TECHNICAL NOTES.

MATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

No. 79

EFFECT OF AEROFOIL ASPECT RATIO ON THE SLOPE OF

THE LIFT CURVE.

By .

Walter S. Diehl. Burean of Aeronautics, U.S.N. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 79.

EFFECT OF AEROFOIL ASPECT RATIO ON THE SLOPE OF THE LIFT CURVE.

By

Walter S. Diehl.

Introduction.

One of the most important characteristics of an aerofoil is the rate of change of lift with angle of attack, $\frac{dC_L}{d\alpha}$. This factor determines the effectiveness of a tail plane in securing static longitudinal stability. The following application of the Göttingen formulas in calculating the variation of $\frac{dC_L}{d\alpha}$ with aspect ratio should therefore be of interest to many aeronautical engineers.

<u>Variation of $\frac{dC_L}{d\alpha}$ with Aspect Ratio</u>.

The relation between the angles of attack at which a given lift coefficient obtains for two aerofoils of the same section but of different aspect ratio is expressed by the equation:

$$(\alpha_1 - \alpha_2) = \frac{C_L}{\pi} \left(\frac{S_L}{h^2} - \frac{S_2}{h^2} \right) \times 57.3 \dots (1)$$

where S is the area, b the span and C_L the absolute lift coefficient defined by $L=C_L\times\frac{1}{2}$ pSV². This formula, due to Dr. Prandtl and Dr. Munk of Göttingen University, has been checked by tests and found reliable. A verification by Dr. Prandtl may be

found in "Ergebnisse der Versuchsanstalt zu Göttingen" (1921, p.51 et seq.

If the value of $\frac{dG_L}{d\alpha}$ be known for an aerofoil section at a given aspect ratio the value for any other aspect ratio may be calculated from (1) by the method illustrated in Fig. 1. For the average aerofoil $\frac{dG_L}{d\alpha}$ is substantially constant over an angular range of, say 10° , or more. Assuming $\frac{dG_L}{d\alpha}$ to be constant with the value thus defined, the angular range corresponding to an increase in the lift coefficient from zero to any value G_L is

For the same section in other aspect ratio, $C_{\bar{L}}$ will obtain at the angle α_a defined by equation (1)

$$\alpha_{2} = \alpha_{1} - (\alpha_{1} - \alpha_{2}) \quad . \quad . \quad . \quad . \quad (3)$$

The value of $\frac{dC_{J}}{dR}$ corresponding to this aspect ratio is

$$\left(\frac{dC_L}{d\alpha}\right)_2 = \frac{C_L}{\alpha_2}$$
 as shown by Fig. 1.

Illustration of Method.

Assume that it is desired to find $\frac{dC_L}{d\alpha}$ for an aerofoil of aspect ratio 2.5 when from test data it is known that $\frac{dC_L}{d\alpha}=.072$ for the same section at aspect ratio 6. For convenience, take Δ $C_L=0.10$, then

$$\alpha_1 = \frac{\Delta G_L}{\left(\frac{dG_L}{d\alpha}\right)_1} = \frac{C.10}{.072} = 1.390^{\circ}$$

$$(\alpha_{1} - \alpha_{2}) = \frac{C_{L}}{\pi} \left[\frac{S_{1}}{b^{2}_{2}} - \frac{S_{2}}{b_{2}} \right] \times 57.3$$

$$= \frac{0.10}{\pi} \left[\frac{1}{6} - \frac{1}{2.5} \right] \times 57.3$$

$$= -0.427^{\circ}$$

$$\alpha_{2} = \alpha_{1} - (\alpha_{1} - \alpha_{2})$$

$$= 1.390^{\circ} + 0.427^{\circ}$$

$$= 1.817^{\circ}$$

$$(\frac{dC_{L}}{d\alpha})_{2} = \frac{0.1C}{1.817} = .055$$

Application.

For the convenience of the engineer a set of curves calculated by this method are given in Fig. 1. Also, the observed value of $\frac{dC_L}{d\alpha}$ for a few standard aerofoils are given in Table 1. It is of interest to note that the observed values of $\frac{dC_L}{d\alpha}$ for the same aerofoil at various aspect ratios follow the calculated curves closely. For application, reference is made to N.A.C.A. Report #96, "Statical Longitudinal Stability of Airplanes," in which the effect of $\frac{dC_L}{d\alpha}$ is treated.

Aerofoil Section	Aspect	dC [™]	Aerofoil Section	Aspect ratio	dC _I ,
USA - 15	6	.077	и во	6	.074
" 16	6	.076	M-6	6	.068
" 27	6	.072	RAF-6 (M.I.T.)	5	.070
usats - 2	6	.070	π	6	.075
[#] 5	6	.072	II	7	.077
Durand - 13	6	.074	tt .	8	.079
Sloane	6	.075	11	9	.082
RAF - 14	6	.078	RAF6a, - (NPL)	6	.071
n 15	6	.070	tt	13	.078
16	6	.074	Göttingen 164	2	. 050
19	6	.094	11	3	.060
Albatros	6	.076	π	4	. 067
Göttingen 173	6	.075	fr	5	.072
u 227	5	.074	1f	6	.074
" 242	5	.078			
" 255	5	.072			
¹¹ 256	5	.070	·		
n 322	5	.076			
" 344	6	.078		'	

¢

