3)
Flow rate

cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
Mass

ton, short (2,000 lb) 0.9072 metric ton (t)
ton, long (2,240 lb) 1.016 metric ton (t)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:  

°F = (1.8 × °C) + 32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C = (°F – 32) / 1.8.

International System of Units to U.S. customary units

Multiply By To obtain

Length

meter (m) 3.281 foot (ft) 
kilometer (km) 0.6214 mile (mi)
kilometer (km) 0.5400 mile, nautical (nmi) 
meter (m) 1.094 yard (yd)
centimeter (cm) 0.3937 inch (in.)
millimeter (mm) 0.03937 inch (in.)

Volume

cubic centimeter (cm3) 0.06102 cubic inch (in3) 
Flow Rate

meter per second (m/s) 3.281 foot per second (ft/s) 
Area

square kilometer (km2) 247.1 acre
square kilometer (km2) 0.3861 square mile (mi2)

Mass

gram (g) 0.0353 ounce (oz)
Application rate

kilograms per square kilometer 
per year ([kg/km2]/yr)

0.0089 pounds per acre per year  
([lb/acre]/yr)
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Datum
Vertical coordinate information is referenced to North American Vertical Datum of 1988 
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
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Abstract
Because natural patterns of streamflow are a fundamental 

property of the health of streams, there is a critical need to 
quantify the degree to which human activities have modified 
natural streamflows. A requirement for assessing streamflow 
modification in a given stream is a reliable estimate of flows 
expected in the absence of human influences. Although there 
are many techniques to predict streamflows in specific river 
basins, there is a lack of approaches for making predictions 
of natural conditions across large regions and over many 
decades. In this study conducted by the U.S. Geological Sur-
vey, in cooperation with The Nature Conservancy and Trout 
Unlimited, the primary objective was to develop empirical 
models that predict natural (that is, unaffected by land use or 
water management) monthly streamflows from 1950 to 2012 
for all stream segments in California. Models were developed 
using measured streamflow data from the existing network 
of streams where daily flow monitoring occurs, but where 
the drainage basins have minimal human influences. Widely 
available data on monthly weather conditions and the physi-
cal attributes of river basins were used as predictor variables. 
Performance of regional-scale models was comparable to that 
of published mechanistic models for specific river basins, 
indicating the models can be reliably used to estimate natural 
monthly flows in most California streams. A second objec-
tive was to develop a model that predicts the likelihood that 
streams experience modified hydrology. New models were 
developed to predict modified streamflows at 558 streamflow 
monitoring sites in California where human activities affect 
the hydrology, using basin-scale geospatial indicators of land 
use and water management. Performance of these models was 
less reliable than that for the natural-flow models, but results 
indicate the models could be used to provide a simple screen-
ing tool for identifying, across the State of California, which 
streams may be experiencing anthropogenic flow modification. 

Introduction
Natural variability in flow is a fundamental physical 

property of streams and therefore has major relevance to water 
quality and the health of riverine ecosystems (Poff and others, 
1997). In the absence of human influence, the magnitude and 
duration of streamflows vary seasonally and annually, which 
constitutes the natural flow regime. The importance of the 
natural flow regime to maintaining ecological health in rivers 
and streams is well documented (Poff and Zimmerman, 2010). 
Modification of watershed hydrology and streamflows from 
human activity is pervasive in the United States (Poff and 
others, 2007; Eng and others, 2013b), and quantitative tools 
are needed to better understand the natural flow regime and to 
protect stream health.

Central to understanding the causes of poor stream health 
is the ability to determine the expected natural (we use the 
term “natural” to indicate the baseline or background condi-
tion unaffected by land use or water management) levels of 
physical and chemical characteristics of a stream, so that an 
objective assessment can be made as to which factors have 
been modified by human activities (Hawkins and others, 
2010). For contaminants such as synthetic organic chemicals, 
natural levels in a stream are zero, so the presence of these 
chemicals can be unambiguously linked to anthropogenic 
sources. In contrast, anthropogenic modification of stream-
flows can be difficult to quantify because the natural back-
ground conditions are often highly variable temporally (for 
example, inter-annual) and spatially (for example, across a 
region or stream network). As a result, streamflow modifica-
tion has been characterized in a wide variety of ways (Poff 
and Zimmerman, 2010), which limits the ability to synthesize 
and generalize how modified streamflows affect stream health 
and hinders development of standards aimed at restoration and 
protection of streams. The ability to estimate natural stream-
flows in a given region is therefore a critical tool for manag-
ers and decision makers, particularly in the face of increased 
water demand and a changing climate (Sabo and others, 2010).

Estimating flows in unmonitored streams (and by exten-
sion, estimating natural flows at monitored sites affected by 
hydrologic modification) is a major frontier in hydrological 
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science (Sivapalan, 2003; Sivapalan and others, 2003) and is 
accomplished with two general approaches: mechanistic and 
statistical models. Mechanistic models are not considered 
here, but there is a large amount of literature on published 
models typically developed for single river basins using 
process-based understanding. Such models are data intensive 
and likely are not practical as a predictive tool across large 
geographic regions. There is much less literature on statistical 
models (Farmer and Vogel, 2013), which include a wide range 
of methods reviewed elsewhere (He and others, 2011; Li and 
Sankarasubramanian, 2012; Shu and Ouarda, 2012; Farmer 
and Voge,l 2013; Shupe and Potter, 2014), than on mechanistic 
models. 

Another needed management tool is the ability to identify 
where, across a state or other large geographic area, stream-
flows are likely to be modified, particularly in areas with 
sparse streamgaging networks. In most regions, streamflow 
monitoring is limited to a small subset of the stream network 
(Poff and others, 2006), largely because of the resources 
required for gage maintenance. An estimate of the probability 
of streamflow modification, given readily measured character-
istics of a stream basin, would be a useful tool for screening 
all ungaged stream segments across a region (Eng and others, 
2013a). Such a tool would allow decision makers to identify 
where modified flow, among the many other potential causes, 
is a likely contributor to poor stream health and where efforts 
to naturalize streamflows can have the greatest positive eco-
logical outcome. 

A study was conducted by the U.S. Geological Survey 
(USGS) in cooperation with The Nature Conservancy and 
Trout Unlimited, with the goal of developing statistical models 
for use in estimating natural streamflow. The purpose of this 
report is to describe the development of a series of statisti-
cal models that (1) predict natural monthly flows each year 
from 1950 to 2012 for California’s streams and (2) predict the 
likelihood that monthly streamflows are modified by human 
activity. 

Methods

Selection of Spatial Domain

The spatial domain of the study includes aggregated 
Level 3 Ecoregions (Commission for Environmental Coopera-
tion, 2014) that are present partly or entirely within Cali-
fornia. Level 3 Ecoregions represent contiguous geographic 
areas with similar climate, topography, and natural land 
cover, which are factors that affect spatial variation in natural 
streamflow regimes. Prior experience (Carlisle and others, 
2010) indicates that statistical models developed at spatial 
scales for increasingly homogenous environmental settings 

(for example, similar climate and topography) were less sensi-
tive to broad-scale climatic patterns and more sensitive to 
catchment-scale physical features, such as soils and geology, 
than models developed at spatial scales over heterogeneous 
environmental settings (for example, widely varying climate). 
In order to achieve balance between an adequate number 
of reference sites (see section “Identification of Reference 
Sites”) and the environmental homogeneity of a region, Level 
3 Ecoregions were aggregated by similar climatic conditions 
into three large regions (fig. 1): xeric (California Coastal Sage, 
Chaparral, and Oak Woodlands; Southern Baja California 
Pine-Oak Mountains; Central California Valley; Mojave Basin 
and Range; Sonoran Desert; and Central Basin and Range), 
interior mountains (Sierra Nevada, Eastern Cascades Slopes 
and Foothills), and north coastal mountains (Klamath Moun-
tains, Coast Range). 

The unit of observation for the models in this report is the 
stream segment and its entire upstream contributing water-
shed. As defined by the National Hydrography Dataset Version 
1.0 (Horizon Systems, 2015), a segment is generally a section 
of stream bounded by a node (for example, a tributary) on 
each end. Most segments are less than (<)1 kilometer (km) in 
total length, and 135,119 segments were identified within the 
State of California. 

General Modeling Approach

Two general principles guided model development. First, 
we used the reference-condition concept (Bailey and others, 
2004), wherein a set of reference sites (that is, least disturbed 
by human influences) is used to develop models that are sub-
sequently applied to non-reference sites (for example, where 
hydrologic disturbance is known or suspected) with the goal of 
predicting expected natural conditions. Second, the approach 
is based on statistical models of related observed data rather 
than mechanistic, process-based models (for example, Spruill 
and others, 2000; Croke and others, 2005). The statistical 
models contain two general types of predictor variables: 
(1) static variables that describe watershed features, such as 
topography, geology, and soils and (2) time-series variables of 
antecedent precipitation and air temperature. We emphasize 
that the period of hydrologic and climatic record for this report 
is 1950‒2012. Specifically, the models “learned” the relations 
among watershed physical features, precipitation, air tempera-
ture, and streamflow using observed conditions at reference 
sites from 1950 to 2012, which has important implications for 
attempts to use these models in the context of climate variabil-
ity and change. Finally, monthly mean flows were selected for 
modeling because they are easily communicated and repre-
sent magnitude and timing, which are attributes of the natural 
flow regime that are relevant to ecosystems and management 
(Kendy and others, 2012). 



Methods    3

Xeric

North coastal mountains
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Regions

EXPLANATION

Figure 1.  Locations of reference sites in gaged basins and extent of regions used to model streamflows in California.
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Identification of Reference Sites

Reference sites were determined to be those river basins 
that are hydrologically least disturbed (see Stoddard and 
others, 2006) and where USGS streamgages measured daily 
streamflow for at least 20 years. Identification of reference 
sites was accomplished using a three-tiered approach. First, 
hydrologic disturbance was estimated for each gaged basin 
using an index that combined several geospatially derived 
indicators, including total upstream reservoir storage, fresh-
water withdrawal, pollution discharge, and impervious land 
cover (Falcone and others, 2010). All gaged basins within the 
geographic domain of the study were ranked on the value of 
this index score, and only those within the lower 25th per-
centile were considered as candidates for reference sites (see 
Falcone and others, 2010, for details of calculations). 

The second tier of reference-site screening was exami-
nation of published site-description records. An annual data 
report is typically produced for each USGS streamgaging 
station and often contains information about anthropogenic 
influences on natural streamflow at that site. Notations indicat-
ing anthropogenic streamflow modification were considered a 
reason to classify a site as non-reference. 

 The third tier of screening was examination of the imag-
ery of each site and its contributing drainage basin. Publicly 
available satellite imagery and topographic maps were exam-
ined for any indication of human activity with the potential to 
modify streamflows, such as diversions, irrigated agriculture, 
and wastewater inflows in close proximity to the streamgage. 
The screening process resulted in 50, 52, and 61 gaged 

reference basins and 86, 314, and 334 gaged non-reference 
basins for the north coastal mountains, interior mountains, and 
xeric regions, respectively. Reference basins had lower levels 
of water management and land development than disturbed 
basins but tended to have smaller drainage areas than non-
reference basins (table 1).

Representativeness of Reference Sites

Because the streamgaging network in the United States 
was created by targeting basins where specific water informa-
tion was needed, there is a legitimate concern as to whether 
gaged river basins are representative of all river basins within 
the stream network (Poff and others, 2006). This issue was 
addressed in two ways. First, three natural basin characteristics 
known to be important predictors (Carlisle and others, 2010) 
of flows (basin mean slope, mean precipitation, soil texture) 
were selected, then the data distributions of these variables 
for gaged reference sites (that is, those used in natural flow 
model development) were compared with those of the basins 
of all stream segments within each region. Second, three basin 
characteristics indicative of human disturbance (impervious 
land cover, irrigated agriculture, total reservoir storage) were 
selected, then the data distributions of these variables for 
the gaged non-reference sites were compared to those of the 
basins of all stream segments within each region. Overlap in 
the distributions of these variables between gaged sites and all 
stream segments provides a sense of confidence that models 
developed at gaged sites can reasonably be applied to all river 
basins in California.

Table 1.  Ranges of environmental characteristics, as 1st and 99th percentiles, at reference and non-reference sites in gaged river 
basins within the north coastal mountains, interior mountains, and xeric regions, California.

[n, number; km2, square kilometer]

Attribute
North coastal mountains region Interior mountains region Xeric region

Reference site 
(n = 50)

Non-reference site 
(n = 86)

Reference site 
(n = 52)

Non-reference site 
(n = 314)

Reference site 
(n = 61)

Non-reference site 
(n = 334)

Area (km2) 12–1,962 10–8,382 3–1,758 6–21,145 5–656 7–19,779
Reservoir storagea 0–2 0–2,256 0–17 0–1,709 0–2 0–1,663
Imperviousb 0–1 0–5 0–2 0–4 0–1 0–46

Crop landc 0–1 0–7 0–2 0–9 0–3 0–22
aMegaliters per square kilometer.
bPercent of basin land cover.
cPercent of basin land cover consisting of row crops.
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Two limitations to the comparisons of basin charac-
teristics were imposed. First, the comparisons were limited 
to non-gaged basins similar in size to those of gaged basins 
(table 1). This resulted in the exclusion of many small head-
water streams that are present in the stream network but are 
not represented in the streamgaging network. The second 
limitation is that the comparisons were qualitative and univari-
ate. Although formal quantitative methods are available for 
comparing multivarate distributions (for example, Bowman 
and Somers, 2006), these seemed inappropriate, given that the 
resulting thousands of statistical tests (for each segment in the 
stream network) would have limited interpretability. 

In all regions, distributions of the six key variables 
(basin slope, mean precipitation, coarse soils, impervious-
ness, irrigated agriculture, and reservoir storage) overlapped 
considerably between reference basins and those of the stream 
network (appendix 1, figs. 1–1 to 1–3). These findings indicate 
that, from a univariate perspective, reference basins are largely 
representative of the natural and human-modified environ-
mental settings of all stream basins in California that are 
10‒20,000 km2 in total area.

Statistical Modeling Approach

Because a variety of machine-learning methods (Kuhn, 
2008) and linear regression have been used to develop statisti-
cal models in hydrology (Farmer and Vogel, 2013), alterna-
tive modeling approaches were evaluated to determine which 
would be most optimal for use in this study. Within each 
region, predictive models were developed (detailed meth-
ods below) using reference sites and six different types of 
statistical models—five different machine-learning models 
and multiple linear regression. Detailed descriptions of each 
machine-learning model are provided in Kuhn and Johnson 
(2013); brief descriptions are provided here. Random forest 
(RF), general boosted regression (GBM), and Cubist (CUB) 
are rule-based methods related to classification and regression 
trees (Hastie and others, 2001). The major difference among 
these techniques is in how the tree-based models are con-
structed. RF and GBM build an ensemble of individual tree-
based models that are collectively used to make predictions. In 
RF, each of these individual models is treated independently 
and contributes equally to the final predictions of the model. In 
contrast, GBM builds these individual models in sequence and 
weights their predictions according to their predictive ability. 
CUB generates a multiple linear regression equation for each 
partition of the independent variables identified via simple 
tree-based methods. Support vector machines are a form of 
nonlinear regression that are robust to outliers and provide 
flexible model-evaluation rules (Kuhn and Johnson, 2013). 

Neural networks are a form of nonlinear regression but with 
the outcome simulated by a set of unobserved variables that 
are constructed as linear combinations of observed variables 
(Kuhn and Johnson, 2013). 

Most machine-learning models require user-selected 
settings of various fitting parameters, so we selected a wide 
range of possible parameter values (appendix 1, table 1–1) and 
tuned each model with 10-fold cross validation using the caret 
library (Kuhn, 2008) in R (R Core Team, 2014). For CUB, 
support vector machines, and neural network models, inde-
pendent variables were first centered and rescaled, and highly 
(|r| >0.80) collinear variables were removed (as recommended 
and described in Kuhn and Johnson, 2013). The tuned mod-
els were then re-applied to the reference sites in each region 
using leave-one-out cross validation. From the resulting data, 
model performance was measured with the squared correla-
tion and root mean square error of observed and predicted 
values. Additional measures of model performance (the mean 
observed (O)/expected (E), and the standard deviation (sd) of 
O/E) were also computed.

Across all monthly models and regions, RF and CUB 
models performed substantively better than all other model-
ing approaches (fig. 2). Because RF predictions consistently 
exhibited slightly better precision (that is, lower sd of mean 
O/E) than CUB, we selected RF to generate predictions of 
natural flows, after additional refinement as described below.

Tree-based methods, such as RF, are a desirable model-
ing approach because they are free of assumptions that limit 
linear methods, and they accommodate complex interactions 
and non-linear relations among independent and dependent 
variables. Detailed descriptions of RF are given elsewhere 
(Cutler and others, 2007). In the interest of parsimony, we 
evaluated how the performance of RF models varied with 
increasing numbers of predictor (independent) variables—that 
is, model complexity. First, a full RF model was developed 
using all predictor variables (table 1–2). RF evaluates predic-
tor variable importance by randomly permuting each predictor 
in turn, then measuring loss in model performance (Cutler and 
others, 2007). The relative loss in model performance is used 
to rank predictor variable importance; variables that cause the 
greatest loss in model performance, when randomized, are 
of highest importance. The top 20 important predictors were 
selected after running the full model. Then beginning with the 
highest ranking variable, a new RF model was constructed 
after successively adding each of the top 20 predictors, in turn. 
Model performance was examined (see description in section 
“Predicting Natural Flows: Model Development and Perfor-
mance”) for each of the 20 RF models; one was selected that 
balanced model performance with the least number of predic-
tor variables, thus providing the most parsimonious model. 
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Figure 2.  Performance of various machine-learning models 
for predicting natural monthly streamflows in California’s xeric 
region. Plots for other regions are not shown but exhibited the 
same patterns of relative performance. Better models have 
higher r-squared, lower root mean square error (RMSE) and mean 
standard deviation (sd) of observed/expected (O/E) values, and a 
mean O/E value near 1. (CUB, cubist; GBM, boosted regression; 
MLR, multiple linear regression; NNET, neural network; RF, random 
forest; SVM, support vector machine.) r-squared is the correlation 
of predicted and observed values of monthly flows. RMSE is the 
root mean square error. Mean O/E is the average ratio of observed 
and predicted flows at each reference site. Mean sd of O/E is the 
mean of the standard deviation of O/E at each reference site.
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Predicting Natural Flows: Model Development 
and Performance

For our first objective, a separate model for each month 
in each region (36 models) was developed to predict natu-
ral monthly flows for any specific year from 1950 to 2012. 
Measured monthly flow for each year was the dependent vari-
able (U.S. Geological Survey, 2015). The predictor variables 
included a set of static, physical watershed characteristics 
and corresponding weather data (table 1–2; Falcone, 2011; 
Olson and Hawkins, 2014; PRISM Climate Group, 2014). 
These year-specific weather data included precipitation and air 
temperature for the month of interest and each of the previous 
12 months (Daly and others, 2008). Estimated monthly runoff 
data from national-scale grids (McCabe and Wolock, 2011) 
were also used because these estimates indicate the balance 
between precipitation and evapotranspiration. In summary, 
the final data matrix for developing models of natural monthly 
flows included every year for which each reference site had 
a measured monthly flow value, the set of weather data and 
modeled runoff associated with each year’s measured monthly 
flow and previous 12 months (39 predictors), and the set 
of static physical watershed characteristics (113 predictors, 
Falcone, 2011). The relations between the most influential pre-
dictors and the simulated outcome were graphically examined 
using partial-dependence plots (Cutler and others, 2007). This 
procedure evaluates how variation in each predictor affects the 
outcome while holding all other predictors constant (Hastie 
and others, 2001).

Model performance was evaluated by calculating several 
statistics (Moriasi and others, 2007) using the observed data 
and the expected (that is, predicted) monthly data generated 
by the internal bootstrapping performed by the RF model 
(Cutler and others, 2007). The squared correlation coefficient 
(r2) between observed and predicted monthly flows across all 
sites was computed. The Nash-Sutcliffe coefficient of model 
efficiency (NSE) measures the total residual variance (that is, 
generated from model predictions) relative to the total vari-
ance within the data. NSE values near unity indicate that most 
of the total variance is accounted for by the model, indicating 
good model performance. Percent bias (PBIAS) estimates the 
model’s tendency to over predict (PBIAS>0) or under predict 
(PBIAS<0). The root mean square error normalized by the 
standard deviation of all observations provides a standard-
ized measure of model error. Finally, summary statistics for 
each site were calculated, including the mean (among years) 
O/E and the standard deviation (among years) of monthly 
O/E values.

Predicting the Likelihood of Modified Flows: 
Model Development and Performance

Objective two was to predict, using geospatial variables, 
the likelihood of anthropogenic modification of monthly 
streamflows. Models predicting modified flow were devel-
oped with a single dataset of all regions combined because by 
doing so we maximized the observed variation in affects from 
human activity, as well as the overall size of the dataset. Initial 
models for individual regions showed only marginal success 
in some regions, likely because of small ranges of several 
geospatial predictor variables. Finally, we had no reason to 
hypothesize that the relations between human activity factors 
(for example, freshwater withdrawal) and streamflows would 
vary by region.

Models described above were applied to all non-reference 
sites (total n=558) with recent flow records (1990‒2010, 
which generally overlap the time periods of geospatial predic-
tors) to generate a time series of natural monthly flows. Then, 
O/E was computed and averaged across years to produce a 
single value for the mean deviation of observed and expected 
natural flows for each month. Finally, each non-reference site 
was classified into one of three categories for each month on 
the basis of that month’s mean O/E value: depleted, inflated, or 
unaltered. Depleted (O/E <0.75) indicates monthly flows that, 
on average, are reduced relative to natural conditions. Inflated 
(O/E >1.25) indicates monthly flows that, on average, are aug-
mented relative to natural conditions. Unaltered (all other O/E 
values) indicates monthly flows that, on average, are similar to 
natural conditions. Thresholds for defining these categories are 
arbitrary but based upon a combination of statistical and inter-
pretive reasoning. First, this threshold was within the range 
of precision (that is, average sd of O/E) of models predicting 
natural flows. Second, we evaluated model performance at a 
variety of thresholds and found that ±0.25 O/E units provided 
the best performance. Finally, a consistently applied threshold 
defined as a 25-percent reduction/addition of monthly flows is 
simple to comprehend and communicate.

For each month, two separate RF classification models 
were developed. One predicted depleted versus non-depleted 
flows (includes unaltered and inflated flows), and another 
predicted inflated versus non-inflated flows (includes unaltered 
and depleted flows). Predictor variables were limited to geo-
spatial indicators of land and water management (table 1–3; 
Falcone, 2011; USGS, 2008a; U.S. Department of Agricul-
ture, 2012; California Department of Water Resources, 2000; 
Grantham and others, 2014; USGS, 2008b; USGS 2013). As 
was done with the models of natural flow, parsimonius models 
were developed by evaluating model performance at varying 
levels of model complexity. Model performance was measured 
using the confusion matrix constructed with observations 
that were not used in model development (Cutler and others, 
2007). The confusion matrix is the summary of the observed 
versus expected (predicted) classes of each observation used 
for model validation. Many measures have been proposed to 
summarize confusion matrices (Kuhn and Johnson, 2013), 
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each with its own strengths and weaknesses. Given our model-
ing objective, we saw no reason to favor one type of error 
over another. Failure to detect anthropogenic modification 
when it actually exists has negative consequences that may be 
no worse than the consequences of making false detections. 
Therefore, the percentage of observations that were correctly 
classified as altered (sensitivity), the percentage correctly 
classified as unaltered (specificity), and the kappa statistic as 
a measure of overall classification performance are reported. 
Kappa accounts for accuracy that would be generated simply 
by chance given the frequencies of each class in the data.

Results

Predicting Natural Flows

Model performance was marginally higher in both moun-
tainous regions than in the xeric region and relatively con-
sistent among months (fig. 3). For the xeric region (fig. 3A), 
typically more than 60 percent of the variation in observed 
flows was explained by the model (r2, 0.41‒0.88; NSE, 
0.41‒0.87), and bias was no more than 5 percent (PBIAS, 
-5 to -1). Mean O/E values were typically near unity (mean 
O/E, 0.90‒0.98), and the sd of O/E indicated precision was 
typically 40 percent (sd O/E, 0.31‒0.48). For the north coastal 
mountains (fig. 3B), typically more than 80 percent of the 
variation in observed flows was explained by the model (r2, 
0.84‒0.96; NSE, 0.83‒0.96), and bias was less than 5 percent 
(PBIAS, -3 to 2). Mean O/E values were typically near unity 
(mean O/E, 0.94‒0.98), and the sd of O/E indicated preci-
sion was typically 29 percent (sd O/E, 0.24‒0.34). For the 
interior mountains (fig. 3C ), typically more than 70 percent 
of variation in observed flows was explained by the model (r2, 
0.79‒0.96; NSE, 0.79‒0.96) and bias was less than 5 per-
cent (PBIAS, -4 to 4). Mean O/E was typically near unity 
(0.91‒0.97), and sd of O/E indicated precision was typically 
32 percent (sd O/E, 0.26‒0.41).

The performance of statistical models was comparable 
to that of a wide range of other mechanistic and statistical 
approaches for monthly flow prediction. The NSE and PBIAS 
of the models were within the range of those achieved with 
statistical transfer methods (Farmer and Vogel, 2013). In addi-
tion, the r2 and NSE of the models for the interior mountains 
region were comparable or slightly better than those (0.67 
and 0.65, respectively) of a published mechanistic model for 
the Sierra Nevada Mountains (Shupe and Potter, 2014) and 
models for the Sacramento River (NSE, 0.48‒0.82) (Ficklin 
and others, 2013). 

Water balance-based runoff of the current month was an 
important predictor for all months and in all regions (figs. 1–4 
to 1–6). Runoff (wb0-wb6) and precipitation (p0-p6, p2sum-
p6sum) in the previous 1‒6 months were also among the 
most important predictors for most models and in all regions. 
In addition to climatic variables, a variety of other physical 
attributes were important predictors of monthly flows. In the 

xeric region (fig. 1–4), basin mean slope (SLOPE), soil texture 
(NO10AVE), and elevation (ELEVATION) were important 
predictors, particularly for months when precipitation is 
typically low or nonexistent. In the north coastal mountains 
(fig. 1–5), precipitation intensity (RFACT) and overland flow 
(PERHOR), as well as sedimentary geology (sedimentary), 
were important predictors, particularly for dry months. Pre-
cipitation intensity and geologic properties frequently were 
important predictors for models in the interior mountains 
region in most months (fig. 1–6).

As expected, precipitation was the most important predic-
tor of streamflow, but the affects of other watershed attributes 
is evidence that local physical factors affect the relation 
between precipitation and streamflow (fig. 4). Predicted flow 
typically increased monotonically with precipitation intensity 
(R-Factor), as well as with increasing precipitation (antecedent 
precipitation) and runoff (estimated runoff) in the target and 
preceding months. Predicted flow increased with increasing 
basin slope, which reflects the greater tendency for runoff than 
for infiltration on steeper slopes. In contrast, predicted flow 
decreased monotonically with the increasing extent of coarse 
soils, which indicates that greater infiltration in coarser soils 
results in lower runoff. Predicted flows tended to increase 
with increasing compressive strength of basin lithology, which 
indicates that rocks more resistant to weathering allow limited 
infiltration of precipitation to groundwater sources. 

The models for natural flows lacked predictor variables 
that are direct measures of groundwater contributions to 
streamflow, but several surrogate variables frequently were 
important predictors, indicating that the models managed 
to capture part of this natural process. Antecedent monthly 
precipitation (2, 3, and 6 months) was an important variable 
for most months in all regions and may represent the lag time 
between precipitation and streamflow as a result of shallow 
groundwater recharge. Similarly, the average base-flow index 
(BFI) was an important predictor in the north coastal and inte-
rior mountains regions. The BFI was generated by a nation-
wide interpolation of observed streamflow data and represents 
a broad indicator of the degree to which groundwater contrib-
utes to streamflows (Wolock, 2003).

Models predicting natural streamflows could provide a 
useful baseline for future studies of how streamflows in Cali-
fornia respond to changes in land use, water management, and 
climate. For example, a recent study (Grantham and others, 
2014) used statistical models of natural flows combined with 
geospatial information about sensitive species to prioritize 
dams where targeted release strategies are likely to have the 
greatest ecological benefits. In addition, the ability to gener-
ate year-specific predictions of natural monthly streamflows 
will provide a foundation for examining how human activities 
influence streamflows and stream health, and how those effects 
may vary in time. For example, if natural monthly flows 
back to 1950 were generated for streams with long-term flow 
monitoring stations, trends in streamflow modification can be 
associated with trends in land use and water management over 
the last 60 years. 
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Figure 3.  Performance statistics for models predicting natural monthly streamflows in the A, xeric; B, north coastal mountains; 
and C, interior mountains regions of California (r-squared is the correlation of predicted and observed values of monthly flows; 
sd, standard deviation; O/E, observed/expected).
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Figure 4.  Partial dependence plots showing the relation of predicted natural monthly streamflow to selected predictor 
variables for the A, xeric; B, interior mountains; and C, north coastal mountains regions, California. Units for R-factor are in 
hundreds of foot-ton-inches per hour per acre. Estimated runoff is for the target month, and antecedent precipitation is the 
sum for the previous 6 months.
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Predicting Modified Flows

Models predicting modified streamflows had a wide 
range of performance (fig. 5). Models predicting inflated 
monthly flows correctly classified, on average, 39 percent 
of altered sites (that is, sensitivity). The best model was for 
September (56 percent), and the worst model was for March 
(13 percent). Ninety percent of unaltered sites were correctly 
classified (that is, specificity), on average. The average kappa 
statistic was 0.34 (range 0.15‒0.45), and the best models were 
those for May and June. Various measures of urban develop-
ment (road stream crossings, impervious area) in the basin or 
riparian buffer were important predictors of inflated flows in 
all months (fig. 1–7).

Models predicting depleted monthly flows correctly clas-
sified 61 percent of altered sites, on average. The best mod-
els were for April (78 percent), and worst were for October 
(35 percent) (fig. 5). On average, 59 percent of unaltered sites 
were correctly classified. The average kappa statistic was 0.33 
(range 0.25‒0.46), and the best models were those for April 
and May. Various measures of urbanization in the basin were 
important predictors in all months, but riparian-buffer urban 
land cover, riparian vegetation height (riparian ht.), fertil-
izer application (P and N application; phosphate and nitrate, 
respectively) and freshwater withdrawal (withdrawal) were 
important predictors of depleted flows for 10 of 12 months 
(fig. 1–8). 

Indicators of urbanization and water use were associ-
ated with inflated and depleted streamflows in opposite ways 
(fig. 6). The probability of inflated monthly flows increased 
dramatically with increasing impervious cover, which has 
been abundantly demonstrated in the literature (Paul and 
Meyer, 2001; Roy and others, 2005; Eng and others, 2013b), 
but tended to decrease with increasing freshwater withdrawal, 
which is an indicator of consumptive water use (Maupin and 
others, 2014). In contrast, the probability of depleted monthly 
flows increased with increasing freshwater withdrawal, which 
is also supported by a large body of literature (Jackson and 
others, 2001), but decreased with increasing urbanization. 

The models predicting modified flows using geospatially 
derived indicators of influences from human activity at the 
watershed scale have one major limitation. The estimates of 
water use were based on State records of permitted diver-
sions, which do not reflect the actual quantities of water that 
are consumptively used (for example, evaporation or export to 
other river basins) versus quantities returned to the stream or 
shallow groundwater. As a result, models performed relatively 
poorly, and typically various surrogates of actual water use 
(for example, agricultural intensity, impervious land cover) 
were found to be the best predictors of streamflow modifica-
tion. Models likely would be improved with future enhance-
ments of geospatially derived indicators of groundwater/
surface-water interactions, actual consumptive water use, and 
return flows. Such data are notoriously difficult to obtain and 
quantify across wide geographic areas, but pilot programs in 
arid regions could be used to demonstrate the utility of such 
data collection efforts.

Although models for some months performed poorly, 
those for some months performed reasonably well and rep-
resent ecologically relevant hydrologic events such as May 
(spring flows as in Yarnell and others, 2010) and Septem-
ber flows (typically annual low flow). Potentially powerful 
management tools could be developed by combining predic-
tions of modified streamflows across a large geographic area 
with other geospatial information, such as water use, sensi-
tive species, or anticipated changes in precipitation owing to 
climate change. 

Published sources of data used in this study and provided 
in tables 1–2 and 1–3 include the following: Falcone, 2011; 
Olson and Hawkins, 2014; PRISM Climate Group, 2014. In 
addition, monthly natural flow data for California stream seg-
ments (National Hydrography Dataset, Version 1) generated 
with models developed in this study are available at Carlisle 
and others, 2016. In addition, data used to develop models 
predicting modified flows (objective two) are available at the 
same source.
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Summary
In a study conducted by the U.S. Geological Survey, in 

cooperation with The Nature Conservancy and Trout Unlim-
ited, models developed to estimate natural monthly flows 
performed well and should provide a useful baseline for future 
studies of how streamflows in California respond to changes 
in land use, water management, and climate. For example, a 
recent study used statistical models of natural flows combined 
with geospatial information about sensitive species to priori-
tize dams where targeted release strategies are likely to have 
the greatest ecological benefits. In addition, the ability to gen-
erate year-specific predictions of natural monthly streamflows 
will provide a foundation for examining how human activities 
influence streamflows and stream health, and how those effects 
may vary in time. For example, if natural monthly flows 
back to 1950 were generated for streams with long-term flow 
monitoring stations, trends in streamflow modification can be 
associated with trends in land use and water management over 
the last 60 years. 

The models that predict the likelihood of modified 
streamflows performed less reliably than those for natural 
streamflows but may nevertheless be useful as a general 
screening tool. Although models for some months performed 
poorly, those for selected months performed reasonably well 
and represent ecologically relevant hydrologic events such as 
May (spring flows) and September flows (typically annual low 
flow). Potentially powerful management tools could be devel-
oped by combining predictions of modified streamflows across 
a large geographic area with other geospatial information, 
such as water use, sensitive species, or anticipated changes in 
precipitation owing to climate change.

Models predicting natural and modified flows likely 
would be improved with future enhancements of geospatially 
derived indicators of groundwater/surface-water interactions, 
actual consumptive water use, and return flows. Such data are 
notoriously difficult to obtain and quantify across wide geo-
graphic areas, but pilot programs in arid regions could be used 
to demonstrate the utility of such data collection efforts.
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Figure 1–1.  Representativeness of gaged basins used in model development relative to all stream segments (NHD= all segments in the 
National Hydrography Dataset) in the xeric region of California. Descriptions of variables are provided in tables 1–1 and 1–2.
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Figure 1–2.  Representativeness of gaged basins used in model development relative to all stream segments (NHD) in the north coastal 
mountains region of California. Descriptions of variables are provided in tables 1–1 and 1–2.
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Figure 1–3.  Representativeness of gaged basins used in model development relative to all stream segments (NHD) in the interior 
mountains region of California. Descriptions of variables are provided in tables 1–1 and 1–2.
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Figure 1–4.  Occurrence of variables as important predictors in models of 
monthly streamflows in the xeric region of California. Descriptions of variables 
are provided in tables1–1 and 1–2.

Figure 1–5.  Occurrence of variables as important predictors in models of 
monthly streamflows in the north coastal mountains region of California. 
Descriptions of variables are provided in tables1–1 and 1–2.
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Figure 1–6.  Occurrence of variables as important predictors in models of 
monthly streamflows in the interior mountains region of California. Descriptions 
of variables are provided in tables 1–1 and 1–2.
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Figure 1–7.  Occurrence of variables as important predictors in models 
predicting the likelihood of inflated monthly streamflows in California. 
Descriptions of variables are provided in tables 1–1 and 1–2. (ht., height; vol., 
volume; no., number; P, phosphate; N, nitrate)
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Figure 1–8.  Occurrence of variables as important predictors in models 
predicting the likelihood of depleted monthly streamflows in California. 
Descriptions of variables are provided in tables 1– 1 and 1–2. (ht., height; vol., 
volume; no., number; P, phosphate; N, nitrate)
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Table 1–1.  Machine-learning models and associated tuning parameter settings evaluated for 
predicting monthly flows in California streams. Settings indicate tuning parameter values that were 
evaluated. Tuning parameter details provided in Kuhn and Johnson (2013).

Model Tuning parameter Settings

Neural network Decay 0, 0.1, 0.1
Size 1–9

Support vector machine Degree 1–3
Scale 0.01, 0.1, 1
Cost 0.25, 0.5, 1, 2, 4

Random forest Number of predictors evaluated at each node 33–57

Boosted regression Interaction depth 2-12
Shrinkage 0.01, 0.1

Cubist Committees 0–100
Neighbors 0–9
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Table 1–2.  Watershed physical features considered as potential predictors in statistical models of natural 
monthly flows in California streams.

[cm, centimeter; hr, hour; m, meter; CaO, calcium oxide; MgO, magnesium oxide; S, sulfur. Data source indicates published source of 
geospatial data, where 1 = Falcone, 2011; 2 = Olson and Hawkins, 2014; and 3 = PRISM Climate Group, 2014]

Variable name Description Units Data source

DRAIN_SQKM Drainage area square kilometers 1
CaO_pct Rock mean CaO content percent 2

LPerm Rock hydraulic conductivity x106 meters/second 2

MgO_pct Rock mean MgO content percent 2

S_pct Rock mean S content percent 2

UCS Rock compressive strength megaPascals 2

PERDUN Dunne overland flow percent of streamflow 1

PERHOR Horton overland flow percent of streamflow 1

CONTACT Subsurface flow contact time days 1

TOPWET Topographic wetness index log(meters) 1
BFI_AVE Base flow index percent of streamflow 1

CLAYAVE Soil clay content percent by weight 1
SILTAVE Soil silt content percent by weight 1
AWCAVE Soil water capacity unitless 1
PERMAVE Soil permeability inches/hour 1
BDAVE Soil bulk density grams/cubic cm 1
OMAVE Soil organic matter percent by weight 1
HGA Soil hydrologic group A percent by weight 1
HGB Soil hydrologic group B percent by weight 1
HGC Soil hydrologic group C percent by weight 1
HGD Soil hydrologic group D percent by weight 1
HGAC Soil hydrologic groups A and C percent by weight 1

HGAD Soil hydrologic groups A and D percent by weight 1

HGBC Soil hydrologic groups B and C percent by weight 1

HGBD Soil hydrologic groups B and D percent by weight 1

HGCD Soil hydrologic groups C and D percent by weight 1

HGVAR Soil hydrologic group VAR percent by weight 1

KFACT_UP Soil erodibility unitless 1
ROCKDEPAVE Soil thickness inches 1
NO4AVE Soil material <5 millimeters percent by weight 1
NO10AVE Soil material <2 millimeters percent by weight 1
NO200AVE Soil material <0.1 millimeters percent by weight 1
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Variable name Description Units Data source

WTDEPAVE Depth to water table feet 1
RFACT Rainfall & runoff erosivity 100s foot-ton inches/hr/acre 1
ELEVATION Mean watershed elevation m above sea level 1
SLOPE Mean watershed slope percent 1
PPTAVG_BASIN Mean basin precipitation  

(1971–2000)
centimeters/year 1

Gneiss Gneiss percent of basin 1
Granitic Granitic percent of basin 1
Ultramafic Ultramafic percent of basin 1
Quarternary Quarternary percent of basin 1
Sedimentary Sedimentary percent of basin 1
Volcanic Volcanic percent of basin 1
Anorthositic Anorthositic percent of basin 1
Intermediate Intermediate percent of basin 1
SGEO1–SGEO45 Surficial geology classes percent of basin 1
HLR1–HLR 20 Hydrologic landscape regions percent of basin 1

BEDROCK_PERM Bedrock permeability ordinal rank 1
wb 0-12 Monthly runoff estimates from water balance 

model, for months at time t=0 through t-12 
millimeters 3

p 0-12 Monthly precipitation for months at time t=0 
through t-12 

millimeters 3

t 0-12 Monthly air temperature for months at time 
t=0 through t-12 

degrees Celsius 3

p 2,3,6 sum Sum of precipitation from previous 2, 3, or 
6 months. 

millimeters 3

Table 1–2.  Watershed physical features considered as potential predictors in statistical models of natural 
monthly flows in California streams.—Continued

[cm, centimeter; hr, hour; m, meter; CaO, calcium oxide; MgO, magnesium oxide; S, sulfur. Data source indicates published source of 
geospatial data, where 1 = Falcone, 2011; 2 = Olson and Hawkins, 2014; and 3 = PRISM Climate Group, 2014]
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Table 1–3.  Geospatial indicators of human activities used as potential predictors in statistical models predicting monthly streamflow 
modification in California.

[km2, square kilometer; NPDES, National Pollution Discharge Elimination System; m, meter. Data source indicates published source of geospatial data, where 
1 = Falcone, 2011; 2 = U.S. Geological Survey (USGS), 2008a; 3 = U.S. Department of Agriculture, 2012; 4 = California Department of Water Resources, 2000; 
5 = Grantham and others, 2014; 6 = USGS, 2008b; 7 = USGS, 2014; 8 = USGS, 2013]

Variable name Description Units Data source

ARTIFPATH_PCT Stream length classified as artificial channel percent of total length 1

ARTIFPATH_MAINSTEM_PCT Stream length classified as artificial channel percent of main stem length 1

HIRES_LENTIC_PCT Lakes, ponds, and reservoirs percent of basin 1

HIRES_LENTIC_DENS Lakes, ponds, and reservoirs number per km2 1

DDENS_2009 Dam density number per km2 1
MAJ_DDENS_2009 Major dam density number per km2 1
STOR_NOR_2009 Total reservoir storage volume per km2 1
pre1990_DDENS Dam density prior to 1990 number per km2 1

pre1990_STOR Total reservoir storage prior to 1990 volume per km2 1

CANALS_PCT Stream length classified as canals percent of total length 1

CANALS_MAINSTEM_PCT Stream length classified as canals percent of main stem length 1

NPDES_MAJ_DENS NPDES point dischargers number per km2 1

FRESHW_WITHDRAWAL Freshwater withdrawal volume per km2 1

PCT_IRRIG_AG Irrigated agriculture percent of basin 1
FRAGUN_BASIN Fragmentation of undeveloped land unitless 1

DEVNLCD06 Developed land percent of basin 1
FORESTNLCD06 Forested land percent of basin 1
PLANTNLCD06 Crop land percent of basin 1
WATERNLCD06 Open water percent of basin 1
NITR_APP_KG_SQKM Nitrogen application kilograms per km2 1
PDEN_2000_BLOCK Population density persons per km2 1
rd_km_tot Road density kilometer per km2 2
rd_km_rip Road density in riparian corridor kilometer per km2 2

rd_st_int Road-stream intersection number per km2 2
canal_km Length of canals kilometer per km2 1
canal_st_i Canal-stream intersections number per km2 1

applied_wa Applied agricultural water acre feet per year per km2 3, 4

ag_sqkm Agricultural lands percent of basin 1
cnt_stor Storage reservoirs number per km2 5
cnt_hydro Hydroelectric reservoirs number per km2 5
cnt_other All other reservoirs number per km2 5
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Variable name Description Units Data source

ht_stor Mean height of storage reservoir dams meters 5

ht_hydro Mean height of hydroelectric reservoirs meters 5

ht_other Mean height of all other reservoirs meters 5

vol_stor Total volume of storage reservoirs acre feet per km2 5

vol_hydro Total volume of hydroelectric reservoirs acre feet per km2 5

vol_other Total volume of all other reservoirs acre feet per km2 5

rip_ht Riparian vegetation height within 100 m buffer 
of stream

meters 6

mine_cnt Active mines number per km2 7
og_well Oil and gas wells number per km2 8
divert_cnt Water diversions number per km2 5
diver_fval Total volume of diversions acre feet per year per km2 5

AnnualFACE_VALUE Total diversions reported value acre feet per year per km2 5

JAN_USE–DEC_USE Monthly water use acre feet per month per km2 5

Table 1–3.  Geospatial indicators of human activities used as potential predictors in statistical models predicting monthly streamflow 
modification in California.—Continued

[km2, square kilometer; NPDES, National Pollution Discharge Elimination System; m, meter. Data source indicates published source of geospatial data, where 
1 = Falcone, 2011; 2 = U.S. Geological Survey (USGS), 2008a; 3 = U.S. Department of Agriculture, 2012; 4 = California Department of Water Resources, 2000; 
5 = Grantham and others, 2014; 6 = USGS, 2008b; 7 = USGS, 2014; 8 = USGS, 2013]
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