TECHITEAL HOTES.
NAIIGNAL ADVISOPY COMATTTEP FOR ATRCNAUTYCS.

Nc. 75

```
EFFECTS OF VARYING THE RELATIVE VERTICAL POSITION OP PING AND
    IUSELAGE.
    By
I. Pranati.
```

```
Extraot from
```

First Report of the Gottingen Aerodynanic Iaboratory,

```
First Report of the Gottingen Aerodynanic Iaboratory,
    Chap. IV, Sec. 7.
```

 Chap. IV, Sec. 7.
    ```

NATIONAL ADVISORY COMAITTEE FGR AERONAUTICS.

TEGHNIGAL NOTE NO. 75.

\section*{TFFECTS OF VARYING TYE RELATIVE VERTICAL POSITION OF WING AND FUSELAGE.*}

By

\author{
L. Prandti.
}

The object of this series of experiments was to determine the influence of the relative vertical cosition of wing and fuselage on the efficiency of the wing. Since the longitudinal position of the wing can be varied but slightly with reference to the oenter of gravity in a momal airplane, it was kept constant in tine experiments to be described and only the vertioal position of the wjing with reference to the fuselage was varied. Fig. 1 shows the different wing positions, \(A\) to \(E\), as likewise the shapes of the wing and fuselage and the distances between the wing chord and the axis of the fuselage. The rectangular wing has a span of 900 mm . and a chord of 180 mm . Wing model No. 436 was used, with an angle of attack of \(3^{\circ}\).

The results are shown in Figs. 2-6, and tabies 1-6. With the polar curves for the individual oases, the polar curve of the fing alone is always indicated by a dash line. The given angles of attack always refer to the wing chord.

Fig. 7 gives the differences \(G_{D}\) between the wing and fuselage together, and the wing alone, on an erlarged scale, for the several cases.

\footnotetext{
* Extract from the First Report of the GCtíngen Aerodynamic Lajo. oratory, Chap. IV, Sec. 7, pp. 118-120.
}

Attaching the fuselage to the ving causet, in case \(i\), a practically parallel displacement of the polar curve in the direction of the abscisses, corresponding to the fuselage drag. In vase \(A\), there was a noticeable increase in drag, especially ai small angles of attack; with increased lift, the difference was less referred to the wing alone. The same was true for case \(B\), only in a somewhat smaller degree. Gase \(C\) showed, in a síriking manner, at a larger angle of attack (about 120), a noticeable increase in drag. This phenomenon, which has not yet been explained, was confirmed by a second test. Case E was evidently the most unfaroraile, sinoe the drag was considerebly greater in comparison with the other cases.

It may be accordingly stated that the differences between cases \(A\) to \(D\) are only slight, but that case \(E\), in which the wing is a little below the fuselage, shows an aerodynamic ohange for the worse, in comparison with the other oases.

Iranslated by the National Advisory Comittee for Aeronautics.

TABLE I．
Wing alone．
\begin{tabular}{|c|c|c|c|}
\hline Angle of attack & \(\mathrm{C}_{\text {L }}\) & \({ }^{\text {c }}\) & \(\mathrm{C}_{15}\) \\
\hline \(-8.8^{\circ}\) & －． 341 & ． 0605 & －．007 \\
\hline － 6.0 & －． 051 & ． 0153 & ． 055 \\
\hline － 4.5 & ． 049 & ． \(0130^{\circ}\) & － 078 \\
\hline － 3.0 & ． 151 & ． 0136 & ． 101 \\
\hline － 1.6 & ． 250 & ． 0155 & ． 136 \\
\hline － 0.1 & ． 348 & ． 0185 & ． 147 \\
\hline 1.4 & ． 455 & ． 0338 & ． 174 \\
\hline 2.8 & ． 560 & ． 0308 & ． 304 \\
\hline 4.3 & ． 662 & ． 0405 & ． 327 \\
\hline 5.8 & ． 756 & ． 0510 & － 352 \\
\hline ع． 7 & ． 960 & ． 0737 & ． 307 \\
\hline 11.7 & 1.123 & ． 1060 & ． 348 \\
\hline 14.6 & 1． 187 & ． 1540 & ． 373 \\
\hline
\end{tabular}

TABLE II．
Gise A．
\begin{tabular}{|c|c|c|c|}
\hline Angle of こちもご & \(\mathrm{C}_{\mathrm{L}}\) & \({ }^{\text {c }}\) & \(\mathrm{C}_{15}\) \\
\hline \(-8.3^{\circ}\) & －． 250 & ． 0592 & －． 005 \\
\hline － 3.0 & －． 053 & ． 0213 & ． 053 \\
\hline － 4.5 & ． 047 & ．C190 & ． 076 \\
\hline － 3.0 & ． 142 & ． 0186 & ． 100 \\
\hline － 1.6 & ， 346 & ． 0201 & ． 125 \\
\hline －0．1 & ． 344 & ． 0235 & ． 149 \\
\hline 1.4 & ． 454 & ． 0377 & ． 176 \\
\hline 3． 8 & ． 583 & ． 0354 & ． 206 \\
\hline 4.3 & ． 665 & ． 0445 & ． 230 \\
\hline 5.8 & ． 760 & ． 0546 & ． 255 \\
\hline 8.7 & ． 967 & ． 0800 & ． 312 \\
\hline 11.7 & 1． 140 & ． 1110 & ． 351 \\
\hline 14.6 & 1． 238 & ． 1480 & ． 378 \\
\hline
\end{tabular}

TABLE III．
Gase B．
\begin{tabular}{|c|c|c|c|}
\hline Angle of 3tち－nck & \(\mathrm{C}_{L}\) & \({ }^{\text {C }}\) D & \(\mathrm{CaF}_{\text {E }}\) \\
\hline \(-8.9^{\circ}\) & －． 393 & ． 0700 & －．038 \\
\hline － 5.0 & －． 086 & ． 0187 & ． 051 \\
\hline － 4.5 & ． 011 & ． 0167 & ． Cr 1 \\
\hline － 3.0 & ． 118 & ． 0163 & ． 096 \\
\hline － 1.6 & ． 218 & ． 0179 & ． 122 \\
\hline － 0.1 & ． 318 & ．0303 & ． 144 \\
\hline 1.4 & ． 429 & ． 0350 & ． 17 I \\
\hline 2.8 & ． 540 & ． 0314 & ． 202 \\
\hline 4.3 & ． 640 & ． 0408 & ． 236 \\
\hline 5.8 & ． 745 & ． 0513 & ． 250 \\
\hline 8.7 & ． 942 & ． 0765 & ． 306 \\
\hline 11． 7 & 1.113 & －IC70 & ． 342 \\
\hline 14.6 & 2． 314 & ． 1550 & ． 387 \\
\hline
\end{tabular}

TABLE IV．
Case \(G\).
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { An亏İ of } \\
& 2+ \pm=C 5
\end{aligned}
\] & \(\mathrm{C}_{\text {L }}\) & \({ }^{\text {D }}\) & \(\mathrm{C}_{1}\) \\
\hline \(-8.9^{\circ}\) & －． 383 & ． 0723 & －． 032 \\
\hline － 5.0 & －．082 & ． 0190 & ． 056 \\
\hline \(-4.5\) & ． 016 & ． 0168 & ． 078 \\
\hline － 3.0 & － 120 & ． 0163 & ． 100 \\
\hline － 1.6 & ． 324 & ． 0179 & ． 135 \\
\hline －C．I & ． 325 & ． 0213 & ． 147 \\
\hline 1． 4 & ． 428 & ． 0248 & ． 170 \\
\hline 3.8 & ． 537 & ． 0327 & ． 200 \\
\hline 4.3 & ． 640 & ． 0411 & ． 223 \\
\hline 5． 8 & ． 741 & ． 0513 & ． 248 \\
\hline 8.7 & ． 9 읏ㄹ & ． 0778 & ． 304 \\
\hline 11.7 & 1.076 & ． 1100 & ＋ 344 \\
\hline 14.6 & 1.180 & ． 1630 & ． 375 \\
\hline 17.7 & 1．ors & ． 243 & ． 388 \\
\hline
\end{tabular}

TABLE \(V\).
Case D.
\begin{tabular}{cccc}
\begin{tabular}{c} 
Angle of \\
attack
\end{tabular} & \(C_{L}\) & \(C_{D}\) & \(C_{M}\) \\
\hline \hline-8.9 & -.271 & .0734 & -.011 \\
-6.0 & -.068 & .0197 & .063 \\
-4.5 & .033 & .0175 & .084 \\
-3.0 & .134 & .0173 & .108 \\
-1.6 & .234 & .0185 & .130 \\
-0.1 & .336 & .0222 & .754 \\
1.4 & .457 & .0261 & .175 \\
2.8 & .548 & .0335 & .207 \\
4.3 & .650 & .0420 & .230 \\
5.8 & .750 & .0535 & .254 \\
8.7 & .950 & .0786 & .310 \\
11.7 & 1.125 & .1110 & .351 \\
14.7 & 1.169 & .1540 & .363
\end{tabular}

\section*{TABLE VI.}

Gase E.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Argie of } \\
& \text { ittact }
\end{aligned}
\] & \(\mathrm{C}_{\text {I }}\) & \({ }^{\circ}{ }^{-}\) & \(\mathrm{C}_{\text {II }}\) \\
\hline - 8.8 & -. 334 & . 0747 & -. 003 \\
\hline - 6.0 & -. 043 & . 0233 & . 066 \\
\hline - 4.5 & . 258 & . 0310 & . 090 \\
\hline - 3.0 & . 158 & . 0214 & . 113 \\
\hline - 1.6 & . 258 & . 0330 & . 136 \\
\hline -0.1 & . 354 & . 0362 & . 156 \\
\hline - 1.4 & . 453 & . 0315 & . 181 \\
\hline 2.8 & . 557 & . 0388 & . 211 \\
\hline 4.3 & . 557 & . 0474 & . 232 \\
\hline 5.8 & . 754 & . 0575 & . 255 \\
\hline 8.7 & . 943 & . 0842 & . 312 \\
\hline 11.7 & 2.109 & . 1160 & . 347 \\
\hline 14.7 & 1.179 & . 1520 & . 360 \\
\hline
\end{tabular}


Fig. 1.





Fig. 4.

```

