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While very noteworthy resulis have been obtalned, especially
in reocent ysars, with the aid of the theory of the rfrictionless.
fluid, this is the case in a much swaller degree for the results
of the theory based on a2 fluid with intermal friction or vimcos—
ity. The flulds wlth which we actually have to do always possess
soms viscoslty, which ie the very reason for the resisbance en-
countered by a vody moving in a fluid., ‘hen this zesistance or
drag has been reduced tc & minimum by streamlining the body, the
sffect of the viscosity becomes go small that the actual flow. very:
nearly agrses with that calculated on the basis of the theory of
the frictlonless or non-viscous fluid.** This is not ths case,
however, with shapes which cause a great% resistance, since the vis-
cosity of the fluid here plays a declsive rols, Thus far all at-
tempts at the qﬁantitative determingvion of the drag, on the basis
of the theory of viscous fluids, with the excsption of 2 few srec—
ial cases, have met with but slight success. For this reason,l

whenever a more accurate knowledge of the drag is desirable, it
* From "Physikalische Zeitschrift,™ 1931, Vol. 23, pp. 331-328,

* Fuhrmann, Theorie und experimentelle Untersuchungen an Ballon-

uoucllen, Disssri. ,, uotblngeﬁ, 1611, also Jahzsbuch der Hoto;luft—
schiffstudiengesellschaft, 1811-1913.
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must Ve determined by experiment., In thia article a few experi-
nental results will be giver on the drag of a cylinder sxposed
to a stream cf alr at right angles to itz axls. It will be shown
shat the dreg depends on the abscluie cimensione of the body and
the veloolty and viscosity of the fluid in a rmch more complex
manney than has heretofore been supposed.

v 1s customary ‘tc represent the drag D encountercd by a
body in moving through a fluid of the deusity p, by the formula

- oxiud
D ¢S 5

in which V denotes the velocity with which the body moves
through the fluld and S generally represente ths projected area
of the body on a plane perpendicular tc the dlrecticn of motion.
Instead of this area, we may take any other characherisiic area
of the body; for example, in the case of aerofuils, the greasest
projected area. The dimensionless coefficient ¢ is termed the
coefficient of drag. For a long time the opinioa held, mainiy on
the strength of Newion's conception of :the 'rTesistance of the air,
that for a given fluld this coefficient of drag is independent

of the velocity and of the absolute size of the body and may ac-
cordingly be regarded as a constant whose value depends only on
the zeometricali shape of the body. It was thought possible, from
the knowledge of the drag coefficlent {obtained for a single ve-
locity of a glven vody by means of the above drag formula), to
determine the drag for any other size of the body and for any

other veloolty, geometriozl similarity of shape being assumed.
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In reality, as we shall see, the relations are not nearly so
simple,’

fore accurate experiments on the mutual influence of the
forces which produce the drag, have shown that the coefficient of
drag remalins constant only for geoﬁétrically similar flows. The
latter do not however necessarily follow from geometric similar-
ity of the bodies experimented upon. The decisive conditions
for the production of geometrically similar flows were first de-
termined by O, Reynolds. If any desired linear dimension of ti.e
pody (which must however be identical in the cases compared) is
designated by d and the kinetic viscosity by v = p/p (in
which i is the coefficient of viscosity), the two flows are ge-
ometrically similar only when the quotient %%==R. ie the same
in both cases. The coefficient R is dimensionless and is called
Reynolds number from its discoveresn.

Consequently, 1t cannot be expected that the coefficient of
drag ¢ (which characterizes the resistance of a body) will re-
maln unchanged in the transition to another Reynolds number, for
example, by changing the velocity or the size of the body. In
fact, a dependence of the coefficient of drag on Reynolds para-
meter '%% is observed for most bodies. The kind of change is
determined by the geometrical shape of the body. The above ex-
pression is usually employed for the drag, even in the cases where
¢ 1is not a constant. The least changes in the coefficient of
drag occur for bodies with sharp edges, when the latter are perpen-

dicular to the direction of flow. Thus, for example, according to



-4 -

nrevious expsriments on sharp-edged disks perperdicular to tie
Flow, the coefficient of drag remalne constant for a wide rangs
f Reynolds numbers and haé a values of sbout c¢c = 1.1. On the
contrary, bodies with con%ex upper surfaces may give very differ—
ent results. ith Reynolds numbers (which are small in comparison
with unity) the drag increases directly as the velocity, as was
first demonétggted hy Stokes for the case of falliﬁg scheres.
This flow is characterized by the fact that here the inertila com-
rletely diszspresrs and the motion is onl& influenced by the forces
of viscoaity,

In order to trace the course of the cosfficient of drag in
at least one case, we recently carried out a series of experiments
with cylinders. Each oylinder encountered the ai- gihreanm at'righb
angles to its axig., All measurements were made in "uniplanar flow!
that is, where the particles were all moving parallel to a plane‘
perpendicular to the axis.of the ¢ylinder and whereby rioreover the
same streamline forw existed in all planes parallel to said plane.
The coefficients of drag found were therefore for infinitely long
cylinders. Since there was only & moderate range of velccity
(between 1.2 and 36 m/sec) at Qisposal and since, on the other
hand, the value of the kinetic viscosity —was practically constant,
80 long as the experiments were performed in the same fluid, oylin-
ders of different diameters had %o be used for great variations in
Reynolds number. It was found that Reynolds nuriter could be veriel

.

in thie way between very wide limits. Experiments were tried wTita



-5 -

nine oylinders ranging in diameter from 0.05 %o 300 rm, The ex-
periments accordingly embraced a range of Reynoids rumbers fror
4.3 to 800,C00,* with the adoﬁtion of the diameter of the oylinQ
der as the characteristic length d. The draé of small cylinders
{vp to 8 mm. in diameter) was determined Ly sﬁspending each one
vertically in the air stream on a long wire, which was attached
+0 the ceiling of the experiment chamber and carried a weight at
the bottom, below the alr stream. From the defléotion of the
thus-constituted pendulum, under the influence of *he éir sffeam,

th

w

drag weg readily determined. In theese exxeriments the oylin-
' der extended through thé air stream. Although deviations from
the uniformity of the flow ocertainly occurred on the edges df the
air stream, these could not materially affect the main flow,
gince in all cases the length of the oylinder was very nuch great-
er than its diameter (380 times, in the most unfavorable case)
and the disturbances.on the edge of the air stream extended over
distances of only a few cvlinder diameters. Vith cylinders of
much larger diameter, however. this m&rginal disturbance could
not be disregarded and some other metnod had to be employed.

The thicker oylinders were accordingly placed between two {lat
rigid walls located inside of and parallel with the air stream.

A spsclal kind of packing (labyrinth packing) wae rlaced petween

the ends of the c¢ylinder and the two flat walls, so %that the air

s e

P S T PR P T,
* The galué of the kinetic viscosity for air at 760 mm pressure
and 15°C is v = 0,145 cm2/sec.
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could not pass betwesn, and thus a uniform flow was produced.*
* system of wires led from the cylinder to a balance which mees-
ured the drag.

Fig, 1 shows the results of 21l the experinsnis. The drag
_¥da

T

ccefficient o 1is here vlotted againet Reynoids mamober R >

on logarithmically divided cooxdinates. The logarithmic methed

of presentation was adqpted in order to represent all fields uni-
formly side by side. It is first seen that the drag ocoefficient
increases as the Reynclds number decreases. The experimenval
values of the lattsr extend down to about 4.3. Now a formula for
the drag coefficient was given by Larb (Phil. Mag., 1911, Vol. 21,
- p.1230, "On the Uniform Motion of a Sphere through a Viscous Fluigd"
for motion with very smail Reynolds numbers ("creeping motion"),
on the basis of the theory.of viscous fluids, sgimllar to tas one
given by Stokes for the sphere. Lamb's formula for thes drag coef-

ficient of a cylinder reads, with our symbols,

c = 81
R (2.002 - 1nR)

in which R represents the Reynolds number with reference to the
diameter of the cylinder. This formula is derived from an approx-

imation theory and is only applicable for values of R which ave

small with reference to unity. The values corresponding to this

* A detailed description of this arrangement, which has hijharto
been principally employed for testing aerofoils in a two-dimen-
sional flow, ie given in "Zeitschrift fur Flilugtechnik und Hotor-
luftsenififanrt," 1918, p.85, and in "Ergebuisss der Aerodynamia-
chen Versuchsanstalt," first report, 1931, pp. 54~53, publiished

by R. Oldenbourg,
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formula ars represented by a dash line in Fig, 1. It is evident
shet the continuasion of the curve paasing through the experimen-
tal points connecis well with the ooursé of the calculated curve,
so that the reglor. in which the experiments can no longer be car-
rled out, is bridged over. With R ~ 2000, +there ig a very nobt-
iceable downward deviation, confirmed howsver from another side..*
From R = 15,000 to R = 180,000, the quadratic law of drag is
approximately satlisfied by the value of ¢ = 1.23.

With R ~ 30G,000, a very rapld fall of the drag coefficient
(from 1.2 to 0.3) takes place. A very similar behavior had been
previously-observed in determining the resistance of spheres®*
and afterwards slso for many other bodies with convex upper sur-
faces. The Heynolds numper corresponding to this trensitional
reglon is usvally designated as ths "6ritioa1 Reynolds nunbex.®
The decrease of the drag coefficlent is szo great in the region,
that even the aovsolute value of the drag for a cyliander of given'
diameter, contrary to all previous experience, decreases with in-

creaging velocisy. The quantitative relations are shown by Fig. 3,

in which the drag in kg ver meter length of a cylinder of 30 cm

* E. F. Relf, "Discussion of the Results of leasurements of the

Resistance of Wires, with some Addisional Tests on the Resistance
of Wires of Small Dismeter," Technical Report of Advisory Comrit-
tee for Aeronamtics, 1913-1914, .47, .

*¥* G, Eiffel, "Sur 1z Resistance des Spheres dans l'air en rouve-
ment" Comptes rendus, 1512, Wo. 155, p.1597; further, Capt. G. Cons-—
tanzl,-"Alcune esperienze &i idrodinamica," Rendiconti delle espeo-
isnze e degli studi nello stab. di esp. e constr. aeron. del genio,
Vol. II, No.4, Rome, 19123; L. Prandtl, Der Luftwidergtand von
Kugeln Nachrichten der Xoniglichen Gesellschaft zu Cottingen, Mathr
Phys. Klasse 1914; C, Wieselsberger, Zeitschrift fur Flugtechnik

und Motorluftschiffahrt, 114, p. 140,
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diameter is plotted against the velccity of the air. It is azesn
shat with the lncrease of the velocity frox 15 to 3C m/aeo. SLE
absolute valus of the drag falls from 4 to about 3.£Z kzg. The v
quadratic law of drag which is represented in Fig. 3 by the %wo
dash linss (parabolas), is obeyed neither before nor afier <his
critical point within a considerable region. In cornestion with -
Fig. 1, i% should also »e noted that the Reynolds 1aw_of.similari—
ty, in agcordance with which it was necessary o0 have stusl crag
coefficients for equal Reynolds numbers, was very well satisfied,
since the sectlons of the curve ocorresponding to <he diameters of
the Cifferent oylinders connected well with or coversd one anothsex.
Along with the magnitude of the dreg coefficient, the formsof
flow, corresponding to the different Reynolds numbers, are also of
interest &nd are capable of shedding much ligkt on the phenomena
of flow. It kas already been mentiongd that, with vexy emall
Reynolds mumbers, the nature of the flow is largely determinad by
the viscosity. On the basis of H. Lamb's article, alzeady refsr-
red to, we have calculated the streamline form of the unizlanar
cylindsr flow for the Reynolds nuumber R=1, in which the coesffi-
cient of drag given by Lamb's formulaﬁéébroximaﬁely correct.
Fizg. 3 shows the absolute, and Fig. 4, the relative streawmiines of
this flow. The absolute streamlines give, as may be here recalied,
the direction of motion of she fluid partioles for an obsesrver ~3%
rest with reference to the fiuld, while the relative streamlines,

on the contrary, give the direction for an observer at rest with

reference to the body. These two diagrams show that the flow is
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not symmetrical with refersnce to a vertical plane passing jhrough
the axis of the cylinder snd perpencicular o the direction of the
sndisturbed flow. The relative streamlines come less closely to—
gether behind the buday thaa in front of if, which signifies that
the flow behind the oylinder ie consideravly retarded in comparison
wlth the undisturbed flow. This is clearly shown by the velooclty
curves in Fig, 4. Curve 3 shows that the veloclity, at a distance
of 7.5 ovlinder diameters behind, has fallen oif %o less than half
the valus of the undisturbed velocity, while the retardation at

the same distance -r front of the body {(curve 1) is only slight.

On the surface of the cvlinder the velocity of flow is zero (cuxve
2). The "wake" formed behind the cylinder is condltioned by the
fac% that Lamb's valuation for the flow avout a cylinder does not
entirely neglect the acceleration terms of the differential squa-
tion, as is the case in Stokes! flow about & sphere, but, following
the example of Oseen's calculations for a sphere, takes.them inio
account to a certain degree. If, in the case of the cylinder, we
should cpnsider only the effect of viscosity, as done in Stokes!
calculation for the ephere, we would obtain a flow which is symmet-
rlcal with zeference to a vertical plane passing tarough the axis
of ths cylinder and perpendicular to the direction of the flow
(whersby in this cagse, however, the velocity in infinity would not
have a finite value). With a decreasing Reynolds murber the flow
about a oylinder will therefore 'gradusally approach a symmetrical
form, while with an. increasing Reynolds number up to about R = 80,

the flow retains the character of Figs, 3 and 4, This was con-
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firmed by a pﬁotograph of the flow with R = 3.3, hence already
conasiderably outside the apvlicability of Lamb's formula.* A oyl-
inder of 12.8 mm dismeter was moved through a syrup solution and
the moving particles of lyvcovudiwn, sprinklszd on the surface of the
ligquid, were photographed, tﬁe camers bDeing mcved with the oylin-
der. The quantitative relations at faizly great distances from the
cylinder can hereby make no claim to psrfeot agreemsnt with the no-
tion of an unlimited fluid, on account of i%s relatively small ex-
tent, ths dimensions of the fluid being only 34 or long, 34 cm wide
and 8 om deep. The character of Lamb's flow, especially the ab-
sence of vortices behind the body, is, however, clearly shown. A |
condition of transition to the flow with fully developed vortices
behind ths body is indicated by the wake's veginning t6 show an os-
cillatory motion, at about R = 100. VWith & further increase of -
the Reynolds number, very regular vortices were formed, which have
been very thoroughly and suscessfully investigated by Von Karman. **
The existence of these vortices can be easily demonstrated acousti-
cally, since they set the alr in vibration by their regular suo-
cesalon, therseby producing audible tonss. In this manner we have
demonstrated the presence of Karman vortices up to a Reynolds num-
oer of about 100,00C. In excess of the critical Reynolds nurbex,

& considerable further ckange in ths form of the flow takes place,

in that the point on the surface of the cylinder where the forma—
* A cut in the original paver is omitted here.

** T. von Karmen and H. Fubach, Ueber den Mechanisrmus des Tlisalz-
;gits zgd Luftwiderstandes, Physi kalische Zeitechrift, 1913, Vol.
P
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tior of vortices vegins, the "separation point," is shifted more
toward the rear. Both these forms of flow are showm dlagrammatic-
ally in Fig. 5, where the vortex regions are indicated by cross~-
hatching. It is seen that, beyond the critical number, the widzsh
of the vortex region, which constitutes an approximate criterion
for the magnitude of the drag, is considerabliy le¢ss. The point ab
which the smooth flow leaves the surface is designated by a. The
pressure distribution on the cylinder in uniplanar flow, both be-
low and above the critical point, is shown in Fig. 8, according to
English experimeﬁts.* Ths angles recorded on the axis of absclsszas
are caloulated from the foremost point ("rest-point") of the oylin-
dei, whils the ordinetes indicate the ratio of the pressure méas—
ured at any point to the pressure at this point. Tkhe dash line
indicates the pressure distribution resulting from the theory of
the frictionless {or non-viscous) fluid, whick would not give zise
to any drag. This distribution is approximeted consideradly more
closely by the distribution for the Reynolds number R = 178,000,
than by the distribution below the critical point for R = 84,000.
More thorough investigation now showé that the shifting of the sep-
aration point toward the rear is cornscted with the fact that the
flow (infiuenced by the viscosity in the immediate vicinity of the
surfzce, whick origirally consists of a smooth gliding of the fiunid
layers), z2bove a certain Reynolds nurber, suddenly bacomes perme—

ated with small vorticez. The surface layer is said to become

* G. J. Taylor, Pressure Distribution Round a Cyiind r, T i
. > < er, Technica:
Report of the/Advisory Committees for Aeronautios, 1215-19186, p.35.

British
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"turbulent." If this turbulence (whic:i occurs automaticeally for &
certain Reynolds number, is artificially cveated by special devices
- for example, by placing a coarse sieve of suitzble mesn in freut
of tke experimentsl pody or hy means of obstacles (roughness) on
its front surfacs - the location of the sepaiaticn point can bs
shifted backward, even for smaller Reynolds nuabers.

Even after the critical number is passed, very peculiar phe-
nomena occasionally appear., as manifesied in marked variatioﬁs of
' the drag coefficient. Any roughness of the surface ssems to play
an especially importznt 3oie here. BSuch a case is represented by
Fig. 7. Here the coefficient of drag is agéin plotted against the ;
Reynolds pumber %%, in which 4 Iepzesenfs the thickness, per-
pendicular to the direction of ths flow, of e crlindexr tapered in
the rear, as shown in the diagram. Tie continuous lins was ob-
tained witk a perfectly smooth surface; the dash’ line, with & rough
surface. I% is seen that in the latter cass, after vassing theé
critical number, which is here about R = 70,006, a rapid increase
of the drag coefficient again takes place, so that even for this
region the quadratic law of resistance ig by no means obegad with a
constant coefficisnt of drag. It will be an essentisl task for ex-
perinental aerodynamics to find the explanation of thsse pecuiiar :
phenonens..

In concluding, the writer wishes to express his heartlest
thanks to Professor Prandtl for the aqtive support he has given
this work.

ferodynamic Institute, Gottingen, April, 1921

Translated by National Ldvisory Committee for Asronautics.
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