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WMle very noteworthy Tesults ~awe

REfiISTANOE.* .

\

been obtained, esFeciaily

tn reoent years, ~~iththe aid of the theory Of the ~r~ct~cnless.

fluid, this is the case in a mud smaller degree for the results

Of the tkeorybased on ELfluid ti~h internal f?irtion or viPcos-

ity, The f~uids with which we actually have to do always possess.

some viscosity, which is the very reason for the res?.s’anteen-

countered by a ‘oody‘movingin a fluid. ~,%ent!d.s ZeSi Elt3nGf? Or

drag has been reduoed to a.mintium by Stremlj.nulg the body,’the

effect of the viscosity becomes so small that the actual flmrvery

nearly agrees with that calculated,on the basi~ of the theory of :

the frictionless or non-viscous fluid.** Thie is not ths oase$

however, with shapes which aause a great resistance, since the vis’”

cosity of the fluid i~erephys a decisive role. Thus far all at-

tempts at the quantitative determination of the drag, on t~.eba~is ,

of the theory of viscGus f“luids,with the exception of a few s~ec-,

ial oases, have met uith but slight suooess. For this reason,

whenever a more .acou-r.ateknowlefi.geof the drag is desi~able, it.—
* Fmm !lFhytiikalischeZeitgchrift,:l1921, Vol. 22, p~, 321-328.

** ~l?hrmam, Theorie und experimentelle Untersuchungyenan Ballon-.
ViwisllenjDissart,,J G&tting6n, 1511, a160 J’ahi%uchder Motarluft-
~chiffstudiengesellsohaft,1911-1912.



the velooity and viscoslty of the fluid iu a much inorecomplex

nanner than has heretofore been suppGsed.

It is .nstomary tiG ze~resent the drag D encounterc~ by a ,
8

body in moving through a

a

D

in which V denotes the

through the fluid and S

,fluidof the density p, by

= @ &!!

velocity with which the,body

the formula

moves

generally represents tineprojected area

of the body on a plane perpendicular to the d~~ed~Lc~ of motion.

Instead of this area, we may take any other c3azactcriqJtiicarea

of the body; for example, in the ease of aerofwil~, the greaces~

projected area. The dimensionless coefficient c is terw.sdthe

coefficient of drag. For a long time the opinioa held, mai~y on

J the stzength of l?ewton~sconception of the ‘re~istanceof the air,

, that for a given fluid this coefficient of drag is independent

of the velocity and of the absolute size of the body and my ELC-

oo~dingly be regarded as a oonstant whose value depends only on

the Seometricai.shape of the body. It was thought possible, frcn

the knowledge of the drag coefficient [obtained for a single ve-

looity of a given body by r,~eansof the above drag formula), to

determine the drag for any other size of the body and for any

other velooity, geometrloal similarity of shape being assuued.,
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In reality, as we shall see, the relations are not nearly so

simple.’

~Ioreaccurate experiments on the mutual influence of the

forces which produce the drag, have shown that the coefficient of

drag remains constant only for geometrically similar flows. The

latter do not however necessarily follow from geometric similaz–

ity of the bodies experimented upon. The decisive conditions
.

for the production of geometrically similar flows were first de-

%
termined by O, Reynolds. If any desired ltnear dimension of tLe

body (which must however be identical in the cases compared) is

designated by d and the kinetic viscosity by V = 11~’p(in

which ~~ is the coefficient of viscosity), the two flows are ge-

m= R is the sameometrically simiiar only when the quotient ~

in both cases. The coefficient R is dimensionless and is called

Reynolds number from its discovere~.

Consequently, it oamot be e~ected that the coefficient of

drag c (mhioh characterizes the resistance of a body) will re-S

main unchanged in the transition to another Reynolds number, for
.

example, by dhanging the velocity or the

fact, a dependence of the coefficient of

aetei X# is observed for most bodies.

size of the body. In

drag on Reynolds para-

The kind of ckange is

determined by the geonetrioal shape of the body. The above’ex–

pression is usually employed for the drag, even in the cases where

c is not a constant. The least changes in the coefficient of

drag occur for bodies with sharp edges, when the latter are perpen--

dicular to the dtrection of flow. Thus, for example, according to ~.
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sharp-edged

.~lgw,the coefficient of drag zexains constant for a tide range

~f Reynolds num;~ersand ha~ a value of about c = 1.1. On the

cont~ary, bodies with convex upper surfaces aay ,ggvevery differ-

ent results. With Reynolds numbers (which are small in compazisufi

with unity) the drag increases dizectly as the velocity, as was

firs% demonstrated by Stokes for the case of falling syheres.
●

●

This flow is characterized by the fact that here the inertia oon-

& F15tel-ydisappears and the motion is only influenced ‘bythe forces

of viscosity:

In ozder to trace the couzse of the coefficient of drag in .
,

at least one case> we recently caxried out a series of emeriments _

with oyltnders. Eaoh cylindez encountered tkc aiu stream at ri@ti

that is, where the particles Here all noving parallel to a pla.ne-

Perpendicular to tineaxis of the cylinder and ~hexeby uoreover the

same streamline form existed in all planes paralle2 to said ~L5ne.
9

The coefficient-sof drag found were therefore for infinitel~ long
*

cylinders. Since there was only a moderato range of velccity

(between 1.2 and 36 a/see) at disposal and since, on the other .

hand, the value of the kinetic visoosity nas practically constant,

SO long as ths ex~erimer.tswere performed In the same fluid, cyiin-

Aers of different”diameters had tO be used for great variations ir.

~e~’nOld6nu~ber. It y.asfo~d that Reynolds nunber could be ~&rie2

in’this ~~~ between ve~~ ~tde limits. Experiments we~e tried tith

r
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ntne cylinders ranging in diameter frcm 0.05 to 300 m. The ex-

periments accordingly embraced a range of Reynolds n+mbeus fror

4.2 to 800,CO0,* with the adoption of the diameter of the oylir:-

der as the characteristic length d. The dzag of small cylinders

(up to 8 mm. in diameter) was detem’ninedky suspending each one

vertically in the air stzeam on a long wire, whit’h?~asattached

1 *O the ceiling of the experiment chamber ami oarzied a weight at

h
the bottom, beZow the aix stream. From the defleoilon of the

thus-constitutedpendulwn, under the im=luence of the air strea.m~

th= drag %s readily detemined. In theEe experiments the Oyiin- ~

der extended through the air stream. Although deviations from

tke uniformity of the flow oertainly occur~ed on the edges of the ‘-

air stream, these could not mater~iallyaffect the main flow,

sinoe in all oases the length of the oylinder wa~ very much great-

er than its diametez (280 times, in the zncmt unfavorable case)

and the disturbances.on the edge of’th-eair stream extended over

. distanoes of only a few mdrlinderdiametez’s, Vith cylinders of
.-

* much larger diametex, however, this marginal disturbsace could

not be disregarded and some other r~ethodhad to be employed,

The thicker oylinders were accordingly placed between two flat

rigid walls located inside of and parallel %Etllthe air stream.

A special kind of packing (labyrinthpacking) was place# between

the ends of the cylinder and the two flat walls, so that the air

. . ..- ... .. ‘...*- . 1
* ‘lh.ev~~tie‘of %e kin&tic“vibdosityfor-&ir”&t “760mm Fressure

.

arid.15°c is u = 0.145 uE4Gec.
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could not pass between, and thus a uniform flow was produ~ed+*

1 system of wires lea from the cylinder to a balance which mees-

wed the drag.

Fig. 1 shows the results of all the expezi~.eilts.The drag.

coefficient o is here p~otteilagalns%

on logarithmically divided coordinates,

. of ~resentation was adopted in order to

formly side by side. It is first seen tha-tthe drag meffi.cient&

increases as the Reynolds number dec~eases. The experimental

values of the latter extend down to about 4.2. NOW a .fornulafor ,

the drag coefficient was given by Lamb (Phil. %g. , 1911, “iol=~~~

p.lao, “On the Urifo~m Hotion of a Sphere through a Viscous FluidY! :.

for motion with ve~y small Reynolds numbers (“creepingmotion”),

on the basis of the theory of vikcous fluids, similar to the one

given by Stokes for the sphere. Lambls fo~i~k for the drag coef-

ficient of a cylinder reads, ~;ithour syrnkok,

)
c = ~~

R (2.C02 - lzlrt)
.

in which R represents the Reynolds number with reference to the

diameter of the cylinder. This formula is derived from an approx- ;

imation theory and is only applicable for values of R which az’e

small with reference to unity. The values corresponding tO th.iS

* A detailed description of this arrangement, which has hitherto
.—

been principally employed for testing aerofoils in a tvo-d-men-
sional flow> is given in ‘lZeitschriftffirT?iugtechnikund l.%tor-
~titschiffaart,rf1919, p,95, and in ‘lErge-ouisseder Aerodynanis-.
then Ver8uchsar~stalt,lrfirst report, 1921, pp. 54-53, pu-oi~shed
by R. Oldenbowg,
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fomiula ars zepzesented by a dash.line in Fig. 1. It is evident

Zh.atthe contlnl~a%ionof the curve passing through the experineri-

tal points connects well ‘withthe oourse of the calculated ourve,

so that the regim. in whiah the experlaenis can m longer be mr-

ried out, is bridged over, with R (U2@3~, them is a very not-

iceable downward deviation, confirmed however from another side..*

From R = 15,GMl to R = 180,000, the quadratic law of drag is

approximately satisfied by the value of c = 1.2.

b With R N 2’OG,000, a very rapid fall of the c!kag‘coefficient

(from 1=2 to 0.3) takes place. A.vezy similar behavior had been .

Previously observed in determining the resistance of spkeres** I

and afterwards also for many other bodies with convex upper sur-

faces. The Reynolds nunher corresponding to this transitional

region is usually designated as the llcritioalReynolds numbe?.*!

The decrease of tks Jrag ooef.ficientis 30 great in the ?egion,

that even the ahsclute value of the drag for a cylinder of’given

diameter, contzary tg all previous experienoe, decreases with in-
.

oreasing veiocity. The quantitative relations are shown by Fig.2,

in which the drag in kg per meter length of a oylinder of 30 cm

* E. F. Relf, ltDiscussionof the Results of Measurements of the
Resistance of Wires, with some Additional Tests on the Resistance
of Wices of Small Diemetez,‘tTechnical Report of Advisory Cormit..
tee for Aeronautics, 1923-1914, p.47.
** G, Eiffel, l)Surla Resistance des %heres clansItair en r;ouve-
H.ent11Co&~tes ~’er.dus,iS12, XO.M5, p.1597; further, Capt. G. Oons-
%anzi,,p{llAl,cuneesper:enze di idro~inamica,1!Rendiconti delle espez-
ienze e degli studi nello stab, di esp. e constr. aeron. del genie,

# Vol. 11, IJo.4,Rome, 1912; L. Frandil, Der Luftwiderstand von
Kugeln Nachri&hien &er Koniglichen Ge&ellschaft zu G&ttingen, Math
Phys. Klasse 1914; C. Wieselsberger, ffirFlugtecl’mik
und Motorluftschiffahzt,1S14, p,140,

Zeitschrift
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(iiametezis plotted against the velocity of tke air.

:&~+j~,it~:‘~~-etrLcreaBeof the velocity fl?OY?X15 tO 2C

absolute value of the drag falls fzom 4 to about 2.5

quadratic law of Ckcagwhich is represented in Fig. 2

dash lin3s (parabola=), is obeyed neither before not

Fig. 1, it should also % noted
.

ty, in accordsnoe with which it

a coefficients foz equal Reynolds

sinoe the sections of the curve

that the Reynolds la~ of.similazi-

was necessary to have equal drag

numbers, WEM3very nell satisfied,

corresponding to the diametexs of

the different cylinders connected well with Or covered one anotkk?::.

Along with the magnitude of the dr~ coefficf.ent,the fOi’iiOf

flow, corresponding to the different ~-eynoldsriLY10er5,are alSO Of

interest and are capable of shedding muck Hgkt on the phenomena

Reynolds numbem, the nature of the flow is largely deteriiinedby

the.viscosity. On the basis of ii.Lsfi’brsacticle, alnea~y refe2-
b

red to> me have calculated the s-t~e~line form of the ur.iylana~

cylinder flow for the Reynolds number R = 1, in mhich.the ~o~i’fi-
3:3”

cient of drag given by Lmbl s fo.rmula/approxiaateiyoorrec%.

Fi~ 3 shows the absolute> and Tig. 4, the relattve streamlines of

this flow. Tileabsolute streamlines @ve, aS may be here recalled.,

the direction of motion of the fluid partioles fo~ an obse~iwec’”t

rest with reference to the fluid, while the zelative stzeamline~,,.

on the contrary, give the direction for am

reference to the body. These two diagrams

observer at rest Tith

sho17tkat the flow is
.
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not symmetrical wit~ refersnce to a vmtiml plane passing through

the axis of the cyliniie=and perpendicular to the ,direotionof the

hmdisturbed flow, T)25ZelatiVO Str~~~.rLe9 CGme ~e6s 0108e~y to-’

gether behind the b~dy tlan in fmmt of it, which signifies that

the flow behind tilecylindsr is consideza-olyretarded in comparison

with the undisturbed flow. This iS Glearly shown by the velo~it~r

mmves in Fig. 4. Curve 3 shows that the ~elocity, at a distanoe “

of 7.5 oylinder diameiess hekind, has Sallen oft to less than half

the value of the undisturbed velocity, w?.ilethe retardation at

the same distan~e ~~ f~ont of the bo~~ (curve 1) is onhJ Slight.

On the surface of tke cylinder the velocity of flow is zero (~~me

2). The “wakef’forifl.ed‘~efi-indthe cylinder is conditioned b~~the

fact that Lamb~s valuat:on for the flow atiouta cylinder does not

entirelyneglect the

tion, as is the ease

the example of OseenI

aooount to a certain

# should consider only

acceleration terms of the differential ewa-

&A ~tokestflow about & ~here, but, fOllOWing

3 calculations for a spheze, takes’.%h.emint.p

degree. If, in the case of’the cylinder, we

the effect of viscosity: as done in’stokes’

calculation for the sphere, we would obtain a flow Which is symmet-

rical with reference to a vertical p].anepassing through the SXiS

of the,cylinder and perpendicular to the direction of the flOm

(whereby in this case, however, the velocity in infinity ‘wouldnot

have a finite value). With a decreasing Reynolds num%er the flow

about a oylinder

fiorm,whils with

the flow retains

will thereforegradually approach a symmetrical

anincreasing Reynolds number up to about R = 80~

the character of Figs, 3 and 4. This was con-
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firmed by a photograph of the flow with R = 3.5, hence alaead{

considerably outside the applicability of Lambts formuk* A oyl-

inder of 12.8 mm diameter was moved through a syrup solution and

the moving particles of lycoywiiuw, spzinklsd on the =rface of ‘~hs

liquid, were photographed, linecamera being mcve3.with the oyMn-

der. The quantitative relations at fai~ly great distances from the

cylinder can hereby wake no claim to pszfeot agreement with the “ao-

. ti.on of an unlimited fluid, on account of its relatively,srnallex-

tent, th~ dimensions of the fluid being only 34 OR long, 34 cm wide*

and 8 am deep. The character of LaniblS flow. especi~ly the ab-

sence of voatioes behtnd the body, is, however, clearly shown. A .

condition of transition to the flow with fully dgveloped vortioes

behind the body 33 indicated by the wakei~ beginning to show an os-

cillatory motion, at

the Reynolds number,

been very thoroughly

about R = 100. With a further inozease of

very rebnlar vortioes were foraed, which have

antisuccessfully investi~teil by Von Karman,**

The existenoe of these vortices can be easily

# tally, since they set the air in vibration by

cesaionj thereby produofng audible tongs. In.

demonstrated acousti-

their regular i3uo-

this manner ne have

demonstrated the presence of Karman vortices up to a Reynolds num-

bez of about 100,00(2. In excbss of the critical Reynolds nurbez, ~

a considerable further ckange in the form of the flow takes Flace~

in that the point on the surface of the cylinder where the forma-—
“~A cut in the original paper .isomitted F.ere.
** T, von Karnan and H. Fiubach,Ueber den ~[ec~ni~-us des ~~flseig-.
keits und Luftm13erstandes,Physikalis~he ZeitschriftJ 1912$ Vol.
13, p*49.
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tion of vortices begins, the “separationPoint,tlis shifted nore

toward the rear. Both these forms of flow are shorm diagrammatic-

ally in Fig. 5, whers

‘hatching. lt is seen

of the vortex regicn,

the vortex regions are indicated by czoss-

that, beyond the critical number, the wid~h

which constitutes an approximate criterion

for the na=~tude Gf the drag, is considerably less. The point at

which the smooth flow leaves the”surface i~ designated by a.. The

, pressure distribution on the cylinder in uniplant%rflow, both be-

low and above the critical point, is shown in Fig. 6, according to.

English e~eziments.* Th3 angles recorded on the axis of abscissas.

are calculated from the foremost point (lfrest-pointI’)of the oylin–

der, while the ordtnates indicate the ratio of the ~ressure meas-

ured at any point to the pressure at this point. The dash line

indicates the pressure distribution resulting frozrlthe theory of

the frictionless (Gr non+riscous) fluid, vhick would not give sise

to any drag. This distribution is approximated ocnsiderahly more”

olosely by the distribution for the Reynolds number R = 176,0C0,

thar.by the distribution below the critical point for R = 64~000.

More thorough investigatio~ now shows that the shifting of the sep-.

arationpoint toward the rear is ooraected with the fact that the

flow (infiueneedby the viscosity in the immediate vicinity of the

surface, whioF-originally consists of a smooth gliding cf the fill.~d

layers),above a certain Reynolds nunber, suddenly bacones perme-

ated with srall vortices. The ~zface layer 23 said to become
— .- -- --.—- .-.. - . ., - --..-, -. ,..
.* G. J. ~aybr, Pressure Distribution Round a @linder, Technical
Report of the/Advisory Co~mittee for Aeronautics,1915-1916,~,3C,

British



its front surfacs - the location of the sepa~aticn point can be

shifted backward, even for sma,ller”Reynoldsnu~.bezs.

Even after the critical number is passea, very peculiar phe- -

. noiienaoccasionally appear: as manifested in marked variations of “.

. the drag coefficient. Any roughnessof the surface s~e~s to play

an especially important zo3e here. Suoh a mse is represented by :

Fig. ?. Here the coefficient of drag 3S again plotted against the .

Reyno~d8 n~bex >d, in nhich d represents the thicki.ess,j$er-

Pe21dicularto the direction of the flow, of a cylinder tapered in

the rear, as shown in the fliagram. TLe

tained with a perfectly smooth surface;

surface. It is seen that in the latter

critical number, which is here about R

co~tinuous line was ob-

aith a roughthe dash’line, ,

case, after passing t~e

= 70,000> a rapid inc~ease

of the drag coefficient again takes plac~, so that even for”this

b region the quadratic law of resigt~ce is ‘~yTAO~ean~ obeyed with a

constant coefficient of drag. It will be an essential task.for ex-

F~rifi~n%l aezodynauics to find th’eexplanation of these peculiar ‘

phenomena,

In concluding,

thanks to Professor

this work.

the wti,tierwishes to e~ress his ;ieartiest

Prandtl for the active support he has &lven

Aemdynmic Institute,C&t ingen,.&ril, 1921.

Translated by National Advisory Committee for Aeronautics..
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