A NUMERICAL MODEL TO EVALUATE PROPOSED

GROUND-WATER ALLOCATIONS IN SOUTHWEST KANSAS

By
D. G. Jorgensen, H. F. Grubb, C. H. Baker, Jr.,
G. E. Hilmes, and E. D. Jenkins
U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 82-4095

Prepared in cooperation with the
SOUTHWEST KANSAS GROUNDWATER
MANAGEMENT DISTRICT NO. 3

Lawrence, Kansas
1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary
GEOLOGICAL SURVEY
Dallas L. Peck, Director

For additional information write to:

District Chief
U.S. Geological Survey, WRD

1950 Avenue A - Campus West
University of Kansas
Lawrence, Kansas -66044-3897
[Telephone: (913) 864-4321]

Copies of this report can be purchased from:

Open-File Service Section Western Distribution Branch
U.S. Geological Survey Box 25425, Federal Center Lakewood, Colorado 80225
[Telephone (303) 234-5888]

Page

Abstract 6
Introduction 6
Ground-water model 10
Numerical method for calculating drawdown- 11
Depletion calculations 15
Single-well option 17
Data requirements 18
Results 19
Township option- 24
Data requirements 24
Results 24
Conclusions 28
Acknowl edgments 28
References cited 28
Supplemental information
Finite-difference approximations of radial-flow equation 30
Program listing for single-well option 34
Program listing for township option 40
ILLUSTRATIONS
Figure Page

1. Map showing location of Southwest Kansas Groundwater Management District No. 3 7
2. Sketch map showing existing and proposed wells in 9-square- mile area 10
3. Diagram showing effects of pumping a well completed in an unconfined aquifer 12
4. Flow diagram for numerical-model program 13
5. Graph showing drawdown versus distance for transient conditions 14
6. Graph showing head versus distance for steady-state conditions 15
7. Flow diagram of options identifying computers, program languages, principal data requirements, and program results 16
8. Schematic representation of a 9-square-mile area showingindexing system used to compute distances from proposedwell to existing wells18
Figure Page
9. Printout showing example of depletion and drawdown calculations when depletion is equal to or less than maximum allowed 20
10. Printout showing example of depletion and drawdown calculations when depletion exceeds maximum allowed 22
11. Printout showing example of water-rights summary for a section and eight adjacent sections within an entire township 26
12. Printout showing ground-water depletion evaluation for an entire township 26
13. Map showing volume of ground water available for appropriation annually for each section and the adjacent eight sections, 1978-2003 27
14. Map showing percentage of ground water available for appropriation during 1978 that was already appropriated during 1974 29
:TABLE
Table Page
15. Example of ground-water-availability calculations for an entire township 25

For those readers who would prefer to use the International System of Units (SI) rather than the inch-pound units given in this report, the following conversion factors are presented:

$\begin{gathered} \text { Multiply } \\ \text { inch-pound unit } \\ \hline \end{gathered}$	By	To obtain SI unit
inch	25.40	millimeter
foot	0.3048	meter
mile	1.609	kilometer
acre	0.4047	square hectometer
square mile	2.590	square kilometer
acre-foot	1,233	cubic meter
foot per second	30.48	centimeter per second
gallon per minute (gal/min)	0.06309	liter per second
gallon per day per	0.04074	meter per day
square foot $\left[(\mathrm{gal} / \mathrm{d}) / \mathrm{ft}^{2}\right]$		

D. G. Jorgensen, ${ }^{1}$ H. F. Grubb, ${ }^{2}$ C. H. Baker, Jr., ${ }^{1}$ G. E. Hilmes, ${ }^{3}$ and E. D. Jenkins ${ }^{4}$

Abstract

A computer model was developed to calculate the drawdown, due to a proposed well, at all existing wells in the section of the proposed well and at all wells in the adjacent eight sections. The depletion expected in the 9 -square-mile area due to all existing wells and the proposed well is computed and compared with allowable limits defined by the Southwest Kansas Groundwater Management District No. 3. An optional program permits the evaluation of allowable depletion for one or more townships. All options are designed to run interactively, thus allowing for immediate evaluation of proposed ground-water withdrawals.

INTRODUCTION

The Ogallala aquifer in the Ogallala Formation of late Tertiary age is the principal source of water for much of western Kansas. Irrigation from wells in Kansas was practiced on a limited scale until about 1960. During the 1960's, rapid development of ground water resulted in the significant lowering of the water table in the Ogallala. By 1970, the saturated thickness of the aquifer at some sites had been decreased to the extent that some wells would not yield water at an adequate rate for irrigation.

Concern by many residents in western Kansas was expressed through Kansas legislative action in 1972 when a bill was enacted that allowed the creation of ground-water management districts. Between 1972 and 1978, five ground-water management districts were formed. The Southwest Kansas Groundwater Management District No. 3 manages the ground water in the area shown in figure 1.

1 U.S. Geological Survey, Lawrence, Kansas.
2 U.S. Geological Survey, Austin, Texas.
3 Kansas State Board of Agriculture, Topeka, Kansas.
4 Southwest Kansas Groundwater Management District No. 3, Garden City, Kansas.

Figure 1.--Location of Southwest Kansas Groundwater Management District No. 3.

Regulations for the appropriation of ground water in Management District No. 3 are the joint responsibility of the management district and the Chief Engineer of the Division of Water Resources, Kansas State Board of Agriculture. Regulations written by the district are approved by the Chief Engineer, who then administers the appropriation of water rights. The Chief Engineer must decide if a proposed ground-water appropriation would interfere with a prior ground-water or surface-water appropriation. The Chief Engineer also must determine whether a new appropriation would cause a significant decrease in saturated thickness at existing well sites. Frequently, an appropriation may be proposed at a diversion rate greater than the aquifer can sustain.

The regulations adopted by the management district and approved by the Chief Engineer include:
"1. Well spacing -- All wells included on an application for permit to appropriate water for beneficial use, except those for domestic uses and wells for which the maximum diversion rate is to be less than fifty (50) gallons per minute, shall meet the following criteria unless approval is authorized in accordance with exceptions defined in the management program.
(a) The minimum spacing of wells with a diversion rate of from fifty-one (51) to four hundred (400) gallons per minute and a maximum pump column diameter of six (6) inches shall be thirteen hundred $(1,300)$ feet. The maximum diversion rate shall not exceed eight hundred (800) gallons per minute when combined with the authorized rate of any other wells within a standard legal one-quarter section of land containing approximately one hundred sixty (160) acres. Larger or smaller tracts shall be considered on an individual basis.
(b) The minimum spacing of wells with a diversion rate in excess of four hundred (400) gallons per minute or a pump column diameter in excess of six (6) inches shall be twenty-three hundred $(2,300)$ feet.
(c) The location of a well or wells on an application for approval to change the point of diversion under an existing water right shall be no more than thirteen hundred twenty $(1,320)$ feet from the authorized point of diversion and shall not decrease the existing spacing to other wells by more than three hundred (300) feet, unless the minimum spacing requirements for new applications are met or authorization is given in accordance with the exceptions defined by the management program. The three-hundred- (300-) foot limit shall not apply to proposed changes in points of diversion under an approved application for which the well has not been drilled.
2. Aquifer depletion--The approval of all applications for permit to appropriate water for beneficial use, except as noted below, shall be subject to the following criteria. The proposed appropriation, when added to the vested rights and prior rights, shall not cause more than forty- (40-) percent depletion in twenty-five (25) years of the saturated materials underlying the area included within a nominal nine- (9-) square-mile area about the location of the proposed well or wells. It shall be assumed, for the purpose of analysis, that all water rights are being fully exercised. The area of consideration shall include the legal section of land, referred to as one (1) square mile, nominally six hundred forty (640) acres, of the proposed well or wells and the eight (8) adjacent sections. If the boundary of the aquifer or of the district falls within the nine- (9-) square-mile area, the area of consideration shall include only the area overlying the aquifer or within the district.

Saturated thickness shall be determined from logs of test holes and wells within the area and from maps available from the U.S. Geological Survey and the Kansas Geological Survey and such refinements as have been accomplished by the district.

The coefficient of storage (specific yield) used in the analysis shall be assumed to be twenty (20) percent, unless hydrological information indicates a smaller value. A value of two (2) inches per year shall be assumed for recharge from natural sources and irrigation return flow."

In general, the procedure used by Groundwater Management District No. 3 for approving an allocation for a new water right is to determine if the new well meets all the existing criteria with respect to diversion rate, pump-column diameter, and minimum spacing to wells under vested or approved appropriation rights. The proposed well site also must meet the depletion criteria. To determine whether aquifer-depletion criteria are met, it is necessary to search the files for all ground-water rights (appropriations) in the 9 -square-mile area (fig. 2). This procedure is lengthy and tedious and, therefore, subject to error. If the proposed well site and appropriation meet both the well-spacing and aquifer-depletion criteria, the question of impairment to existing water rights and to surface-water flow is evaluated by the Chief Engineer.

Groundwater Management District No. 3 has proposed that a management model be developed to determine if the proposed well site and appropriation meet the required spacing and depletion criteria and to calculate the drawdown at existing wells caused by pumping the proposed well. The model would use information from other programs now being used in relation to hydrology and water rights of the management district.

EXPLANATION

EXISTING WELL

 OR ALLOCATIONO PROPOSED WELL OR ALLOCATION

Figure 2.--Existing and proposed wells in 9-square-mile area.

The Southwest Kansas Groundwater Management District, in cooperation with the U.S. Geological Survey, periodically prepares and publishes maps showing the saturated thickness of the Ogallala aquifer in and near the boundaries of the district. These maps are used to determine the saturated thickness at a proposed well site. Values for saturated thickness, area, and specific yield are used to calculate the volume of water in storage. A value of 0.2 is assigned to specific yield, as designated in the regulations adopted by the management district.

The Division of Water Resources of the Kansas State Board of Agriculture is currently (1982) converting its existing "water-rights" file to a computer-managed data base. The U.S. Geological survey is assisting the Division in this effort because the water-rights file contains valuable information on water use.

GROUND-WATER MODEL

The U.S. Geological Survey, in cooperation with Southwest Kansas Groundwater Management District No. 3, designed a ground-water model that will use the automated water-rights file on the computer to evaluate well-spacing and depletion requirements and to calculate the drawdown in all nearby wells.

Numerical Method for Calculating Drawdown

The drawdown resulting from pumping a well is calculated by numerical techniques. The Ogallala aquifer is treated as an isotropic aquifer under unconfined (water-table) conditions. It is recognized that the aquifer is not truly isotropic and that drawdowns resulting from a very short pumping period may be more representative of confined (artesian) conditions. However, for pumping periods ranging from 2 weeks to 1 year or more, the aquifer will respond in the manner of an unconfined aquifer; thus, unconfined formulation is appropriate for the problem to be solved.

Radial flow to a fully penetrating well in an unconfined isotropic aquifer of infinite extent using the Dupuit-Forcheimer assumption is expressed mathematically as

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{r K}{2} \frac{\partial h^{2}}{\partial r}\right)=S^{\prime} \frac{\partial h}{\partial t}, \tag{1}
\end{equation*}
$$

where
$r=$ radial distance from pumping well, in units of length;
K = hydraulic conductivity, in units of length per time;
h = altitude of the water table above the base of the aquifer (saturated thickness), in units of length;
$S^{\prime}=$ specific yield, dimensionless; and
$t=$ pumping time, in units of time.
The relationship between transmissivity (T), hydraulic conductivity (K), and saturated thickness (h) is

$$
\begin{equation*}
T=K h . \tag{2}
\end{equation*}
$$

A schematic of a well pumping in an unconfined system is shown in figure 3.
Examining the differential within the parentheses of equation 1 :

$$
\begin{equation*}
\frac{\partial h^{2}}{\partial r}=2 h \frac{\partial h}{\partial r} . \tag{3}
\end{equation*}
$$

Substituting equation 3 into equation 1 and simplifying results in

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r K h \frac{\partial h}{\partial r}\right)=S^{\prime} \frac{\partial h}{\partial t} . \tag{4}
\end{equation*}
$$

Figure 3.--Effects of pumping a well completed in an unconfined aquifer.

Equation 4 describes radial flow to a well in an unconfined aquifer. To obtain an equation for one-dimensional flow, equation 4 can be transformed using finite-difference approximations (see Supplemental Information, p. 30. The solution of the finite-difference equations was programmed into a numerical model. A flow diagram for the numerical-model program is shown in figure 4.

A comparison of the analytical solution, assuming a constant transmissivity, with the numerical solution to conditions where the drawdown is large (more than 5 percent of the saturated thickness) indicates the need for modeling the unconfined condition. However, the two solutions yielded nearly identical results when the drawdown was less than 5 percent of the original saturated thickness (fig. 5).

Additionally, the model was tested against the analytical steady-state solution of

$$
\begin{equation*}
h=\left(\frac{0}{\pi K} \quad \ln \frac{r}{r}+\frac{n^{2}}{n}\right)^{\frac{1}{2}}, \tag{5}
\end{equation*}
$$

where
Q is negative for a pumping well.
Equation 5 is similar to an equation derived by Jacob (1950, p. 79) or DeWeist

Figure 4.--Flow diagram for numerical-model program.

Figure 5.--Drawdown versus distance for transient conditions.
(1965, p. 243). (See figure 6.) The numerical technique was stable if a small Δt was used. An algorithm similar to that used by Trescott, Pinder, and Larson (1976, p. 85-86) was modified to calculate Δt. The modified algofithm calculates the correct Δt and number of time steps required to reach a designated pumping period. To decrease the number of time steps required, an acceleration factor (A) was used in the form $\Delta t_{\text {new }}=A \Delta t_{01 d}$. Generally, an acceleration factor of 1.5 was used. The model solutions were stable with an acceleration factor of 3 ; however, acceleration factors greater than 2 resulted in " hard starts." Hard-start oscillation occurred only for simulation of pumping of a few seconds. Actual problems required simulation of pumping durations greater than 1 week.

The program also contains a mass balance algorithm that calculates the water removed from the cone of depression and compares this to the product Q times the duration of pumping. The model does not solve the combined water-table-artesian problem, as was treated by Moench and Prickett (1972), or the delayed yield and vertical leakage, as treated by Ehlig and Halepaska (1976). The model calculates drawdown at any given radius; thus, knowing drawdown, impairment can be evaluated at the existing wells.

Figure 6.--Head versus distance for steady-state conditions.

Depletion Calculations

One option for evaluation of ground-water depletion was adopted by the management district on July 12, 1978. It allows an evaluation of the depletion due to the addition of a single new well to all existing groundwater rights in the section of the proposed new well and the eight adjacent sections and commonly is described as within a 9-square-mile area. Another option for use in examining larger areas, although not adopted by the management district, allows an evaluation of depletion due to all existing water rights in a township, or a 36 -square-mile area. The equations used to make depletion calculations are presented first, followed by examples of both the single-well option and the township option. Options identifying computers, program languages, data requirements, and summaries of possible results are shown by the flow diagram in figure 7.

Figure 7.--Options identifying computers, program languages, principal data requirements, and program results.

The volume of ground-water available for appropriation ($V_{a y}$) is limited to 40 percent of that volume of water in ground-water storage plus that volume of water recharged to the aquifer from precipitation and irrigation return flow and is given by:

$$
\begin{equation*}
v_{\mathrm{av}}=\left(V_{\mathrm{gws}}+V_{\mathrm{rchg}}\right)(0.40), \tag{6}
\end{equation*}
$$

where
$V_{a v}=$ volume of ground water available for appropriation;
$V_{\text {gws }}=$ volume of ground water in storage at time of analysis (specific yield assumed to be 20 percent); and
$V_{\text {rchg }}=$ volume of recharge for 25 years (assumed to be 2 inches per year).

The total volume appropriated in 25 years is computed by adding all of the approved appropriations in the 9-square-mile area:

$$
\begin{equation*}
V_{\mathrm{app}}=V_{1}+V_{2}+V_{3} \cdot . V_{n} \text {, } \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& V_{a p p}=\begin{array}{c}
\text { total volume appropriated in } 9 \text { square miles in } 25 \text { years; } \\
V_{1,2}, \ldots n=\begin{array}{c}
\text { volume appropriated for an individual well in } \\
\text { years. }
\end{array}
\end{array} . \begin{array}{l}
\text { wh }
\end{array}
\end{aligned}
$$

The volume of ground water appropriated must not exceed the allowable volume of depletion:

$$
\begin{equation*}
V_{a p p} \leq V_{a v} \tag{8}
\end{equation*}
$$

If $V_{a p p} / V_{a v}>1$, then no further development of the aquifer is allowed.

Single-Well Option

Upon receipt of an application for a new well, the Southwest Kansas Groundwater Management District can use this option to evaluate the impact of the proposed ground-water withdrawal on the aquifer. The Fortran program (listed in Supplemental Information, p. 34) is designed for use in an interactive mode. The user provides necessary information about the proposed new well, existing wells, and aquifer properties. This program is written using Fortran IV (1966 ANSI) on a Harris S1251/ computer system.
$1 /$ The use of brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

Required information for the single-well option includes county name, land-line location, proposed annual appropriation, maximum pumping rate, well radius, and pump diameter. The location of the proposed well also is indicated by a row and column designation (fig. 8) representing one of the 10 -acre tracts of the section in which the proposed well is to be drilled.

Figure 8.--Indexing system used to compute distance from proposed well to existing wells.

Information required for all existing wells in the section where the new well is proposed and in the adjacent eight sections include: (1) The water-right number, (2) the row and column location in the 9 -square-mile area, and (3) the quantity of ground-water withdrawal approved for appropriation on an annual basis. The row and column location represents the 10 -acre tract in which the well is located, based on the division of the $9-$ square-mile area shown in figure 8 . This location is used to approximate the distance between the existing wells and the proposed well. The error
introduced by this approximation can be as great as 933 feet if two wells are located in the opposite corners of their respective 10 -acre tracts. This accuracy suffices for the purpose of this model because the location of an existing well generally is not specified in the historical record to an accuracy greater than the 10 -acre tract. If this degree of accuracy is inadequate to ascertain if well-spacing requirements are being met, an onsite investigation by the proposed water appropriator or management district personnel is necessary.

In some instances two or more water rights have been approved for the same parcel of land. This is called overlapping of water rights. It will be necessary, for management district personnel and those who use this program, to review such appropriations for limitations or corrections.

The aquifer properties necessary for the depletion calculation are saturated thickness and specific yield. The average saturated thickness for the 9 -square-mile area is determined from the latest published sat-urated-thickness map, which recently has been prepared every third year (Pabst and Jenkins, 1976; Pabst, 1978). The specific yield is assumed to be 20 percent if other information for the 9 square miles in question is not available. An average aquifer hydraulic conductivity for the 9 square miles is needed for the drawdown computations and is determined by dividing the transmissivity by the saturated thickness.

Results

The printed output for the single-well option includes a summary of the data plus the results of the depletion calculations and the computed drawdown in the aquifer due to the proposed well. The volume of water available considering all existing wells in the 9 -square-mile area is printed for both 25 years and 1 year as the last two lines of the depletion information.

There are two basic forms of printed results depending upon the percentage of ground-water depletion with the proposed well. An example of the first form, where the percentage appropriation is equal to or less than the 40 -percent allowable depletion for 25 years, is given in figure 9. However, the proposed diversion rate of $810 \mathrm{gal} / \mathrm{min}$ exceeded the maximum allowable diversion rate as defined by regulation. Thus, a message "MAXIMUM DIVERSION RATE EXCEEDED" was written.

The second form is characterized by a printed warning that depletion will exceed the 40 -percent limit, and, if water is available, the volume requested for the proposed well will be adjusted downward to meet the maximum depletion limit. For the example problem shown in figure 10 , a proposed annual appropriation of 500 acre-feet was requested. As this request for appropriation exceeded the allowable depletion, the proposed annual appropriation was reduced to 110 acre-feet. Because the requested appropriation exceeded the volume of water available for appropriation, the message "WITH PROPOSED WELL APPROPRIATION WILL EXCEED 40% " was printed.
SOUTHWEST KANSAS GROUND WATER MANAGEMENT DISTRICT GROUND WATER APPROPRIATION ANALYSIS WELL PROPOSED FOR
HODGMAN COUNTY
T22E. R.22E. SEC 22
SE, SE, SE
.
$\begin{aligned} & \text { DIVISION OF WATER RESOURCES NUMBER, } 12345 \\ & \text { LOCATION OF } 10 \text { ACRE TRACT IN NINE SQUARE MILE AREA } \\ & \text { ROW, } 12 \text { COLUMN, I2 }\end{aligned}$
$\begin{aligned} \text { PROPOSED ANN APPROP, }, & \text { SOO.ACREFFEET } \\ \text { PROPOSED DIVERSIONRATE, } & \text { BIO. GALLONS PER } \\ \text { PUMP DIAMETER, } & \text { B. INCHES }\end{aligned}$
$\begin{aligned} & \text { AOUIFER PROPERTIES } \\ & \text { HYDRAULIC CONDUCTIVITY, } 390 \text { GAL/DAYISO FT }\end{aligned}$
$\begin{aligned} & \text { HYDRAULIC CONDUCTIVITY, } 390 \text { GALIDAYISO FT } \\ & \text { SATURARED THICKNESS, I7S FEET }\end{aligned}$

[^0]

to pumping proposed well continuously at annual appropriation rate

DRAWDOWN DUE TO PUMPING ANNUAL APPROPRIATION FROM PROPOSED WELL CONTINUOUSLY AT PROPOSED DIVERSION RATE

5321.09
139.69 DAYS PUMP AT DIV RATE; SHOULD NOT EXCEED 365
mass balance,

T,NUMDT,TIME, 3 o.l2e+od
Figure 9.--Example of depletion and drawdown calculations when depletion
is equal to or less than maximum allowed.

drawdown after one year due to pumping propobed welf continuougly at annual appropriation rate

drawdown due to pumping annual appropriation from proposed weli continuousiy at proposed diversion rate
$\begin{array}{rr} & \text { TO PUMPINC ANN } \\ \text { DISTANCE } & \text { DRAWDOWN } \\ 2.00 & 19.61 \\ 3.61 & 13.31 \\ 6.52 & 12.03 \\ 11.77 & 10.76 \\ 21.25 & 9.49 \\ 38.37 & 1.29 \\ 69.27 & 6.99 \\ 125.06 & 5.76 \\ 225.78 & 1.54 \\ 4097.63 & 3.33 \\ 735.96 & 2.17 \\ 1328.72 & 1.11 \\ 2398.92 & 0.31 \\ 4331.10 & 0.03 \\ 7819.53 & 0.00 \\ 11117.66 & 0.00 \\ 25488.53 & 0.00 \\ 46017.92 & 0.00 \\ 83082.42 & 0.00 \\ 150000.01 & 0.00\end{array}$

Figure 10.--Example of depletion and drawdown calculations when depletion exceeds maximum allowed.

Data Requirements

Evaluation of ground-water depletion for an entire township was accomplished in an interactive mode by using a remote terminal and programs and data on disk files of a Honeywell Multics Computer in Reston, Virginia. Although the computations are the same as the single-well evaluation for any given section, the method of data entry is different. First, equation 6 was solved using a FORTRAN computer program (Supplemental Information, p. 40) and the average saturated thickness in each square mile of the township. This program is written in Fortran IV (IBM "G" Compiler) and runs on an Amdahl V7 computer. An area of as many as four townships on a side can be analyzed in a single run of the program. This program calculates the volume of ground water available for appropriation on an annual basis in the 9 -square-mile area centered around each section in the township (table 1). The ground water available for appropriation on an annual basis must be written on a disk file, which becomes one part of the data required by the PL/l computer program used to determine $V_{a p p} / V_{a v}$. The other part of the data required by this PL/1 interactive program is a file of water rights that was prepared from a tape file of the Kansas Water Office containing applications for water rights in Kansas up through 1974. Because this PL/l program is primarily a file-management routine written specifically for Kansas water-rights data and has little or no general application, a listing is not included in this report.

Results

Results from the computer program used to evaluate ground-water depletion on a township basis are a summary of the water rights for each section and the eight adjacent sections (fig. 11) and a tabular listing of the percentage of ground water appropriated for each section in the township, considering all available water and water rights in each 9-squaremile area (fig. 12). A withdrawal is "certified" (fig. 11) if the volume of water withdrawn has been certified by onsite measurements.

The procedure was tested using the 16 townships in northwestern Finney County. The available water in each 9 -square-mile area, based on the management district's rules and regulations for 1978-2003, ranges from less than 1,000 to more than 5,000 acre-feet per year. The two areas where the available water generally is less than 1,000 acre-feet per year are located in the northeastern and northwestern townships where the January 1978 saturated thickness was less than 50 feet (fig. 13). The two southwestern townships have the most available water (fig. 13), with a few 9 -square-mile areas averaging as much as 7,000 acre-feet of ground water available annually for 1978-2003.

Table 1.--Example of ground-water-availability calculations for an entire township

GROUND WATER AVAILABILITY
BASED ON NINE SQUARE MILE DEPLETION MODEL

SOUTHWESTERN KANSAS GROUNDWATER
MANAGEMENT DISTRICT NO. 3
U.S. GEOLOGICAL SURVEY

TOWNSHIP 24W RANGE 315

SECTION	AVERAGE SATURATED THICKNESS (FEET)	$\begin{aligned} & \text { VOLUME IN } \\ & \text { STORAGE } \\ & \text { (ACRE-FEET) } \end{aligned}$	VOLUME AVAILABLE IN 25 YEARS (ACRE-FEET)	ANNUAL VOLUME AVAILABLE (ACRE-FEET)
1	94.3	108671.9	53068.7	2122.7
2	100.7	115967.9	55987.1	2239.5
3	112.9	130047.9	61619.2	2464.8
4	122.2	140799.9	65919.9	2636.8
5	133.3	153599.9	71039.9	2841.6
6	145.0	167039.9	76415.9	3056.6
7	159.4	183679.9	83071.9	3322.9
8	146.7	168959.9	77183.9	3087.4
9	135.6	156159.9	72063.9	2882.6
10	126.8	146047.9	68019.1	2720.8
11	116.2	133887.9	63155.1	2526.2
12	111.0	127871.9	60748.8	2430.0
13	130.2	149951.9	69580.7	2783.2
14	134.6	155007.9	71603.1	2864.1
15	143.4	165247.9	75699.1	3028.0
16	148.9	171519.9	78207.9	3128.3
17	157.2	181119.9	82047.9	3281.9
18	167.8	193279.9	86911.9	3476.5
19	177.2	204159.9	91263.9	3650.6
20	168.3	193919.9	87167.9	3486.7
21	162.8	187519.9	84607.9	3384.3
22	157.8	181759.9	82303.9	3292.2
23	150.6	173439.9	78975.9	3159.0
24	146.7	168959.9	77183.9	3087.4
25	155.8	179519.9	81407.9	3256.3
26	157.8	181759.9	82303.9	3292.2
27	162.2	186879.9	84351.9	3374.1
28	166.7	191999.9	86399.9	3456.0
29	173.3	199679.9	89471.9	3578.9
30	183.9	211839.9	94335.9	3773.4
31	188.3	216959.9	96383.9	3855.4
32	175.8	202559.9	90623.9	3625.0
33	167.5	192959.9	86783.9	3471.4
34	161.7	186239.9	84095.9	3363.8
35	159.2	183359.9	82943.9	3317.8
36	158.7	182879.9	82751.9	3310.1

Section 31 Twp 14 S Ran 42 W
Total withdrawal approved
Total withdrawal certified
9 Water rights in or near section 31
Section 32 Twp 1516 acre-feet

Figure 11.--Example of water-rights summary for a section and eight adjacent sections within an entire township.

Percentage of water already appropriated in
Township 14S Range 42W

156	176	137	181	193	140
166	236	212	272	259	177
236	309	316	329	324	235
240	289	377	365	367	219
204	203	319	307	362	240
165	148	237	197	254	135

Figure 12.--Ground-water depletion evaluation for an entire township.
Values for each section are in the same position as they would be found on a map, with section 1 being the top value on the right side.

EXPLANATION
AVAILABLE GROUND WATER, IN ACRE-FEET
\square No data--Saturated thlckness less than 50 feet, January 1978
\square Less than 2,000

2,000-2,090

$4,000-4,990$

3,000-3, 990

Figure 13.--Volume of ground water available for appropriation-annually for each section and the adjacent eight sections, 1978-2003.

The percentage of water available during 1978, which was already appropriated during 1974, is shown in figure 14. There were only about 6 square miles in the southern part of the area where the percentage of ground water available for appropriation was less than the 40 -percent limit set by the management district for new development. More than 100 percent of the ground water available during 1978, as defined by the management district's regulations, has been appropriated in all but 61 square miles of the 16 townships evaluated.

CONCLUSIONS

A computer model was developed to calculate the drawdown, due to a proposed well, at all existing wells in the section of the proposed well and at all wells in the adjacent eight sections. The depletion expected in the 9 -square-mile area due to all existing wells and the proposed well is computed and compared with allowable limits defined by the Southwest Kansas Groundwater Management District No. 3. An optional program permits the evaluation of allowable depletion for one or more townships. All options are designed to run interactively, thus allowing for immediate evaluation of proposed ground-water withdrawals.

ACKNOWLEDGMENTS

The assistance of the staff of the Southwest Kansas Groundwater Management District No. 3 in collating allocation data, and the advice and assistance of Dr. Carl McElwee of the Kansas Geological Survey in developing the finite-difference approximations used in the model are appreciated.

REFERENCES CITED

DeWeist, R. J. M., 1965, Geohydrology: New York, John Wiley, 366 p.
Ehlig, Christine, and Halepaska, J. C., 1976, A numerical study of confined-unconfined aquifers, including effects of delayed yield and leakage: Water Resources Research, v. 12, no. 6, p. 1175-1183.

Jacob, C. E., 1950, The flow of groundwater, in Rouse, H. ed., Engineering Hydraulics, Chapter 5: New York, John Wiley, p. 321-385.

Moench, A. F., and Prickett, T. A., 1972, Radial flow in an infinite aquifer undergoing conversion from artesian to water-table conditions: Water Resources Research, v. 8, no. 2, p. 494-499.

Pabst, M. E., 1978, Map showing saturated thickness of the unconsolidated aquifer in southwestern Kansas, January 1978: U.S. Geological Survey Open-File Report 78-969, 4 pl.

PERCENTAGE OF GROUND WATER APPROPRIATED

\square No data--Saturated
thickness less than 50
feet, January 1978
== $40-90$

\square Less than 40
$\left[+{ }_{+}^{+}\right.$100-190

Figure 14.--Percentage of ground water available for appropriation during 1978 that was already appropriated during 1974.

Pabst, M. E., and Jenkins, E. D., 1976, Water-level changes in southwestern Kansas, 1940-75: Kansas Geological Survey Journal, May 1976, 26 p.

Trescott, P. C., Pinder, G. F., and Larson, S. P., 1976, Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 7, Chapter 1, 116 p.

Van Rosenburg, D. V., 1969, Methods for numerical solution of partial differential equations: New York, Elsevier, 113 p.

SUPPLEMENTAL INFORMATION

Finite-Difference Approximations of Radial-Flow Equation

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r K h \frac{\partial h}{\partial r}\right)=S^{\prime} \frac{\partial h}{\partial t} \tag{1}
\end{equation*}
$$

Equation 1 in radial coordinates can be transformed to cartesian coordinates by a change of variables. Let

$$
\begin{equation*}
x=\ln \left(\frac{r}{r_{w}}\right), \tag{a}
\end{equation*}
$$

where

$$
0 \leq x \leq R .
$$

R is a very large distance from the origin, and r_{w} is the radius of the well. From equation a, it can be stated

$$
\begin{equation*}
r=r_{w} e^{x} \tag{b}
\end{equation*}
$$

Differentiating equation a yields

$$
\begin{equation*}
\frac{\partial x}{\partial r}=\frac{1}{r} \tag{c}
\end{equation*}
$$

Substituting equations b and c into equation 1 yields

$$
\begin{equation*}
\frac{1}{\left(r_{w} e^{x}\right)^{2}} \frac{\partial}{\partial x}\left(r K h \frac{\partial h}{\partial r}\right)=S^{\prime} \frac{\partial h}{\partial r} \tag{d}
\end{equation*}
$$

Applying the "chain rule" of differentiation to equation d results in

$$
\begin{equation*}
\frac{1}{r_{w}^{2} e^{2 x}} \frac{\partial}{\partial x}\left(K h \frac{\partial h}{\partial x}\right)=S^{\prime} \frac{\partial h}{\partial t} \tag{e}
\end{equation*}
$$

Equation e is a nonlinear differential equation and can be solved numerically using finite-difference techniques.

Let $x=i x$, where i indexes the nodes at which equation e is to be evaluated. The finite-difference equation has a constant spacing. At the radius of the well where $r=r_{w}$:

$$
x=\ln \frac{r}{r_{W}}=0, \text { at } i=1 \text { : }
$$

Using a numerical method, noting equation 1 , and using a technique similar to that used by Von Rosenburg (1969, p. 63), equation e has the form

$$
\begin{align*}
& T_{i+\frac{1}{2}}^{m+\frac{1}{2}} h_{i+1}^{m+1}-T_{i+\frac{1}{2}}^{m+\frac{1}{2}} h_{i}^{m+1}-T_{i-\frac{1}{2}}^{m+\frac{1}{2}} h_{i}^{m+1}+T_{i-\frac{1}{2}}^{m+\frac{1}{2}} h_{i-1}^{m+1}-F h_{i}^{m+1}= \\
& -F h_{i}^{m}-T_{i+\frac{1}{2}}^{m+\frac{1}{2}} h_{i+1}^{m}+T_{i+\frac{1}{2}}^{m+\frac{1}{2}} h_{i}^{m}+T_{i-\frac{1}{2}}^{m+\frac{1}{2}} h_{i}^{m}-T_{i-\frac{1}{2}}^{m+\frac{1}{2}} h_{i-1}^{m}, \tag{f}
\end{align*}
$$

where m is a superscript indicating time level, and

$$
F=\frac{S^{\prime} \quad 2 r_{w}^{2} \Delta x^{2}}{e^{2 i} \Delta x} \frac{\Delta t}{}
$$

F is an arbitrary variable created to simplify equation f and others. Equation f is for the interior nodes.

At the well face $\left(r_{w}\right)$, at $i=1$, is a constant-flux boundary

$$
\begin{equation*}
\frac{-Q}{2 \pi}=\left.r h K \frac{\partial h}{\partial r}\right|_{r=r_{w}} \tag{g}
\end{equation*}
$$

Noting that $r \frac{\partial h}{\partial r}=\frac{\partial h}{\partial X} \quad$, equation g changes to

$$
\begin{equation*}
\frac{-Q}{2 \pi}=\left.h k \quad \frac{\partial h}{\partial x}\right|_{r=r_{w}} \tag{h}
\end{equation*}
$$

At an imaginary node inside the well at $\mathbf{i}=0$, let

$$
\begin{align*}
& \frac{\partial h}{\partial x} \approx \frac{h_{2}-h_{0}}{2 \Delta x}, \text { then } \tag{i}\\
& h_{0}^{m}=h_{2}^{m}+\frac{\Delta x Q}{\pi T_{1}} .
\end{align*}
$$

Evaluating at $\mathfrak{i}=1$, using equation \mathbf{i} yields

$$
\begin{align*}
& -1-\left(\frac{T^{m+\frac{1}{2}}+F}{T_{3 / 2}^{m+\frac{1}{2}}}\right) h_{1}^{m+1}+\left(1+\frac{T_{\frac{1}{2}}^{m+\frac{1}{2}}}{T_{3 / 2}^{m+\frac{1}{2}}}\right) h_{2}^{m+\frac{1}{2}}= \tag{j}\\
& \frac{-F h}{\frac{m}{m+1 / 2}}+\left(h_{1}^{m}-h_{2}^{m}\right)+\frac{T_{\frac{1}{2}}^{m+\frac{1}{2}}}{T_{3 / 2}^{m+\frac{1}{2}}}\left(h_{1}^{m}-h_{2}^{m}-\frac{\Delta x Q}{\pi T_{1}^{m}}-\frac{\Delta x Q}{\pi T_{1}^{m+1}}\right) .
\end{align*}
$$

At the outside boundary, $i=n$, a constant head is chosen, or $h_{n}^{m+1}=h_{n}^{m}$. The equation at n becomes

$$
\begin{align*}
& \frac{T_{n-3 / 2}^{m+\frac{1}{2}}}{T_{n-\frac{1}{2}}^{m+\frac{1}{2}}} n_{n-2}^{m+1}+\left\{-1-\left(\frac{T_{n-\frac{1}{2}}^{m+\frac{1}{2}}+F}{T_{n-\frac{1}{2}}^{m+\frac{1}{2}}}\right) n_{n}^{m+1}\right\}= \\
& F \frac{h_{n-1}^{m}}{T_{n-\frac{1}{2}}^{m+\frac{1}{2}}}+h_{n-1}^{m}-2 h_{n}^{m}+\left(\frac{T_{n-3 / 2}^{m+\frac{1}{2}}}{T_{n-\frac{1}{2}}^{m+\frac{1}{2}}}\right)\left(h_{n-1}^{m}-h_{n-2}^{m}\right) . \tag{k}
\end{align*}
$$

The various forms of T can be reduced by using the following relations:

$$
\begin{align*}
& T_{1}^{m}=K h_{1}^{m} ; \tag{1}\\
& T_{1}^{m+1}=K h_{1}^{m+1} ; \tag{m}\\
& T_{i+\frac{1}{2}}^{m+\frac{1}{2}}=\frac{1}{2}\left(T_{i}^{m+\frac{1}{2}}+T_{i+1}^{m+\frac{1}{2}}\right) ; \tag{n}\\
& T_{i-\frac{1}{2}}^{m+\frac{1}{2}}=\frac{1}{2}\left(T_{i}^{m+\frac{1}{2}}+T_{i-1}^{m+\frac{1}{2}}\right) ; \tag{0}\\
& T_{3 / 2}^{m+\frac{1}{2}}=\frac{1}{2}\left(T_{1}^{m+\frac{1}{2}}+T_{2}^{m+\frac{1}{2}}\right) ; \tag{p}\\
& T_{\frac{1}{2} / 2}^{m+\frac{1}{2}}=\frac{1}{2}\left(T_{1}^{m+\frac{1}{2}}+T_{2}^{m+\frac{1}{2}}+\frac{\Delta x Q}{\left.\pi h_{1}^{m+\frac{1}{2}}\right)} ;\right. \text { and } \tag{q}\\
& h_{1}^{m+\frac{1}{2}}=\frac{1}{2}\left(h_{1}^{m+1}+h_{1}^{m}\right) . \tag{r}
\end{align*}
$$

Equations f, j, and k are of the form that can be solved using the Thomas algorithm. The procedure for solution is to iterate the head values until little change occurs between h^{m} and h^{m+1}. This is accomplished by updating the T values after each iteration using

$$
\begin{equation*}
T_{1}^{m+\frac{1}{2}}=\frac{1}{2} K\left(h_{i}^{m+1}+h_{i}^{m}\right) . \tag{s}
\end{equation*}
$$

The first estimate of T at a new time step assumes

$$
\begin{equation*}
T_{1}^{m+1}=K h_{i}^{m+1} \approx K h_{i}^{m} . \tag{t}
\end{equation*}
$$

$$
\begin{aligned}
& \text { C PREDICTION OF WATERTABLF DRAWUOWNS } \\
& \text { C - INTEGER DWRNO }
\end{aligned}
$$

PRINT 650

$$
\begin{aligned}
& \text { CCRMAT }(I B) \\
& \text { PRINT } 660
\end{aligned}
$$

$$
\begin{aligned}
& \text { READ } 33,-) \text { IRPW,ICFW, PROFAP } \\
& \text { WRITE(41.665) NDWRNO, IRPW, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PRINT } 660 \\
& \text { FORMAT('ROW, COLLUMN, AND APPROPRJATION IN AC FT.IYR ? }) \\
& \text { READ } 33,-) \text { IRPW, ICFW, PROFAP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRITE(41,665) NDWRNO, IRPW, ICPW, PROPAP } \\
& \text { FORMAT('DWR NO ROW, COL, \& APFROPRIATION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FORMAT(' DWR NO ROW, COL, \& APFROPRIATION,', IB, IA,IA, F9 2) } \\
& \text { PRINT G7D } \\
& \text { FORMAT, DIV RATE IN GPM GPUMP COL DIAM IN INCHES ARF?') }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FORMATY OIV RATE IN GPM GPUMP COL DIAM IN INCHES ARF?') } \\
& \text { RFAD(} 3 \text {, .) QINST, PUHDIA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RFAD (} 33, \ldots) \\
& \text { RMIN }=1300
\end{aligned}
$$

$$
\begin{aligned}
& \text { PRINT 680 } \\
& \text { EORMAT ('RAI }
\end{aligned}
$$

$$
\text { FRINT } 70
$$

$$
\begin{aligned}
& \text { RWI =RW* } \\
& \text { FORMAT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EORMAT (RAD } \\
& \text { READ (33,-) R } \\
& \text { FRINT } 700 \\
& \text { RWI =RW*12 0 } \\
& \text { FORMAT(NUM }
\end{aligned}
$$

$$
A F P R=0
$$

$$
\begin{aligned}
& \text { AND } \\
& \text { OF WATER }
\end{aligned}
$$

intecer durno

$$
\begin{aligned}
& \text { IE (UINST } \\
& \text { IFMPUMDIA }
\end{aligned}
$$

$$
\begin{array}{lll}
\text { IF (UINST } r, ~ & \text { RMIN }=2300 \\
\text { IF PUNDIA GT } 6, & \text { RMIN: }=2300
\end{array}
$$

$$
\begin{aligned}
& \operatorname{READ}(33,-) N W \\
& \text { IF (NW EQ } 0)
\end{aligned}
$$

$$
\begin{aligned}
& \text {-APPRORRIATION OF GROUND WATER } \\
& \text { POLICY-REGULATIONS }
\end{aligned}
$$

u
 RORAD（33．655）NDW／RNO

$$
\begin{aligned}
& \text { EORMAY('RADIUS OE NEW WELI. INFEET ?, } \\
& \text { READ(} 33,-) \text { RW }
\end{aligned}
$$

$\wedge P(R=A P P R+A P P R(I W)=I R D W W L$
ひuひひひ
0
$6 B$
－

$$
\begin{aligned}
& \begin{array}{l}
\text { FRINT } 710 \\
710 \text { FORMAT ' DWR NO ON } 15 T \text { I.INE FHW, COI. \& APPHOP ON 2NR LINEM, }
\end{array} \\
& \stackrel{-}{2}
\end{aligned}
$$

Program Listing for Single－Well Option－－Continued

$\begin{array}{lll}m & \omega & m \\ m & 0 & n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\begin{array}{ll}0 & 0 \\ 2 & N \\ 0 & n \\ 0 & 0 \\ 0 & 0\end{array}$
$\begin{array}{ll}0 & 0 \\ N & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
$\begin{array}{ll}n & n \\ n & n \\ n & 0 \\ 0 & 0\end{array}$
n
0
\circ
0
0
0
0

\circ
0
0
0
0
n
n
0.
0
0
0
亿
N
N
O.
0
0
0
0.0
0
\circ
$\stackrel{\circ}{N}$
0
0
0

\circ
0
0
0
0

m
$\underset{N}{\circ}$
$\underset{N}{N}$
0
0
\circ
0
0
0
0
0

N
0
0
0
0
0
\circ
$\stackrel{\sigma}{m}$
$\stackrel{m}{0}$
$\stackrel{0}{0}$
0

0
0
0
0
0
0
0
合
01406
01411

N
\vdots
\vdots
0
0
こ こ

$\stackrel{\sigma}{\sigma}{ }_{\sigma}^{\tilde{\sigma}}$
$\stackrel{N}{N}$

\circ
0

 No
 \vdots
0
0
0

$\stackrel{N}{\mathrm{o}}$
N
0
0
0
0
0
0
n
n
n
0
0
0
ご
$\stackrel{2}{2}$
m
m
m
m
0
0

[^1]

 \&, 15 X , 'WELI, IN FEET', DO $10071=1, N W$
W

WRITE (44, 1006) DWRNO(I),IR(I),IC(I), AFROF(I), RTONWI.(I)
CONTINUE CONTIN
FORMAT

WRITE (44, 1010) VOLSTR, VOLAPR, TOTVAF, PFRCNT, PERCT, VQLLFT, VOLET,

$\begin{array}{ll}n & n \\ 0 & 0 \\ 0 & 0\end{array}$

EAVLIFT, AVLET
1010 FORMAT $11 H 0,1$

 \& 'PERCENT APEROPRIATEN, , $10 X, E 120,20 X, E 12,0 / 1 X$, \& "ACRE FEET AVAILABIEFEOR APPROPHIATICN,"

IF (PERCT GT 40 , WRITE (41 RBI7) ADJAPR
1120 IF (IPRNT FO 1) WRITF. (44,1131)
1131 EORMAT (IH1, $2 X$, DRAWDOWN AETER CINE YEAR DUE TO PUMEINC PROPQSED WE \&LL CONTINUOUSLY AT ANNUAL APPROPRIATION RATE',
1130 EORMAT

1130 EORMAT ($1 H 1,2 X$, DRAWDOWN DUE TO PUMPTNG ANNUAL ATPROFRIATION FROM \&PROPOSED WELL CONTINUOUSLY AT PROPO:SED DIVERSION RATE')

WRITE (44,1121)
1121 FORMAT (1H0.6X, DISTANCE', $7 X$, ' NRAWDOWN') FORMAT
DO $242 \quad I=1, N$
$D D=H-H N(1)$
$W R I T E(44,620)$
FORMATC2F
CONTINUE
WRITE 44
IE(R(P)
620
242
$\begin{array}{ll}\text { N } & m \\ \text { N } & 0 \\ 0\end{array}$
$D D=H$ -
WRITET4F
$Q=-0 I N S T /(60 \times 7$ 181)
TMAX $=$ FROPAP $435601(-0)$
TMAXDA = TMAX/A\& 400
IE (IPRNT GT 1) WRITE
255
257
259

[^2]\[

$$
\begin{aligned}
& W \\
& U \\
& \mathbf{R} \\
& R
\end{aligned}
$$
\]


```
//* **********************************************
//STEPl EXEC FTGlCG
//FORT.SYSIN DD *
                DOUBLE PRECISION TITLE
            DIMENSION AVSTK(24,24), VINST(24,24), VALAPP(24,24),
            l AVAAP(24,24),SATHK(24,24), DELX(24), DELY(24), TITLE(16)
                DATA DELX/24*5280./,DELY/24*5280./
                dAta title/'AVERAGE ', 'SATURATE', 'd THICKN', 'ESS,FEET','VOLUME
                        1A','VAILABLE', ' FOR APP', 'ROPRIATI', 'ON-25YRS', ', AC-FT',
                        2'ANNUAL V', 'OLUME AV', 'AILABLE ', 'FOR APPR', 'OPRIATIO',
    3 'N, AC-FT'/
C******
C
                                    NUMBER OF COLUMNS IN INPUT ARRAY - JMX
                                    NUMBER OF ROWS IN INPUT ARRAY - IMX (I2)
                                    NORTHWEST MOST TOWNSHIP - IT (I2)
                                    NORTHWEST MOST RANGE - IR (I2)
                                    (I2)
                INITIALIZE MATRICES AND READ IN CONSTANTS FOR:
                                    SPECIFIC YIELD - SY (F5.0)
                    AREA IN NINE SQ MILES - A9SQMI (F5.0)
                    NUMBER YEARS FOR DEPLETION - TIME (F5.0)
                    NO. YRS TIMES ANNUAL RECHARGE RATE - RCHGV (F5.0)
                    OPTIONAL PRINT OF OUTPUT IN MAP FORM - IOP (I2)
C******
C
    READ (5,100) IMX,JMX, IT, IR, SY, A9SQMI, TIME, RCHGV,IOP
        DO 10 I=1, IMX
        DO 11 J=1, JMX
        SATHK(I,J) = 0.0
        AVSTK(I,J) = 0.0
        VINST(I,J) = 0.0
        VALAPP(I,J) = 0.0
        11 AVAAP(I,J) = 0.0
        10 CONTINUE
        IMAP = 0
        DO 12 K=1, IMX
        READ (5,101) (SATHK(K,L), L=1,JMX)
        12 CONTINUE
C****** COMPUTE SATURATED THICKNESS(AVE 9SQ.MI.) AND WATER AVAILABLE
        DO 13 I=1, IMX
        DO 14 J=1, JMX
        IF (I .EQ. l .OR. J.EQ.1 .OR. I.EQ.IMX .OR. J.EQ.JMX) GO TO 200
C****** AVERAGE SATURATED THICKNESS 9 SQ. MILES
        AVSTK(I,J) = (SATHK(I,J) + SATHK(I-1,J) + SATHK(I+1,J) +
        1 SATHK(I-1,J-1) + SATHK(I,J-1) + SATHK(I+1,J-1) + SATHK(I-1,J+1) +
        2 SATHK(I,J+1) + SATHK(I+1,J+1))/ 9.0
            GO TO 220
C
C
C******
C
    200 IF (I.EQ.1 .AND. J.EQ.1) GO TO 401
    IF (I.EQ.I .AND. J.EQ.JMX) GO TO 402
    IF (I.EQ.IMX .AND. J.EQ.1) GO TO 403
    IF (I.EQ.IMX .AND. J.EQ.JMX) GO TO 404
```

```
C*** COMPUTATION FOR NW CORNER
C
    \(401 \operatorname{AVSTK}(\mathrm{I}, \mathrm{J})=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}+1)+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J})+\)
        1 Sathk ( \(\mathrm{I}+1, \mathrm{~J}+1)\) )/4.0
            GO TO 220
C
C** COMPUTATION FOR NE CORNER
C
    \(402 \operatorname{AVSTK}(\mathrm{I}, \mathrm{J})=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}-1)+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J}-1)+\)
        1 SATHK (I +1, J) )/4.0
        GO TO 220
C
C** COMPUTATION FOR SW CORNER
C
    \(403 \operatorname{AVSTK}(\mathrm{I}, \mathrm{J})=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}-1, \mathrm{~J})+\operatorname{SATHK}(\mathrm{I}-1, \mathrm{~J}+1)+\)
        1 SATHK (I, J+1))/4.0
            GO TO 220
C
C*** COMPUTATION OF SE CORNER
C
    \(404 \operatorname{AVSTK}(\mathrm{I}, \mathrm{J})=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}-1)+\operatorname{SATHK}(\mathrm{I}-\mathrm{l}, \mathrm{J}-1)+\)
        1 SATHK (I-1,J))/4.0
            GO TO 220
C :
    445 IF (I.EQ.1) GO TO 301
        IF (I.EQ.IMX) GO TO 302
        IF (J.EQ.1) GO TO 303
        IF (J.EQ.JMX) GO TO 304
        GO TO 444
C COMPUTATION FOR NORTH SIDE OF MATRIX
    \(301 \operatorname{AVSTK}(\mathrm{I}, \mathrm{J})=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}-1)+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}+1)+\)
        1 SATHK (I+1,J-1) \(+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J})+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J}+1)) / 6.0\)
        GO TO 220
C COMPUTATION FOR EAST SIDE OF MATRIX
    \(304 \operatorname{AVSTK}(\mathrm{I}, \mathrm{J})=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}-1, \mathrm{~J})+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J})+\)
        1 SATHुK (I-1,J-1) \(+\operatorname{SATHK}(I, J-1)+\operatorname{SATHK}(I+1, J-1)) / 6.0\)
        GO TO゙ 220
C COMPUTATION FOR WEST SIDE OF MATRIX
    303 AVSTK (I, J) \(=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}-1, \mathrm{~J})+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J})+\)
        1 SATHK \((\mathrm{I}-1, \mathrm{~J}+1)+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}+1)+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J}+1)) / 6.0\)
        GO TO 220
C
C
C
C COMPUTATION FOR SOUTH SIDE OF MATRIX
    302 AVSTK (I, J) \(=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}-1, \mathrm{~J})+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}-1)+\)
        1 SATHK \((\mathrm{I}-1, \mathrm{~J}+1)+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}+1)+\operatorname{SATHK}(\mathrm{I}-1, \mathrm{~J}-1)) / 6.0\)
C
        GO TO 220
    \(210 \operatorname{AVSTK}(\mathrm{I}, \mathrm{J})=(\operatorname{SATHK}(\mathrm{I}, \mathrm{J})+\operatorname{SATHK}(\mathrm{I}+1, \mathrm{~J})+\operatorname{SATHK}(\mathrm{I}, \mathrm{J}+1)+\)
        1 SATHK ( \(\mathrm{I}+1, \mathrm{~J}+\mathrm{l})\) ) / 4.0
C*** WATER AVAILABLE
    220 VINST(I,J) = AVSTK(I,J) * SY * A9SQMI
        VAVLB \(=\) VINST(I,J) + RCHGV
```


Program Listing for Township Option--Continued

$\operatorname{VALAPP}(I, J)=\operatorname{VAVLB} * 0.40$
$14 \operatorname{AVAAP}(I, J)=\operatorname{VALAPP}(I, J) / \operatorname{TIME}$
13 CONTINUE
C****** MAP OUTPUT OPTION
IF (IOP) $15,15,16$
16 WRITE (6,102) IT,IR
C DO $333 \mathrm{I}=1$, IMX
$\operatorname{WRITE}(6,335) \quad(\operatorname{AVAAP}(I, J), J=1, J M X)$
CD 333 CONTINUE
C 335 FORMAT ($1 \mathrm{H} 0,6(3 \mathrm{X}, \mathrm{F} 6.0) / 6(3 \mathrm{X}, \mathrm{F} 6.0) / 6(3 \mathrm{X}, \mathrm{F} 6.0) / 6(3 \mathrm{X}, \mathrm{F} 6.0))$
$I M A P=I M A P+1$
WRITE $(6,102)$ IT,IR
CALL VGMAP (AVSTK,IMX,JMX,DELX,DELY, 5280., TITLE, IMAP)
$I M A P=I M A P+1$
WRITE (6, 102) IT, IR
CALL VGMAP (VALAPP, IMX, JMX, DELX, DELY, 5280., TITLE, IMAP)
WRITE (6, 102) IT, IR
$I M A P=I M A P+1$
CALL VGMAP (AVAAP, IMX, JMX, DELX, DELY, 5280., TITLE, IMAP)
15 CONTINUE
CALL REORD (AVSTK, VINST,VALAPP, AVAAP, IMX, JMX,IT,IR) GO TO 443
444 WRITE 6,103) I, J
443 CONTINUE
STOP
100 FORMAT (4I2,4F5.0, I2)
101 FORMAT (20F4.0)
102 FORMAT (1H1, 'NORTHWEST MOST TOWNSHIP ', I2, 1X,I2, 'W')
103 FORMAT (1H1, 'MATRIX SELETION ERROR', 2I2)
END
SUBROUTINE VGMAP (A, IMAX,JMAX,DELX,DELY, BASE,TITLE, IMAP)
C
C THIS SUBROUTINE PRINTS A VARIABLE GRID MAP
C
C
C ARGUMENTS:

```
    A - ARRAY TO BE PLOTTED
```

 IMAX - Y DIMENSION
 JMAX - X DIMENSION
 DELY - ARRAY OF DELTA Y'S
 DELX - ARRAY OF DELTA X'S
 BASE - DISTANCE WHICH CORRESPONDS TO 5X3 BOX ON PRINTER
 (UNITS PER HALF INCH)
 DOUBLE PRECISION TITLE
 DIMENSION A(IMAX,JMAX), IA (25)
 DIMENSION DELX (JMAX), DELY (IMAX), TITLE (16)
 DIMENSION FMTO (9)
 DIMENSION FMT1 (127),FMT2 (11), FMT3 (53), FMT4 (9) ,FMT5 (104)
 DIMENSION LX1 (25), LX 2 (25), LX3 (25), LX4 (25)
 DATA FMTO/4H(4H(, \(4 \mathrm{H} 4 \mathrm{X}, 4 \mathrm{H} 25,4 \mathrm{H}(2 \mathrm{H}, 4 \mathrm{HI}, \mathrm{I} 4,4 \mathrm{H}, 1 \mathrm{H}, 4 \mathrm{H}, \mathrm{I} 4,, 4 \mathrm{H} 1 \mathrm{HX})\),
 4H1H))/
 DATA FMT2/4H(4H(, 4H \(4 \mathrm{X}, ~ 4 \mathrm{H} 4 \mathrm{HlH}, 4 \mathrm{H}+, \quad, 4 \mathrm{H} 25,4 \mathrm{H}(1 \mathrm{H}, 4 \mathrm{H}, \mathrm{I} 2,, 4 \mathrm{H} 1 \mathrm{HX}\), ,
 \(4 \mathrm{H} 4 \mathrm{H}, 1,4 \mathrm{HH}+), 4 \mathrm{H} 1 \mathrm{H})\))/
 DATA FMT4/4H(4H(, \(4 \mathrm{HlXI}, 4 \mathrm{H} 4 \mathrm{H} 2,4 \mathrm{H} 1 \mathrm{X}, \quad, 4 \mathrm{H} \quad 25,4 \mathrm{H}(2 \mathrm{H}, 4 \mathrm{HI}, \mathrm{I} 4,4 \mathrm{H}), 1 \mathrm{H}\),
 4H)) /
 Program Listing for Township Option--Continued DATA BLNK/' '/
C
CALL JULDAT(NYR,MO,NDA)
C
C SCALE ARRAY VALUES TO 4 SIGNIFICANT DIGITS
C

$$
\mathrm{Z}=0 .
$$

DO $10 \mathrm{I}=1$, IMAX
DO $10 \mathrm{~J}=1$, JMAX
$10 \mathrm{Z}=\operatorname{AMAXI}(\mathrm{Z}, \operatorname{ABS}(\mathrm{A}(\mathrm{I}, \mathrm{J})))$
$\mathrm{S}=1$.
IF(Z.EQ.O.) GO TO 70
$30 \operatorname{IF}(Z-1000) 40,70,$.
$40 \mathrm{~S}=\mathrm{S} * 10$.
$\mathrm{z}=\mathrm{Z}$ * 10 .
GO TO 30
$50 \operatorname{IF}(10000 .-Z) 60,60,70$
$60 \mathrm{~S}=\mathrm{S} / 10$.
$\mathrm{z}=\mathrm{Z} / 10$.
GO TO 50
70 CONTINUE
C
C COMPUTE NODE SPACING PARAMETERS
C
$K D X=0$
200 CONTINUE
: SUMDX=0.
LENGTH=5
$\mathrm{LX}=0$
$\mathrm{N}=0$
$\mathrm{JL}=\mathrm{KDX}+1$
210 CONTINUE
SUMDX=SUMDX+DELX (KDX+1)
LDX $=5 . * S U M D X / B A S E+5.5-$ LENGTH
LENGTH=LENGTH + LDX
IF (LENGTH.GT.130) GO TO 220
$K D X=K D X+1$
$\mathrm{N}=\mathrm{N}+1$
$\operatorname{LXI}(\mathrm{N})=\mathrm{LDX}-1$
$\operatorname{LX} 3(N)=(L D X-2) / 2$
$\operatorname{LX} 2(\mathrm{~N})=\mathrm{LDX}-\mathrm{LX} 3(\mathrm{~N})$
$\operatorname{LX4}(\mathrm{N})=(\mathrm{LDX}+6) / 2+\mathrm{LX}$
$\mathrm{LX}=(\mathrm{LDX}-5) / 2$
IF (KDX.LT.JMAX) GO TO 210
220 CONTINUE
C
C CONSTRUCT FORMAT STATEMENTS
C
CALL CORE(FMTO(3),4)
WRITE(1,1010)N
1010 FORMAT(I4)
CALL CORE(FMTI,508)
WRITE(1, FMTO) (LX2(J), LX3(J), J=1,N)
CALL CORE(FMT2(5),4)
WRITE(1,1010)N

Program Listing for Township Option--Continued

CALL CORE(FMT3,212)
WRITE(1, FMT2) (LX1(J), J=1,N)
CALL CORE(FMT4(5),4)
WRITE(1,1010)N
CALL CORE(FMT5,416)
WRITE (1, FMT4) (LX4 (J) , J=1,N)
C
C PRINT ONE PAGE WIDTH OF MAP
C
SUMDY=0.
LENGTH=0
IF (IMAP .EQ.1) GO T0 9000
IF (IMAP .EQ.2) GO TO 9001
IF (IMAP .EQ.3) GO TO 9002
$9000 \operatorname{WRITE}(6,9010)(\operatorname{TITLE}(\mathrm{I}), \mathrm{I}=1,4), \mathrm{S}, \mathrm{MO}, \mathrm{NDA}, \mathrm{NYR}$
GO TO 9003
$9001 \operatorname{WRITE}(6,9011)(\operatorname{TITLE}(I), I=5,10), S, M O, N D A, N Y R$
G0 TO 9003
$9002 \operatorname{WRITE}(6,9011)(\operatorname{TITLE}(\mathrm{I}), \mathrm{I}=11,16), \mathrm{S}, \mathrm{MO}, \mathrm{NDA}, \mathrm{NYR}$
9010 FORMAT ($5 \mathrm{X}, 4 \mathrm{~A} 8,5 \mathrm{X},{ }^{\prime}($ VALUES HAVE BEEN MULTIPLIED BY', 1 PE8.1,')',
.10X,2(I2,' - '), I2//)
9011 FORMAT ($5 \mathrm{X}, 6 \mathrm{~A} 8,5 \mathrm{X},{ }^{\prime}(\mathrm{VALUES}$ HAVE BEEN MULTIPLIED BY',1PE8.1,')',
.10X,2(I2,' - '), I2//)
9003 WRITE(6,FMT1)(J, J=JL, KDX)
WRITE(6,FMT3)
DO 270 I=1, IMAX
SUMDY=SUMDY+DELY(I)
LDY $=3 . * S U M D Y / B A S E+.5-L E N G T H$
LENGTH=LENGTH+LDY
ISP1=(LDY-1)/2
ISP2=LDY-2-ISP1
DO $240 \mathrm{~K}=1$,ISP1
240 WRITE (6,6010)
6010 FORMAT()
$\mathrm{L}=0$
DO $250 \mathrm{~J}=\mathrm{JL}, \mathrm{KDX}$
$\mathrm{L}=\mathrm{L}+1$
$250 \operatorname{IA}(\mathrm{~L})=\mathrm{A}(\mathrm{I}, \mathrm{J}) * \operatorname{S+SIGN}(.5, \mathrm{~A}(\mathrm{I}, \mathrm{J}))$
WRITE (6,FMT5) I, (IA(J), J=1, L)
IF (ISP2.EQ.0) GO TO 270
DO $260 \mathrm{~K}=1$, ISP2
$260 \operatorname{WRITE}(6,6010)$
270 WRITE (6,FMT3)
WRITE(6,FMT1) (J, J=JL, KDX)
IF (KDX.LT.JMAX) GO TO 200
RETURN
END
SUBROUTINE REORD (BMRO,CMRO, DMRO,AMRO,IMX,JMX,IT,IR)
C
C****** THIS SUBROUTINE REORDERS A MATRIX OF COMPLETE TOWNSHIPS
C
C In the standard gw digital model format to townsip, range AND SECTION ORDER
DIMENSION BMRO(24,24),CMRO(24,24),DMRO(24,24),AMRO(24,24),
$1 \operatorname{RORDMX}(5,5,36), \operatorname{BORDMX}(5,5,36), \operatorname{CORDMX}(5,5,36), \operatorname{DORDMX}(5,5,36)$
$I R L=I M X / 6$

Program Listing for Township Option--Continued

```
        ITL=JMX/6
        N=1
        DO 10 IRR=1, IRL
        L=0
        J=6
        DO 11 JR = 1, ITL
        L=L+1
        IF(JR.NE. I)J=L* 6
        M=0
        5 I= (N*6-6+1)
        DO 12 KR = 1, 36
        RORDMX(IRR,JR,KR) = AMRO(I,J)
        BORDMX(IRR,JR,KR)=BMRO(I,J)
        CORDMX(IRR,JR,KR)=CMRO(I,J)
        DORDMX(IRR,JR,KR)= DMRO(I,J)
        M = M + 1
C----------------------------------------ADDED 8-22-79----------
    IF(KR.EQ.1 .OR. KR .EQ. 13 .OR. KR .EQ. 25) GO TO 23
    IF(KR.EQ.7 .OR. KR.EQ.19 .OR. KR.EQ.31) GO TO 24
    IF(J.EQ. 1 .OR. J.EQ.6)GO TO 22
    IF(MOD(J,6).EQ.O)GO TO 22
    IF(MOD(J-1,6) .EQ.0)GO TO 22
C-----------------------------------------LABLED 8-23-79
    23 IF (MOD (I, 2).NE.0) J=J - 1
C------------------------------
    24 IF(MOD (I, 2).EQ.0) J=J +1
    22 IF(M.EQ.6 .OR.M .EQ.12 .OR. M .EQ.18 .OR. M.EQ. 24 .OR. M.EQ. 30)
    l I= I+l
    12 CONTINUE
    11 CONTINUE
    10 N=N+1
C
C * WRITE REORDERED MATRIX
            IRH= IR
            DO 50 I=1, IRL
            IR= IRH
            IF (I.NE.I) IT= IT+1
            DO 51 J=1, ITL
            IF (J.NE.1) IR= IR-1
            WRITE (6,40) IT,IR
            DO 52 K=1,36
            WRITE(6,41) K, BORDMX(I,J,K),CORDMX(I,J,K),DORDMX(I,J,K),
            l RORDMX(I,J,K)
            IF(MOD(K,6).EQ.0)WRITE(6,43)
C WRITE(7,42) IRORD
    52 CONTINUE
    51 CONTINUE
    50 CONTINUE
    40 FORMAT (1H1,54X,' GROUND WATER AVAILABILITY'/46X,'BASED ON NINE SQU
        IARE MILE DEPLETION MODEL'/IHO,lOX,'SOUTHWESTERN KANSAS GROUNDWATER
        2',54X,'U.S.GEOLOGICAL SURVEY'/12X,'MANAGEMENT DISTRICT NO. 3'///11X
        3,'TOWNSHIP', I2,'S',' RANGE ', I2,'W'/49X,'AVERAGE', 11X,'VOLUME IN',
        4,7X,'VOLUME AVAILABLE',4X,'ANNUAL VOLUME'/42X, 'SATURAT
        5ED THICKNESS',6X,'STORAGE',9X,'IN 25 YEARS', 10X,'AVAILABLE'/30X,
```

 \(6^{\prime}\) SECTION', 11X,'(FEET)', 11Y,'(ACRE-FEET)', \(9 \mathrm{X},{ }^{\prime}(\) (ACRE-FEET)',
 77X,'(ACRE-FEET)'/)
 41 FORMAT (33X,I2,14X,F5.1,13X,F10.1,8X,F10.1,12X,F6.1)
 42 FORMAT (13I6)
 43 FORMAT (1H)
 RETURN
 END
 /*

[^0]:
 IN FE
 5,321 .

[^1]:

 0
 an
 is
 N
 N
 H
 8
 4
 4
 いが
 0
 0
 n
 $\rightarrow 6$
 －～～
 $\begin{array}{lll}\dot{n} & - \\ \sim & 0 \\ \sim & - & 0\end{array}$
 \cdots
 $\stackrel{\sim}{\infty}$

 | ∞ |
 | :--- |
 | 0 |

 $0-N$
 $C-M$

[^2]:

