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Introduction.

This ‘technlcal note was prepared for the Netional Advisory

Committee for Aeronautics as a part of the report on the "Inves-
tigation of Diaphragms for Aeronautic'lnstruments," and the pur- B
pose of this paper is to show that the characteristic performance
of a sylphon dlaphragm can be predicted from a knowledge of its
stiffness and of its dimeneions. The proof is based on a mathe-
matical analysis of this type of diaphragm, together with enough
experimental data to prove the validity of the assumptions and
the sufficiency of the analysis. Equations are developed for the
performance of sylphons under various conditions of loading, both
for concentrated loads and for hydrostatic pressure,

The zesults of the investigation will be useful in the design
of instruments or devices confaining sylphons, since, by measur—
ing certain dimensions of the diaphragm and the deflection produc—

ed by a known concentrated load (to determine the stiffness), the

designer will be able to predict the action of the sylphon under
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.the above-mentioned types of loading within the limits defined
below. ' |
'The load-deflection curve §f a sylphon is linea? over a con;
siderable range, and over this range the errors due to imperfsct
elasﬁiéity (i.e.. drifs, hysteresis, and after—effect)*'have:been
L found:to be less than one per cent of the maximﬁm deflection and
. sb caﬁ be neglected, as far aé the objecﬁ of this paper 1is con-
cerned. The discussioﬁ which follows ig limited, therefore, to
the renge of loading for which the load-deflection curve of the
'sylphon is a straight line and does not inglude a consideration

of the effect of drift, hysteresis and af ter—-effect.

Agsumptions.

The following assumptiohs will be made:

(a) The load-deflection curve of the sylphon for concentrated

loads is linear. (This curve will be called the characteristic:

curve of the sylphon - see Fig. 2.)

(b)*The errors due to imperfect elasticity (drift, hystere-
sis and after-effect) can be neglected.

(c) The external space between two successive corrugations 1s
equal in volume to the internal space bétween two successive cor-

rugations for deflections within the linear range.

* These terms will be defined as fcllows:
Drift is the change of displacement under constant load.
Bys#ereais is the excess of displacement with loads decreasing,
over tne displaccment at the same lcad, with loads increasing.

After—-effect is the residual displacement at any time after re-
moval of the load.
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The oross-seotibfisl ates of the sylphon remains constant.

It has already been stated that assumpbions (a) and (b) are

warranted from experimental evidence. The range over which they

hold good will be discussed later for a particular sylphon.

Agsumption (c) is justified by the excellent agreement be-

tween resulte obtained experimentally and those obtained analyti-

cally by

making use of this assumption. Assumption (4) is suffi-

clently accurate for the present purpose.

The

i) [
il

Hotation
following notation will be used:

concentrated central load.

difference of pressure between inside and oubside
of sylphon.

= internal diameter of sylphon)

; See Fig- 1.
external u ] 1

deflection of upper face under load, measured from
neutral position of upper face (i.e. under no load).

maximum cross-section perpendicular to axis

(i. e. A = ﬁZ’Z )

= equivalent area.

length of sylphon.
depth of one corrugation.
volume of the sylphon.

average volume of sylphon per unit length = %.
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W = work dehe 41 by by thé éﬁrlphon.
n = mumber of corrugations.

SS---= spring stlffness = % .

85= stiffness of sylphon for concentrated loads = %
Sq= . meoom " distributed loads = =

= gtiffness of combined sylphon and spring when
hydrostatic pressure is supplied to the sylphon.

g ='w1dth of gap between.spring and sylphon befors
-~ veing coupled togsther.

THEORETICAL DISCUSSION.

Lawe of Deflectlion.

Consider a sylphon disphragm with its axis vertical, its low-
er surface fixed,.and with its upper surface oonsisting of a rigid
plate (see Fig. 1). TVhen concentrated loads are considered, 1%
will be assumed that they are applied vertically at the center
of the rigid plate. The discussion which follows applies only to
the range of deflections for which the load-deflection curve is
linear.

From assumption (a) and the definitlon of stiffness there

follows:
(1) L = 8y
It will now be proved that a ielation
(38) P = 8gv

similar to trhat expressed by equstion (1) exists for loads produc-

ed by hydrostatic pressure.
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Coneider the system consisting of a sylphon with an applied

concentrated load L. 'The inté¥ior of the 8ylphon is open %o ..o
outside air. While the sylphon is yielding to the influence of
this load, the effective force, i.e., the force %tending to defle:i
the sylphon, is (L - Scy). Hence during the infinitesimal dis-
tance dy the work of deformation is (L —.Scy) d&. The total

work of deformation or the increase in potential energy of the

system when the deflection has reached a value v is

ol

Y=Y.
(3) w=f @~ sov) ay = 1% - &y = sox?
y=0
Now suppose a hydrostatic pressure P applied to the sylphon
tending to nullify the deflection produced by L. Then ifl & is
the deflection o6f the sylphon measured from its original position
under no load, we ocan express P as a continuocus and single-

valued function of y - y as follows. Denote y, - y by D.

(4) P =AD + AD%+ 0o unas., ceee.. ApDR

Whel’e Al 3 Aa 3 LR B L I I B R I T I B ) An aore ConStan'b Sl

Suppose that P is taken sufficiently great exactly to nuili-
fy the deflection produced by L. 'During the cyocle just complet-
ed, no unéonservative forces have been introduced, . if we neglect
the hysteresis and internal friction in accordance with assumption
{(b) and lgnore the small effect due to. viscosity of the air. Gon-
seduently, when the deflectioﬁ has been reducad to zero by the ap-

plication of the pressure P, the work thus done can be eduated
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% Scyf > Tthe potsntial energy which was added to the system
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when it deflected under the irfluence of the load L.

oT

Therefore

D=y1 P-'-"-Pl l
(5) W= Ao XPaD = ‘/p_o' P&V = 5 Sov,?

Substituting from (4) the value of P

D=ny 2 1
W= [ K{£aD + A;D° + ... ApD") dD = 5 Sey,2
=0
KA.y~ KA, y3 KAp—: w° _ 1
(6). W= 5371 + A23Jr1 + o A 95 ;‘.1 Vi — _‘_3_ SCY]_a

This equation must hold for any values of vy, hence the: coef-

ficients of y;° muet vanisk identically; i.e.

KA, = S |
(6a) {1 o
and Ag = Ay = ...... Ap =0

Equation (4) now becomes

= A]_D i
(4a) -
é) {zr P=A4a,(pn - %)

Since we are consideriné only the linear portion of the defliec

tion curve of the sylphon, it maekes no difference where the initia:

position is taken: consequently (4&) may be written

(4b) P =4y

where vy 1is now measured from the position of the upper surface

of the sylphon before the presszure P was applied. If we Teplace

the constant A4, by Sg, (4b) becomes identical with (2) and thus
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proves the validity of the latter. XExperiment also verifies egua-

tion (3) {sse Fig. 3).

Eduivalent Arsa.

Dividing eguation (1) by eduation (3) there results

L = SC

P Sa )

L = PEQ- (v congtant)
Sa ¥

Now the ratio 8So/Sg has the same dimensions as has aTea.
It is also clear that this ratio for a given sylphon is dependent
only on the geometrical and physical characteristics of %he syl-
phon. Conseduently 1t mav be considered as a certain proportion
of the maximum cross—sectional area A of the sylphon and will be

called the equivalent area of the sylphon., The physical signifi-

cance of the equivalent area may be seen most clearly perhaps by
considering that a given hydrostatic pressure P produces the
same deflecﬁiqn of the syliphon as does a certaln cbnoentrated cen~
tral load L, and that.the eQuivalent area is defined as the ratio
of this L to the given' P. Its ﬁsefulness consists in the facis
that it is a constant for a gi#en sylphon and that it snables one
to pre&ict the perforrance of the sylphon under any specified con-
ditions, once the deflection for one concentrated load is known.
The value of the ratio g% or Ay will now be derived in terﬁs

of known constants ard dirensiong of the sylphon,

Returring to equation (5) we have



(5) ./P . PV = 5 Sy >

a(lv) = vdl* = vdy

g
!

P

8qy from {3)

and P

- Y=Y1 1 2 *
- . Bgvydy = 3 So¥;
y=0

% Scyla .

or

% Sd.vyle
whence 5

(8) —S—i = Ay =7

Now v wmay be compubted from the assumption that the sylphon

is made up of succeseive cylinders each of -height h and alter-

nately of diameter d, and d&s.

If there are 2n corrugations then

v =

. ' 2 2
L (d :
Yoy +%) T (e 447

:": .

oT 2

t9) Aq_-‘-‘-'é‘ (dl_ +d22)

Experimental verification of this result will be given later.
For purposes of comparison it will often be convenient tc ex-

rress the equivalent area as a percentage of the maximum area.

Thus, 3 5
’ . .'é._g; - dl -+ da
(10) & —'5522———

A d,% + &5
(10a) or 100.Kg = 1CO 12d;r—3- per cent.

* See assumption (c).
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Performance of Sviphon Under any Combinastion of Loads.

From equations (1), {(3), (7), and (8). ‘ N
(11) L *¥Fa4P =8 (v, 2 v,

where Yi. is the deflection produced by L
and 'y, is the deflection produced by P

Equation (11) contains two constants, Aq and Sp, which de-
pend only upon the characteristicg of the sylphon. Ag can be.
computed from purely geometrical considerations, but So rmst be
determinred by experiment. From a single deflection with a concen-

trated load it is possible to'obtain Sc; provided care is taken

‘that the range of loading for which the load-deflection curve is

linear is not exceeded. It is also possible to determine Ag

from & second experiment with distributed load, but it is usually

preferable to compute the value of this constant from equation (2).

Performance of Syliphon and Spring in Combination.

Suppose that & sylphon is distended by & spring either inter-
nal or external (sse Fig. 4). The performance of the spring may be
expressged by

(18) L = Sgy

Assume tﬁat, with tﬁe'spring and sylphon mounted but not
coupled together, there exists a gap g Dbetwesn the couplings.

If the two are now coupled together, g is reduced to zero and *ne

top of the sylphon is deflected an amount Va. - ¥ can be computsc

from the known values of g, S5, and Sg and, consequently, the re-
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action of the spring and the sylphon upon each other L, can be

computed, as will be shown.

L1 = SCY}_ = SS (g- Yz)
(13)

and

ISP
14 = = Cc -8
(14) L, Scys Se + Sg g

Now let a pressure P be applied externally (or suction in-
termally). Equating the force exerted by the spring to the elastic

resistance of the sylphon and the load, there results

Ly + Sgy = L1~ Say + AqP

where y 1s measured from the neutral position of the couplings
when the sylphon and spring are coupled together.
Then (15) AgP = (Sg + Sg) ¥

oT

Aq

The quantity in parentheses is the stiffneés of the corbina-

(18a) P = (84 +'§5) Y

tion of spring and sylphon and (15a) may be written
(1sb) P = sy '

-
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Experimental Verification of Formula for Edquivalent Area.

Four sylphons were tested in order that experimental oconfir-
mation of the preceding analysis might be obtained. The conatruc-

tion characteristics of these sylphons are given in the following

tablse:
. Table 1.
No. 1l No. 2 No. 3 No. 4
Internal Diameter cn. 4.1 8.5 4.1 a.5
External Diameter cnm. 8.0 11.2 6.13 11.8
Thickness of Materisl con. 0.011 0,035 0. 035 0.035
Number of Corrugations 11 10 13 21

Material (Brass )

Fig. 2 shows the characteristic curves for these sylphons.

The value of S, ocan be obtained from these curves, since from
(1) s, =2

Fig. 3 shows performance curves for Sylphon No. 2 determined
experimentally. Exitension and loads tending to produce extension
of the sylphon are considered positive. The curves are linear
over the range shown in Fig. 3. It was found that, when a load
producing a deflection of -0.35 cm. was applied, the curve was no
longer linear. The points in which the lines L = const. ocut the
ax;s of deflections is obtained from the characﬁeiistic curve of
the sylphon. The points in which these lines cut the axig of
pressure may be computed from equation (11) by putting
‘% =% =0, when
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or, if preferred, the lines may be drawn through the proper
points on the axis of deflections with the required slqpe. This
slope is easily'proven to be +S3 from equation (11). The slope
appears to be negative in Fig. 3, but it should be remembered
that the pressures shown here are negative.
Fig. 3 chows that Sylphon No. 2 will give linear load-deflec-
tion curves from a deflection of about -0.3 cm. to at least
+0.4 cm. The positive limit of linear deflections may be nmuch
ﬁigher than +0.4 cm. , but the tests were not carried to the limit.
From a consideration of the way in which the family of
curves in Fig. 3 was consbtructed, it is clear that each intersec-
tion of & line L = const. with the axls of pressures can be used
to determine the value of Ag. éonsidering such a point we have

the relation
L

= la
Aq = 3,

This will be utilized to provide a check on the values of

Ag as determined analytically.
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Table 3.

Equivalent Areas of Sylpnon.

Sylpton Ho. 1.

P L A k. 4q 4 Aa 4
gms/om® gns. - om om A A
Experimental Computed Exper'l
4,33 81.Q 28.3 . 31.1 -
2.14 45.0 31.0
1.07 83.0 21L.5
0.42 8.0 21. 4 '
Av. . . t s s 4 e« a4 s+ s o4 .« . B1.35 73.4 75.3

The difference between experimental and computed values is 3.4%.
| Sylphon No. 2 |

15.75 1361.0 111.3 86. 4
10.40 908.0 87.3
5.00 453.0 90.8
3.65 237.0 85.7
1.55 136.0 ’ . 87.8
1.00 8l.0 g21.0
0.45 45.0 100.0
Av. « & 0 v v e i v s d 4 e . . . B89.83 gl.7 80.7

The difference is 1.3%.
Sylphon No. 3.

64.5 1361.0 39. 55 21l. 1
44,0 808.0 30.6
31l. 5 453. 0 ' . 311
10.7 237.0 31.3
Ave v o0 0 o 0 0 vl e s . . Bl.00 73.4 71l.2

The difference is 1.7%.
Sylphon No. 4.

268.0 8270.0 105.7 87.53
20.8 1814.0 87.2
15.3 1361.0 89.0
10.2 907.0 - 88.8
5.0 453, 0 90.6

Av. L ] > . & » . - » . . - . L] [ ] » - 88. 58 83.4 83.8
The difference is 0.5% '
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The agreement between the gxperimenfal and @alculated valucs
of Ag indicatss that the equivalent area for any sylphon is
independent of <The elastic properties of the sylphon and may be.
computed from the expression '

L _

Ay =g (8, + &°) ()
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Fig. 4. Bylphon and spring in gombipation.




