TECHNIQUES FOR ESTIMATING MAGNITUDE AND FREQUENCY OF FLOODS IN MINNESOTA

U. S. GEOLOGICAL SURVEY

Water-Resources Investigations 77-31

Prepared in cooperation with the

Minnesota Department of Transportation, Division of Highways and

Minnesota Department of Natural Resources, Division of Waters

(200) WRi no.77-0031

- , \

BIBLIOGRAPHIC DATA	1. Report No.	2.	3. Recipient's Accession No.
4. Title and Subtitle	L	L	5. Report Date
TECHNIOUES FOR ES	TIMATING MAGNITUDE AND		May 1977
FREQUENCY OF FLOO			6.
7. Author(s)			8. Performing Organization Rept.
Lowell C. Guetzko	Ŵ		No. USGS/WRI 77-31
9. Performing Organization I			10. Project/Task/Work Unit No.
	urvey, Water Resources Di	vision	
Room 1033 Post Of			11. Contract/Grant No.
St. Paul, Minneso	ta 55101		
		·	
12. Sponsoring Organization	urvey, Water Resources Di	vicion	13. Type of Report & Period Covered
Room 1033 Post Of		V1510II	Final
St. Paul, Minnesot			14.
15. Supplementary Notes P	repared in cooperation wi	th Minnesot	a Department of Transportation,
Division of Highw	ays and Minnesota Departm	ent of Natu	ral Resources, Division of
Waters.		······	
			rovide engineers and designers
			haracteristics to satisfy
			tude and frequency of floods up
			for most streams in Minnesota by quations have been developed for
			on natural flow streams. Eight
			State with boundaries defined
			s are provided for each region
			basin parameters. For main-stem
			ted recurrence intervals plotted
			timates for intervening sites
			Red River of the North can be
			stics are tabulated for 201
gaging stations have	ving 10 or more years of 1 t Analysis. 17a. Descriptors	record.	
			al analycic
* Flow characterie	sis, * Regression analysis stics, * Estimating equati	one Design	n flow Regional
	tersheds, Floods, Hydrauli		
	, Peak discharge, Probabil		
injuioiogie unea	, I car discharge, I lobabil	110), Otati.	
	-		
17b. Identifiers/Open-Ended			
* Flood frequency			
Recurrence inter	rval, Ungaged watersheds.		
		٠	
17c. COSATI Field/Group			
	No restriction on distribu	ution. 19	9. Security Class (This Report) 21. No. of Pages
This report may be	-		UNCLASSIFIED
	nical Information Service	20	0. Security Class (This 22. Price Page
	Virginia 22161 ENDORSED BY ANSLAND UNESCO.	THE FORM	UNCLASSIFIED

.

Ś

. • •

0 0 0

.

1

د ن

> . . .

TECHNIQUES FOR ESTIMATING MAGNITUDE AND FREQUENCY OF FLOODS IN MINNESOTA

By Lowell C. Guetzkow

U. S. GEOLOGICAL SURVEY

Water-Resources Investigations 77-31

Prepared in cooperation with the Minnesota Department of Transportation, Division of Highways and

Minnesota Department of Natural Resources, Division of Waters

May 1977

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

For additional information write to:

U.S. Geological Survey 1033 Post Office Building St. Paul, Minnesota 55101

CONTENTS

Abstr	act .	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	1
Intro	duct	ioı	n.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		2
	Purpo	bse	e a	and	l s	cor	be			•	•	•					•				•		2
	Previ	io	us	re	po	rts	5			•													3
	Gagir	ηg	- 51	tat	io	nr	ົ້ານກ	n b e	eri	ne	r s	v	ste	e m									3
	Coope	er:	at	i on							, -					•			•		•		3
	Use																						3
Estim	atin	ут. г.	f1/		L C	roc	1116	. J . n <i>i</i>	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	1
LSCIM	Trans	š f	- - (o f		2 E C	inc		-y f1				•	•	•		· +	÷	•	•	•	•	4
																							•
	Regio	ona	al	an	al	ysı	LS	±(or	un	ıga	ιg€	ed	S 1	te	s	•	•	•	•	•	•	13
	Illus	sti	rat	tiv	'e	exa	amp	$1\mathbf{e}$	es	•	•	•	•	•	•	•	•	•	•	•	•	•	18
	Main·	- 51	ter	n s	tr	ear	ns	•		•		•	•			•	•	•	•	•	•	•	· 20
	Accui	rad	су	an	d	lin	nit	at	tic	ns					•	•	•	•	•	•			24
Analy	tical		téd	hn	ia	ues	;										-			•			27
,	Data	- 119	sed	1				•	•	•	-	•	•	•	•	•	-	-					27
	Flow.	- f.	roi	••• ••••	n c	v .	• 1 n s	 		c	• at	• ,	י. זים ה	• • i n	•	· ct	• • • +	ic	, • in c	•	•	•	27
	Multi	Lр.	re	-re	gr	ess	510	n	mc	ae	1	٠	•	•	•	•	•	•	•	•	•	•	28
	Basir	1 (cha	ara	lct	eri	ist	:i(CS	in	ve	s 1	Ξię	gat	ed	l	•	•	•	•	٠	•	31
Summa	ry .		•		•	•	•				•		•		•	•	•	•	•	•	•		31
Refer		3																					33

. .

1

ŗ

ILLUSTRATIONS

Figure	1.	Map of Minnesota showing location of gaging stations and hydrologic regions	
		used in regression analysis	16
Figure	2.	Relation of flood magnitudes for selected	
		recurrence intervals to drainage area, Minnesota River main stem	21
Figure	3.	Relation of flood magnitudes for selected	
	,	recurrence intervals to drainage area, Mississippi River main stem	22
Figure	4.	Relation of flood magnitudes for selected	22
-		recurrence intervals to drainage area,	0.7
Figure	5.	Red River of the North main stem Graphical interpretation of standard	23
		error of estimate for 10-year flood in	
Ei auma	6	Region G	25
rigure	υ.	Flood frequency curve for East Branch Blue Earth River near Bricelyn, Minnesota	29

Page

TABLES

			Page
Table	1.	Conversion factors	4
Table	2.	Flood-frequency and basin characteristics	
		for gaging stations in Minnesota	5
Table	3.	Regional flood-frequency equations	
		Standard error of estimates for	
		defined relations	26

TECHNIQUES FOR ESTIMATING MAGNITUDE AND FREQUENCY OF FLOODS IN MINNESOTA

By Lowell C. Guetzkow

ABSTRACT

The magnitude and frequency of floods up to the 100-year recurrence interval can be determined for most streams in Minnesota by methods presented in this report. By multiple regression analysis, equations have been developed for estimating flood-frequency relations at ungaged sites on all natural flow streams which are not significantly affected by man-made regulation, diversion, or urbanization. Eight distinct hydrologic regions are delineated within the State with boundaries defined generally by river basin divides. In a few instances the regional divides were based on topographic or geologic considerations. Regression equations are provided for each region which relate the 2-, 5-, 10-, 25-, 50- and 100-year floods to significant basin parameters. In four regions, drainage area, slope, and storage are used as estimating variables; in two regions, drainage area and slope are used; and, in the remaining two regions, only the drainage area is used as the significant variable. Accuracy of resulting frequency estimates and limitations on the use of the equations are discussed.

For main-stem streams, which traverse regional divides and which may be affected by regulation, graphs are presented showing floods for selected recurrence intervals plotted against contributing drainage area. Flow-frequency estimates for intervening sites along the Minnesota River, Mississippi River, and the Red River of the North can be derived from these graphs.

Flood-frequency characteristics are tabulated for 201 gaging stations having 10 or more years of record. These frequency data may provide the best estimates of floods for the specified streams at sites in the vicinity of the gaging station.

INTRODUCTION

A reliable estimate of the magnitude and frequency of floods is essential to the efficient design of bridges, culverts, dams, and other hydraulic structures. In more recent years, the need for flow-frequency estimates has greatly expanded through implementation of the State Flood Plain Management program and the Federal Flood Insurance Act.

Purpose and Scope

The purpose of this report is to provide engineers and designers with improved techniques for estimating flow-frequency relations for most streams in Minnesota. Regression equations are presented for estimating the magnitude of floods having recurrence intervals ranging from 2 to 100 years at ungaged sites on streams which are not significantly affected by man-made regulation, diversion, or urbanization. The equations apply to natural flow streams of all sizes with the exception of the main stems of the Minnesota River, Mississippi River and Red River of the North. Input to the equations requires only the measurement of selected basin characteristics which can be obtained from topographic maps of the basin under consideration.

Individual graphs are presented for the main-stem streams noted above from which selected frequency floods can be determined at ungaged sites on the basis of contributing drainage area. The effects of regulation were included in these analyses where applicable and no further adjustment is required if the degree of regulation remains unchanged.

Flood-frequency data for 201 gaged sites on natural flow streams are tabulated for use in defining flood-frequency characteristics at upstream or downstream locations. These data may be transferred by drainage area ratio and can provide an alternative to computation of flood frequency by regression equation.

Recurrence interval is the average interval of time, in years, within which the given flood magnitude can be expected to be exceeded once. It is the inverse of probability; thus a flood having an exceedance probability of 5-percent would have a 20-year recurrence interval, and a flood having an exceedance probability of 1-percent would have a 100-year recurrence interval.

Flow-frequency estimating methods for Minnesota presented in this report supersede those in earlier publications of the U.S. Geological Survey and the Minnesota Department of Conservation.

Previous Reports

Previous reports by Prior (1949), Prior and Hess (1961), Wiitala (1965), and Patterson and Gamble (1968), also provided flood-frequency estimating techniques. Considerable flood data have become available since these analyses were prepared by the accumulation of additional years of record for established gaging stations, and by expansion of the gaging network through installation of crest-stage stations on small watersheds. The latter program made possible the definition of flood characteristics over a larger range in drainage area size. The additional data base and improved analytical methods warrant greater confidence in the estimates derived from the techniques provided in this report than the estimates based on previous studies.

Gaging Station Numbering System

Each gaging station has been assigned a unique number in downstream order in accordance with the permanent numbering system adopted by the U.S. Geological Survey. Stations are numbered in a downstream direction along the main stream, and stations on tributaries between main-stream stations are numbered in the order they enter the main stream. Stations on other ranks of tributaries are treated in the same manner. The complete 8-digit station number, such as 05134200, includes the major basin part number "05" and a 6-digit station number.

Cooperation

The frequency analyses in this report were based on data collected and published by the U.S. Geological Survey as part of cooperative programs with various State and Federal agencies. The report was prepared as part of cooperative programs with the Minnesota Department of Transportation, Division of Highways and the Minnesota Department of Natural Resources, Division of Waters. Opinions, findings, and conclusions expressed in this publication are those of the U.S. Geological Survey and not necessarily those of any cooperating agency.

Use of Metric Units

The analyses and data compilations in this report are based on English units of measurement. Equivalent metric units (SI) are given in the text. Space limitations precluded the use of a dual system of units in the tables and only English units are shown. Metric units can be obtained by use of the conversion factors in table 1.

Table 1.--Conversion factors

The following factors may be used to convert English units published herein to the International System of units (SI).

Multiply English units	Ву	To obtain SI units
Feet (ft)	.3048	meters (m)
Miles (mi)	1.609	kilometers (km)
Square miles (mi ²)	2.590	square kilometers (km ²)
Cubic feet per second (ft ³ /s)	.02832	cubic meters per second (m ³ /s)
Feet per mile (ft/mi)	.1894	meters per kilometer (m/km)

ESTIMATING FLOOD FREQUENCY

It is generally accepted that the most reliable estimates of flood characteristics are those based on a frequency analysis of recorded floods at the site under consideration. Usually such records are not available and estimates must be obtained by transfer of flow-frequency data from gaged sites to the site being investigated, or must be computed from generalized floodfrequency relations.

Transfer of Defined Flood Characteristics

The flood characteristics defined by frequency analyses of gaging-station records listed in table 2 may provide the basis for satisfactory estimates at ungaged locations near the station, particularly where long-term records are available. Location of gaging stations for which frequency relations are presented are shown in figure 1. Where the period of record is short, flow-frequency estimates based on regional relations would likely provide more reliable results. Transfer of defined flow-frequency data to upstream or downstream sites on the same stream should be accomplished by an adjustment factor derived from drainage area ratio. Frequency data can be transferred Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota

.

: | |

;

1 ,

.

ະ	pr		-			_	_	~ ··		S		S				.~	~	^ 1	-		~	-	t			• •	· -	• • •	0.4				<u>ب</u>	- -	•
Years of	record	46		15	S	=	7	39	i	1	_	<u> </u>		=	=		58							14		\$;							ة ا		-
recurrence	Q100	13,600	010	2.280	•	760	2,520	8,820	1. 1	330		611		666	1,340	730	5,450	2,650	1,220	2,340	2,340			3,690	1	518	000	10,000	202	010.2	1.200		9,150	13,900	COT
ited reci	Q50	12,000	757	2.030	~	592	2,140	7,600	767	268		533		790	1,120	, 637	4,700	2,210	1,110	2,150	1,950	13	10	3,130		458		/,/00		615	840		5	10,400	101
r indicated vals	Q25	10,400	C 0 7	1.780	2	448	1,780	6,440		213		458		608	922	546	3,980	1,810	1,000	1,960	1,590	5	IC	2,590		399		5,700		1,920	565	222	5,760	7,540	711
ft ³ /s, for in intervals	010	8,320	 C 	1.450	2	291	1,350	•	011	150		362		406	682		3,090	•		1,700	•	10	ŝ	1,920		320		3,540		1,450	202	2	3,900	4,590	20
e, in	<u>Q5</u>	6,760	270	1 200	•	194	1,030	3,920	3	107		290		278	514		2,430	964		1,480	839	0 C	07	1,440		258		2,200		1,110	172	1	2,670	•	<u>у</u>
Discharg	62	4,550	140	827		6		2,470	F	57		190		135	299	209	1,540	571	557	1,140	447		01	810		168	285	799	177	040	12	5	1,250	•	51
Sto- rage	b e	14		6 2	•	7.7	•	4.4	n 1	0		3.2		0	3.1	1.	29	28	2.1	42	0	c	>	7.6		22	4	°.5		2 C		•	•	2°2	٠
Slope	(ft/mi)	13:0		4. IC	•	226	52.6	57.6		183		53.8			•		9 . 8		٠	11.2	•		yU.Y	36.8		3.4	٠	<u>,</u> ,	٠	ò ò	10.0	;		9.7	٠
Drainage area	(mi ²)	600	07 2	114		1.56	22.	140	•	0.96		5.54		4	5.79	4.9	312		68.4		4.94		0.20	19.4		270	482		94.5				522	1,040	5.98
Station name		Pigeon River at Middle Falls, I Grand Portage, M	3	Ponlar River at Lutsen MV	Lake Superior tributary	Harbor, MN	Caribou River near Little Marais, MN	Baptism River near Beaver Bay, M	Encampment River tributary at		Ľ	Harbors, M	Ľa	French River,		Miller Creek at Duluth, M	St. Louis River near Aurora, M		West Two River near Iron Junct	East	Creek near Blackhoof, MN	Rock Creek tributary near Blackhoof,		South Fork Nemadji Kiver near Holyoke, M	Otter Tail River near Detroit Lakes,	·	Pelican River near Fergus Falls, M	Mustinka River above Wheaton, M	Buttalo River near Callaway, MN	Buttalo Kiver near Hawley, MN	-	South Branch Buffalo River at			Mosquito Creek near Bagley, MN
Station	number	04010500	0/011040	04012500	04013100		04013200	04014500	04015200		04015300	-	04015360		04015370	04015400	04016500	04017000	04019000	04019500	04024100	04024110	0000000000	04024200	02030000		05040500	05049000	05060800	00010020	021002000	02061500		05062000	05062280
Map	Š	, n	7	м) 4		S.	91	~ 00		6		10		= 5	-	13	14	15	16	17	18	,	٩	. 20	1	21	22	22	74	57 72	21		28	29

Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota--Continued

Man Man	Station	Station name	Drainage	Slone	Sto- rage	Disclarge	, FI	ft ^{3/s} , for in intervals	r indicated	ted recu	recurrence	Years
2			(mi ²)	(ft/mi)	9 20	Q2	Q5	Q10	Q25	Q50	Q100	record
31	05062500	Wild Rice River at Twin Valley, M	888	7.2	7.0	1,170	2,370	3,370	4,860	6,110	7,480	49
70		Twin Valley, M	4.72	•		76	189	298	475	637	826	14
33		Coon Creek néár Twin Valley, MN	°°	15.2	1.5	630	1,300	1,770	2,430	3,000	3,550	13
34	05063200	Spring Creek tributary near Ogema,	4 99	20.2	12	59	83	98	117	131	145	12
35	05073600	South Branch Battle River at	•		•	}						
			2.80	9.72	14	49	88	118	160	194	229	15
36 25		Spring Creek near Blackduck, M	•	13.1	15	84	167	240	350	447	ഹ	15
10	00000000	FEITY UTEEK UTIDULATY REAT	1.14	10.5	51	33	56	73	95	113	131	15
38	05076000	Thief River near Thief River										
l		Falls, M	959	1.0	31	1,340	2,450	3,300	4,600	5,550	6,700	59
39	02076600	Red Lake River tributary near		5	c	77	101	1 6 4	001	226	740	
10	0507700	Diffy Brook near Convick Mi	45.00		0 4	216	171	407	199 654	781	507 014	
		Clearwater River at Plummer, M		; 4	12	1.390	2.340	3.030	3.970	4.690	5.450	32
6 6			•	12.2			•	^m	4		` 9	
43		Silver Creek near Clearbrook, M	4.96	•		51	100	139	196	243	294	
44	05078200	Silver Creek tributary at										
		Clearbrook, MN	6.02	36.4	8°.8	59	101	132	174	201	240	15
45	05078400	Clearwater River tributary near	6 51	8 15	ע ר	63	175	176	757	316	385	17
46	05078500	Clearwater River at Red Lake	•	•) • •	1	1	21	2		22	J F
		Falls, M	1,370	•	7.3	2,830	•	6,	ົດົ	-	•	44
47	05079000	5,		2.2	24 7 E	6,650	12,300	16,700 2,570	22,600		- U	67 21
40 40		at Algyle, Two Rivers	607	•	•	0+0	•	•	•	-	•	17
2		Bronson, M	444	3.2	8.3	1,140	2,420	3,530	5,210	6,650	8,240	33
50		Two Rivers below Hallock, M	644	•	•		,84	,61	,76	5	5	11
15	00450120	Roseau Kiver below South Fork	573		ע ע	o S	~	~		Ŷ		41
52		Sprague Creek near Sprague, Manitoba	169	6.9	20.2	595	1,220	1,680	2,280	2,770	3,250	42
53		Pine Creek near Pine Creek, M		•	1.3	27	ഗ		•	2	•	25
54		Roseau River at Ross, MN	1,220	m'	12		~ '	v٧	•	∝ຸ	•	42
S		Stony River near Isabella, M		٠	19	ົ	ູ້	وٌ ہ	•	4° o	•	21
0 1 0	05126000	DUNKA KIVET NEAT BADDILL, MN Rear Island Diver near Fly MN	52.U		26	199	326	646 417	517	cuo 529	728	10
58		Pike River near Embarrass, M	•	• •	23	802	1,310	1,670	2,140	2,510	2,880	12
59	05128700	Pike River tributary near Wahlsten,			, T	4	0	ç	661	341	171	¥1
	-	W	1 c c . l	18.1	ନ	40	1 0/	77	771	140		7

: : :

Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota--Continued

,

.

.

under number (\vec{a}_1) (\vec{r}_1 , \vec{m}) \vec{r}_2 $\vec{0}_2$	Man	Station	Station name	Drainage area	Slope	Sto- rage	Discharge	E.	ft ³ /s, for in interval:	for indicated ervals		recurrence	Years of
60 0313000 Vermilion River below Vermilion 483 2.8 2.3 1,100 1,570 1,880 2,360 2,360 2,300 2,3	2	number		(mi ²)	(ft/mi)	0 82	02	<u>05</u>	010		Q50	0100	record
1 0333000 Ibel, near Chisholm, M 463 7.3 2.3 2.30 2.50 2.90 2.54 2.90 1.26 2.54 2.90 1.26 2.54 2.56 2.90 1.26 2.54 2.55 2.60 2.54 2.55 2.60 2.54 2.56 2.90 1.26 2.54 2.56 2.90 1.260 1.70 2.54 2.56 2.90 1.260	60	05129000	Vermilion River below Vermilion										
61 033300 Start Creek near Chisholm, MN 13.7 13.8 20 2.02 2.50 2.97 4.90 1.700 2.330 2.300 2.320 2.300 2.320 2.300 2.320 2.300 2.320 2.300 2.320 2.300 <td></td> <td></td> <td>Lake, near Tower, M</td> <td>483</td> <td></td> <td>23</td> <td></td> <td>S</td> <td></td> <td></td> <td>•</td> <td>•</td> <td>48</td>			Lake, near Tower, M	483		23		S			•	•	48
 C 05130500 Sturgeno River maer Chisholm, M S0. C 05130500 Little Ceck River at LittleGeck, M 1,70 C 05130500 Little Ceck River are Chisholm, M S0. C 05130500 Little Ceck River are Chisholm, M S0. C 05130500 Little Ceck River are Chisholm, M S0. C 05130500 Little Ceck River are Chisholm, M 11.1 S 050 S13000 Riptle River mear Baukette, M 1,700 C 05130500 Riptle River mear Baukette, M 1,130 C 05130500 Riptle River mear Baukette, M 11.1 S 050 S13000 Riptle River mear Baukette, M 11.1 S 050 S1300 Riptle River mear Baukette, M 11.1 S 050 S1300 Riptle River mear Baukette, M 11.1 S 050 S1300 Riptle River mear Baukette, M 11.1 S 050 S1300 Riptle River mear Baukette, M 11.1 S 050 S120 Riptle River mear Baukette, M 11.1 S 050 S120 Riptle River mear Baukette, M 11.1 S 050 S120 Riptle River mear Baukette, M 11.1 S 050 S120 Riptle River mear Baukette, M 11.1 S 050 S120 Riptle River mear Baukette, M 11.1 S 050 S120 Riptle River mear Superation Mitter River Ripturaty at River Ripturaty mear 1.1 S 0524000 Cov Witter Ripturaty mear 1.1 S 052400 Cov Witter Ripturaty M 1,010 S 111 2.22 S 052490 Edit Ripture Ripturaty M 2.2 S 052490 Edit Ripture Ripturaty M 2.2 S 052700 Sauk River tributaty M 2.2 S 052700 Sauk River tributaty M	61	05130300	Boriin Creek near Chisholm, M	13.7	ы.	20		374					16
65 05.33300 Dark Niver near Tailohu, M. 1,730 2,210 3,31 5,50 7,00 1,700 2,300 1,700 2,300 1,700 2,300 2,4,300 2,100 1,700 2,4,300 1,200	62			187	٠	11	-	Q	•	-	•	•	28
65 05333200 Little Fork River are Big Falls, MN 1,730 2,200 1,500 1,200 2,200 2,000	63		Dark River near Chisholm. M		6.	10	343	S	•				24
66 63332000 Baye for the arr bandette, M 1,460 1,9 5,180 8,200 1,70 2,500 8,800 1,700 2,500 8,800 1,700 2,500 8,800 1,700 2,500 3,200 2,900	64		ork.	.730	•	17	•	3.9	•		,4		50
66 61334200 Raya di River near Baudicte, M 543 273 5700 7700	65		¥	n 1		6[•	6	•	ົທີ	ેજ	•	45
67 05339500 Warroad Naren ar Warroad, M 11.1 8.0 9.0 1,200 1,250 2,560 2,520 2,560 2,520 2,560 2,520 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 1,000 1 200 1,000 1 200 1,000	66	_	Ranid River near Randette M	n -	•	28	n 1	ຸຕ	•	5	ົວ	•	14
66 65340000 Buildor Run mear Warroad, M 11.1 8.0 9.0 161 733 482 702 880 1,100 1 71 05216080 Baan River reart Hill (2ry, M) 8.00 41.9 2.0 111 234 5.1 155 1,900 1,500 1,480 1,840 2,230 72 05216080 Saan River reart Hill (2ry, M) 8.00 41.9 2.0 111 235 1,050 1,480 1,840 2,230 1 1 2 2 2 1 1 2	67		Warmad River near Warmad M	162	•	ۍ ۲	•	20	•	2,560	2	•	25
66 05140500 Bast Branch Warroad River near 45.8 6.2 75 15.9 75 76 75 76 76 77 76 77 76 77 76 </td <td>68</td> <td></td> <td>Bulldog Run near Warroad, MN</td> <td>1.11</td> <td></td> <td></td> <td>161</td> <td>ľω</td> <td></td> <td>702</td> <td>້</td> <td>h (</td> <td>10</td>	68		Bulldog Run near Warroad, MN	1.11			161	ľω		702	້	h (10
	69	05140500	East Branch Warroad River near									•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Warroad. M	45.8			386	753	0	48	.84		13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	70	05210200	Smith Creek near Hill City. M	8.00	-	20	111	234	, m	45	54	•	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	05216980	a.	3.95	<u>د</u>	24	34	50	60	74	œ	93	14
730521700Bluff Creek near Jacobson, M1.5012.72.73.535.913.535.94104170524400Crow Ming River near Nimod, M1,015.415.52.581.9102.5502.9105.3515.7041705244100Kitten Creek near Steka, M1,011.41.41.5.52.5.81.9102.5502.9105.3515.704170527800Big Mink Creek trabutary near1.5.39.5.32.9.9101.21.2911129170527030Bastrup, MMertinutary at Spring1.5.39.5.3207661.7602.5505.6404.4705.31011291705270310Sauk River tributary at Spring7.0616.82.41662.53.924.505.00010.000491805270310Sauk River tributary at Spring7.0616.82.41662.54.79.53.04.79.34.76.9010.0004.91.71.2911805270310Sauk River tributary at5.210.5.211.9102.5505.6404.506.0010.0004.67.84.79.55.91010.0004.67.87.81.71.291112.91.71.81.6111.91.71.61.71.81.71.61.7 <td>72</td> <td>05217000</td> <td>Swan River near Warba, M</td> <td>254</td> <td></td> <td>15</td> <td>718</td> <td>949</td> <td>਼</td> <td>2</td> <td>.38</td> <td>4</td> <td>16</td>	72	05217000	Swan River near Warba, M	254		15	718	949	਼	2	.38	4	16
74 05244000 Grow Wing River at Nimrod, M 1,010 3.8 11 1,260 1,910 $2,350$ $2,910$ $5,3740$ 4 75 05244100 Kitten Creek tributary near 14.7 15.4 4.5 306 4.24 553 305 $5,740$ 4 76 05257300 Big Mink Creek tributary near 1.53 24.9 106 156 2550 $3,640$ $4,470$ $5,310$ 112 78 052570300 Buik River tributary at Spring 7.06 16.8 2.4 166 2554 315 352 450 $4,470$ $5,310$ 122 80 05270300 Sauk River tributary at Spring 7.06 16.8 2.4 166 254 315 5230 490 $6,900$ $10,000$ 49 76 101 123 100 $10,000$ 450 5320 100 10000 49 530 530 530 530 530 530 530 530 5300 450 500	73	05217700	Bluff Creek near Jacobson. M		3	27	33	53	67	83		104	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		05244000	Crow Wing River at Nimrod. M	.010	•	11	•	6		91	r,	•	45
05244200 Cat River near Nimrod, Mi 49.2 6.90 15 258 404 506 638 738 839 1 05267800 Big Mink Creek tributary near 1.53 24.9 76 101 129 1 05257030 Hillman Creek near Pierz, M 46.7 9.53 24.9 76 101 129 1 05270300 Sak River tributary at Spring 7.06 16.8 2.4 166 254 315 392 450 5310 1 1 05270300 Sak River near St. Cloud, MN 925 2.3 4.3 1,66 254 315 392 450 530 1 1 129 1<		05244100	Kitten Creek near Sebeka. M	14.	<u>с</u>	•	118	2	•	42	ഹ	625	14
05267800 Big Mink Creek tributary near 1.53 24.9 10 13 32 49 76 101 129 1 05267900 Hillman Creek near Pierz, M 46.7 9.53 20 766 1,760 2,550 3,640 4,470 5,310 1 05270300 Sauk River tributary at Spring 7.06 16.8 2.4 166 254 315 332 450 5,310 1 10 153 11 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 10 129 1 129 10 129 10 135 161 1 10 155 161 1 10 155 161 1 10 155 161 <td< td=""><td>76</td><td>05244200</td><td>Cat River near Nimrod, M</td><td>б.</td><td>õ</td><td>15</td><td>258</td><td>404</td><td>506</td><td>638</td><td>738</td><td>839</td><td>14</td></td<>	76	05244200	Cat River near Nimrod, M	б.	õ	15	258	404	506	638	738	839	14
05267900 Hillman Creek near Pierz, M 1.53 24.9 10 13 32 49 76 1,760 2,550 3,640 4,470 5,310 1 05270300 Sauk River tributary at Spring 7.06 16.8 2.4 166 2,550 3,640 4,470 5,310 1 05270310 Sauk River tributary at Spring 7.06 16.8 2.4 166 2,550 3,640 4,470 5,310 1 05270310 Sauk River near St. Cloud, M 92.2 3.4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 05270800 Suk River near St. Cloud, M 92.5 2.3 4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 05271800 Johnson Creek tributary at 3.82 7.38 14 31 35 161 1 05272000 Johnson Creek tributary at 3.11 2.4 3.7 133 182 251 308 368 <	77	05267800	Big Mink Creek tributary near										
05270300 Hillman Creek near Pierz, W 46.7 9.53 20 766 1,760 2,550 3,640 4,470 5,310 1 05270300 Hill M Wilk W 7.06 16.8 2.4 166 254 315 392 450 5,901 1 05270310 Sauk River tributary at Spring 7.06 16.8 2.4 166 254 315 392 450 5,901 1 93 1 05270500 Sauk River near St. Cloud, M 925 2.3 4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 935 1 <		-	Lastrup, M	•	4.9	10	13				1	12	14
05270300 Sauk River tributary at Spring 7.06 16.8 2.4 166 254 315 392 450 509 1 05270310 Sauk River tributary Mo. 2 near 0.24 78.4 2.5 19 34 47 64 78 93 1 05270310 Sauk River tributary Mo. 2 near 0.24 78.4 2.5 19 34 47 64 78 93 1 05270800 Sauk River near St. Cloud, M 925 2.3 4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 05272000 Joinson Creek tributary at 3.82 7.38 14 31 58 79 110 135 161 1 05272200 Joinson Creek tributary Mo. 2 near 15.4 16.6 4.3 71 133 182 251 308 161 1 1070 10 1070 10 1070 10 1070 10 1070 10 1070 10 1070 10 1070 1070 1070 10 1070 10	78	05267900	Hillman Creek near Pierz, M	•	ų.	20	766	5	ഹ്	•	4	,31	11
05270310 H111, M Suk River tributary No. 2 near 7.06 16.8 2.4 166 254 515 532 450 509 1 05270310 Suk River tributary M. St. Martin, M 0.24 78.4 2.5 19 34 47 64 78 93 1 05270500 Sauk River rear St. Cloud, M 925 2.3 4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 05271800 Johnson Creek tributary at Luxemburg, M 3.82 7.38 14 31 58 79 110 135 161 1 05272000 Johnson Creek tributary No. 2 near 13.4 16.6 4.3 71 133 182 251 308 368 1 1 070 10,000 4 052 546 744 904 1,070 1 556 406 529 669 1 052 551 308 566 1 069 1 070 1 070 1 070 1 070 1 070 1 070	79	05270300	Sauk River tributary at Spring	1	,		1						1
05270310 Sauk River tributary No. 2 near 0.24 78.4 2.5 19 34 47 64 78 93 1 05271800 Suk River near St. Cloud, MN 0.24 78.4 2.55 4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 05271800 Joinson Creek tributary at 3.82 7.38 14 31 58 79 110 135 161 1 05271800 Joinson Creek tributary at 3.82 7.38 14 31 58 79 110 135 161 1 05272000 Joinson Creek tributary No. 2 near 3.82 7.38 14 31 23 79 110 135 161 1 1070 05272300 Joinson Creek tributary No. 2 near 3.11 24.1 2.4 2.4 546 744 904 1,070 1 07 523 869 1 07 1.070 1.070 05274500 520 8.000 10,000 4 05274500 05274500 0527420 520 520 <t< td=""><td>,</td><td></td><td>Hill, M</td><td>7.06</td><td>.</td><td>•</td><td>166</td><td>254</td><td></td><td>392</td><td>450</td><td>509</td><td>15</td></t<>	,		Hill, M	7.06	.	•	166	254		392	450	509	15
U52770500 St. Martin, MN 0.24 78.4 2.15 119 34 47 64 78 95 1 U5271800 Johnson Creek tributary at Uscemburg, M 925 2.3 4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 05272000 Johnson Creek tributary at Uscemburg, M 3.82 7.38 14 31 58 79 110 135 161 1 05272000 Johnson Creek tributary No. 2 near 13.4 16.6 4.3 71 133 182 251 308 368 1 070 1070 1 070 1070 1 071 </td <td>80</td> <td>05270310</td> <td>Sauk River tributary No. 2 near</td> <td></td> <td></td> <td></td> <td>1</td> <td>i</td> <td></td> <td></td> <td>i</td> <td></td> <td></td>	80	05270310	Sauk River tributary No. 2 near				1	i			i		
052770500 Sauk River near St. Cloud, Mi 925 2.3 4.3 1,400 2,920 4,230 6,200 8,000 10,000 4 05271800 Johnson Creek tributary at Luxemburg, Mi 5.82 7.38 14 31 58 79 110 135 161 1 05272000 Johnson Creek tributary No. 2 near 3.82 7.38 14 31 58 79 110 135 161 1 05272000 Johnson Creek tributary No. 2 near 13.4 16.6 4.3 71 133 182 251 308 368 1 <			St. Martin, M	ċ	œ.	•							14
05271800 Johnson Creek tributary at Luxemburg, MN 5.82 7.38 14 31 58 79 110 135 161 1 05272000 Johnson Creek tributary No. 2 near 13.4 16.6 4.3 71 133 182 251 308 368 1 1 070 1 1 1 1 070 1 1 1 1 1 070 1 <td< td=""><td>81</td><td>05270500</td><td>Sauk River near St. Cloud, M</td><td>925</td><td>•</td><td>•</td><td>4</td><td>ຈ</td><td>~</td><td>•</td><td>•</td><td>o.</td><td>44</td></td<>	81	05270500	Sauk River near St. Cloud, M	925	•	•	4	ຈ	~	•	•	o.	44
Discription Luxemburg, MM Just MM	7.8	022/1800	Johnson Creek tributary at		I		ł	ŝ	Ē	011			;
05272000 Johnson Creek tributary No. 2 near 13.4 16.6 4.3 71 133 182 251 308 368 1 368 1,070 100 100 100 100 100 100 <t< td=""><td>1</td><td></td><td>Luxemburg, MN</td><td>٠</td><td>·</td><td></td><td>51</td><td>58</td><td>6/</td><td>011</td><td>155</td><td>101</td><td>11</td></t<>	1		Luxemburg, MN	٠	·		51	58	6/	011	155	101	11
5272300 5t. Augusta, MN 13.4 16.6 4.5 15.4 2.4 222 404 546 744 904 1,070 1 07	83	05272000		1			ł		001				c F
05272300 Johnson Creek near St. Augusta, M 46.7 15.4 2.4 222 404 546 744 904 1,070 1 05273700 Otsego Creek near Otsego, M 3.11 24.1 2.3 78 176 266 406 529 669 1 05274200 Stony Brook tributary near Foley, 2.26 10.7 8.8 40 84 121 177 224 276 1 05274200 B1k River near Big Lake, M 615 4.7 1.3 1,630 3,300 4,650 6,600 8,200 10,000 4 05276000 North Fork Crow River near Regal, 215 5.1 7.9 825 1,260 1,550 1,930 2,410 1 05276000 North Fork Crow River tributary 0.55 48.1 1.6 35 3,500 1,550 1,930 2,210 2,490 1 1,070 4,490 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td>13.4</td> <td><u>ە</u></td> <td>•</td> <td>17</td> <td>133</td> <td>182</td> <td>142</td> <td>308</td> <td></td> <td>01</td>				13.4	<u>ە</u>	•	17	133	182	142	308		01
05273700 Otsego Creek near Otsego, M 3.11 24.1 2.3 78 176 266 406 529 669 1 05274200 Stony Brook tributary near Foley, 2.26 10.7 8.8 40 84 121 177 224 276 1 05275000 E1k River near Big Lake, M 615 4.7 1.3 1,630 3,300 4,650 6,600 8,200 10,000 4 05276000 North Fork Crow River near Regal, 215 5.1 7.9 825 1,260 1,550 1,930 2,210 2,490 1 05276000 North Fork Crow River tributary 0.55 48.1 1.6 16 35 51 77 100 2,490 1 05276100 North Fork Crow River tributary 0.55 48.1 1.6 35 51 77 100 125 1	84	05272300	a,	46.7	م	•	222	404	546	744	904	•	
05274200 Stony Brook tributary near Foley, M 2.26 10.7 8.8 40 84 121 177 224 276 1 05275000 E1k River near Big Lake, M 615 4.7 1.3 1,630 3,300 4,650 6,600 8,200 10,000 4 05276000 North Fork Crow River near Regal, M 215 5.1 7.9 825 1,260 1,550 1,930 2,410 1 05276100 North Fork Crow River tributary 0.55 48.1 1.6 16 35 51 77 100 125 1 100 125 1 100 125 1 100 125 1	85	05273700	Otsego Creek near Otsego, MN	3.11	4.	•	78	176	266	406	529	699	
MN 2.26 10.7 8.8 40 84 121 177 224 270 1 171 224 270 1 171 224 270 1 171 224 270 1 171 224 270 1 171 224 270 1 100 24 270 10.000 4 4 7 1 3 1,630 3,300 4,650 6,600 8,200 10,000 4 6 0 270 10,000 4 6 10,000 4 7 100 12 10,000 4 6 6 6,600 8,200 10,000 4 6 6 6 6 6 7 10 7 10 7 100 12 1 1 1 1 6 1 7 10 1 <td>86</td> <td>05274200</td> <td>ley</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>t</td> <td></td> <td></td> <td>L 7</td>	86	05274200	ley					2		t			L 7
05275000 Elk River near Big Lake, M 615 4.7 1.3 1,630 3,300 4,650 6,600 8,200 10,000 4 05276000 North Fork Crow River near Regal, 215 5.1 7.9 825 1,260 1,550 1,930 2,210 2,490 1 05276000 North Fork Crow River near Regal, 215 5.1 7.9 825 1,260 1,550 1,930 2,210 2,490 1 05276100 North Fork Crow River tributary 0.555 48.1 1.6 16 35 51 77 100 125 1	1	1	¥	2	٠	٠			-				51
05276100 North Fork Crow River near Kegal, 215 5.1 7.9 825 1,550 1,930 2,210 2,490 1 05276100 North Fork Crow River tributary 0.55 48.1 1.6 16 35 51 77 100 125 1	87	05275000	Elk River near Big Lake, M		•	•	°.	•	°.	•	•	Ô	46
05276100 North Fork Crow River tributary 0.55 48.1 1.6 16 35 51 77 100 125 1	88	0000/250	NOTTH FOTK UTOW KIVET NEAT KEGAI, MN			7.9	2		5	െ	.21	•	11
near Paynesville, M 0.55 48.1 1.6 16 35 51 77 100 125 1	89	05276100	North Fork Crow River tributary		•			•	•		•	•	
			near Paynesville. M	•	ø	1.6	16	35	51	77	100	125	15

Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota -- Continued

Man	Station	Station name	Drainage area	Slope	Sto- rage	Discharge	i	ft ³ /s, for in interval:	for indicatervals	indicated recurrence	urrence	Years
No.	number		(mi ²)	(ft/mi)	9 89	Q2	Q5	Q10	Q25	Q50	00 I Q	record
06	05278000	Middle Fork Crow River near Spicer,	170	У С	Ċ	160	787	270	610	61 E	775	"
10	0578350	tain Creek near Mutrose	1/5 6/1	0.2 7 40	101	55	407	202	01c	CT0	C7/	27 77
92	05278500	South Fork Crow River at Cosmos, M		1.1	8.6	328	722	1.100	1.670	2.200	2.800	20
93	05278700	Otter Creek near Lester Prairie, M	30.2	3.27	4.1	130	264	, M	54	681	•	14
94	05278750	Otter Creek tributary near Lester			,	1			l			
_		Prairie, M	1.54	14.5	2.6	32	49	60	75	86	97	13
95	05278850	Buffalo Creek tributary near				i						
			9.45	2.90		31	60	82		141	170	14
96	05279000	South Fork Crow River near Mayer, MN	1,170	3.1	3.9	2,030	5,170	8,260	13,100	17,700	22,500	37
2 8 8	05280300	Chow River at NUCKIOIU, MN School Lake Creek tributary near	070,2	с. С	•	010,0	0,940	000°01	000 ° 01	000,12	000.02	τ
2	0000		2.04	10.6	6.4	44	109	171	273	365	472	11
66	05284100	Mille Lacs Lake tributary near			•) 	2	•	
		Wealthwood, MN	0.58	33.9	6.9	12	32	50	81	109	142	12
100	05284600		4.79	9.48	24	94	199	289	426	543	672	15
8 101	05284620	B		13.1	20	68	143	208	305	388	480	15
102	05284920	Stanchfield Creek tributary near										
				34.9	8.7	32					301	14
103	05286000	Rum River near St. Francis, M	1,360	3.7	37	3,920	6,590	8,300	10,700	12,200	14,000	41
104	00568260	Munnehana Ureek at Munnetonka	1 20	1 1	02	53	140	240	402	661	770	
105	000000		OCT .	+1.0	2	ì	ה ליד ד	C + 7	404	Tee	07/	77
CUL	00006700	LILLE MULLESULA KIVEL REAL FEEVEL,	447	5 2	-	817	2 050	3 250	5 230	7 050	0 1 7 0	30
106	05291000	Whetstone River near Big Stone City.			1		070 6 1		· · ·	000	2.162	2
		SD	389	10.9	1.5	941	2,730	4,650	8,060	11,400	15,400	43
107	05293000	Yellow Bank River near Odessa, M	398	17.7	1.3	1,240	3,020	4,710	7,450	9,940	12,800	31
108	05294000	Pomme de Terre River at Appleton, M	905	2.5	5.4	730	1,710	2,620	4,100	5,300	6,700	40
60T	00166260	Lazarus Ureek tributary near Lanby,	7 0 2	67 0	с С	1 7 8	010	173	080 1	1 420	1 780	ц Ч
110	02300000	Lac oui Parle River near Lac oui	10.7	•	•	2021	014	1.0		07167	7 , 1	21
			983	12.7	0.9	1,480	3,780	6.150	10,300	14.300	19,300	43
111	05301200	Minnesota River tributary near					•			•	•	
		Montevideo, MN	0.40	10.3	5.0	- 7	27	53	103	157	228	15
112	05302970	Outlet Creek tributary near	!	•		I			1	1		ţ
	01420210	Starbuck, MN	0.47	51.2		,	20	55	35	11	701	1 C
511	05505450	Hassel Creek near Clontart, M	5	40.4	2.1	29	1117	162	7 251		c	15 28
114	05204500	Curize Crock acce Mattan, MN	1,8/0	4.1	2.5 7.7	1,50U	5,44U	5,100	1,050	9,88U	12,400	40 L
211 911	00750550	Dirth Branch Vellow Medicine Diver	•	00°C	•	011	CC7	000	160	104	066	01
	00711000		14.8	11.8	2.7	96	324	594	1.110	1.650	2.330	15
	-			>	•							1

r

Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota--Continued

rence Years	Q100 record	141 15	· ·	ct /2¢	23,400 39		105 14 1640 16		383	27 , 900 45		1,390 16	239 16		384 12	1,380	53 , 000 44		2,870 20		21 01 2	- 0	107		722 16		1,270 14	000	53 14	
indicated recurrence	Q50	119		784	16,900 2		141	6.200	292	15,500	493	1,120	185)	273	1,070	25,400	403	2,270	5	1 570		00	 D <i>E</i>	614	915	,020		48	-
r indica vals	925	98		242	11,700		211	4.600	214	10,000	377	871	138		185		18,800	700	1,740	70.7	001	~ ~	26	<u>,</u>	510	704		70,800	43	-
ft ^{3/s} , for in interval:	010	70		681	6,460	Ċ	202	2.850	131	5 , 100	246	586	87	5	100		11,700	007	1,140	072	505 674	21,400	C 7		380	463		00/,61	36	_
, in	Q5	49		148	3,650		260	1.760	•	2,710	163	399	55	2	55	321	7,420	901	755		112	14,700	20	ີ	285	309	395	000,8	30	
Disclarge	62	22	2	1 6	1,160	(25	140	31	811	17	185	22		17		2,970	70	332		14/	7,150	00	07	161	137	2	4,190	21	
Sto- rage	282	c)) (۲ . 0	0.5		, , , ,	2.0	• •	0.4	3.7	4.2	c	>	0		0.1	>	5.3	c	ۍ د	0.8	c	>	3.6	0.1	•	/.7	5.6	_
Stone	(ft/mi)	87.7		9.05	12.4		~ c	•	11.4	0.11	4.57	2.88	42.8	•	57.0	61.4	0.0	1.02	3.2		15.7	2.7	150	001	4.02	9.30	8.82	7. 2	68.7	
Drainage	(mi ²)	0.33		5.70	653		0.83	-	5.63	697	12.2	31.3	10.01	•	0.54		1,280	07.7	132		13.0	2,430	20 0	/ ^ .	7.25	6.22	18.0	1,100	0.36	
Station name		North Branch Yellow Medicine River tributary near Wilno. MN	North Branch Yellow Medicine River	l tributary No. 2 near Porter, MN Yellow Medicine River near Granite	Falls, M	Kandiyohi County ditch 16 near	Dodymod Diverse Durbeton M	kedwood Klver at Kuunton, MN Redwood River at Marshall AN		Redwood River near Redwood Falls, MN West Fork Beaver Creek near Olivia			COLLORIMOOU KIVET LIIDULAIY REAL	Meadow Creek tributary near	Marshall, M		Cottonwood River near New Ulm, MN	Froster Ureek near Algen, MN Fast Branch Blue Earth River near		East Branch Blue Earth River	Watonwan River baue Earth, MN	Blue Earth River near Rapidan, M	Le Sueur River tributary near	Cobb River tributary near	Mapleton, MN	Maple River tributary near Mapleton, MN	Judicial ditch 49 near Amboy, M		Montgomery, MV	BICE Lake tributary near
Station	number	05311250	05311300	05313500		05313800	00011230	05315000	05315200	05316500		05316700	nnonreen	05316850		05316900	05317000	05318000		05318100	05318300	05320000	05320200	05320300		05320400	05320440	05202500		002.022.20
Man	l S	117	118	119		120	171	121	123	124		126		0 128		129	130	132		133	1 24	135	136	137	t	138	139	140		47

,

Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota -- Continued

Map Station	Station name	area	Slope	rage	DISCHARGE,	Ħ	intervals	rvals	Is	מז ז בוורב	of	
number		(mi ²)	(ft/mi)	69	Q2	<u> </u>	Q10	Q25	Q50	Q100	record	
05330550	Raven Stream tributary near New	F (C	0.01	0	170	VCZ	2 7 7	717	272	036	Ļ	
02330600	Sand Creek tributary No. 2 near	1.22	0.01	07	5/T	724	C++ C++	010	C0/	C76	c1	
		2.62	30.9	6.1	68	138	194	274	340	413	15	
05336200	Glaisby Brook near Kettle River, M	24.2	11.5	17	427	742	619	1,300	1,560	1,830	15	
חחכחכככח	Lake. MN	1.23	30.4	3.3	81	157	219	309	383	464	15	
05336550	Wolf Creek tributary near Sandstone,				;) 		2	
		5.46	12.4	58	57	128	192	291	377	475	15	
05336600	Kettle River tributary at Sandstone,	0 65	27 A	78	17	Ψ£	40	77	10	112	5	
05338200		3.84	; ~;	20	16	137	184	249	302	357	15	
05338500	Snake River near Pine City, M	958	5.3	43	4,960	8,280	10,900	14,300	17,000	20,000	24	
05340000	Sunrise River near Stacy, M	167	1.9	47	307	466	574	712	815	918	17	
05545900	Vermillion Kiver tributary near Hastings MN	2 71	5 53	16	78	120	205	665	1 110	1 740	12	
05352700	Turtle Creek tributary No. 2 near	÷)	2		1	200	07767	•		
		1.26	36.2	0.8	64	135	196	287	365	451	5	
02352800	Turtle Creek tributary near Steele	10 3	v	0	105	100	020	201	201	507	10	
05355100	Little Cannon River tributary near	TO.C	10.4	0.0	COT	107	617	TEC	101	700	C1	
		2.20	53.4	0	194	412	600	884	1.130	1.400	15	
05355150	Pine Creek near Cannon Falls, M		12.8	1.3				1,200	1,720	2,350	15	
05355200	Cannon River at Welch, M	1,320	4.2	2.4	5,880	11,000	15,300	21,700	27,200	34,000	43	
05355230	Cannon River tributary near Welch,	1		. '			1	1			1	
00222000	South Fort 7:mbao Direct acce	0.05	140	0	23	42	57	17	94	111	15	
	Bochester. M	304	9.3	0.2	4.410	8.830	12.500	17.900	22.400	27.500	19	
05373350			•	. -		n –	Î.		· · · ·			
	Troy, MN	0.16	156	0	23	50	73	109	140	175	13	
05373700	Spring Creek near Wanamingo, MN	9.93	20.7	0	417	843	1,200	1,730	2,170	2,660	15	
05373900	Trout Brook tributary near Goodhue,											
		0.40	88.9	0			220	306	380		15	
05374000	Zumbro River at Zumbro Falls, MN	1,130	7.7	0.1	0	2	22,500	29,400	34,700	40,200	49	
05374500	Zumbro River at Theilman, MN	1,320	6.4	0.1	12,600	19,400	24,000	30,000	34,500	39,100	19	
05375800	East Indian Creek tributary near	, ,	103	c	, ,	10		5		00	2 [
05376500	weaver, NN South Fork Whitewater River near	0.22	004	5	71	17	4 0	10	א'	66 6	CT	
		76.8	22.3	0	1,750	3,520	4,990	7,160	8,980	11,000	31	
05277500		000		¢		00,					•	

•

Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota--Continued

i

,

Table 2.--Flood-frequency and basin characteristics for gaging stations in Minnesota--Continued

ation	Station name	Drainage area	Slone	Sto- rage	Disclar	ge, in f	Disclarge, in ft3/s, for indicated recurrence intervals	s, for indica	ted recu	irrence	Years
No. number		(mi ²)	(ft/mi)	940	02	Q5	Q10	Q25	Q50	Q100	record
82950	196 06482950 Mound Creek near Hardwick, MN	2.47	25.3	0.3	33	106	190	349	511	714	16
82960	06482960 Mound Creek tributary at Hardwick,	0.19	112	0	38	115	201	358	514	707	16
198 06483050		0.21	100	0	34	103	179	317	454	622	14
06483200	Kanaranzi Creek tributary near Lismore, MN	0.14	66.0	0	89	162	219	298	363	431	16
200 06603520	Ŀ	2.66	14.5	0.1	48	111	169	261	343	436	14
503530	Little Sioux River near Spafford, MN	41.1	6.39	0.3	217	738		1,360 2,560 3,800	3,800	5,390	13

12

,

most reliably by the following relation which is applicable to most areas in Minnesota.

 $Q_u = Q_g (A_u/A_g)^{\circ \cdot 6}$

where: Q is the flood-frequency estimate for the ungaged site

- Q_g is the flood-frequency value for the gaged site (from table 2)
- A, is the drainage area for the ungaged site
- A is the drainage area for the gaged site g (from table 2)

Local conditions may warrant a slight increase or decrease of the 0.6 exponent, which must be based on engineering judgment. Use of the transfer relation should be limited to sites which differ in drainage area size by no more than 40 percent from the gaged site.

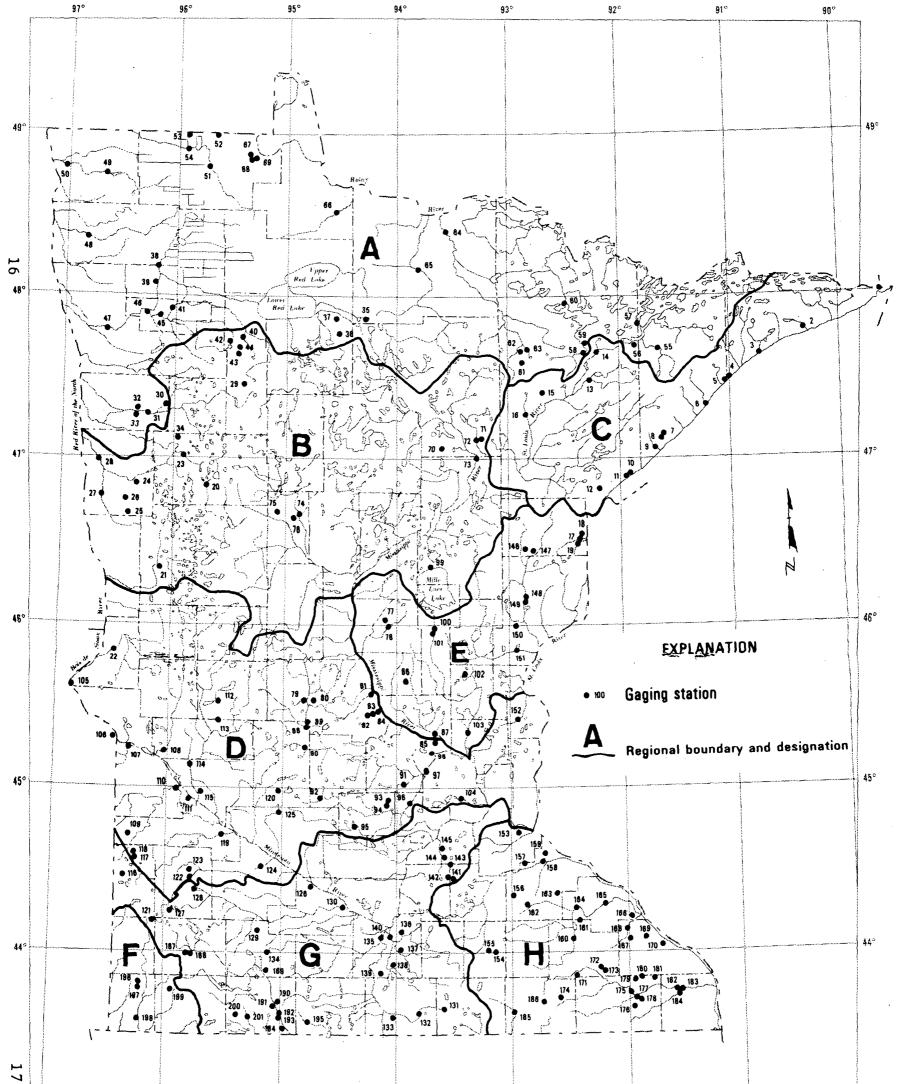
Regional Analyses for Ungaged Sites

Equations derived from multiple regression analyses can be used to obtain flood-frequency estimates for ungaged sites on natural flow streams. Peak discharges for the selected recurrence intervals can be computed from these mathematical equations tabulated in table 3, which relate flood magnitude to basin characteristics. A set of equations to estimate flood peaks for the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals (identified as Q_2 , Q_5 , Q_{10} , etc.) are provided for each of the hydrologic regions into which the State has been divided. The eight regions are outlined on figure 1. The regional boundaries cannot be defined precisely; therefore, where the estimating site falls close to a regional divide, consideration should be given to averaging the results obtained by computation of the flood magnitudes from the equations for the two adjoining regions. Particular care should be exercised when the site in question has a large value for a basin characteristic that is not used in the regression relation for both regions. If a flood-frequency estimate is to be made downstream from a regional divide which the stream crosses, the discharge at the site should be determined by weighting the regression estimates computed from both regional relations according to drainage area.

Due regard should be given to the limitations of these equations as discussed in a following section (Accuracy and Limitations).

Region A	Region E
$Q_2 = 29.2 A^{62}$	Q ₂ =1.91 A· ⁹¹³ S· ⁸⁸³
$Q_{5} = 54.2 \text{ A}^{62}$	$Q_{5} = 5.76 \text{ A} \cdot 852 \text{ S} \cdot 774$
$Q_{10} = 73.8 A^{62}$	$Q_{10} = 9.83 \text{ A}^{-821} \text{ S}^{-725}$
$Q_{25} = 101 \text{ A} \cdot 62$	$Q_{25} = 17.0 \text{ A} \cdot 790 \text{ S} \cdot 674$
$Q_{50} = 124 A \cdot 6^{2}$	$Q_{50} = 23.9 \text{ A}^{.770} \text{ S}^{.644}$
$Q_{100} = 149 A \cdot 6^{2}$	$Q_{100} = 32.4 \text{ A} \cdot 753 \text{ S} \cdot 616$
Region B	Region F
$Q_2 = 5.71 \text{ A} \cdot {}^{660} \text{ S} \cdot {}^{407} \text{ St}^{-} \cdot {}^{027}$	$Q_2 = 83.8 A^{47}$
$Q_{5} = 16.1 \text{ A} \cdot {}^{646} \text{ S} \cdot {}^{452} \text{ St} - {}^{231}$	$Q_{5} = 208 \text{ A}^{49}$
$Q_{10} = 26.8 \text{ A} \cdot {}^{642} \text{ S} \cdot {}^{473} \text{ St}^{-333}$	$Q_{10} = 322 A^{50}$
$Q_{25} = 46.5 \text{ A} \cdot 6^{36} \text{ S} \cdot 4^{92} \text{ St}^{-} \cdot 4^{43}$	$Q_{25} = 487 \text{ A}^{51}$
$Q_{50} = 65.2 \text{ A} \cdot 6^{34} \text{ S} \cdot 5^{505} \text{ St}^{-513}$	$Q_{50} = 580 \text{ A}^{52}$
$Q_{1} = 88.4 \text{ A} \cdot 6^{31} \text{ S} \cdot 5^{516} \text{ St}^{-} \cdot 5^{75}$	$Q_{100} = 762 A^{52}$
100	100
Region C	Region G
100	Region G
Region C	$\frac{\text{Region G}}{Q_2} = 15.8 \text{ A}^{-687} \text{ S}^{-253} \text{ St}^{115}$
$\frac{\text{Region C}}{\text{Q}_{2}} = 10.5 \text{ A} \cdot {}^{764} \text{ S} \cdot {}^{375} \text{Q}_{5} = 15.9 \text{ A} \cdot {}^{736} \text{ S} \cdot {}^{421} \text{Q}_{10} = 19.8 \text{ A} \cdot {}^{722} \text{ S} \cdot {}^{447}$	$\frac{\text{Region G}}{Q_2} = 15.8 \text{ A}^{687} \text{ S}^{253} \text{ St}^{115}$ $Q_5 = 32.1 \text{ A}^{.723} \text{ S}^{.294} \text{ St}^{212}$ $Q_1 = 45.6 \text{ A}^{.741} \text{ S}^{.313} \text{ St}^{258}$
$\frac{\text{Region C}}{\text{Q}_{2}} = 10.5 \text{ A} \cdot {}^{764} \text{ S} \cdot {}^{375} \text{Q}_{5} = 15.9 \text{ A} \cdot {}^{736} \text{ S} \cdot {}^{421} \text{Q}_{10} = 19.8 \text{ A} \cdot {}^{722} \text{ S} \cdot {}^{447}$	$\frac{\text{Region G}}{Q_{2}} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{115}$ $Q_{5} = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{212}$
$\frac{\text{Region C}}{2}$ $Q_{2} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375}$ $Q_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421}$ $Q_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447}$ $Q_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476}$	$\frac{\text{Region G}}{Q_2} = 15.8 \text{ A}^{687} \text{ S}^{253} \text{ St}^{115}$ $Q_5 = 32.1 \text{ A}^{.723} \text{ S}^{.294} \text{ St}^{212}$ $Q_1 = 45.6 \text{ A}^{.741} \text{ S}^{.313} \text{ St}^{258}$
$\frac{\text{Region C}}{2}$ $Q_{2} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375}$ $Q_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421}$ $Q_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447}$ $Q_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476}$ $Q_{50} = 28.1 \text{ A} \cdot ^{699} \text{ S} \cdot ^{495}$	$\frac{\text{Region G}}{\text{Q}_{2}} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{115}$ $\text{Q}_{5} = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{212}$ $\text{Q}_{10} = 45.6 \text{ A} \cdot {}^{741} \text{ S} \cdot {}^{313} \text{ St}^{258}$ $\text{Q}_{25} = 66.3 \text{ A} \cdot {}^{761} \text{ S} \cdot {}^{329} \text{ St}^{306}$ $\text{Q}_{50} = 83.5 \text{ A} \cdot {}^{774} \text{ S} \cdot {}^{340} \text{ St}^{337}$
$\frac{\text{Region C}}{2}$ $Q_{2} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375}$ $Q_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421}$ $Q_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447}$ $Q_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476}$	$\frac{\text{Region G}}{Q_2} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{115}$ $Q_5 = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{212}$ $Q_{10} = 45.6 \text{ A} \cdot {}^{741} \text{ S} \cdot {}^{313} \text{ St}^{258}$ $Q_{25} = 66.3 \text{ A} \cdot {}^{761} \text{ S} \cdot {}^{329} \text{ St}^{306}$
$\frac{\text{Region C}}{2}$ $Q_{2} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375}$ $Q_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421}$ $Q_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447}$ $Q_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476}$ $Q_{50} = 28.1 \text{ A} \cdot ^{699} \text{ S} \cdot ^{495}$ $Q_{100} = 32.0 \text{ A} \cdot ^{690} \text{ S} \cdot ^{512}$ $\frac{\text{Region D}}{2}$	$\frac{\text{Region G}}{\text{Q}_{2}} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{-115}$ $\text{Q}_{5} = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{-212}$ $\text{Q}_{10} = 45.6 \text{ A} \cdot {}^{741} \text{ S} \cdot {}^{313} \text{ St}^{-258}$ $\text{Q}_{25} = 66.3 \text{ A} \cdot {}^{761} \text{ S} \cdot {}^{329} \text{ St}^{-306}$ $\text{Q}_{50} = 83.5 \text{ A} \cdot {}^{774} \text{ S} \cdot {}^{340} \text{ St}^{-337}$ $\text{Q}_{100} = 102 \text{ A} \cdot {}^{786} \text{ S} \cdot {}^{349} \text{ St}^{-363}$ $\frac{\text{Region H}}{100}$
$\frac{\text{Region C}}{2}$ $Q_{2} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375}$ $Q_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421}$ $Q_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447}$ $Q_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476}$ $Q_{50} = 28.1 \text{ A} \cdot ^{699} \text{ S} \cdot ^{495}$ $Q_{100} = 32.0 \text{ A} \cdot ^{690} \text{ S} \cdot ^{512}$ $\frac{\text{Region D}}{2}$ $Q_{2} = 7.90 \text{ A} \cdot ^{654} \text{ S} \cdot ^{356}$	$\frac{\text{Region G}}{\text{Q}_{2}} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{-115}$ $\text{Q}_{5} = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{-212}$ $\text{Q}_{10} = 45.6 \text{ A} \cdot {}^{741} \text{ S} \cdot {}^{313} \text{ St}^{-258}$ $\text{Q}_{25} = 66.3 \text{ A} \cdot {}^{761} \text{ S} \cdot {}^{329} \text{ St}^{-306}$ $\text{Q}_{50} = 83.5 \text{ A} \cdot {}^{774} \text{ S} \cdot {}^{340} \text{ St}^{-337}$ $\text{Q}_{100} = 102 \text{ A} \cdot {}^{786} \text{ S} \cdot {}^{349} \text{ St}^{-363}$ $\frac{\text{Region H}}{2}$ $\text{Q}_{2} = 23.2 \text{ A} \cdot {}^{787} \text{ S} \cdot {}^{348} \text{ St}^{-753}$
$\frac{\text{Region C}}{\text{Q}_{2}} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375}$ $Q_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421}$ $Q_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447}$ $Q_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476}$ $Q_{25} = 28.1 \text{ A} \cdot ^{699} \text{ S} \cdot ^{495}$ $Q_{100} = 32.0 \text{ A} \cdot ^{690} \text{ S} \cdot ^{512}$ $\frac{\text{Region D}}{\text{Q}_{2}} = 7.90 \text{ A} \cdot ^{654} \text{ S} \cdot ^{356}$ $Q_{5} = 25.1 \text{ A} \cdot ^{666} \text{ S} \cdot ^{288} \text{ St}^{-} \cdot ^{175}$	$\frac{\text{Region G}}{\text{Q}_{2}} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{-115}$ $\text{Q}_{5} = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{-212}$ $\text{Q}_{10} = 45.6 \text{ A} \cdot {}^{741} \text{ S} \cdot {}^{313} \text{ St}^{-258}$ $\text{Q}_{25} = 66.3 \text{ A} \cdot {}^{761} \text{ S} \cdot {}^{329} \text{ St}^{-306}$ $\text{Q}_{50} = 83.5 \text{ A} \cdot {}^{774} \text{ S} \cdot {}^{340} \text{ St}^{-337}$ $\text{Q}_{100} = 102 \text{ A} \cdot {}^{786} \text{ S} \cdot {}^{349} \text{ St}^{-363}$ $\frac{\text{Region H}}{2}$ $\text{Q}_{2} = 23.2 \text{ A} \cdot {}^{787} \text{ S} \cdot {}^{348} \text{ St}^{-753}$ $\text{Q}_{5} = 55.0 \text{ A} \cdot {}^{753} \text{ S} \cdot {}^{324} \text{ St}^{-640}$
$\frac{\text{Region C}}{\text{Q}_{2}} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375} \text{ Q}_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421} \text{ Q}_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447} \text{ Q}_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476} \text{ Q}_{25} = 28.1 \text{ A} \cdot ^{699} \text{ S} \cdot ^{495} \text{ Q}_{100} = 32.0 \text{ A} \cdot ^{690} \text{ S} \cdot ^{512} \frac{\text{Region D}}{100} \text{ Q}_{2} = 7.90 \text{ A} \cdot ^{654} \text{ S} \cdot ^{356} \text{ Q}_{5} = 25.1 \text{ A} \cdot ^{666} \text{ S} \cdot ^{208} \text{ St}^{-} \cdot ^{175} \text{ Q}_{10} = 44.8 \text{ A} \cdot ^{673} \text{ S} \cdot ^{252} \text{ St}^{-} \cdot ^{265} \text{ A} \cdot ^{666} \text{ S} \cdot ^{266} \text{ S} \cdot ^{$	$\frac{\text{Region G}}{\text{Q}_{2}} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{-115}$ $\text{Q}_{5} = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{-212}$ $\text{Q}_{10} = 45.6 \text{ A} \cdot {}^{741} \text{ S} \cdot {}^{313} \text{ St}^{-258}$ $\text{Q}_{25} = 66.3 \text{ A} \cdot {}^{761} \text{ S} \cdot {}^{329} \text{ St}^{-306}$ $\text{Q}_{50} = 83.5 \text{ A} \cdot {}^{774} \text{ S} \cdot {}^{340} \text{ St}^{-337}$ $\text{Q}_{100} = 102 \text{ A} \cdot {}^{786} \text{ S} \cdot {}^{349} \text{ St}^{-363}$ $\frac{\text{Region H}}{\text{Q}_{2}} = 23.2 \text{ A} \cdot {}^{787} \text{ S} \cdot {}^{348} \text{ St}^{-753}$ $\text{Q}_{5} = 55.0 \text{ A} \cdot {}^{753} \text{ S} \cdot {}^{324} \text{ St}^{-640}$ $\text{Q}_{10} = 86.4 \text{ A} \cdot {}^{735} \text{ S} \cdot {}^{309} \text{ St}^{-584}$
$\frac{\text{Region C}}{\text{Q}_{2}} = 10.5 \text{ A} \cdot ^{764} \text{ S} \cdot ^{375} \text{ Q}_{5} = 15.9 \text{ A} \cdot ^{736} \text{ S} \cdot ^{421} \text{ Q}_{10} = 19.8 \text{ A} \cdot ^{722} \text{ S} \cdot ^{447} \text{ Q}_{25} = 24.5 \text{ A} \cdot ^{708} \text{ S} \cdot ^{476} \text{ Q}_{25} = 28.1 \text{ A} \cdot ^{699} \text{ S} \cdot ^{495} \text{ Q}_{100} = 32.0 \text{ A} \cdot ^{690} \text{ S} \cdot ^{512} \frac{\text{Region D}}{100} \text{ Q}_{2} = 7.90 \text{ A} \cdot ^{654} \text{ S} \cdot ^{356} \text{ Q}_{5} = 25.1 \text{ A} \cdot ^{666} \text{ S} \cdot ^{288} \text{ St}^{-} \cdot ^{175} \text{ Q}_{10} = 44.8 \text{ A} \cdot ^{673} \text{ S} \cdot ^{252} \text{ St}^{-} \cdot ^{265} \text{ S} S$	$\frac{\text{Region G}}{\text{Q}_{2}} = 15.8 \text{ A} \cdot {}^{687} \text{ S} \cdot {}^{253} \text{ St}^{-115}$ $\text{Q}_{5} = 32.1 \text{ A} \cdot {}^{723} \text{ S} \cdot {}^{294} \text{ St}^{-212}$ $\text{Q}_{10} = 45.6 \text{ A} \cdot {}^{741} \text{ S} \cdot {}^{313} \text{ St}^{-258}$ $\text{Q}_{25} = 66.3 \text{ A} \cdot {}^{761} \text{ S} \cdot {}^{329} \text{ St}^{-306}$ $\text{Q}_{50} = 83.5 \text{ A} \cdot {}^{774} \text{ S} \cdot {}^{340} \text{ St}^{-337}$ $\text{Q}_{100} = 102 \text{ A} \cdot {}^{786} \text{ S} \cdot {}^{349} \text{ St}^{-363}$ $\frac{\text{Region H}}{\text{Q}_{2}} = 23.2 \text{ A} \cdot {}^{787} \text{ S} \cdot {}^{348} \text{ St}^{-753}$ $\text{Q}_{5} = 55.0 \text{ A} \cdot {}^{753} \text{ S} \cdot {}^{324} \text{ St}^{-640}$

Table 3.--Regional flood-frequency equations


Variables used for the equations in table 3 have the following measurement units:

- Q_T Peak discharge for T-year recurrence interval, in cubic feet per second.
- A Drainage area, in square miles.
- S Average main channel slope, between 10 and 85 percent points, in feet per mile.
- St Area of lakes, ponds and swamps, expressed as percentage of drainage area and increased by 1 percent.

Values for the basin characteristics used in the regression analyses were determined by the methods outlined below. Required independent variables used for estimated flood characteristics at ungaged sites should be determined in a like manner.

- <u>Drainage area</u>. Trace contributing drainage-area outline on topographic maps along divides indicated by contour elevations, starting at point on stream where frequency characteristics are to be defined. U.S. Geological Survey topographic maps, 7½-minute or 15-minute quadrangles, should be used for basins smaller than 150 square miles. For larger basins, the 1:250,000 scale topographic maps may be used. Planimeter the outlined area to obtain drainage area (A) in square miles.
- Main channel slope. Determine the main channel of 2. the stream on the drainage area map, from the point selected for the frequency estimate, to the extreme rim of the basin. Extension of the main channel to the basin divide, beyond the upstream end of the defined stream, should be made as indicated by contours. Upstream from each stream junction, choose the main channel as the fork which drains the larger Measure the total length by dividers set at area. appropriate intervals, such as 0.1 mile for 7¹/₂-minute quadrangles, 0.25 mile for 15-minute quadrangles, and 0.5 mile for the 1:250,000 scale maps. Locate points 10 and 85 percent of the main channel length upstream from the point of interest, and determine the elevation of these points by interpolation between contours. The average main channel slope (S) is computed as the difference in elevation, in feet, divided by the length, in miles, between the 10 and 85 percent points.

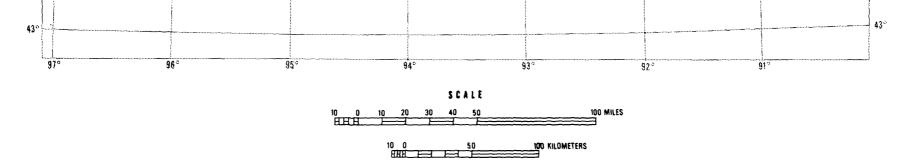


Figure 1.--Map of Minnesota showing location of gaging stations and hydrologic regions used in regression analysis.

3. <u>Storage</u>. - Measure the area of lakes, ponds and swamps in the drainage basin on topographic maps. Storage areas can be measured by planimeter or by using a transparent grid. The grid is placed over the water and swamp areas and the number of squares, and estimated fractional parts of squares, are summed up and multiplied by the area of each square, as calculated for the scale of the map being used. The total area of lakes, ponds and swamps is expressed as a percentage of the total contributing area. This percentage is then increased by 1 percent to obtain the storage parameter (St) used in the equations.

A transparent grid suitable to most map scales is enclosed in a packet at the back of this report.

Illustrative Examples

The following examples illustrate use of the relations to compute flow frequency estimates.

Example 1.- Estimate the 50-year flood on the Sauk River at Cold Spring, an ungaged site.

Solution:

- Inspection of figure 1 and table 2 indicate the availability of gaging-station data for the Sauk River in close proximity to Cold Spring. The station is identified as Sauk River near St. Cloud, map no. 81 (Station No. 05270500).
- 2) Contributing drainage area at Cold Spring is planimetered on topographic maps as 832 mi².
- 3) Reduction in drainage area at Cold Spring is only 10 percent from the 925 mi² listed in table 2 for the St. Cloud gaging station. Therefore, a transfer of flood characteristics by drainage area ratio is appropriate.
- 4) From table 2, $Q_g = 8,000 \text{ ft}^3/\text{s}$ for 50-year flood.
- 5) By substitution into transfer equation:

 $Q_u = Q_g (A_u/A_g)^{0.6}$ $Q_{50} = 8,000 (832/925)^{0.6}$ $Q_{50} = 8,000 \ge 0.938$ $Q_{50} = 7,500 \text{ ft}^3/\text{s} (212 \text{ m}^3/\text{s})$ Example 2.- Estimate the 25-year peak discharge for an ungaged site on Spring Creek in Swift County, at the crossing of State Highway 9, $3\frac{1}{2}$ miles west of Sunburg.

- 1) Inspection of figure 1 and table 2 indicate that no gaging-station data are available on this stream, therefore, flow-frequency estimates must be derived from regional equations.
- Site is identified from figure 1 as being in Region
 D. Applicable equation for 25-year flood is located in table 3.
- 3) Drainage area is outlined on topographic map, De Graff SE 7¹/₂- minute quadrangle.
- 4) Drainage area (A) is planimetered as 1.28 mi², and main channel length is measured as 1.49 mi to the watershed divide.
- 5) The main channel slope is computed by dividing the difference in elevations at mile 0.15 (0.10 x 1.49) and mile 1.27 (0.85 x 1.49) by 1.12 (1.27 0.15), the distance between the two points.

Elevation at mile 1.27 is 1235 ft

Elevation at mile 0.15 is 1212 ft

Main channel slope (S) = (1235 - 1212)/1.12 = 20.5 ft/mi

6) Total lake, pond and swamp area is determined from the map by the grid system described in the discussion on storage preceding example 1. Fifteen of the small grid squares are counted as storage area.

15 squares x 0.00144 mi² = 0.02 mi²

Storage = $\frac{0.02}{1.28} \times 100 = 1.6$ percent

Storage index (St) = 1.6 + 1.0 = 2.6 percent

7) Region D equation for 25-year flood from table 3:

 $Q_{25} = 79.7 A \cdot {}^{682}S \cdot {}^{217}St - {}^{354}$

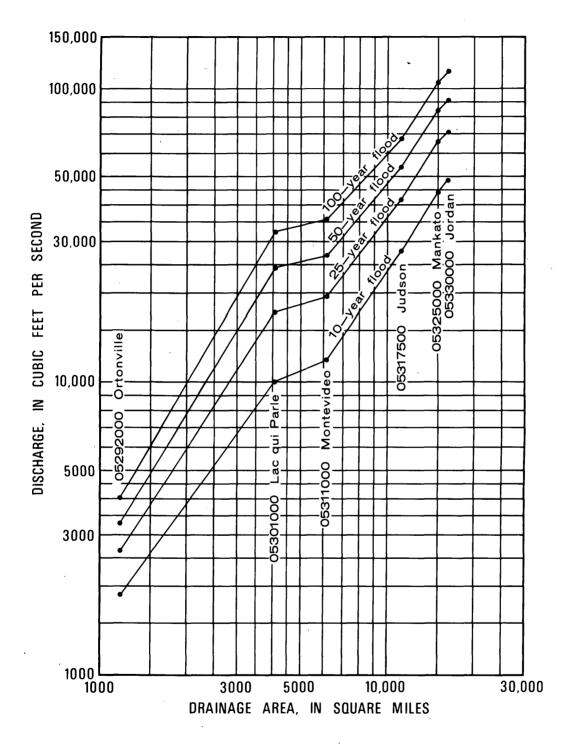
8) By substitution of the variables:

 $Q_{25} = 79.7 (1.28) \cdot {}^{682} (20.5) \cdot {}^{217} (2.6) - {}^{354}$

9) Solving the equation:

 $Q_{25} = 130 \text{ ft}^3/\text{s} (3.68 \text{ m}^3/\text{s})$

Plotting points to define a frequency curve for the site can be obtained by solution of equations for other recurrence intervals.


Main-stem Streams

Estimating relations given previously do not apply to the main stem of the Minnesota River, Mississippi River and Red River of the North. The effects of regulation, interregional character of the streams and (or) the large drainage areas involved, require unique definition of the flood characteristics for these streams. Individual relations between flood magnitude and contributing drainage area were prepared based on interpolation between gage sites on the main stems. Floodfrequencies indicated for regulated reaches of the main-stem streams are based on the assumption that past records represent homogeneous regulation patterns and are applicable only if such regulation patterns remain unchanged in the future.

The 100-year flood estimates for the Minnesota River, Red River of the North, and Mississippi River (between Aitkin and St. Paul) have been coordinated under an interagency agreement. Agencies involved in this coordination process, with limitations imposed by their area of interest or jurisdiction, are as follows: St. Paul District-Corps of Engineers, Soil Conservation Service, U.S. Geological Survey, Minnesota Department of Natural Resources, and North Dakota Water Commission (Red River of the North Regional Flood Analysis, 1971).

Graphs showing flood estimates for selected recurrence intervals versus contributing drainage area for the Minnesota River, Mississippi River, and Red River of the North are presented in figures 2 - 4, respectively. When using the frequency graph for the Red River, it should be recognized that plotting positions of drainage areas from Halstad to Emerson have been corrected by subtracting 3,800 mi² (9842 km²) for closed basins in the Sheyenne River basin in North Dakota.

Definition of flood characteristics for the main stem of the St. Croix River from St. Croix Falls to Prescott, Wisconsin is very complex owing to regulation of flows and the backwater effect from the Mississippi River, which affects elevationfrequency relations through a large part of this reach. Such analyses are outside the scope of this report. Frequency data for this section of the St. Croix River can be obtained from the report "St. Croix River Regional Flood Analysis" (Wiitala, 1973).

.

Į

Figure 2.--Relation of flood magnitudes for selected recurrence intervals to drainage area, Minnesota River main stem.

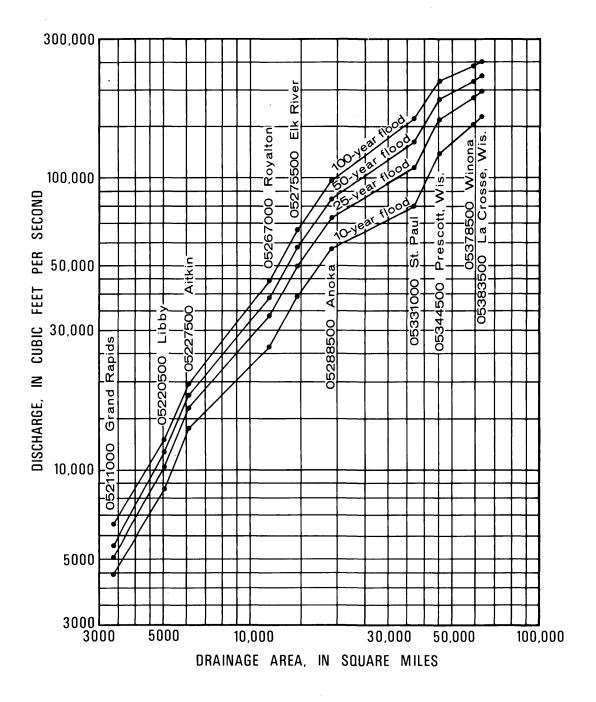
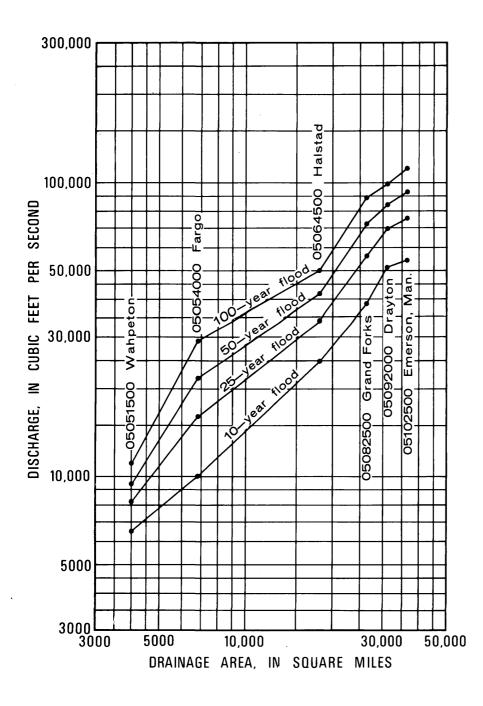



Figure 3.--Relation of flood magnitudes for selected recurrence intervals to drainage area, Mississippi River main stem.

,

Figure 4.--Relation of flood magnitudes for selected recurrence intervals to drainage area, Red River of the North main stem.

Accuracy and Limitations

In general, estimates of future flood occurrences over a long time period become more reliable with greater length of record (Hardison, 1969). The standard error of estimate decreases with increasing years of available record, but at a decreasing rate. At or near gage sites (excluding main-stem streams), flood characteristics may be based on analysis of actual records collected at the site (from table 2), or may be computed from regional estimating relations. As noted previously, regional estimating relations will probably provide more reliable results than the use of on-site gaging-station data if the period of record is short. It is recommended that use of tabulated gaging-station data for estimating flood characteristics at on-site, or by transfer to nearby locations, be restricted to those frequency relations based on more than 20 years of record.

The reliability of a regression equation may be judged by the standard error of estimate, which is a measure of the distribution of the observed data about the regression equation. The standard error, given in percent, is the range of error to be expected two-thirds of the time. That is, the difference between the computed and the observed discharge for two-thirds of the frequency estimates will be within plus or minus one standard error of estimate. Because the variables used in these analyses were expressed in logarithmic form, standard errors are larger in the positive direction. A graphical interpretation of the standard error for the 10-year frequency relation in Region G is shown in figure 5. Table 4 lists the average standard errors of estimate for the defined relations in each region, except for Region F. Relations for that region were adapted from regression equations developed by Becker (1974) for the adjacent area in South Dakota.

Flood-frequency relations expressed in this report may be used to estimate magnitude and frequency of floods on most Minnesota streams. Applicability and reliability of these relationships is dependent on the basin characteristics at the site under consideration being within the range of characteristics used to define the frequency relations. The range in sampled basin parameters is large enough to allow use of the frequency relations at virtually all sites where streamflow is not significantly affected by regulation, diversion, or urbanization. Exceptions will occur in those instances where the site, for which estimates are required, falls immediately below a lake or ponding area where large storage capacity, in relation to total drainage area size, could seriously alter the outflow flood characteristics. In such cases, the frequency relations may be used as an aid in developing an inflow hydrograph for use in routing through the storage area.

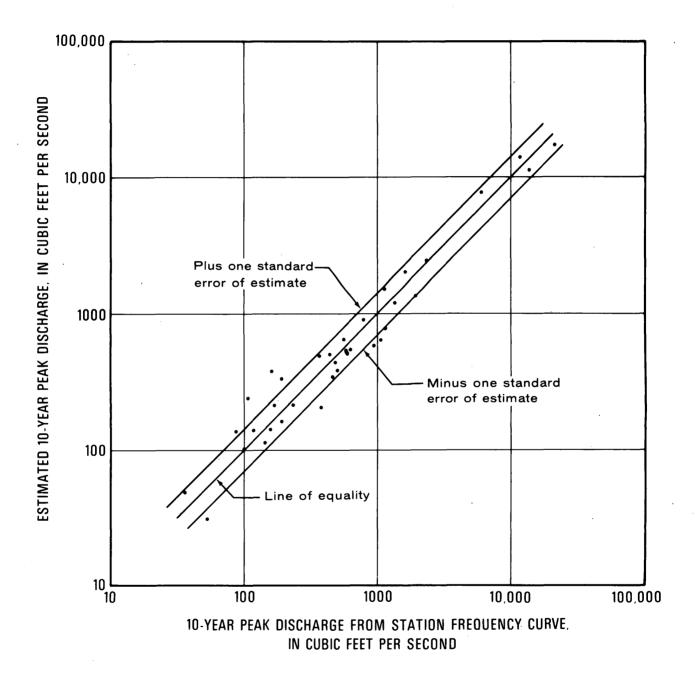


Figure 5.--Graphical interpretation of standard error of estimate for 10-year flood in Region G.

Recurrence interval (years)	Standard error of estimate (percent)	Recurrence interva (years)	Standard error l of estimate (percent)	
Region A		Re	Region E	
2	45	2	56	
5	38	5	54	
10	39	10	54	
25	42	25	55	
50	45	50	55	
100	49	100	55	
Region B		Region G		
2	36	2	47	
5	34	5	37	
10	36	10	37	
25	38	25	39	
50	41	50	42	
100	43	100	46	
Region	n C	Region H		
2	34	2	37	
5	34	5	28	
10	35	10	28	
25	37	25	32	
50	39	50	35	
100	41	100	39	
Region D				
2	46			
5	44			
10	47			
25	52			
50	56			
100	61			

Table 4.--Standard error of estimates for defined relations

ANALYTICAL TECHNIQUES

Data Used

Flood-frequency data used in the regression analysis were derived from records of 10 or more years length collected at 219 gaging stations located on natural flow streams. Stations operated by the Minnesota district consisted of 78 sites classified as continuous-record stations and 123 as partial-record stations. Records for 18 sites in adjoining states were also Annual peak data through the 1974 water year were included. considered for the Minnesota partial-record stations, through the 1972 water year for stations in adjoining states, and through the 1970 water year for Minnesota continuous-record stations. Frequency data for many of the continuous-record stations are the result of interagency coordination of 100-year flood estimates required for numerous studies conducted in Minnesota. Where such coordination occurred, frequency curves developed by individual participating agencies were adjusted to provide a uniform peak discharge at the 100-year recurrence interval.

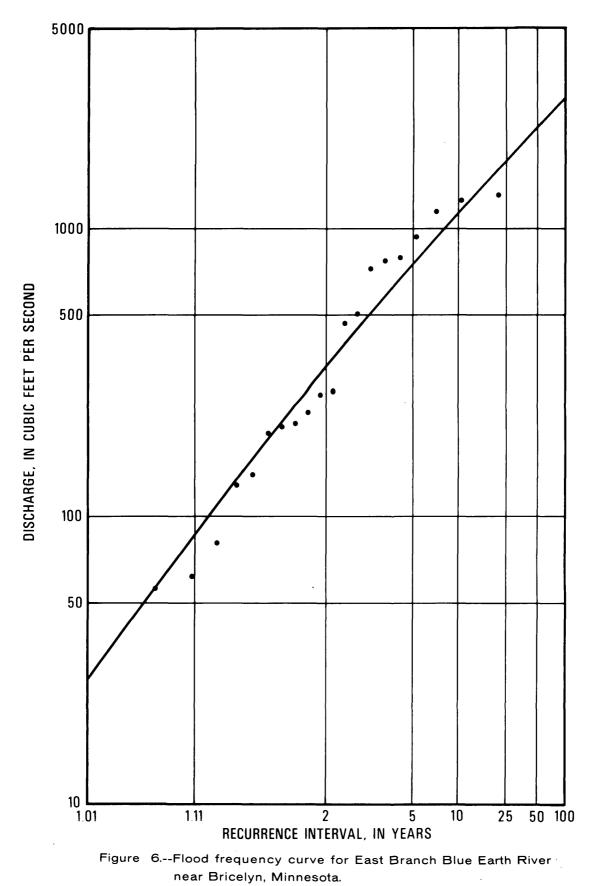
Flow-frequency Analysis at Gaging Stations

A flood-frequency curve for each gaging station was prepared by fitting a log-Pearson Type III frequency distribution to observed annual peaks, using regionalized coefficients of skewness. The log-Pearson Type III method is documented in U.S. Water Resources Council Bulletin No. 15 (1967).

Analysis of frequency characteristics, in connection with interagency coordination activities, had indicated a developing pattern to the variation of computed skew coefficients. Log-Pearson computations based on records starting in the early 1930's generally had large negative skew values while computations based on longer term records produced skew coefficients more nearly approaching zero. Large negative coefficients of skewness were also prevalent at sites where streamflow was significantly affected by natural storage. Skew coefficients generated from records which commenced in the early 1930's, a sustained period of severe widespread drouth in Minnesota, apparently are affected to a varying degree by one or more low outliers. With extension of the record, low outliers are no longer evident.

Adoption of generalized coefficients of skewness applicable to a region was found to significantly improve the fit of the computed frequency curves as the effect of outliers (both high and low) is greatly diminished. Based on analysis of long-term records, adjusted plotting position of outstanding floods recorded at short-term record sites, and extension of some records by correlation, generalized skew coefficients ranging from zero to -0.2 were selected for the log-Pearson analysis of Minnesota gaging-station records.

A later publication by the Water Resources Council, Bulletin 17 (1976), recommends virtually the same procedures for log-Pearson Type III frequency analyses of gaging station records as were used in this report. Differences as they would apply to Minnesota streams are mostly in the regionalized skewness coefficient and in the treatment of historical peaks. Recommendations for generalized (regional) coefficients of skewness in Bulletin 17 range from -0.1 to -0.4 in Minnesota, which differ only slightly from the assigned skew coefficients used in this study. Historical peak adjustments would have only a minor effect on the regression analysis as historical peak data is available at only about 6-percent of the sites analyzed for this report.


Frequency analyses for each gaging station were developed by computer using standard U.S. Geological Survey programs. A computer printed plot of the frequency curve was obtained to visually compare the fit of the computed frequency curve to the observed annual peaks. Modification of the initial frequency curve, by graphical interpretation or use of a different coefficient of skewness, was made in a few instances as dictated by the available data. A sample frequency curve is shown in figure 6.

From the frequency analyses, peak discharges for recurrence intervals of 2, 5, 10, 25, 50 and 100 years, listed as Q_2 , Q_5 , Q_{10} , etc. in table 2, were selected for the regression analysis.

It should be noted that changing analytical methods, interagency coordination activities, and increasing length of record will undoubtedly result in variations from the frequency estimates listed in table 2.

Multiple-regression Model

Relations between peak discharge (dependent variable) and a set of basin characteristics (independent variables) were developed by multiple-regression techniques. Past experience has shown that peak discharges are linearly related to most basin characteristics if the log transformations of the variables

are used. The regression model then is of the form:

 $Log Q_{rr} = log a + x log A + y log B + z log C$

or it's equivalent:

$$Q_T = a A^X B^Y C^Z$$

where:

 \boldsymbol{Q}_{T} is the peak discharge for T-year recurrence interval

a is a constant

x, y, and z are regression coefficients

A, B, and C are basin characteristics

The step-forward method of multiple-regression analysis was used wherein the regression equation is generated by adding the independent variables in the order of greatest significance to the estimating relation. The variable added for each step is the one which makes the greatest reduction in the standard error of estimate. Only those independent variables statistically significant at greater than the 95 percent confidence level are included in the equations. The analysis defines the regression constant and coefficients, standard error of estimate, and other statistical data for each frequency relation.

In a few instances, independent variables were added or deleted from the equations in order to standardize, on a regional basis, the variables to be considered at the various recurrence intervals. Original equations, in such cases, resulted in frequency curves that were irregularly shaped. Continuity of the frequency curves was vastly improved by addition or deletion of such variables with little effect on the standard error of estimate.

Hydrologic regions shown on figure 1 were defined by plotting residual values on a map. The residual errors from the regression analysis are the differences between observed and computed flood magnitudes and can be expressed in terms of ratios. The plot of residual ratios illustrated the geographical bias inherent in statewide frequency relations. The 8 regions were delineated by removal of successive areas from the regression, based on groupings of the residual values. As each area was removed, new regression relations were computed utilizing the remaining input data, and the residuals again plotted to define the remaining areal bias. Inter-regional comparisons of the regression equations were made by computing flood magnitudes, at selected recurrence intervals, using constant basin characteristics for each regional relation. These tests showed considerable variability in computed flood characteristics across the State for a fixed set of independent variables.

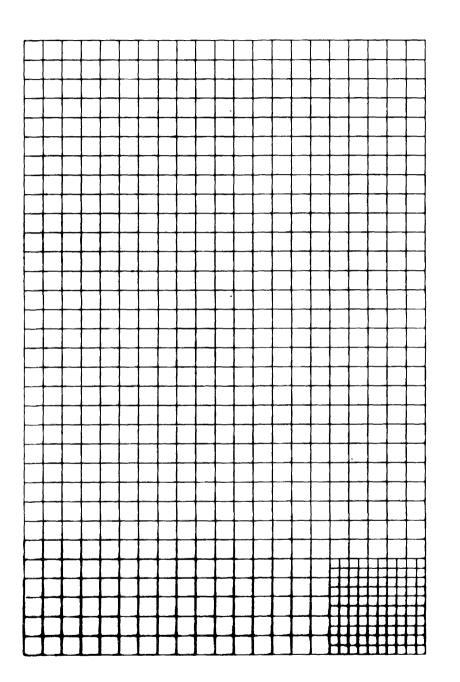
Regional boundaries outlined on figure 1 generally follow basin divides. The following exceptions based on topographic or geologic features are: 1) in the southwestern part of the State, where the regional boundary follows the break in slope along the Coteau des Prairie and crosses the upper end of the Redwood, Yellow Medicine and Lac qui Parle River basins; and 2) in the northwestern part, where the regional boundary follows an upper beach ridge of glacial Lake Agassiz and crosses the upper end of the Wild Rice, Marsh, Sand Hill, and Clearwater River basins.

Basin Characteristics Investigated

A precondition established for this report was that the number of basin characteristics used in the regression be limited in number, and be readily determined from available maps, to eliminate the necessity for on-site measurements. Independent variables investigated in addition to area, slope and storage, were forest cover and soil type. Forest cover index was used as the percentage of the drainage area covered by forests increased by 1 percent. The soil index was determined by averaging residuals from an initial regression according to different soil types. The soil index was tested separately on a multiple regression analysis of small basins where soil homogeneity was more probable. Neither basin characteristic improved the estimating relations.

SUMMARY

Basin characteristics and peak flows for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals were tabulated for 201 gaging stations ranging in size from 0.05 to 5,280 mi². The data from these 201 stations were grouped according to eight distinct hydrologic regions and equations were developed for each region by relating peak flows to basin characteristics. The resulting equations provide a method for estimating floodfrequency relations for ungaged sites on all natural streams. In addition, graphs are presented for determining floods of selected recurrence intervals for large streams which may be significantly affected by regulation. The equations developed by multiple regression for estimating peak flows at ungaged sites determined that drainage area, slope, and storage are significant basin parameters for estimating 2-, 5-, 10-, 25-, 50-, and 100-year floods. Drainage area, slope, and storage were significant in 4 of the 8 regions, drainage area and slope in 2, and only drainage area in the remaining 2 regions. Accuracy of estimates obtained by using the equations are discussed and the standard error of estimate is given for each equation. Standard errors ranged from 28 to 61 percent.


Analytical techniques are discussed for determining flow frequency at gaging stations and for making estimates at ungaged sites. The regional regression equations provide more reliable results than frequency relations defined for gaging stations if the period of record is short. For sites at or near gaging stations having 20 or more years of record, the tabulated station data are considered more accurate than estimates from the regression equations.

REFERENCES

- Becker, L. D., 1974, A method for estimating magnitude and frequency of floods in South Dakota: U.S. Geol. Survey Water-Resources Inv. 35-74, 78 p.
- Hardison, C. H., 1969, Accuracy of streamflow characteristics: in Geological Survey Research, U.S. Geol. Survey Prof. Paper 650-D, p. D210-214.
- Patterson, J. L., and Gamble, C. R., 1968, Magnitude and frequency of floods in the United States, Part 5: U.S. Geol. Survey Water-Supply Paper 1678, 546 p.
- Prior, C. H., 1949, Magnitude and frequency of floods in Minnesota: Minnesota Dept. of Conservation, Div. of Waters Bull. 1, 128 p.
- Prior, C. H., and Hess, J. H., 1961, Floods in Minnesota, magnitude and frequency: Minnesota Dept. of Conservation, Div. of Waters Bull. 12, 142 p.
- Thomas, D. M., and Benson, M. A., 1970, Generalization of streamflow characteristics from drainage-basin characteristics: U.S. Geol. Survey Water-Supply Paper 1975, 55 p.
- U.S. Water Resources Council, 1967, A uniform technique for determining flood flow frequencies: Hydrology Committee Bull. 15, 15 p.
- _____ 1976, Guidelines for determining flood flow frequency: Hydrology Committee Bull. 17, 196 p.
- Wiitala, S. W., 1965, Magnitude and frequency of floods in the United States, Part 4: U.S. Geol. Survey Water-Supply Paper 1677, 357 p.
- 1971, Red River of the North regional flood analysis: North Dakota State Water Commission and Minnesota Dept. of Natural Resources, 19 p.
- 1973, St. Croix River regional flood analysis (St. Croix Falls, Wis. to mouth): Minnesota Dept. of Natural Resources and Wisconsin Dept. of Natural Resources, 19 p.

☆U.S. GOVERNMENT PRINTING OFFICE 1977-767-282

AREA GRID

Area of small squares = 0.00976 square mile Area of large squares = 0.0389 square mile

15-minute quadrangle (Scale 1:62,500)

Area of small squares = 0.00144 square mile Area of large squares = 0.00578 square mile

71/2-minute quadrangle (Scale 1:24,000)