EFFECT OF THE PROPOSED COOPER RIVER REDIVERSION ON
 SEDIMENTATION IN CHARLESTON HARBOR, SOUTH CAROLINA

By Glenn G. Patterson

U.S. GEOLOGICAL SURVEY
 Water-Resources Investigations Report 83-4198

Prepared in cooperation with
U.S. ARMY ENGINEER DISTRICT, CHARLESTON CORPS OF ENGINEERS

Dept.
Seal
Columbia, South Carolina
1983

UNITED STATES DEPARTMENT OF THE INTERIOR

WILLIAM P. CLARK, Secretary
GEOLOGICAL SURVEY
Dallas L. Peck, Director

For additional information write to:

District Chief
U.S. Geological Survey, WRD

1835 Assembly Street, Suite 658
Columbia, South Carolina 29201

Copies of this report can be purchased from:

Open-File Services Section
U.S. Geological Survey

Federal Center, Box 25425
Denver, Colorado 80225
(Telephone: 303/234-5888)
Page
Glossary vi
Abstract 1
Introduction 2
Charleston Harbor has been undergoing rapid sedimentation since 1942 2
Purpose of study is to determine the extent to which rediversion will reduce the rate of maintenance dredging. 7
Scope limited to a review of existing information 9
Method of investigation 9
Acknowledgments 9
Sediment inflow. 9
Sediment composition reflects mixture of Piedmont, Coastal Plain, and marine sediments. 11
Sediment is eroded from the bed and banks of the upper Cooper River 11
The diverted flow of the Santee River carries Piedmont clay past Pinopolis Dam 14
Other sources of sediment 21
Sediment removal and retention 22
Dredged sediment generally returned to the harbor until the late 1950 's. 22
The Santee-Cooper diversion project made Charleston Harbor a more efficient sediment trap 24
Channel deepening contributed to making the harbor a more efficient sediment trap 27
Sediment has accumulated on the harbor floor since the diversion. 27
The estimated sediment budget is out of balance 28
The effect of rediversion on the rate of sedimentation 30
Selected references 33
Appendix A.--Discharge and suspended-sediment records for Lake Moultrie tailrace near Pinopolis. 37
Appendix B.--Discharge and suspended-sediment records for Santee River near Fort Motte 57

ILLUSTRATIONS
Page
Figure 1. Map of Santee and Cooper River basins 3
2. Graph of cumulative gross maintenance dredging rate, inner channels of Charleston Harbor 6
3. Map of Santee-Cooper project 8
4-8. Graph of :
4. Sediment flux diagram for Charleston Harbor 10
5. Relation between monthly mean sediment concentration at Pinopolis Dam and previous monthly mean discharge of Broad River at Richtex 17
6. Annual discharge versus annual sediment load at Pinopolis Dam 18
7. Cumulative rates of gross maintenance dredging from Charleston Harbor and estimated annual permanent removal of sediment by dredging 25
8. Well-mixed and partially-mixed estuarine circulation. 26
TABLES
Table 1. Gross maintenance dredging rate and estimates of rates of runback and permanent removal, all inner channels of Charleston Harbor 4
2. Channel cross-sectional areas at nine points along the upper Cooper River at several times 12
3. Estimated channel volumes between nine points along the upper Cooper River and erosion rates at several times. 13
4. Total annual discharge and sediment load at Pinopolis Dam for 5 years 15
5. Total discharge and estimated total sediment load at Pinopolis Dam for 41 years 19

Table 6. Estimates of mean annual sediment load passing Pinopolis
Dam • • • • • • • • • • • • • • 20
7. Increases in gross maintenance dredging rate in the entrance channel and inner Charleston Harbor. 23
8. Estimated ranges for rates of mean annual sediment inflow to Charleston Harbor from known sources 28
9. Estimated sediment budget for Charleston Harbor, 1942-82. 29
10. Possible effects of rediversion on maintenance dredging rate in Charleston Harbor 32

Bottom sediment -- sediment that accumulates in unconsolidated deposits on the harbor floor. Bottom sediment is predominantly fine-grained, has a low density, and is easily transported by estuarine currents.

Bulk density -- the weight of a unit volume of dry sediment, including pore spaces.

Entrance channel -- the navigation channel extending from the entrance of Charleston Harbor, near Fort Sumter, out through the jetties to the ocean.

Estuary -- a semi-enclosed coastal body of water which has a free connection with the open sea and within which seawater is measurably diluted with freshwater from land drainage (Pritchard, 1967).

Gross dredging volume -- an estimate of the amount of sediment actually removed from a navigation channel during dredging, including net dredging volume plus extra dredging volume commonly done to ensure that the full dimensions of the channel have been dredged.

Inner channels -- the main navigation channels of the Cooper River, extending about 20 miles from the Naval Weapons Annex to the entrance channel.

Maintenance dredging -- dredging done to maintain existing navigation channels. In this report, maintenance dredging volumes are for net maintenance dredging in the inner channels of the harbor.

Net dredging volume -- the amount of dredging for which dredgers were paid. Also known as credited dredging volume. The volume is determined by comparing channel volume from predredging surveys with specified channel dimensions.

Runback -- dredged sediment that returns to the harbor.

Sedimentation -- the process of net accumulation of sediment that occurs when sediment inflow exceeds sediment removal.

Shoal -- a deposit of sediment, in a navigation channel, that impedes navigation.

EFFECT OF THE PROPOSED COOPER RIVER REDIVERSION ON
 SEDIMENTATION IN CHARLESTON HARBOR, SOUTH CAROLINA

By Glenn G. Patterson

Abstract

The rates of sedimentation and of resultant maintenance dredging in Charleston Harbor increased dramatically in the 1940's, following two major modifications to the harbor. One modification was deepening of the project depth of the navigation channels from 30 to 35 feet below mean low water. The other modification was the Santee-Cooper diversion project, which added an average of 15,000 cubic feet per second of Santee River water to the Cooper River, increasing by many times the freshwater inflow to the harbor. The diversion brought additional sediment into the harbor and made the harbor a more efficient sediment trap by inducing a landward flow of salty water along the harbor floor. In 1966, plans were made to redivert most of the Santee River water back to its former channel, in order to reduce the rate of sedimentation in the harbor.

The purpose of this investigation was to use existing information to determine the probable effectiveness of the proposed rediversion in reducing rates of sedimentation and maintenance dredging in the harbor.

The approach was to estimate a sediment budget for the harbor and then estimate the effect of rediversion on the sediment budget.

Major sources of sediment included erosion from the bed and banks of the upper Cooper River and sediment that originated in the Santee River basin and passed pinopolis Dam with the diverted water. A number of minor sources, not directly affected by the diversion, contributed additional sediment.

Between 1942 and 1953 most of the sediment that was dredged from the navigation channels was deposited in undiked spoil areas or in the harbor, resulting in a high rate of runback of dredged sediment to the navigation channels, and rapid accumulation of sediment on the harbor floor. Improvements in dredging and spoil disposal methods reduced the rate of runback of dredged sediment after 1953 to an estimated 22 percent, but the rate of maintenance dredging has remained high (about 7 million cubic yards

per year)--higher than can be accounted for by known sediment inputs. Inflow from the ocean by bottom currents may provide some of the unaccounted for sediment.

Rediversion should reduce sediment loads in the Cooper River and diminish the sediment-trapping landward bottom current. The rate of maintenance dredging that will be needed following rediversion cannot be precisely estimated because of the uncertainties in the sediment budget, but the rate of maintenance dredging following rediversion will probably be 40 to 75 percent less than the average during the period 1966-82. The reduction in the rate of maintanance dredging may be delayed by a decade or more by the need to remove previously accumulated sediment and may be partially of fset by the effects of future channel deepening.

INTRODUCTION

Charleston Harbor is an estuary at the mouth of the Cooper River. sediment is carried into estuaries both by freshwater from land drainage and by landward flow of seawater (Guilcher, 1967, p. 149). The inflowing sediment tends to accumulate in estuaries because suspended particles are agglomerated by estuarine organisms and by contact with saltwater, and because the circulation of water in estuaries of ten favors deposition of sediment in localized areas (Meade, 1972, p. 96-113; Postma, 1967, p. 158-178). As a result, many estuaries that are used as harbors require periodic maintenance dredging to keep navigation channels open.

Charleston Harbor Has Been Undergoing
Rapid Sedimentation Since 1942
Charleston Harbor, a major harbor of the southeastern United states (fig. 1), had a low rate of sedimentation prior to 1942. Maintenance dredging was not needed in the harbor until 1928, 12 years after the channels were deepened from 28 feet to 30 feet below mean low water. Between 1928 and 1942 gross maintenance dredging in the harbor averaged about $300,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$ (Mathews and others, 1980, p. 173).

The rate of sedimentation in the harbor increased dramatically in the 1940's, requiring a nearly twentyfold increase in the rate of maintenance dredging (fig. 2). Between 1942 and 1982 the rate of gross maintenance dredging in the harbor averaged about 6.8 million $y^{3} y^{\prime} r^{-1}$ (table 1).

Two major modifications immediately preceded the sharp increase in the rate of sedimentation. One modification was deepening of the project depth of the navigation channels from 30 to 35 feet below mean low water. The deepening, which took place between 1941 and 1943, involved dredging several shallow areas that separated deeper reaches.

Figure 1.--Santee and Cooper River basins.

Table 1.--Gross maintenance dredging rate and estimates of rates of runback and permanent removal, all inner channels of Charleston Harbor, volumes are in cubic yards

Fiscal year	Dredging*	Runback rate, percent	Run back	Permanent removal
1942	1,449,000	90	1,304,100	144,900
1943	1,197,100	90	1,077,400	119,700
1944	2,677,000	90	2,409,300	267,700
1945	5,856,100	90	5,270,500	585,600
1946	4,892,500	90	4,403,200	489,300
1947	5,631,000	90	5,067,900	563,100
1948	4,319,700	90	3,887,700	432,000
1949	4,375,500	90	3,938,000	437,500
1950	7,466,500	90	6,719,800	746,700
1951	4,947,900	90	4,453,100	494,800
1952	7,326,900	90	6,594,200	732,700
1953	6,596,400	90	5,936,800	659,600
1954	7,221,500	77	5,560,600	1,660,900
1955	4,428,000	64	2,833,900	1,594,100
1956	9,727,300	51	4,960,900	4,766,400
1957	5,432,000	37	2,009,800	3,422,200
1958	5,100,800	22	1,122,200	3,978,600
1959	4,847,000	22	1,066,300	3,780,700
1960	8,508,600	22	1,871,900	6,636,700
1961	10,757,600	22	2,366,700	8,390,900
1962	8,702,200	22	1,914,500	6,787,700
1963	9,105,000	22	2,003,100	7,101,900
1964	9,509,700	22	2,092,100	7,417,600
1965	11,199,900	22	2,464,000	8,735,900
Subtotal				
1942-65	151,275,200	54	81,328,000	69,947,200
Mean				
1942-65	6,303,100	54	3,388,700	2,914,500**

Table 1.--Gross maintenance dredging rate and estimates of rates of runback and permanent removal, all inner channels of Charleston Harbor, volumes are in cubic yards (Continued)

Fiscal year	Dredging*	Runback rate, percent	Runback	Permanent removal
1966	6,713,600	22	1,477,000	5,236,600
1967	7,735,800	22	1,701,900	6,033,900
1968	6,176,000	22	1,358,700	4,817,300
1969	4,955,900	22	1,090,300	3,865,600
1970	9,705,400	22	2,135,200	7,570,200
1971	8,291,600	22	1,824,200	6,467,400
1972	6,114,700	22	1,345,200	4,769,500
1973	6,819,200	22	1,500,200	5,319,000
1974	8,183,900	22	1,800,500	6,383,400
1975	9,704,700	22	2,135,000	7,569,700
1976	9,987,700	22	2,197,300	7,790,400
1977	11,671,600	22	2,567,800	9,103,800
1978	4,223,300	22	929,100	3,294,200
1979	9,391,000	22	2,066,000	7,325,000
1980	5,997,100	22	1,319,400	4,677,700
1981	5,694,000	22	1,252,700	4,441,300
1982	7,636,100	22	1,679,900	5,956,200
Subtotal				
1966-82	129,001,600	22	28,380,400	100,621,200
Mean				
1966-82	7,588,300	22	1,669,400	5,918,900
Total				
1942-82	280,276,800	39	109,708,400	170,568,400
Mean				
1942-82	6,836,000	39	2,675,800	4,160,200

*1942-65 from U.S. Army Corps of Engineers, 1966a, table 24, rounded to nearest $100 \mathrm{yd}^{3}$. 1966-82 from U.S. Army Corps of Engineers, unpublished data, rounded to nearest $100 \mathrm{yd}^{3}$.

[^0]

Figure 2.--Cumulative gross maintenance dredging rate, inner channels of Charleston Harbor.

Abstract

The other modification was completion, in 1942, of the Santee-Cooper diversion project. This project was built to generate hydroelectric power by diverting an average of about $15,000 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ of the flow of the santee River, the second-largest river on the east coast of the United States, into the Cooper River, the formerly sluggish Coastal plain stream that flows into Charleston Harbor (fig. 3). Release of water to the old channel of the Santee was reduced to $500 \mathrm{ft}^{3} \mathrm{~s}^{-1}$, except during large floods.

The diversion increased the land area draining into Charleston Harbor twelvefold, from $1,300 \mathrm{mi}^{2}$ to $16,100 \mathrm{mi}{ }^{2}$ (U.S. Army Corps of Engineers, 1966a, p. 37A). The increase in freshwater inflow to the harbor was even greater, because the Piedmont drainage basin of the Santee River produces more run off per square mile than the Coastal Plain drainage basin of the Cooper River.

This increase in freshwater inflow has been cited as the major cause of the increase in the rate of sedimentation (U.S. Army Corps of Engineers, 1955, p. vi, 1966b, p. 11). The studies that led to this conclusion covered various facets of the sedimentation problem, including sediment source analysis, hydrodynamics, and hydraulic modeling. Conclusions reached from the studies were that the augmented freshwater flow increased the flow of sediment into the harbor and altered the circulation pattern of the harbor to make it a more efficient sediment trap. Channel deepening was reported to be responsible for a negligible amount of the increase in the rate of sedimentation.

As a result of the studies, the U.S. Army Corps of Engineers concluded that the most practicable way to reduce requirements for maintenance dredging was to redivert 80 percent of the Santee River water back to the santee. It was predicted that rediversion would reduce maintenance dredging requirements by about 70 percent within about 10 years (U.S. Army Corps of Engineers, 1966c, p. B-2-4, B-2-7).

The proposed rediversion is to be accomplished via a canal connecting Lake Moultrie with the old channel of the Santee, downstream from Wilson Dam (fig. 3). A new powerhouse is to be built on the canal near St. Stephen. The rediversion project was authorized by Congress in 1967, but construction did not begin until 1979. The project was 50 percent complete in 1981, with completion scheduled for 1984.

Purpose of Study is to Determine the Extent to which Rediversion will Reduce the Rate of Maintenance Dredging

In response to questions concerning the rediversion proposal, Congress authorized an independent investigation of the effectiveness of the rediversion in solving the sedimentation problem (U.S. Congress, 1979, p. 97). At the request of the U.S. Army Corps of Engineers, the U.S. Geological Survey conducted the investigation.

Figure 3.--Santee-Cooper project.

Scope Limited to a Review of Existing Information

The scope of the investigation is limited to evaluating the effect of the proposed rediversion on sedimentation and maintenance dredging in Charleston Harbor. The sources of information are limited to existing data and literature. Virtually no new field data were collected.

Existing data are inadequate to quantify and describe the complex process of sedimentation in the harbor. The estimates provided are based on interpretation of available data, with ranges of error dictated by uncertainties in the data.

Method of Investigation

The investigation involved three steps:

1. Gathering existing information.
2. Estimating rates of sediment inflow, removal, and accumulation that have evolved since the diversion.
3. Projecting the estimates into the future to predict the effect of rediversion on rates of sedimentation and maintenance dredging.

Information was obtained from published literature, maps, charts, hydrographic surveys, unpublished files, and knowledgeable individuals.

Acknowledgments

Gratitude is expressed to Mr. Henry B. Simmons, of the U.S. Army Corps of Engineers, Waterways Experiment Station; to the Committee on Tidal Hydraulics of the Corps of Engineers; and to Dr. James P. Bennett, Mr. David W. Hubbell, and Dr. Robert H. Meade, of the U.S. Geological Survey, for consultation during the investigation and for reviewing the manuscript.

SEDIMENT INFLOW

The primary known sources of sediment inflow to Charleston Harbor since the diversion have been eroded sediment from the bed and banks of the upper Cooper River and sediment from the Piedmont that passes through Pinopolis Dam to the Cooper River (fig. 4). Both of these sources are directly related to the diversion. Other sources such as tidal marshes and storm runoff from the Cooper River watershed contribute significant amounts of sediment to the harbor. The near-shore marine zone may be a major source. Direct measurements of the quantity of sediment inflow from most sources are not available. Estimates are based on a few available measurements, on the composition of harbor sediment, on estimates of the volume of material eroded

Figure 4.--Sediment flux diagram for Charleston Harbor.
from the bed and banks of the Cooper River, and on data in reports on other estuaries having sedimentation regimes similar to Charleston Harbor.

> Sediment Composition Reflects Mixture of
> Piedmont, Coastal Plain, and Marine Sediments

The composition of sediment that has accumulated in Charleston Harbor provides information about the sources of sediment inflow. Sediment that can be traced to the Piedmont physiographic province is delivered to the Cooper River via the diversion canal between Lake Marion and Lake Moultrie (fig. 3). This is the only direct route by which piedmont sediment can reach the harbor, although it is conceivable that piedmont sediment could also reach Charleston Harbor indirectly via the Pee Dee and Santee Rivers and long-shore currents in the Atlantic Ocean.

The sediment that has accumulated in Charleston Harbor is predominantly inorganic clay and silt, with minor amounts of sand and organic material (U.S. Army Corps of Engineers, 1966d, tables AA-2, AA-3). In the clay fraction, the ratio of kaolinite to montmorillonite ranges from 0.5 to 2.4 , indicating a mixture of Piedmont and Coastal Plain clays (Neiheisel and Weaver, 1967, p. 1110).

The silt fraction contains quartz grains similar to those in Cooper River silt (Van Nieuwenhuise and others, 1978, p. 380). The silt also contains coccoliths that were probably eroded from the Cooper Marl in the Cooper River basin, and a mixture of freshwater and saltwater diatoms (Neiheisel, 1981, unpublished data on file with USGS, Columbia, S.C.).

The ocean is the primary source of the sand, which is abundant only near the harbor entrance (Van Nieuwenhuise and others, 1978, p. 378).

Sediment is Eroded from the Bed and Banks of the Upper Cooper River

Diversion of the Santee River in 1942 caused a substantial increase in flow in the upper Cooper River between the Pinopolis Dam tailrace and Charleston Harbor (fig. 3). The augmented flow eroded a large amount of sediment from the bed and banks of the upper Cooper River and carried the sediment to Charleston Harbor.

The erosion rate has been estimated at various times since 1942 by comparing computations of channel volume based on sequential measurements of channel cross-sectional areas at nine locations along the upper Cooper River (table 2). The nine locations are shown in figure 3. The volume of the river channel at the time of each measurement was estimated using the average-endarea method (table 3). The volume of bottom sediment derived from erosion during the period between each measurement was computed by estimating the proportion of the eroded sediment that was carried to the harbor in suspension or as bed load, and adjusting for the difference in density between bank soil
Table 2.--Channel cross-sectional areas at nine points along the upper Cooper River at several times

Range number	```Intervening distance miles / feet```		Datum in feet above NGVD	Cross-sectional area, in square feet, below datum						
			1942	1949	1964	1965	1972	1981		
1	2.7	14,260		6.5	6,399	6,940	7,240	7,180	6,949	8,266
2			7.0	8,621	10,830	11,120	11,075	11,120	11,200*	
	3.3	17,420								
3			6.5	10,843	10,850	11,280	11,776	12,675	13,800*	
	3.0	15,840								
4			5.0	8,041	9,270	10,500	11,343	11,240	11,200*	
	4.1	21,650								
5			5.0	13,237	13,110	13,530	14,182	12,050	11,160	
	3.0	15,840								
6			2.5	13,643	16,790	18,280	18,938	17,340	19,750	
	4.9	25,870								
7			4.5	17,987	20,660	20,590	20,877	20,612	19,087	
	4.1	21,650								
8			4.0	16,507	18,880	20,080	20,250	20,220	20,180*	
	4.6	24,290								
9			4.0	35,693	41,660	43,860	43,312	39,810	35,000*	
Source code	A		B	A	A	A	A	B	C	

[^1]Table 3.--Estimated channel volumes between nine points along the upper Cooper River and erosion rates at several times

NOTE: This table is based on table 1 and on U.S. Army Corps of Engineers, 1966a, table 13.
and bottom sediment (U.S. Army Corps of Engineers, 1966a, p. 10A-12A). It was estimated that each cubic yard of eroded sediment resulted in about $2.13 \mathrm{yd}^{3}$ of bottom sediment. The dry-weight bulk density of the in-place bottom sediment was determined to be $18.8 \mathrm{lbft}^{-3}$ (U.S. Army Corps of Engineers, 1966a, p. 7A). Except where otherwise noted, all sediment volumes in this report may be assumed to have this bulk density.

The erosion rate in the Cooper River was greatest in the 1940's, when the river channel was first adjusting to the augmented flow. During this period an average of about $3,500,000 \mathrm{yd}^{3}$ of bottom sediment accumulated in the harbor each year from this source alone. The erosion rate decreased during the period 1949 to 1964, resulting in a mean rate of sediment inflow from this source of about 1 to 2 milli on $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ during the period 1942-64. The range of error is based on the uncertainty of estimating total channel erosion from nine cross sections. The erosion rate increased during 1964-65 due to high streamflow during this period. No measurable net erosion seems to have occurred since 1965, suggesting that the river channel has nearly adjusted to the augmented flow and the available sedimęnt load. However, some sediment--probably no more than $500,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}-$ may still be entering the harbor from this source without having a measurable effect on the channel cross sections.

The Diverted Flow of the Santee River Carries Piedmont Clay Past Pinopolis Dam

The Santee River carries a large amount of suspended sediment, predominately clay, that is eroded from the basins of its Piedmont tributaries. Much sediment settles out in Lakes Marion and Moultrie. However, some of the clay remains in suspension and either is transported through Wilson Dam and down the Santee River during flood releases, or through Pinopolis Dam and down the Cooper River into Charleston Harbor.

The most accurate method for determining the load of suspended sediment carried past a certain point by a river in a certain period of time is to make frequent determinations of suspended-sediment concentration and water discharge at that point. The determinations should be frequent enough to reflect the variations in each parameter. Changes in suspended-sediment concentration tend to occur slowly in the Lake Moultrie tailrace below Pinopolis Dam because the two reservoirs upstream attenuate concentration peaks and damp out fluctuations. Daily determinations of suspended-sediment concentration are sufficient to define the temporal variation in concentration of suspended sediment, and errors are probably small when daily concentrations are interpolated from weekly determinations. The temporal variation in water discharge appears to be well defined by daily mean discharge values. When these data are available, the daily sediment load can be computed as:

$$
L=C \times Q \times 0.0027
$$

where: $L=$ suspended-sediment load, in tons per day;
$C=$ average suspended-sediment concentration, in milligrams per liter;
$Q=$ average water discharge, in cubic feet per second; and
$0.0027=$ a conversion factor derived from

$$
1.10 \times 10^{-9} \text { ton } \mathrm{mg}^{-1} \times 28.3 \text { liter } \mathrm{ft}^{-3} \times 8.64 \times 10^{4} \mathrm{~s} \mathrm{day}^{-1}
$$

The annual suspended-sediment load is computed by summing the daily loads.
Daily suspended-sediment concentration data for Pinopolis Dam are available for water years 1964, 1965, and about half of water year 1966 (U.S. Geological Survey, 1965-69). Weekly suspended-sediment concentration data are available for most of the rest of water year 1966, all of water year 1967, and half of water year 1968. In addition, weekly sediment data were collected during February 1950 to April 1951 (U.S. Army Corps of Engineers, 1966e, table 3-A). Records of average daily water discharge at Pinopolis Dam from 1942 to the present are kept by the South Carolina Public Service Authority. The available sediment data and corresponding water-discharge data are listed in Appendix A to this report. The annual loads of suspended sediment that passed Pinopolis Dam during the 5 years for which sediment concentration data are available are listed in table 4.

Table 4.--Total annual discharge and sediment load at Pinopolis Dam for 5 years

	Total annual discharge,	Total annual sediment load	
Water year	million acre-feet	cubic yards	tons
	8.56		
$1950-51^{*}$	13.2	357,000	90,600
1964	15.8	$1,132,000$	287,300
1965	8.74	$1,352,000$	343,200
1966	8.54	458,000	116,300
1967		400,000	101,000

[^2]Four methods, based on these data, were used to estimate the mean annual sediment load passing Pinopolis Dam since 1942.

1. Discharge from Pinopolis Dam in water year 1965 exceeded that in any other year in the operation of the dam. Discharge in the 1950-51 period was among the lowest. It is quite likely that the sediment loads in those two periods represent the extreme upper and lower limits within which the mean annual sediment load must fall. The mean annual sediment load might
therefore be estimated as the intermediate value plus or minus the difference between the mean and the extremes. ${ }_{3}$. The result is $217,000 \pm$ 126,000 tons $\mathrm{yr}^{-1}\left(855,000 \mathrm{yd}^{3} \pm 498,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}\right)$.
2. A more accurate estimate of the mean annual sediment load passing Pinopolis Dam since 1942 can be obtained by correlating suspended-sediment data from Pinopolis Dam with water discharge at some point in the Santee-Cooper River basin, and using long-term records of the discharge to estimate sediment load during periods of no record. The Broad River, which is a large tributary to the Santee and has little regulation at high flows when it carries large amounts of sediment, was used for correlation. Monthly or annual means were used to determine the relation because the rapid artificial fluctuations in water releases from the reservoirs precluded correlation on a more frequent basis. It takes about one month for a suspended-sediment peak to travel from Richtex gaging station on the Broad River to Pinopolis Dam. The 81 mean monthly suspended-sediment concentration values available in 1982 (U.S. Army Corps of Engineers, 1966a, table 1; U.S. Geological Survey, 1965-69) correlated fairly well with mean water discharge for the previous month in the Broad River at Richtex (fig. 5). The correlation coefficient for \log transformations of the data was 0.68. The standard error of the estimate was 0.50 log cycles, or about 50 percent of the estimate. These errors tend to cancel out over the long term. Using this method the average annual suspended-sediment load passing Pinopolis Dam between 1942 and 1979 was estimated to be about $200,000 \pm 100,000$ tons yr^{-1}, or about $800,000 \pm$ $400,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$ of bottom sediment.
3. The relation between total annual sediment load at Pinopolis Dam and total water discharge at Pinopolis Dam is not significantly affected by short-term fluctuations in water releases or by reservoir retention time. For the 5 years listed in table 4 , the correlation coefficient for the relation between the logarithm of total annual sediment load and the logarithm of total annual discharge is 0.986. The standard error of the estimate is 0.09 log cycles. The correlation coefficient for the untransformed values is 0.992 , with a standard error of the estimate of \pm 13,000 tons yr^{-1}. A smooth curve can be drawn through all five points (fig. 6).

Using the smooth curve and discharge figures obtained from the South Carolina Public Service Authority, sediment loads were estimated for each calendar year since 1942 (table 5). Had the regression line been used, the estimated sediment loads would have been slightly lower. The mean of the estimated sediment loads was 189,000 tons $\mathrm{yr}^{-1}\left(745,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}\right)$. Because only five data points were used in this analysis, the range of error suggested by the standard error of the estimate is expanded to $\pm 50,000$ tons $\mathrm{yr}^{-1}\left(\pm 200,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}\right)$.
4. The sediment load can also be estimated based on the trapping efficiency of Lakes Marion and Moultrie. From July 1966 through June 1968 weekly suspended-sediment samples were taken at both the inflow to Lake Marion (Santee River near Ft. Motte) and the Pinopolis Dam tailrace (Appendix B

MEAN DISCHARGE FOR PREVIOUS MONTH, BROAD RIVER AT RICHTEX, IN CUBIC FEET PER SECONL

Figure 5.--Relation between monthly mean sediment concentration at pinopolis and previous monthly mean discharge at Richtex.
 Figure 6.--Annual discharge versus annual sediment load at Pinopolis Dam.

Table 5.--Total discharge and estimated total sediment load at Pinopolis Dam for 41 years

Calendar year	```Discharge, million acre-feet yr```	```Sediment load, thousand tons yr```	Calendar year	$\begin{gathered} \text { Discharge, } \\ \text { million } \\ \text { acre-feet } \\ \mathrm{yr}^{-1} \\ \hline \end{gathered}$	Sediment load, thousand tons yr^{-1}
1942	4.81	26	1965	13.5	292
1943	9.44	157	1966	8.72	115
1944	9.34	151	1967	8.86	128
1945	8.60	105	1968	9.74	173
1946	11.1	225	1969	10.9	219
1947	9.97	184	1970	7.73	62
1948	12.9	278	1971	14.6	318
1949	14.7	320	1972	12.5	268
1950	8.68	112	1973	14.2	305
1951	7.55	57	1974	11.8	- 250
1952	10.1	189	1975	15.4	332
1953	8.50	96	1976	11.5	239
1954	7.19	51	1977	11.1	225
1955	5.79	34	1978	10.5	205
1956	5.92	35	1979	14.8	322
1957	8.48	95	1980	11.6	242
1958	11.4	235	1981	5.1	28
1959	12.0	252	1982	10.0	185
1960	12.2	258			
1961	12.0	252	Total	429.7	7,739
1962	11.5	239	Mean	10.5	189
1963	9.0	135	$f t^{3} s^{-1}$	14,500.	--
1964	16.0	345	$\mathrm{yd}^{3} \mathrm{yr}^{-1}$	--	745,000

to this report). The 2-year interval included periods of both high and low flow, but was somewhat drier than average.

The total suspended-sediment load at Ft. Motte during the 2 -year period was $1,900,000 \pm 200,000$ tons (950,000 tons yr^{-1}), or 65 tons $\mathrm{mi}^{2} \mathrm{yr}^{-1}$. The total load during the 2 -year period at Pinopolis was $310,000 \pm 20,000$ tons (155,000 tons yr^{-1}), or 16 percent ± 3 percent of the load at Ft. Motte. The range of error is based on two slightly different methods of estimating missing values.

To extend the period of record at $F t$. Motte, sediment yield data from other Piedmont river basins can be useful in estimating the sediment yield to Lake Marion during normal conditions. Because the Saluda, Wateree, and Broad Rivers have varying degrees of flow regulation, these three main tributaries to the Santee River will be treated separately. The Saluda River, with a basin of $2,520 \mathrm{mi} 2$, is completely controlled by Lake Murray

Dam. The sediment yield from the Saluda River is probably similar to the 12 tons $\mathrm{mi}^{2} \mathrm{yr}^{-1}$ from the Hyco River at McGehees Mill, N.C., which is also a Piedmont river controlled by a dam (Simmons, 1976, p. 0-17). The Wateree River, which drains $5,070 \mathrm{mi}^{2}$, has 7 major reservoirs, but is not as regulated as the Saluda. The sediment yield from the Wateree is probably similar to the 56 tons $\mathrm{mi}^{2} \mathrm{yr}^{-1}$ from the Neuse River at Goldsboro, N.C. (Simmons, 1976, p. 0-17). The Broad River has very little regulation in its $4,850 \mathrm{mi}^{2}$ basin; therefore, the sediment yield from the Broad River is probably similar to the 180 tons $\mathrm{mi}^{2} \mathrm{yr}^{-1}$ from the Haw River near Haywood, N.C. (Simmons, 1976, p. 0-17).

Combining these sediment yields results in an estimate of about $1,187,000$ tons yr^{-1} or 81 tons $\mathrm{mi}^{2} \mathrm{yr}^{-1}$ for the sediment yield to Lake Marion. This is equal to the sediment yield from the Savannah River near Clarks Hill, S.C., for the 3 years prior to construction of Clarks Hill Dam (Meade, 1976, p. 119). A range of error of about 25 percent, or $\pm 300,000$ tons yr^{-1} should probably be applied to the estimate of $\overrightarrow{1}, 187,000$ tons yr^{-1} entering Lake Marion. Multiplying by 0.16 ± 0.03 results in about $199,000 \pm 84,000$ tons $\mathrm{yr}^{-1}\left(783,000 \pm 331,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}\right)$ of sediment passing Pinopolis.

The results of these four methods indicate that a reasonable estimate of the mean annual suspended-sediment load passing Pinopolis Dam is 200,000 \pm 76,000 tons $\mathrm{yr}^{-1}\left(800,000 \pm 300,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}\right)($ table 6).

Table 6.--Estimates of mean annual sediment load passing Pinopolis Dam

Method	Tons per year	Cubic yards per year
Average of two extremes		
Monthly regression with Richtex discharge		
Annual regression with Pinopolis discharge Sediment yield and lakes trapping efficiency	$217,000 \pm 126,000$	$855,000 \pm 498,000$
$189,000 \pm 50,000$	$800,000 \pm 400,000$	
Adopted estimate	$199,000 \pm 84,000$	$783,000 \pm 331,000$

The accountable sediment inflow from sources not directly affected by the diversion or by channel deepening is equivalent to about 1 to 1.5 million $y^{3}{ }^{3}$ of bottom sediment per year. These sources include biological activity and erosion in the harbor and surrounding marshes, storm runoff from the Cooper River watershed, and waste effluents. The estimate of about 1 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ agrees closely with the 1.2 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ estimated earlier for background sources (U.S. Army Corps of Engineers, 1966a, table 51).

Biological activity in the harbor and surrounding tidal marshes contributes both organic and inorganic sediment to the harbor. This material includes decaying plant and animal parts and skeletal remains of diatoms, foraminifera, and other plankton. Diatoms comprise from 10 to 30 percent, by volume, of the silt-size fraction of major shoals in Delaware Bay and Chesapeake Bay (U.S. Army Corps of Engineers, 1973, p. 118). Diatoms are also abundant in Charleston Harbor (Neiheisel, 1981, unpublished data on file with USGS, Columbia, S.C.), but the proportion of diatoms in the silt fraction of Charleston Harbor sediment has not been determined. If diatoms comprise 20 percent of the silt fraction of Charleston Harbor sediment, they could be responsible for about $200,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$ of bottom sediment.

Erosion and biological activity in tidal marshes contribute about 600,000 $y^{3} y^{\prime} r^{-1}$ of bottom sediment to Charleston Harbor. This estimate is based on measured sediment export rates of 1,100 tons $\mathrm{mi}^{-2} \mathrm{yr}^{-1}$ from a marsh in the Charleston area (Gardner and Kitchens, 1978, p. 195) and 7,800 tons mi-2 yr^{-1} from a marsh on the Georgia coast (Odum and de la Cruz, 1967, p. 386, 387).

Storm runoff in the Cooper River basin contributes about $150,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$ of bottom sediment to Charleston Harbor. This sediment is transported from cultivated fields, construction sites, paved areas, logging sites, and other areas where vegetation has been removed. The estimate is based on a combination of rural and urban sediment yields measured in southeastern states weighted according to the proportions of rural and urban area in the Cooper River basin. The rural sediment yield, 23 tons $\mathrm{mi}^{-2} \mathrm{yr}^{-1}$, was measured in the Ogeechee River basin in Georgia, a basin similar to the rural parts of the Cooper River basin (U.S. Geological Survey, 1969, p. 489, 490). The urban sediment yield, 775 tons $\mathrm{mi}^{-2} \mathrm{yr}^{-1}$, was measured in Atlanta, Ga. (Stamer and others, 1978, p. 27). The urban sediment yield was adjusted to 500 tons $\mathrm{mi}^{-2} \mathrm{yr}^{-1}$ to account for the difference between Atlanta's location in the Piedmont and Charleston's location in the Coastal Plain.

Municipal and industrial waste effluents contribute about $20,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$ of mostly organic bottom sediment to Charleston Harbor (S.C. Department of Health and Environmental Control, 1981, unpublished data on file with Department of Health and Environmental Control, Columbia, S.C.).

Erosion of the harbor shoreline also contributes sediment. According to surveys of the harbor made by the National Ocean Survey in 1933 and 1963, the area of the harbor with depths between 0 and 9 feet increased by about 300,000 y^{2} during the intervening 30 years, while the area of the harbor with greater
depths decreased. The loss of area along the harbor shore is equivalent to about 20,000 to $40,000 \mathrm{yd}^{3}$ of bottom sediment per year. The range of error is based on uncertainty about initial and final water depth in the affected area.

The ocean is also a source of sediment inflow to Charleston Harbor. A significant amount of sand is swept into the harbor by tidal currents and deposited in the lower reaches of the harbor. It is possible that fine-grained sediment is also transported into the harbor from the ocean. Potential sources of this fine-grained sediment include the continental shelf and fluvial sediment discharge updrift from Charleston. The latter source could be an indirect pathway for Piedmont sediment to enter the harbor. The few sediment transport measurements made at the harbor entrance seem to indicate a net seaward transport of sediment under normal conditions (Shultz, 1954; Neiheisel and Weaver, 1967, p. 1102-1104; Pierce and others, 1974, p. 100). However, under abnormal conditions associated with storms or high runoff, net sediment transport could be reversed. The rate of sedimentation appeared to increase following Hurricane David in September 1979 (U.S. Army Corps of Engineers, oral commun., 1981). Because the net transport of sediment at the harbor entrance cannot be reliably estimated at this time, the ocean will be treated as an unknown sediment source.

The total sediment inflow to the harbor probably includes some sediment not accounted for in the above discussion. This unaccounted sediment may come from known sources, or from unknown sources. Because of this uncertainty, the contribution of sediment from background sources may be estimated to be 1 to 1.5 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$.

SEDIMENT REMOVAL AND RETENTION

Sediment is removed from Charleston Harbor by dredging and by seaward flow. Sediment that is not removed by one of these means tends to settle on the harbor floor. This bottom sediment is easily resuspended and transported by tidal currents, and is the primary source of sediment for the shoals that develop in the navigation channels (U.S. Army Corps of Engineers, 1955, p. 19).

Dredged Sediment Generally Returned to
 the Harbor Until the Late 1950's

The dredging rate of primary concern in this report is the rate of gross maintenance dredging by all interests in all inner channels of Charleston Harbor, a grouping previously labelled "C-1" (U.S. Army Corps of Engineers, 1966a, table 18). This rate is the best available estimate of actual dredging from the harbor as a result of sedimentation in the harbor. New work dredging is excluded because it does not reflect sedimentation. Maintenance dredging in the entrance channel is discussed separately because the entrance channel is external to the harbor.

Shoals in the entrance channel are composed primarily of sand from updrift beaches (U.S. Army Corps of Engineers, 1966a, p. 25A). The rate of maintenance dredging in the entrance channel appears to be influenced primarily by channel depth. The 330 percent increase in the rate of mean annual gross maintenance dredging in the entrance channel that followed the
 187 percent increase that followed an earlier 2 -foot channel deepening (table 7). By contrast, mean annual gross maintenance dredging in the inner harbor increased by about 4,800 percent following 1942.

Table 7.--Increases in gross maintenance dredging rate in the entrance channel and inner Charleston Harbor, dredging rates are in thousands of cubic yards per year

Years		Channel depth, in feet	Mean annual gross maintenance dredging, entrance channel	Percent increase from last period	Mean annual gros s maintenance dredging, inner harbor	Percent increase
1899-1917	(19)	≤ 28	143	--	0	--
1918-41	(24)	30	267	187	142	--
1942-82	(41)	35	880	330	6,836	4,814

Sources:
U.S. Army Corps of Engineers, 1966a, table 19 (x 1.36); Mathews and others, 1980, Appendix table C-2 (x 1.36); and U.S. Army Corps of Engineers, unpublished data.

Some of the sediment removed from navigation channels by dredging eventually returns to the harbor. The returned sediment, or runback, includes sediment that is dislodged from the channel floor but never picked up by the dredge, and material lost through pipeline leaks or hopper overflow, or which has been disposed of in a way that allows runoff or currents to return it to the harbor. Published dredging volumes are not commonly corrected for runback because the volumes are measured by comparing channel dimensions before and after dredging, instead of by measuring the amount of sediment stored in disposal areas.

The rate of maintenance dredging increased sharply soon after the diversion (fig. 2, table 1). But the rate of permanent removal of sediment by dredging remained relatively low for 10 more years. Inefficient dredging practices resulted in a very high runback rate until 1953. Much of the dredged sediment was discharged directly into the harbor, alongside the
channel, where currents could sweep it back into the channel. Some dredged sediment was pumped onto marshes for disposal. However, very little of the sediment pumped ashore was retained in the undiked marsh disposal areas (U.S. Army Corps of Engineers, 1955, p. 23). The pre-1953 runback rate is estimated to be about 90 percent of the rate of gross dredging (U.S. Army Corps of Engineers, 1966a, table 39).

Between 1953 and 1959, dredging practices were greatly improved. Dumping of dredged sediment in the harbor was curtailed and dikes were built around disposal areas on land. During this period the runback rate decreased to about 20 to 30 percent of the rate of gross dredging (U.S. Army Corps of Engineers, 1966a, table 39, also p. 24A).

The rates of cumulative gross maintenance dredging and of estimated permanent removal of sediment by dredging are listed in table 1 and shown in figure 7. The difference between the two curves is attributable to runback.

The Santee-Cooper Diversion Project Made
Charleston Harbor a More Efficient Sediment Trap
Charleston Harbor prior to the diversion was a well-mixed or sectionally homogeneous estuary (fig. 8) (Schubel, 1973, p. IV-9). Vertical salinity stratification was minimal and net water movement, averaged over many tidal cycles, was seaward at all depths. The net seaward movement of water must have caused a net seaward transport of sediment, because very little sediment accumulated in the harbor between colonial times and 1942. It has been estimated that, prior to the diversion, about 50 percent of the sediment inflow was lost to the sea (U.S. Army Corps of Engineers, 1966a, table 45).

The great increase in freshwater inflow caused by the diversion changed the harbor to a partially-mixed estuary (fig. 8) in which a layer of relatively fresh water with net seaward movement overlies a wedge of relatively salty water with net landward movement. The landward flow in the salt wedge impedes the seaward movement of sediment and gradually transports some sediment upstream. In Charleston Harbor, as in other partially-mixed estuaries, heavy sedimentation appears to occur in the lens of relatively motionless water on the bottom of the harbor at the upstream limit of the net landward bottom flow (Meade, 1969, p. 227).

Hydraulic model studies indicate that the rate of sediment accumulation in the harbor has increased by about 80 percent solely because of the change in circulation pattern caused by the diversion, even without the extra sediment load from the Cooper River (U.S. Army Corps of Engineers, 1955, p. 42).

Figure 7.--Cumulative rates of gross maintenance dredging from Charleston Harbor and estimated annual permanent removal of sediment by dredging.

Figure 8.--Well-mixed (top) and partially-mixed (bot tom) estuarine circulation.

Channel Deepening Contributed to Making the Harbor a More Efficient Sediment Trap

Abstract

Deepening of navigation channels generally leads to the need for increased maintenance dredging, depending on the availability of sediment (Inglis and Allen, 1957, p. 833). In a partially-mixed stratified estuary like Charleston Harbor, channel deepening can also increase the rate of accumulation of sediment by facilitating the landward flow of seawater along the bottom (Simmons, 1965).

Deepening of some of the navigation channels of Charleston Harbor by about 17 percent, from 30 to 35 feet below mean low water, was in progress when the diversion began in 1942. Most of the channels had natural depths of 35 feet or more; therefore, the channel deepening was not a major physical alteration of the harbor. Nevertheless, the channel deepening of the early 1940's involved nearly as much dredging as had been done in the harbor, excluding the entrance channel, up to that time.

Records of channel deepening and maintenance dredging from five southeastern Atlantic Coast harbors indicate that a 17 percent increase in channel depth preceded, on the average, a 100 percent increase in the rate of maintenance dredging (Mathews and others, 1980, p. 106). A hydraulic model study of Charleston Harbor indicated that channel deepening without diversion would have increased the rate of sedimentation by about 10 percent. Ten to 100 percent of the annual prediversion sedimentation rate is 30,000 to $300,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$. This range, therefore, represents an estimate of the contribution made by channel deepening to the rate of sedimentation in Charleston Harbor.

Sediment Has Accumulated on the

 Harbor Floor Since the DiversionDuring the 8 years prior to the diversion there was a slight decrease in the volume of sediment stored on the harbor floor (U.S. Army Corps of Engineers, 1955, p. 16). The increased rate of sedimentation that followed the diversion resulted in new deposits of sediment on the harbor floor both outside of navigation channels and within the deeper parts of navigation channels between shoal areas. The volume of sediment stored on the harbor floor increased by about 30 million cubic yards between 1942 and 1963 (U.S. Army Corps of Engineers, 1966a, table 31). This increase in sediment storage resulted in an average decrease in harbor depth of about 2.5 feet during the 22-year period. The increase in sediment stored on the harbor floor is also reflected by comparison of harbor surveys conducted in 1933 and 1963 (National Ocean Survey, 1933, 1963).

The change in storage of sediment on the harbor floor since 1963 is not known, because only the upper part of the harbor has been surveyed since 1963 (National Ocean Survey, 1977). Hydrographic data from the 1977 survey, when compared with cross sections measured in 1963, indicate no additional accumulation of sediment on the floor of the upper part of the harbor outside
the navigation channels. At one section, labelled " H " in figure 3, tl are appears to be net removal of sediment from the harbor floor since 196 , as shown in these changes in cross-sectional area of the Cooper River, n st including navigation channels:

Gradual net removal of accumulated sediment after the mid-1960's may partially explain why dredging rates remained high even after rates of sediment inflow from runback and Cooper River scour decreased. Because there may have been a slight net removal of sediment since 1963, the increase between 1942 and 1982 in the volume of sediment stored on the harbor floor may be estimated to be 20 to 30 million yd^{3}.

THE ESTIMATED SEDIMENT BUDGET IS OUT OF BALANCE

An attempt to balance the long-term sediment budget for Charleston Harbor demonstrates that sediment inflow from known sources does not account for all the sediment that has been removed from the harbor by dredging. Records of gross maintenance dredging, corrected for runback, indicate that about 170 million yd ${ }^{3}$ of sediment were removed from the harbor between 1942 and 1982 (table 1). Estimated sediment input from known sources during the same period amounted to between 86 milli on and $164 \mathrm{milli} \mathrm{m}^{2} \mathrm{yd}^{3}$ (table 8). This leaves an input deficit of 6 milli on to $84 \mathrm{million} \mathrm{yd}^{3}$.

Table 8.--Estimated ranges for rates of mean annual sediment inflow to Charleston Harbor from known sources

Years	Mean annual sediment inflow, in cubic yards per year				Total sediment inflow for period, in millions of cubic yards
	Cooper River scour	$\begin{gathered} \text { Pinopolis } \\ \text { Dam } \end{gathered}$	Background sources	Total	
1942-65 (24)	1.0-2.0	0.5-1.1	1.0-1.5	2.5-4.6	60-110
1966-82 (17)	0.0-0.5	0.5-1.1	1.0-1.5	1.5-3.1	26-53
1942-82 (41)	0.6-1.4	0.5-1.1	1.0-1.5	2.1-4.0	86-1 64*

[^3]To this deficit must be added 20 to 30 million y^{3} to account for the increase in the volume of sediment stored on the harbor floor. The input deficit is therefore at least, and probably greater than, 26 million y^{3}, (600,000 $\mathrm{yd}^{3} \mathrm{yr}^{-1}$) for the 41-year period.

To further analyze the unbalanced sediment budget, it is helpful to break the 41-year period following the diversion into two parts: 1942 to 1965, and 1966 to 1982. The first was a period of transition and sediment accumulation. The second was a period of stabilization and, perhaps, gradual sediment removal. The rate of sediment inflow from Cooper River scour was probably 1 to 2 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ in the early $1940^{\prime} \mathrm{s}$, but it stabilized at or below $500,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$ by 1966 (table 8). The rate of runback from dredging was about 90 percent in the early 1940 's, but it stabilized at about 22 percent-possibly greater--by 1959 (U.S. Army Corps of Engineers, 1966a, p. 24a). The transition period was therefore the period with the greater rate of sediment inflow and the lesser rate of permanent removal of sediment. The rate of sediment input from known sources averaged between 2.5 and 4.6 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ (table 8) \bullet_{-1} The rate of permanent removal by dredging averaged about 2.9 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ (table 9).

Table 9.--Estimated sediment budget for Charleston Harbor, 1942-82; volumes are in millions of cubic yards of in-place bottom sediment

	1942-65	1966-82	1942-82
Number of years	24	17	41
Known input, per year	2.5-4.6	1.5-3.1	2.1-4.0
Known input, total	60.0-1 10.4	25.5-52.7	86.1-164.0*
Permanent removal, per year	2.9	6.0	4.2
Permanent removal, total	69.9	100.6	170.6*
Accumulation, per year	1.2	-0.6-0.0	0.5-0.7
Accumulation at end of period	30.0	20.0-30.0	20.0-30.0
Input deficit, per year**	0.0-1.6	2.3-4.5	0.7-2.8
Input deficit, total	0.0-38.4	39.1-76.5	28.7-1 14.8*

[^4]During the transition period about 30 million y^{3} of sediment, or 1.25 million $y^{3} \mathrm{yr}^{-1}$ accumulated on the harbor floor. Depending on the error in estimating sediment input from known sources, there may have been no input deficit during the transition period, or the input deficit may have been as much as 1.6 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ (table 9).

During the period of stabilization, from 1966 to 1982, the rate of sediment input from known sources averaged between 1.5 and 3.1 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ (table 8). The rate of permanent removal by dredging averaged 6.0 million $y^{3} \mathrm{yr}^{-1}$, assuming a runback rate of 22 percent (table 9). There was no apparent increase in the volume of sediment stored on the harbor floor, and there may have been a slight decrease. Therefore, the input deficit was between 2.3 and 4.5 million $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ (table 9). This is a much greater input deficit than during the transition period.

The conclusion to be drawn from the sediment budget is that either a significant quantity of sediment enters the harbor from an unknown source, or that the rate of permanent removal was overestimated, perhaps by underestimating runback, or that both of these conditions combined to produce the apparent input deficit.

If an unknown source is responsible for the deficit, the input from this source must have increased significantly following diversion and channel deepening, because sediment input to the harbor was quite low prior to 1942. Such an increase is reasonable in light of the change in circulation pattern caused by the diversion. However, it seems unreasonable that this input would be so much higher during the stabilization period than during the transition period. This unknown source, it appears, increased its sediment input in response to an increased competency of the harbor to trap sediments, brought about by the decrease in sediment input from runback and Cooper River scour. The ocean is the most likely candidate for the unknown source, but without further data on sediment transport at the harbor entrance this identification is speculative.

On the other hand, the unbalanced sediment budget could be the result of overestimating the rate of sediment removal. If the runback rate after 1959 was 50 percent instead of 22 percent, or if the rate of gross maintenance dredging was overestimated by 30 percent, the sediment budget could be balanced. However, this is also speculative, because there are no data to support a greater runback rate or an overestimation of the rate of gross maintenance dredging.

THE EFFECT OF REDIVERSION ON THE RATE OF SEDIMENTATION

Without rediversion, the rate of gross maintenance dredging would probably remain near the current (1966-82) average of 7.6 million $y^{3} y^{-1}$. Because removal may now slightly exceed inflow, a slight decrease might eventually result as the previous accumulation of sediment is removed.

The effect of rediversion on the rate of sedimentation in Charleston Harbor may be estimated, within a range of error, by making various assumptions about the reasons for the unbalanced sediment budget and estimating the effect of rediversion under those assumptions. We can be certain of two effects. Rediversion would reduce the rate of sediment inflow to Charleston Harbor, and rediversion would make the harbor a less efficient sediment trap.

The rediversion project would reduce the mean discharge from Pinopolis Dam from about $15,000 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ to about $3,000 \mathrm{ft}^{3} \mathrm{~s}^{-1}$. The load of suspended sediment passing Pinopolis Dam should decrease in about the same proportion, from about $800,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$ to about $160,000 \mathrm{yd}^{3} \mathrm{yr}^{-1}$. The rate of erosion of sediment from the bed and banks of the upper Cooper River should be negligible and there may even be some deposition. Rediversion should have no effect on the 1.0 to 1.5 milli on $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ of sediment coming from background sources. Therefore, the rate of total sediment inflow to Charleston Harbor from known sources should be reduced to about 1.2 to $1.7 \mathrm{yd}^{3} \mathrm{yr}^{-1}$.

Hydraulic model studies indicate that reducing the mean discharge from Pinopolis Dam to $3,000 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ will be sufficient to cause Charleston Harbor to revert to a well-mixed type of estuary (U.S. Army Corps of Engineers, 1955, p. 47). Vertical salinity stratification will diminish, as will the landward current at the harbor bot tom. Sediment will have a greater tendency to be transported to the ocean, and marine sediment will probably be less likely to enter the harbor.

Following rediversion, hydraulic and sedimentary conditions in the harbor will be very similar to conditions prior to the original diversion, except for the deeper navigation channels. The effect of the deeper navigation channels was studied with a hydraulic model, which indicated a 10 percent increase in the sedimentation rate due to channel deepening alone (U.S. Army Corps of Engineers, 1966a, p. 16A). However, because the combined hydraulic model tests were unable to account for the observed increase in the sedimentation rate, it might be prudent to assume that channel deepening might be responsible for as much as 50 percent of the inflow of sediment from unknown sources--presumably the ocean. Table 10 presents a range of possible alternatives for the effect of the rediversion on the rate of maintenance dredging under different assumptions about the amount of unaccounted for sediment inflow and the effect of channel deepening. The table indicates, for each alternative, the volume of gross maintenance dredging that would be required to balance the post-rediversion average annual sediment inflow, and the percent reduction in the rate of grossmaintenance dredging from the prediversion average of 7.6 milli on $\mathrm{yd}^{3} \mathrm{yr}^{-1}$ for the period 1966-82.

The alternatives presented in the table, with dredging rate reductions ranging from 33 to 80 percent, were purposely chosen to represent extremes.

Table 10.--Possible effects of rediversion on maintenance dredging rate in Charleston Harbor

Unaccounted inflow, milalion $\mathrm{yd}^{3} \mathrm{yr}^{-}$	Percent decrease in unaccounted inflow caused by rediversion	Postrediversion annual inflow, milalion $\mathrm{yd}^{3} \mathrm{yr}^{-1}$	As sumed runback rate, percent	Gross maintenance dredging required mila $\frac{1}{3}$ on $\mathrm{yd}^{3} \mathrm{Yr}^{-1}$	Percent reduction from 7.6 (average 1966-82)
0.7	100	1.2-1.7	22	1.5-2.2	71-80
0.7	75	1.4-1.9	22	1.8-2.4	68-76
0.7	50	1.6-2.0	22	2.0-2.6	66-74
4.5	100	1.2-1.7	22	1.5-2.2	71-80
4.5	75	2.3-2.8	22	2.9-3.6	53-62
4.5	50	3.4-4.0 **	22	4.4-5.1	33-42
0.0	--	0.9-1.4	50	1.8-2.8	63-76

*In addition to unaccounted input, this column includes 1.2 to 1.7 million
$\mathrm{yd}^{3} \mathrm{yr}^{-1}$ from known sources.
**This annual input is reduced because some would be lost to sea.

In order for the dredging rate reduction to be less than 33 percent, the inflow of sediment from unknown sources unrelated to the diversion would have to exceed 2.25 million $y^{3} y^{-1}$. This does not include the 1 to 1.5 million $y^{3} y r^{-1}$ from background sources, or sediment inflow from unknown sources that can be attributed to the change in circulation pattern caused by diversion. Such a large inflow seems quite unlikely.

In order for the dredging rate reduction to be greater than 80 percent, the entire contribution of sediment from unknown sources would have to be attributable to the change in circulation pattern caused by rediversion. It seems likely that at least some of this inflow can be attributed to channel deepening or other changes in the harbor unrelated to the diversion. The post-rediversion reduction in the rate of gross maintenance dredging is likely to fall within the somewhat narrower range, within these extremes, of 40 to 75 percent.

The full effects of the rediversion are likely to be delayed 10 years or more because the accumulated sediment on undredged areas of the harbor floor will continue to replenish shoals in the navigation channels. Further channel deepening is likely to partially offset the reduction in maintenance dredging caused by rediversion.

Federal Water Pollution Control Administration, 1966, Charleston Harbor water quality study: 88 p .

Gardner, L. R. and Kitchens, Wiley, 1978, Sediment and chemical exchanges between salt marshes and coastal waters, in Kjerfve, B., editor, Estuarine transport processes: University of South Carolina Belle Baruch Library of Marine Science Series 7, p. 191-207.

Guilcher, A., 1967, Origin of sediments in estuaries, in Lauff, G. H., editor, Estuaries: Washington, D.C., American Association for the Advancement of Science Publication No. 83, p. 149-157.

Hubbell, D. W., Glenn, J. L., and Stevens, H. H., Jr., 1971, Studies of sediment transport in the Columbia River estuary, in Technical Conference on Estuaries of the Pacific Northwest, 1971, Proceedings, Oregon State University Engineering Experiment Station Circular no. 42, p. 190-226.

Inglis, C. C. and Allen, F. H., 1957, The regimen of the Thames estuary as affected by currents, salinities, and river flow: London, Institution of Civil Engineers, Proceedings, v. 7, p. 827-878.

Mathews, T. D., Stapor, F. W., Jr., Richter, C. R., and others, editors, 1980, Ecological characterization of the Sea Island coastal region of South Carolina and Georgia, Volume I: Physical features of the characterization area: Washington, D.C., U.S. Fish and Wildife Service, Office of Biological Services, FWS/OBS/-79/40, 212 p.

Meade, R. H., 1969, Landward transport of bottom sediments in estuaries of the Atlantic Coastal Plain: Journal of Sedimentary Petrology, v. 39, no. 1, p. 222-234.
------1972, Transport and deposition of sediments in estuaries, in Nelson, B. W., editor, Environmental framework of Coastal Plain estuaries: Washington, D. C., Geological Society of America Memoir 133, p. 91-120.
------1976, Sediment problems in the Savannah River Basin, in Dillman, B. L., and Stepp, J. M., Editors, The future of the Savannah River, a symposium held at Hickory Knob State Park, McCormick, S.C., October 14-15, 1975, Proceedings: Clemson, S.C., Water Resources Research Institute, Clemson University, p. 107-1 29.

National Ocean Survey, 1933, 1963, 1977, Hydrographic surveys of Charleston Harbor: Washington, D.C., Numbers 5433a, H8768, H9731.

Neiheisel, J. and Weaver, C. E., 1967, Transport and deposition of clay minerals, southeastern United States: Journal of Sedimentary Petrology, v. 37, no. 4, p. 1084-1116.

Odum, E. P. and de la Cruz, A. A., 1967, Particulate organic detritus in a Georgia salt marsh-estuarine ecosystem, in Lauf, G. H. , editor, Estuaries: Washington, D.C., American Association for the Advancement of Science Publication no. 83, p. 383-388.

Pierce, I. W., Colquhoun, D. I., and Nelson, D. D., 1974, Suspended sediment flux, Charleston estuary to shelf, southeastern United States, in International Symposium on Interrelationships of Estuarine and Continental Shelf Sedimentation, Bordeaux, France, 1973, Proceedings: Memoire d' Institut de Geologie du Bassin d' Aquitaine, no. 7, p. 95-102.

Postma, H., 1967, Sediment transport and sedimentation in the estuarine environment, in Lauff, G. H., editor, Estuaries: Washington, D.C., American Association for the Advancement of Science Publication Number 83, p. 158-1 79.

Pritchard, D. W., 1967, What is an estuary: Physical viewpoint, in Lauff, G. H., editor, Estuaries: Washington, D.C., American Association for the Advancement of Science Publication Number 83, p. 3-5.

Schubel, J. R., 1973, The estuarine environment: Estuaries and estuarine sedimentation, a short course held at Wye Institute, Maryland, October 30-31, 1971, lecture notes: Washington, D.C., American Geological Institute, 331 p.

Schubel, J. R. and Meade, R. H., 1977, Man's impact on estuarine sedimentation, in Estuarine Pollution Control and Assessment: Proceedings of a Conference, Vol. 1: Washington, D.C., Environmental Protection Agency publication no. PB-265467, p. 193-209.

Shultz, E., 1954, Unpublished notes of meeting with Committee on Tidal Hydraulics: U.S. Army Corps of Engineers, Charleston District, S.C.

Simmons, C. E., 1976, Sediment characteristics of streams in the eastern Piedmont and western Coastal Plain regions of North Carolina: U.S. Geological Survey Water-Supply Paper 1798-0, 32 p.

Simmons, H. B., 1965, Channel depth as a factor in estuarine sedimentation, in Federal Interagency Sedimentation Conference, 1963, Proceedings: U.S. Department of Agriculture Miscellaneous Publication 970, p. 722-730.

Stamer, J. S., Cherry, R. N., Faye, R. E., and Kleckner, R. L., 1978, Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River basin, Atlanta to West Point Dam, Georgia: U.S. Geological Survey Open-File Report 78-577, 74 p.
U.S. Army Corps of Engineers, 1955, Investigation for reduction of maintenance dredging in Charleston Harbor, S.C., Part 1: Charleston District, S.C., 101 p.
------1963, Unpublished hydrographic surveys of Charleston Harbor: Charleston District, Charleston, S.C.
------1966a, Survey report on Cooper River, S.C.: Appendix A, Sources of shoaling material: Charleston District, S.C., 42 p.
------1966b, Survey report on Cooper River, S.C. (Shoaling in Charleston Harbor): Charleston District, S.C., 62 p.
------1966c, Survey report on Cooper River, S.C.: Appendix B, Supplement 2, Dredging rates: Charleston District, S.C., 7 p.
------1966d, Survey report on Cooper River, S.C., Appendix A, Supplement 3, Special investigations utiliziating diagnostic minerals, Charleston District, S.C., 30 p.
$-1966 e$, Survey report on Cooper River, S.C.: Appendix A, Supplement 1, Field and laboratory studies, methods and results: Charleston District, SC., 39 p.
U.S. Army Corps of Engineers, 1973, Long range spoil disposal study: part III, sub-study 2 , Nature, source, and cause of the shoal, Appendix A: Philadelphia District, Pa., 140 p.
U.S. Congress, House Committee on Appropriations, 1979, Energy and Water Development Appropriation Bill, 1980: House Report 96-243, 152 p.
U.S. Geological Survey, 1965-69 (released annually), Water resources data for South Carolina: Columbia, S.C.
------1969, Quality of surface waters of the United States, 1964, Part 2: Water Supply Paper 1954, 606 p.

Van Nieuwenhuise, D. S., Yarus, J. M., Przygocki, R. S., and Ehrlich, Robert, 1978, Sources of shoaling in Charleston Harbor: Fourier grain shape analysis: Journal of Sedimentary Petrology, vol. 48, no. 2, p. 373-383.

APPENDIX A

DISCHARGE AND SUSPENDED-SEDIMENT RECORDS FOR

LAKE MOULTRIE TAILRACE NEAR PINOPOLIS

[^5] \circ
0
-
-
 00
00
oㅇ

-10 $\begin{array}{lll}0 & 0 & 0 \\ \text { n } & 0 \\ 0 & 0 \\ & \text { a } \\ \text { N }\end{array}$ 오영

 O
$\underset{N}{N}$
N 오
a_{1}
$\underset{\sim}{0}$
\sim
\sim
N 0
ós
N
N
 1780
2060

\qquad （MG／L）
MARCH へべッヘN $\sim_{N}^{\infty} \underset{\sim}{\infty} \sim \underset{\sim}{\infty} N$ $\stackrel{\sim}{\sim}$ ががッ mल̊ㅇN NへNへべへ NM
 ぶッ N

831600 34397
 FEBRUARY
 べべが にかのローが 으N№
$\stackrel{n}{n}$ 1840
1510
1750
2260
-0 LAKE MOULTRIE NEAR HINOPULIS
0795930
DRAINAGE AREA

00692 25000
25500

00
0
0
0
0

00
00
~ 0 00
0
으N
\cdots
 0
0
0
n

n －－－ 724700 | \sim |
| :---: |
| |
| | n

\sim
\sim
\sim n n 2 $\stackrel{\sigma}{N}$
 510
 9
10
0 a
∞
∞
1 1
1 ヘッスツ 13912 N + in 0 NoのN NoNON 픙
 0
 \qquad
 $\begin{array}{ccccc}0 & 0 & 0 & 1 \\ 0 & 5 \\ 0 & 0 & 0 & N & n \\ 0 & n & \sigma & 0 & 0\end{array}$
 OO
0 O
$=1$
$=1$
m
 $\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}$ SEDIMENT
OISCHARGE （TONS／DAY
 0
4
N ${ }_{n}^{n}$ ぶ が

 ーNーN ㅇN $\begin{array}{ll}0 & 1 \\ \\ & 1\end{array}$ i

MEAN
CONCEN－ TRATIIN （MG／L） JANUARY STATION NIJMBER
LATITUDE $\quad 331440$

```
\(39 \forall \forall H J S I O\)
NV \(3 W\) （CFS）
        MMEAN
```


0 | 10 |
| :--- |
| 40 |
| 1 |

$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 4 & 0 \\ 0 & 0\end{array}$

 \begin{tabular}{r}
0

08

0

\multirow{2}{\circ}{}

\hline

08

0

0

\hline
\end{tabular} 08

88
$=1 n$
\cdots 17500
22900 오
N
\sim
N 00
00
0% 7600 00122 008 カ 24800 $00 E \angle 2$ 28100 711400
 16
17 $\rightarrow \underset{\sim}{\circ} \boldsymbol{\sim}$ へNNへべN 26
27
28
29
30
31
AGENCY IISGS
COUNTY 015
SEDIMENT
DISCHARGE
（TONS／DAY）

n
0
0
0
0
on
0 し

ヘ～M N～～N

$\stackrel{0}{3}$ n
$\mathrm{N}_{n}^{\sim} \mathrm{M}_{\mathrm{m}}^{\mathrm{N}}$
今分 $\underset{\text { m }}{\ddagger}$

$\stackrel{n}{\sim} \underset{\sim}{\sim}$

SEPTEMBER 1964
TRATION
（MG／L）
岂 NONNN
～のロポ

む゚ッツ～～～
ツニ～ニツ
ツ～ツニコ！
のーローの

1963

 0
N
0
0
0
 392050 운옹ㅇㅇㅇ

 노우N －つ～N゙N $\underset{\sim}{N}$
 GNN N N N N 39040 MEAN TRATION My AY
34出유№ のヘヘNへN゚ M゚～ざ ∞～～No ペ～～～へ べ \sim N N～～～～ i 02172001
LONGITUDE
SEDIMENT DIS STATION NUMBER
LATITUDE 331440 MEAN
DISCHARGE
（CFS） 28500
28000 30
0
0
0
\sim
\sim
N 28600

 27000
28200
28500
28400
28600 응ㅇㅇㅇ
NYO
NNN
NN N 26000
25900
26200
25600
24800 26000
26400
26500
26400
26700 818300
DAY
2150 26700 \circ
0.
σ_{n}
N
N 응ㅇㅇ
응ㅇㅇ
NNN

 11700 9660 O 00
oin
in 567900 SEDIMENT
DISCHARGE IISCHARGE （CFS） NNNNN
NNNNN

\sim MEAN
CONCEN－
TRATION （MG／L） APR I
 masnom

 ジNべが

 78220 오N 오NNNN N 0
-3
ㅇN

 i
 DAY －～Mv ○～ののO
 ヘッ～の웅 ～～N～N N ํํN oo $\stackrel{1}{\vdots}$
UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

1730 | 100 |
| :--- |
| 10 |
| 1 |
| 10 |
| 10 | CE）

 $0<0$
00
0
0
0
0
N
NN
N

 N aNN
NNべN $\mathfrak{\sim}$ NO N

0
0
0
N

 $\circ \circ 0$
00
Nin
N 26700
25600
 1290
1230
1180
1080 $\begin{array}{lll}10 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & n \\ 1 & n & 1\end{array}$ $\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$ 11 MEAN
CONCEN－
TRATION （MG／L） FFBRUARY
 18
17
16
15 ！パポ $\begin{array}{ll:l}\sim & \\ : 1\end{array}$
MEAN
DISCHARGE
（CFS）

0
0
0 26500

 0
0
m
N
N $\begin{array}{lll}1 & 1 \\ 1 & 1\end{array}$ 2

1270
1290

궁옹

 108

 CONCEN－
TRATIUN TRATIUN （MG／L） JANIJAKY

 NN옹
\square N かへ～NM 옹 -24
\qquad （CFS）
 25900
25500 26900

26600 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| | 80

0
10
4
10 26700
26800
26800
26900
26700 25800
27300
02172001
STATIUN NUMBER
LATITUDE 331440
MEAN
DISCHARGE
331440
MEAN
ISCHARGE

$$
\begin{aligned}
& \text { DISCHARGE } \\
& \text { (TONS/nAY) }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { MEAN } & \\
\text { CONCEN- } & \text { SEDIMENT } \\
\text { TRATION } & \text { DISCHARGE } \\
\text { (MG/I, } & \text { IONC/OAY) }
\end{array}
$$

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

INITFD STATES DEPARTMENT OF INTERIOR－GEOLOGICAL SURVEY
SEPTEMBER

 $10 \times \underset{\sim}{N}$
mo
$\rightarrow=1$ 10
10
10
 ！NMOO： 0 SEPT 190

MEAN		
CONCEN－	SEDIMENT	MFAN
TRATION	DISCHARGE	DISCHARGE

（TONS／DAY）（CFS） （TONS／DAY）（CFS） 17500
12000
 18500 14900 0
∞
∞
∞ 10700
13300 3900 11500
14100
14900 0
0
0
a
4
-1 13400
 13500

10

$\stackrel{N}{N}$
0∞
0
0
-1

0
0
0
N

0
8

CTOBER 1964
COUNTY SEDIMENT
OISCHARGE （TONS／DAY） 0 $+$
 $: \backsim \infty \Omega m \nmid:$ \downarrow ！ハナナな！ － $\begin{array}{lccc}\text { STATION NUMAER } & 02172001 \\ \text { LATITUDE } & 331440 & \text { LONGI TUDF }\end{array}$

[^6] LATITUDE SEDIMENT DISCHARGE，SUS $\begin{array}{lc}\text { SEDIMENT } & \text { MFAN } \\ \text { DISCHARGE } & \text { DISCHARGE }\end{array}$ AUGUST

\qquad $\stackrel{c}{\sim}$
 21600
23500
25400
26200
26000
25600
26500
22600
19700
13700 21600
23500
25400
26200
26000
25600
26500
22600
19700
13700 0000
00
0 $0_{0} 0$
 16700
8700
16400
15700
14900 17200
18500 00
00
50
0
$\rightarrow 4$
 00
08
N
\cdots MEAN
CONCEN－
TKATION （MG／L）
JULY 0
0
0
-
 S MEAN
DISCHARGE （CFS） 17500
19900 21200
19800 19800
19600 0
0
0
0

-1 $\begin{array}{ll}00 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & n \\ n & 0\end{array}$ 7450
22300
23900
23500
26100
 $\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \infty & 0 \\ \infty & \infty & n \\ \sim 1 & n & 0\end{array}$
 $\stackrel{\star}{a}$
ペーのロ コきツさ』
 0

UNITED STATES DEPARTMENT OF INTERIOR－GEOLOGICAL SURVEY
SOURCE AGENCY USES SOURCE AGENCY
STATE 45 COUNTY 015
 ER 1966
MEAN CONCEN－
TRATION RATION
（MG／L） DECEMBER
NON：！ $0 \infty \infty \infty$ $1: \rightarrow \infty$ 00 $1: \infty$ ○のにか $0:$ \qquad

 SEDIMENT
DISCHARGE
（TONS／DAY）
 MEAN
CONCEN－
TRATION
（M GI） NOVEMBER

$$
\infty \underset{\sim}{\operatorname{man}} \boldsymbol{n} \infty
$$ $: 10 \infty 0$ $+0: 1$ $: m \pm n$ 10 ロ～が $m:!$ iN！ $\begin{array}{lc}\text { SEDIMENT } & \text { MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE }\end{array}$ （TONS／DAY）（CFS）

 00
$\alpha=0$
N
\cdots
N

 a
\sim $\begin{array}{ll}2 & \\ \text { i }\end{array}$ 6
 1 10 O－ $\stackrel{\infty}{n} \underset{\sim}{N}$ Ni： 0
1
n MiNN CONCEN－
TRATION （MG／L） OCTOBER n ： 100 $\infty m \sigma$ 1 i $\infty \sim n \rightarrow \infty$
 （CFO）

 0
0
0
0
0

08
08
0
0

 DAY STATION NUMBER
LATITUDE 331440

IINITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY
$\begin{array}{lllll}\text { STATION NUMRER } & 02172001 \\ \text { LATITUDE } & 331440 & \text { LONGITUDF } \\ \text { LAKE MOULTRIE NEAR PINOPOLIS, }\end{array}$ MEER 1966
MEAN
CONCEN-
TRATION
 $\begin{array}{llc}\text { MEAN } & & \\ \text { CONCEN- } & \text { SEDIMENT } & \text { MEAN } \\ \text { TRATION } & \text { DISCHARGE } & \text { DISCHARGE } \\ \text { (MG/L) } & \text { (TONS/DAY) } & \text { (CFS) }\end{array}$ 22200
22500
20400
11500

 PROCFSS DATE IS 06-21-83 MEAN MEAN SEDIMENT SEDIMENT
DISCHARGE
(TONS/DAY) 1
1
1 MAY

 $\underset{\sim}{m}::_{\infty}^{\infty} \approx$ $\begin{array}{lc}\text { SEDIMENT } & \text { MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE } \\ \text { (TONS/DAY) } & \text { (CFS) }\end{array}$

 MEAN
CONCEN-
TKATION
(MG/L)
APRIL $\begin{array}{llll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$ लूल

 $\mathfrak{\sim} \sim \infty \times \infty \sim: \mid$ | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | SEDIMENT DISCHARGE, SUSPENDE.) (

IJIITED STATES DEPAKTMENT OF INTERIOK - GEOLOGICAL SURVEY

IINITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY
SOURCE AGENCY USGS
STATE 45 COUNTY 015
 MBER 1967

MEAN
CONCEN-
TRATION
(MG/L) DECEMBER

 11 $1!$
$\stackrel{ }{+}$
 $\begin{array}{lc}\text { SEDIMENT } & \text { MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE } \\ \text { (TONS/DAY) } & \text { (CFS) }\end{array}$

 $\begin{array}{ll}\text { LAKE MOULTRIE NEAK PINOPOLIS• S.C.• (TAILRACE) } \\ 0795930 & \text { DRAINAGE AREA }\end{array}$
YEAR OCTOBER 1966 T
O SEP
PROCFSS DATE IS n6-21-83
e

 MEAN
CONCEN-
TRATION
(MG/L) OCTOBERH1:a ! ! ! :
 ! $11{ }^{\circ}$ STATION NUMBEK 02172001 LONGITUDF
SEDIMENT DISC LATITUDE 331440 LATITUDE MEAN
DISCHARGE
(CFS) (CFS) 19300
10500
7250
10300
10800

 4120

 DAY

SOURCE AGENCY USGS SOURCE AGENCY USGS STATE 45 COUNTY O15 MBER 1967

 UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

$\begin{array}{lll}\infty & 1 \\ & 1\end{array}$ $\begin{array}{l:l:c}1 & 1 & \infty \\ 1: & 1\end{array}$

1 \square 1 \square ! 1 : ${ }^{\circ}$! ! ! : $!$ $\begin{array}{lc} & \\ \text { SEDIMENT } & \text { MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE } \\ \text { (TONS/DAY) } & \text { (CFS) }\end{array}$ $0 N O M-$
m N N
m 0
0
0
m
 ㅇNNNN

00
80
80

 02172001
LONGITUDE STATION NUMBER
LATITUDE 331440 MEAN
DISCHARGE
(CFS)
 1!!" ||! ! ! ! ! 11 ㄹ! 11 MEAN
CONCEN-
TRATION APRIL id

MBER 1967
MEAN
CONCEN－
（TONS／DAY）
 MEAN
CONCEN－
TRATION （MG／L）
SEPTEMRER

！ 11 ！ 112 ！ 11 1二：1！ LAKE
（TAILRACE）
DATUM
TO SE
SEDIMENT MEAN DISCHARGE DISCHARGE （TONS／DAY）（CFS） 00802
00861 \circ
$0 \circ$
N 21100
21300

 \circ
0
O
0
0 ㅇㅇㅇ
응
No 0
0
0 000
000
$0 n_{n} 0$
 00
0
0 08001
 MEAN
CONCEN－
TRATION （MG／L） AUGUST $\begin{array}{l:l:l:l}1: i & i & i & i\end{array}$ 1 1 i ∞ 111 1门 ！！！！ MEAN
DISCHARGE
（CFS） （CFS） 11800
13300
14100
 0
0
$=$
$=$
 $\begin{array}{lll}0 & 0 & 0 \\ \infty & 0 \\ M & \infty & 0 \\ 0 & 0 & 0 \\ 0 & \infty & 0\end{array}$ 16000
17100
 \circ
오
영
in 080
0080
00
mo
\cdots
 SEDIMENT
DISCHARGE （TONS／DAY） ！！：！：！！！ 1%
 $1!$ ะ： ！！ ョi！！ MEAN
CONCEN－
TRATION TRATION
（MG／L） JULY $10: 0$ i $\begin{array}{l:l}1 & 1 \\ 1 & 1\end{array}$ $: \simeq: 1: 1: 1: 0:$ 1 ！ \cdot ！ 11 MEAN
DISCHARGE （SHJ）
$398 \forall H J S I O$ （CFS）

0
∞
∞

0
0 080
 $\circ 0$
0
10
0

0 | 0 |
| :--- |
| |
| | |
| | 0

0
n
n
0 00
00

0 080 | 0 |
| :--- |
| |

 DAY $\rightarrow N m+$ on ono $\rightarrow \underset{\sim}{N} \rightarrow \underset{\sim}{n}$

Eも－t2－90 SI 31もO SSajoud
AGENCY USGS
COUNTY 015

SEDIMENT
OISCHARGE
（TONS／DAY）
 EMBER 1968

MEAN
CONEN－
TRATIUN
（MG／L）
DECEMBER
 $\begin{array}{ll}\text { SEDIMENT } & \text { MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE }\end{array}$ （CFS）
 united states department of intfrior－geological survey $\begin{array}{lllll}\text { STATION NUMBER } 02172001 & \text { LAKE MOULTRIE NEAR PINOPOLIS，S．C．（TAILRACE）} \\ \text { LATITUDE } 331440 & \text { LONGITUDE } & 0795930 & \text { DRAINAGE AREA } & \text { DA }\end{array}$ SOURCE

```
lake
```

LATITUDE 331440 LONGITUDE 0795930 DRAINAGE AREA DATUM
SEDIMENT DIGCHARGE，SUS强！！ ！\％ 1
 $11 \lesssim$
 1部 1 1 1

 ноениаев

 $1!$
 MEAN
DISCHARGE （CFS） SEDIMENT
DISCHARGE
（IONS／DAY） （TONS／DA
－

 $\begin{array}{lll:l:l}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0\end{array}$ $\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$ \mathfrak{c} | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | | | | |
| -1 | | | | | | | MEAN

CONCEN－
TRATION （MG／L） OCTOBER
 ！！！
搞： 1 운 ！

 ！！！
 －－－
咗

$$
\begin{aligned}
& \text { MEAN } \\
& \text { DISCHAKGE } \\
& \text { (CFS) }
\end{aligned}
$$

\qquad
$\begin{array}{lc}\text { SEDIMENT } & \text { MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE } \\ \text { (TONS/DAY) } & \text { (CFS) }\end{array}$

LAKE MOULTRIE NEAR PINOPOLIS, S.C. (TAILRACE)
LONGITUDE $0795930 \quad$ DRAINAGE AREA
UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

PROCFSS DATE IS 06-21-R3

$$
\begin{array}{r}
\text { SOURCE } \angle G E N C Y \text { USGS } \\
\text { STATE } 45 \text { COUNTY } 015
\end{array}
$$

IINITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

$$
\text { ABER } 1968
$$

APPENDIX B

DISCHARGE AND SUSPENDED-SEDIMENT RECORDS

 FOR SANTEE RIVER NEAR FORT MOTTEع8-I2-90 SI 31षO SS3コ0世4 STREAM SOURCE AGENCY USGS
UNITED STATES DEPARTMENT OF INTERIUR - GEOLOGICAL SURVEY

STATION NUMBER
LATITUDE $\quad 334500$ SEDIMENT DISCHARGE, SUSPFNDED (TONS/DAY), WATEH YEAR OCTOBER 1965 TO SEPTEMBER 1966
MEAN
CONCEN-
TRATION
(MG/L)
SEPTEMAER
 SEDIMENT
DISCHARGE
(TONS/DAY) MBER 1966
MEAN
CONCEN-
TRATION SEPTEMAER
~ 1
 1:
 !!! ã!!!
 1 - $2!!$ MEAN
ISCHARGE
(CFS)
 SEDIMENT DISCHARGE
(TONS/DAY)
 MEAN
CONCEN-
TRATION AUGUST ! $\stackrel{n}{n}$!!ä: ! ! ! i ! ! ! ! ! 1 ! ! ! ! MEAN
DISCHAR(GE
(CFS) (CFS) SEUIMENT
DISCHARGE DISCHARGE
(TONS/DAY)

 r

UNITED STATES DEPARTMENT OF INTEHIOR - GEOLOGICAL SURVEY

PROCESS DATE IS 06-21-83
-
united states department uf interion - geological survey
SAINTEE KIVER NEAR FORT MOTTE S C DATUM
LONGTTUDE 0803732
STATION NUMBER
LATITUDE 334500 MEAN
DISCHARGE MEAN
CONCEIN-
TRATION
(MG/L)
 $:$! ! 18:11 $\begin{array}{lc}\text { SEDIMENT MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE }\end{array}$
 SEDIMENT MEAN
OISCHARGE DISCHARGE
DISCHARGE
 MRER 1967
MEAN
CONCEN-CONCEN-
TRATION
(MG/L) SEPTEMAEK
$\begin{array}{llllll:l}1 & 1 & i & 1 & 1 & i \\ i & 1 & i & i & i & i & i\end{array}$ $\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}$ $\begin{array}{l:l}1: N \\ 1: 1 & n\end{array}$
 1 B1 I $1: 1$: 1 i
 (TONS/DAY MEAN
CONCEN-
TRATION TRATION
(MG/L) AUGUST
1゚! ! ! ! ! 2 !1! ! ! 1 $!$! ! ! !
 NDED IT
 ? \|!
 ! ! 1 : ! SEDIMFNT DI

DATUM
UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY
SEDIMENT
DISCHARGE
(TONS/DAY)

MEAN
CONCEN-
TRATION
(MG/L)
NOVEMBER
$\begin{array}{lc}\text { SEDIMENT } & \text { MEAN } \\ \text { DISCHARGE } & \text { DISCHARGE } \\ \text { (TONS/DAY) } & \text { (CFS) }\end{array}$

0803732
Santee river near fort motte s
SMEER 1968

MEAN
CONCEN- SEDIMENT
TRATION
(MG/L)
14100.00
5
（MG／L） NOVEMBERき：i：I：：：iN：
\square ！！j ！11면

 （MG／L） OCTOBFR $1: 10$ in － ！ 110 ilim $1!$ ！ ！！！
 （CFS） DAY 1 11000
 \square11 1 101ニベき』

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

[^0]: **Volumes on this line reflect slight rounding error.

[^1]: Source
 U.S. Army Corps of Engineers, 1966a, table 12.
 U.S. Army Corps of Engineers, Charleston District,
 $\begin{array}{ll}\text { B } & \text { U.S. Army Corps of Engineers, Charleston District, 1942-72, unpublished original } \\ \text { Cross-section drawings. } \\ \text { * } & \text { U.S. Geological Survey, measurements and estimates made in } 1981 .\end{array}$
 $\begin{array}{ll}\text { B } & \text { U.S. Army Corps of Engineers, Charleston District, 1942-72, unpublished original } \\ \text { Cross-section drawings. } \\ \text { * } & \text { U.S. Geological Survey, measurements and estimates made in } 1981 .\end{array}$
 $\begin{array}{ll}\text { B } & \text { U.S. Army Corps of Engineers, Charleston District, 1942-72, unpublished original } \\ \text { cross-section drawings. } \\ \text { C } & \begin{array}{l}\text { U.S. Geological Survey, measurements and estimates made in } 1981 .\end{array} \\ \text { Estimate made by extrapolating the relation between } 1965 \text { and } 1972 .\end{array}$
 Source code
 4 \oplus

[^2]: *February 1950 through January 1951, from U.S. Army Corps of Engineers, 1966e, table 3-A.

[^3]: *This column does not total due to rounding.

[^4]: *These totals do not agree exactly with the other columns due to rounding.
 **Annual input deficit ranges from (annual removal plus lesser annual accumulation minus greater annual input) to (annual removal plus greater annual accumulation minus lesser annual input).

[^5]: GENCY 1 ISGS
 COUNTY 015

[^6]: NUMAEK 02172001

