## Fleet Characterization Data for MOBILE6:

Development and Use of Age Distributions, Average Annual Mileage Accumulation Rates, and Projected Vehicle Counts for Use in MOBILE6

# Fleet Characterization Data for MOBILE6: 

Development and Use of Age Distributions, Average Annual Mileage Accumulation Rates, and Projected Vehicle Counts for Use in MOBILE6<br>M6.FLT. 007

Tracie R. Jackson<br>Assessment and Modeling Division Office of Transportation and Air Quality<br>U.S. Environmental Protection Agency

## NOTICE

This technical report does not necessarily represent final EPA decisions or positions. It is intended to present technical analysis of issues using data that are currently available.

The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for a final EPA decision, position, or regulatory action.

## TABLE OF CONTENTS

ABSTRACT ..... 2
1.0 Introduction ..... 3
2.0 Development of U.S. Fleet Registration Distribution by Age ..... 6
3.0 Development of Average Annual Mileage Accumulation Rates by Age ..... 14
4.0 Vehicle Counts for VMT Weighting Calculations ..... 17
4.1 Methodology for Estimating Vehicle Counts for Calendar Years 1996 through 2050 ..... 17
4.1.1 Light-duty Vehicle Counts for 1996 through 2050 ..... 18
4.1.2 Heavy-duty Vehicle Counts for 1996 through 2050 ..... 25
4.2. Gasoline/Diesel Fuel Ratios ..... 30
4.3 Interpolating Between MOBILE5 and MOBILE6 Vehicle Counts ..... 34
5.0 Integration of Registration Distribution by Age, Average Annual Mileage
Accumulation Rates by Age, and Future Vehicle Count Data in MOBILE6 ..... 35
5.1 Expansion of Vehicle Categories ..... 35
5.2 Use of Registration Distribution by Age and Average Annual Mileage Accumulation by Age in MOBILE6 ..... 37
APPENDIX A: Motorcycle Age Distribution, Mileage Accumulation Rates, and Vehicle Counts ..... 39
APPENDIX B: Vehicles in Operation, Raw Mileage Accumulation Rate, and Curve Fitting Equations from the Arcadis Report ..... 41
APPENDIX C: Federal Definitions for Light-duty Vehicles ..... 45
APPENDIX D: Complete Tables of Vehicle Counts, pre1982-2050 ..... 47
APPENDIX E. Weibull Curve Fit Equations ..... 50
APPENDIX F. Stakeholder Comments and Response to Comments ..... 53
REFERENCES ..... 57


#### Abstract

The MOBILE model requires estimates of a distribution of registered vehicles by age, average annual mileage accumulation rates by age and vehicle category, and estimates of the projected size of the fleet in future years. While this type of information exists in the current version of the model, MOBILE5, the data contained in that model is outdated. Therefore it was necessary to develop new estimates for use in the new version of the model MOBILE6. The new estimates are largely based on work done by Arcadis, Geraghty \& Miller in a report entitled "Update of Fleet Characterization Data for Use in MOBILE6." The Arcadis report describes the number of vehicles registered by age and class and the average mileage accumulation rates on July 1, 1996. The following report describes the methodology EPA used to convert the July 1, 1996 registration profile into a generally-applicable registration distribution by age, the use of the average annual mileage accumulation rates, and the methodology for projecting the size of future vehicle fleets by vehicle category. The report also describes how the results of this analysis will be applied in the model.


### 1.0 Introduction

The United States Environmental Protection Agency's (USEPA) Highway Vehicle Emissions Modeling Team is currently developing an updated version of its on-highway emission factor model, known as MOBILE6. To estimate emission rates of hydrocarbons, carbon monoxide, and oxides of nitrogen from the U.S. motor vehicle population, the model requires data that characterizes the size, composition and driving attributes of current and future vehicle fleets. As part of its effort to obtain this data, EPA contracted with Arcadis, Geraghty \& Miller to analyze the most up-to-date sources of data describing the number of vehicles registered in the United States and the average mileage these vehicles drive annually. The results of this analysis are detailed in EPA report \# EPA420-P-98-016, entitled "Update of Fleet Characterization Data for Use in MOBILE6." ${ }^{1}$ This report, hereafter referred to as the "Arcadis Report," may be found on the World Wide Web at http://www.epa.gov/OMSWWW/m6.htm under document number M6.FLT.002.

The Arcadis report provides an estimate of the number of vehicles of various ages in operation in the United States as of July 1, 1996, as well as the average annual mileage accumulation rate per vehicle, for gasoline- and diesel-fueled cars, trucks and buses. July data is used because this data is considered most representative of the months most commonly modeled. Due to limitations in the data sources used to develop their analysis, Arcadis, Geraghty \& Miller grouped several GVWR classes together, thus providing only eighteen different vehicle categories. These categories are listed in Table 1, and are defined based on EPA-specified grossvehicle weight ratings (GVWR), fuel type and vehicle type.

Table 1. Eighteen Vehicle Class Categories as Defined in Arcadis Report

| Designation | Description | Gross Vehicle Weight <br> (lbs) |
| :--- | :--- | :--- |
| LDGV | Light-duty gasoline vehicles | $0-6000$ |
| LDDV | Light-duty diesel vehicles | $0-6000$ |
| LDGT (0-6,000 lbs) | Light-duty gasoline trucks | $<6000$ |
| LDGT (6,001-8,500) | Light-duty gasoline trucks | $6001-8500$ |
| LDDT (0-6,000 lbs) | Light-duty diesel trucks | $<6000$ |
| LDDT (6,001-8,500) | Light-duty diesel trucks | $6001-8500$ |
| HDGV (classes 2B-3) | Heavy-duty gasoline vehicles | $8500-14000$ |
| HDGV (classes 4-8) | Heavy-duty gasoline vehicles | $>14000$ |
| HDDV (class 2B) | Light heavy-duty diesel trucks | $8501-10000$ |
| HDDV(class 3) | Light heavy-duty diesel trucks | $10001-14000$ |
| HDDV(class 4-5) | Light heavy-duty diesel trucks | $14001-19500$ |
| HDDV(class 6-7) | Medium heavy-duty diesel trucks | $19500-33000$ |
| HDDV (class 8A) | Heavy heavy-duty diesel trucks | $33000-60000$ |
| HDDV(class 8B) | Heavy heavy-duty diesel trucks | $>60000$ |
| HDGB (school) | Heavy-duty gasoline school buses | all |
| HDGB (transit) | Heavy-duty gasoline transit buses | all |
| HDDB (school) | Heavy-duty diesel school buses | all |
| HDDB (transit) | Heavy-duty diesel transit buses | all |

The MOBILE6 model requires a fractional distribution of vehicles by age and average annual mileage accumulation rates for each vehicle, ages 1 through 25 , to determine the fraction of travel attributed to each age of vehicle. MOBILE6 also requires projections of future vehicle fleet size. This information is required for thirty separate vehicle categories, as listed in Table 2. These modeling requirements necessitated further EPA analysis, using the results of the Arcadis report as a starting point. Hence, the following report documents how EPA will use the results of the Arcadis, Geraghty \& Miller fleet characteristic analysis in MOBILE6. The current document describes the methodology used to develop a general vehicle registration distribution by age, reproduces the results of the Arcadis analysis of average annual mileage accumulation rates by age, the development of projected vehicle population estimates, and the application of these analyses in MOBILE6.

Table 2. MOBILE6 Vehicle Categories

| Gasoline Vehicle Categories | Diesel Vehicle Categories |
| :--- | :--- |
| Light-duty gasoline vehicle | Light-duty diesel vehicle |
| Light-duty gasoline truck 1 | Light-duty diesel truck 1 |
| Light-duty gasoline truck 2 | Light-duty diesel truck 2 |
| Light-duty gasoline truck 3 | Light-duty diesel truck 4 diesel truck 3 |
| Light-duty gasoline truck 4 | Heavy-duty diesel vehicle class 2B |
| Heavy-duty gasoline vehicle class 2B | Heavy-duty diesel vehicle class 3 |
| Heavy-duty gasoline vehicle class 3 | Heavy-duty diesel vehicle class 4 |
| Heavy-duty gasoline vehicle class 4 | Heavy-duty diesel vehicle class 5 |
| Heavy-duty gasoline vehicle class 5 | Heavy-duty diesel vehicle class 6 |
| Heavy-duty gasoline vehicle class 6 | Heavy-duty diesel vehicle class 7 |
| Heavy-duty gasoline vehicle class 7 | Heavy-duty diesel vehicle class 8A |
| Heavy-duty gasoline vehicle class 8A | Heavy-duty diesel vehicle class 8B |
| Heavy-duty gasoline vehicle class 8B | Heavy-duty diesel School Bus |
| Heavy-duty gasoline Bus * | Heavy-duty diesel Transit Bus |
| Motorcycle |  |

* Note: MOBILE6 will only contain one heavy-duty gasoline bus category; this category contains all heavy-duty gasoline buses.


### 2.0 Development of U.S. Fleet Registration Distribution by Age

The Arcadis report provides an estimate of the number of vehicles of various ages in operation in the United States as of July 1, 1996 for eighteen GVWR-based vehicle categories, which are listed in Table 1. These data were compiled using a vehicle registration database purchased from the R.L. Polk Company, a widely recognized resource in the field of collection of vehicular statistics. Several modifications to the Polk database were required to respond to comments made by EPA experts on expected fleet composition; these modifications are detailed in the Arcadis Report (M6.FLT.003, EPA420-P-98-016).

The data provided in the Arcadis report represent a "snapshot" in time, and, as such, include the residual impacts of several historical events (which were economically, politically and/or resource-driven) that have affected motor vehicles sales volumes. However, the MOBILE model is used to describe the emissions effects incurred as a result of the vehicle fleet in future years as well as past years. Therefore, use of this "snapshot" vehicle age-based registration distribution to represent the fleet in any year other than 1996 would provide inaccurate results, as there is no reason to expect that the economic and political factors which have resulted in the 1996 vehicle age-based registration distribution will occur in exactly the same way again.

In an effort to present a "generic" vehicle-registration distribution by age for modeling purposes, and to mitigate the effects of these isolated events on the distribution of vehicles in the in-use fleet, EPA has opted to fit curves through the 1996 snapshot data. Curves were fit through the registration data for each vehicle class and fuel type category, as well as for aggregated vehicle category combinations (e.g., all light-duty vehicles, all light-duty diesel vehicles, etc). Several types of curves were explored (e.g., linear, polynomial, exponential, Weibull) in an effort to find the best fit. Due to extreme variability in the distribution of the vehicle population in 1996, many of the fuel-type specific curves were deemed useless and discarded; it was the conclusion of EPA staff that the best, most representative curves were those derived from the following aggregate vehicle categories: light-duty vehicles (All), light-duty trucks ( $0-6,000 \mathrm{lbs}$ GVWR), light-duty trucks (6,001-8,500 lbs GVWR), heavy-duty vehicles classes 2B-3 (8,50114,000 lbs GVWR), heavy-duty vehicles classes $4-8$ ( $14,001 \mathrm{lbs}$ GVWR and greater), heavyduty school buses (All), and heavy-duty transit buses (All). To develop a general curve, in each case, the current model year vehicle population data (1996) was removed from the sample because it did not represent a full year, and a best fit analysis was performed on the remaining population data. The best fit analyses resulted in age distribution estimates for vehicles ages 1 through 25+ (where age is calendar year minus model year). However, since the vehicle sales year begins in October, the estimated age 1 population was multiplied by 0.75 to account for the fact that approximately $75 \%$ of the year's sales will have occurred by July 1st of a given calendar year.

Exponential curve fitting was used for light-duty trucks 6,001-8,500 lbs, heavy-duty vehicles classes 2B-3, heavy-duty vehicles classes 4-8, and heavy-duty school buses. For lightduty vehicles, light-duty trucks $0-6,000 \mathrm{lbs}$, and heavy-duty transit buses, both Weibull curve
fitting and exponential curve fitting were used to create the final age distributions. The nature of the Weibull curve fitting formula is to produce an " S " shaped curve, which is relatively flat for the first third of the data, decreases rapidly for the next third, and flattens again for the final third. While using this formula resulted in a better overall fit for the light-duty vehicle, light-duty truck $0-6,000 \mathrm{lbs}$, and heavy-duty transit bus categories, the flatness of the final third for each curve resulted in unrealistically low vehicle populations for the older vehicle ages. For this reason, the original Weibull curve was used where it fit best, and exponential curves were fit through the data at the age where the Weibull curves began to flatten. Table 3 presents the equations used to create the age distribution, and the years in which the equations were used. Note that MOBILE6 will use the MOBILE5 age distribution for motorcycles; this age distribution is presented in Appendix A. ${ }^{1}$

Table 3. Curve Fit Equations for Registration Distribution by Age

| Aggregate Vehicle Category | Equation | Vehicle Ages |
| :---: | :---: | :---: |
| Light-duty vehicle | $\begin{aligned} & \mathrm{y}=\left(8,517,910 * \mathrm{e}^{(-(\text {(agel } 16.100505544) \wedge 4.45489164))}\right) \\ & \mathrm{y}=112855609.5568 \mathrm{e}^{\left(-0.23211^{\text {age }}\right)} \end{aligned}$ | $\begin{gathered} 1-12 \\ 13-25 \end{gathered}$ |
| Light-duty truck 0-6,000 lbs | $\begin{aligned} & \mathrm{y}=\left(3,386,682 * \mathrm{e}^{(-(\text {(age } / 14.38211814) \wedge 3.04037069))}\right) \\ & \mathrm{y}=805298.7399 \mathrm{e}^{(-0.0409 * \text { age })} \end{aligned}$ | $\begin{gathered} 1-18 \\ 19-25 \end{gathered}$ |
| Light-duty trucks 6,001-8,500 lbs | $\mathrm{y}=1305324.4 \mathrm{e}^{\left(-0.070863^{*} \mathrm{age}\right)}$ | 1-25 |
| Heavy-duty vehicles classes 2B-3 | $\mathrm{y}=732326.5 \mathrm{e}^{\left(-0.09455^{*} \mathrm{age}\right)}$ | 1-25 |
| Heavy-duty vehicles classes 4-8 | $\mathrm{y}=404143.88 \mathrm{e}^{(-0.066843 * \mathrm{age})}$ | 1-25 |
| Heavy-duty school buses | $\mathrm{y}=38982 \mathrm{e}^{\left(-0.068092{ }^{*} \mathrm{gag}\right)}$ | 1-25 |
| Heavy-duty transit buses | $\begin{aligned} & \mathrm{y}=\left(3462 * \mathrm{e}^{-\left(\left((\mathrm{age} / 177.16909475)^{\wedge} 12.53214119\right)\right)}\right) \\ & \mathrm{y}=24987.0776 \mathrm{e}^{\left(-0.20000^{*} \text { age }\right)} \end{aligned}$ | $\begin{gathered} 1-17 \\ 18-25 \end{gathered}$ |

Table 4 lists the vehicle populations by age that were derived from curve fitting the original July 1, 1996 "snapshot" data. Table 5 presents this data converted to distributions of registration fractions by age for each of the seven vehicle categories that were chosen for use in the model. Figures 1 through 7 display the curve fits associated with these distributions. These distributions will be used for the vehicle subclasses that fall into these larger groups, as described in Section 5.2. Note that each vehicle category includes both gasoline and diesel vehicles.

[^0]Table 4. U.S. Vehicles in Operation--Results of Curve Fitting for Selected Vehicle Categories as of July 1.

| Vehicle <br> Age | LDV <br> All | LDT <br> $\mathbf{0 - 6 , 0 0 0}$ | LDT <br> $\mathbf{6 , 0 0 1 - 8 , 5 0 0}$ | HDV <br> $\mathbf{2 B - 3}$ <br> $\mathbf{8 , 5 0 1 - 1 4 , 0 0 0}$ | HDV <br> $\mathbf{4 - 8 B}$ <br> $\mathbf{1 4 , 0 0 1 +}$ | HD <br> School <br> Bus(All) | HD <br> Transit <br> Bus(All) |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{\mathbf { 1 } ^ { * }}$ | $6,388,406$ | $2,539,245$ | 912,020 | 499,694 | 283,511 | 27,312 | 2,597 |
| $\mathbf{2}$ | $8,517,125$ | $3,378,282$ | $1,132,838$ | 606,149 | 353,571 | 34,019 | 3,463 |
| $\mathbf{3}$ | $8,513,130$ | $3,357,951$ | $1,055,340$ | 551,464 | 330,710 | 31,780 | 3,463 |
| $\mathbf{4}$ | $8,500,705$ | $3,318,193$ | 983,143 | 501,712 | 309,327 | 29,688 | 3,463 |
| $\mathbf{5}$ | $8,471,497$ | $3,253,029$ | 915,886 | 456,449 | 289,327 | 27,733 | 3,463 |
| $\mathbf{6}$ | $8,413,702$ | $3,157,436$ | 853,230 | 415,269 | 270,619 | 25,908 | 3,463 |
| $\mathbf{7}$ | $8,312,078$ | $3,027,857$ | 794,860 | 377,804 | 253,122 | 24,203 | 3,463 |
| $\mathbf{8}$ | $8,148,449$ | $2,862,713$ | 740,483 | 343,720 | 236,755 | 22,609 | 3,462 |
| $\mathbf{9}$ | $7,902,918$ | $2,662,837$ | 689,826 | 312,710 | 221,447 | 21,121 | 3,462 |
| $\mathbf{1 0}$ | $7,556,020$ | $2,431,716$ | 642,635 | 284,498 | 207,129 | 19,731 | 3,459 |
| $\mathbf{1 1}$ | $7,091,945$ | $2,175,488$ | 598,672 | 258,831 | 193,736 | 18,432 | 3,450 |
| $\mathbf{1 2}$ | $6,502,671$ | $1,902,590$ | 557,717 | 235,480 | 181,210 | 17,219 | 3,424 |
| $\mathbf{1 3}$ | $5,522,382$ | $1,623,100$ | 519,563 | 214,236 | 169,493 | 16,085 | 3,358 |
| $\mathbf{1 4}$ | $4,378,513$ | $1,347,783$ | 484,019 | 194,908 | 158,534 | 15,026 | 3,204 |
| $\mathbf{1 5}$ | $3,471,578$ | $1,086,999$ | 450,907 | 177,324 | 148,283 | 14,037 | 2,881 |
| $\mathbf{1 6}$ | $2,752,499$ | 849,631 | 420,061 | 161,326 | 138,696 | 13,113 | 2,291 |
| $\mathbf{1 7}$ | $2,182,365$ | 642,213 | 391,324 | 146,771 | 129,728 | 12,250 | 1,431 |
| $\mathbf{1 8}$ | $1,730,325$ | 468,411 | 364,553 | 133,530 | 121,340 | 11,444 | 683 |
| $\mathbf{1 9}$ | $1,371,917$ | 370,226 | 339,614 | 121,483 | 113,494 | 10,690 | 559 |
| $\mathbf{2 0}$ | $1,087,748$ | 355,389 | 316,381 | 110,523 | 106,156 | 9,987 | 458 |
| $\mathbf{2 1}$ | 862,439 | 341,147 | 294,737 | 100,552 | 99,292 | 9,329 | 375 |
| $\mathbf{2 2}$ | 683,799 | 327,476 | 274,574 | 91,481 | 92,872 | 8,715 | 307 |
| $\mathbf{2 3}$ | 542,162 | 314,352 | 255,790 | 83,227 | 86,867 | 8,142 | 251 |
| $\mathbf{2 4}$ | 429,862 | 301,754 | 238,292 | 75,719 | 81,251 | 7,606 | 206 |
| $\mathbf{2 5 +}$ | $1,236,658$ | $1,572,875$ | $1,123,883$ | 330,585 | 388,328 | 36,200 | 649 |

Table 5. U.S. Vehicle Fleet Distribution of Registration Fractions by Age for Selected Vehicle Categories as of July 1.
Note: Each vehicle category includes both gasoline and diesel vehicles

| Vehicle <br> Age | LDV <br> ALL | LDT <br> $\mathbf{0 - 6 , 0 0 0}$ | LDT <br> $\mathbf{6 , 0 0 1 - 8 , 5 0 0}$ | HDV 2B-3 <br> $\mathbf{8 , 5 0 1 -}$ <br> $\mathbf{1 4 , 0 0 0}$ | HDV 4-8B <br> $\mathbf{1 4 , 0 0 1 +}$ | HD <br> School <br> Bus <br> (All) | HD Transit. Bus <br> (All) | MC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{*}$ | 0.0530 | 0.0581 | 0.0594 | 0.0503 | 0.0364 | 0.0368 | 0.0307 | 0.1440 |
| 2 | 0.0706 | 0.0774 | 0.0738 | 0.0916 | 0.0728 | 0.0736 | 0.0614 | 0.1680 |
| 3 | 0.0706 | 0.0769 | 0.0688 | 0.0833 | 0.0681 | 0.0688 | 0.0614 | 0.1350 |
| 4 | 0.0705 | 0.0760 | 0.0640 | 0.0758 | 0.0637 | 0.0642 | 0.0614 | 0.1090 |
| 5 | 0.0703 | 0.0745 | 0.0597 | 0.0690 | 0.0596 | 0.0600 | 0.0614 | 0.0880 |
| 6 | 0.0698 | 0.0723 | 0.0556 | 0.0627 | 0.0557 | 0.0561 | 0.0614 | 0.0700 |
| 7 | 0.0689 | 0.0693 | 0.0518 | 0.0571 | 0.0521 | 0.0524 | 0.0614 | 0.0560 |
| 8 | 0.0676 | 0.0656 | 0.0482 | 0.0519 | 0.0487 | 0.0489 | 0.0614 | 0.0450 |
| 9 | 0.0655 | 0.0610 | 0.0449 | 0.0472 | 0.0456 | 0.0457 | 0.0614 | 0.0360 |
| 10 | 0.0627 | 0.0557 | 0.0419 | 0.0430 | 0.0426 | 0.0427 | 0.0613 | 0.0290 |
| 11 | 0.0588 | 0.0498 | 0.0390 | 0.0391 | 0.0399 | 0.0399 | 0.0611 | 0.0230 |
| 12 | 0.0539 | 0.0436 | 0.0363 | 0.0356 | 0.0373 | 0.0373 | 0.0607 | 0.0970 |
| 13 | 0.0458 | 0.0372 | 0.0338 | 0.0324 | 0.0349 | 0.0348 | 0.0595 | 0.0000 |
| 14 | 0.0363 | 0.0309 | 0.0315 | 0.0294 | 0.0326 | 0.0325 | 0.0568 | 0.0000 |
| 15 | 0.0288 | 0.0249 | 0.0294 | 0.0268 | 0.0305 | 0.0304 | 0.0511 | 0.0000 |
| 16 | 0.0228 | 0.0195 | 0.0274 | 0.0244 | 0.0285 | 0.0284 | 0.0406 | 0.0000 |
| 17 | 0.0181 | 0.0147 | 0.0255 | 0.0222 | 0.0267 | 0.0265 | 0.0254 | 0.0000 |
| 18 | 0.0144 | 0.0107 | 0.0237 | 0.0202 | 0.0250 | 0.0248 | 0.0121 | 0.0000 |
| 19 | 0.0114 | 0.0085 | 0.0221 | 0.0184 | 0.0234 | 0.0231 | 0.0099 | 0.0000 |
| 20 | 0.0090 | 0.0081 | 0.0206 | 0.0167 | 0.0219 | 0.0216 | 0.0081 | 0.0000 |
| 21 | 0.0072 | 0.0078 | 0.0192 | 0.0152 | 0.0204 | 0.0202 | 0.0066 | 0.0000 |
| 22 | 0.0057 | 0.0075 | 0.0179 | 0.0138 | 0.0191 | 0.0189 | 0.0054 | 0.0000 |
| 23 | 0.0045 | 0.0072 | 0.0167 | 0.0126 | 0.0179 | 0.0176 | 0.0044 | 0.0000 |
| 24 | 0.0036 | 0.0069 | 0.0155 | 0.0114 | 0.0167 | 0.0165 | 0.0037 | 0.0000 |
| 25 | 0.0103 | 0.0360 | 0.0732 | 0.0499 | 0.0799 | 0.0783 | 0.0115 | 0.0000 |


| LDV | Light-duty vehicle |
| :--- | :--- |
| LDT | Light-duty truck |
| HDV (2B-3) | Heavy-duty vehicles $8,500-14,000 \mathrm{lbs}$ GVWR |
| HDV (4-8B) | Heavy-duty vehicles greater than $14,000 \mathrm{lbs}$ GVWR |
| HD Sch. Bus | Heavy-duty school buses |
| HD Tran. Bus | Heavy-duty transit buses |

[^1]Figure 1. July 1, 1996 Age Distribution Curve Fit For Lightduty Vehicles
(Comparison of Arcadis In-Use Data to Curve Fit)

-Original LDV Age Distribution - New LDV Curve Fit Distribution

Figure 2. July 1, 1996 Age Distribution Curve Fit for Light-duty
Trucks 0-6,000 lbs
(Comparison of Arcadis In-Use Data to Curve Fit)

$\longrightarrow$ Original LDT 0-6,000 lbs Age Distribution ——— New LDT 0-6,000 lbs Curve Fit Distribution

Figure 3. July 1, 1996 Age Distribution Curve Fit for Light-duty Trucks 6,001-8,500 lbs.
(Comparison of Arcadis In-Use Data to Curve Fit)


Figure 4. July 1, 1996 Age Distribution Curve Fit for Heavy-duty Vehicle Classes 2B-3
(Comparison of Arcadis In-Use Data to Curve Fit)

$\rightarrow$ Original HDV 2B-3 Age Distribution ——New HDV2B-3 Curve Fit Distribution

Figure 5. July 1, 1996 Age Distribution Curve Fit for Heavy-duty Vehicle Classes 4-8B
(Comparison of Arcadis In-Use Data to Curve Fit)

$\longrightarrow$ Original HDV 4-8B Age Distribution - -New HDV 4-8B Curve Fit Distribution

Figure 6. July 1, 1996 Age Distribution Curve Fit for School Buses
(Comparison of Arcadis In-use Data to Curve Fit)


[^2]

### 3.0 Development of Average Annual Mileage Accumulation Rates by Age

The Arcadis report provides estimated average annual mileage accumulation rates for 18 vehicle categories. The non-bus estimates were generated from data contained in two travel behavior surveys, namely the Department of Transportation's "1995 Nationwide Personal Transportation Survey" for light duty vehicles and the U.S. Bureau of the Census' "1992 Truck Inventory and Use Survey." Mileage data for school buses and transit buses were obtained from Bobit Publication's "School Bus Fleet 1997 Fact Book Issue" and a data file provided by the Federal Transportation Administration. Arcadis evaluated the data from these sources on a line-by-line basis, eliminating any data records that were incomplete. Those records that were retained were entered into a database, sorted into gross vehicle weight rating categories, plotted graphically and the results were smoothed using linear and exponential best fit curve analyses. The raw data and the equations for the curves are listed in Appendix B. A detailed explanation of the analysis methods used to obtain average annual mileage accumulation rates can be found in the Arcadis Report.

The curve-fit average annual mileage accumulation rates presented in the report are reproduced here in Table 6 . These age-specific average annual mileage accumulation rates represent the 1996 calendar year; in MOBILE6, these default rates will be applied to appropriate vehicle categories as specified in Section 5.2, and will be used for all past, present and future calendar years unless the model user provides their own data. Note that motorcycle mileage accumulation rates are from MOBILE5; these are listed in Appendix A.

Table 6. Average Annual Mileage Accumulation (Curve Fit Data) U.S. Levels (12 months estimate)

| Vehicle Age | LDV |  | LDGT |  | LDDT |  | HDGV |  | HDGB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LDGV | LDDV | $\begin{gathered} \text { LDGT } \\ 0-6000 \end{gathered}$ | LDGT 6001-8500 | $\begin{gathered} \text { LDDT } \\ 0-6000 \end{gathered}$ | $\begin{gathered} \hline \text { LDDT } \\ 6001-8500 \end{gathered}$ | $\begin{gathered} 2 B-3 \\ 8501-14000 \end{gathered}$ | $\begin{gathered} \hline 4-8 \\ >14000 \end{gathered}$ | $\begin{aligned} & \text { S.BUS } \\ & \text { ANY } \\ & \text { WGT. } \end{aligned}$ | T.BUS <br> ANY WGT. |
| 1 | 14910 | 14910 | 19496 | 21331 | 27059 | 26040 | 19977 | 21394 | (a) | 35123 |
| 2 | 14174 | 14174 | 18384 | 19865 | 24384 | 24018 | 18779 | 19692 |  | 31914 |
| 3 | 13475 | 13475 | 17308 | 18500 | 21973 | 22154 | 17654 | 18125 |  | 28999 |
| 4 | 12810 | 12810 | 16267 | 17228 | 19801 | 20434 | 16596 | 16683 |  | 26350 |
| 5 | 12178 | 12178 | 15260 | 16044 | 17843 | 18848 | 15601 | 15356 |  | 23942 |
| 6 | 11577 | 11577 | 14289 | 14942 | 16079 | 17385 | 14666 | 14134 |  | 21755 |
| 7 | 11006 | 11006 | 13352 | 13915 | 14490 | 16036 | 13787 | 13010 |  | 19768 |
| 8 | 10463 | 10463 | 12451 | 12959 | 13057 | 14791 | 12961 | 11975 |  | 17962 |
| 9 | 9947 | 9947 | 11584 | 12068 | 11766 | 13643 | 12184 | 11022 |  | 16321 |
| 10 | 9456 | 9456 | 10752 | 11239 | 10603 | 12584 | 11454 | 10145 |  | 14830 |
| 11 | 8989 | 8989 | 9955 | 10466 | 9555 | 11607 | 10768 | 9338 |  | 13475 |
| 12 | 8546 | 8546 | 9194 | 9747 | 8610 | 10706 | 10122 | 8595 |  | 12244 |
| 13 | 8124 | 8124 | 8467 | 9077 | 7759 | 9875 | 9516 | 7911 |  | 11126 |
| 14 | 7723 | 7723 | 7775 | 8453 | 6992 | 9109 | 8946 | 7282 |  | 10109 |
| 15 | 7342 | 7342 | 7118 | 7872 | 6301 | 8402 | 8409 | 6703 |  | 9186 |
| 16 | 6980 | 6980 | 6496 | 7331 | 5678 | 7749 | 7905 | 6169 |  | 8347 |
| 17 | 6636 | 6636 | 5909 | 6827 | 5116 | 7148 | 7432 | 5679 |  | 7584 |
| 18 | 6308 | 6308 | 5356 | 6358 | 4610 | 6593 | 6986 | 5227 |  | 6891 |
| 19 | 5997 | 5997 | 4839 | 5921 | 4155 | 6081 | 6568 | 4811 |  | 6262 |
| 20 | 5701 | 5701 | 4357 | 5514 | 3744 | 5609 | 6174 | 4428 |  | 5690 |
| 21 | 5420 | 5420 | 3909 | 5135 | 3374 | 5174 | 5804 | 4076 |  | 5170 |
| 22 | 5152 | 5152 | 3497 | 4782 | 3040 | 4772 | 5456 | 3752 |  | 4698 |
| 23 | 4898 | 4898 | 3120 | 4454 | 2740 | 4402 | 5129 | 3453 |  | 4268 |
| 24 | 4656 | 4656 | 2777 | 4148 | 2469 | 4060 | 4822 | 3178 |  | 3879 |
| 25 | 4427 | 4427 | 2470 | 3863 | 2225 | 3745 | 4533 | 2926 |  | 3524 |
| 26 | 4208 | 4208 | 2197 | 3597 | 2005 | 3454 | 4261 | 2693 |  | 3202 |
| 27 | 4001 | 4001 | 1959 | 3350 | 1807 | 3186 | 4006 | 2479 |  | 2910 |
| 28 | 3803 | 3803 | 1756 | 3120 | 1628 | 2939 | 3766 | 2281 |  | 2644 |
| 29 | 3616 | 3616 | 1589 | 2905 | 1467 | 2711 | 3540 | 2100 |  | 2402 |
| 30 | 3437 | 3437 | 1456 | 2706 | 1322 | 2500 | 3328 | 1933 |  | 2183 |
| $\begin{array}{ll}\text { LDV } & \text { Li } \\ \text { LDGV }\end{array}$ |  | Light duty vehicle |  |  | LDDT Light duty diesel truck |  |  |  |  |  |
|  |  | Light duty gasoline vehicle |  |  | HDGV | Heavy duty gasoline vehicle |  |  |  |  |
|  | DVV Light | Light duty diesel vehicle |  |  | HDGB | Heavy duty gasoline bus |  |  |  |  |
|  | DGT Ligh | Light duty gasoline truck |  |  |  |  |  |  |  |  |

(a) Average school bus mileage for all ages $=9,939$

Table 6. Annual Mileage Accumulation (Curve Fit Data) ( 12 months estimate)
(continued)
U.S. Levels

| Vehicle Age | HDDV |  |  |  |  |  | HDDB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \hline 2 B \\ 8501-10000 \end{gathered}$ | $\begin{gathered} 3 \\ 10001-14000 \end{gathered}$ | $\begin{gathered} \hline 4-5 \\ 14001-19500 \end{gathered}$ | $\begin{gathered} 6-7 \\ 19501-33000 \end{gathered}$ | $\begin{gathered} \text { 8A } \\ 33001-60000 \end{gathered}$ | $\begin{gathered} 8 \mathrm{BB} \\ >60000 \end{gathered}$ | S.BUS ANY WGT. | T.BUS ANY WGT. |
| 1 | 27137 | 32751 | 30563 | 40681 | 87821 | 124208 | (a) | 45171 |
| 2 | 24831 | 28984 | 28622 | 36872 | 78257 | 112590 |  | 43731 |
| 3 | 22721 | 25650 | 26805 | 33420 | 69735 | 102060 |  | 42337 |
| 4 | 20791 | 22699 | 25103 | 30291 | 62141 | 92514 |  | 40987 |
| 5 | 19024 | 20088 | 23509 | 27455 | 55374 | 83861 |  | 39681 |
| 6 | 17407 | 17778 | 22016 | 24885 | 49343 | 76017 |  | 38416 |
| 7 | 15928 | 15733 | 20618 | 22555 | 43970 | 68907 |  | 37191 |
| 8 | 14575 | 13923 | 19309 | 20443 | 39181 | 62462 |  | 36005 |
| 9 | 13336 | 12321 | 18083 | 18529 | 34915 | 56620 |  | 34857 |
| 10 | 12203 | 10904 | 16935 | 16795 | 31112 | 51324 |  | 33746 |
| 11 | 11166 | 9650 | 15860 | 15222 | 27724 | 46523 |  | 32670 |
| 12 | 10217 | 8540 | 14853 | 13797 | 24705 | 42172 |  | 31629 |
| 13 | 9349 | 7557 | 13910 | 12505 | 22015 | 38228 |  | 30620 |
| 14 | 8555 | 6688 | 13026 | 11335 | 19617 | 34652 |  | 29644 |
| 15 | 7828 | 5919 | 12199 | 10273 | 17481 | 31411 |  | 28699 |
| 16 | 7163 | 5238 | 11425 | 9312 | 15577 | 28473 |  | 27784 |
| 17 | 6554 | 4635 | 10699 | 8440 | 13881 | 25810 |  | 26898 |
| 18 | 5997 | 4102 | 10020 | 7650 | 12369 | 23396 |  | 26041 |
| 19 | 5488 | 3630 | 9384 | 6933 | 11022 | 21208 |  | 25211 |
| 20 | 5021 | 3213 | 8788 | 6284 | 9822 | 19224 |  | 24407 |
| 21 | 4595 | 2843 | 8230 | 5696 | 8752 | 17426 |  | 23629 |
| 22 | 4204 | 2516 | 7707 | 5163 | 7799 | 15796 |  | 22875 |
| 23 | 3847 | 2227 | 7218 | 4679 | 6950 | 14319 |  | 22146 |
| 24 | 3520 | 1971 | 6760 | 4241 | 6193 | 12979 |  | 21440 |
| 25 | 3221 | 1744 | 6331 | 3844 | 5518 | 11765 |  | 20757 |
| 26 | 2947 | 1543 | 5929 | 3484 | 4918 | 10665 |  | 20095 |
| 27 | 2697 | 1366 | 5552 | 3158 | 4382 | 9667 |  | 19454 |
| 28 | 2468 | 1209 | 5200 | 2862 | 3905 | 8763 |  | 18834 |
| 29 | 2258 | 1070 | 4869 | 2594 | 3480 | 7944 |  | 18234 |
| 30 | 2066 | 947 | 4560 | 2352 | 3101 | 7201 |  | 17652 |

HDDV Heavy duty diesel vehicle
HDDB Heavy duty diesel bus
(a) Average school bus mileage for all ages $=9,939$

### 4.0 Vehicle Counts for VMT Weighting Calculations

In addition to providing emission factors, MOBILE6 also provides the user with a distribution of the vehicle miles traveled (VMT) by each vehicle type for a given calendar year. This is known as the VMT mix. To calculate the VMT mix, the model requires an estimate of the total vehicle population, or "vehicle count," by vehicle class for each calendar year. MOBILE5 contained vehicle counts for calendar years 1982 through 2020; 1982 vehicle counts were used for all pre-1982 vehicle counts. MOBILE6 will use the 1982 through 1990 vehicle counts from MOBILE5 because1990 is the last year for which actual in-use vehicle data was collected for MOBILE5. However, MOBILE6 requires additional vehicle count estimates for 1991 and later calendar years. The methodology for obtaining these vehicle counts is explained below.

The following general formula describes how total vehicle count for a future calendar year would ideally be determined for each vehicle category:

$$
\mathrm{VC}_{x}=\left(\mathrm{VC}_{x-1}+\text { Sales }_{x}\right)-\left(\text { Scrappage }_{x}\right)
$$

where: $\mathrm{VC}=$ total vehicle count for that vehicle category Sales $=$ number of new vehicles sold Scrappage $=$ number of vehicles removed from fleet $\mathrm{x}=$ the calendar year in question

In the above scenario, the vehicle count for a future year would be calculated by adding an estimated number of new vehicle sales to the previous year's total fleet and subtracting an estimated number of vehicles that were likely to be removed from the fleet during that year; this is known as scrappage.

Estimating vehicle populations for future calender years requires some engineering judgements regarding changes in the number of new vehicles being sold and driven each year, as well as the number of vehicles being removed from the road due to scrappage. Making such judgements requires an analysis of the most current sources of data characterizing in-use vehicle population size, sales growth estimates, and scrappage rates for light-and heavy-duty vehicles. Sections 4.1 describes the methodologies EPA used to determine future vehicle counts for calendar years 1996 through 2050, Section 4.2 presents fuel splits by vehicle class, and Section 4.3 describes the method EPA used to interpolate between the MOBILE5 data and the new data for the missing years (1991 through 1995).

### 4.1 Methodology for Estimating Vehicle Counts for Calendar Years 1996 through 2050

As noted in Section 1.0, EPA contracted with Arcadis, Geraghty \& Miller in 1998 to assess the actual in-use vehicle fleet for eighteen vehicle categories (see Table 1) as of July 1, 1996. These data serve as the baseline for all future vehicle count calculations presented in the current report.

The Arcadis report provides total in-use vehicles by eighteen vehicle class categories. Ideally, separate vehicle class-specific sales growth and scrappage rates would have been applied to each of the vehicle categories to provide a relative sense of the effects of vehicle-type-specific trends. For example, there is some evidence that suggests that sales of several heavy-duty truck categories have slowed considerably in recent years, and will continue to decline in the future; it may be speculated that these vehicles are being replaced by smaller or larger heavy-duty trucks. ${ }^{2}$ Unfortunately, at the time of this analysis, adequate sales growth and scrappage rates for individual vehicle categories were not available. Therefore, EPA has evaluated general sales growth and vehicle scrappage trends for the total light-duty vehicle in-use fleet and the total heavy-duty vehicle in-use fleet, and has attempted, where possible, to reflect some of the differences between vehicle categories.

The following two sections detail the methods used to characterize light-duty future vehicle counts and heavy-duty future vehicle counts, respectively.

### 4.1.1 Light-duty Vehicle Counts for 1996 through 2050

To calculate future light-duty vehicle counts, EPA began this analysis with the total number of light-duty vehicles for July 1, 1996, which is the sum of all of the light-duty categories specified in the Arcadis Report (176,375,176 light-duty vehicles,).

Estimates of total light-duty vehicle sales were needed for calendar years 1997 through 2050. Baseline sales data were derived from the EPA's Certification and Fuel Economy Information System (CFEIS) database ${ }^{3}$. Due to reporting problems, complete sales data for 1997 was not available; therefore, for this analysis, the most up-to-data sales data was a projected 1998 sales estimate ( $14,633,231$ ). To determine annual sales of light-duty vehicles beyond 1998 (and to estimate the missing 1997 sales total), EPA consulted the 1999 Department of Energy Annual Energy Outlook (AEO99) ${ }^{4}$. AEO99 reports a light-duty vehicle sales growth rate of 0.5\% annually for 1997 through 2020. By applying this growth rate to the light-duty unit sales reported for 1998 in the CFEIS database, EPA determined unit sales estimates for calendar years 1997 through 2020.

To determine the effects of annual vehicle scrappage on the light-duty fleet, EPA employed scrappage rates reported in the 1996 World Vehicle Forecasts and Strategies ${ }^{5}$ report. This document defines scrappage as "the number of vehicles scrapped or otherwise removed from circulation in any given year;" this value is reported as a percentage of the "parc," or number of vehicles in use in any given year. The 1996 World Vehicle Forecasts and Strategies document does not provide vehicle class-specific scrappage rates, instead reporting scrappage rates for "passenger cars" and "commercial vehicles." EPA has assumed the scrappage rates presented for "passenger cars" to be representative of the light-duty vehicle fleet for this analysis; these rates are listed in Table 7.

Table 7. "Passenger Car"'Scrappage Rates used for Light-duty Vehicle Scrappage.

| Calendar Year* | Annual Rate of <br> Scrappage <br> (as \% of 'Parc"') |
| :---: | :---: |
| $\mathbf{1 9 9 5 - 1 9 9 9}$ | 5.77 |
| $\mathbf{2 0 0 0 - 2 0 0 4}$ | 5.70 |
| $\mathbf{2 0 0 5 - 2 0 0 9}$ | 6.09 |
| $\mathbf{2 0 1 0 - 2 0 1 4}$ | 6.34 |
| $\mathbf{2 0 1 5 - 2 0 2 0}$ | 6.56 |

* =The 1996 World Vehicle Forecasts and Strategies document reports "scrappage rates as \% of parc" for calendar years 1995, 2000, 2005, 2010, and 2015. EPA has assumed that the annual scrappage rate remains the same for years not explicitly stated (i.e., 1996 through 1999 have the same scrappage rate as 1995, etc).

It is important to note that these scrappage rates represent the percentage of the total inuse fleet that is removed from circulation; therefore, scrappage becomes a function of the previous years fleet total plus the current year's calculated sales. The general vehicle count formula therefore becomes:

$$
\begin{aligned}
\mathrm{VC}_{\mathrm{x}}= & \left(\mathrm{VC}_{\mathrm{x}-1}+\text { Sales }_{\mathrm{x}}\right) \times\left(1-\mathrm{SR}_{\mathrm{x}}\right) \\
\text { where: } & \mathrm{VC}=\text { vehicle count } \\
& \text { Sales = number of vehicle sold } \\
& \mathrm{SR}=\% \text { of in-use fleet that is scrapped } \\
& \mathrm{x}=\text { the current calendar year }
\end{aligned}
$$

To illustrate the calculation, starting with the 1996 total light-duty vehicle count:

$$
\begin{gathered}
\mathrm{VC}_{1997}=\left(\mathrm{VC}_{1996}+\text { Sales }_{1997}\right) \times\left(1-\mathrm{SR}_{1997}\right) \\
\mathrm{VC}_{19997}=\left(\mathrm{VC}_{1996}+\mathrm{Sales}_{1997}\right)-\left(\left(\mathrm{VC}_{1996}+\mathrm{Sales}_{1997}\right) \times \mathrm{SR}_{1997}\right) \\
(176,385,176+14,560,429)-((176,385,176+14,560,429) \times 5.77 \%) \\
\mathrm{VC}_{19977}=190,945,605-(190,945,605-11,017,561) \\
\mathrm{VC}_{1997}=179,928,044
\end{gathered}
$$

This calculation was performed for all calendar years 1997 through 2020. Since none of the data sources used here projected beyond the year 2020, MOBILE6 will use the 2020 vehicle count for calendar years 2021 through 2050. Table 8 lists the calculated unit sales, the scrappage rates, and total light-duty vehicle count projections for 1997 through 2050.

Table 8. Calculated Sales, Scrappage Rates, and Vehicle Counts for Light-duty Vehicles by Calendar Year

| Calendar <br> Year | Calculated <br> Sales | Scrappage <br> (\% of in-use <br> fleet) | Total LD <br> Vehicles |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 6}$ | N/A | N/A | $176,385,176$ |
| $\mathbf{1 9 9 7}$ | $14,560,429$ | 5.77 | $179,928,044$ |
| $\mathbf{1 9 9 8}$ | $14,633,231$ | 5.77 | $183,335,089$ |
| $\mathbf{1 9 9 9}$ | $14,706,397$ | 5.77 | $186,614,492$ |
| $\mathbf{2 0 0 0}$ | $14,779,929$ | 5.70 | $189,914,940$ |
| $\mathbf{2 0 0 1}$ | $14,853,829$ | 5.70 | $193,096,949$ |
| $\mathbf{2 0 0 2}$ | $14,928,098$ | 5.70 | $196,167,619$ |
| $\mathbf{2 0 0 3}$ | $15,002,738$ | 5.70 | $199,133,647$ |
| $\mathbf{2 0 0 4}$ | $15,077,752$ | 5.70 | $202,001,349$ |
| $\mathbf{2 0 0 5}$ | $15,153,141$ | 6.09 | $203,929,782$ |
| $\mathbf{2 0 0 6}$ | $15,228,907$ | 6.09 | $205,811,924$ |
| $\mathbf{2 0 0 7}$ | $15,305,051$ | 6.09 | $207,650,951$ |
| $\mathbf{2 0 0 8}$ | $15,381,576$ | 6.09 | $209,449,847$ |
| $\mathbf{2 0 0 9}$ | $15,458,484$ | 6.09 | $211,211,414$ |
| $\mathbf{2 0 1 0}$ | $15,535,777$ | 6.34 | $212,371,419$ |
| $\mathbf{2 0 1 1}$ | $15,613,456$ | 6.34 | $213,530,633$ |
| $\mathbf{2 0 1 2}$ | $15,691,523$ | 6.34 | $214,689,471$ |
| $\mathbf{2 0 1 3}$ | $15,769,980$ | 6.34 | $215,848,322$ |
| $\mathbf{2 0 1 4}$ | $15,848,830$ | 6.34 | $217,007,553$ |
| $\mathbf{2 0 1 5}$ | $15,928,074$ | 6.56 | $217,655,051$ |
| $\mathbf{2 0 1 6}$ | $16,007,715$ | 6.56 | $218,334,488$ |
| $\mathbf{2 0 1 7}$ | $16,087,753$ | 6.56 | $219,044,142$ |
| $\mathbf{2 0 1 8}$ | $16,168,192$ | 6.56 | $219,782,406$ |
| $\mathbf{2 0 1 9}$ | $16,249,033$ | 6.56 | $220,547,776$ |
| $\mathbf{2 0 2 0 - 2 0 5 0}$ | $16,330,278$ | 6.56 | $221,338,854$ |

Note: 1998 Sales are "projected sales" and represent the base sales for calculating sales in all other years. Sales are grown at a rate of $0.5 \%$ annually. 1997 sales are estimated from the 1998 base sales using the following formula: 1998 Sales/1.005.

Total light-duty vehicle counts by calendar year were then split into cars and trucks (hereafter referred to as "light-duty vehicles" and "light-duty trucks," respectively). To do this, EPA used a methodology for predicting car/truck proportions outlined in an EPA report entitled "VMT and Emission Implications of Growth in Light Truck Sales." ${ }^{6}$ This method assumes that sales of light-duty trucks will increase and ultimately surpass sales of light-duty cars in the near future. In keeping with other agency analyses, EPA assumed that the car to truck sales ratio will ultimately stabilize at 40:60 for calendar years 2008 on. ${ }^{7}$ These sales rates were then used to calculate light-duty vehicle to light-duty truck "stock" splits, or the relative relationship of car to truck registrations in the total fleet. Due to assumptions inherent in this methodology, the predicted 1996 stock split did not exactly match the split determined by Arcadis for July 1, 1996. To account for this difference, EPA fit a line through the Arcadis 1996 splits and the predicted 2000 split to join the two sources of data. As a result, EPA calculated the following car to truck stock (in-use fleet) relationships:

Table 9. Light-duty Vehicle / Light-duty Truck Fleet Distribution Split

| Calendar Year |  |  |
| :---: | :---: | :---: |
|  | Percentage of Total <br> Light-duty Class |  |
|  | Light-duty <br> Vehicles | Light-duty <br> Trucks |
| $\mathbf{1 9 9 6}$ | $68.2 \%$ | $31.8 \%$ |
| $\mathbf{1 9 9 7}$ | $66.0 \%$ | $34.0 \%$ |
| $\mathbf{1 9 9 8}$ | $63.9 \%$ | $36.1 \%$ |
| $\mathbf{1 9 9 9}$ | $61.7 \%$ | $38.3 \%$ |
| $\mathbf{2 0 0 0}$ | $59.6 \%$ | $40.4 \%$ |
| $\mathbf{2 0 0 1}$ | $58.0 \%$ | $42.0 \%$ |
| $\mathbf{2 0 0 2}$ | $56.6 \%$ | $43.4 \%$ |
| $\mathbf{2 0 0 3}$ | $55.0 \%$ | $45.0 \%$ |
| $\mathbf{2 0 0 4}$ | $53.4 \%$ | $46.6 \%$ |
| $\mathbf{2 0 0 5}$ | $52.0 \%$ | $48.0 \%$ |
| $\mathbf{2 0 0 6}$ | $50.3 \%$ | $49.7 \%$ |
| $\mathbf{2 0 0 7}$ | $48.7 \%$ | $51.3 \%$ |
| $\mathbf{2 0 0 8}$ | $47.0 \%$ | $53.0 \%$ |
| $\mathbf{2 0 0 9}$ | $45.5 \%$ | $54.5 \%$ |
| $\mathbf{2 0 1 0}$ | $44.1 \%$ | $55.9 \%$ |
| $\mathbf{2 0 1 1}$ | $42.8 \%$ | $57.2 \%$ |
| $\mathbf{2 0 1 2}$ | $41.6 \%$ | $58.4 \%$ |
| $\mathbf{2 0 1 3}$ | $40.5 \%$ | $59.5 \%$ |
| $\mathbf{2 0 1 4}$ | $39.6 \%$ | $60.4 \%$ |
| $\mathbf{2 0 1 5}$ | $38.8 \%$ | $61.2 \%$ |
| $\mathbf{2 0 1 6}$ | $38.0 \%$ | $62.0 \%$ |
| $\mathbf{2 0 1 7}$ | $37.3 \%$ | $62.7 \%$ |
| $\mathbf{2 0 1 8}$ | $36.8 \%$ | $63.2 \%$ |
| $\mathbf{2 0 1 9}$ | $36.3 \%$ | $63.7 \%$ |
| $\mathbf{2 0 2 0 - 2 0 5 0}$ | $35.9 \%$ | $64.1 \%$ |

Light-duty trucks are further disaggregated into two categories: light-duty trucks less than $6,000 \mathrm{lbs}$ GVWR and light-duty trucks greater than $6,000 \mathrm{lbs}$ GVWR. These two categories correspond with the federal regulatory weight classes that were in place at the time that MOBILE5 and older versions of the model were released. This split is made by again referring the 1996 Arcadis report. The Arcadis report indicated that, as of July 1, 1996, 73.72\% of all light-duty trucks were rated as less than $6,000 \mathrm{lbs}$ GVWR, and $26.28 \%$ were rated as greater than $6,000 \mathrm{lbs}$ GVWR. Due to a lack of data characterizing this split in future years, EPA has assumed this ratio for all future years as well as 1996.

Federal regulations implemented in1994 redefined the light-duty truck classes. As a result of these new definitions, the MOBILE model requires further disaggregation of the two lightduty truck groupings into four regulatory classes: light-duty trucks class 1 (LDT1), light-duty trucks class 2 (LDT2), light-duty trucks class 3 (LDT3) and light-duty trucks class 4 (LDT4) for calendar years 1994 through 2050. Table 10 briefly describes the new light-duty truck classes; a detailed explanation of the new definitions is provided in Appendix C.

Table 10. Description of New EPA Light-duty Truck Classifications

| MOBILE5 <br> Category | MOBILE6 <br> Category | Gross Vehicle <br> Weight Rating | Loaded Vehicle <br> Weight Rating | Description |
| :--- | :--- | :--- | :--- | :--- |
| Light-duty truck 1 | Light-duty truck 1 | $\leq 6000 \mathrm{lbs}$ | $\leq 3750 \mathrm{lbs}$ | Most small SUVs, most small pickups |
| Light-duty truck 1 | Light-duty truck 2 | $\leq 6000 \mathrm{lbs}$ | $>3750 \mathrm{lbs}$ | All minivans, "Compact" SUVs (e.g., <br> Explorer), most Dakota and T100 <br> pickups |
| Light-duty truck 2 | Light duty truck 3 | $>6000 \mathrm{lbs}$ | 0-5750 lbs <br> (Average Loaded <br> Vehicle Weight)* | Most 1/2-ton pickups, Base full-size <br> vans, and intermediate SUVs (e.g., Land <br> Cruiser) |
| Light-duty truck 2 | Light duty truck 4 | $>6000 \mathrm{lbs}$ | $>5750$ lbs <br> (Average Loaded <br> Vehicle Weight)* | Some 1/2 and 3/4 ton pickups, some full- <br> size vans, and larger SUVs (e.g., <br> Expedition) |

* Average Loaded Vehicle Weight is the average of the gross vehicle weight and the curb weight

As these truck class definitions are relatively new, little data exists to allow for splitting trucks into these categories. To get a sense of how the older light-duty truck category should be distributed into the four federal categories, EPA again used the 1998 Certification and Fuel Economy Information System (CFEIS) database ${ }^{8}$. Using 1998 sales data, EPA was able to determine that in 1998, $23.1 \%$ of all light-duty trucks less than $6,000 \mathrm{lbs}$ GVWR would be classified as LDT1 and $76.9 \%$ of all light-duty trucks less than $6,000 \mathrm{lbs}$ GVWR would be classified as LDT2. Further, $68.5 \%$ of all light-duty trucks greater than $6,000 \mathrm{lbs}$ GVWR would be classified as LDT3 and $31.5 \%$ of all light-duty trucks greater than $6,000 \mathrm{lbs}$ GVWR would be classified as LDT4.

Table 11. Distribution of Light-duty Trucks $<\mathbf{6 , 0 0 0}$ lbs GVWR into Federally-defined Light-duty Truck Classes LDT1 and LDT2

| Federally Defined <br> Light-duty Truck <br> Category | Percentage of <br> Total <br> LDT<6000 lbs |
| :---: | :---: |
| LDT1 | 23.1 |
| LDT2 | 76.9 |

Table 12 Distribution of Light-duty Trucks $>6,000$ lbs GVWR into Federally-defined Light-duty Truck Classes LDT3 and LDT4

| Federally Defined <br> Light-duty Truck <br> Category | Percentage of <br> Total <br> LDT>6000 lbs |
| :---: | :---: |
| LDT3 | 68.5 |
| LDT4 | 31.5 |

In lieu of other sources of data, these sales relationships were assumed to represent the general vehicle class splits in the total vehicle fleet. Therefore, the above ratios were applied to light-duty trucks in calendar years 1996 through 2050. The final class-specific vehicle counts for all light duty classes in calendar years 1996 though 2050 are presented in Table 13.

Table 13. Vehicle Counts by Calendar Year for Light-duty Vehicles

|  | Light-duty Vehicle Class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calendar | Light-duty |  |  |  |  |  |
| Year | Vehicles | Light-duty <br> Truck Class 1 | Light-duty <br> Truck Class 2 | Light-duty <br> Truck Class 3 | Light-duty <br> Truck Class 4 | Total Light-duty <br> Vehicles and <br> Trucks |
| $\mathbf{1 9 9 6}$ | $120,213,037$ | $9,566,078$ | $31,845,513$ | $10,110,975$ | $4,649,573$ | $176,385,176$ |
| $\mathbf{1 9 9 7}$ | $118,773,800$ | $10,414,527$ | $34,670,004$ | $11,007,753$ | $5,061,960$ | $179,928,044$ |
| $\mathbf{1 9 9 8}$ | $117,096,045$ | $11,280,465$ | $37,552,716$ | $11,923,017$ | $5,482,847$ | $183,335,089$ |
| $\mathbf{1 9 9 9}$ | $115,193,551$ | $12,162,938$ | $40,490,475$ | $12,855,757$ | $5,911,772$ | $186,614,492$ |
| $\mathbf{2 0 0 0}$ | $113,163,114$ | $13,070,784$ | $43,512,698$ | $13,815,316$ | $6,353,028$ | $189,914,940$ |
| $\mathbf{2 0 0 1}$ | $112,067,320$ | $13,799,291$ | $45,937,900$ | $14,585,319$ | $6,707,118$ | $193,096,949$ |
| $\mathbf{2 0 0 2}$ | $110,950,294$ | $14,512,453$ | $48,312,019$ | $15,339,104$ | $7,053,749$ | $196,167,619$ |
| $\mathbf{2 0 0 3}$ | $109,439,432$ | $15,274,865$ | $50,850,090$ | $16,144,943$ | $7,424,317$ | $199,133,647$ |
| $\mathbf{2 0 0 4}$ | $107,898,603$ | $16,025,634$ | $53,349,406$ | $16,938,478$ | $7,789,227$ | $202,001,349$ |
| $\mathbf{2 0 0 5}$ | $105,955,155$ | $16,685,013$ | $55,544,480$ | $17,635,416$ | $8,109,717$ | $203,929,782$ |
| $\mathbf{2 0 0 6}$ | $103,575,222$ | $17,410,842$ | $57,960,767$ | $18,402,589$ | $8,462,504$ | $205,811,924$ |
| $\mathbf{2 0 0 7}$ | $101,040,538$ | $18,155,682$ | $60,440,343$ | $19,189,856$ | $8,824,532$ | $207,650,951$ |
| $\mathbf{2 0 0 8}$ | $98,431,413$ | $18,906,365$ | $62,939,370$ | $19,983,299$ | $9,189,400$ | $209,449,847$ |
| $\mathbf{2 0 0 9}$ | $96,043,330$ | $19,613,047$ | $65,291,919$ | $20,730,235$ | $9,532,882$ | $211,211,414$ |
| $\mathbf{2 0 1 0}$ | $93,587,131$ | $20,228,884$ | $67,342,044$ | $21,381,152$ | $9,832,208$ | $212,371,419$ |
| $\mathbf{2 0 1 1}$ | $91,290,697$ | $20,817,379$ | $69,301,145$ | $22,003,168$ | $10,118,245$ | $213,530,633$ |
| $\mathbf{2 0 1 2}$ | $89,345,016$ | $21,346,077$ | $71,061,181$ | $22,561,981$ | $10,375,217$ | $214,689,471$ |
| $\mathbf{2 0 1 3}$ | $87,503,888$ | $21,856,971$ | $72,761,950$ | $23,101,976$ | $10,623,537$ | $215,848,322$ |
| $\mathbf{2 0 1 4}$ | $85,917,827$ | $22,324,492$ | $74,318,331$ | $23,596,128$ | $10,850,774$ | $217,007,553$ |
| $\mathbf{2 0 1 5}$ | $84,384,402$ | $22,695,902$ | $75,554,755$ | $23,988,694$ | $11,031,297$ | $217,655,051$ |
| $\mathbf{2 0 1 6}$ | $82,971,891$ | $23,052,159$ | $76,740,738$ | $24,365,244$ | $11,204,455$ | $218,334,488$ |
| $\mathbf{2 0 1 7}$ | $81,805,681$ | $23,371,618$ | $77,804,216$ | $24,702,900$ | $11,359,728$ | $219,044,142$ |
| $\mathbf{2 0 1 8}$ | $80,793,310$ | $23,669,750$ | $78,796,699$ | $25,018,014$ | $11,504,634$ | $219,782,406$ |
| $\mathbf{2 0 1 9}$ | $79,950,083$ | $23,943,693$ | $79,708,656$ | $25,307,561$ | $11,637,783$ | $220,547,776$ |
| $\mathbf{2 0 2 0} \mathbf{- 2 0 5 0}$ | $79,436,359$ | $24,165,899$ | $80,448,384$ | $25,542,425$ | $11,745,787$ | $221,338,854$ |
|  |  |  |  |  |  |  |

For motorcycles, MOBILE6 will use the same vehicle count assumptions that were developed for MOBILE5, as noted in Appendix A.

### 4.1.2 Heavy-duty Vehicle Counts for 1996 through 2050

To estimate future vehicle counts for heavy-duty vehicles, EPA again used the data provided in the Arcadis report for July 1, 1996 to obtain a heavy-duty vehicle total (11,897,859 heavy-duty vehicles). Confidential sales data supplied by heavy-duty truck manufacturers were used to determine heavy-duty gasoline vehicle sales for 1996. Unfortunately, at the time of this analysis, heavy-duty diesel sales data were only available from the confidential sales data for 1995. To calculate total heavy-duty diesel sales for 1996, a $2 \%$ sales growth rate was assumed between 1995 and 1996, and this growth rate was applied to the 1995 heavy-duty diesel sales total. This figure was then added to the 1996 heavy-duty gasoline sales, resulting in a total heavy-duty vehicle sales figure for 1996 of $1,071,131$ vehicles.

The 1997 Regulatory Impact Analysis for heavy-duty engines predicts a linear growth rate of $2.0 \%$ for heavy-duty vehicles annually through the year 2020 (see reference 2 in bibliography). This rate was used to calculate total heavy-duty sales for calendar years 1997 through 2020. As with light-duty vehicles, EPA relied on the 1996 World Vehicle Forecasts and Strategies report for heavy-duty scrappage rates. Again, note that this document defines scrappage as "the number of vehicles scrapped or otherwise removed from circulation in any given year;" this value is reported as a percentage of the "parc," or number of vehicles in use in any given year. The report contains "commercial vehicle" scrappage rates; for this analysis, EPA assumed commercial vehicles were equivalent to all heavy-duty vehicle categories. These scrappage rates are listed in Table 14.

Table 14. "Commercial Vehicle" Scrappage Rates used for Heavy-duty Vehicle Scrappage

| Calendar Year* | Annual Rate of <br> Scrappage <br> (as \% of "Parc") |
| :---: | :---: |
| $\mathbf{1 9 9 5 - 1 9 9 9}$ | 4.39 |
| $\mathbf{2 0 0 0 - 2 0 0 4}$ | 5.55 |
| $\mathbf{2 0 0 5 - 2 0 0 9}$ | 6.45 |
| $\mathbf{2 0 1 0 - 2 0 1 4}$ | 7.12 |
| $\mathbf{2 0 1 5 - 2 0 2 0}$ | 7.57 |

As described in Section 4.1.1., the following formula is used to calculate vehicle counts for future calendar years:

$$
\begin{aligned}
\mathrm{VC}_{\mathrm{x}}= & \left(\mathrm{VC}_{\mathrm{x}-1}+\text { Sales }_{\mathrm{x}}\right) \times\left(1-\mathrm{SR}_{\mathrm{x}}\right) \\
\text { where: } & \mathrm{VC}=\text { vehicle count } \\
& \text { Sales = number of vehicle sold } \\
& \mathrm{SR}=\% \text { of in-use fleet that is scrapped } \\
& \mathrm{x}=\text { the calendar year in question }
\end{aligned}
$$

This calculation was performed for calendar years 1997 through 2020 to obtain total heavy-duty vehicle counts. The calculated sales, scrappage rates, and total heavy-duty vehicle counts are listed in Table 15.

Table 15. Calculated Sales, Scrappage Rates, and Vehicle Counts for Heavy-duty Vehicles by Calendar Year

| Calendar <br> Year | Calculated <br> Sales | Scrappage <br> (\% of in-use <br> fleet) | Total <br> Heavy-duty <br> Vehicles |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 6}$ | N/A | N/A | $11,897,859$ |
| $\mathbf{1 9 9 7}$ | $1,092,554$ | $4.39 \%$ | $12,420,134$ |
| $\mathbf{1 9 9 8}$ | $1,113,976$ | $4.39 \%$ | $12,939,962$ |
| $\mathbf{1 9 9 9}$ | $1,135,399$ | $4.39 \%$ | $13,457,453$ |
| $\mathbf{2 0 0 0}$ | $1,156,821$ | $5.55 \%$ | $13,803,182$ |
| $\mathbf{2 0 0 1}$ | $1,178,244$ | $5.55 \%$ | $14,149,957$ |
| $\mathbf{2 0 0 2}$ | $1,199,667$ | $5.55 \%$ | $14,497,720$ |
| $\mathbf{2 0 0 3}$ | $1,221,089$ | $5.55 \%$ | $14,846,415$ |
| $\mathbf{2 0 0 4}$ | $1,242,512$ | $5.55 \%$ | $15,195,992$ |
| $\mathbf{2 0 0 5}$ | $1,263,935$ | $6.45 \%$ | $15,398,261$ |
| $\mathbf{2 0 0 6}$ | $1,285,357$ | $6.45 \%$ | $15,607,525$ |
| $\mathbf{2 0 0 7}$ | $1,306,780$ | $6.45 \%$ | $15,823,332$ |
| $\mathbf{2 0 0 8}$ | $1,328,202$ | $6.45 \%$ | $16,045,260$ |
| $\mathbf{2 0 0 9}$ | $1,349,625$ | $6.45 \%$ | $16,272,915$ |
| $\mathbf{2 0 1 0}$ | $1,371,048$ | $7.12 \%$ | $16,387,713$ |
| $\mathbf{2 0 1 1}$ | $1,392,470$ | $7.12 \%$ | $16,514,234$ |
| $\mathbf{2 0 1 2}$ | $1,413,893$ | $7.12 \%$ | $16,651,644$ |
| $\mathbf{2 0 1 3}$ | $1,435,316$ | $7.12 \%$ | $16,799,168$ |
| $\mathbf{2 0 1 4}$ | $1,456,738$ | $7.12 \%$ | $16,956,086$ |
| $\mathbf{2 0 1 5}$ | $1,478,161$ | $7.57 \%$ | $17,038,774$ |
| $\mathbf{2 0 1 6}$ | $1,499,583$ | $7.57 \%$ | $17,135,004$ |
| $\mathbf{2 0 1 9}$ | $1,563,851$ | $7.57 \%$ | $17,495,073$ |
| $\mathbf{2 0 1 8}$ | $1,521,006$ | $7.57 \%$ | $17,243,750$ |
| $\mathbf{2 0 5 0}$ | $1,585,274$ | $7.57 \%$ | $17,635,965$ |

To provide vehicle counts for the ten heavy-duty vehicle categories (class 2 B , class 3 , class 4, class 5, class 6, class 7, class 8A, class 8B, school buses and transit buses), the 1996 Arcadis report was used. Ratios of vehicle population in each of the heavy-duty vehicle categories to the total heavy-duty vehicle population were calculated for the heavy-duty vehicle categories reported in the Arcadis report for the total in-use vehicle populations as of July 1, 1996. However, several of the Arcadis report categories represented aggregate classes, specifically heavy-duty gasoline
vehicles classes 2B-3, heavy-duty gasoline vehicles classes 4-8, heavy-duty diesel vehicles classes $4-5$, and heavy-duty diesel vehicles classes 6-7. To provide vehicle counts for the ten non-fuel specific heavy-duty vehicle classes represented in MOBILE6, these aggregate classes were split using ratios of projected 1996 sales in each of the ten categories to the total projected 1996 sales from a 1992 Navistar study. ${ }^{9}$ These percentages are listed in Table 16. The final splits were computed by summing the individual fuel-specific categories to determine the total for each of the ten categories.

Table 16. Percentage of Total Heavy-duty Vehicles by Vehicle Class

| Heavy-Duty <br> Class | \% of Total Heavy-duty <br> Vehicle by Class |
| :---: | :---: |
| $\mathbf{2 B}$ | $50.20 \%$ |
| $\mathbf{3}$ | $4.44 \%$ |
| $\mathbf{4}$ | $3.29 \%$ |
| $\mathbf{5}$ | $2.93 \%$ |
| $\mathbf{6}$ | $9.15 \%$ |
| $\mathbf{7}$ | $9.65 \%$ |
| $\mathbf{8 A}$ | $4.96 \%$ |
| $\mathbf{8 B}$ | $11.43 \%$ |
| School Bus | $3.48 \%$ |
| Transit Bus | $0.47 \%$ |

As with light-duty vehicles, due to a lack of other predictors, the above ratios were applied to heavy-duty trucks in calendar years 1996 through 2050. The final class-specific vehicle counts for all light duty classes in calendar years 1996 though 2050 are presented in Table 17.

Table 17. Vehicle Counts by Calendar Year for Heavy-duty Vehicles

|  | Heavy-duty Vehicle Class |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calendar Year | Class 2B | Class 3 | Class 4 | Class 5 | Class 6 | Class 7 | Class 8A | Class 8B | School Buses | Transit Buses | Total |
| 1996 | 5,972,563 | 528,582 | 391,443 | 348,582 | 1,089,074 | 1,147,715 | 589,867 | 1,360,346 | 413,819 | 55,869 | 11,897,859 |
| 1997 | 6,234,738 | 551,785 | 408,626 | 363,883 | 1,136,881 | 1,198,095 | 615,760 | 1,420,060 | 431,984 | 58,321 | 12,420,134 |
| 1998 | 6,495,685 | 574,879 | 425,728 | 379,113 | 1,184,464 | 1,248,240 | 641,531 | 1,479,495 | 450,064 | 60,762 | 12,939,962 |
| 1999 | 6,755,458 | 597,870 | 442,754 | 394,274 | 1,231,832 | 1,298,159 | 667,187 | 1,538,663 | 468,063 | 63,192 | 13,457,453 |
| 2000 | 6,929,009 | 613,229 | 454,129 | 404,404 | 1,263,479 | 1,331,510 | 684,328 | 1,578,192 | 480,088 | 64,816 | 13,803,182 |
| 2001 | 7,103,086 | 628,635 | 465,538 | 414,563 | 1,295,221 | 1,364,961 | 701,520 | 1,617,840 | 492,149 | 66,444 | 14,149,957 |
| 2002 | 7,277,658 | 644,085 | 476,979 | 424,752 | 1,327,053 | 1,398,507 | 718,761 | 1,657,602 | 504,245 | 68,077 | 14,497,720 |
| 2003 | 7,452,698 | 659,576 | 488,451 | 434,968 | 1,358,971 | 1,432,144 | 736,049 | 1,697,470 | 516,373 | 69,715 | 14,846,415 |
| 2004 | 7,628,181 | 675,107 | 499,952 | 445,210 | 1,390,970 | 1,465,865 | 753,380 | 1,737,439 | 528,531 | 71,356 | 15,195,992 |
| 2005 | 7,729,717 | 684,093 | 506,607 | 451,136 | 1,409,485 | 1,485,377 | 763,408 | 1,760,566 | 535,566 | 72,306 | 15,398,261 |
| 2006 | 7,834,765 | 693,390 | 513,492 | 457,267 | 1,428,640 | 1,505,564 | 773,783 | 1,784,492 | 542,845 | 73,289 | 15,607,525 |
| 2007 | 7,943,097 | 702,978 | 520,592 | 463,590 | 1,448,394 | 1,526,381 | 784,482 | 1,809,166 | 550,351 | 74,302 | 15,823,332 |
| 2008 | 8,054,502 | 712,837 | 527,894 | 470,092 | 1,468,708 | 1,547,789 | 795,484 | 1,834,541 | 558,070 | 75,344 | 16,045,260 |
| 2009 | 8,168,782 | 722,951 | 535,383 | 476,761 | 1,489,547 | 1,569,750 | 806,771 | 1,860,570 | 565,988 | 76,413 | 16,272,915 |
| 2010 | 8,226,408 | 728,051 | 539,160 | 480,125 | 1,500,055 | 1,580,824 | 812,462 | 1,873,695 | 569,980 | 76,952 | 16,387,713 |
| 2011 | 8,289,920 | 733,672 | 543,323 | 483,832 | 1,511,636 | 1,593,028 | 818,735 | 1,888,161 | 574,381 | 77,546 | 16,514,234 |
| 2012 | 8,358,898 | 739,777 | 547,844 | 487,857 | 1,524,214 | 1,606,283 | 825,547 | 1,903,872 | 579,160 | 78,191 | 16,651,644 |
| 2013 | 8,432,953 | 746,331 | 552,697 | 492,180 | 1,537,717 | 1,620,514 | 832,861 | 1,920,739 | 584,291 | 78,884 | 16,799,168 |
| 2014 | 8,511,724 | 753,302 | 557,860 | 496,777 | 1,552,081 | 1,635,651 | 840,641 | 1,938,680 | 589,749 | 79,621 | 16,956,086 |
| 2015 | 8,553,232 | 756,976 | 560,580 | 499,199 | 1,559,650 | 1,643,628 | 844,740 | 1,948,134 | 592,625 | 80,009 | 17,038,774 |
| 2016 | 8,601,538 | 761,251 | 563,746 | 502,019 | 1,568,458 | 1,652,910 | 849,511 | 1,959,137 | 595,972 | 80,461 | 17,135,004 |
| 2017 | 8,656,127 | 766,082 | 567,324 | 505,205 | 1,578,412 | 1,663,400 | 854,903 | 1,971,570 | 599,754 | 80,972 | 17,243,750 |
| 2018 | 8,716,524 | 771,427 | 571,283 | 508,730 | 1,589,425 | 1,675,006 | 860,868 | 1,985,327 | 603,939 | 81,537 | 17,364,065 |
| 2019 | 8,782,288 | 777,247 | 575,593 | 512,568 | 1,601,417 | 1,687,644 | 867,363 | 2,000,305 | 608,495 | 82,152 | 17,495,073 |
| 2020-2050 | 8,853,014 | 783,507 | 580,228 | 516,696 | 1,614,314 | 1,701,235 | 874,348 | 2,016,414 | 613,396 | 82,814 | 17,635,965 |

### 4.2. Gasoline/Diesel Fuel Ratios

The MOBILE model provides vehicle counts by fuel type (i.e., gasoline or diesel). Therefore, it is necessary to provide class specific gasoline to diesel vehicle ratios for each of the five light-duty vehicle types and the eight heavy-duty vehicle types represented in MOBILE6. Again, data from the Arcadis report was used. The Arcadis report contains fuel-specific vehicle counts as of July 1, 1996 by model year. Using this data, ratios of gasoline vehicles to diesel vehicles for each vehicle category and model years 1972 through 1996 were obtained. For modeling purposes, vehicles produced in model years later than 1996 are assumed to have the same gasoline to diesel ratio as the 1996 vehicles. This assumption was necessary as there were no known sources of data predicting future trends in sales of trucks by fuel type. The gasoline/diesel ratios for all vehicle classes are presented in Table 18.

Table 18. Gasoline/ Diesel Fractions for All Vehicle Classes

|  | LIGHT-DUTY VEHICLE CLASSES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gasoline | Diesel | Gasoline | Diesel | Gasoline | Diesel |
| MODEL YEAR | Vehicles | Vehicles | Trucks 1 and 2 | Trucks 1 and 2 | Trucks 3 and 4 | Trucks 3 and 4 |
| 1996 and later | $\mathbf{9 9 . 9 1 \%}$ | 0.09\% | 100.00\% | 0.00\% | 98.74\% | 1.26\% |
| 1995 | 99.94\% | 0.06\% | 100.00\% | 0.00\% | 98.85\% | 1.15\% |
| 1994 | 99.99\% | 0.01\% | 100.00\% | 0.00\% | 98.89\% | 1.11\% |
| 1993 | $\mathbf{9 9 . 9 7 \%}$ | 0.03\% | 100.00\% | 0.00\% | 98.55\% | 1.45\% |
| 1992 | 99.94\% | 0.06\% | 100.00\% | 0.00\% | 98.85\% | 1.15\% |
| 1991 | $\mathbf{9 9 . 8 7 \%}$ | 0.13\% | 100.00\% | 0.00\% | 98.71\% | 1.29\% |
| 1990 | 99.96\% | 0.04\% | 100.00\% | 0.00\% | 99.04\% | 0.96\% |
| 1989 | $\mathbf{9 9 . 9 6 \%}$ | 0.04\% | 100.00\% | 0.00\% | $\mathbf{9 9 . 1 7 \%}$ | 0.83\% |
| 1988 | $\mathbf{9 9 . 9 9 \%}$ | $0.01 \%$ | 100.00\% | 0.00\% | $\mathbf{9 9 . 2 8 \%}$ | 0.72\% |
| 1987 | 99.73\% | 0.27\% | 99.93\% | 0.07\% | $\mathbf{9 9 . 1 8 \%}$ | 0.82\% |
| 1986 | $\mathbf{9 9 . 6 8 \%}$ | 0.32\% | $\mathbf{9 9 . 6 7 \%}$ | 0.33\% | 98.76\% | 1.24\% |
| 1985 | $\mathbf{9 9 . 0 3 \%}$ | $0.97 \%$ | $\mathbf{9 9 . 5 2 \%}$ | 0.48\% | 98.65\% | 1.35\% |
| 1984 | 98.38\% | 1.62\% | 98.80\% | 1.20\% | 98.31\% | 1.69\% |
| 1983 | $\mathbf{9 7 . 5 9 \%}$ | $\mathbf{2 . 4 1 \%}$ | $\mathbf{9 7 . 7 7 \%}$ | 2.23\% | $\mathbf{9 7 . 9 1 \%}$ | 2.09\% |
| 1982 | $\mathbf{9 4 . 9 0 \%}$ | 5.10\% | 93.44\% | 6.56\% | 97.44\% | 2.56\% |
| 1981 | $\mathbf{9 2 . 9 4 \%}$ | 7.06\% | 93.84\% | 6.16\% | $\mathbf{9 9 . 8 7 \%}$ | 0.13\% |
| 1980 | 96.10\% | 3.90\% | $\mathbf{9 5 . 6 1 \%}$ | 4.39\% | 99.94\% | 0.06\% |
| 1979 | $\mathbf{9 7 . 3 1 \%}$ | 2.69\% | 96.84\% | 3.16\% | $\mathbf{9 9 . 8 9 \%}$ | 0.11\% |
| 1978 | 98.86\% | 1.14\% | $\mathbf{9 7 . 4 1 \%}$ | $\mathbf{2 . 5 9 \%}$ | $\mathbf{9 9 . 9 9 \%}$ | $\mathbf{0 . 0 1 \%}$ |
| 1977 | $\mathbf{9 9 . 0 7 \%}$ | 0.93\% | 100.00\% | 0.00\% | 100.00\% | 0.00\% |
| 1976 | $\mathbf{9 8 . 6 3 \%}$ | 1.37\% | $\mathbf{9 8 . 1 3 \%}$ | 1.87\% | 100.00\% | 0.00\% |
| 1975 | 98.45\% | 1.55\% | 89.62\% | 10.38\% | 100.00\% | 0.00\% |
| 1974 | $\mathbf{9 9 . 3 3 \%}$ | 0.67\% | $\mathbf{8 8 . 3 0 \%}$ | 11.70\% | $\mathbf{9 9 . 9 9 \%}$ | 0.01\% |
| 1973 | $\mathbf{9 9 . 3 3 \%}$ | 0.67\% | 88.30\% | 11.70\% | $\mathbf{9 9 . 9 9 \%}$ | $0.01 \%$ |
| 1972 and earlier | $\mathbf{9 9 . 3 3 \%}$ | 0.67\% | 88.30\% | 11.70\% | $\mathbf{9 9 . 9 9 \%}$ | 0.01\% |

Table 18. Gasoline/ Diesel Fractions for All Vehicle Classes (continued)

|  | HEAVY-DUTY VEHICLE CATEGORIES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gasoline | Diesel |
| MODEL YEAR | 2B | 2B | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 |
| 1996 and later | 80.02\% | 19.98\% | 32.26\% | 67.74\% | 13.94\% | 86.06\% | 53.53\% | 46.47\% | 37.00\% | 63.00\% | 14.37\% | 85.63\% |
| 1995 | 74.22\% | 25.78\% | 22.85\% | 77.15\% | 15.27\% | 84.73\% | 56.16\% | 43.84\% | 39.22\% | 60.78\% | 15.57\% | 84.43\% |
| 1994 | 74.85\% | 25.15\% | 20.90\% | 79.10\% | 19.52\% | 80.48\% | 63.30\% | 36.70\% | 47.54\% | 52.46\% | 20.57\% | 79.43\% |
| 1993 | 67.37\% | 32.63\% | 18.95\% | 81.05\% | 16.69\% | 83.31\% | 58.75\% | 41.25\% | 42.33\% | 57.67\% | 17.34\% | 82.66\% |
| 1992 | 72.16\% | 27.84\% | 19.32\% | 80.68\% | 20.99\% | 79.01\% | 65.38\% | 34.62\% | 47.11\% | 52.89\% | 20.28\% | 79.72\% |
| 1991 | 70.37\% | 29.63\% | 17.20\% | 82.80\% | 26.84\% | 73.16\% | 72.29\% | 27.71\% | 42.12\% | 57.88\% | 17.21\% | 82.79\% |
| 1990 | 76.16\% | 23.84\% | 15.23\% | 84.77\% | 27.25\% | 72.75\% | 72.70\% | 27.30\% | 43.83\% | 56.17\% | 18.23\% | 81.77\% |
| 1989 | 79.42\% | 20.58\% | 20.60\% | 79.40\% | 28.42\% | 71.58\% | 73.84\% | 26.16\% | 54.63\% | 45.37\% | 25.60\% | 74.40\% |
| 1988 | 82.44\% | 17.56\% | 25.12\% | 74.88\% | 43.53\% | 56.47\% | 84.57\% | 15.43\% | 57.84\% | 42.16\% | 28.16\% | 71.84\% |
| 1987 | 80.42\% | 19.58\% | 22.11\% | 77.89\% | 68.22\% | 31.78\% | 93.85\% | 6.15\% | 52.66\% | 47.34\% | 24.12\% | 75.88\% |
| 1986 | 72.74\% | 27.26\% | 21.58\% | 78.42\% | 77.93\% | 22.07\% | 96.17\% | 3.83\% | 52.95\% | 47.05\% | 24.33\% | 75.67\% |
| 1985 | 72.57\% | 27.43\% | 38.55\% | 61.45\% | 80.32\% | 19.68\% | 96.67\% | 3.33\% | 54.75\% | 45.25\% | 25.69\% | 74.31\% |
| 1984 | 69.96\% | 30.04\% | 48.61\% | 51.39\% | 84.30\% | 15.70\% | 97.45\% | 2.55\% | 56.90\% | 43.10\% | 27.39\% | 72.61\% |
| 1983 | 70.82\% | 29.18\% | 49.68\% | 50.32\% | 92.62\% | 7.38\% | 98.89\% | 1.11\% | 64.31\% | 35.69\% | 33.98\% | 66.02\% |
| 1982 | 71.41\% | 28.59\% | 57.23\% | 42.77\% | 96.59\% | 3.41\% | 99.51\% | 0.49\% | 63.10\% | 36.90\% | 32.83\% | 67.17\% |
| 1981 | 98.62\% | 1.38\% | 99.21\% | 0.79\% | 95.86\% | 4.14\% | 99.40\% | 0.60\% | 55.87\% | 44.13\% | 26.56\% | 73.44\% |
| 1980 | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 99.97\% | 0.03\% | 100.00\% | 0.00\% | 69.06\% | 30.94\% | 38.93\% | 61.07\% |
| 1979 | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 83.21\% | 16.79\% | 58.60\% | 41.40\% |
| 1978 | 100.00\% | 0.00\% | 99.99\% | 0.01\% | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 86.10\% | 13.90\% | 63.90\% | 36.10\% |
| 1977 | 100.00\% | 0.00\% | 99.97\% | 0.03\% | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 91.92\% | 8.08\% | 76.47\% | 23.53\% |
| 1976 | 100.00\% | 0.00\% | 99.90\% | 0.10\% | 97.41\% | 2.59\% | 99.63\% | 0.37\% | 95.24\% | 4.76\% | 85.11\% | 14.89\% |
| 1975 | 100.00\% | 0.00\% | 99.72\% | 0.28\% | 99.22\% | 0.78\% | 99.89\% | 0.11\% | 96.35\% | 3.65\% | 88.30\% | 11.70\% |
| 1974 | 100.00\% | 0.00\% | 97.52\% | 2.48\% | 99.96\% | 0.04\% | 99.99\% | 0.01\% | 97.12\% | 2.88\% | 90.60\% | 9.40\% |
| 1973 | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 99.10\% | 0.90\% | 99.87\% | 0.13\% | 97.26\% | 2.74\% | 91.03\% | 8.97\% |
| 1972 and earlier | 100.00\% | 0.00\% | 100.00\% | 0.00\% | 98.88\% | 1.12\% | 99.84\% | 0.16\% | 97.03\% | 2.97\% | 90.34\% | 9.66\% |

Table 18. Gasoline/ Diesel Fractions for All Vehicle Classes (continued)

|  | HEAVY-DUTY VEHICLE CATEGORIES |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Gasoline | Diesel | Gasoline | Diesel |
| MODEL YEAR | 8A | 8A | 8A | 8B* |
| 1996 and later | 0.08\% | 99.92\% | 0.00\% | 100.00\% |
| 1995 | 0.11\% | 99.89\% | 0.00\% | 100.00\% |
| 1994 | 0.13\% | 99.87\% | 0.00\% | 100.00\% |
| 1993 | 0.11\% | 99.89\% | 0.00\% | 100.00\% |
| 1992 | 0.23\% | 99.77\% | 0.00\% | 100.00\% |
| 1991 | 0.16\% | 99.84\% | 0.00\% | 100.00\% |
| 1990 | 0.18\% | 99.82\% | 0.00\% | 100.00\% |
| 1989 | 0.21\% | 99.79\% | 0.00\% | 100.00\% |
| 1988 | 0.31\% | 99.69\% | 0.00\% | 100.00\% |
| 1987 | 0.22\% | 99.78\% | 0.00\% | 100.00\% |
| 1986 | 0.20\% | 99.80\% | 0.00\% | 100.00\% |
| 1985 | 0.21\% | 99.79\% | 0.00\% | 100.00\% |
| 1984 | 0.24\% | 99.76\% | 0.00\% | 100.00\% |
| 1983 | 0.31\% | 99.69\% | 0.00\% | 100.00\% |
| 1982 | 0.22\% | 99.78\% | 0.00\% | 100.00\% |
| 1981 | 0.18\% | 99.82\% | 0.00\% | 100.00\% |
| 1980 | 0.26\% | 99.74\% | 0.00\% | 100.00\% |
| 1979 | 0.35\% | 99.65\% | 0.00\% | 100.00\% |
| 1978 | 0.36\% | 99.64\% | 0.00\% | 100.00\% |
| 1977 | 0.51\% | 99.49\% | 0.00\% | 100.00\% |
| 1976 | 0.80\% | 99.20\% | 0.00\% | 100.00\% |
| 1975 | 0.64\% | 99.36\% | 0.00\% | 100.00\% |
| 1974 | 1.81\% | 98.19\% | 0.00\% | 100.00\% |
| 1973 | 1.88\% | 98.12\% | 0.00\% | 100.00\% |
| 1972 and earlier | 2.80\% | 97.20\% | 0.00\% | 100.00\% |

### 4.3 Interpolating Between MOBILE5 and MOBILE6 Vehicle Counts

MOBILE5 contains vehicle counts for calendar years 1982 through 2050 for three different light-duty vehicle classes (light-duty vehicles, light-duty trucks <6,000 lbs, and light-duty gasoline trucks $>6,000 \mathrm{lbs}$, ) and two heavy-duty truck categories (heavy-duty gasoline trucks and heavyduty diesel trucks). MOBILE5 uses a special algorithm to split the light-duty classes into gasoline and diesel fuel categories. The MOBILE5 vehicle counts were based on actual data through calendar year 1990, and projections were made for 1990 and later calendar years.

MOBILE6 will include vehicle counts for five light-duty vehicle classes, eight heavy-duty truck classes, and two heavy-duty bus classes. These classes are not fuel specific; an algorithm similar to that used in MOBILE5 for light-duty vehicles will be used in MOBILE6 to split the fifteen classes into gasoline and diesel fuel categories using the gasoline/ diesel splits calculated in Section 4.2. These vehicle counts are based on actual data from 1996 Arcadis report and vehicle counts for 1996 and later calendar years are projected.

Since the MOBILE model is designed to allow the user to make VMT split calculations for calendar years 1982 through 2050, data from MOBILE5 will also be included in MOBILE6 to cover earlier model years. This poses two challenges: 1) expanding the MOBILE5 vehicle classes to match those in MOBILE6; and 2) addressing the 1991 through 1995 data gap which exists between the MOBILE5 vehicle counts for 1990 and earlier (which are based on actual data) and the 1996 and later projections presented in this report (which are also based on actual data).

To expand the 1982 through 1990 calendar years vehicle count data for the three MOBILE5 light-duty vehicle classes to the five MOBILE6 categories, EPA has maintained the relative relationship between light-duty trucks less than $6,000 \mathrm{lbs}$ and light-duty trucks greater than 6,000 lbs for the MOBILE5 data, but has used the CFEIS data described in Section 4.1.1 to separate this data into the new regulatory categories for 1994 and 1995 calendar years. Expansion of the heavyduty categories required more effort. Since MOBILE5 reports heavy-duty gasoline vehicle counts and heavy-duty diesel vehicle counts separately, it was necessary to add these counts together to get total heavy-duty vehicle counts for calendar years 1982 through 1990. These vehicle counts were then split using the same class ratios used in this analysis for 1996 and later vehicle counts as per Section 4.1.2.

Linear interpolation was used to fill in the data gap between the 1990 data in MOBILE5 and the 1996 data used in this analysis. The results of these adjustments are contained in Appendix D.

### 5.0 Integration of Registration Distribution by Age, Average Annual Mileage Accumulation Rates by Age, and Future Vehicle Count Data in MOBILE6

One of the most significant changes to the fleet characterization calculations from MOBILE5 to MOBILE6 is an increase in the number of vehicle categories considered (from eight to twenty-eight). This change has been made both to facilitate greater representation of classspecific fleet trends (i.e., differences between mileage accumulation in certain heavy-duty vehicle categories, etc) and to allow for greater flexibility in future fleet calculations as additional data becomes available.

The data that was used in this analysis, however, was not directly available for each of the twenty-eight vehicle classes. Hence, for many categories, it was necessary to apply the available data to more than one vehicle class. The following sections will describe the twenty-eight vehicle classes, and the ways that fleet characterization data presented in the report will be used in the model.

### 5.1 Expansion of Vehicle Categories

In MOBILE5, the eight vehicle categories considered separately were light-duty gasoline vehicles, light-duty diesel vehicles, light-duty gasoline trucks 1 ( $0-6,000 \mathrm{lbs}$ GVWR), light-duty gasoline trucks 2 ( $6,001-8,500 \mathrm{lbs}$ GVWR), light-duty diesel trucks ( $0-8500 \mathrm{lbs}$ GVWR), heavyduty gasoline vehicles, heavy-duty diesel vehicles, and motorcycles. The light-duty truck category was split into trucks 1 and 2 to correspond with EPA regulatory definitions, which state different emission standards for the two gross-vehicle weight categories. However, starting with a phase-in period in 1994, EPA expanded its regulatory classifications to include four light-duty truck categories. MOBILE6 only makes this distinction for gasoline-fueled trucks. These changes effectively increase the number of light-duty truck categories in the model from two to six. These categories are described in Appendix C in detail; Table 10 from Section 4.1.1. is reproduced here for reference.

Table 10. Description of New EPA Light-duty Truck Classifications

| MOBILE5 Category | MOBILE6 <br> Category | Gross Vehicle <br> Weight Rating | Loaded Vehicle <br> Weight Rating | Description |
| :--- | :--- | :--- | :--- | :--- |
| Light-duty truck 1 | Light-duty truck 1 | $\leq 6000 \mathrm{lbs}$ | $\leq 3750 \mathrm{lbs}$ | Most small SUVs, most small pickups |
| Light-duty truck 1 | Light-duty truck 2 | $\leq 6000 \mathrm{lbs}$ | $>3750 \mathrm{lbs}$ | All minivans, "Compact" SUVs (e.g., Explorer), <br> most Dakota and T100 pickups |
| Light-duty truck 2 | Light duty truck 3 | $>6000 \mathrm{lbs}$ | $0-750 \mathrm{lbs}$ (Average <br> Loaded Vehicle <br> Weight)* | Most 1/2-ton pickups, Base full-size vans, and <br> intermediate SUVs (e.g., Land Cruiser) |
| Light-duty truck 2 | Light duty truck 4 | $>6000 \mathrm{lbs}$ | $>5750$ lbs (Average <br> Loaded Vehicle <br> Weight)* | Some 1/2 and 3/4 ton pickups, some full-size <br> vans, and larger SUVs (e.g., Expedition) |

* Average Loaded Vehicle Weight is the average of the gross vehicle weight and the curb weight

In addition to including the new light-truck categories to MOBILE6, EPA has also expanded the heavy-duty gasoline vehicle and heavy-duty diesel vehicle categories to include a finer gradation by gross-vehicle weight class. The addition of new categories increases the total number of heavy-duty categories from two to nineteen. Note that EPA has included only one heavy-duty gasoline bus category. This is due to the fact that, according to the Arcadis report, heavy-duty transit buses accounted for less than $1 \%$ of the all gasoline buses in 1996. EPA has therefore grouped gasoline school buses into a single category, known as "heavy-duty gasoline bus." Table 19 lists the new heavy-duty categories.

Table 19. Description of New EPA Heavy-duty Truck Classifications

| MOBILE6 <br> Categories | Gross Vehicle <br> Weight Ratings |
| :---: | :---: |
| Heavy-duty gasoline vehicle class 2B | $8,501-10,000 \mathrm{lbs}$ |
| Heavy-duty gasoline vehicle class 3 | $10,001-14,000 \mathrm{lbs}$ |
| Heavy-duty gasoline vehicle class 4 | $14,001-16,000 \mathrm{lbs}$ |
| Heavy-duty gasoline vehicle class 5 | $16,001-19,500 \mathrm{lbs}$ |
| Heavy-duty gasoline vehicle class 6 | $19,501-26,000$ |
| Heavy-duty gasoline vehicle class 7 | $26,001-33,000$ |
| Heavy-duty gasoline vehicle class 8A | $33,001-60,000$ |
| Heavy-duty gasoline vehicle class 8B | $>60,000$ |
| Heavy-duty gasoline bus | All |
| Heavy-duty diesel vehicle class 2B | $8,501-10,000 \mathrm{lbs}$ |
| Heavy-duty diesel vehicle class 3 | $10,001-14,000 \mathrm{lbs}$ |
| Heavy-duty diesel vehicle class 4 | $14,001-16,000 \mathrm{lbs}$ |
| Heavy-duty diesel vehicle class 5 | $16,001-19,500 \mathrm{lbs}$ |
| Heavy-duty diesel vehicle class 6 | $19,501-26,000$ |
| Heavy-duty diesel vehicle class 7 | $26,001-33,000$ |
| Heavy-duty diesel vehicle class 8A | $33,001-60,000$ |
| Heavy-duty diesel vehicle class 8B | $>60,000$ |
| Heavy-duty diesel school bus | All |
| Heavy-duty diesel transit Bus | All |

### 5.2 Use of Registration Distribution by Age and Average Annual Mileage Accumulation by Age in MOBILE6

The emission factor calculations in MOBILE6 will rely in part on travel fractions for vehicles at each of twenty-five ages and for each of the twenty-eight vehicle types. These travel fractions are calculated from estimates of the registration distribution by age (age 0-1 through age 25) and average annual mileage accumulation rates by age for twenty-eight vehicle types (registration distribution and average annual mileage accumulation rates for motorcycles, are only provided for the first through $12+$ years of operation).

The registration distributions by age and average annual mileage accumulation rates by age presented in Section 2.0 and Section 3.0 of this report represent the national defaults MOBILE6 will use for generation of travel fractions. However, as noted in these sections, there are only seven categories for registration distributions by age, and only eighteen categories for average annual mileage accumulation rates by age. Therefore, it was necessary to assume that the estimated registration distributions and mileage accumulation rates would be representative of other categories. Table 16 illustrates the application of the calculated registration distribution by age and average annual mileage accumulation rates by age to the twenty-eight MOBILE6 categories. Note that due to the lack of significant changes in the U.S. motorcycle age distribution, mileage accumulation, and vehicle count characteristics, EPA has opted to use the MOBILE5 motorcycle age and mileage estimates in MOBILE6. The MOBILE5 motorcycle data is reported in Appendix A.

MOBILE6 will apply the gasoline/ diesel fuel ratios presented in Section 4.2 to the vehicle counts to calculate fuel-specific vehicle counts by calendar year and vehicle class. The model will assume that $50 \%$ of the HDV4-5 class should be attributed to classes 4 and 5 respectively; the same assumption will be made for HDV6-7 vehicle counts. This is again due to the inability to weight theses classes separately due to data constraints.

## Table 20. Use of Registration Distribution by Age, Mileage Accumulation, and Vehicle Count Data in MOBILE6

| MOBILE6 category description | MOBILE6 category designation | Registration Distribution (Table 5) | Mileage Accumulation (Table 6) | Vehicle Counts (Tables 13 and 17) |
| :---: | :---: | :---: | :---: | :---: |
| Gasoline Fueled Vehicles |  |  |  |  |
| Light-duty gasoline vehicle | LDGV | LDV | LDGV | LDV |
| Light-duty gasoline truck 1 | LDGT1 | LDT 0-6000 lbs | LDGT1 | LDT1 |
| Light-duty gasoline truck 2 | LDGT2 | LDT 0-6000 lbs | LDGT1 | LDT2 |
| Light-duty gasoline truck 3 | LDGT3 | LDT 6000-8500 lbs | LDGT2 | LDT3 |
| Light-duty gasoline truck 4 | LDGT4 | LDT 6000-8500 lbs | LDGT2 | LDT4 |
| Heavy-duty gasoline vehicle class 2B | HDGV2B | HDV (2B-3) | HDGV (2B-3) | HDV2B |
| Heavy-duty gasoline vehicle class 3 | HDGV3 | HDV (2B-3) | HDGV (2B-3) | HDV3 |
| Heavy-duty gasoline vehicle class 4 | HDGV4 | HDV (4-8) | HDGV (4-8) | 1⁄2 HDV4-5 |
| Heavy-duty gasoline vehicle class 5 | HDGV5 | HDV (4-8) | HDGV (4-8) | 1⁄2 HDV4-5 |
| Heavy-duty gasoline vehicle class 6 | HDGV6 | HDV (4-8) | HDGV (4-8) | ½ HDV6-7 |
| Heavy-duty gasoline vehicle class 7 | HDGV7 | HDV (4-8) | HDGV (4-8) | ½ HDV6-7 |
| Heavy-duty gasoline vehicle class 8A | HDGV8A | HDV (4-8) | HDGV (4-8) | HDV8A |
| Heavy-duty gasoline vehicle class 8B | HDGV8B | HDV (4-8) | HDGV (4-8) | HDV8B |
| Heavy-duty gasoline Bus * | HDGas Bus | HDB School | HDGB School | HD School Bus |
| Motorcycle | Motorcycle | MOBILE5 | MOBILE5 | MOBILE5 |
| Diesel Fueled Vehicles |  |  |  |  |
| Light-duty diesel vehicle | LDDV | LDV | LDDV | LDV |
| Light-duty diesel truck 1 | LDDT1 | LDT1 | LDDT1 | LDT1 |
| Light-duty diesel truck 2 | LDDT2 | LDT1 | LDDT1 | LDT2 |
| Light-duty diesel truck 3 | LDDT3 | LDT2 | LDDT2 | LDT3 |
| Light-duty diesel truck 4 | LDDT4 | LDT2 | LDDT2 | LDT4 |
| Heavy-duty diesel vehicle class 2B | HDDV2B | HDV (2B-3) | HDDV (2B) | HDV2B |
| Heavy-duty diesel vehicle class 3 | HDDV3 | HDV (2B-3) | HDDV (2B) | HDV3 |
| Heavy-duty diesel vehicle class 4 | HDDV4 | HDV (4-8) | HDDV (4-5) | 1/2 HDV4-5 |
| Heavy-duty diesel vehicle class 5 | HDDV5 | HDV (4-8) | HDDV (4-5) | ½ HDV4-5 |
| Heavy-duty diesel vehicle class 6 | HDDV6 | HDV (4-8) | HDDV (6-7) | 1/2 HDV6-7 |
| Heavy-duty diesel vehicle class 7 | HDDV7 | HDV (4-8) | HDDV (6-7) | ½ HDV6-7 |
| Heavy-duty diesel vehicle class 8A | HDDV8A | HDV (4-8) | HDDV (8A) | HDV8A |
| Heavy-duty diesel vehicle class 8B | HDDV8B | HDV (4-8) | HDDV (8B) | HDV8B |
| Heavy-duty diesel School Bus | Diesel School Bus | HDB School | HDDB School | HD School Bus |
| Heavy-duty diesel Transit Bus | Diesel Transit Bus | HDB Transit | HDDB Transit | HD Transit Bus |

* Note: MOBILE6 will only contain one heavy-duty gasoline bus category, containing all heavy-duty gasoline buses.

APPENDIX A: Motorcycle Age Distribution, Mileage Accumulation Rates, and Vehicle Counts

## Motorcycle Age Distribution and Mileage Accumulation Rates for

 Use in MOBILE6| Age | Registration <br> Distribution | Vileage <br> Accumulation Rates |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 0.144 | 4,786 |
| $\mathbf{2}$ | 0.168 | 4,475 |
| $\mathbf{3}$ | 0.135 | 4,164 |
| $\mathbf{4}$ | 0.109 | 3,853 |
| $\mathbf{5}$ | 0.088 | 3,543 |
| $\mathbf{6}$ | 0.07 | 3,232 |
| $\mathbf{7}$ | 0.056 | 2,921 |
| $\mathbf{8}$ | 0.045 | 2,611 |
| $\mathbf{9}$ | 0.036 | 2,300 |
| $\mathbf{1 0}$ | 0.029 | 1,989 |
| $\mathbf{1 1}$ | 0.023 | 1,678 |
| $\mathbf{1 2 +}$ | 0.097 | 1,368 |

NOTE: Motorcycle vehicle count is 4,219,000 for all years, pre-1982 through 2050.

APPENDIX B: Vehicles in Operation, Raw Mileage Accumulation Rate, and Curve Fitting Equations from the Arcadis Report

Table 4-2. Vehicles in Operation as of July 1996
U.S. Levels

| Model Year | LDV |  | LDGT |  | LDDT |  | HDGV |  | HDGB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LDGV | LDDV | $\begin{gathered} \text { LDGT1 } \\ <6000 \end{gathered}$ | $\begin{gathered} \hline \text { LDGT2 } \\ \text { 6001-8500 } \end{gathered}$ | $\begin{gathered} \hline \text { LDDT1 } \\ <6000 \end{gathered}$ | $\begin{gathered} \hline \text { LDDT2 } \\ 6001-8500 \end{gathered}$ | $\begin{array}{c\|} \hline \text { 2B-3 } \\ 8501-14000 \end{array}$ | $\begin{gathered} \hline 4-8 \\ >14000 \end{gathered}$ | S.BUS ANY WGT. | T.BUS ANY WGT. |
| 96 | 5999331 | 5330 | 2475332 | 963616 | 0 | 12298 | 321205 | 16273 | 516 | 0 |
| 95 | 9166694 | 5425 | 3723979 | 1450819 | 0 | 16827 | 483606 | 54732 | 4408 | 0 |
| 94 | 7966182 | 630 | 3636380 | 1214578 | 1 | 13634 | 404859 | 47587 | 2926 | 30 |
| 93 | 8027524 | 2715 | 3338741 | 855812 | 0 | 12582 | 285271 | 35154 | 2673 | 54 |
| 92 | 7468105 | 4432 | 2716821 | 748099 | 0 | 8703 | 249366 | 36885 | 102 | 108 |
| 91 | 7742072 | 9746 | 2893672 | 570854 | 0 | 7481 | 190285 | 35345 | 2368 | 83 |
| 90 | 7927068 | 3280 | 2517145 | 712943 | 0 | 6943 | 237648 | 47336 | 4009 | 55 |
| 89 | 8687143 | 3676 | 2922994 | 833087 | 0 | 6934 | 277696 | 55083 | 4342 | 116 |
| 88 | 8800821 | 568 | 2961942 | 737315 | 0 | 5338 | 245772 | 70682 | 6115 | 78 |
| 87 | 8403556 | 23000 | 2666470 | 576923 | 1937 | 4760 | 192308 | 58113 | 6980 | 84 |
| 86 | 8093892 | 26380 | 2600147 | 701241 | 8701 | 8808 | 233747 | 51373 | 8209 | 87 |
| 85 | 7090963 | 69659 | 2040755 | 661168 | 9754 | 9038 | 220389 | 56147 | 11009 | 28 |
| 84 | 5978688 | 98664 | 1670540 | 564080 | 20230 | 9680 | 188027 | 55959 | 11363 | 34 |
| 83 | 3831635 | 94461 | 948999 | 388127 | 21601 | 8271 | 129376 | 37983 | 10931 | 23 |
| 82 | 2710825 | 145689 | 739107 | 277091 | 51916 | 7279 | 92364 | 37446 | 9270 | 11 |
| 81 | 2305351 | 175194 | 651163 | 251737 | 42762 | 329 | 83912 | 37952 | 12053 | 4 |
| 80 | 1953647 | 79200 | 446378 | 340398 | 20482 | 217 | 113466 | 45494 | 10434 | 9 |
| 79 | 2237823 | 61862 | 529703 | 820584 | 17283 | 917 | 273528 | 88619 | 9290 | 13 |
| 78 | 1785913 | 20597 | 384720 | 756833 | 10222 | 93 | 252278 | 69373 | 8459 | 2 |
| 77 | 1335445 | 12593 | 328772 | 587410 | 0 | 21 | 195803 | 67918 | 9547 | 1 |
| 76 | 824579 | 11453 | 389724 | 295581 | 7408 | 12 | 98527 | 67102 | 6915 | 2 |
| 75 | 477882 | 7505 | 210964 | 181913 | 24441 | 8 | 60638 | 90069 | 8715 | 3 |
| 74 | 532240 | 3599 | 335900 | 130161 | 44505 | 7 | 43387 | 94921 | 0 | 1 |
| 73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93372 | 0 | 0 |
| 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72328 | 0 | 0 |
| 71 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54597 | 0 | 0 |
| 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57955 | 0 | 0 |
| 69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50761 | 0 | 0 |
| 68 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39588 | 0 | 0 |
| 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38887 | 0 | 0 |
| 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34371 | 0 | 0 |
| TOTAL | 119347379 | 865658 | 41130348 | 14620369 | 281243 | 140179 | 4873456 | 1699401 | 150634 | 826 |
| LDV Light duty vehicle <br> LDGV Light duty gasoline vehicle <br> LDDV Light duty diesel vehicle <br> LDGT Light duty gasoline truck <br> LDDT Light duty diesel truck <br> HDGV Heavy duty gasoline vehicle <br> HDGB Heavy duty gasoline bus |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Table 4-2. Vehicles in operation as of July 1996 (continued) U.S. Levels

| Model Year | HDDV |  |  |  |  |  | HDDB |  | ALL VEHICLES TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \hline \text { 2B } \\ 8501-10000 \end{gathered}$ | $\begin{gathered} 3 \\ 10001-14000 \end{gathered}$ | $\begin{gathered} 4-5 \\ 14001-19500 \end{gathered}$ | $\begin{gathered} 6-7 \\ 19501-33000 \end{gathered}$ | $\begin{gathered} 8 A^{*} \\ 33001-60000 \end{gathered}$ | $\begin{gathered} \hline 8 B^{*} \\ >60000 \end{gathered}$ | S.BUS <br> ANY WGT. | T.BUS** ANY WGT. |  |
| 96 | 77760 | 20611 | 15084 | 36848 | 22858 | 63398 | 12592 |  | 10043049 |
| 95 | 162857 | 49894 | 45619 | 112777 | 55767 | 154674 | 34395 |  | 15522473 |
| 94 | 131869 | 46825 | 29457 | 69815 | 41561 | 115272 | 17088 | 1186 | 13739879 |
| 93 | 133923 | 37278 | 26359 | 63675 | 35682 | 98966 | 19899 | 2496 | 12978803 |
| 92 | 93290 | 31827 | 20855 | 55070 | 18191 | 79092 | 20696 | 2278 | 11553918 |
| 91 | 77685 | 28002 | 14467 | 64578 | 25051 | 71036 | 24920 | 3188 | 11760833 |
| 90 | 72117 | 40421 | 18977 | 80650 | 28786 | 83175 | 28698 | 4682 | 11813932 |
| 89 | 69774 | 32708 | 20834 | 60814 | 29759 | 98894 | 15007 | 3829 | 13122690 |
| 88 | 50752 | 22387 | 13770 | 68499 | 25953 | 89567 | 18602 | 3167 | 13121329 |
| 87 | 45383 | 20704 | 4064 | 69454 | 29736 | 74622 | 19539 | 3299 | 12200932 |
| 86 | 84934 | 25966 | 2184 | 60684 | 28204 | 59103 | 17097 | 3330 | 12014086 |
| 85 | 80761 | 10736 | 2066 | 61696 | 30539 | 69423 | 11743 | 3741 | 10439615 |
| 84 | 78286 | 6075 | 1565 | 56347 | 25970 | 56621 | 7120 | 3206 | 8832456 |
| 83 | 51681 | 4005 | 454 | 28033 | 13613 | 26483 | 5245 | 3989 | 5604910 |
| 82 | 35845 | 2110 | 198 | 29110 | 18921 | 28273 | 4488 | 3017 | 4192960 |
| 81 | 1135 | 21 | 246 | 39861 | 23076 | 33078 | 4324 | 3270 | 3665466 |
| 80 | 0 | 0 | 2 | 27106 | 19685 | 24454 | 659 | 3811 | 3085441 |
| 79 | 0 | 0 | 0 | 23784 | 28160 | 36212 | 448 | 1695 | 4129922 |
| 78 | 0 | 1 | 0 | 14891 | 21616 | 29266 | 253 | 1182 | 3355700 |
| 77 | 0 | 2 | 0 | 7938 | 14940 | 23464 | 235 | 760 | 2584847 |
| 76 | 0 | 3 | 268 | 4459 | 9327 | 9767 | 60 | 510 | 1725698 |
| 75 | 0 | 5 | 106 | 4534 | 15695 | 10430 | 77 | 682 | 1093667 |
| 74 | 0 | 34 | 6 | 3740 | 5779 | 8590 | 0 | 338 | 1203209 |
| 73 | 0 | 20 | 127 | 3497 | 5492 | 7013 | 0 | 393 | 109914 |
| 72 | 0 | 0 | 118 | 2601 | 4445 | 3650 | 0 | 247 | 83389 |
| 71 | 0 | 0 | 60 | 1905 | 3799 | 1980 | 0 | 211 | 62551 |
| 70 | 0 | 0 | 38 | 4447 | 3386 | 791 | 0 | 73 | 66691 |
| 69 | 0 | 0 | 116 | 2618 | 850 | 1205 | 0 | 106 | 55655 |
| 68 | 0 | 0 | 95 | 2007 | 655 | 605 | 0 | 78 | 43028 |
| 67 | 0 | 0 | 94 | 321 | 186 | 946 | 0 | 90 | 40524 |
| 66 | 0 | 4 | 71 | 261 | 277 | 298 | 0 | 189 | 35470 |
| TOTAL | 1248050 | 379639 | 217303 | 1062021 | 587955 | 1360346 | 263185 | 55043 | 188283036 |

HDDV Heavy duty diesel vehicle
HDDB Heavy duty diesel bus

* in MY 93-96, assumed $26.5 \%$ of Class 8 vehicles are Class 8 A ; for all other MY, percentage based upon

1992 TIUS data
** transit bus registrations are from FTA data

Table 4-5. Annual mileage accumulation curve fit equations

| Vehicle Class | Equation |
| :--- | :--- |
| LDGV | $y=15684 e^{-0.0506 x}$ |
| LDDV | $y=15684 e^{-0.0506 x}$ |
| LDGT1 | $y=17.472 x^{2}-1163.7 x+20642$ |
| LDGT2 | $y=22905 e^{-0.0712 x}$ |
| LDDT1 | $y=30028 e^{-0.1041 x}$ |
| LDDT2 | $y=28231 e^{-0.0808 x}$ |
| HDGV (2B-3) | $y=21250 e^{-0.0618 x}$ |
| HDGV (4-8) | $y=23243 e^{-0.0829 x}$ |
| HDGSB | $y=9939$ |
| HDGTB | $y=38654 e^{-0.0958 x}$ |
| HDDV (2B) | $y=29657 e^{-0.0888 x}$ |
| HDDV (3) | $y=37008 e^{-0.1222 x}$ |
| HDDV (4-5) | $y=32635 e^{-0.0656 x}$ |
| HDDV (6-7) | $y=44883 e^{-0.0983 x}$ |
| HDDV (8A) | $y=98554 e^{-0.1153 x}$ |
| HDDV (8B) | $y=137024 e^{-0.0982 x}$ |
| HDDSB | $y=9939$ |
| HDDTB | $y=46659 e^{-0.0324 x}$ |

x = Model year - 1900
$y=$ Annual mileage (miles)

## APPENDIX C: Federal Definitions for Light-duty Vehicles

## FEDERAL DEFINITIONS OF LIGHT-DUTY VEHICLES

## Light-Duty Truck (LDT)

Any motor vehicle rated at 8,500 pounds GVWR or less which has a vehicle curb weight of 6,000 pounds or less and which has a basic vehicle frontal area of 45 square feet or
less, which is:
(1) Designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or
(2) Designed primarily for transportation of persons and has a capacity of more than 12 persons, or
(3) Available with special features enabling off-street or off-highway operation and use. (40 CFR 86.082-2)

## Light Light-Duty Truck (LLDT)

Light light-duty truck means any light-duty truck rated up through 6,000 lbs GVWR. (40 CFR 86.094-2)
[Note: The definition for this category of trucks is essentially identical to the California definition for "light-duty truck.")

## Heavy Light-Duty Truck (HLDT)

Heavy light-duty truck means any light-duty truck rated greater than 6,000 lbs GVWR. (40 CFR 86.094-2)

## Light-Duty Truck 1 (LDT1)

Any light light-duty truck up through 3,750 lbs loaded vehicle weight. (40 CFR 86.094-2)

## Light-Duty Truck 2 (LDT2)

Any light light-duty truck greater than 3,750 lbs loaded vehicle weight. (40 CFR 86.094-2)

## Light-Duty Truck 3 (LDT3)

Any heavy light-duty truck up through 5,750 lbs adjusted loaded vehicle weight. (40 CFR 86.094-2)

## Light-Duty Truck 4 (LDT4)

Any heavy light-duty truck greater than 5,750 lbs adjusted loaded vehicle weight. (40 CFR 86.094-2)

## Light-Duty Vehicle (LDV)

A passenger car or passenger car derivative capable of seating 12 passengers or less.
[Note: The federal "light-duty vehicle" definition is essentially identical to the California definition for "passenger car."]

## Loaded Vehicle Weight (LVW)

The vehicle curb weight plus 300 pounds. (40 CFR 86.082-2)

APPENDIX D: Complete Tables of Vehicle Counts, pre-1982-2050

| From MOBILE5 5 | Calendar Year | $\begin{gathered} \text { Light-duty } \\ \text { Vehicles } \end{gathered}$ | $\begin{gathered} \hline \hline \text { Light-duty } \\ \text { Truck Class } 1 \end{gathered}$ | $\begin{gathered} \hline \text { Light-duty } \\ \text { Truck Class } 2 \end{gathered}$ | $\begin{gathered} \hline \text { Light-duty } \\ \text { Truck Class } 3 \end{gathered}$ | $\begin{gathered} \hline \hline \text { Light-duty } \\ \text { Truck Class } 4 \end{gathered}$ | $\begin{gathered} \hline \text { Light-duty } \\ \text { Total } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | pre-1982 | 106,867,000 | 4,801,335 | 15,983,665 | 6,969,875 | 3,205,125 | 137,827,000 |
|  | 1983 | 108,960,000 | 4,857,006 | 16,168,994 | 7,154,140 | 3,289,860 | 140,430,000 |
|  | 1984 | 112,018,000 | 5,065,830 | 16,864,170 | 7,495,270 | 3,446,730 | 144,890,000 |
|  | 1985 | 114,662,000 | 5,336,562 | 17,765,438 | 7,676,795 | 3,530,205 | 148,971,000 |
|  | 1986 | 117,268,000 | 5,676,594 | 18,897,406 | 8,141,910 | 3,744,090 | 153,728,000 |
|  | 1987 | 119,849,000 | 6,006,462 | 19,995,538 | 8,480,985 | 3,900,015 | 158,232,000 |
|  | 1988 | 121,519,000 | 6,343,260 | 21,116,740 | 9,159,820 | 4,212,180 | 162,351,000 |
|  | 1989 | 122,758,000 | 6,759,984 | 22,504,016 | 9,548,900 | 4,391,100 | 165,962,000 |
| Interpolated <br> Arcadis Report Calculated | 1990 | 124,658,000 | 7,058,898 | 23,499,102 | 9,640,005 | 4,432,995 | 169,289,000 |
|  | 1991 | 123,917,173 | 7,495,735 | 24,953,334 | 9,662,236 | 4,443,218 | 170,471,696 |
|  | 1992 | 123,176,346 | 7,932,572 | 26,407,567 | 9,684,467 | 4,453,441 | 171,654,392 |
|  | 1993 | 122,435,519 | 8,369,409 | 27,861,799 | 9,706,698 | 4,463,664 | 172,837,088 |
|  | 1994 | 121,694,691 | 8,806,246 | 29,316,031 | 9,728,929 | 4,473,887 | 174,019,784 |
|  | 1995 | 120,953,864 | 9,243,083 | 30,770,263 | 9,751,160 | 4,484,110 | 175,202,480 |
|  | 1996 | 120,213,037 | 9,566,078 | 31,845,513 | 10,110,975 | 4,649,573 | 176,385,176 |
|  | 1997 | 118,773,800 | 10,414,527 | 34,670,004 | 11,007,753 | 5,061,960 | 179,928,044 |
|  | 1998 | 117,096,045 | 11,280,465 | 37,552,716 | 11,923,017 | 5,482,847 | 183,335,089 |
|  | 1999 | 115,193,551 | 12,162,938 | 40,490,475 | 12,855,757 | 5,911,772 | 186,614,492 |
|  | 2000 | 113,163,114 | 13,070,784 | 43,512,698 | 13,815,316 | 6,353,028 | 189,914,940 |
|  | 2001 | 112,067,320 | 13,799,291 | 45,937,900 | 14,585,319 | 6,707,118 | 193,096,949 |
|  | 2002 | 110,950,294 | 14,512,453 | 48,312,019 | 15,339,104 | 7,053,749 | 196,167,619 |
|  | 2003 | 109,439,432 | 15,274,865 | 50,850,090 | 16,144,943 | 7,424,317 | 199,133,647 |
|  | 2004 | 107,898,603 | 16,025,634 | 53,349,406 | 16,938,478 | 7,789,227 | 202,001,349 |
|  | 2005 | 105,955,155 | 16,685,013 | 55,544,480 | 17,635,416 | 8,109,717 | 203,929,782 |
|  | 2006 | 103,575,222 | 17,410,842 | 57,960,767 | 18,402,589 | 8,462,504 | 205,811,924 |
|  | 2007 | 101,040,538 | 18,155,682 | 60,440,343 | 19,189,856 | 8,824,532 | 207,650,951 |
|  | 2008 | 98,431,413 | 18,906,365 | 62,939,370 | 19,983,299 | 9,189,400 | 209,449,847 |
|  | 2009 | 96,043,330 | 19,613,047 | 65,291,919 | 20,730,235 | 9,532,882 | 211,211,414 |
|  | 2010 | 93,587,131 | 20,228,884 | 67,342,044 | 21,381,152 | 9,832,208 | 212,371,419 |
|  | 2011 | 91,290,697 | 20,817,379 | 69,301,145 | 22,003,168 | 10,118,245 | 213,530,633 |
|  | 2012 | 89,345,016 | 21,346,077 | 71,061,181 | 22,561,981 | 10,375,217 | 214,689,471 |
|  | 2013 | 87,503,888 | 21,856,971 | 72,761,950 | 23,101,976 | 10,623,537 | 215,848,322 |
|  | 2014 | 85,917,827 | 22,324,492 | 74,318,331 | 23,596,128 | 10,850,774 | 217,007,553 |
|  | 2015 | 84,384,402 | 22,695,902 | 75,554,755 | 23,988,694 | 11,031,297 | 217,655,051 |
|  | 2016 | 82,971,891 | 23,052,159 | 76,740,738 | 24,365,244 | 11,204,455 | 218,334,488 |
|  | 2017 | 81,805,681 | 23,371,618 | 77,804,216 | 24,702,900 | 11,359,728 | 219,044,142 |
|  | 2018 | 80,793,310 | 23,669,750 | 78,796,699 | 25,018,014 | 11,504,634 | 219,782,406 |
|  | 2019 | 79,950,083 | 23,943,693 | 79,708,656 | 25,307,561 | 11,637,783 | 220,547,776 |
|  | 2020-2050 | 79,436,359 | 24,165,899 | 80,448,384 | 25,542,425 | 11,745,787 | 221,338,854 |

-DUTY VEHICLE CLASS VEHICLE COUNTS, PRE-1982 THROUGH 2050

| From MOBILE5 | Calendar Year | 2B | 3 | 4 | 5 | 6 | 7 | 8A | 8B | School Bus | Transit Bus | Heavy-duty Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | pre-1982 | 3,025,472 | 267,759 | 198,290 | 176,578 | 551,683 | 581,388 | 298,804 | 689,099 | 209,625 | 28,301 | 6,027,000 |
| Arcadis Report Calculated | 1983 | 3,350,257 | 296,503 | 219,576 | 195,534 | 610,907 | 643,800 | 330,880 | 763,074 | 232,128 | 31,339 | 6,674,000 |
|  | 1984 | 3,650,445 | 323,071 | 239,251 | 213,054 | 665,645 | 701,486 | 360,528 | 831,447 | 252,927 | 34,147 | 7,272,000 |
|  | 1985 | 4,056,552 | 359,012 | 265,867 | 236,756 | 739,697 | 779,525 | 400,636 | 923,944 | 281,065 | 37,946 | 8,081,000 |
|  | 1986 | 4,200,622 | 371,762 | 275,310 | 245,164 | 765,968 | 807,210 | 414,865 | 956,758 | 291,047 | 39,294 | 8,368,000 |
|  | 1987 | 4,498,300 | 398,107 | 294,819 | 262,538 | 820,248 | 864,414 | 444,264 | 1,024,559 | 311,672 | 42,078 | 8,961,000 |
|  | 1988 | 4,714,656 | 417,255 | 308,999 | 275,165 | 859,700 | 905,989 | 465,632 | 1,073,838 | 326,663 | 44,102 | 9,392,000 |
|  | 1989 | 5,018,358 | 444,133 | 328,904 | 292,891 | 915,079 | 964,350 | 495,627 | 1,143,011 | 347,705 | 46,943 | 9,997,000 |
|  | 1990 | 5,173,471 | 457,861 | 339,070 | 301,944 | 943,363 | 994,158 | 510,946 | 1,178,340 | 358,453 | 48,394 | 10,306,000 |
|  | 1991 | 5,306,653 | 469,648 | 347,799 | 309,717 | 967,648 | 1,019,750 | 524,099 | 1,208,675 | 367,680 | 49,640 | 10,571,310 |
|  | 1992 | 5,439,835 | 481,435 | 356,528 | 317,490 | 991,933 | 1,045,343 | 537,253 | 1,239,009 | 376,908 | 50,886 | 10,836,620 |
|  | 1993 | 5,573,017 | 493,222 | 365,257 | 325,263 | 1,016,219 | 1,070,936 | 550,406 | 1,269,343 | 386,136 | 52,132 | 11,101,930 |
|  | 1994 | 5,706,199 | 505,008 | 373,985 | 333,036 | 1,040,504 | 1,096,529 | 563,560 | 1,299,677 | 395,364 | 53,377 | 11,367,239 |
|  | 1995 | 5,839,381 | 516,795 | 382,714 | 340,809 | 1,064,789 | 1,122,122 | 576,713 | 1,330,012 | 404,591 | 54,623 | 11,632,54 |
|  | 1996 | 5,972,563 | 528,582 | 391,443 | 348,582 | 1,089,074 | 1,147,715 | 589,867 | 1,360,346 | 413,819 | 55,869 | 11,897,859 |
|  | 1997 | 6,234,738 | 551,785 | 408,626 | 363,883 | 1,136,881 | 1,198,095 | 615,760 | 1,420,060 | 431,984 | 58,321 | 12,420,134 |
|  | 1998 | 6,495,685 | 574,879 | 425,728 | 379,113 | 1,184,464 | 1,248,240 | 641,531 | 1,479,495 | 450,064 | 60,762 | 12,939,962 |
|  | 1999 | 6,755,458 | 597,870 | 442,754 | 394,274 | 1,231,832 | 1,298,159 | 667,187 | 1,538,663 | 468,063 | 63,192 | 13,457,453 |
|  | 2000 | 6,929,009 | 613,229 | 454,129 | 404,404 | 1,263,479 | 1,331,510 | 684,328 | 1,578,192 | 480,088 | 64,816 | 13,803,182 |
|  | 2001 | 7,103,086 | 628,635 | 465,538 | 414,563 | 1,295,221 | 1,364,961 | 701,520 | 1,617,840 | 492,149 | 66,444 | 14,149,957 |
|  | 2002 | 7,277,658 | 644,085 | 476,979 | 424,752 | 1,327,053 | 1,398,507 | 718,761 | 1,657,602 | 504,245 | 68,077 | 14,497,720 |
|  | 2003 | 7,452,698 | 659,576 | 488,451 | 434,968 | 1,358,971 | 1,432,144 | 736,049 | 1,697,470 | 516,373 | 69,715 | 14,846,415 |
|  | 2004 | 7,628,181 | 675,107 | 499,952 | 445,210 | 1,390,970 | 1,465,865 | 753,380 | 1,737,439 | 528,531 | 71,356 | 15,195,992 |
|  | 2005 | 7,729,717 | 684,093 | 506,607 | 451,136 | 1,409,485 | 1,485,377 | 763,408 | 1,760,566 | 535,566 | 72,306 | 15,398,261 |
|  | 2006 | 7,834,765 | 693,390 | 513,492 | 457,267 | 1,428,640 | 1,505,564 | 773,783 | 1,784,492 | 542,845 | 73,289 | 15,607,525 |
|  | 2007 | 7,943,097 | 702,978 | 520,592 | 463,590 | 1,448,394 | 1,526,381 | 784,482 | 1,809,166 | 550,351 | 74,302 | 15,823,332 |
|  | 2008 | 8,054,502 | 712,837 | 527,894 | 470,092 | 1,468,708 | 1,547,789 | 795,484 | 1,834,541 | 558,070 | 75,344 | 16,045,260 |
|  | 2009 | 8,168,782 | 722,951 | 535,383 | 476,761 | 1,489,547 | 1,569,750 | 806,771 | 1,860,570 | 565,988 | 76,413 | 16,272,915 |
|  | 2010 | 8,226,408 | 728,051 | 539,160 | 480,125 | 1,500,055 | 1,580,824 | 812,462 | 1,873,695 | 569,980 | 76,952 | 16,387,713 |
|  | 2011 | 8,289,920 | 733,672 | 543,323 | 483,832 | 1,511,636 | 1,593,028 | 818,735 | 1,888,161 | 574,381 | 77,546 | 16,514,234 |
|  | 2012 | 8,358,898 | 739,777 | 547,844 | 487,857 | 1,524,214 | 1,606,283 | 825,547 | 1,903,872 | 579,160 | 78,191 | 16,651,644 |
|  | 2013 | 8,432,953 | 746,331 | 552,697 | 492,180 | 1,537,717 | 1,620,514 | 832,861 | 1,920,739 | 584,291 | 78,884 | 16,799,168 |
|  | 2014 | 8,511,724 | 753,302 | 557,860 | 496,777 | 1,552,081 | 1,635,651 | 840,641 | 1,938,680 | 589,749 | 79,621 | 16,956,086 |
|  | 2015 | 8,553,232 | 756,976 | 560,580 | 499,199 | 1,559,650 | 1,643,628 | 844,740 | 1,948,134 | 592,625 | 80,009 | 17,038,774 |
|  | 2016 | 8,601,538 | 761,251 | 563,746 | 502,019 | 1,568,458 | 1,652,910 | 849,511 | 1,959,137 | 595,972 | 80,461 | 17,135,004 |
|  | 2017 | 8,656,127 | 766,082 | 567,324 | 505,205 | 1,578,412 | 1,663,400 | 854,903 | 1,971,570 | 599,754 | 80,972 | 17,243,750 |
|  | 2018 | 8,716,524 | 771,427 | 571,283 | 508,730 | 1,589,425 | 1,675,006 | 860,868 | 1,985,327 | 603,939 | 81,537 | 17,364,065 |
|  | 2019 | 8,782,288 | 777,247 | 575,593 | 512,568 | 1,601,417 | 1,687,644 | 867,363 | 2,000,305 | 608,495 | 82,152 | 17,495,073 |
|  | 2020-2050 | 8,853,014 | 783,507 | 580,228 | 516,696 | 1,614,314 | 1,701,235 | 874,348 | 2,016,414 | 613,396 | 82,814 | 17,635,965 |

## APPENDIX E: Weibull Curve Fit Equations

                    \(\mathrm{Y}=\mathrm{C} * \exp (-(\mathrm{age} / \mathrm{B}) * * A)\)
    LDV

| Parameter | Estimate | Asymptotic <br> Std. Error |  | Asymptotic $95 \%$ <br> Confidence Interval |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
|  |  |  | Lower | Upper |  |

LDT1

| Parameter | Estimate | Asymptotic <br> Std. Error |  | Asymptotic 95 \% |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  | Lonfidence Interval |  |  |


| Parameter | Estimate | Asymptotic <br> Std. Error |  | Asymptotic 95 Confidence Interval |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  | Lower | Upper |  |

```
CURVE FITTING ROUTINE
STARTING VALUES ARE CRITICAL
data a; set a.T;
pldv=ldv/9172119;
pldt1=ldt1/3723979;
pbus=bus/4737;
proc means; run;
data a; set a; drop pbus1; run;
*LDV*;
symbol i=join;
proc nlin data=a; parm a=2.5 b=11 C=.8;
model pldv =C*exp(-(age/b)**a); output out=b p=prldv ;
proc gplot; plot (pldv prldv)*age/overlay; run;
data a; set b;
*LDT1*;
proc nlin data=a; parm a=2.5 b=11;
model pldt1 =exp(-(age/b)**a); output out=b p=prldt1 ;
proc gplot; plot (pldt1 prldt1)*age/overlay; run;
data a; set b;
*BUS*;
proc nlin data=a; parm a=2.5 b=11;
model pbus =exp(-(age/b)**a); output out=b p=prbus ;
proc gplot; plot (pbus prbus)*age/overlay; run;
data a; set b;
*BUS APPLIED TO MOVING AVERAGE*;
data a; set a;
sbus=(pbus+lag(pbus) +lag2 (pbus) +lag3 (pbus) +lag4 (pbus)) /5;run;
proc nlin data=a; parm a=2.5 b=11;
model sbus =exp(-(age/b)**aGE); output out=b p=prbus1 ;
proc gplot; plot (sbus prbusl)*age/overlay; run;
```


## APPENDIX F: Stakeholder Comments and Response to Comments

## Comment

".... EPA is planning on using the most recent NPTS to determine mileage accumulation rates. The NPTS surveys have the drawback that they are telephone surveys, in which respondents are asked how many miles they drove in a particular vehicle the previous year. Respondents tend to give very common replies, for example 5,000 miles, 10,000 miles, or 15,000 miles. These are very rough educated guesses, at best. AAMA believes that the instrumented car data analyzed by Sierra may be a more accurate reflection of mileage accumulation than these owner surveys. AAMA recommends that EPA carefully compare the instrumented data to the NPTS surveys to determine the differences, before deciding which mileage accumulation rates to use in MOBILE6."

It is useful to have emission rates available for different types of HDVs, both trucks and buses; but I'm glad that such outputs will be optional. I suggest you also draw up a list of examples of the HDVs of the various subdivisions you have mentioned, illustrated if possible. (A similar list of LDTs types 1 and 2 would be useful too, especially to those just coming into MOBILE modeling.) Do your proposed subdivisions of the HDV category match those of PART5?

## Response

Due to time constraints, EPA opted to use the data supplied by Arcadis.

Creation of a list of examples of the various HDV vehicles in each class has been added to the EPA "wish list" and will be considered for future versions of the MOBILE model and guidance materials Each PART5 vehicle category corresponds to one, or to a group of several, MOBILE6 vehicle categories.

## Sam Long, Illinois EPA

Dale Aspy, EPA Region 4, GA
"Do they match those of (many) state vehicle registration authorities? (I haven't checked on this.) Where will the VMT mix data for such vehicles come from? See - Illinois Travel Statistics, Table VFC-1, p.14, mentioned above, which gives what are in effect VMT mixes for various HDV types for different functional classes of roads. I know that publications MD and/or MC may have information on this subject."
"The Trip Characteristic tables and graphs shown in the handout are very interesting. They show that people are driving more now, making more trips, and are getting more use out of older cars. This is not surprising: there has been a considerable improve-ment in the quality, and hence longevity-and an even more considerable increase in the price-of new cars since the ' 70 s . People are keeping their old cars longer, and driving them more; they can hardly afford to do otherwise. How have the deterioration rates been affected by this? Cars are obviously more durable these days; how about their emission control systems?"
"The Region makes the comment that the ratios of light duty vehicles versus light duty trucks has changed significantly due to the popularity of minivans, sport utility vehicles, and small pickup trucks. MOBILE6 needs to reflect this effect. It is also noted that some of these vehicles that are classified as light duty trucks are built on light duty vehicle platforms or use light duty vehicle engines. It is believed that some states are registering these "trucks" as light duty vehicles. Also requested is the fleet characteristic by roadway type. This includes both VMT accumulation rates and vehicle class as different types of vehicle classes tend to use different types of roads. The Region also notes the research conducted by Georgia Tech which implies different I/M effects depending upon fleet classification. It is suggested that OMS contact Georgia Tech on this issue."
"Motorcycles are not addressed in EPA's issue discussion. Has any new data been generated?"

Unfortunately, we do not have any data at this time to address the effects of increased driving and age of on-road vehicles on deterioration; EPA will consider addressing this issue in future versions of the model.

This issue has been addressed at length in Chapter 4.0 of the document.

Due to data and time constraints, EPA has assumed that the data for motorcycles derived for MOBILE5 are generally consistent with current trends; therefore, all motorcycle data is from MOBILE5.

John German,
Former EPA Staff;
Currently with
Honda, MI

John Walsh, EPA
Regions 2, NY

Regarding] the split between light trucks above and below 8500 GVWR: "...It does not appear that this is being done properly, as there are way too many diesel trucks below 8500 GVW and not enough gasoline trucks above 8500
This is probably not the contractors fault (it's likely the result of how vehicles are registered) so there may not be any reason to ask the contractor to do additional work, but I want to make sure people are aware of this."
"The larger issue is that Acurex doesn't even mention one of the primary sources of data on VMT, the Residential Transportation Energy Consumption Survey (RTECS), conducted by DOE's EIA. This doesn't impact the registration work as RTECS doesn't address that, but one of the strengths of the RTECS data is that they collect actual odometer measurements, not just someone's recollection of how much they drove. NHTSA has done it's own assessment of VMT by age, during which it considered RTECS, NPTS, and TIUS and selected RTECS as the most reliable data of the three (some scoundrel borrowed my copy of the report and hasn't returned it, but if anyone is interested they can get a copy from Orrin Kee of NHTSA). I have also heard transportation people express concern that NPTS overstates VMT, as a simple multiplication of the average VMT from NPTS by the actual stock overstates the VMT reported by FHWA. In addition, the VMT rates from TIUS for older trucks seem to be extremely low. In summary, I have concerns that Acurex, by not even considering the RTECS data, may not have done an adequate job of assessing VMT by age."
"Can local data that EPA collects be made available to users?"

John Walsh, EPA
Regions 2, NY
"Consideration should be given to characterizing data for other months besides January and July."

Due to data and time constraints, EPA used the data supplied by Arcadis and adjusted it (as described throughout the text) where applicable to better reflect expected "real world" conditions.

EPA did not use local data, but instead used nationwide survey data. Local data may be substituted in the model, but must be supplied by the individual states.

The MOBILE model was, and is, originally structured for January/July data. Changing this was not a part of the scope for this version of the model. This comment has been recorded, and may be considered for future versions of the model.

## REFERENCES

1. Browning, Louis, et al. Update of Fleet Characterization Data for Use in MOBILE6: Final Report. EPA Report \# EPA420-P-98-016. Arcadis Geraghty \& Miller, Mountain View, CA, 1998.
2. Office of Air and Radiation, Office of Mobile Sources, Engine Programs and Compliance Division. Final Regulatory Impact Analysis: Control of Emissions of Air Pollution from Highway Heavy-duty Engines. EPA Report \# A-95-27, V-B-01. U.S. Environmental Protection Agency, Ann Arbor, MI, 1997.
3. Office of Air and Radiation, Office of Mobile Sources. 1998 sales data as reported by automotive manufacturers to the Vehicle Programs and Certification Division (VPCD) Certification and Fuel Economy Information System (CFEIS) database. U.S. Environmental Protection Agency, Ann Arbor, MI, 1998.
4. Energy Information Administration. Annual Energy Outlook 1999. U. S. Department of Energy, Washington, D.C., 1999.
5. Pemberton, Max. 1996 World Vehicle Forecasts and Strategies: The Next 20 years: A Special Report Covering the Period from 1960-2015. Ward's Communications. Pemberton Associates, Warwickshire, UK, 1996.
6. German, John. VMT and Emission Implications of Growth in Light Truck Sales. Proceeding of the 1997 Air \& Waste Management Association conference, "Emission Inventory: Planning for the Future." Air \& Waste Management Association, Pittsburgh, PA, 1998.
7.Koupal, John W. Development of Light-duty Emission Inventory Estimates in the Notice of Proposed Rulemaking for Tier 2 and Sulfur Standards. EPA Report\# 420-R-99-005. U.S. Environmental Protection Agency, Ann Arbor, MI, 1999.
7. Office of Air and Radiation, Office of Mobile Sources. 1998 sales data as reported by automotive manufacturers to the Vehicle Programs and Certification Division (VPCD) Certification and Fuel Economy Information System (CFEIS) database. U.S. Environmental Protection Agency, Ann Arbor, MI, 1998.
9.Sienicki, Edward. Memo to Mr. Phil Lorang, of the U.S. Environmental Protection Agency from Navistar International Transportation Corporation, data April 23, 1992.

[^0]:    ${ }^{1}$ Due to data and time constraints, EPA has assumed that the data for motorcycles derived for MOBILE5 are generally consistent with current trends; therefore, all motorcycle data is from MOBILE5.

[^1]:    * Age $1=75 \%$ of Age 1 as predicted by the curve fit analysis to reflect a July 1 population of age 1 vehicles

[^2]:    $\rightarrow$ Original School Bus Age Distribution ——New School Bus Curve Fit Distribution

