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REGIONAL STOCHASTIC GENERATION OF STREAMFLOWS 
USING AN ARIMA (1,0,1) PROCESS AND DISAGGREGATION 

By Jeffrey T. Armbruster 

ABSTRACT 

An ARIMA (1,0,1) model was calibrated and used to generate long 
annual flow sequences at three sites in the Juniata River basin, Pennsylvania. 
The model preserves the mean, variance, and cross correla~ions of the 
observed station data. In addition, it has a desirable blend of both 
high and low frequency characteristics and therefore is capable of 
preserving the Hurst coefficient, h. 

The generated annual flows are disaggregated into monthly sequences 
using a modification of the Valencia-Schaake model. The low-flow 
frequency and flow duration characteristics of the generated monthly 
flows, with length equal to the historical data, compare favorably with 
the historical data. 

Once the models were verified, 100-year sequences were generated 
and analyzed for their low flow characteristics. One-, three- and six­
month lo~-flow frequencies at recurrence intervals greater than 10 years 
are generally fou~d to be lower than flow computed from the historical 
flows. 

A method is proposed for synthesizing flows at ungaged sites. 

INTRODUCTION 

The Susquehanna River Basin Commission (SRBC) has the responsibility 
to develop and implement a water-supply program as part of its overall 
objective to manage the water resources .of the basin. Three critical 
needs of the SRBC are to define long-duration, low-flow frequency 
characteristics, to predict any impending water shortage so that emergency 
water conservation measures can be implemented, and to evaluate the 
effectiveness of water-supply storage projects. Statistical inferences 
could be made about all three of these items based on data generated 
from a properly designed simulation model. 
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In 1975, a 2-year coop~rative program by the u.s. Geological 
Survey and the SRBC was begun to explore the use,of a stochastic streamflow­
generating model to satisfy these needs. Although a single model for 
the entire Susquehanna River Basin was desired, it was felt that due to 
~onstraints of present day computers, and inexperience with large scale 
models of this type subbasin models may be equally useful. The Juniata 
River basin, a subbasin in the southeast part of the Susquehanna River 
basin was selected for a pilot project. 

The study involves several major parts and is outlined by the steps 
discussed in the remainder of this sect'ion. Initially, the mean and 
standard deviation of observed annual data are calculated. Because this 
step is elementary, no further discussion of . it will be presented. The 
statistics ·of the qbserved . flows as discus. sed here and below were used 
in the model and will be described later. Adequacy of model o~tput is 
based on a comparison of observed to generated statistics. 

The next step examines the correlation structure of the annual 
flows at each station in the basin. The nine regular gaging stations 
listed in table 1 and shown on figure 1 were used. A concurrent 30-year 
period of data, 1945-74·, was available for this analysis. The structure 
of these correlations must resemble the correlation structure of the 
model before it can be used to simulate annual .flows. For many years 
autoregressive models have been used to generate synthetic streamflow 
sequences. However, these models have been criticized during the· past 
10 years because they do not preserve the Hurst coefficient and do not 
generally provide flows more extreme than those in the observed sequence. 
For these reasons the m~del being applied here is a first-order autoregressive, 
zero-order integrated, first-order moving-average process, referred to 
hereafter as an ARIMA (1,0,1) process (Box and Jenkins, 1970). 

Site 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 1.--Gaging stations used in this study 

USGS 
station no. Name 

01556000 Frankstown Br. Juniata R. at Williamsburg 

01557500 Bald Eagle Creek at Tyrone 

01558000 Little Juniata R. at Spruce Creek 

01559000 Juniata R at Huntingdon 

01560000 Dunning Cr. at Belden 

01562000 Raystown Br. Juniata R at Saxton 

01563500 Juniata R. at Mapleton Depot 

01564500 Aughwick Cr nr Three Springs 

01567000 Juniata R. at Newport 

.2 

Period of 
record 

1917-74 

1945-74 

1939-74 

1942-74 

1940-74 

1912-74 

1938-74 

1939-74 

190Q-74 
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Figure 1.--Map of the Juniata basin, Pennsylvania. 



If the ARIMA (1,0,1) process can be verified as a proper representation 
of the observed annual 'streamflows, model parameters, for use in generating 
long-term annual flows, are estimated using short-term observed streamflow 
records. 

The third major step disaggregates or separates annual flows into 
seasonal flows and seaso~al flows into monthly flows. During the 
disaggregation process, the correlation structure of the observed seasonal 
and monthly flows must be maintained in the simulated flows. The model 
used to carry out disaggregation was developed by Valencia and Schaake 
(1972' 1973). 

The fourth major part of the study compares the simulated .flow 
sequences and estimates of their statistics to similar values of the 
historic sequences. Generated low-flow frequency and flow duration 
curves are also compared to historical data. The reliability of generated 
flows as a basis for estimating population · (rather than sample) statistics 
depends heavily on the assumptions that observed flows are a representative 
temporal and spatial sample and that the statistical distribution of 
flows is adequately described. 

The final part of the study regionalizes or generalizes the above 
procedure for use at ungaged sites. The statistics of annual and monthly 
flows were related to ·basin parameters using standard linear regression 
techniques. A method is also developed for estimating the cross-correlation 
structure of annual flows between and among ungaged sites. 
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STATISTICS OF OBSERVED FLOWS 

In generating sequences of synthetic streamflows at multiple sites, 
the interrelation between flows within each sequence and the interrelation 
between flows at all pairs of sites should be maintained. In very 
simple terms the correlation between two sets of paired observations is 
a measure of the linear interrelation between the two sets. If X and Y 
are two series of observations, the correlation between the two series 
is described by the correlation matrix C. The diagonal elements are 
called autocorrelations and the off-diagonals are called cross correlations. 
Cross c~rrelations describe how X relates to Y, exy, and how Y relates 
to X, Pyx• Autocorrelations however, describe how X and Y relate to 
themselves, ~X and eyy. Thus the correlation matrix for two sites is 

A 

Pyy 

When the X's andY's are observations at the same time st~p, the diagonals 
or autocorrelations are always equal to one. Similarly Pxy is always 
equal to ~yx• The same theory can be useq to expand this definition to 
n sites. Thus for the case of nine sites, the lag-zero or paired observations 
at the same time step, correlation matrix is 9 x 9. 

If one set of observations or time series is offset by one or more 
time steps from the other, Cxy is no longer equal to ~yx• Similarly for 
the diagonal elements, when series Xt is offset by k time steps or lags, 
Xt correlated with Xt+k is no longer equal to unity. Thus, in general, 
the correlation matrix is estimated by 

n-k n-k n-k n-k 
l: Xt l: Yt+k -~ l: Yt+k 

t=l 
=~~~~~~~~~~~~~~~~~~~~~~~for ~0,1,2 ••• ,m (1) 

t=l t=l n-~ 
l: Xt 

t=l 

Where xy(k) is an estimate of the correlation between X and Y, k time 
steps apart. If applied to streamflow records, Xt is the flow at site X 
at time t, Yt+k is the fiow at site Y at time t+k, n is the t6tal length 
of each series, and m is the maximum number of time lags to be considered 
where m <n-k. For the particular case of autocorrelations, the Yt+k's are 
simply replaced by Xt+k's. 
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Site 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Thus, 

A 

Pxy(k) 

n-k n-k 
L XtXt+k - ~ L Xt 

t=l . n-k t=l 

n-k 
L Xt+k 

t=l 

Tables 2- 4 show the lag-zero, lag-one, and lag-two sample correlation matrices 
'computed for the nine streamflow records used in this study. 

Table 2.--Lag-zero correlation matrix for nine stations in the . 
Juniata River basin 

1 2 3 4 5 6 7 8 9 

1. 000 ' 0.864 0.955 0.982 0.960 0.942 0.970 0.919 0.963 

.864 1.000 .942 .905 .786 .760 .858 .803 .864 

.955 .942 1.000 .983 .921 .900 .964 .922 .962 

.982 .905 .983 1.000 .947 .937 .975 .939 .983 

.960 . • 786 .921 .947 1.000 .977 .960 .945 .952 

.942 .760 .900 .937 .977 1.000 .967 .968 " .959 

. • 970 .858 .964 .975 .960 .967 1.000 .968 .985 

.919 .803 .922 .939 .945 .968 .968 1.000 .971 

.963 .864 .962 .983 .952 .959 .985 .971 1.000 
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Site 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Site 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 3 .-Lag-one correlation matrixfor nine stati.ons in the 
Juniata ~iver basin 

1 2 3 4 5 6 7 8 

0.370 0.356 0.344 0.421 0.310 ·0.297 0.309 0.303 

.319 .380 .298 .374 .244 .278 .284 .303 

.337 .333 .299 .382 .279 .290 .277 .300 

.332 .331 .302 .385 .275 .274 .269 .287 

.349 .332 .335 .403 .301 .277 .287 .290 

.330 .312 .314 .379 .281 .256 .267 .272 

.349 .344 .322 .394 .291 .284 .285 .285 

.306 .293 .281 .355 .274 .269 .248 .273 

.309 .303 .287 .362 .266 .262 .251 .269 

Table 4.~-Lag-two correlation matrix for nine stations in the 
Juniata River basin 

1 2 3 4 5 6 7 8 

0.104 0.096 0 •. 109 0.173 0.098 0.117 0.070 0.132 

.053 .068 .048 .110 .048 .095 .057 .111 

.099 .072 .098 .166 .113 .141 . • 085 .160 

.105 .083 .106 .172 .107 .132 .081 .153 

.107 .085 .117 .186 .108 .148 .085 .173 

.187 .147 .198 .264 .177 o216 .163 .241 

.163 .126 .167 .234 .157 .185 .134 .208 

.179 .143 .190 .252 .156 .192 .155 .232 

.150 .120 .159 .218 .144 .167 .121 .196 

7 

9 

0.409 

.391 

.388 

.380 

.387 

.358 

.381 

.344 

.358 

9 

0.155 

.115 

.161 

.157 

.178 

.246 

.216 

.231 

.197 



HYDROLOGIC PERSISTENCE AND THE HURST COEFFICIENT 

Hydrologic persistence is the tendency for high flows to follow high 
flows and low flows to follow low flows. It can be attributed to 
storage in the atmosphere, on the land surface, or underground (Wallis 
and Matalas, 197la), or to persistence in the meteorologic processes 
which produce rainfall in a given area. 

Persistence is often described by the structure of serial dependence, 
or correlation of a streamflow sequence. A picture of this dependence 
is given by a correlogram, Pk versus k, where Pk is t 'he autocorrelation 
at k time steps apart. Problems arise in the use of correlograms, 
however, because large sampling errors often exist in estimating Pk from 
a small sample. 

· Another measure of persistence was included in studies of many 
natural phenomena by H. E. · Hurst (1951). Hurst's analysis of nearly 900 
natural sequences showed that the range of cumulative departures (R) 
from the mean (X) for a sequence of ·N observations took the form 

where S is the standard deviation of the sample and h is a coefficient. 
Hurst estimatedh by equating R/S to (N/2)h, computing h for each sample. 
Thus if K is an estimate of h, then 

K = log (R/S)/log (N/2) (3) 

Hurst found that for nearly 900 sequences, the mean and standard deviation 
of K were 0.73 and 0.08, respectively. For purely random processes, 
Hurst (1951) and Feller (1951) independently showed that h = 1/2. 

The tendency for streamflows and other natural time series to have 
values of h between 1/2 and 1, has become known as the~urst phenomenon 
(Matalas, 1971; Wallis and Matalas, 1970, 197la, 197lb; O'Connell, 
1971). . 

Several estimators of the Hurst coefficient have been proposed in 
addition to Hurst's K described above. Wallis and Matalas (197lb) 
presented a method to estimate another index of the Hurst phenomena 
described by Mandelhrot and· Wallis (1969) asH, and referred to as ·the 
G Hurs.t procedure. The method, as progra.nmled by Slack (personal communication, 
1977), is as follows. 
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The estimate H is the slope of the linear least squares fit of the 
relation between the log of average R/S and log n for replicate sets of 
subsequences of various lengths n. A sequence of flows of length n is 
divided into a set of mk nonoverlapping subsequences of a specified 
length nk• The ratio R/S is calculated for each subsequence, averaged, 
then regressed against the log nk• The procedure is repeated for various 
values of nk• H is the slope of this line. 

Wallis and Matalas (197lb) found that in general K>H, but that the 
variance of K is smaller than that for H. They also found that, although 
H and K are both biased estimators of the asymptotic value of h, the 
bias for K is larger than for H. Thus a trade-off must be made between 
bias and variance. Both estimates have been used here and presented in 
table 5 for the historical data. H and K have been computed using the 
period of record at each site as well as the period of concurrent 
record 1945-74. 

Table 5.--Estimates of the Hurst coefficient from historical data 

H ~ Hurst K- Hurst 

Site Period of Period of 
Number Record 1945-74 Record 1945-74 

1 0.4378 0.8944 0.6033 0.7997 

2 .9451 .9451 .8116 .8116 

3 .6285 .8036 .6818 .7963 

4 .8744 .8229 .7854 .8120 

5 .7179 .7524 .7336 .7991 

6 .5172 .6843 .7389 .7768 

7 • 6459 .8041 .6939 .7810 

8 .6355 .7099 • 7037 • 7679 

9 .5457 .7706 .7427 .8205 
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The autocorrelation structure of Markov or autoregressive models 
fails to preserve the Hurst phenomenon. The autocorrelation function 
for a first-order ~mrkov process is 

where k ~s the number of time lags, P1 is the lag 1 autocorrelation, and 
Pk is the lag k autocorrelation. It can be readily seen that Pk approaches 
zero quickly, thus the "effective memory" is short (O'Connell, 1971). 

In a subsequent section it will be shown that the autocorrelation of 
the ARIMA (1,0,1) model does not suffer from this drawback if its model 
parameters, cp and e,. are· sufficiently large. 

DESCRIPTION AND CALIBRATION OF THE ARIMA. (1,0,1) MODEL 

An autoregressive-integrated-moving average, ARIMA, process is a 
pbwerful, but general, family of models proposed by Box and Jenkins 
(1968,1970). It is "capable of describing virtually any form of stationary · 
or nonstationary behavior in ~ime series" (O'Connell, 1971). 

O'Connell (1974) presents a thorough development of the ARIMA process. 
The particular model that he proposes for use in generating annual 
streamflow sequences is the ARIMA (1,0,1) process. The single site 
model is defined as 

(4) 

where Xt and Xt-l are flows at times t and t 1 , Et and Et-1 are random 
variates at times t and t1, and · cJ>1 and 81 are model · parameters.. The 
model has an autocorrelation function defined by 

p
1 

= (1-pe) < c~>-e) 

1+82 - 2cJ>8 

for k = " 

for k~2 

where cp and Sare the model parameters describing the strength of the 
autoregressive and moving average aspects of the model, respectively 
(Box and Jenkins, 1970). The absolute value of the autocorrelation 
decays exponenti~lly from P1 onward. If both cp and 8 are positive and cJ>>S, 
P1 and Pk are always positive. For a fixed e, the autocorrelation dies 
out more slowly as 8 is increased. As a result, the model has a desirable 
blend of high and low frequency characteristics important for use in 
applications to streamflow generation (O'Connell, 1971). o''Connell 
(1974) also presented a more complex, multisite ARIMA (1,0,1) model. A 
brief outline of that model is presented below • 

. 10 



The process is formulated as 

· ~(t) - Ax(t-1) = B£(t) - C£(t-l) (5) 

where~ (t) and~ (t-1} are m x 1 matrices. Their elements are Xi (t) = 
(Xi{t)- lli) and Xi(t-1) = (Xi(t-1) - lli) respectively, fori= 1,2, •••• , 
m, where m is the number of sites, and Xi(t) and Xi(t-1) are the annual 
!lows at site i and times t and t-1, respectively. A, · B, and Care (m x .m) 
matrices of coefficients, or model parameters, and e(t)-and e(t-1) 
are vectors of independent random variables at times t and (t-1) respectively. 
To define matrices A, ~' and C, matrices M0, M1, and r12 are required. Mo 
~' and~ are, respectively, the lag-zero, lag-one, and lag-two covariance 
matrices. If, however, Xi(t) is redefined as 

(6) 

where Pi and ~!are the mean and standard deviation of the Xi's, respectively, 
then M0, M1, and M2 become the lag-zero, lag-one, and lag-two cross correlation 
matrices. 

Thus, 

pll (l) p 12(l) ....... p~(l) 
Ml = p21 (l) P22(1) ...... . P2m(l) . 

P!1 (1) Pm2(1) ...... pmm(l) 

where Pll(l), P22(1), •••• Pmm(l) are the lag-one autocorrelations at 
sites 1, 2, •••• ,m and Pij(l) ~nd Pji(l) are the lag-one cross correlations 
between sites i and j, and j and i, respectively. 

Equation (5) can be rewritten as 

~(t) = Ax(t-lY + B£(t)- C£(t-l) (7) 

By postmultiplying equation 7 by x(t)T and taking expected yalues we get 

E[x(t)x(t)T] = AE[x(t-l)x(t)T] + BE[£(t)x(t)T]- CE[£(t-l)x(t)T] (8) - - - - - - - - - ·- ·-
From the definition of cross correlations 

Mo = E [x( t).!_( t) T] (9) 

~ = E [x( t) .!_( t~l) T] (10} 

MT - E_lx(t)~(t-2) T] (11) -2 

1! 



The transpose of equations 10 and 11 are 

(12) 

(13) 

The terms on the right hand side of equation 8 can be rewritten individually 
as (O'Connell, 1974) 

AE[x(t-l)x(t)T] =AMI 
BE[~(t)~(t) T] = BBT 

CE [~(t-l)x( t) Tl = CBTAT- CCT 

Equation 8 can now be rewritten as 

or 
M .. = AMT + l3BT- CBTAT + ccT _o -1 -

BBT + ccT = Mo-AMi + CBTAT 

By postmultiplying equation 7 by x(t-l)T it can be shown that 

or 

!!J.. = AM0- CBT 

CBT = AM0- M1 

Similarly, if equation 7 is postmultiplied by ~(t-2)T 

Thus 

A = M M:'l 
- -Z.:.:l 

Now, substituting for A and CBT in equation 14 

BBT + ccT = M - ·M ~lMT + M M:"lM MT-1 MT - M MTMT - - ~ -r1. 1 -2~~ -<Fl -2 -1-1-2 

(14) 

(15) 

(16) 

(17) 

The entire right side of equation 17 can be compiled .into a symmetric 
matrix which will be called S. Thus 

(18) 

Rewriting equation 15 yields 

(19) 
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where T is a nonsymmetric matrix in terms of M0, M1 , and M • Because 
Mo, !!J., and M2 do not provide sufficient conditions !:O deflne ~ and _f, 
a lower triangular form of either B or C may be assumed in order to preserve 
Mo, M1, and M2 as the correlation matrices. 

To obtain real-valued coefficients for B and C, the matrices S and 
T must satisfy certain conditions. These conditions can be specified 
from equations derived from equations 18 and 19 as 

and 

(·B +.f) (B + .f)T = BBT + ccT + CBT + BCT 

= S + T + TT 

(B- _f)(B- c)T = S- T- TT 

(20) 

(21) 

A~cording to O'Connell (1974), matrices (B +C) and (B- C) are 
real valued if matrices (S + T + TT) and (S --T --TT) are positive 
semidefinite, which they are.- - - - -

An iterative solution of equations 18 and 19 is necessary because no 
analytical solution has been found that permits preservation of the 
correlation matrices (O'Connell, 1974). -

If equation 19 is rewritten as 

c (22) 

then 

When these are substituted into equation 18 and terms rearranged 

(23) 

By letting BBT = U, an iterative solutiqn for U can be developed by 

- -1 T 
U j - .§_- TU j -l T (24) 

· where Uj is the value of U on the j th iteration. To . start the iterative 
process, it .is convenient to let U be the identity matrix. Thus, each 
iteration, in theory, provides a closer approximation to the solution, 
B. O'Connell (1974) states that in certain cases U may not converge 
even if both (~ + ~ + TT) and (~ - ~ - TT) are positive semidefinite. 

Once a solution is obtained for~' _f is determined by using equation · 
22. 

With the assumptions made above, A will be a diagonal matrix, B 
will be a lower triangular matrix, and C will be a full (m x m) matrix. 
In addition, Mo and M1 will be preserved, as will the diagonal elements 
of the M

2 
matrix. 
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Esti.Jnation · of Model ··Parameters 

The model parameters, matrices A, B, and C, are estimated using the 
formulation in the previous section: Computer subroutines for the 
iterative estimation procedure were developed by 0' Connell (personal 
communication, 1977). To simplify model development, only three of the 
nine sites were used. The first three gaging stations listed in table 1 
were arbitrarily selected. Parameter estimation using the iterative 
procedure resulted in the followfug A, .~.. and .£ matrices: 

and 

A check was made to 
using these parameters. 

M = 
~ 

A = 

B =[ 

c -[: 
determine 

They are 

1.0123 

.8870 

.9720 

M._ = 
...;;,..~ [ .3730 

.3232 

.3424 

.2806 o.o. o.o 

o.o .1783 o.o 

o.o o.o .3280 

.8969 o.o o.o ] .6981 .4041 o.o ' 

.8437 .2316 .1422 

.0991 - .1108 .2371 

.1841 - .1807 .4708 

.0264 .0140 .3804 

the correlation matrices preserved 

.8870 .9720 

1.0438 .9729 

.9729 1.0226 

.3629 . • 3483 

.3876 .3037 

.3432 .3068 
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.1047 .1018 .0978 

M2 = .0576 .0691 .0541 

.1123 .1126 .1006 

One feature of the preserved correlations that appears to violate 
the numerical constraints placed on values of a correlation coefficient 
is the diagonal elements of _the Mo matrix. Correlation coefficients 
cannot, by definition, be outside the range ~1.0 to +1.0. The diagonal 
elements of M0, although greater than 1.0, simply reflect numerical rounding 
errors in converting the A, !, and~ matrices back to M0, M1 , and M2 • 

It should be noted that the Mo and ~ matrices and the diagonal of 
the Mo matrix are preserved quite well (see tables 2-4), but biased 
upward a small amount. The off-diagonal elements of !!2 , although not 
specifically preserved by the parameter estimation technique, do resemble 
the off-diagonal elements of the historical M2 matrix. 

When parameter estimation was ·extended to the nine-site problem, two 
types of serious problems were encountered. Each type, by itself, 
prevents estimation of a valid set of model parameters. 

The first- type of problem was encountered when all nine sites were 
included in the parameter estimation. Matrix A was estimated using 
equation 16. Diagonal elements of a lower triangular form of !' bii' 
were calculated using: 

bii = ~ uii for i 1 (25) 

bii J ~ii i 
bij for i 2,3, ••• ,m (26) = j~+ = 

where the b's and u's are elements of matrices B and U. The computer 
subroutines used in the calculations set negative values of bii2, 
equal to zero. to prevent taking the square root of a negative number. 
The result of a zero on the diagonal of B is that all elements in the 
respective column are then zero. During-the calculation of ! from U, 
the squares of several diagonal elements of matrix B were negative, thus 
calculations of _subsequent diagonal and offdiagonal-elements of B were 
contaminated as were the elements of the C matrix. 
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Examination of the U matrix, used in solving for · B in the 9-site 
case, showed that a diagonal element much smaller than off.,;.diagonal 
elements in the corresponding row was the cause of the diagonal element 
of _! being equated to zero. Because· elements of U are a function of !!Q, 
M1; and~' an abnormally ~all element in U is caused by the estimated 
cross Qorrelations. Although it .is difficult· to precisely · tt;ace .. ,an 
element of .U·back to M0, M1, or !!2, highly .correlated historical data (see 
tables 2-4) may be the cause of the problem, especially when all the 
c:ross correlations are .. nearly equal. Use .of double precision ·calculations 
.in the above analyses did not materially change the results. 

The second t.ype of problem is common to mariy iterative solution 
techniques, namely, under certain conditions, the solution does not converge. 
Even though both matrices (S ·+ T + TT) and (S-T..;. TT) are positive · 
semidefinite, the solution for U can continue to~oscillate from iteration 
to iteration. 0 'Connell (1974) states that when . convergence cannot be · 
obtained for u in equation 24, a damping coefficient A. can be inserted 
such that -

(27) 

where 0.0 <A.~ 1.0. He points out, however, that the equations being 
solved are now 

(28) 

and 

::: T (29) 

Althougp A< 1.0 permits convergence, the equations being solved .are . 
not exactly the same as· equations 18 and 19. 

The ARIMA (1,0,1) is a conditional model. Slack (1973) states that · 
"a conditional model presents not only an operat.ional problem by occasionally 
rejecting historical sequences, but also a philosophical dilemma by 
occasionally rejecting its own produce." The inability to compute a set 
bf model parameters from observed data, that by design preserves correlation 
structure is what Slack (1972, 1973) calls self-denial. The problems 
found here are self-denial if the ARIMA (1,0,1) model truly represents 
the annual streamflow processes. Thus a solution with A.f. ·1.0 may be 
possible if a solution cannot be obtained with A.= 1.0. ' several numerical 
experiments were run using A = 0. 90. Some solutions were affected only 
slightly. In many cases, however, using ·,A= 0.90 produced A, _!, and.£ 
matrices that preserved correlation matrices that had elements greater 
than 1.2 or 1.3. These elements were not the result of minor roundoff 
errors, but were due to incorrect elements. in th~ ~arameter matrices, 
which in ~urn were caused by A.~ -~.0. 
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The experiments led to the conclusion that A can take on values 
less than 1.0 and provide a usable solution. If a solution does result, 
however, all resulting parameters must be carefully checked. The solutions 
should not be used if the check indicates a violation of correlation 
constraints. 

Because parameter estimates for the 9-site problem could not be 
calculated, annual streamflow generation was carried out for the 3-site 
case discussed earlier. Three-site generation is sufficient to proceed 
to the· subsequent phase of this project. 

Generation of Annual Flows 

Ten sequences of 30 years of annual flows were generated using 
equation 5 with appropriate values of matrices A, B, and C presented 
earlier, normally distributed random numbers with zero mean and unit 
variance, and means and standard deviations of observed flows. These 
30-year sequences were generated for ultimate use in the disaggregation 
process, which will be discussed later. It was felt that if the characteristics 
of the generated 30-year sequences resembled the 3D-year historical 
flows used here, then the moael could be used to generate long-term 
annual flow sequences. The mean and standard deviation of each sequence 
were computed and are presented in table 6. For even relatively short 
sequences, mean and standard deviation are preserved. Preservation of 
the mean and standard deviation of observed flows requires that the mean 
of standard deviations of the generated sequences, divided by the ·square 
root of the generated sequence J_ength, be equal to the standard deviation 
of the means of the generated sequences. Using site 1 data from table 6 
as an example, the mean and standard deviation would be preserved if 
103/ {30 equalled 18.8. Some simple calculations show that this condition 
is not strictly met for the data presented in table 6. The distribution 
of the means is skewed. This situation arises because of the short 
generated sequence length, 30 years, and the small number of generated 
sequences, 20. Examination of the generated lOO;_year sequences described 
in a subsequent section shows that the statistics are well preserved, as 
expected. 

The lag-zero, lag-one, and lag-two cross correlations matrices were 
computed for each generated 30-year sequence. Because each sequence has 
three 3 x 3 correlation matrices, only one set is presented in table 7. 
These values should be compared to those tables 2-4. 

Estimates of the Hurst coefficient, for both the 30-year 'historical 
and for 20 generated 3D-year sequences were computed using K and H (G­
procedure). The summary in table 8 shows, as expected from the results 
presented by Wallis and Matalas (1970), that estimates of h using K 
produces values generally lower in variance than H. For these. relatively 
short sequences, however, H was generally higher than K, in contrast to 
the results obtained by Wallis and Matalas (197lb). 
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Table 6.--Mean and standard deviation of twenty generated 
30-year sequences • 

. I 

·site. · 
' 1 2 . 3 

Standard Standard Standard 
Seguence Mean deviation Mean deviation Mean deviation 

Historical 400 108 75 20 375 86 

1 353 114 67 22 336 90 
2 416 87 76 21 386 81 
3 393 116 75 24 372 97 . 
4 412 130 74 22 379 99 
5 342 " 117 69 . 19 . 332 88 
6 387 81 73 19 363 68 
7 387 89 74 19 366 78 
8 336 95 61 ·18 323 73 
9 414 100 79 •19 390 80 

10 424 85 79 20 392 . 80 
11 456 91 85 18 419 75 
12 382 93 75 18 364 74 
13 442 . 99 80 19 404 79 
14 359 128 65 24 340 102 
15 313 102 60 20 308 85 
16 364 110 70 19 348 84 
17 423 108 81 18 398 82 
18 391 116 75 22 369 93 
19 412 101 . 75 17 383 76 
20 423 95 79 18 391 75 

Summary 

Mean 391 103 74 20 368 83· 

Standard 
deviation 38 14 7 2 29 9 

• 
. l 
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Table 7.--Estimated lag-zero, -one, and -two cross-correlation 
matrices for one generated 30-year sequence. 

Lag-Zero 
Site Number 1 2 3 

1 1.000 .879 .962 

2 .879 1.000 .934 

3 .962 .934 1.000 

Lag-One 
Site Number 1 2 3 

1 .454 .241 .363 

2 .182 .649 .101 

3 .506 .573 .409 

Lag-Two 
Site Number 1 2 3 

1 .076 -.153 .127 

2 ~.338 .566 ~.371 

3 .051 -.148 .077 

Table B.--Summary of Hurst coefficients computed for the 30-year historical 
sequence and the twenty 3D-year generated sequences. 

Sequence · Site 1 Site 2 Site 3 
H ,. 

H K H K 4.'\. 

Historical 0.8944 0.7997 0.9451 0.8116 0~8036 0.7963 

Mean of 
generated .7752 .7474 .7211 .7274 .7851 .7273 

Standard 
deviation 
of generated .2845 .0748 .3104 .1049 .2603 .0862 
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DESCRIPTION AND CALIBRATION OF THE DISAGGREGATION MODEL 

Because the generated monthly series were the level of flows needed 
here, a technique was required to obtain monthly flows from the annual 
flows generated using the ARIMA (1,0,1) process. Several such models, 
referred to as disaggregation models or processes, were examined. 
Included among these were the models proposed by Harms and Campbell 
(1967), Tao and Delleur (1976), Young and Jettmar (1976), and Valencia 
and Schaake (1972, 1973). The Valencia- Schaake model was selected for 
use because ·of its ease of application, flexibility, and its overall 
capability. The notation used throughout this section is the same as the 
notation used by Valencia and Schaake (1972, 1973) and should not be 
confused with the ARIMA (1,0,1) model notation. 

Description of the Valencia~Schaake Model 

The model has a simple fortn, 

Y=AX+W (30) 

where Y is an (n x 1) vector of correlated . random variables, X is an (m 
x 1) vector of correlated random variables, A is an (n x m) matrix of 
coefficients, and W is an (n x 1) vector of ·correlated random variables 
independent of X. Let X be a vector of annual flows, and Y be a vector 
of seasonal flows, where the xi's and Yi's are transformed so as to be 
normally distributed and have zero mean if the data ar·e skewed. The 
model can be rewritten in a form equivalent to the model presented by 
Matalas (1967), if Y = Qt+l and X= Qt 

Slt+l = !Qt + BVt+l . 

where BVt+l = W 

R~writ~ng equation 30 for simpler use 

Yt = AXt + BVt+l (31) 

where Yt :ts an (n x 1) vector of seasonal flows, Xt is an (m x 1) 
vector of annual flows, m is the number of sites being considered, n 
equals 4m, Vt is a vector of independently distributed standard normal 
deviates and A and B are coefficient matrices. In like fashion, Yt .can 
be a. vector of monthly flows and Xt a vector of season flows. Vector 
and matrix sizes would be adjusted accordingly. 

The coefficient matrices are based on historical data, and are 
computed in such a manner that the generated flows Yt resemble the 
hist.orical values of Y according to some prescribed resemblance criteria. 
The criterion generally specified is preservation of mean, standard 
deviation, and cross correlation. 

20 



Valencia and Schaake (1972,' 1973) showed that the above properties 
of the historical flows can be preserved by specifying that 

A = s c:: -1 . .;_yx ~X 

BBT = S S S -l S 
- -YY -yx ..:::xx -xy 

(32) 

(33) 

where !xx, Sxy, E_yx, and .§_yy are matrices equal, respectiv~ly to E [XXT], 
E[XYT], E[YXT], and E[YYT], where X andY have zero mean. Note that mean 
and standard deviation are preserved here regardless of the underlying 
multivariate distribution of X andY. If r observations of X and Y are - -considered, and without loss of generality consider that X and Y have 
zero mean and unit variance, then 

~X = _!, xxT 
r 

S _ 1 XYT 
~y--_ 

r 

S = ..!. YXT _yx -
r 

S = .!_ yyT 
-YY - -

r 

Equations 32 and 33 remain valid using these new definitions. X and Y 
are now (m x r) and (n x r) matrices. 

The model thus described also insures that the four seasons sum to 
the annual flow from which they were computed or the three months sum to 
the season from which they were computed. This two-phase disaggregation 
process is used to reduce computer storage requirements and subsequently 
increase the ease of use (Valencia and Schaake, 1973). 

Under the structure presented here, the model is unable to correlate 
the last season of one year with the first season of the next year and 
the last month of one season with the first month of next season. 
Linking to the past at different levels of disaggregation through correlation 
is referred to here as "wrap-around" correlation. 
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Modifications to the Valencia-Schaake Model 

Wrap-around correlation 

Mejia and Rousselle (1976) presented a modification to the Valencia­
Schaake model that overcomes the wrap-around correlation problem. Their 
method adds the product of two matrices to the right side of equation 
29. One is a matrix of coefficients and the other is a matrix whose 

. el.ements are made up of the last elements at the particular disaggregation 
level. For example, when Xt is the annual flow at year t, and the Yt's 
are seasonal flows for year t, the added matrix element is the last 
season of year t-1~ 

A simplified computational procedure was developed in conjunction 
with Schaake (personal communication, 1977). The technique augments 
each row of the X and A matrices. Thus when the elements of X represent 
annual flows, the last-season of r + 1 year is inserted in X as an 
additional column of row r. By so doing, one additional column is added 
to each row of X for each site used. When X is the matrix of seasonal 
values, it is augmented by the flows for the last month of the previous. 
season, again lengthening each row by one element for each. site. These 
additions to the X matrix, at either level of disaggregation, also 
require corresponding expansions in the coefficient matrices. For example,­
with X equal to a matrix of annual flows in the original version of the 
Valencia-Schaake model, A is a (4.m .x m) matriX and B is a (4tn x 4m) 
matrix. In the modified-version proposed here,". A. becomes a (4m x 2m) 
matrix and B remains the same. When X equals seasonal flows in the . 
original version, A is a (3m X m X 4)-matrix and B is a (3m X 3m X 4) 
matrix. Under the-new scheme, A takes the dimensions (3m x 2m x 4) and 
B remains the same. The final results are identical to the Mejia and 
Rouselle version, but are simpler to compute. 

Transformation of data 

One of the assumptions for use of the Valencia-:-Schaake model was 
that all 'data were transformed to be normally distributed with zero 
mean. A further condition was that the data also have unit variance. 
The transform required to obtain zero mean and unit standard deviation 
is 

x = !...::.1! . (34) 
a 

,.. 
where X is the transformed value of X, and ~ and a are the mean and 
standard deviation, respectively, of X. If the cumulative probability 
distribution, when plotted on normal probability paper, is rtonlii\ear 
then a data transformation is required. Two transformations commonly 
used are logarithmic and square-root transforms. Both have the desirable 
property that the reverse transform always results in a positive number. 
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Cumulative probability plots of annual data used in this study 
showed that the annual data reasonably could be assummed to be normally 
distributed. The seasonal and monthly data, however, were both found to 
be highly skewed. · Neither logarithmic nor square-root transforms were, 
by themselves, able to remove the skew. The transform required to 
linearize the cumulative probability distribution is 

X= 4 ln X (35) 

A 

where X is the transformed X. This transformation is obviously more 
severe than those popularly used. However, such a transformation must 
be used to approach normality and to satisfy the restrictions of the 
disaggregation model. Data thus transformed were then standardized 
using equation 34. Estimates of the parameter matrices A and B in 
equation 31 can now be computed using the transformed data. The cross­
correlation structure of flows generated. from transformed data is 
altered and may not be preserved. 

Other modifications to the Valencia-Schaake Model 

Because the same transformation may not normalize the data at all 
levels of disaggregation, the Valencia-Shaake model .was also .modified to 
permit a different transform at each level. 

Whenever data are transformed, streamflow generation occurs in the 
transformed space. However it is no longer assured that seasonal flows 
will sum to the annual flow from which they were disaggregated or that 
~onthly flows will add to the seasonal flow from which they were computed. 
The respective sums will be properly preserved in the transformed space, 
but probably lost in the reverse transformation. This is true simply 
because the transforms are nonlinear. · 

Loss of this continuity may be practically or esthetically displeasing. 
As a result, an option has been added to the Valencia-Schaake model that 
forces a real number flow balance after the reverse transform by distributing 
flows on a percentage basis. In the streamflow generation performed as 
part of this study, however the mass differences of the flows when 
transformed back to real numbers were found negligible without balancing; 
thus balancing was not used. 

Use of the balancing option could also, under adverse coaditions, 
cause a contamination of the cross-correlation structure of the generated 
flows. It should therefore be u.sed with caution. 
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Disaggregation of Seasonal and Monthly Flows from Generated Annual Flows 

Using the modified Valencia-Schaake model just described, twenty 
30-year sequences of seasonal and _monthly flows were disaggregated from 
the gene~ated annual flows. The length of the sequences matched t~ose 
of the historical flow~. Tables 9 and 10 are summaries of the means and 
standard deviations of the generated seasonal and monthly sequences, 
respectively. ·The statistics, of course, vary from sequence to sequence; 
however, the averages are very close to those of the historical sequences. 
In long sequences, to be discussed later, the statistics are even more 
closely in aggreement with the historical values. Cross. oorrelations 
estimated from generated monthly sequences resemble historical estimates 
only in the transformed space because the flows are generated in the 
transformed space. Because of the complexity of the transform, the 
correlation matrices of untransformed flows do not compare favorably to 
estimates based on historical flows. 

The disaggregated seasonal and monthly flows were also analyzed for 
their low-flow frequency and flow-duration characteristics. Characteristics 
of the generated flows were then compared to the characteristics of the 
historical data. Figures 2-10 show the annual low-flow frequency curves 
for 1-; 3-, and 6-month durations at each of the three sites. Each 
figure shows data from the first five sequences generated along with 
comparable data from the historical sequences. If curves were drawn 
through the data, little difference would be found at the low probabilities. 
The curves represent ·multiple 30-year sequences, with the observed 
sequence being only one, equally likely sequence. Differences are 
therefore likely and desirable. 

I 

Figures 11-13 are flow-<;luration curves of t ·he observed and five 
typicat generated sequences of monthly flows. The length of the sequences 
in all cases is _30 years. Interpretation of the differences between 
observed and simulated sequences is the same as above. If · curves were 
drawn through plots of the various sequences, · little ·difference would be 
seen. 

FLOW SYNTHESIS 

Because the twenty generated sequences of flows discussed above, 
show close resemblence in the meari, standard deviation, cross correlation· 
(in the transf9rmed space), and low-flow freque~cy and flow-d~ration 
characteristics, the model used is assumed to be an adequate representation 
of the underlying generating process. The model can now be used to . 
generate long sequences of monthly flows that may be assumed to yield 
reasonable estimates of low probability (high recurrence interval)~ lpw­
flow frequency char~cteristic·s. 
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Season 

1 

2 

3 

4 

1 

2 

3 

4 

Table 9.--Comparison of historical seasonal means and standard 

(Fall) 

(Fall) 

· deviations with the average means and standard deviations 
of twenty generated 3D-year sequences. 

Site 1 Site 2 Site 3 

Standard Standard Standard 
Mean deviation Mean deviation Mean deviation 

Historical 

267 190 50 35 253 166 

638 175 116 34 553 137 

543 217 111 34 537 175 

155 95 24 20 153 70 

Gerterated/Disaggregatec 

.2os!/ (32) 2 / 14~/(so)i/ 55(13) 54(22) 200(33} 123(38) 

770(54) 225(38) 129(8) 37( 6) 625(38) 160(27) 

567 (135) 222(53) 110(9) 30(5) 558(47) 149(24) 

164(25) 85(24) 28(8) 25(14) 171(20) 71(15) 

'.!_/ The mean of the distribution of twenty 30-year mean fall flows. 

];/ The standard deviation of the distribution twenty JO....;year mean fall flows. 

1_/ The mean of the distribution of twenty 30-year standard deviations of fall flows. 

~/ The standard deviation of the distribution of twenty 30-year standard deviations 
of fall flows. 
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Table 10.--Comparison of historical monthly means and standard deviations 
with the average means and standard. deviations of twenty 
g~nerated 30-year sequences. 

Site 1 Site · 2 Site 3 

Standard Standard Standard 
Month Mean deviation Mean deviation Mean deviation 

Historical 

10 (October) 145 108 24 24 152 102 
11 265 223 50 46 258 215 
12 391 310 74 54 . 362 254 

1 451 274 83 54 296 229 
2 565 304 97 48 474 211 
3 900 322 169 69 790 294 . 
·4 764 354 149 62 705 277 
5 525 261 114 51 540 212 
6 338 359 70 74 366 376 
7 183 129 31 30 185 118 
8 152 130 22 23 144 74 
9 131 124 ' 19 20 131 76 

· Generated 

10 (October) 124..!/( 14 ):!:../ 6 o~/ < 15 )!!../ 21(4) 17(6) 124(13) 60(14) 
11 171(27) 122(40) 45(11) 46(18) 174(27) 112(35) 
12 . 310(65) . 284(120) 85(26) 101(54) 291(54) 228(79) 

1 559(108) 385(110) 101(17) 73(19) 460(60) 272(68) 
2 687(119) 415(115) 104(19) 63(18) 520(95) 260(66) 
3 1090(83) 398(78) 185(14) 75(17) 898(64) 326( 68) 
4 1067(88) 511(129) 188(10) 81(16) 894(44) 345(62) 
5 492(70) 240(59) . 99(13) 49(12) 522(58) 203(39) 
6 282(53) 198(55) 51(9) 40(11) 288(45) 179(41) 
7 178(35) 116(37) 31(13) 33(30) 189(32) 104(31) 
8 184(23) 84(20) 30(6) 26(10) 182(16) 70(14) 
9 124(15) 74(21) 23(5) 20(7.) 145(13) 64(13) 

!/ The mean of the distribution twenty 20 30-year mean October flows. 

]:_/ The standard deviation of the distribution twenty 30-year mean October flows. 

ll The mean of the distribution of twenty 30-year standard deviations of October flows. 

!!_/ The standard deviation of the distribution of twenty 30-year standard deviations 
of October flows. 
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Gener~tion of Long-Term Annual Flows 

Ten 100-year sequences of annual flows were generated using the 
ARIMA model at each of the three sites being analyzed. A summary of the 
results is presented in table .ll. The average means and standard deviations 
of the· 100-year ·generated sequences are closer to the historical values 
than the 30-year sequences, a fact that is not surprising ~ecause 
generated statistics often approach the historical statistics as the 
generated sequence increases. Although these statistics agree very 
closely with historical statistics, individual values more extreme than 
thos·e in the historical sequence can be and sometimes are generated. 
Estimates of the Hurst coefficient for the generated sequences, presented 
in table 12, also behaved in a predictable fashion. K-Hurst estimates 
are generally higher than H-Hurst estimates and generally have a lower 
variance. Both H and K estimates based on the · 100-year sequences are 
probably much closer, numerically, to the asymtotic values than the 
estimates computed from either observed or simulated 30-year sequences. 
Both estimation techniques improve significantly as the sequence length 
increases. Note that estimates of the historcial values of the Hurst 
coefficient, using either estimation procedure, do not fall within one 
standard deviation of the mean of estimates based on the simulated 
flows. This is probably caused by transient be~vior, because the ARIMA 
model tends asymtotically to a value of 0.5 for h. The generated 30-
year sequences (table 8) should produce higher values than the 100-year 
sequences. H and K for the lOQ-year sequences, however, are still · 
significantly different from 0.5, a feature not attainable with a 
Markov model. 

Generation of Long-Term Seasonal and Monthly Flows 

The annual flows generated in the previous step were disaggregated 
using the modified Valencia-Schaake procedure. Tables 13 and 14 summarize 
the generated data. For comparison with historical statistics see 
tables 9 and .10. In much the same fashion as the statistics of the 
generated annual flows, the generated seasonal and monthly statistics 
are closer to their historical values than the generated 3D-year sequences 
statistics were. Figures 14l 22 compare low-flow frequency characteristics 

· of the observed and five 100-year generated sequences. Many of the 
generated low 'probability (recurrence irttervals of 10 years or more) low 
flows are less than the estimates based on observed flows. Some are 
about the same as historical estimates, and a few are greater. The 
generated sequences should have values with this mix. If all values 
were consistently higher or lower, one might conclude that either the 
transformations used in the model were incorrect or that the actual 
sample was not representative at those probabilities. The data generated 
here show that the model occasionally generates flows more extreme than 
those of the historical sequence. In contrast, if the observed sequence 
contains a value much lower than the generated sequences, the observed 
data may contain a rare extreme with a low probability of recurrence. 
Because the flow characteristics of the generated flows generally bracket 
those of the observed flows, the model is probably a valid representation 
of the underlying generating process. Long duration (~ 1 month) low­
flow . frequency characteristics of the generated sequences are probably 
more reliable than those estimated using the procedures in Armbruster 
(1976 b) • . 
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Table 11.--Summary of means and standard deviat·ions of lOQ-year 
generated annual flow sequences 

Site 1 ·Site2 · Site 3 

Standard Standard Standard 
Mean deviation Mean deviation · Mean deviation 

400 108 75 20 375 86 

408 102 77 18 383 79 

408 103 75 21 379 85 

390 105 71 20 364 84 

410 109 76 20 382 86 

390 111 74 18 368 85 

393 118 74 19 '' 370 90 

396 99 76 16 374 76 

400 97 76 19 376 82 

399 107 76 20 375 86 

390 109 78 19 373 85 

398 106 75 19 374 84 

8 6 2 1 6 4 
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Figure 11.--Comparison of observedand five typical generated 
30-year sequences flow duration curves at site 1. 
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Figure 12.--Compari!:lon of observed and five typical generated 
30-year sequences flow duration curves at site 2. 
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Table 12.--Summary of values of the Hurst coefficient estimated from 
ten sequences of generated flows, 100 years long each 

Site 1 Site 2 Site 3 

H K H K H K 

Historical .8944 .7997 .9451 .8116 .8036 .7963 

Generated 1 .4032 .5614 .5830 .6324 .4694 .5855 

2 .5375 .6913 .4950 .7020 .5236 .6856 

3 .5689 .6059 .6454 .6310 .5611 .6009 

4 • 7081 • 7705 • 67 57 . .7728 .6985 .7734 

5 .5720 .6676 .6359 .6640 .5570 .6436 

6 .6881 .7198 .7678 .7124 .7062 .7233 

7 .6589 • 7044 .6200 • 6890 .6482 . .6834 

8 .6238 .6730 .4963 .6574 .5914 .6630 

9 .7592 .7984 .6830 • 7959 . .7342 .7946 

10 .7851 .7155 .6259 I • 7712 .7324 .7319 

Summary 

Mean .6305 .6908 .6228 .7028 .6222 .6885 

Standard 
deviation .1146 .0702 .0830 .0598 .0944 .0688 
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Table 13.--Summary_of generated seasonal means and standard 
deviations of ten 100-year sequences. 

· · Site 1 · Site 2 · ·site 3 

Standard Standard Standard 
Season Mean deviation Mean deviation Mean deviation 

1 (Fall) 2071/ (13)!/ 144~_/ ( 27)!!/ 52(5) 51(13) 200(11) 124(19) 

2 782(20) 236(22) 131(3) 38(3) 634(12) 168(14)' 
? 

3 608(21) 234(25) 112(3) 32(3) 563(14) 161(16) 

4 161(4) 87(9) 26(6) 26(9) 170(4) 70(7) 

1/ The mean of the distribution of ten 100-year mean fall flows. 

];/ Tqe standard deviation of the distribution ten 100-year mean fall flows. 

11 The mean of the distribution of ten 100-year standard deviations of fall flows. 

!!1 The standard deviation of the distribution of ten 100-year standard deviations 
of fall flows • . 
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Table 14.--Sunnna.ry of generated monthly means -and standard deviations 
of ten generated 100-year sequences. 

Site ·l Site 2 Site 3 

Standard Standard Standard 
Month Mean deviation Mean deviation Mean deviation 

10 (October) 1241/ (7):1:/ 631/ (14)4/ 21(2) 24(14) 125(7) 63(13) 

11 170(10) 128(24) 43(4) 47(14) 172(7) 115(15) 

12 307(~5) 289(47) _ 80(11) 96(29) 287(22) 228(39) 

1 584(54) 388(81) : 106(11) 85(19) . 473(40) 290(58) 

2 683(46) 490(11) 103(6) 75(22) 530(25) 288(56) 

3 1116(51) 418(53) 190(8) 79(10) 919(36) 343(44) 

4 1041(6.~) 458(64) 185(8) 79(16) 880(41) 321(47) 

5 502(18) 260(18) 100(4) 51(5) 527(17) 221(18) 

6 . 299(16) 240(42) 55(5) 50(11) 304(18) 216(36) 

7 f75(7) 126(23) 29(2) 30(6) 186(6) 102(10) 

8 179(6) 86(12) 31(3) :l'9( 9) 173(23) 67(8) 

9 123(4) 74(7) 24(4) 27(10) 146(5) 66(7) 

1/ The mean of the distribution of ten· 100-year mean October flows. 

];/ The standard deviation of the distribution ten 100-year mean October flows. 

11 The mean of ·the distribution of ten 100-year standard deviations of October 
flows. 

!!_I The standard. deviation of the distribution of ten 100-year standard deviations 
of October flows. 

/ . 
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Figure 14.--Comparison of the low-flow frequency curves for the 1-month dura­

tion 30-year observed flows and five typical 100-year generated 
flow sequences at site 1. 
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Figure 15.--Comparison of the low-flow frequency curves for the 1-month dura­
tion 30-year observed flows and five typical 100-year generated 

· flow sequences at site 2. 
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16.--Comparison of the low-flow frequen.cy curves for .. the 1-month dura­
tion 30-year observed flows and five typical 100-year generated 
flow sequences at site 3. 
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Figure 17.--Comparison of the low-flow frequency curves for the 3-month dura­
tion 30-year observed flows and five typical 100-year generated 
flow sequences at site 1. 

'40 



100 

~ 

~ 
~ z of &l 0 5o 

~8 a 
ffi~ 6. 

~ ~Q: 

~· z~ 
.......... 
z~ 

~~ .~~ 
~. rho 

~as 0 
ia 10 Sequence 0 e.~ _z 
z-

0 Observed • ~ 0 • I ~ ~ ~ 0 2 ~ 0 :J • 3 
i ll. 4 
<( • 5 0 

100.0 

Figure lB.--Comparison of the low-flow frequency curves for the 3-month dura­
tion 30-year observed flows and ·five typical 100-year generated 
flow sequences at site 2. 
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Figure 19.--Gomparison of the low-flow frequency curves for the 3-month dura­
tion 30-year observed flows and five typical 100-year generated 
flow sequences at site 3. 
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Figure 20.--Comparison of the low-flow frequency curves for the 6-month dura­
tion 30-year observed flows and ·five typical 100-year generated 
flow sequences at site 1. I 
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21.--Comparison of the low-flow frequency curves fo1; the 6-month dura­
tion 30-year observed flows and five typical 100-year generat~d 
flow . sequences .at site 2. 
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Figure 22.--Comparison ·of the low-flow frequency curves for the 6-month dura­
tion 30-year observed flows and five typical 100-year generated 
flow sequences at site 3. 
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Figures 23-25 further verify the ability of the model to generate 
flows that seem to be equally· likely realizations of the same generating 
process that produced the observed flows. 

REGIONAL ESTIMATES OF STREAMFLOW STATISTICS 

Mean and Standard Duration 

Streamflow statistics such as mean annual and mean monthly flows 
and standard deviations of annual and monthly flows are required on a 
regional basis before stochastic models can be applied to ungaged sites. 
Using techniques described by Benson and Matalas (1967), regression 
equations were developed for estimating the above statistics. The 
general form of the regression model is 

log Y = log c + b1 log x1 + + b2logX2 + •• · •• 

where Y is the statistic being · estimated, X' s are basin parameters, b' s 
are regression coefficients, and c is a regression constant. 

Many different basin characteristics, such as drainage area, 
precipitation, channel slope and length, percent of basin covered by 
forest, and index of relative infiltration (Armbruster, 1976a) were used 
in the regression analyses, but drainage area was generally the only 
characteristic determined to be statistically significant. All nine 
sites listed in table 1 were used. Results of the regional analyses are 
presented in tabl.es 15 and 16. For almost all the regressions presented 
here the standard errors of estimate of the equations are smaller than 
those presented by Page (1970). 

Cross Correlation 

The . problem of estimating cross-correlation matrices, when an 
ungaged site is one or more elements, was divided into two parts -­
first, estimate the diagonal elements of the matrix and second, est~ate 
the off-diagonal elements. 

Estimation of diagonal elements 

The lag-one and lag-two autocorrelations at the gaged sites were 
computed using equation 2. These values were then related to physical 
and climatic characteristics of their respective drainage basins, using 
standard linear-regression techniques. The resulting relation for the 
lag-one autocorrelation is 

log ~(1) = 1~222 + 0.7140 log (P-30) (36) 
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·Figure 23.--Comparison of observed and five typical generated 30-year 
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Figure 24.--Comparison of observed and five typical generated 30-year 
sequences flow duration curves at site 2. 
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Figure L.5.--Comparison of observed and five typical generated 30-year 
sequences flow duration curves at site 3. 
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Table lS.--Summary of regression equations for mean of annual and 
monthly flows in the Juniata River basin 

[logY= log c + b1 log A, where A is drainage area (square miles)] 

Regression Regression Standard error 
Streamflow constant coefficient of estimate 
characteristic Y log c bl percent 

QlO* -0.1945 0.9540 17.2 

Qll .1439 .9333 ' 12.3 

Q2 .3289 .9262 7.6 

Ql .3819 .9211 9.8 

Q2 .4626 .9284 4.9 

Q3 .6985 .9166 7.6 

Q4 .6248 .9148 12.8 

Q5 .4769 .9174 16.8 

Q6 .2370 .9378 19~2 

Q7 -.1706 .9674 28.3 

Q8 -.1602 1.0108 25·. 7 

Q9 -.3302 .9644 '28.9 

QA** .3197 .9267 11.5 

* QlO = mean flow for month 10, October. 

** QA = mean annual flow. 
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Table 16.--Summary of regression equations for standard deviations of annual 1 

and monthly flows in the Juniata River basin. 

· [log Y = log c + b1 log A, where A is drainage area ·(square miles)] 

Regression Regression Standard error 
Streamflow constant coefficient of estimate 
characteristic Y log c bl percent 

I 

SlO 0.0522 0.8742 14.5 

Sll .1634 .9101 15.3 

S22 .1979 . .9393 6.4 

Sl .2094 .9119 6.1 

S2 .2012 .9227 10.2 

S3 .3223 .8991 7.5 

S4 .2866 .9181 4.9 

S5 .2326 .8833 6.6 

S6 .2944 .9405 17.0 

S7 -.1266 .9073 21.:2 

S8 . -.0238 .8207 21.1 

S9 ·-. 0525 .8341 11.5 

SA** -.2884 .9467 6.4 

* SlO = standard deviation of flows for month 10, October. 

** SA = standard deviation of annual flows. 
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where ~ (1) is an estimate of the lag-one autocorrelation coefficient 
and P is mean annual precipitation, in inches. The standard error of 
estimate of this relation is 10 percent. Use of the mean of the sample 
of lag-one autocorrelation has a . standard deviation of 16 percent of the 
mean value. Thus equation 36 provides only a small improvement, over 
using the mean lag-o~e autocorrelation. The lag-two ~utocorrelation is 
estimated by 

log ~(2) = 0.8902 + 2.091 log (P-30) + 0.6963 log I (37) 

where ~ (2) is an estimate of the lag-two autocorrelation and I is an 
index of relative infiltration described by Armbruster (1976a, 1976b). 
The standard error of estimate of this relation is 24 percent. The 
standard error associated with use of the mean diagonal element, by 
contrast, is 40 percent. 

Estimation of Off-Diagonal Elements 

Estimation of the off-diagonal elements or cross correlations, 
required a completely different approach than the one used for estimating 
the autocorrelations. An attempt was made to estimate cross correlations 
at ungaged sites using the parameters of the multisite ARIMA model 
(Moss, personal communication, 1977). Because the function was extremely 
complex in terms of the parameters, and because there is no simple way 
to estimate the ARIMA model parameters, an ~ttempt was made to estimate 
cross correlations empirically, using known or easily obtainable information. 
The procedures used to estimate the lag-zero matrix will be discussed 
separately from the lag-one, and lag-two matrices be·cause they are 
handled differently. . 

Lag-zero cross correlation 

The interrelation between annual flows ·of pairs of sites was related 
to the distance between the centroids of the respective basins. In 
theory the distance between centroids of nonoverlapping basins is 
probably a better representation because it would assume that no drop of 
water is accounted for more than once. Practically, however, this 
approach did not yield useable results, probably because of basin shape, 
topo&raphy, and time sampling errors. However, it was found that the 
lag-zero cross correlations of annual flows were linearly related to the 
distance between the centroids of overlapping basins, as shown in figure 
26. 

The curve, fitted to the data using a linear regression model, is 

~ij (0) = 1.02143 - .003786 D (38) 
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Figure 26.--Relation between lag-one cross correlation and distance 
between c.entroids of overlapping basins. 

50 



where ~ij(O) is an estimate of the lag-zero cross correlation between 
flows at sites i and j and D is the distance between centroids of basins 
i and j. The standard error of estimate of this relation is 0.0417, and 
the correlation coefficient is 0.704. Esthetically, equation 38 is 
flawed, as the intercept is greater than one -- and correlations can 
never exceed unity. Equation 38 should be used only for estimating lag­
zero cross correlation between basins with centroids greater than about 
5.6 miles apart. 

Lag-one and lag-two cross correlations 

Conceptually, lag-one and lag-two cross correlations should be a 
function of the respective individual autocorrelations. The exact form 
of the functions, however, is unknown. Several attempts were made to 
define the relations, but none could be found that provided any improvement 
over using the mean of the sample cross correlations. For the lag-one 
cross correlations, the standard deviation is about 14 percent of the 
mean, and, for the lag-two cross correlations, the standard deviation is 
about 35 percent. Therefore, when one or more ungaged sites are included 
as stations in a multisite problem, off-diagonal elements for the ungaged 
sites should be equated to 0.316 and 0.145 for lag-one and lag-two 
cross correlations, respectively. 

SUMMARY 

An ARIMA (1,0,1) model was calibrated and used to generate long 
(100-year) sequences of annual streamflows at multiple sites. The model 
generates annual flows that preserve the means, standard deviations, and 
low-lag cross correlations at each site, and yields estimates of the 
Hurst coefficient close to estimates based on observed data. 

To obtain monthly flows from the generated annual sequences, the 
Valencia-Schaake disaggregation model was calibrated and used. Initially 
seasonal flows were disaggregated from annual flows, . then monthly flows 
were disaggregated from the seasonal values. Several modifications were 
made ·to the Valencia-Schaake to improve its flexibility. 

Finally a method was suggested for synthesizing flows at ungaged 
sites. Streamflow statistics can be estimated using easily measured 
basin characteristics. 

There are limitations and constraints to the models used here. For 
example, probably the most serious computational constraint is the 
parameter estimation procedure used in calibrating the multisite ARIMA 
model. It is very sensitive to the cross correlation of observed flows 
among the sites being analyzed. Although an attempt was made to calibrate. 
the model for a 9-site problem, the model could only be calibrated for 
3-sites. The parameters are estimated using an iterative procedure 
that sometimes fails to converge. 
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As with other models of this type, the reliability of the generated 
flows is strongly d,ependent on the assumption that observed flows are a 
repr~se11tative sample in both time ~nd space. · 

The m~thods proposed here ·are valid only for streams with natural 
or unr.egula ted flows • 

. ! 
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