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Preface 
This study was conducted to provide timely scientific information to establish an adaptive 

monitoring framework and modeling approach for greater sage-grouse (Centrocercus urophasianus) 
population trends at multiple spatial scales in northeastern California and Nevada. These findings fill a 
prominent information gap, and heighten understanding of sage-grouse population trends at nested 
spatial and temporal scales. Importantly, this study highlights an example of an ‘early warning system’ 
that can be carried out annually to identify where and when management action could be applied to 
benefit declining populations of sage-grouse at the appropriate scale. The rules of this framework can be 
modified to identify populations responding positively to management actions, and could ultimately be 
implemented across the geographic range of sage-grouse. This report is also intended to provide timely 
scientific information and inform newly established State and Federal monitoring programs, particularly 
those of the Bureau of Land Management and U.S. Forest Service.  
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Hierarchical Population Monitoring of Greater Sage-
Grouse (Centrocercus urophasianus) in Nevada and 
California—Identifying Populations for Management at the 
Appropriate Spatial Scale 

By Peter S. Coates1, Brian G. Prochazka1, Mark A. Ricca1, Gregory T. Wann1, Cameron L. Aldridge1,2, Steve E. 
Hanser1, Kevin E. Doherty3, Michael S. O’Donnell1, David Edmunds1,2, and Shawn P. Espinosa4 

Abstract 
Population ecologists have long recognized the importance of ecological scale in understanding 

processes that guide observed demographic patterns for wildlife species. However, directly 
incorporating spatial and temporal scale into monitoring strategies that detect whether trajectories are 
driven by local or regional factors is challenging and rarely implemented. Identifying the appropriate 
scale is critical to the development of management actions that can attenuate or reverse population 
declines. We describe a novel example of a monitoring framework for estimating annual rates of 
population change for greater sage-grouse (Centrocercus urophasianus) within a hierarchical and 
spatially nested structure. Specifically, we conducted Bayesian analyses on a 17-year dataset (2000–
2016) of lek counts in Nevada and northeastern California to estimate annual rates of population change, 
and compared trends across nested spatial scales. We identified leks and larger scale populations in 
immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing 
threshold designed to identify significant rates of population decline at a particular nested scale; and (2) 
crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that 
decouple from rates of population change at a larger spatial scale. This approach establishes how 
declines affected by local disturbances can be separated from those operating at larger scales (for 
example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, 
this adaptive management framework can be implemented readily and annually to facilitate responsive 
and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can 
also be modified to identify populations responding positively to management action or demonstrating 
strong resilience to disturbance. Similar hierarchical approaches might be beneficial for other species 
occupying landscapes with heterogeneous disturbance and climatic regimes. 
 
 
 
1U.S. Geological Survey. 
2Colorado State University. 
3U.S. Fish and Wildlife Service. 
4Nevada Department of Wildlife. 
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Synopsis 
Monitoring strategies for species of concern can be made more powerful by taking advantage of 

recent advances in ecological models that account for differences in population dynamics across spatial 
and temporal scales. It is critical to identify the scale where populations are changing (for example, local 
compared to regional) so that management actions designed to ameliorate population declines may be 
applied effectively. Here, we describe a novel example of a hierarchical and spatially nested monitoring 
framework for estimating annual rates of population change (λ) for greater sage-grouse (Centrocercus 
urophasianus) as an early warning system for detecting significantly declining populations. Using a 
reductionist approach, this framework establishes the relevance of spatial and temporal scales, and the 
direction and magnitude of population changes across space and time. First, the framework allows 
partitioning of local compared to regional effects that are likely to influence populations adversely, 
which can then help identify the appropriate scale to target actions aimed at reversing such effects. 
Second, the framework incorporates temporal thresholds, whereby multiple years of decline must occur 
before management action is initiated, which guards against transient demographic stochasticity or 
erroneous lek counts during a particular year. Third, the framework quantifies the duration and 
magnitude of decline at the identified spatial scale to help inform where and when to apply appropriate 
management actions. Accordingly, steady or precipitous declines governed by local disturbances that 
are more manageable (for example, wildfire, inappropriate grazing, energy development) are separated 
from those operating at larger spatial scales that are less manageable (for example, region-wide 
drought).  

Our monitoring framework example focuses on sage-grouse populations in Nevada and 
northeastern California. We first partitioned sage-grouse lek locations into lek clusters across multiple 
spatially nested, hierarchical scales based on landscape and climatic characteristics influencing spatial 
connectivity among sage-grouse populations. This analysis indicated three tractable scales for use in our 
example—individual lek, a neighborhood cluster, and a climate cluster. Using 17 continuous years of 
annual lek count data (2000–2016), we estimated annual rates of population change by fitting state-
space models in a Bayesian statistical framework. Using these estimates, we initiated a three-step 
evaluation process at the nested spatial scales to identify declining populations: thresholds, warnings, 
and signals. The evaluation process stops if any criteria at any step are not met.  
For step 1, we used a retrospective simulation analysis to estimate two types of thresholds describing 
population declines: (1) destabilizing thresholds designed to identify significant rates of population 
decline at a particular nested scale; and (2) decoupling thresholds aimed at identifying when the rates of 
population decline at a local scale (for example, individual leks and neighborhood clusters, where 
management may be effective) detrend significantly from median rates of population change at a larger 
spatial scale (for example, climate clusters, where large-scale variations in climate can drive population 
cycles of sage-grouse, and are therefore less manageable by direct intervention). We further 
differentiated between the rates (slow and fast) at which a population can cross a threshold. This rate 
establishes the magnitude of population change within the monitoring framework. A slow threshold 
indicates slow rates of decline and decoupling, whereas a fast threshold indicates more precipitous rates 
of decline and decoupling. For step 2, a slow or fast warning activates if both destabilizing and 
decoupling thresholds are crossed. For step 3, crossing of a temporal threshold (that is, a sequence of 
annual warnings) specifies whether to activate a soft or hard signal. Based on results of post-hoc 
simulation analysis (described in the paragraph below), a soft signal activates if slow warnings occur  
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over 2 consecutive years, and were intended to identify the need for more intensive monitoring. In 
contrast, a hard signal activates if slow warnings occur for 3 of 4 consecutive years, or fast warnings 
occur for 2 out of 3 consecutive years (see below). In our example, hard signals are intended to 
stimulate management actions beyond additional monitoring that are aimed at stabilizing populations.  

We applied these rules to annual rates of population change for sage-grouse as of 2016, whereby 
soft signals were activated across 17 leks and 7 neighborhood clusters, and hard signals were activated 
across 5 leks and 0 neighborhood clusters. Importantly, we estimated that sage-grouse populations 
across northeastern California and Nevada have declined at an average rate of 3.86 percent annually 
over the last 17 years. We then conducted a post hoc analysis to simulate how well activation of hard 
signals under the different rules (that is, the temporal threshold) and sequential increases in simulated 
management efficiency slowed rates of population decline. The results indicated that 2 of 3 consecutive 
years of fast warnings or 3 of 4 consecutive years of slow warnings achieved the greatest reduction in 
the long-term (that is, over a 17-year period) rate of population decline across the region-wide extent, 
and population stability could be brought about if all actions stabilized declining local populations.  

Overall, this monitoring framework can facilitate effective adaptive management of an important 
indicator species for sagebrush ecosystems in near-real-time by incorporating adequate annual lek count 
data. Similar hierarchical approaches could be beneficial for other species occupying landscapes with 
heterogeneous disturbance and climatic regimes. Importantly, this framework is inherently adaptive in 
that the rules of the early warning system can be tailored to identify manageable patterns at the local lek 
and neighborhood scales. For example, higher resolution information could be achieved for targeting 
management actions by adding nested local-scales for sequential contrasting of population trends 
against each other and those at larger climate-driven scales. This approach could further guard against 
implementing management actions misaligned with the size of disturbances driving local population 
declines. The evaluation process can also be modified to identify other trends relevant to informing 
management actions, such as understanding when local populations are stable or increasing slightly, but 
nevertheless are underperforming compared to regional populations. The rules used in the framework 
could be modified further to identify when local populations are outperforming larger surrounding 
populations, which could help demonstrate where, and to what extent, restoration efforts are positively 
affecting local populations of sage-grouse. These examples highlight the flexibility of our framework to 
meet a variety of management needs. 

Introduction 
Population ecologists have long recognized the importance of aligning demographic processes to 

the appropriate spatiotemporal scale, where intrinsic and extrinsic factors drive those processes. Such an 
alignment is a fundamental requirement for understanding population dynamics (Levin, 1992). The 
contribution of environmental and anthropogenic factors responsible for regulating (density dependent) 
or limiting (density independent) population growth often differ when measured at varying extents; 
understanding these differences provides key information on the mechanisms underlying changes in 
population abundance (Bissonette, 1997, 2016; Fuhlendorf and others, 2002). Thus, spatial scales at 
which local populations operate must be defined and investigated if population growth and declines are 
to be truly understood. Similarly, populations can be limited or regulated at different temporal scales, 
such as short-term fluctuations in population abundance caused by demographic stochasticity (Morris 
and Doak, 2002), or long-term cyclic patterns driven by abiotic (for example, climatic variation 
influencing resource availability) and biotic effects (Ranta and others, 1995; Lindstrom and others, 
1996). 
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When applying management actions to conserve wildlife populations, failure to account for 
scale-specific processes (spatial and temporal) can result in significant misinterpretation of observed 
patterns (Sadoul, 1997; Bissonette, 2016). If the environmental or anthropogenic threat responsible for 
population decline is misaligned with the subsequent implementation of management actions, such 
actions are likely to be unsuccessful (Epifanio, 2000; Cummings and other, 2006). Scale-specific, or 
hierarchical, monitoring strategies provide a powerful analytical approach that share and contrast 
information within and among spatial scales to identify where and when declines occur, and to 
investigate the corresponding local or regional drivers responsible for such population changes (for 
example, Wallace and others, 2010). When applied thoughtfully, such hierarchical strategies can 
identify not only populations that have become unstable, but also those populations that are not growing 
as fast (or are static) compared to neighboring populations that are increasing rapidly in response to 
widespread and favorable environmental conditions. However, implementation of hierarchical strategies 
has remained largely elusive for the management of many species, and particularly for those occupying 
expansive geographical ranges (Lindenmayer and Linkens, 2010). Hence, appropriate sampling designs 
and analytical frameworks are needed to separate processes between and among scales, and safeguard 
against spurious conclusions that might be drawn simply because of random variation in animal 
behavior or measurement errors. When inferences are derived regarding the rate of change in population 
numbers across multiple spatial scales, comparisons can be made between scales that allow for 
separation of scale-dependent factors affecting population growth. When populations are monitored 
over multiple years, techniques can be applied to account for uncertainty in the observation process 
arising from errors in detection or missing count data. This can ultimately allow prediction of the 
magnitude of population change within and among spatial scales with an associated level of uncertainty. 
Accurate detection of changes in the abundance of wildlife populations across spatial and temporal 
scales that may signal the need for management action also requires standardized methods for data 
collection and subsequent analyses (Pollock and others, 2002). Without standardization, it becomes 
increasingly difficult to separate estimated differences that could arise from true changes in the 
measured variable, versus those due to differences in methodologies used to measure and quantify the 
variable (Oakley and others, 2003). 

The greater sage-grouse (Centrocercus urophasianus; hereinafter sage-grouse) is a sagebrush-
obligate species distributed throughout sagebrush ecosystems of Western North America. Sage-grouse 
are considered an indicator species for the health of sagebrush ecosystems, and an umbrella species for 
other sagebrush-obligate or semi-obligate species given their near complete dependence on this 
ecosystem for survival and reproduction (Rich and Altman, 2001; Rich and others, 2005; Rowland and 
others, 2006; Hanser and Knick, 2011). As of the turn of the twenty-first century, sage-grouse occupy 
roughly one-half of their former historical range (Schroeder and others, 2004; Miller and others, 2011), 
and have demonstrated marked population declines in many parts of their geographic range over the 
past 3–5 decades (Garton and others, 2011, 2015; Western Association of Fish and Wildlife Agencies, 
2015).  
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The degradation and loss of sagebrush habitats have been attributed to a variety of factors, 
including conversion to agriculture and inappropriate livestock grazing (Anderson and Holte, 1981; 
Beck and Mitchell, 2000), invasion of exotic plants (Germino and others, 2016), encroachment of 
pinyon-juniper (Blackburn and Tueller, 1970; Miller and Rose, 1999; Davies and others, 2011), and 
energy development (Walker and others, 2007; Doherty and others, 2008, Green and others, 2016). 
Populations of sage-grouse in the Great Basin, and particularly those in northeastern California and 
Nevada that comprise more than 25 percent of the species range-wide distribution (Coates, Casazza, and 
others, 2016), are vulnerable to a novel disturbance cycle of wildfire and annual grass invasion that 
destroys sagebrush (Bradley, 2010; Chambers and others, 2016; Coates, Ricca, and others, 2016). 
Expanding populations of common ravens (Corvus corax), highly effective predators of sage-grouse 
nests in disturbed habitats, present additional and non-trivial threats (Coates and Delehanty, 2010). 
Accordingly, the species has undergone multiple evaluations for listing under the Endangered Species 
Act (U.S. Fish and Wildlife Service, 2015), the most recent of which stimulated unprecedented 
amendments to land management policy across millions of acres of federally managed land, particularly 
in the Great Basin (Bureau of Land Management, 2015). Rigorous monitoring strategies and analytical 
frameworks capable of detecting local and regional populations at risk of continuous and compounding 
decline, and eventual extirpation, are integral to the effectiveness of those plans. 

Sage-grouse populations are linked spatially to leks (that is, traditional breeding grounds) that 
are surveyed annually across large spatial extents (Western Association of Fish and Wildlife Agencies, 
2015). Hence, sage-grouse populations have an inherent hierarchical structure (Coates and others, 2014; 
Cross and others, 2016). Abundance of sage-grouse can fluctuate annually at the smallest and most local 
level of organization (that is, the lek) (Rich, 1985, Fedy and Doherty, 2011; Blomberg and others, 
2012), which can be influenced by factors such as local surface disturbances altering habitat conditions 
and predator communities (for example, Gregg and Crawford, 2007; Coates and Delehanty, 2010). 
However, variation in climate and land cover can also explain population dynamics that cycle at broader 
spatial scales (Aldridge and Boyce, 2007; Aldridge and others, 2008; Fedy and Aldridge, 2011; Fedy 
and Doherty, 2011); yet, synchrony of growth patterns among populations can also decrease as inter-
population distance increases (Lindstrom and others, 1996). These findings further indicate that 
management considerations include larger spatial extents when evaluating local population processes. 
For example, if the number of sage-grouse attending a lek declines by 50 percent over 1 year, knowing 
whether the decline was governed by local factors (for example, a surface disturbance from wildfire or 
anthropogenic development) compared to those occurring at larger spatial scales (for example, wide-
spread drought) only becomes possible if trends at larger spatial scales are measured and contrasted to 
those populations exhibiting local declines. Furthermore, sage-grouse demographic performance can 
vary dramatically among populations and years (Schroeder, 1997; Moynahan and others, 2006). Hence, 
sage-grouse population dynamics are clearly subject to demographic and environmental factors that 
exert different pressure across spatial and temporal scales, underscoring the utility of hierarchical 
methods that identify differences in rates of annual population change within and among spatial and 
temporal scales.  
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Importantly, greater understanding of sage-grouse population dynamics for management 
application can be facilitated through a standardized monitoring and analysis framework that explicitly 
considers hierarchical relationships. This would allow for partitioning of local compared to regional 
effects driving population dynamics at a particular place in time without having to specifically model 
effects from a suite of all possible environmental covariates. This pattern-seeking framework could then 
be used to formulate covariate models that quantify mechanisms driving observed patterns. In the past, 
accounting for hierarchical relationships in population studies was largely intractable because of 
limitations in quantitative approaches. However, recent developments in analytical methods using 
Markov-chain Monte Carlo algorithms in a Bayesian statistical framework facilitate modeling of 
population trends within and among multiple ecological scales that also account for observation errors 
(for example, Clark, 2007; Kery and Schaub, 2012; Hobbs and Hooten, 2015). Spatially explicit counts 
of male sage-grouse attending breeding leks provide reliable data for analyses of population trends 
(Fedy and Aldridge, 2011; Dahlgren and others, 2016; Coates, Ricca, and others, 2016), and are well 
suited for Bayesian hierarchical modeling (Coates and others, 2014; McCaffery and Lukacs, 2016; 
Green and others, 2017; Monroe and others, 2017). Another obstacle to accounting for hierarchical 
relationships is organizing complex levels of population structure into biologically relevant and spatially 
nested scales for species occupying expansive geographical ranges, such as sage-grouse. However, 
sage-grouse populations are spatially organized around breeding leks (Coates and others, 2013). This 
property, coupled with accurate estimates of sage-grouse movements across large and remote areas 
owing to advances in GPS-telemetry, facilitates application of geostatistical analyses that identify 
nested-spatial aggregations of sage-grouse populations in relation to environmental features. In turn, 
these environmental features can either enhance or inhibit movements within and among populations, 
and allow for a modeling approach that describes the relative importance of the features to sage grouse 
at varying spatial scales. Resulting estimates of spatial organization further enable identification of 
populations that are subjected to more local-scale effects compared to those subjected to more regional-
scale effects. 

Study Objectives 
We provide an example of a hierarchical population monitoring strategy for Nevada and 

northeastern California that can act as an early warning system for sage-grouse populations in need of 
immediate management action based on annual information on trends in abundance. The distribution of 
sage-grouse populations in Nevada and northeastern California covers greater than approximately 
122,000 km2 of sagebrush ecosystems (Coates, Casazza, and others, 2016), of which greater than 81 
percent is managed by local, State, and Federal agencies. Because managers are responsible for such a 
large area yet often have limited resources, effective and efficient monitoring strategies need to identify 
areas where management action can be implemented readily and synchronized spatially to the specific 
scale where threats are occurring. However, identification of trends that signal population decline may 
need to be tempered using safeguards that protect against implementing action too soon owing to short-
term population dynamics or errors in lek counts, or because local populations are simply tracking  
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population trends occurring at broader spatial scales driven by less-manageable stochastic factors (for 
example, population cycles driven largely by variation in climate). Our primary objectives were to: 

1. Identify appropriate cluster scales that inform the hierarchical population monitoring framework. 
These scales will define the extent of population modeling and identify areas more likely to be 
influenced by local (that is, more manageable) compared to regional (that is, less manageable) 
factors. 

2. Develop a multi-step evaluation process that quantifies sage-grouse population trends across 
multiple spatial scales on an annual basis and activates signals of management concern based on 
thresholds. First, two types of thresholds are established from retrospective simulations using 17 
continuous years of annual lek count data that identify sage-grouse populations that: (1) depart 
negatively from stability (that is, destabilize); and (2) fail to track growth trends driven more by 
climate at large scales (that is, decouple). Importantly, destabilization and decoupling can occur 
at slow or fast rates. Second, warnings are activated only if both thresholds are crossed at a given 
rate. Lastly, signals are activated if warnings remain activated over a particular sequence of 
years, which can provide an indicator of management intensity that may be needed to slow and 
ultimately halt population declines at the corresponding scale. 

3. Describe the status of sage-grouse populations in Nevada and northeastern California as of 2016 
through the use of the evaluation process.  

Study Area 
The region of interest is characterized primarily by sagebrush habitats throughout Nevada and 

northeastern California comprising approximately 12.6 million ha. This extent approximated the total 
known sage-grouse distribution in Nevada and California. The flora in this region is typical of the Great 
Basin and consists of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), black 
sagebrush (A. nova), and low sagebrush (A. arbuscula) at elevations less than 2100 m, whereas 
mountain big sagebrush (A. tridentata ssp. vaseyana) occurs at higher elevations. Other shrubs common 
to the region include green rabbitbrush (Chrysothamnus viscidiflorus), rubber rabbitbrush (Ericameria 
nauseosa), snowberry (Symphoricarpos ssp.), western serviceberry (Amelanchier alnifolia), and 
antelope bitterbrush (Purshia tridentata). Trees commonly occurring in sagebrush habitat in the Great 
Basin include single-leaf pinyon (Pinus monophylla) along with Utah juniper (Juniperus osteosperma) 
and western juniper (J. occidentalis). Climate in the region is characteristic of high-elevation desert 
found in the Great Basin, with hot and dry summers and cold and snowy winters (Coates, Casazza, and 
others, 2016).  

Methods 
Terminology and General Conceptual Model 

Throughout our monitoring framework example, we will use a variety of terms that refer to 
specific components of the analytical workflow. To help prevent confusion in terminology and meaning, 
we provide a key for commonly used terms in table 1. Of particular importance is our use of the term 
‘population,’ which refers to a population within a specific spatial extent (that is, sage-grouse within a 
defined geographic boundary). For example, population could refer to all sage-grouse associated with a 
lek, or all sage-grouse associated with a cluster of several leks, in which case genetic exchange through 
immigration and emigration will occur. However, as population boundaries become larger such 
exchanges between other populations will be greatly reduced (and negligible at the largest spatial 
extents). 
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Table 1. Definitions for commonly used terms in the example early warning system. 
 

Term Definition 

Population An aggregation of sage-grouse occurring within a specified spatial extent.  
Spatial extent Geographic area over which a population is defined or spatial information is summarized.  
Spatial scale The unit of measure that describes quantitatively the spatial extent. Typically scale includes two 

components, grain and extent, where grain is the highest unit of measures at which a variable of 
interest is assessed. 

Lek scale The smallest scale of population organization in our example, measured as the geographic 
coordinates of traditional breeding locations (or leks) with associated annual counts of male sage-
grouse attendance. 

Cluster scale Spatially nested and aggregations of leks, delineated as measureable polygons, used to define spatial 
extents for modeling sage-grouse demographic processes, which are delineated in rank order. 
Hence, increasing cluster scale refers to increasing spatial extents comprising all lower cluster 
extents (for example, a particular cluster at scale 5 includes multiple polygons of clustered leks 
belonging to scale 4, which in turn contains multiple polygons of clustered leks belonging to scale 
3, etc.). 

Neighborhood 
cluster 

Refers specifically to cluster scale 2 in this example (see section, “Results”), whereby movements of 
grouse among clusters is relatively minimal and demography is governed largely by births and 
deaths rather than immigration and emigration. This cluster was ultimately chosen in our example 
to represent more local aggregations of leks and for contrasting population trends at smaller and 
more manageable scales against those occurring at larger and more climatically driven scales. 

Climate cluster Refers specifically to cluster scale 5 (see section, “Results”), whereby population dynamics are likely 
driven by larger scale variations, such as climate, that affect population cycles of sage-grouse. 
Drivers affecting clusters at this scale are likely less manageable by direct intervention.  

Region The full spatial extent encompassing all clusters, defined as the sage-grouse population range in 
Nevada and northeastern California (fig. 1). 

Evaluation 
process 

A series of sequential steps used to quantify sage-grouse population trends of management concern 
on an annual basis. These steps comprise thresholds, warnings, and signals. The evaluation process 
has safeguards against spurious and ephemeral spatial and temporal variation, and halts if criteria 
for any of the steps are not met. 

Thresholds Values determined through simulation analyses of 17 continuous years of annual sage-grouse lek 
count data that must be crossed to initiate step 1 of the evaluation process. There are two types of 
thresholds for determining populations in decline– destabilizing and decoupling. Destabilizing 
thresholds contrast the estimated rate of population change (λ) at the scale of interest relative to 
stability (that is, λ = 1.00). Decoupling thresholds contrast percent difference in λ at the smaller 
scale relative to the λ of a larger scale that it is nested within, which estimate how well population 
change at the smaller scale tracks population change at the larger scale. In our example, all smaller 
scale clusters (that is, lek and neighborhood cluster) are always contrasted against the climate 
cluster, and climate clusters are contrasted against the region.  

Importantly, thresholds for destabilizing and decoupling can be crossed at different rates of decline 
according to slow and fast criteria. Slow thresholds were intended to indicate slower rates of 
decline and decoupling, whereas fast thresholds were intended to indicate more precipitous rates of 
decline and decoupling that relate to high risk of extirpation. 

Warning Step 2 of the evaluation process, whereby a warning is activated if and only if both destabilizing and 
decoupling thresholds are crossed. Slow warnings activate if both slow thresholds are crossed. Fast 
warnings activate if both fast thresholds are crossed. 

Signal Step 3 of the evaluation process that requires a sequence of years with warnings (that is, a temporal 
rule or threshold) to activate a signal. These rules: (1) guard against transient population dynamics 
or imperfect surveys; and (2) evaluate the duration and magnitude of destabilization and 
decoupling. We propose two example signal types that may stimulate different management 
actions needed to stabilize or reverse estimated population declines: soft and hard. A soft signal 
activates if slow warnings occur over 2 consecutive years. A hard signal activates if slow warnings 
occur for 3 out of 4 consecutive years, or fast warnings occur for 2 out of 3 consecutive years. 
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Figure  1. Map showing regional habitat extent and distribution of leks for greater sage-grouse (Centrocercus 
urophasianus) in Nevada and parts of northeastern California. 
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The flow-chart in figure 2 highlights the sequence of steps used in our example early warning 
system for declining sage-grouse populations. The approximate upper one-third of the chart represents 
data input and model output, which are then used to inform the three-step evaluation process represented 
in the lower two-thirds of the chart. We used lek count data to inform state-space models that estimated 
rate of population change (λ) at the lek scale. These estimates of λ were then weighted at the 
neighborhood cluster, climate cluster, and regional scales. We incorporated environmental covariates at 
each lek location to inform models used to delineate population cluster scales. Step 1 of the evaluation 
process involves assessing whether populations (at the lek, neighborhood cluster, and climate cluster 
scales) first cross spatial thresholds indicating: (1) destabilization (λ significantly less than 1.0) at a 
slow or fast rate; and (2) a decoupling of rates of population change at smaller scales compared to those 
occurring at larger scales at a slow or fast rate. In our example, lek and neighborhood cluster scales are 
evaluated for decoupling by contrasting trends against those occurring at the climate cluster scale. The 
larger cluster-scale is evaluated for decoupling by contrasting trends against those occurring across the 
regional scale. Crossing both thresholds provides initial evidence that factors driving possible declines 
are aligned with the appropriate scale, which then activates a slow or fast warning (step 2). In step 3, 
signals are activated if slow or fast warnings remain activated over a particular sequence of years (or 
temporal threshold) at a given spatial scale. Temporal thresholds for signal activation help guard against 
acting on spurious warnings in a single year that could result from variation in factors affecting lek 
attendance of males, and also help determine the duration and magnitude of destabilization and 
decoupling for the population of interest. Slow signals are intended to identify populations that are 
declining steadily over short time periods and perhaps require more monitoring and localized threat 
assessment, whereas fast signals are intended to identify populations at high risk of extirpation and 
perhaps requiring more active management owing to more prolonged slow population declines or 
precipitous declines over shorter time periods.  The evaluation process stops if a rule at any point along 
the sequence of steps is not met. Throughout most of our report, we focus primarily on contrasting more 
local (that is, leks and neighborhood clusters) scales against the climate scale. However, these rules can 
be scaled up to evaluate how population trends at the climate scale track trends at the regional scale (that 
is, the full spatial extent of our study). 

 
Figure 2. on next page.  Conceptual flow-chart highlighting the sequence of steps used in an example hierarchical 
monitoring strategy that can serve as an early warning system for declining sage-grouse populations. The 
approximate upper one-third of the flow chart represents data input and model output used to inform the three-step 
evaluation process represented in the lower two-thirds of the flow chart. Black-outlined boxes represent data 
sources, blue-filled ovals represent statistical models, and blue-filled rectangles represent spatial scales relevant to 
each stage of the evaluation process. Thin light-orange parallelograms represent thresholds (spatial or temporal), 
the thin dark-orange parallelogram indicates both spatial thresholds have been crossed to activate a warning, and 
the thin red parallelogram indicates that a temporal threshold of sufficient duration has been crossed to activate a 
signal. Signals can then suggest the need for more monitoring of populations declining slowly over a short time 
period (soft signal, light-red squares), or active management for populations declining slowly over longer time 
periods or precipitously over short time periods (hard signal, dark-red squares). The evaluation process stops if a 
rule at any point along the sequence is not met (indicated by black-outlined circles with ‘stop’). In the case of 
signaling at the climate scale, management is more difficult to implement owing largely to less controllable factors. 
Hence no example actions are illustrated 
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Defining Spatial Extent and Scale 

Delineating Spatially Nested Clusters from Lek Locations 
The first step in developing a hierarchical monitoring strategy involved the delineation of similar 

groups of lek locations for multiple, nested spatial scales, which we briefly describe here. We 
partitioned the Nevada and California sage-grouse distribution into nested hierarchical regions using lek 
locations, biologically relevant landscape characteristics of sage-grouse habitat, and lek habitat 
connectivity. We considered “Active” and “Pending” lek sites classified by the Nevada Department of 
Wildlife and California Department of Wildlife in our analysis. Leks categorized as active had two or 
more males observed within two or more of the last 5 years. Pending leks either lacked consistent 
breeding activity during the prior 3–5 surveys, or had not been surveyed during the past 5 years but 
were active previously. We buffered these leks using five spatial scales (500-m, 1,000-m, 1,500-m, 
3,200-m, and 6,400-m), which represented patch and landscape scales commonly used by sage-grouse 
for habitat selection (Coates and others, 2013; Fedy and others, 2014). For each buffered lek, we 
summarized climate, vegetation, and terrain indices, and we used these in part to inform the clustering 
of the leks at each hierarchical scale. We constrained the geographic extent of the clusters to the current 
range of sage-grouse delineated by the U.S. Fish and Wildlife Service after modifying the extent to 
ensure inclusion of all known lek locations. 

The landscape characteristics considered for the clustering of lek locations included bioclimatic 
variables from 30-year climate averages (O’Donnell and Ignizio, 2012), vegetation components (Xian 
and others, 2013), and terrain indices. We considered the following climate indices: precipitation totals, 
annual mean temperature, mean temperature during the wettest quarter, mean temperature during the 
warmest quarter, and the variation of monthly precipitation totals over the course of a year. The 
vegetation components, representing 2015 ground conditions, included shrub height and percent cover 
of sagebrush, herbaceous plants, bare ground, big sagebrush, and litter (Xian and others, 2013). We 
developed a hydrologically corrected 30-m Digital Elevation Model (DEM) from which we derived a 
Vector Ruggedness Measure (VRM; Sappington and others, 2007) and a Terrain Ruggedness Index 
(TRI; Riley and others, 1999). We developed the VRM for each buffered distance and summarized the 
TRI for each buffered distance. Like the climate and vegetation indices, we assigned the terrain indices 
to each lek location, respective of the evaluated scales. 

To inform connectivity of lek locations, we assumed leks with a least-cost path to adjacent leks 
were the most likely neighboring leks that sage-grouse will visit within a season. To capture 
connectivity of leks, we developed a Least Cost Minimum Spanning Tree (LC-MST) using ESRI 
ArcGIS Pro (Cost Connectivity Tool), lek locations, and the hydrologically corrected DEM. We also 
incorporated the restriction of sage-grouse movements by identifying inter-lek movements and barriers 
to movements. We quantified the inter-lek movements in Nevada using a dataset of 230 sage-grouse 
marked with Global Positioning System (GPS) collars (Coates, Casazza, and others, 2016). We 
restricted that dataset to those birds (n=53) that demonstrated greater than or equal to (>) 1 inter-lek 
movement during the breeding season (March through May 2012–16). Each bird was assigned to a 
home lek based on capture site and if a bird moved within 400 m of a different lek (ESRI, 2011, Near 
tool,), we considered this as an inter-lek movement. We calculated the 95th percentile of all designated 
inter-lek movement distances and we rounded the mean (14.9 km, Standard Error = 0.451) to the nearest 
whole number to inform the connectivity between leks. 
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We defined barriers to sage-grouse movements by considering large topographic features and 
anthropogenic disturbances, which Knick and others (2013) incorporated in their ecological minimums 
evaluation. Using non-breeding season locations from 274 GPS collared birds within Nevada (2012–
16), we constructed movement paths occurring within less than or equal to (≤) 2-day intervals. We 
inverted the statewide Nevada habitat suitability index (HSI; Coates, Casazza, and others, 2016) to 
represent resistance and then extracted raster values of the ecological minimums resistance surface and 
the HSI resistance surface along the constructed paths. We divided the disagreement between these 
results by the number of points used to create all movement paths. This proportion represented the time 
that the two surfaces disagreed on restrictions to movement. We then used the resistance value 
optimizing agreement (95th percentile) to set the threshold of the ecological minimums product, 
resulting in a barriers dataset. We modified the dataset when lek locations occurred within barriers and 
we removed small barriers that resulted from the inclusion of data with varying spatial scales of the 
ecological minimums. 

We divided the LC-MST into three categories where each category informed a different 
hierarchical scale when clustering the leks. To create the first LC-MST category (hereinafter referred to 
as LC-MST 1), we enforced inter-lek movement distances of 15 km by deleting paths between leks 
longer than 15 km and paths between leks intersecting barriers. Because of the differing spatial scales of 
the ecological-minimums dataset relative to the data used in this analysis, we did not modify the LC-
MST when its paths touched edges of large barriers. We then lessened the restriction of movement 
distances by allowing birds to move greater than 15 km, but they could not cross barriers (added paths 
>15 km back to the LC-MST; hereinafter referred to as LC-MST 2). The third LC-MST product 
(hereinafter referred to as LC-MST 3) did not enforce the inter-lek movement maximum distance 
threshold or barriers. We used the LC-MST 1, LC-MST 2, and LC-MST 3 to develop the finest scaled 
clusters, moderately scaled clusters, and coarsest-scaled clusters, respectively. 

To create hierarchical scales of small and fine-scaled polygons (more representative of local and 
closed populations of sage-grouse) within increasingly larger and coarser scaled clusters (more 
representative of similar climatic and vegetation conditions influencing large metapopulations of sage-
grouse), we used a clustering algorithm known as Spatial ‘K’luster Analysis by Tree Edge Removal 
(SKATER; AssunÇão and others, 2006). We imported our three LC-MSTs into Program R (R Core 
Team, 2016) using the shp2graph library (Lu, 2014). We used the ‘skater’ function in the spdep library 
(Bivand and others, 2013; Bivand and Prias, 2015) for all clustering. Cluster scales 1–2 (fine scale) 
relied on the LC-MST 1, cluster scales 3–4 (moderate scale) relied on the LC-MST 2, and cluster scales 
≥5 relied on the LC-MST 3 (coarse scale). When we created cluster scales 1, 3, and 5, we included all 
covariates (referred to as ‘full’ stage), but when we created cluster scales 2, 4, and ≥6, we considered the 
covariates identified from the previous cluster scales results (referred to as ‘interim’ stage). 

We considered all univariate and multivariate cases during the full stage clustering of leks and 
we evaluated two spatial weighting methods of the covariate space (Euclidean and Mahalanobis 
distance). When we created the interim cluster scales, the covariates did not change, but we permitted 
the spatial weight to change. Each time we transitioned to a new cluster scale, we calculated the median 
of the raw covariates assigned to the leks within each cluster, and we constrained the SKATER 
algorithm to group a larger incremental number of leks. Because SKATER only supports connected 
graphs, we clustered and treated each subgraph independently. We used an agglomerative clustering 
approach where we started at the finest-scale clusters and we applied SKATER at each tier, thereby 
aggregating leks at each cluster scale. We identified the top cluster model of each cluster scale and 
subgraph using the Akaike’s Information Criterion corrected for small sample sizes (AICc; Burnham 
and Anderson, 2002). After clustering the leks, we used ESRI’s Desktop (ESRI, 2011) Thiessen 
Polygon tool to create polygons of the leks assigned to a cluster. The aforementioned methodology  
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produced a total of seven spatial extents (or “cluster scales”), which formed the basis of our hierarchical 
monitoring strategy. We selected a subset of these spatial extents using empirical data available from 
radio-marked sage-grouse so that the most biologically relevant scales were used in the monitoring 
strategy.  

Selecting Cluster Scales for the Evaluation Process 
For our example, we objectively selected two nested cluster scales (that is, ‘neighborhood’ and 

‘climate’, in addition to the individual lek) to define sage-grouse populations for the evaluation process. 
We chose two cluster scales to simplify the analysis and facilitate a framework more amenable to 
management decisions and actions. In choosing the smallest scale of clustering, our goal was to 
represent a population level of organization (where movements between clusters is minimized) 
amendable to informing management actions aimed at reducing or eliminating adverse effects of 
landscape-scale impacts to sage-grouse populations (for example, wildfire). In choosing the larger 
cluster scale, the goal was to represent broad-scale factors (for example, climate) that govern population 
trends and are therefore difficult to influence through management action. However, too large of a 
larger cluster scale would result in the dilution of climatic and vegetation effects (as determined from 
the clustering analysis) that influence specific metapopopulations, because these effects would 
essentially be averaged across too large of an area (such as the regional scale). This created a twofold 
objective to: (1) reduce movement among clusters and allow for the assumption that the demographic 
rates within the cluster were driven more by births and deaths rather than immigration and emigration; 
and (2) minimize the area that a single cluster encompasses to reduce the variability in the remaining 
covariates (that is, not migration) responsible for driving changes in the vital rates within that cluster 
and be tractable for effective management. Accordingly, we term the smaller scale cluster as the 
‘neighborhood cluster’ and the larger scale cluster as the ‘climate cluster’. 

We selected the neighborhood and climate cluster from the pool of all quantified cluster scales 
(n = 7) using the following steps. First, we removed GPS locations collected from sage-grouse used in 
the previous analysis to allow an independent dataset for assessing cluster break-points. Second, we 
randomly sampled this dataset to collect one point per bird per day. Each bird was assigned a unique ID. 
Third, we duplicated the methods presented by Coates and others (2013) to construct kernel density 
estimates of the utilization distribution (UD) for each bird. This was accomplished by calculating the 
volume of each UD within each cluster across all cluster scales delineated (methods outlined in previous 
section). The volume of each UD within each cluster was then divided by the total volume of the UD, 
which provided the proportional volume of the UD. Fourth, we estimated the maximum proportional 
volume to represent the home cluster for each bird, and then calculated the proportion of time (based on 
volume) each bird spent outside of the home cluster. For example, if a bird spent the entire time inside 
the same cluster, then its home cluster volume would be 1.0, and its proportional volume outside the 
home cluster would be 1.0 – 1.0 = 0.0 (that is, no time was spent outside the home cluster). In contrast, 
if a bird spent 90 percent of the time inside the same cluster, then its home cluster volume would be 0.9, 
and proportional volume outside the home cluster would be 1.0 – 0.9 = 0.1 (that is, 10 percent of time 
was spent outside its home cluster). The average proportional volume outside the home cluster and 
associated standard errors were calculated for all birds for each of the delineated cluster scales. Last, we 
selected the biologically relevant neighborhood cluster scale based on differences between the mean UD 
for each scale to minimize movement between clusters and appropriate spatial extents that are most 
amenable to resource managers. The climate-cluster scale was chosen based on the largest scale that 
exhibited clear separation from the neighborhood-cluster scale and did not differ significantly from the 
next largest cluster scale.  



15 

Evaluation Process 

Modeling Population Change 
We used a time series of lek data available for sage-grouse monitored across Nevada and 

California from 2003 to 2016 to estimate annual changes in abundance by applying state-space models 
fit in a Bayesian statistical framework (Kery and Schaub, 2012). Lek count data underwent several 
quality control checks by the Western Association of Fish and Wildlife Agencies (WAFWA) before 
they were compiled for use in our models (Coates, Ricca, and others, 2016). In addition to the WAFWA 
quality control checks, we developed a set of criteria that had to be met for leks to be included in the 
dataset analyzed. For every year and every monitored lek, we used the maximum number of males per 
lek recorded. A lek had to be counted a minimum of 5 times over the 17-year study period, and each lek 
had to be monitored for at least 1 out of the last 5 years to be included in our dataset. We marked 
missing data in the compiled data files for leks that met the last criteria but included some missing years 
(that is, a missing year received a “NA” in our data file), and years with missing data did not enter the 
likelihood of the state-space model. For every lek meeting these criteria, we added a value of one to the 
reported count. This was necessary to avoid division by zero, which yields an undefined calculation of 
λ. Lek counts formed the basis of population data at each spatial extent. At the smallest cluster scale 
(the individual lek), the annual rate of population change was estimated. At the cluster and regional 
scales, we took the posterior parameter estimates of λ (natural-log transformed) and calculated a 
weighted average (based on lek-level abundance) from every lek nested within a given boundary. 

We used Bayesian state-space models to estimate N (that is, annual population abundance) and λ 
from the lek count data (Kery and Schaub, 2012; Coates and others, 2014; Green and others, 2017). 
These models assume constant or random variability in detection, which we confirmed prior to this 
analysis using a dataset of repeated double-blind ground counts, and aerial infrared surveys of artificial 
‘pseudo leks’ (that is, tethered live pheasants spaced in lek-like configurations) with known abundance. 
When detection probability is less than 1.0 (that is, imperfect detection) but relatively constant across 
years, state-space models provide an unbiased index of population size and estimates of λ that represent 
trends in the sampled population. These models also provide a means of separating process variance 
(that is, environmental) from observation error (Kery and Schaub, 2012), which is done by partitioning 
each variance component using a hierarchical model, where: 

 
 𝑁𝑁𝑖𝑖,𝑡𝑡+1 =  𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝜆𝜆𝑖𝑖,𝑡𝑡 (1) 
 
 𝜆𝜆𝑖𝑖,𝑡𝑡 ~ Normal(𝜆̅𝜆𝑖𝑖,𝜎𝜎𝜆𝜆2𝑖𝑖)T(0, ) (2) 
   
 𝑦𝑦𝑖𝑖,𝑡𝑡~ Poisson(𝑁𝑁𝑖𝑖,𝑡𝑡) (3) 
   
 
 

𝑁𝑁𝑖𝑖,1 =  Uniform (0,60) (4) 

Here, the state process (equations 1 and 2) can be modeled while accounting for observation 
error (equation 3). Equation 3 maps the true state of the process onto the observed data (𝑦𝑦𝑖𝑖,𝑡𝑡), which in 
this case are individual maximum counts (y) at a given lek population (i) and year (t). Note that our use 
of “population” here refers specifically to an individual lek population. The errors in the counts were 
modeled using a Poisson distribution with a mean equal to the variance. Use of a Poisson error structure, 
as specified in equation 3, assumes that observation error increases as the “true” number of birds present 
on the lek increases, which was a reasonable assumption for counts of sage-grouse at leks. We assigned 
vague priors to the initial (t=1) population size of each lek (equation 4). 
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The state-space model produced a posterior distribution of the estimated parameters (that is, N 
and 𝜆𝜆) for each population and year of the time series. The posterior is a probability distribution 
containing samples from the Markov chain Monte Carlo (MCMC) sampler which is used to produce 
statistics (for example, median and credible intervals) for a given parameter. These posterior 
distributions formed the basis of our inference for identifying thresholds for populations that 
destabilized and decoupled from a higher scale. Lambda (𝜆𝜆) for each site and year was distributed 
normally about the mean population-level λ. Sigma (σ2) was given a uniform prior using the dunif 
function set at (0,10) in program JAGS (Plummer and others, 2015) run through the R interface. Site 
and year λ values were truncated using the T(lower, upper) function in JAGS, and was set as T(0,). 
Models were run in program JAGS using three chains of 15,000 iterations each following a burn-in 
period of 5,000 iterations. Chains were thinned by a factor of three. Model convergence was assessed 
using the R-hat statistic (Gelman and others, 2004). We did not find a lack of convergence among any 
of the parameters monitored (R-hat < 1.1). 

These posterior distributions of 𝜆𝜆 estimates through time and across individual leks, 
neighborhood clusters, and climate clusters form the foundation of the early warning system and 
evaluation process. This system signals when populations may be in need of management intervention. 
Equally important, this system can be modified to provide a quantitative and defensible way to evaluate 
when past conservation actions have positively affected sage-grouse populations. 

Determining Thresholds  
We conducted a simulation analysis to estimate: (1) destabilizing thresholds designed to identify 

significant rates of population decline at a particular nested scale; and (2) decoupling thresholds 
designed to identify rates of population decline at smaller scales that decouple significantly from rates 
of population change at a larger spatial scale. Leks and the neighborhood cluster scale were contrasted 
for decoupling against the climate cluster scale, and the climate cluster scale contrasted for decoupling 
against the regional scale. The simulation retrospectively analyzed 17 continuous years of annual lek 
count data (2000–2016) to estimate relative probabilities of crossing different slow and fast thresholds 
on population stability. Crossing a slow destabilizing and decoupling threshold would indicate that the 
population was more likely to contribute towards probability of decline rather than probability of 
stabilization at the respective larger scale, whereas crossing a fast threshold would indicate that the 
population was more likely to contribute towards probability of extirpation rather than probability of 
decline at the respective larger scale. The steps used to estimate slow and fast destabilizing and 
decoupling thresholds are outlined as follows.  

Slow Destabilizing Thresholds 
1. We first used state-space models that account for process and observation variance to derive 

posterior parameter estimates (PPE) of λ for each lek every year. We converted estimates to 
intrinsic rate of change (r) using a logarithmic transformation. We then calculated r at 
neighborhood cluster and climate cluster scales by averaging the median lek estimate of r 
weighted by the observed number of sage-grouse on each lek. The purpose of weighting was to 
allow contribution of each lek to the larger scale as a linear proportion of its lek size, largely 
because we were focused on estimating λ from total abundance at larger spatial scales. We then 
exponentiated the weighted average to convert back to annual λ.  
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2. The next step was to identify a threshold of annual λ that contributed to population declines at 
each spatial scale. At the lek-, neighborhood-, and climate-cluster scales, we iteratively 
evaluated adjustments of λ from 0.02 to 1.00 by incremental unit increases of 0.02. Per iteration, 
λ was adjusted to 1.00 (stable) for all lek and year combinations with resulting median λ values 
that were less than the incremental value (fig. 3). The purpose of this step was to simulate 
neutralization of the most offending leks to those that were least offending in a systematic 
iterative process. For each increment, the lek and neighborhood cluster 𝜆𝜆 values (converted to r) 
were averaged (weighted) across each climate cluster. Similarly, the climate cluster 𝜆𝜆 values 
(converted to r) for each increment were averaged across the regional extent. This step simulated 
evaluation of how neutralizing all λ values at a particular increment at a lower scale resulted in 
overall population stability at the respective greater scale (fig. 3).  

3. An increment that resulted in an average climate cluster (for leks and neighborhood clusters) or 
regional (for climate clusters) 𝜆𝜆 value equal to or greater than 1.00 (that is, stable or increasing), 
following an increment in which the 𝜆𝜆 value was less than 1.00 (that is, decreasing), was termed 
the separation point (fig. 3). This evaluation revealed those leks, neighborhood clusters, or 
climate clusters with 𝜆𝜆 values less than or equal to the separation point that contributed more to 
instability than stability (hereinafter, destabilizing units); whereas leks, neighborhood clusters, or 
climate clusters with 𝜆𝜆 values greater than the separation point contributed more to stability than 
instability (hereinafter, stabilizing units).   

4. Distributions of λ values for destabilizing and stabilizing units were plotted against each other 
for leks, neighborhood clusters, and climate clusters. The intersection of these curves indicated 
the threshold for slow destabilization (fig. 4). 

5. At predetermined ranges of λ values, we bracketed the estimated threshold by ± 0.05 (leks and 
neighborhood clusters = 0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95; climate 
clusters = 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99). We then calculated the 
absolute value for the difference between probability densities (│ΔPD│) of destabilizing and 
stabilizing units for leks, neighborhood clusters, and climate clusters.  

6. At each predetermined location, the minimum │ΔPD│ was divided by the │ΔPD│ to derive a 
relative probability for the destabilized threshold value (fig. 5). A steep curve with a clear break 
in its peaks would indicate a high degree of certainty in the defined thresholds, whereas a flat 
peak would indicate a low degree of certainty in the thresholds.  

Slow Decoupling Thresholds 
1. Estimating slow decoupling thresholds involved two parts. The first part required estimation of 

individual population units at a smaller spatial scale (within lek, neighborhood, or climate 
clusters) that were responsible for contributing to slow destabilization rather than stabilization 
relative to their respective larger scale (described in section, “Slow Destabilizing Thresholds”). 
The second part required building a distribution to determine proportional changes (or deviation) 
in λ in the destabilizing population units at the smaller scale relative to the median λ of their 
respective larger scale (again, leks and neighborhood clusters against climate clusters; climate 
clusters against the entire region). This distribution allows identification of the decoupling 
threshold. 
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Figure 3. Conceptual graphs showing how declining annual rates of population change (λ less than 1.0) at a lower 
scale (in this case, leks) were incrementally set to 1.0 to bring about simulated stability of known declining leks at 
an upper scale (in this case, the climate scale). Panel A shows a hypothetical distribution at the upper scale and 
the λ values at the lek scale that inform the distribution (inset table of 25 leks and corresponding λ values to the 
right). Panel B illustrates the shift in the distribution when leks with λ less than or equal to 0.3 are set to 1.0 
(highlighted in bold* in inset table), Panel C illustrates the shift in the distribution when leks with λ less than or 
equal to 0.5 are set to 1.0 (highlighted in bold* in inset table), and Panel D illustrates the shift in the distribution 
when leks with λ less than or equal to 0.7 are set to 1.0 (highlighted in bold* in inset table). In this case, λ = 0.7 is 
the separation point where the median of the modified distribution meets or exceeds 1.0, which formed the 
separation point. In practice, λ was incrementally stabilized at intervals of 0.02 until the separation point was 
reached. 
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Figure 4. Graph showing distribution of annual rates of population change (𝜆𝜆’s) for destabilizing lek units (red curve 
on the left side of the x-axis) and stabilizing lek units (green curve towards the right side of the x-axis). In a 
retrospective simulation analysis using 17 years of annual lek count data, destabilizing lek units had their λ values 
converted to 1.0 whereas λ values for stabilizing lek units remained unchanged (see fig. 3). The dashed vertical 
line represents the intersection between the two curves and indicates a slow destabilizing threshold of 0.90. The 
same process was conducted for neighborhood and climate clusters. 
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Figure. 5.  Graph showing relative probability for the slow destabilizing threshold value (0.90), based on the 
difference between probability densities of stabilizing and destabilizing lek units. The steepness of the peak 
indicates a high level of certainty for the identified threshold. The same process was conducted for neighborhood 
and climate clusters.  

 
2. To estimate the thresholds, we first calculated the median value of the PPE of 𝜆𝜆 for all 

destabilizing population units within lek-, neighborhood-, or climate-cluster scales. We then 
assigned that value to one of the 11 candidate threshold groups based on whether or not they 
were less than or equal to range of values (threshold ±0.05) described in step 5 in section, ”Slow 
Destabilizing Thresholds” (that is, lek and neighborhood clusters group range = 0.85, 0.86, 0.87, 
0.88, 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95; climate cluster group range = 0.89, 0.90, 0.91, 0.92, 
0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99). 

3. Values of λ from the 11 threshold groups were sampled (with replacement) based on the relative 
probability of that threshold value (calculated in step 6 in section, “Slow Destabilizing 
Thresholds”) (fig. 6). 

4. Those 11 probability densities were then grouped into a single composite probability density 
(fig. 7). 
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5. Using this composite probability density, we calculated the change in the slope at 0.002 
increments of λ within a range bracketed by the peak of the composite probability density, and 
1.000. For example, if the peak occurred at 0.76, then changes in slope were calculated at 0.762, 
0.764, 0.766, and so on, to 1.000. We chose 0.002 increments of λ to allow high resolution 
detection of changes in slope. 

6. These changes in the slope were then divided by their maximum value (that is, the maximum 
change in slope) to derive a relative probability for the decoupling threshold value. The peak of 
this distribution represented the inflection point and indicated the threshold for slow decoupling 
(fig. 8). We selected the more protective inflection point that set the threshold at a higher level, 
rather than the median of the composite distribution (fig. 7), to guard against identifying 
decoupling at proportional changes more associated with rapid declines that are more difficult to 
stabilize.  

 
Figure 6.  Graph showing probability distributions of λ for sage-grouse leks that were less than or equal to the 
destabilized threshold values (0.85–0.95).The proportion of samples used to inform each probability distribution 
was based on the relative probability for each destabilized threshold value. The same process was conducted for 
neighborhood and climate clusters.  
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Figure 7.  Graph showing composite probability distribution of λ values derived from figure 6 weighted by their 
relative probability. The vertical dashed line represents the maximum probability density for leks. The same process 
was conducted for neighborhood and climate clusters. 
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Figure 8.  Graph showing relative probability for the slow decoupling threshold value, based on the change in slope 
of the composite probability distribution from figure 7. The example shown here illustrates the slow threshold for 
decoupling at the lek scale. The same process was conducted for neighborhood and climate clusters.
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Fast Destabilizing and Decoupling Thresholds 
Population units that contributed more to the probability of extirpation were used to identify 

thresholds for fast destabilizing and decoupling. Steps used were mostly identical to those described for 
slow destabilization and decoupling thresholds as previously described, with differences highlighted 
here.  

1. We created a distribution of PPE derived λ values for “inactive leks” (that is, leks that went from 
an active status to an inactive status, and remained there, during the study). Using the same 
methods described in steps 1–6 of the “Slow Destabilizing Thresholds” section, we simulated 
separation points for leks with λ values more likely to contribute to extirpation compared to 
persistence probability. Here, destabilizing units (used for slow destabilization) were replaced 
with ”extirpation-prone” units. We then intersected that distribution with the distribution for 
extant leks, identified the fast destabilization threshold using the point where the two curves 
intersected, and calculated the relative probability of that threshold. 

2. We identified fast decoupling thresholds for leks with the same sequence of steps used for slow 
decoupling thresholds, but we used extirpation-prone rather destabilizing units.  

3. Because no neighborhood or climate clusters were ever extirpated, it was impossible to calculate 
fast decoupling thresholds for these spatial scales using the same methods described for slow 
thresholds. Hence, for the neighborhood and climate scale, we adopted the same fast 
destabilizing and decoupling threshold values determined for leks.  

Identifying Warnings for Declining Populations 
After establishing the slow and fast destabilizing and decoupling thresholds, we contrasted the 

Bayesian state-space model output derived from the time series of lek count data to identify if thresholds 
at slow or fast rates at a particular scale had been crossed during a given year. We established a rule to 
guard against attributing population declines incorrectly to local rather than regional factors by requiring 
both types of thresholds to be crossed, whereby the posterior distribution of λ: (1) crossed the 
destabilization threshold; and (2) crossed the decoupling threshold (that is, the expected population 
growth rate at the next higher-order level). Depending on whether the thresholds were high or low, a 
slow or fast, respectively, warning is then activated and the population of interest proceeds along the 
evaluation process. 

Figure 9 provides an illustration of the scenarios that would or would not activate a warning for 
a population of interest under a slow or fast threshold. In our example, these pertain to local populations 
at the individual lek or neighborhood-cluster scales relative to the climate scale, but can be extended to 
larger spatial scales (for example, the climate scale relative to the region). Patterns shown in figure 9A–
C would not activate a warning because: the distribution of local population λ values is both stable (λ ~ 
1.0) and aligns (that is, is coupled) with regional population λ values (fig. 9A); the local population is 
stable but decoupled from the strongly growing regional population, which indicates that the local 
population is underperforming relative to growing populations at the regional scale (fig. 9B); or the local 
population has destabilized but has not decoupled because it is declining in relative synchrony with 
declines occurring at the regional scale, which could be indicative of an overall downward population 
trend across the region during climatically driven population cycles (fig. 9C). In contrast, patterns 
shown in figure 9D would activate a warning because the local population has destabilized, and is now 
decoupled from stable or growing patterns at the regional scale. In this case, potentially manageable 
disturbances may be associated with the beginning stages of population declines at the local scale that 
depart from broad-scale sage-grouse population trends likely driven by climatic variation.
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Figure 9. Graphs showing threshold crossings necessary to activate warnings within the evaluation process. In 
each panel, the bell curve represents the posterior distribution of λ values for population of interest at smaller 
spatial scales (for example, individual leks and neighborhood clusters), the solid red vertical line represents the 
destabilizing threshold where λ departs ‘significantly’ from 1.0, and the dashed blue line represents the decoupling 
threshold where λ at the smaller spatial scale relative to the median λ at the large spatial scale (for example, 
climate scale), whereby the proportional change in λ from the local to climate scale indicate high probability for 
decline or extirpation for the local population. The inset graphs represent destabilizing trends (solid red line) or 
decoupling thresholds (dashed blue line). Dashed blue lines that match red lines in the inset graphs indicate 
coupling, whereas those that do not match indicate decoupling. Panel A illustrates a scenario where the local 
population is both stable and matching trends at the higher scale. Panel B illustrates a scenario where the local 
population is stable but decoupled from trends at the higher scales, Panel C illustrates a scenario where the local 
population is declining but the pattern matches that of similar declines occurring at the higher scale (indicative of 
potential larger scale population cycles). Pattern D illustrates a scenario where the local population is both declining 
and decoupled from more stable patterns at the higher scale. Only Panel D warning activated because both 
thresholds have been crossed.
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Importantly, our framework allows for evaluation of decoupling thresholds relative to any 
desired larger spatial scale that represents a biologically meaningful hierarchical level of organization, 
and patterns within lower spatial scales either can be contrasted against those at a single large-scale, or 
in a sequence of contrasting patterns, whereby smaller scales are compared to those at the next larger 
scale, and so-forth (for example, lek to neighborhood, neighborhood to climate). In our example, we 
chose to contrast all smaller spatial scales that represent lower levels of organization (populations and 
metapopulations) against those occurring at the larger climate cluster (see fig. 10). This reductionist 
approach of starting at the climate scale and then contrasting against successively nested local scales, 
allows for identification of how fine a scale is needed to identify where thresholds for decoupling have 
been crossed. This helps guard against implementing management actions that may be misaligned with 
the size of disturbances driving local population declines when signals are activated (see section, 
“Activating Signals for Declining Populations”). This approach can also be modified to yield higher 
resolution output for targeting potential management action by adding more nested spatial scales for 
sequentially contrasting population trends against those at larger climate-driven scales. 

Activating Signals for Declining Populations 
It is possible that spurious warnings in a single year could result from a variety of mechanisms 

unrelated to meaningful changes in population growth. These mechanisms include, but are not limited 
to: (1) short-term demographic stochasticity (for example, a short-term reduction in population 
performance possibly stemming from an ephemeral decrease in birth rates); (2) lek visitation rates (for 
example, a particular lek is subject to more variability among males attending that lek); or (3) 
measurement errors (for example, birds flushed from a lek before a count was taken, or incorrectly 
recording a zero count for a lek that was not actually counted). Criteria are also needed to evaluate how 
long destabilization and decoupling can occur before the population of interest is unlikely to recover 
despite management intervention. Therefore, the final step of the evaluation process incorporated 
temporal thresholds whereby a signal activates if slow or fast warnings remain activated over a 
particular sequence of years. These signals may then stimulate different management actions needed to 
stabilize or reverse estimated population declines.  

Here, we propose two example signal types: soft and hard. To guard against potential problems 
caused by under-sampling, we set a rule whereby a lek required at least two counts over 5 years to 
activate a soft or hard signal. Soft signals activate if slow warnings occur over 2 consecutive years. We 
did not evaluate management effectiveness of soft signals because they are intended to identify 
populations that are steadily declining and perhaps require more monitoring and localized threat 
assessment before implementing any management action. In contrast, hard signals are intended to 
identify populations at high risk of extirpation where management actions could be implemented to 
ameliorate possible anthropogenic surface disturbance or land-cover change. Because extirpation risk 
could occur due to a steady and compounding decline (for instance, a series of slow warnings beyond 2 
years), as well as under precipitous declining conditions (for instance, a sequence of fast warnings), we 
evaluated a series of combinations for activating signals under different durations of slow and fast 
warnings. Specifically, and for each scale, we activated signals over periods comprising 3 out of 4, 4 out 
of 4, and 4 out of 5 consecutive years of slow warnings, and combined each slow warning with fast 
warnings activated over 2 out of 2 or 2 out of 3 consecutive years. This design allowed for evaluation of 
six possible combinations of slow or fast warnings to reach a hard signal.  
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Figure 10. Conceptual model diagram showing how decoupling thresholds are contrasted from smaller spatial 
scales (that is, lek and neighborhood cluster) to a greater spatial scales (climate cluster) in a reductionist fashion. 
The black sided squares represents a climate cluster, blue-sided squares indicate neighborhood clusters, ovals 
within boxes represent leks, and blue hash-stripes indicate when thresholds for decoupling may have been 
crossed. In this example, decoupling at the neighborhood cluster is first evaluated. The neighborhood decouples 
significantly from its climate cluster when a threshold is crossed, and individual leks within are also not decoupled 
from the climate cluster. However, individual leks that decouple within neighborhoods can also be identified. If the 
decoupling threshold for the neighborhood is not crossed, the evaluation process continues to the lek scale relative 
to the climate cluster.
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We conducted a simulation analysis to evaluate effectiveness of each combination of slow and 
fast warnings to identify the temporal threshold activating a hard signal that resulted in the greatest 
reduction in annual rates of population decline (1 – λ). For each combination, we simulated the effect of 
management action on improving λ by identifying all local populations (leks or neighborhood clusters) 
with a hard signal over the 17-year time series, and then adjusting the respective λ to 1.0 to neutralize 
the effect on the decline (hereinafter, neutralized populations). We ran these simulations assuming 100 
percent management efficiency for all local populations with a hard signal (that is, all populations that 
had a hard signal over the course of the time series were neutralized), and then reduced management 
intensity in 10 percent increments (that is, neutralizing a random draw of 90 percent of populations that 
had a hard signal, then 80, 70 percent, etc.). We then calculated management efficiency as the change 
(or ratio) in neutralized λ compared to the original and unmodified λ. Thus, this simulation ultimately 
allowed for two types of comparisons: (1) differences in overall λ between varying temporal thresholds 
to reach a hard signal, and (2) differences in overall λ within each temporal threshold among varying 
management effectiveness. This simulation is necessary because a temporal threshold that is too long 
may result in implementing management action too late to rescue a population, whereas temporal 
thresholds that are too short remain prone to spurious warnings. Importantly, this simulation does not 
assume to identify the particular type of management action implemented and its subsequent effect on 
neutralizing specific mechanisms that are likely driving observed rates of decline. Rather, the term 
management is used in a strictly broad sense, and is implemented in our simulations with a generic 
approach.  

Status of Sage-Grouse Populations as of 2016 
We used the evaluation process for assessing thresholds, warnings, and signals to describe the 

status of sage-grouse populations in Nevada and northeastern California as of 2016. In particular, we 
described those populations at the lek and neighborhood cluster scales signaling the possible need for 
monitoring (soft signal) or active management (hard signal). 

Results 
Spatial Extents 

A total of seven spatial extents were delineated based on the LC-MST approach and SKATER 
algorithm. These spatial extents consisted of seven distinct spatial cluster scales to represent hierarchical 
levels of population organization across Nevada and northeastern California. A total of 138 scale 1 
clusters, 111 scale 2 clusters, 34 scale 3 clusters, 26 scale 4 clusters, 7 scale 5 clusters, 6 scale 6 clusters, 
and 5 scale 7 clusters were delineated. Delineated clusters were not always contiguous and clusters 
could be separated into fully disjoint polygons (for examples, see fig. 11). 
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Figure 11. Map showing regional extent of greater sage-grouse (Centrocercus urophasianus) in Nevada and 
California. Lek locations (filled blue circles) that met criteria for inclusion in the analysis are shown along with their 
associated neighborhood clusters and climate clusters. Colored shaded areas represent climate clusters and 
delineated areas (black outlined polygons) within climate clusters represent neighborhood clusters.   
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Selection of Neighborhood and Climate Clusters  
We calculated utilization distributions for the cluster scales delineated using GPS locations of 

individual sage-grouse to identify which scales were biologically relevant to hierarchical levels of 
population organization (for example, lek to population to metapopulation to region). Significant 
differences (based on non-overlapping confidence intervals) among cluster scales were found in the 
proportion of time sage-grouse spent outside their home cluster, which in general, was higher for scales 
1 and 2 and diverged strongly from scales 5, 6, and 7 (fig. 12). We ultimately used cluster scale 2 to 
define the neighborhood cluster, and cluster scale 5 to define the climate cluster. We found evidence 
that cluster scale 3 aligned better with stronger population closure than cluster scale 2 to describe the 
neighborhood cluster scale. However, we used cluster scale 2 following feedback from a stakeholder 
setting, where it was expressed that cluster scale 2 offered better opportunities for more effective 
management actions (that is, management that could be implemented largely within a single 
management district) compared to cluster scale 3. In addition, all GPS-marked sage-grouse spent less 
than 6 percent of their time outside their home cluster scale 2, so we could assume that population 
dynamics at this scale were governed mostly by births and deaths within a closed biological unit small 
enough to allow local management. In contrast, metapopulation dynamics were likely well represented 
at cluster scale 5, where spatial extents were large enough to allow all GPS-marked sage-grouse to 
spend less than 2 percent of their time outside their cluster scale 5, and sage-grouse within these larger 
areas likely experienced similar climatic and habitat conditions. Individual lek and neighborhood 
clusters therefore represented local-scale populations, and their respective rates of populations change 
were contrasted against those occurring at the larger climate scale. Isolated neighborhood clusters 
without leks (n=4) were nested originally into a non-adjacent climate cluster. In these cases, we allowed 
these neighborhood clusters to adopt the identity of their respective adjoining climate cluster that 
contained leks. This post-hoc processing had no impact on the results of the signal analysis.Rates of 
population change at the climate scale were contrasted against those occurring at the full regional scale 
that encompassed all of Nevada and all but a few of the northeastern California populations of sage-
grouse. 

Thresholds 
The simulation analysis produced a relative probability distribution of threshold values for slow 

and fast thresholds across all spatial scales of interest in our example. Slow destabilization thresholds 
had the highest relative probabilities at 0.90, 0.91, and 0.97, for leks, neighborhood clusters, and climate 
clusters, respectively. Fast destabilization thresholds had the highest relative probability at 0.55 for all 
spatial scales. Slow decoupling thresholds with highest relative probabilities for leks and neighborhood 
clusters relative to climate clusters were 0.89 and 0.92, respectively, and corresponding fast thresholds 
were 0.52 for both scales. Slow and fast decoupling thresholds with the highest relative probabilities for 
climate clusters relative to the region were 0.93 and 0.52, respectively.  
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Figure 12. Graph showing comparisons of proportion of time GPS-marked greater sage-grouse (Centrocercus 
urophasianus) spent outside home clusters (that is, clusters outside of an area where birds were initially marked) 
across seven different cluster spatial extents. Mean proportions were calculated from the utilization distributions 
modeled for each bird. Cluster scales 2 (neighborhood cluster) and 5 (climate cluster), where selected to represent 
neighborhood and climate scales, respectively, in our example. 

Applying Temporal Thresholds to Warnings, and Simulated Effectiveness of Signals 
Soft signals (activated by 2 consecutive years of slow warnings) occurred on average for 6 and 7 

percent of leks and neighborhood clusters, respectively, over the 17-year time series. When we applied 
our evaluation process over the 17-year time series under the different temporal threshold combinations 
for hard signals, 1 to 3 percent of leks and 1 to 2 percent of neighborhood clusters, respectively, had the 
requisite sequence of slow and fast warnings necessary to activate a hard signal (table 2). The greatest 
number of hard signals activated under 3 out of 4 consecutive years of slow warnings or 2 out of 3 
consecutive years of fast warnings. In general, hard signals activated more frequently for leks with 
consistent survey effort, and for small and medium-sized leks than larger sized leks across all temporal 
threshold combinations. Hard signals also activated more frequently for clusters with consistent survey 
effort but with larger leks (table 2). 
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We did not evaluate management efficiency for soft signals because they only activated more 
intensive monitoring (but not active management) in our example. For hard signals, simulated 
management efficiency varied under the different temporal threshold combinations evaluated for 
activation (table 3). In comparing similar management efficiency across leks and clusters that activated 
hard signals, λ improved the most for leks and neighborhood cluster populations under the rule of 3 out 
of 4 consecutive years of slow warnings or 2 out of 3 consecutive years of fast warnings, and the pattern 
held across most levels of management intensity. Conversion of these ratios to values that reflected the 
percent simulated improvement on the reduction in the 17-year rate of annual population decline over 
the following 17 years (1 –λ) more clearly illustrated how this rule for hard signals consistently 
outperformed the other candidate rules (table 4). These improvements were nearly twice as high as those 
simulated under 4 consecutive or 4 out of 5 consecutive years of slow warnings combined with either 2 
consecutive or 2 out of 3 consecutive years of fast warnings. They were also at least three-times as high 
as those simulated under the same sequence of fast warnings but with 4 consecutive years of slow 
warnings. Moreover, this rule was the only one to bring about simulated long-term stability when all 
management was assumed to be effective (that is, 100 percent), and cut the rate of decline by roughly 
one-half at 50 percent management intensity (table 4). Similar but slightly lower improvements were 
observed with the same sequence of slow warnings but allowing 2 consecutive years of fast warnings. 
Accordingly, we selected the 3 out of 4 consecutive years of slow warnings or 2 out of 3 consecutive 
years of fast warnings as the most protective temporal threshold for activating a hard signal for our 
example.  

Status of Sage-Grouse as of 2016 
When the entire evaluation process was applied to sage-grouse populations as of 2016, soft 

signals were activated across 17 leks (fig. 13). The majority of soft lek signals were located in the Ely 
climate cluster (9), followed by Elko East (4), Battle Mountain North (2) and Carson City (2). No leks 
were activated as soft signals within the Battle Mountain South, Winnemucca, and Elko West climate 
clusters. At the neighborhood cluster scale, soft signals activated at 7 clusters (fig. 14). The most soft 
signals activated in clusters in Ely (3), followed by Battle Mountain North (2), Elko East (1), and 
Carson City (1). No soft signals activated within climate clusters that were contrasted against the 
regional scale. 

As of 2016, hard signals activated at 5 leks located within the Elko East (2), Battle Mountain 
North (1), Ely (1), and Battle Mountain South (1) climate clusters (fig. 15). Hard signals did not activate 
at any neighborhood clusters in 2016. No soft or hard signals activated at any climate clusters in 2016. 
When averaged annually over the last 17 years at the regional scale, λ was 0.961 (95% CI = 0.904–
1.02). This corresponded to an average and long-term rate of annual decline of 3.86 percent. No hard 
signals activated within climate clusters that were contrasted against the regional scale. 

In comparison to previous years, 2016 had relatively fewer leks and neighborhood clusters with 
activated hard signals (table 2). Under our selected temporal threshold (that is, 3 out of 4 consecutive 
years of activated slow warnings or 2 out of 3 consecutive years of activated fast warnings), all hard 
signals activated at either large- or medium-sized leks with consistent survey effort.  
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Figure 13. Map showing locations of greater sage-grouse (Centrocercus urophasianus) leks that met the criteria for 
a soft signal in 2016. Colored shaded areas represent climate clusters, and delineated areas (black outlined 
polygons) within climate clusters represent neighborhood clusters.  
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Figure 14. Map showing locations of greater sage-grouse (Centrocercus urophasianus) leks and neighborhood 
clusters that met the criteria for a soft signal in 2016. Colored shaded areas represent climate clusters and 
delineated areas (black outlined polygons) within climate clusters represent neighborhood clusters.  
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Figure 15. Map showing locations of greater sage-grouse (Centrocercus urophasianus) leks that met the criteria for 
a hard signal in 2016. Colored shaded areas represent climate clusters and delineated areas within climate clusters 
(black outlined polygons) represent neighborhood clusters.  
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Table 2.  Descriptive statistics for declining sage-grouse (Centrocercus urophasianus) populations in Nevada and northeastern California that 
activated a hard signal under different combinations of slow and fast warnings across all years (2000–2016) and for 2016.  
 
[Number of hard signals are also presented in relation to sample size (that is, number of lek counts conducted) and lek size (that is, average number of males on a 
lek over a 5-year period) categories that corresponded with a hard signal. Samples size categories that indicated the number of counts conducted over a 5-year 
period were: > 3 (greater than three lek counts), 3 (three lek counts), and 2 (two lek counts). Lek size categories were: Large (L) (greater than 29 male sage-
grouse counted, Medium (M) (11–29 male sage-grouse counted), Small (S) (less than 11 male sage-grouse counted)]  
 

        Hard signal - all years  Hard signals - 2016 
 

  Hard signal - all years Hard signals - 2016  
Sample size 

category  Lek size category  
Sample size 

category  Lek size category 
Population Slow 

warning 
(years) 

Fast warning 
(years) 

Average 
Proportio

n 
Average 
Number 

 
Proportio

n  Number   >3 3 2   L M S   >3 3 2   L M S 
Lek 3 out of 4 2 

consecutive 0.02 12.0 0.01 5.0  106 19 19  62 58 24  5 0 0  3 2 0 

  2 out of 3 0.03 12.6 0.01 5.0  112 20 19  66 59 26  5 0 0  3 2 0 
 4 

consecutive 
2 
consecutive 0.01 4.7 0.01 5.0  33 16 77  20 22 14  3 2 0  2 3 0 

  2 out of 3 0.01 5.4 0.01 5.0  44 18 7  25 24 16  3 2 0  2 3 0 
 4 out of 5 2 

consecutive 0.01 7.6 0.01 5.0  57 19 15  30 32 29  4 1 0  2 2 1 

  2 out of 3 0.02 7.6 0.01 5.0  63 20 15  35 33 30  4 1 0  2 2 1 
                       

Neigh-
borhood 3 out of 4 2 

consecutive 0.02 1.8 0 0.0  16 3 2  2 12 7  0 0 0  0 0 0 

cluster  2 out of 3 0.02 1.8 0 0.0  16 3 2  2 12 7  0 0 0  0 0 0 
 4 

consecutive 
2 
consecutive 0.01 0.8 0 0.0  6 2 1  0 6 3  0 0 0  0 0 0 

  2 out of 3 0.01 0.8 0 0.0  6 2 1  0 6 3  0 0 0  0 0 0 
 4 out of 5 2 

consecutive 0.01 0.9 0.01 1.0  6 3 2  0 6 5  0 1 0  0 0 1 

   2 out of 3 0.01 0.9 0.01 1.0   6 3 2   0 6 5   0 1 0   0 0 1 

  



37 

Table 3. Management efficiency scenarios for greater sage-grouse (Centrocercus urophasianus) populations in northeastern California and Nevada 
under different combinations of slow and fast warnings for activating hard signals from 2000 to 2016.  
 
[For each combination, local populations that signaled were neutralized by setting the annual rate of population change (λ) = 1. Management efficiency is defined 
as the change in λ between the simulated neutralized populations and the original unmodified populations. Management intensity ranged from 100 to 10 percent 
(%) and varied by 10% intervals, where 100% indicated that management stabilized all populations (lek or cluster) that signal, 90% indicated that management 
stabilized 90% of populations that signaled, and so forth. Standard errors are in parentheses for management intensities less than 100%] 
 

    Percent change in λ (neutralized: modified signals) with stated management efficiency  
Local 

Population 
Slow warning 

(years) 
Fast warning 

(years)   100% 90% 80% 70% 60% 
lek 3 out of 4 2 consecutive  1.0206 1.0185 (0.0003) 1.0164 (0.0003) 1.0144 (0.0005) 1.0124 (0.0004) 

  2 out of 3  1.0219 1.0196 (0.0003) 1.0175 (0.0004) 1.0154 (0.0005) 1.0131 (0.0005) 

 4 consecutive 2 consecutive  1.0087 1.0078 (0.0002) 1.0070 (0.0002) 1.0060 (0.0003) 1.0052 (0.0003) 

  2 out of 3  1.0102 1.0092 (0.0002) 1.0082 (0.0003) 1.0071 (0.0003) 1.0061 (0.0003) 

 4 out of 5 2 consecutive  1.0135 1.0122 (0.0002) 1.0108 (0.0003) 1.0094 (0.0004) 1.0081 (0.0004) 

  2 out of 3  1.0149 1.0133 (0.0003) 1.0119 (0.0003) 1.0104 (0.0005) 1.0089 (0.0004) 

         

Neighborhood 
cluster 3 out of 4 2 consecutive  1.0192 1.0172 (0.0018) 1.0154 (0.0017) 1.0135 (0.0015) 1.0114 (0.0014) 

  2 out of 3  1.0194 1.0175 (0.0019) 1.0155 (0.0017) 1.0136 (0.0016) 1.0116 (0.0014) 

 4 consecutive 2 consecutive  1.0023 1.0021 (0.0001) 1.0018 (0.0002) 1.0016 (0.0002) 1.0014 (0.0002) 

  2 out of 3  1.0025 1.0023 (0.0002) 1.0020 (0.0002) 1.0017 (0.0002) 1.0015 (0.0002) 

 4 out of 5 2 consecutive  1.0090 1.0080 (0.0009) 1.0072 (0.0009) 1.0063 (0.0008) 1.0054 (0.0007) 

    2 out of 3   1.0092 1.0082 (0.0010) 1.0074 (0.0009) 1.0064 (0.0008) 1.0056 (0.0007) 
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    Percent change in λ (neutralized: modified signals) with stated management efficiency  
Local 

Population 
Slow warning 

(years) 
Fast warning 

(years)   50% 40% 30% 20% 10% 
lek 3 out of 4 2 consecutive  1.0102 (0.0005) 1.0081 (0.0005) 1.0062 (0.0005) 1.0040 (0.0004) 1.0020 (0.0003) 

  2 out of 3  1.0109 (0.0005) 1.0086 (0.0005) 1.0065 (0.0004) 1.0043 (0.0004) 1.0022 (0.0003) 

 4 consecutive 2 consecutive  1.0044 (0.0003) 1.0034 (0.0003) 1.0025 (0.0003) 1.0017 (0.0002) 1.0009 (0.0002) 

  2 out of 3  1.0051 (0.0003) 1.0041 (0.0003) 1.0031 (0.0003) 1.0021 (0.0003) 1.0010 (0.0002) 

 4 out of 5 2 consecutive  1.0067 (0.0004) 1.0054 (0.0004) 1.0040 (0.0004) 1.0027 (0.0003) 1.0013 (0.0003) 

  2 out of 3  1.0074 (0.0004) 1.006 (0.0005) 1.0044 (0.0005) 1.0029 (0.0003) 1.0015 (0.0003) 

Neighborhood 
cluster 3 out of 4 2 consecutive  1.0096 (0.0011) 1.0076 (0.0009) 1.0057 (0.0008) 1.0038 (0.0006) 1.0020 (0.0004) 

  2 out of 3  1.0097 (0.0011) 1.0078 (0.0011) 1.0057 (0.0008) 1.0038 (0.0006) 1.0020 (0.0004) 

 4 consecutive 2 consecutive  1.0012 (0.0002) 1.0009 (0.0002) 1.0007 (0.0001) 1.0005 (0.0001) 1.0002 (0.0001) 

  2 out of 3  1.0012 (0.0002) 1.0010 (0.0001) 1.0007 (0.0002) 1.0005 (0.0001) 1.0002 (0.0001) 

 4 out of 5 2 consecutive  1.0045 (0.0006) 1.0035 (0.0006) 1.0027 (0.0005) 1.0018 (0.0004) 1.0009 (0.0002) 

    2 out of 3   1.0045 (0.0007) 1.0036 (0.0005) 1.0027 (0.0004) 1.0018 (0.0004) 1.0009 (0.0002) 
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Table 4. Effect of simulated management efficiency scenarios (described in table 3) on percent improvements on the annual rate of population 
decline and subsequent translations into simulated annual rate of population change across the region-wide extent of greater sage-grouse 
(Centrocercus urophasianus) populations in northeastern California and Nevada from 2000–16 under different combinations of slow and fast 
warnings for activating hard signals.  
 
[Calculations used the region-wide average annual rate of population decline over 17 years of 3.86 percent as the baseline]  
 

  
Percentage (%) of simulated improvement on the 17 year region-wide rate of annual population decline (1-λ) with 

stated management intensity (at decreasing intervals of 10%)  
Slow warning 

(years) 
Fast warning 

(years) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 
3 out of 4 2 consecutive 99.0% 88.9% 79.2% 69.5% 59.3% 49.3% 39.1% 29.6% 19.4% 10.0% 

 2 out of 3 
1102.9% 92.4% 82.2% 72.2% 61.5% 51.3% 40.8% 30.4% 20.2% 10.5% 

4 consecutive 2 consecutive 27.4% 24.7% 21.9% 18.9% 16.4% 13.9% 10.7% 8.0% 5.5% 2.7% 
 2 out of 3 31.8% 28.6% 25.4% 21.9% 18.9% 15.7% 12.7% 9.5% 6.5% 3.0% 

4 out of 5 2 consecutive 56.0% 50.3% 44.8% 39.1% 33.6% 27.9% 22.2% 16.7% 11.2% 5.5% 
  2 out of 3 60.0% 53.5% 48.1% 41.8% 36.1% 29.6% 23.9% 17.7% 11.7% 6.0% 

            
1 Value greater than 100% indicate simulated management actions brought about stability and increasing growth over the following 17 years.  
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Discussion 
Summary of Overall Findings 

We described a new framework for estimating annual sage-grouse trends across biologically 
linked and hierarchical population structures. This unique approach can now be applied to sage-grouse 
population management, and builds off recent advancements in Bayesian state-space population 
modeling (Coates and others, 2014; McCaffery and Lukacs, 2016; Green and others, 2017; Monroe and 
others, 2017) and likelihood-based hierarchical modeling (Monroe and others, 2016) for sage-grouse. 
Our example serves as a quantifiable and defendable early warning system for identifying populations 
that may be in need of habitat management actions to reverse population declines. This helps fulfill a 
prominent need for informing management of sage-grouse populations under recently approved land-
use planning amendments (Bureau of Land Management, 2015).  

In highly dynamic ecosystems that experience dramatic climatic shifts (such as cold deserts of 
the Great Basin), understanding the difference between when populations are responding naturally to 
weather related patterns compared to experiencing more localized- and habitat-based declines is a 
critical component of a monitoring system. Our monitoring system is unique in that we devised a novel 
way to reduce the noise in sage-grouse population dynamics caused by climatic fluctuations, ultimately 
increasing the speed and precision in our ability to detect populations in need of management 
intervention. This also can reduce the time and energy that managers spend responding to leks that are 
actually declining due to climate related (and less manageable) effects. Contrasting rates of population 
change at smaller spatial scales that represent local population levels of organization against those 
expected if a population was tracking similar trends occurring at larger spatial scales allows for such 
fluidity. Though not done in our example, further examination of soft or hard signals for more localized 
populations (leks or neighborhoods) that are contrasted against population trends at larger scales (likely 
driven by climate) can allow for post hoc evaluation of possible surface disturbances (for example, 
wildfire, grazing) impacting sage-grouse (Coates, Ricca, and others, 2016; Monroe and others, 2017). In 
addition, contrasting population rates of change at the climate cluster scale against those occurring 
across the entire region can help identify metapopulations in possible peril. Further research is planned 
to address these types of evaluations within a second phase of our population analyses. 

Several spatial and temporal safeguards are built-in to this early warning system. A population 
must first cross a threshold leading to destabilization. However, local population declines highlighted by 
a destabilization threshold may be simply tracking larger-scale population cycles. In these instances, 
managers could incorrectly attribute declines to local factors that are not responsible. Therefore, we 
calculated a second threshold to account for the decoupling of the local trend with larger scales in the 
hierarchy. This spatial safeguard allows for only those populations most likely to be in decline for 
reasons other than mechanisms occurring at the larger scale to activate a warning, which then allows the 
evaluation process to proceed. We also designed a series of temporal thresholds to guard implementing 
management action on detected population declines that are likely an artifact of sage-grouse behavior or 
sampling error. For example, a warning might activate in a single year simply because few male sage-
grouse visited a lek on the day it was surveyed because males were visiting other leks (Fremgen and 
others, 2017), or the lek was not surveyed but was recorded erroneously as a zero-count. Estimates of 
abundance derived by state-space model can help smooth these errors (however, see section, “Caveats”). 
Nevertheless, warnings could be activated falsely because of the shortcomings of the state-space model 
framework and (or) sampling methods, which is partly why we chose a multi-year system of warnings 
and signals. Our rule of 2 consecutive years of slow warnings to activate a soft signal is highly 
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protective, and prone to counting errors that would only need to repeat 2 years in a row. However, soft 
signals only indicate the need to monitor populations more closely in our example, and implementation 
of more intense monitoring of populations with falsely activated soft signals will likely result in 
subsequent soft-signal deactivation. However, additional monitoring may also identify leks that are truly 
in decline. In contrast, activation of hard-signals requires a longer sequence of slow decline (3 out of 4 
consecutive years with slow warnings), or a shorter burst of precipitous declines (2 out of 3 consecutive 
years with fast warnings). Simulated management actions indicated these temporal thresholds were most 
protective of populations at high-risk of extirpation. 

Our example framework also has applications beyond those described heretofore. For instance, 
our framework is simple in that it allows for identification of population trends in the absence of effects 
of spatially explicit environmental covariates. Although additive and multiplicative models are certainly 
capable of explaining more variation in a response than univariate models, they typically involve 
information-theoretic comparisons between several candidate models and subsequent averaging of 
effects, which can be computationally intensive and time-consuming in a Bayesian framework. In 
addition, the availability of spatially explicit and time-dependent covariate data across broad extents (for 
example, PRISM climate data [Daly and others, 2008]; and MTBS fire data [Eidenshink and others, 
2007]) often lags behind the availability of lek count data, which could inhibit real-time applications of 
the early warning system. In the absence of computational and data-driven restrictions, our pattern-
seeking hierarchical model structure and rules for the evaluation process can be built into the back-end 
of a user-friendly computer interface. With slow and fast thresholds already established and cluster 
scales of interest delineated, resource managers could then easily input annual lek count data and obtain 
real-time results for their populations and specific questions. Covariate associations can then be 
evaluated in a post hoc fashion through GIS overlays of available land cover and disturbance, ground-
truthing, or more formal modeling. In addition, although cluster and threshold delineations are 
computationally complex and would need to be quantified for other parts of the sage-grouse range, the 
evaluation process built into a user-friendly interface lends itself well to future range-wide applications. 

The hierarchical framework we developed can be modified to allow higher resolution detection 
of local population units that are declining and decoupling by incorporating additional finer scale 
clusters for contrast against higher scales. The rules presented within our analysis are relatively coarse, 
whereby only two spatial scales were used to represent local scale effects (those to leks and 
neighborhoods) and contrasted against one single larger spatial scale to represent patterns driven by 
climatic factors. However, the clustering process also delineated clusters scales 1 and 3 or 4 that differed 
significantly from cluster scale 5 (the climate scale) in terms of lower estimates of population closure 
(fig. 12). Using more spatial scales in this framework can help link the scale of habitat disturbances to 
affected populations. The sequence of contrasts would be identical to those illustrated in fig. 10, except 
in this case, other larger scales that might represent declines by more localized factors (for example 
cluster scale 3) is first contrasted against the climate scale. If it decouples, the next lowest local scale (in 
this case, cluster scale 2) is contrasted against the climate scale. If scale 2 does not decouple, the process 
stops at scale 3. If scale 2 does decouple, the process repeats itself until all successive lower scales 
(scale 1 to individual lek) are contrasted. Moreover, if the largest local scale does not decouple, all-
lower-order scales are sequentially contrasted until all scales are exhausted. The same rationale could be 
applied for adding more clusters representative of climate effects (for example, scales 6 and 7), in the 
event a singular climate scale cluster (currently set at scale 5) decouples from regional-scale trends. 
Importantly, slow and fast thresholds for decoupling would first need to be estimated for each cluster 
scale to use these approaches. Nevertheless, our four-scale (for example, scales were individual leks, 
cluster scale 2 [neighborhood], cluster scale 5 [climate], and regional) evaluation is simplified, yet 
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derived using a combination of quantitative evidence of sage-grouse migration between leks, biological 
relevance regarding sage-grouse populations connection or lack-there-of between population units, and 
management practicality derived from a stakeholder process. 

The evaluation process focused on identifying populations exhibiting slow and steady decline, or 
at risk of outright extirpation. However, the rules of the evaluation process can be modified to indicate 
other types of trends relevant to management. For example, instances can develop where local 
populations are stable or increasing slightly, but nevertheless are underperforming compared to rapidly 
growing populations measured at the climate scale (for example, fig. 9B). In this case, local factors may 
be suppressing expected higher rates of population growth, and this type of decoupling could be 
identified with the same type of retrospective simulation analyses described previously. Thresholds can 
also be modified to identify when local populations are outperforming larger surrounding populations. 
This could be a particularly important threshold that could help demonstrate where, and to what extent, 
restoration efforts are positively affecting local populations of sage-grouse. These possible applications 
illustrate how our example framework to identify declining populations is just one of many that can be 
applied once question-specific thresholds and corresponding rules are calculated and validated. Hence, 
our framework can allow identification of sage-grouse populations responding positively to 
management as well as those that indicate the need for possible intervention. 

Warning System Patterns for 2016 
Our final objective was to describe population status and report soft and hard signals at multiple 

spatial scales of sage-grouse in northeastern California and Nevada as of 2016. Notably, results indicate 
that sage-grouse populations in this region have declined by an average of 3.86 percent annually over 
the last 17 years. This estimated rate of decline corresponds to other estimates of relative declining 
trends documented for sage-grouse in the Great Basin over long time periods (Garton and others, 2011; 
Coates, Ricca, and others, 2016). When we simulated management actions activated under different 
combinations of successive slow and fast warnings and with progressively decreasing efficiency, nearly 
all outcomes reflected a relative slowing (rather than cessation) of population declines across the region 
over the following 17 years (tables 3 and 4). However, our simulations indicated that the selected 
temporal threshold of 3 out of 4 consecutive years of slow warnings or 2 out 3 consecutive years of fast 
warnings could reverse negative trends and bring the entire region to stability if all implemented 
management actions are 100 percent effective. Although 100 percent effectiveness is a rather unrealistic 
scenario (see section, “Caveats”), management actions implemented under our example rules for 
activating a hard signal that are only 50 percent effective may still cut the long-term rates of annual 
population decline across the region by one-half. Alternatively, waiting too long to activate a hard signal 
may limit manager’s ability to slow the current rate of region-wide decline. 

Overall, our results indicate that the Ely climate cluster had the largest number of leks in decline 
based on our soft signal criteria. Additionally, the largest number of neighborhood leks meeting the 
criteria for a soft signal were located in the Ely climate cluster. However, the Ely climate cluster did not 
signal, which suggests that lek and neighborhood cluster declines were driven by local factors and not 
larger scale climatic variation. In contrast, hard signals were constrained to leks only, and post hoc 
analyses are necessary to begin identification of local perturbations that may be linked to these rapidly 
declining populations. 
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Caveats 
We present five caveats for consideration when interpreting or implementing the example 

framework and early warning system. First, although an advantage of state-space models is their ability 
to estimate missing count data based on prior variance of observed counts, they require adequate count 
data to inform estimates whereby minimal data gaps or sharing of information across leks using hyper-
parameters (that is, the automatic selection of smoothing parameters) increase the reliability of 
parameter estimates within state-space models (Kery and Schaub, 2012). The reliability of estimates 
derived via state-space models would be enhanced by standardized lek count protocols that minimize 
the number of years between counts that allow for improved parameter estimation. Our framework can 
be modified to work with other models, such as N-mixture models that take advantage of information 
from repeated intra-annual counts (Royle, 2004) rather than maximum annual lek-count data, which 
allows another means of estimating observation error and detection probabilities that can vary across 
space (leks) and time (year and time sampled) (Monroe and others, 2016; Fremgen and others, 2017). 
Repeated counts conducted within a season can also confound detection probability (that is, miscounting 
sage-grouse that are available to count) with variation in visitation rates (that is, not all sage-grouse at 
any point in time are available to count). However, recent advances using dynamic N-mixture models 
(Dail and Madsen, 2011) that relax assumptions of closure may prove useful. We chose state-space 
models and used the maximum lek count largely because our dataset did not report repeated counts of 
leks within seasons. Improvements to this population estimation framework could involve incorporation 
of repeated count data combined with information on lek visitation rates, which could be conducted and 
reported.  

Second, we did not explicitly partition density-dependent from density-independent effects 
within and among spatial scales. Weak density-dependent feedbacks contribute to population stability 
(May, 1974; Ahrestani and others, 2016), whereas density-independent factors can contribute to positive 
or negative population dynamics (Saether, 1997; Ahrestani and others, 2016). Our lack of accounting 
for these effects that contribute to annual variation in sage-grouse abundance within and among spatial 
scales (Blomberg and others, 2017, falls in the same category as our lack of accounting for spatially 
explicit environmental covariates. Our goal was to develop an early warning system that identified 
pattern rather than mechanisms at different spatial scales across a broad geographic extent. The system 
does not allow for identification of specific effects related to demographic and environmental 
stochasticity. Thus, results should be evaluated in terms of different smaller compared to larger scale 
patterns without assuming specific causes.  

Third, we assumed that simulated management actions had uniform effectiveness based on the 
intensity of application (that is, 100 percent management intensity would neutralize 100 percent of all 
hard signals, 90 percent management intensity would neutralize 90 percent of all hard signals, and so 
forth). In reality, the effectiveness of management actions aimed at restoring habitat conditions for sage-
grouse is highly variable and dependent on factors such as underlying conditions influencing resilience 
to disturbance and resistance to invasion, how degraded a site has become (that is, whether or not it has 
crossed a state-transition), the type of disturbance experienced, the type of management action or 
restoration technique implemented, and the abiotic conditions at the time management actions are 
implemented (Arkle and others, 2014; Chambers and others, 2014; Pyke and others, 2015; Pilliod and 
others, 2017). Hence, our estimates of effectiveness should be viewed as relative and not absolute 
measures.  
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Fourth, we assumed that delineations in cluster scale 5 represented sage-grouse populations that 
experienced different climatic influences. This is justified in part by the inclusion of precipitation and 
temperature indices as environmental covariates in the cluster delineation modeling. These delineations 
match reasonably well with large-scale gradients of variation in precipitation and temperature, and 
corresponding mesic sagebrush steppe ecosystems in the more northern clusters and xeric Great Basin 
sagebrush ecosystems in the more southern clusters (Coates, Casazza, and others, 2016). Nevertheless, 
climate effects can cross scale boundaries and become hard to separate from localized surface-
disturbance effects. For example, broad-scale drought could exert different influences on sage-grouse 
populations inhabiting neighborhood clusters nested within more xeric regions that may be less resilient 
to drought than those nested within more mesic regions because springs and seeps that dry-up in xeric 
regions are likely more limiting to sage-grouse populations compared to those in mesic regions.  

Fifth, although it is possible that effects at smaller spatial scales driven by local-scale factors 
vary based on larger-scale climatic impacts, our framework is sensitive to identifying where and when 
local effects occur regardless of their dependency on climatic effects. Post hoc evaluations that identify 
causes of local-scale declines may tease apart relationships between local disturbances and larger-scale 
climatic effects, and these additional investigations are necessary to inform the type and timing of 
appropriate management actions. 

Conclusion 
In conclusion, the example early warning system we describe in this report can be a powerful 

and flexible management tool that allows for separation of population trends occurring as a result of 
local and more manageable stressors, relative to those occurring at broader scales. Built-in spatial and 
temporal thresholds help guard against implementing unnecessary management action for populations 
that falsely signal a warning. Simulations using management action implemented once populations 
begin to decline precipitously indicate that the early warning system can help slow overall population 
declines. This framework can be a useful tool for managing sage-grouse populations and their habitats 
in the Great Basin and can be expanded to assist rangewide applications. 

References Cited  
Ahrestani, F.S., Smith, W.K., Hebblewhite, M., Running, S., and Post, E., 2016, Variation in stability of 

elk and red deer populations with abiotic and biotic factors at the species distribution scale: Ecology, 
v. 97, p. 3,184–3,194. 

Aldridge, C.L., and Boyce, M.S., 2007, Linking occurrence and fitness to persistence—a habitat-based 
approach for endangered greater sage-grouse: Ecological Applications, v. 17, p. 508–526. 

Aldridge, C.L., Nielsen, S.E., Beyer, H.L., Boyce, M.S., Connelly, J.W., Knick, S.T., and Schroeder, 
M.A., 2008, Range-wide patterns of greater sage-grouse persistence: Diversity and Distributions,  
v. 14, p. 983–994. 

Anderson, J.E., and Holte, K.E., 1981, Vegetation development over 25 years without grazing on 
sagebrush-dominated rangeland in southeastern Idaho: Journal of Range Management, v. 34,  
p. 25–29. 

Arkle, R.S., Pilliod, D.S., Hanser, S.E., Brooks, M.L., Chambers, J.C., Grace, J.B., Knutson, K.C., 
Pyke, D.A., Welty, J.L., and Wirth, T.A., 2014, Quantifying restoration effectiveness using multi-
scale habitat models: implications for sage-grouse in the Great Basin: Ecosphere, v. 5, issue 3, article 
31. 



45 

AssunÇão, R.M., Neves, M.C., Câmara, G., and Da Costa Freitas, C., 2006, Efficient regionalization 
techniques for socio‐economic geographical units using minimum spanning trees: International 
Journal of Geographical Information Science, v. 20, p. 797–811. 

Beck, J.L., and Mitchell, D.L., 2000, Influences of livestock grazing on sage grouse habitat: Wildlife 
Society Bulletin, v. 28, p. 993–1002. 

Bissonette, J., 1997, Scale sensitive ecological properties—Historical context, current meaning, in 
Bissonette, J., ed., Wildlife and landscape ecology—Effects of pattern and scale: New York, New 
York, Springer-Verlag, p. 3–31. 

Bissonette, J.A., 2016, Avoiding the scale sampling problem—A consistent solution: Journal of Wildlife 
Management, v. 80, p. 192–205. 

Bivand, R., and Piras, C., 2015, Comparing implementations of estimation methods for spatial 
econometrics: Journal of Statistical Software, v. 63, p. 1–36.  

Bivand, R.S., Hauke, J., and Kossowski, T., 2013, Computing the Jacobian in Gaussian spatial 
autoregressive models—An illustrated comparison of available methods: Geographical Analysis,  
v. 45, p. 150–179. 

Blackburn, W.H., and Tueller, P.T., 1970, Pinyon and juniper invasion in black sagebrush communities 
in east-central Nevada: Ecology, v. 51, p. 841–848. 

Blomberg, E.J., Sedinger, J.S., Atamian, M.T., and Nonne, D.V., 2012, Characteristics of climate and 
landscape disturbance influence the dynamics of greater sage-grouse populations: Ecosphere, v. 3, 
issue 6, article 55. 

Blomberg, E.J., Gibson, D., Atamian, M.T., and Sedinger, J.S., 2017, Variable drivers of primary versus 
secondary nesting; density-dependence and drought effects on greater sage-grouse: Journal of Avian 
Biology, v. 48, no. 6, p. 827–836, doi:10.1111/jav.0098.  

Bradley, B.A., 2010, Assessing ecosystem threats from global and regional change—Hierarchical 
modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in 
Nevada, USA: Ecography, v. 33, p. 198–208. 

Bureau of Land Management, 2015, Notice of availability of the record of decision and approved 
resource management plan amendments for the Great Basin region greater sage-grouse sub-regions of 
Idaho and Southwestern Montana; Nevada and Northeastern California; Oregon; and Utah: Federal 
Register, v. 80, no. 185, p. 57,633–57,635, accessed June 30, 2017, at 
https://www.gpo.gov/fdsys/pkg/FR-2015-09-24/pdf/2015-24213.pdf. 

Burnham, K.P., and Anderson, D.R., 2002, Model selection and multimodel inference (2nd ed.): New 
York, New York. Springer-Verlag, 488 p. 

Chambers, J.C., Bradley, B.A., Brown, C.S., D’Antonio, C., Germino, M.J., Grace, J.B., Hardegree, 
S.P., Miller, R.F., and Pyke, D.A., 2014, Resilience to stress and disturbance, and resistance to 
Bromus tectorum L. invasion in cold desert shrublands of Western North America: Ecosystems, v. 17, 
p. 360–375. 

Clark, J., 2007, Models for ecological data (1st ed.): Princeton, New Jersey, Princeton University Press, 
152 p. 

Coates, P.S., and Delehanty, D.J., 2010, Nest predation of greater sage-grouse in relation to 
microhabitat factors and predators: Journal of Wildlife Management, v. 74, p. 240–248. 

Coates, P.S., Casazza, M.L., Blomberg, E.J., Gardner, S.C., Espinosa, S.P., Yee, J.L., Wiechman, L., 
and Halstead, B.J., 2013, Evaluating greater sage-grouse seasonal space use relative to leks—
Implications for surface use designations in sagebrush ecosystems: The Journal of Wildlife 
Management, v. 77, p. 1,598–1,609. 

https://www.gpo.gov/fdsys/pkg/FR-2015-09-24/pdf/2015-24213.pdf


46 

Coates, P.S., Halstead, B.J., Blomberg, E.J., Brussee, B.E., Howe, K.B., Wiechman, L., Tebbenkamp, 
J., Reese, K.P., Gardner, S.C., and Casazza, M.L., 2014, A hierarchical integrated population model 
for greater sage-grouse (Centrocercus urophasianus) in the Bi-State Distinct Population Segment, 
California and Nevada: U.S. Geological Survey Open-File Report 2014-1165, 34 p., 
https://dx.doi.org/10.3133/ofr20141165. 

Coates, P.S., Casazza, M.L. Brussee, B.E., Ricca, M.A., Gustafson, K.B. Sanchez-Chopitea, E. Mauch, 
K., Neill, L. Gardner, S.C., Espinosa, S.P., and Delehanty, D.J., 2016, Spatially explicit modeling of 
annual and seasonal habitat for greater sage-grouse (Centrocercus urophasianus) in Nevada and 
Northeastern California—An updated decision-support tool for management: U.S. Geological Survey 
Open-File Report 2016-1080, 84 p., https://pubs.er.usgs.gov/publication/ofr20161080.  

Coates, P.S., Ricca, M.A., Prochazka, B.G., Brooks, M.L., Doherty, K.E., Kroger, T., Blomberg, E.J., 
Hagen, C.A., and Casazza, M.L., 2016, Wildfire, climate, and invasive grass interactions negatively 
impact an indicator species by reshaping sagebrush ecosystems: Proceedings of the National 
Academy of Sciences, v. 113, p. 12,745–12,750. 

Cross, T.B., Naugle, D.E., Carlson, J.C., and Schwartz, M.K., 2016, Hierarchical population structure in 
greater sage-grouse provides insight into management boundary delineation: Conservation Genetics, 
v. 17, p. 1,417–1,433. 

Cumming, G., Cumming, D.H., and Redman, C., 2006, Scale mismatches in social-ecological 
systems—Causes, consequences, and solutions: Ecology and Society, v. 11, issue 1, article 14. 

Dahlgren, D.K., Guttery, M.R., Messmer, T.A., Caudill, D., Dwayne Elmore, R., Chi, R., and Koons, 
D.N., 2016, Evaluating vital rate contributions to greater sage‐grouse population dynamics to inform 
conservation: Ecosphere, v. 7. issue 3, article e01249. 

Dail, D., and Madsen, L., 2011, Models for estimating abundance from repeated counts of an open 
metapopulation: Biometrics, v. 67, p. 577–587. 

Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and Pasteris, 
P.P., 2008, Physiographically sensitive mapping of climatological temperature and precipitation 
across the conterminous United States: International Journal of Climatology, v. 28, p. 2,031–2,064. 

Davies, K.W., Boyd, C.S., Beck, J.L., Bates, J.D., Svejcar, T.J., and Gregg, M.A., 2011, Saving the 
sagebrush sea—An ecosystem conservation plan for big sagebrush plant communities. Biological 
Conservation, v. 144, p. 2,573–2,584. 

Doherty, K.E., Naugle, D.E., Walker, B.L., Graham, J.M., 2008, Greater sage-grouse winter habitat 
selection and energy development: Journal of Wildlife Management, v. 72, p. 187–195. 

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.L., Quayle, B., and Howard, S., 2007, A project for 
monitoring trends in burn severity: Fire Ecology, v. 3, p. 3–22. 

Epifanio, J., 2000, The Status of coldwater fishery management in the United States—An overview of 
state programs: Fisheries, v. 25, p. 13–27. 

Environmental Systems Research Institute, Inc. (ESRI), 2011, ArcGIS Desktop—Release 10.3.1: 
Redlands, California, Environmental Systems Research Institute. 

Fedy, B.C., and Aldridge, C.L., 2011, The importance of within-year repeated counts and the influence 
of scale on long-term monitoring of sage-grouse: Journal of Wildlife Management, v. 75, p. 1,022–
1,033. 

Fedy, B.C., and Doherty, K.E., 2011, Population cycles are highly correlated over long time series and 
large spatial scales in two unrelated species—Greater sage-grouse and cottontail rabbits: Oecologia,  
v. 165, p. 915–924. 

  

https://dx.doi.org/10.3133/ofr20141165
https://pubs.er.usgs.gov/publication/ofr20161080


47 

Fedy, B.C., Doherty, K.E., Aldridge, C.L., O’Donnell, M., Beck, J.L., Bedrosian, B., Gummer, D., 
Holloran, M.J., Johnson, G.D., Kaczor, N.W., Kirol, C.P., Mandich, C.A., Marshall, D., Mckee, G., 
and others, 2014, Habitat prioritization across large landscapes, multiple seasons, and novel areas—
An example using greater sage-grouse in Wyoming: Wildlife Monographs, v. 190, p. 1–39. 

Fremgen, A.L., Rota, C.T., Hansen, C.P., Rumble, M.A., Gamo, R.S., and Millspaugh, J.J., 2017, Male 
greater sage-grouse movements among leks: The Journal of Wildlife Management, v. 81, p. 498–508. 

Fuhlendorf, S.D., Woodward, A.J.W., Leslie, D.M., and Shackford, J.S., 2002, Multi-scale effects of 
habitat loss and fragmentation on lesser prairie-chicken populations of the U.S. Southern Great Plains: 
Landscape Ecology, v. 17, p. 617–628. 

Garton, E.O., Connelly, J.W., Horne, J.S., Hagen, C.A., Moser, A.M., and Schroeder, M.A., 2011, 
Greater sage-grouse population dynamics and probability of persistence, in Knick, S.T., and Connelly, 
J.W., eds., Greater sage-grouse—Ecology and conservation of a landscape species and its habitats—
Studies in avian biology: Berkeley, University of California Press, p. 293–381. 

Garton, E.O., Wells, A.G., Baumgardt, J.A., and Connelly, J.W., 2015, Greater sage-grouse population 
dynamics and probability of persistence: Final Report to Pew Charitable Trusts, 90 p. 

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., 2004, Bayesian data analysis (2nd ed.): Boca 
Raton, Florida, Chapman and Hall/CRC, 690 p. 

Green, A.W., Aldridge, C.L., and O'Donnell, M.S., 2017, Investigating impacts of oil and gas 
development on greater sage-grouse: Journal of Wildlife Management, v. 81, p. 46–57. 

Gregg, M.A., and Crawford, J.A., 2007, Survival of greater sage-grouse chicks and broods in the 
northern Great Basin: Journal of Wildlife Management, v. 73, p. 904–913. 

Germino, M.J., Chambers, J.C., Brown, C.S., eds., 2016, Exotic brome-grasses in arid and semiarid 
ecosystems of the western US—Causes, consequences, and management implications: Switzerland, 
Springer International Publishing, 475 p. 

Hanser, S.E., and Knick, S.T., 2011, Greater sage-grouse as an umbrella species for shrubland birds—a 
multi-scale assessment, in Knick. S.T., and Connelly, J.W., eds., Greater sage-grouse—Ecology and 
conservation of a landscape species and its habitats—Studies in Avian Biology, University of 
California Press, p. 475–487. 

Hobbs, N.T., and Hooten, M.B., 2015, Bayesian models (1st ed.): Princeton, New Jersey, Princeton 
University Press, 320 p.  

Kery, M., and Schaub, M., 2012, Bayesian population analysis using WinBUGS—A hierarchical 
perspective (1st ed.): San Diego, California, Academic Press, 554 p. 

Knick, S.T., Hanser, S.E., and Preston, K.L., 2013, Modeling ecological minimum requirements for 
distribution of greater sage-grouse leks—Implications for population connectivity across their western 
range, U.S.A: Ecology and Evolution, v. 3, no. 6, p. 1,539–1,551. 

Levin, S.A., 1992, The problem with scale and pattern in ecology: Ecology, v. 73, p. 1,943–1,967. 
Lindenmayer, D.B., and Likens, G.E., 2010, The science and application of ecological monitoring: 

Biological Conservation, v. 143, p. 1,317–1,328. 
Lindstrom, J., Ranta, E., and Linden, H., 1996, Large-scale synchrony in the dynamics of capercaillie, 

black grouse and hazel grouse populations in Finland: Oikos, v. 76, p. 221–227. 
Lu, B., 2014, shp2graph package—Convert a SpatialLinesDataFrame object to a "igraph-class" object: 

R package version 0-2, The Comprehensive R Archive Network Web site, accessed August 25, 2016, 
at https://CRAN.R-project.org/package=shp2graph. 

May, R.M., 1974., Biological populations with nonoverlapping generations: stable points, stable cycles, 
and chaos: Science, v. 186, p. 645–647. 

https://cran.r-project.org/package=shp2graph


48 

McCaffery, R., and Lukacs, P.M., 2016, A generalized integrated population model to estimate greater 
sage-grouse population dynamics: Ecosphere, v. 7, issue 11, article e01585. 

Miller, R.F., and Rose, J.A., 1999, Fire history and western juniper encroachment in sagebrush steppe: 
Journal of Rangeland Management, v. 52, p. 550–559. 

Miller, R.F., Knick, S.T., Pyke, D.A., Meinke, C.W., Hanser, S.E., Wisdom, M.J., and Hild, A.L., 2011, 
Characteristics of sagebrush habitats and limitations to long-term conservation, in Knick, S.T., and 
Connelly, J.W., eds., Greater sage-grouse—Ecology and conservation of a landscape species and its 
habitats: Berkeley, University of California Press, Studies in Avian Biology, no. 38, p. 145–184. 

Monroe, A.P., Edmunds, D.R., and Aldridge, C.L., 2016, Effects of lek count protocols on greater sage-
grouse population trend estimates: The Journal of Wildlife Management, v. 80, p. 667–678.  

Monroe, A.P., Aldridge, C.L., Assal, T.J., Veblen, K.E., Pyke, D.A., and Casazza, M.L., 2017, Patterns 
in Greater Sage-grouse population dynamics correspond with public grazing records at broad scales: 
Ecological Applications, v. 27, p. 1,096–1,107. 

Morris, W.F., and Doak, D.F., 2002, Quantitative conservation biology (4th ed.): Sunderland, MA, 
Sinauer Associates Inc., 480 p. 

Moynahan, B.J., Lindberg, M.S., and Thomas, J.W., 2006, Factors contributing to process variance in 
annual survival of female greater sage-grouse in Montana: Ecological Applications, v. 16, p. 1,529–
1,538. 

Oakley, K.L., Thomas, L.P., and Fancy, S.G., 2003, Guidelines for long-term monitoring protocols: 
Wildlife Society Bulletin, v. 31, p. 1,000–1,003. 

O’Donnell, M.S., and Ignizio, D.A., 2012, Bioclimatic predictors for supporting ecological applications 
in the conterminous United States: U.S. Geological Survey Data Series 691, 10 p., 
https://pubs.usgs.gov/ds/691/ds691.pdf. 

Pilliod, D.S., Welty, J.L., and Toevs, G.R., 2017, Seventy-five years of vegetation treatments on public 
rangelands in the Great Basin of North America: Rangelands, v. 39, p. 1–9. 

Plummer, M., Stukalov, A., and Denwood, M., 2015, Bayesian graphical models using MCMC, R 
package 'rjags', version 3-15: The Comprehensive R Archive Network Web site, http://cran.r-
project.org/web/packages/rjags/rjags.pdf. 

Pollock, K.H., Nichols, J.D., Simons, T.R., Farnsworth, G.L., Bailey, L.L., and Sauer, J.R., 2002, Large 
scale wildlife monitoring studies—Statistical methods for design and analysis: Environmetrics, v. 13, 
p. 105–119. 

Pyke, D.A., Chambers, J.C., Pellant, M., Knick, S.T., Miller, R,F., Beck, J.L., Doescher, P.S., Schupp, 
E.W., Roundy, B.A., Brunson, M., and McIver, J.D., 2015, Restoration handbook for sagebrush 
steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding 
and applying restoration: U.S. Geological Survey Circular 1416, 44 p., 
https://dx.doi.org/10.3133/cir1416. 

R Core Team, 2016, R: A language and environment for statistical computing: Vienna, Austria, R 
Foundation for Statistical Computing, Web site, accessed August 25, 2016, at https://www.R-
project.org/. 

Ranta, E., Kaitala, V., Lindstrom, J., and Linden, H., 1995, Synchrony in population dynamics—
Proceedings of the Royal Society of London B: Biological Sciences, v. 262, p. 113–118. 

Riley, S.J., DeGloria, S.D., and Elliot, R., 1999, A terrain ruggedness index that quantifies topographic 
heterogeneity: Intermountain Journal of Sciences, v. 5, p. 23–27. 

Rich, T., 1985, Sage-grouse population fluctuations—Evidence for a 10-year cycle: Idaho State Office, 
Bureau of Land Management, Technical Bulletin, no. 85-1, 34 p. 

Rich, T., and Altman, B., 2001, Under the sage-grouse umbrella: Bird Conservation, v. 14, no. 10. 

https://pubs.usgs.gov/ds/691/ds691.pdf
http://cran.r-project.org/web/packages/rjags/rjags.pdf
http://cran.r-project.org/web/packages/rjags/rjags.pdf
https://dx.doi.org/10.3133/cir1416


49 

Rich, T.D., Wisdom, M.J., and Saab, V.A., 2005, Conservation of sagebrush steppe birds in the interior 
Columbia Basin,. in Ralph, C.J., Rich, R., Long, L., eds., Proceedings of the Third International 
Partners in Flight Conference: U.S. Department of Agriculture, Albany, California, Forest Service, 
Pacific Southwest Research Station, General Technical Report PSW-GTR-191, p. 589–606. 

Rowland, M. M., Wisdom, M.J., Suring, L.H., and Meinke, C.W., 2006, Greater sage-grouse as an 
umbrella species for sagebrush-associated vertebrates: Biological Conservation, v. 129, p. 323–335. 

Royle, J.A., 2004, N-mixture models for estimating population size from spatially replicated counts; 
Biometrics, v. 60, p. 108–115. 

Sadoul, N., 1997, The importance of spatial scales in long-term monitoring of colonial Charadriiformes 
in Southern France: Colonial Waterbirds, v. 20, p. 330–338. 

Saether, B.E., 1997, Environmental stochasticity and population dynamics of large herbivores: A search 
for mechanisms: Trends in Ecology & Evolution, v. 12, p. 143–149. 

Sappington, J.M., Longshore, K.M., and Thompson, D.B., 2007, Quantifying landscape ruggedness for 
animal habitat analysis—A case study using bighorn sheep in the Mojave Desert: The Journal of 
Wildlife Management, v. 71, p. 1,419–1,426. 

Schroeder, M.A., Aldridge, C.L., Apa, A.D., Bohne, J.R., Braun, C.E., Bunnell, S.D., Connelly, J.W., 
Deibert, P.A., Gardner, S.C., Hilliard, M.A., Kobriger, G.D., McAdam, S.M., McCarthy, C.W., 
McCarthy, J.J., Mitchell, D.L., Rickerson, E.V., and Stiver, S.J., 2004, Distribution of sage-grouse in 
North America: Condor, v. 106, p. 363–376. 

Schroeder, M.A., 1997, Unusually high reproductive effort by sage grouse in a fragmented habitat in 
north-central Washington: Condor, v. 99, p. 933–941. 

Suring, L.H., Wisdom, M.J., Tausch, R.J., Miller, R.F., Rowland, M.M., Schueck, L., and Meinke, 
C.W., 2005, Modeling threats to sagebrush and other shrubland communities, in, Habitat threats in the 
sagebrush ecosystem: Lawrence, Kansas, Alliance Communications Group, p. 114–149.U.S. Fish and 
Wildlife Service, 2015, Endangered and threatened wildlife and plants—12-month finding on a 
petition to list greater sage-grouse (Centrocercus urophasianus) as an endangered or threatened 
species: Federal Register, v. 80, no. 191, p. 59,858–59,942, accessed June 30, 2017, at 
https://www.gpo.gov/fdsys/pkg/FR-2015-10-02/pdf/2015-24292.pdf. 

Western Association of Fish and Wildlife Agencies, 2015, Greater sage-grouse population trends—An 
analysis of lek count databases 1965–2015: Western Association of Fish and Wildlife Agencies Web 
site, accessed August 2015, at 
http://www.wafwa.org/Documents%20and%20Settings/37/Site%20Documents/News/Lek%20Trend
%20Analysis%20final%208-14-15.pdf. 

Walker, B.L., Naugle, D.E., and Doherty, K.E., 2007, Greater sage-grouse population response to 
energy development and habitat loss: Journal of Wildlife Management, v. 71, p. 2,644–2,654. 

Wallace, B.P., DiMatteo, A.D., Hurley, B.J., Finkbeiner, E.M., Bolten, A.B., Chaloupka, M.Y., 
Hutchinson, B.J., Abreu-Grobois, F.A., Amorocho, D., Bjorndal, K.A., Bourjea, J., Bowen, B.W., 
Dueñas, R.B., Casale, P., Choudhury, B.C., Costa, A., Dutton, P.H., Fallabrino, A., Girard, A., 
Girondot, M., Godfrey, M.H., Hamann, M., López-Mendilaharsu, M., Marcovaldi, M.A., Mortimer, 
J.A., Musick, J.A., Nel, R., Pilcher, N.J., Seminoff, J.A., Troëng, S., Witherington, B., and Mast, 
R.B., 2010, Regional management units for marine turtles—A novel framework for prioritizing 
conservation and research across multiple scales: PloS one, v. 5, no. 12, e15465. 

Xian, G., Homer, C., Meyer, D., and Granneman, B., 2013, An approach for characterizing the 
distribution of shrubland ecosystem components as continuous fields as part of NLCD: ISPRS Journal 
of Photogrammetry and Remote Sensing, v. 86, p. 136–149. 

https://www.gpo.gov/fdsys/pkg/FR-2015-10-02/pdf/2015-24292.pdf
http://www.wafwa.org/Documents%20and%20Settings/37/Site%20Documents/News/Lek%20Trend%20Analysis%20final%208-14-15.pdf
http://www.wafwa.org/Documents%20and%20Settings/37/Site%20Documents/News/Lek%20Trend%20Analysis%20final%208-14-15.pdf




Publishing support provided by the U.S. Geological Survey
Science Publishing Network, Tacoma Publishing Service Center

For more information concerning the research in this report, contact the 
Director, Western Ecological Research Center
U.S. Geological Survey
3020 State University Drive East
Sacramento, California 95819
https://www.werc.usgs.gov/

http://www.werc.usgs.gov/


ISSN 2331-1258 (online)
https://doi.org/10.3133/ofr20171089

Coates and others—
H

ierarchical Population M
onitoring of G

reater Sage-G
rouse in N

evada and California—
Identifying Populations for M

anagem
ent at the A

ppropriate Spatial Scale—
Open-File Report 2017–1089


	Hierarchical Population Monitoring of Greater Sage-Grouse (Centrocercus urophasianus) in Nevada and California—Identifying Populations for Management at the Appropriate Spatial Scale
	Preface
	Acknowledgments
	Contents
	Figures
	Tables
	Conversion Factors
	Datums
	Abstract
	Synopsis
	Introduction
	Study Objectives
	Study Area

	Methods
	Terminology and General Conceptual Model
	Defining Spatial Extent and Scale
	Delineating Spatially Nested Clusters from Lek Locations
	Selecting Cluster Scales for the Evaluation Process

	Evaluation Process
	Modeling Population Change
	Determining Thresholds
	Slow Destabilizing Thresholds
	Slow Decoupling Thresholds
	Fast Destabilizing and Decoupling Thresholds

	Identifying Warnings for Declining Populations
	Activating Signals for Declining Populations

	Status of Sage-Grouse Populations as of 2016

	Results
	Spatial Extents
	Selection of Neighborhood and Climate Clusters
	Thresholds
	Applying Temporal Thresholds to Warnings, and Simulated Effectiveness of Signals
	Status of Sage-Grouse as of 2016

	Discussion
	Summary of Overall Findings
	Warning System Patterns for 2016
	Caveats

	Conclusion
	References Cited
	Blank Page



