UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

THE QUALITY OF GROUND WATER IN THE PRINCIPAL AQUIFERS OF NORTHEASTERN-NORTH CENTRAL WASHINGTON

By J. C. Ebbert

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 83-4102

Prepared in cooperation with the

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Tacoma, Washington 1984 UNITED STATES DEPARTMENT OF THE INTERIOR

WILLIAM P. CLARK, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 1201 Pacific Avenue - Suite 600 Tacoma, Washington 98402-4384 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Lakewood, Colorado 80225 (Telephone: (303) 234-5888)

CONTENTS

Abstract 1
Introduction 2
Purpose and scope 2
Criteria for sampling-site selection2
Water-quality constituents and characteristics 4
Maximum contaminant levels specified by U.S. Environmental
Protection Agency primary and secondary drinking water
regulations 6
Significance of selected constituents and characteristics of
water 7
Alkalinity 7
Fecal-coliform bacteria 8
Hardness 8
Phenols 9
Sodium-adsorption ratio9
Specific conductance 10
Suitability of water for irrigation 10
Explanation of geologic unit codes 10
Data presentation 10
Well- and spring-location numbering system 12
Spokane Region 13
Spokane Valley aquifer 13
Description of the data base and previous investigations 13
Description of the aquifer 15
Ground-water use 15
Water quality 15
Physical and major inorganic-chemical characteristics- 15
Trace elements 21
Organic chemicals 23
Coliform bacteria 24
Airway Heights subregion 24
Chamokane Creek subregion 28
Northeastern Region 30
Curlew-Sanpoil subregion 30
Colville-Kettle subregion 30
Pend Oreille subregion 35
Okanogan Region 37
Methow Region 40
Chelan Region 43
Entiat-Wenatchee Region 46
Entiat subregion 46
Cashmere subregion 46
Selected references 50

ILLUSTRATIONS

-

FIGURE 1	. Map of Washington State showing principal aquifer regions, as designated by Molenaar and others (1980), and five major regions, each containing approximately 100 sample sites
2	-
	. Map of the Spokane Valley aquifer showing sample sites 1
4	
	collected from Spokane Valley wells and springs, 1979- 1
5	
	concentrations and specific-conductance values for
	Spokane Valley aquifer ground water 1
6	
	Spokane Valley aquifer ground water observed during
	the period May 1977 to May 1978, and graphs showing
	the history of specific-conductance variation for
	selected wells and springs 1
7	. Map showing average nitrate concentrations in Spokane
	Valley aquifer ground water observed during the
	period May 1977 to May 1978, and graphs showing the
	history of nitrate concentration variation for
	selected wells and springs 2
8	
	nitrate and chloride concentrations, and the
	direction of ground-water flow 2
9	
	subregions showing sample sites and average nitrate
	and dissolved-solids concentrations 2.
10	
	the Airway Heights subregion wells 2
11	
10	the Chamokane Creek subregion 2
12	
	sites and average nitrate and dissolved-solids concentrations 3
13	
13	the Curlew-Sanpoil region 3.
14	1 0
14	showing sample sites and average nitrate and
	showing sample sites and average nitrate and dissolved-solids concentrations 3.
15	
	the Colville-Kettle subregion 34
16	
	the Pend Oreille subregion 30

FIGURE 17.	Map of the Okanogan Region showing sample sites and	• -
	average nitrate and dissolved-solids concentrations	38
18.	Diagram showing major ion percentages in water from the	
	Okanogan Region	39
19.	Map of the Methow Region showing sample sites and	
	average nitrate and dissolved-solids concentrations	41
20.	Diagram showing major ion percentages in water from the	
	Methow Region	42
21.	Map of the Chelan and Entiat-Wenatchee Regions showing	
	sample sites and average nitrate and dissolved-solid	
	concentrations	44
22.	Diagram showing major ion percentages in water from the	
	Chelan Region	45
23.		
	Entiat subregion	48
24.		
	Cashmere subregion	49

TABLES

TABLE	1.	mental Protection Agency primary and secondary
	2.	drinking water regulations Maximum alkalinity in waters used as a source of supply prior to treatment
	3.	Physical, biological, and major chemical-constituent data for Spokane Valley ground water sampled during 1979
	4.	Summary of physical, biological, and major chemical- constituent data for Spokane Valley ground water sampled during 1979
	5.	Summary of specific conductance values in ground-water samples from the Spokane Valley
	6.	Summary of nitrate concentrations in ground-water samples from the Spokane Valley
	7.	Trace-element concentrations in ground-water samples from the Spokane Valley
	8.	Summary of trace-element concentrations in ground-water samples from the Spokane Valley
	9.	Phenol and methylene-blue-active-substance concentrations in ground-water samples from the Spokane Valley
	10.	Physical and major chemical-constituent data for samples from the Airway Heights subregion
	11.	Summary of physical and major chemical-constituent data for ground-water samples from the Airway Heights subregion
	12.	Trace-element concentrations in ground-water samples from the Airway Heights subregion
	13.	Physical, biological, and major chemical-constituent data for ground-water samples from the Chamokane Creek subregion
	14.	Summary of physical, biological, and major chemical- constituent data for ground-water samples from the Chamokane Creek subregion
	15.	Trace-element concentrations in ground-water samples from the Chamokane Creek subregion
	16.	Physical, biological, and major chemical-constituent data for ground-water samples from the Curlew-Sanpoil subregion
	17.	Summary of physical, biological, and major chemical- constituent data for ground-water samples from the Curlew-Sanpoil subregion
	18.	Trace-element concentrations in ground-water samples from the Curlew-Sanpoil subregion

TABLE 19	data for ground-water samples from the Colville-
20	Kettle subregion Summary of physical, biological, and major chemical- constituent data for ground-water samples from the Colville-Kettle subregion
21	-
22	
23	5
24	-
25	-
26	•
27	
28	
29	
30	-
31	
32	
33	-
34	
35	
36	•
37	

METRIC CONVERSION FACTORS

Multiply	By	<u>To obtain</u>
feet (ft) miles (mi) acre-feet (acre-ft) micromho per centimeter at 25° Celsius (µmhos/cm at 25°C) degrees Fahrenheit, (°F)	0.3048 1.609 0.001233 1.000 0.5556, after subtracting 32 degrees	meters (m) kilometers (km) cubic hectometers (hm ³) microsiemen per centimeter at 250 Celsius (μS/cm at 250C) degrees Celsius (°C)

OTHER CONVERSION FACTORS

nitrate mg/L as NO3

0.2258 nitrate mg/L as N

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in the text of this report and as NGVD in automatic-data-processed tables.

THE QUALITY OF GROUND WATER IN THE PRINCIPAL AQUIFERS

OF NORTHEASTERN-NORTH CENTRAL WASHINGTON

By J. C. Ebbert

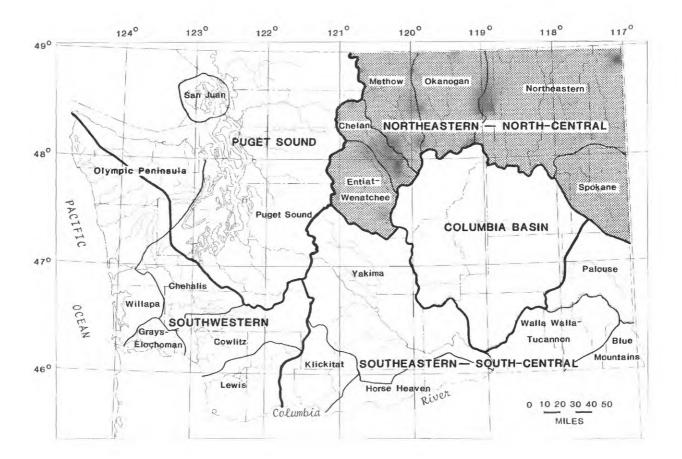
ABSTRACT

The quality of ground water in major aquifers in northeastern-north central Washington was assessed in terms of inorganic chemical, trace-metal, and fecal-coliform concentrations. For the Spokane Valley aquifer some organic chemical data were also included. Results of this assessment indicate that the ground water in the region is generally suitable for most uses.

With some exceptions, ground water in the region can be characterized as moderately hard to hard calcium-magnesium-bicarbonate-type water. Median nitrate concentrations ranged from 0.14 to 2.4 milligrams per liter. Constituent concentrations that exceeded limits recommended by U.S. Environmental Protection Agency secondary drinking water regulations were found in ground-water samples from 8 of the ll aquifers sampled; however, the incidence of such samples was sporadic and did not reflect general ground-water-quality degradation. Iron concentrations in excess of 300 micrograms per liter or manganese concentrations in excess of 50 micrograms per liter constituted most exceedences of secondary regulations.

Except for two samples, concentrations of trace metals in the ground water of the region were below maximum contaminant levels specified by U.S. Environmental Protection Agency primary drinking water regulations. Nitrate concentrations in a few samples exceeded maximum contaminant levels, but these samples did not represent typical conditions.

INTRODUCTION


Purpose and Scope

The Washington State Department of Ecology requested the cooperative assistance of the U.S. Geological Survey in appraising the chemical quality of water in principal aquifers in the State. This resulted in a 5-year program, initiated in 1979, to obtain and analyze water samples for chemical quality from 500 wells and springs in principal aquifers throughout the State. To apportion the wells and springs uniformly across the State, it was divided into five major regions (fig. 1), and each major region was allocated 100 wells and springs. The selection of principal aquifers in each major region was based on the delineation of principal aquifers in Washington by Molenaar and others (1980).

The purpose of this report is to describe ground-water quality in the northeastern-north central region, a major region which includes the aquifer regions Spokane, Northeastern, Okanogan, Methow, Chelan, and Entiat-Wenatchee as identified by Molenaar (fig. 1). Ground-water-quality samples were collected in the northeastern-north central region during 1979, and data from those samples as well as historic ground-water-quality data are used in this report.

Criteria for Sampling-Site Selection

The number of ground-water-quality samples collected from a given aquifer was determined by a qualitative assessment of the availability, use, and economic importance of the water in that aquifer. Individual wells and springs were selected for sampling in order to provide a relatively uniform areal distribution of sites over an aquifer. Although some sites were located in areas of potential ground-water-quality degradation resulting from landfills, industrial sites, and other localized sources of pollution, the primary objective of sampling was to provide a general assessment of the overall ground-water quality in the major aquifers.

EXPLANATION

Boundary between major regions
Boundary between aquifer regions
Small type - aquifer region
BOLD TYPE - major region
Shaded area is topic of this report

FIGURE 1.--Washington State showing principal aquifer regions, as designated by Molenaar and others (1980), and five major regions, each containing approximately 100 sample sites.

Water-Quality Constituents and Characteristics

All samples that were collected during the summer of 1979 were analyzed for major anions and cations, nitrite-plus-nitrate, iron, and manganese. Hardness, sodium-absorption ratio, and dissolved-solids concentration were calculated from the results of the anion and cation determinations. Field measurements were made for temperature. specific conductance. and pH on 811 samples. and fecal-coliform-bacteria determinations were made on samples from domestic and public-supply wells. In addition, approximately 20 percent of the samples were analyzed for 11 trace elements: aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc.

Historic ground-water-quality data generally included the major anions and cations, nitrate, iron, and manganese. Trace-element and organic-chemical determinations were sporadic. In comparing the historic data with the 1979 data, some difficulties arise due to the changing of sample types and analytical methods. Prior to 1979, iron and manganese determinations were often made on unfiltered samples, and concentrations were reported as total recoverable. Samples collected in 1979 were filtered, and the corresponding concentrations were reported as dissolved. In samples with high iron concentrations there is often a precipitate of iron hydroxide that collects on the filter during filtration. In a raw, unfiltered sample much of this iron would be dissolved when the sample was preserved by acidification. Therefore, the concentration of iron in a filtered portion of a ground-water sample will often be less than the concentration in an unfiltered portion of the same sample.

There has also been little uniformity in the reporting of the concentration of inorganic nitrogen in water samples. Depending on the analysis, inorganic nitrogen concentrations have been reported as nitrate or as nitrite-plus-nitrate. Concentrations in filtered samples were reported as dissolved, whereas in raw, unfiltered samples they were reported as total. Furthermore, some nitrate concentrations have been reported as NO3 rather than as elemental nitrogen (NO_3-N) . In the basic data tables of this report (tables 3, 10, 13, 16, 19, 22, 25, 28, 31, 32, and 35) these data are presented as originally reported; however, in the summary tables (tables 4, 11, 14, 17, 20, 23, 26, 29, 33, and 36) and on the figures, all nitrate and nitrite-plus-nitrate data are designated nitrate and expressed as mg/L (NO_3-N) . This was done to facilitate comparison of data, and implies that for a given ground-water sample the various determinations will give similar results. For most ground-water samples this assumption is a satisfactory approximation. Determinations of nitrate and nitrite-plus-nitrate concentrations in a ground-water sample give approximately equivalent results because, in most ground water, little or no nitrite is present.

4

Comparison of nitrate concentrations in filtered and unfiltered portions of the same sample becomes more complex. Here, one must evaluate the potential for the nitrate concentration in a sample to change during the period from collection to analysis. Two processes that could alter the nitrate concentration in a ground-water sample are nitrification and denitrification reactions. These reactions proceed slowly, if at all, without biological mediation, and sample filtration, which is done through a 0.45-um filter, removes the microorganisms responsible for such mediation and effectively stabilizes a nitrate sample for the typical period between collection and analysis. This is not the case for an unfiltered sample, and unless it is treated with a biocide (until October 1980 this was not done), there is a potential for the nitrate concentration to change from the time of collection to analysis. Should this occur, nitrate determinations of the filtered and unfiltered components of the same sample would not give similar results; however, in many unfiltered ground-water samples little or no change in nitrate concentration will occur. Denitrification is unlikely because most samples contain oxygen either initially or after collection, and anaerobic conditions are the preferred environment for denitrifying bacteria. Furthermore, sufficient biodegradable carbon, a necessary energy source for denitrification, is usually not present in typical ground water (Viets and Hageman, 1971). Nitrification could occur, but in most ground water the concentration of reduced nitrogen compounds is low, minimizing the potential for nitrification reactions to significantly alter the initial nitrate concentration.

An additional complication in comparing recent and historic data is due to the changing of detection levels for trace-element determinations. For example, prior to 1979 many dissolved-lead determinations were done with a detection level of 100 ug/L. After 1979, they were done with a detection level of 1 ug/L.

Maximum Contaminant Levels Specified By U.S. Environmental Protection Agency Primary and Secondary Drinking Water Regulations

U.S. Environmental Protection Agency national interim primary drinking water regulations apply to the physical and chemical characteristics of water that affect the health of consumers. They are applicable to public water supplies and are enforceable by the U.S. Environmental Protection Agency or the States. Primary drinking water regulations for constituents included in this report are given in table 1.

National secondary drinking water regulations were also proposed by the U.S. Environmental Protection Agency. They apply to the esthetic qualities of drinking water and, unlike the primary regulations, are intended as guidelines and are not Federally enforceable. National secondary drinking water regulations for constituents and characteristics that are included in this report appear in table 1.

TABLE 1Maximum contaminant levels	
Protection Agency primary	y and secondary drinking water
regulations	

Contaminant	Maximum contaminant level
Primary Reg	ulations
Arsenic Barium Cadmium Chromium Lead Mercury Nitrate (as N) Selenium Silver Fluoride	0.05 1 .010 .05 .05 .002 10 .01 .05 al.4 to 2.4
Secondary Regul	ations
Chloride Copper Foaming agents Iron Manganese pH Sulfate Dissolved solids Zinc	250 1 .5 .3 .05 6.5-8.5 units 250 500 5

[U.S. Environmental Protection Agency, 1976, 1977. Yalues in milligrams per liter unless otherwise noted]

aDepends upon average daily air temperatures.

Significance of Selected Constituents and Characteristics of Water

The significance of selected water-quality constituents and characteristics not included in the U.S. Environmental Protection Agency primary and secondary drinking water regulations is discussed below. Although not included in the regulations, these constituents and characteristics are important in determining the suitability of water for domestic, industrial, or agricultural uses.

Alkalinity

Alkalinity is defined as the capacity of an aqueous solution to neutralize acid. Any ion that enters into a chemical reaction with strong acid can contribute to alkalinity; however, in most natural waters carbonate and bicarbonate ions are the principal components of alkalinity. The alkalinity of water used for domestic and municipal water supplies is important because it affects the amount of chemicals required for flocculation, softening, and control of corrosion in distribution systems. Generally, alkalinity resulting from naturally occurring materials is not a health hazard in drinking water, and alkalinities of natural waters rarely exceed 400 to 500 mg/L as $CaCO_3$. For industrial applications, high alkalinity can be a problem in water used for food processing, especially where acidity is necessary for flavor and stability, such as in carbonated beverages. In some cases, alkalinity is desirable because of the corrosive properties of water with low alkalinity. Maximum alkalinities in source waters used for selected industrial purposes appear in table 2.

TABLE	2Maximum	n alkal	inity	in	waters	used	as	a	source	
	of	supply	prior	to	treatm	ent				

Industry	Alkalinity as CaCO3, in milligrams per liter
Steam generation boiler makeup	350
Steam generation cooling	500
Textile mill products	50-200
Paper and allied products	75-150
Chemical and allied products	500
Petroleum refining	500
Primary metals industries	200
Food canning industries	300
Bottled and canned soft drinks	85

[From U.S.	Environmental	Protection	Agency,	1977b]
------------	---------------	------------	---------	--------

Fecal-Coliform Bacteria

Fecal-coliform bacteria are nonpathogenic bacteria which normally inhabit the gut and feces of warmblooded animals. They are a subgroup of the total coliform group, which includes bacteria of nonfecal origin. The presence of fecal-coliform bacteria in water is an indicator of the contamination of the water supply by sewage or animal excrement. Since feces are known carriers of disease-producing bacteria, the contamination of a water supply as indicated by the presence of fecal-coliform bacteria can be a serious problem. Maximum contaminant levels for coliform bacteria in drinking water are specified by U.S. Environmental Protection Agency primary drinking water regulations in terms of total coliform bacteria, not fecal coliforms. Because the specification of these maximum contaminant levels is quite detailed, they are not included here. For the purpose of this report, it is sufficient to state that the presence of fecal-coliform bacteria in a water sample may indicate contamination of the source by sewage or animal excrement.

Hardness

The hardness of water is an important consideration for domestic, municipal, and industrial uses. It is related almost entirely to the presence of calcium and magnesium ions in water; however, other constituents, such as iron, manganese, and strontium, also contribute to hardness. The fraction of hardness which is equivalent to the alkalinity is called carbonate hardness, and any excess is called noncarbonate hardness. A classification of water by hardness content (Sawyer, 1960, p. 235) is as follows:

Hardness as CaCO ₃ , in milligrams per liter	Description
0-75 75-150	Soft Moderately hard
150-300	Hard
More than 300	Very hard

Phenols

Phenolic compounds arise from numerous industrial sources and from the decomposition of naturally occurring organic substances. Phenol and most of its derivatives are not included in U.S. Environmental Protection Agency primary and secondary drinking water regulations; however, some of them are included in U.S. Environmental Protection Agency water quality criteria (1980). The criteria are not rules and have no regulatory impact, but they can provide guidance on the environmental effect of pollutants, which can be useful in deriving regulatory requirements.

The analytical method used for phenol determinations was the condensation of phenol with 4-aminoantipyrine, followed by oxidation under alkaline conditions to produce a colored compound, the intensity of which is proportional to the phenol concentration. This analytical method is sensitive to pure phenol and to many of its derivatives, making it difficult to compare the results of the analytical determinations for phenol with the water-quality criteria, which specify individual compounds. For example, U.S. Environmental Protection Agency water quality criteria (1980) recommend an ambient concentration limit for phenol of 3.5 mg/L in drinking water for the protection of human health. The recommended concentration limits for 2, 4, 6-trichlorophenol, a potential carcinogen, are 12 ug/L, 1.2 ug/L, and 0.12 ug/L, respectively, for incremental increases of cancer risk over a lifetime 10-5, 10-6 and 10-7, respectively (U.S. Environmental estimated at Protection Agency, 1980). Because the analytical method is sensitive to both compounds, the identity of the specific phenolic compound, or compounds, is unknown and it is not possible to apply the water-quality criteria. Therefore, the phenol data included in this report serve only as an indicator for the presence of phenol and many of its derivatives.

Sodium-Adsorption Ratio

Excess sodium in irrigation water might become a problem because sodium enters into ion-exchange reactions with calcium or magnesium in the soil. This exchange process is undesirable because a build-up of sodium in the soil reduces its permeability and makes it difficult to cultivate. The adsorption of sodium from a given irrigation water is a function of the proportion of sodium to calcium and magnesium in the water. The sodium-adsorption ratio (SAR) is a measure of the degree to which sodium will be adsorbed by a soil from a given water when brought into equilibrium with it. It is defined as

$$SAR = \sqrt{\frac{(Na^{+})}{(Ca^{++}) + (Mg^{++})}}{2}}$$

where ion concentrations are expressed as milliequivalents per liter.

Specific Conductance

Specific conductance is a measure of the capacity of water to conduct an electrical current. It is commonly used as a measure of the mineral content of the water because it is the dissolved minerals that increase the water's current-carrying capacity.

Suitability of Water for Irrigation

The suitability of water for irrigation is in part determined by the degree of mineralization and the relative concentration of the minerals dissolved in water. The U.S. Department of Agriculture (1954) developed the diagram shown in figure 2, which uses specific conductance and sodium-adsorption ratio to determine the suitability of water for irrigation. Water is classified according to the sodium hazard and salinity hazard; C1-S1 water is low in both and, therefore, the best classification. The higher the numbers, the poorer the water for irrigation; C4-S4 is the poorest classification.

Explanation of Geologic Unit Codes

Most of the wells and springs sampled in the northeastern-north central region were completed in alluvial or glacial deposits, except in the Airway Heights subregion, where most wells were finished in basalt aquifers. Geologic unit codes appearing in the data tables are:

> 110ALVM - Quaternary alluvium 112GLCV - Pleistocene glaciofluviatile 122CBRV - Columbia River Basalt Group

A few wells which were completed in geologic units other than those mentioned above were sampled. These wells are referenced in the data tables by a footnote.

Data Presentation

Physical, biological, and major chemical-constituent data are summarized for most of the principal aquifers. These summaries include maximum, minimum, and median values. In calculating a median value it is important to consider the bias resulting when a site is sampled more than once. To eliminate this bias, a mean concentration was computed for each constituent at sites with multiple samples, and the resulting mean was used in the calculation of median concentration in ground water of an aquifer.

Nitrate and dissolved-solids concentrations shown on the figures represent mean values if there was more than one sample for a given sample site.

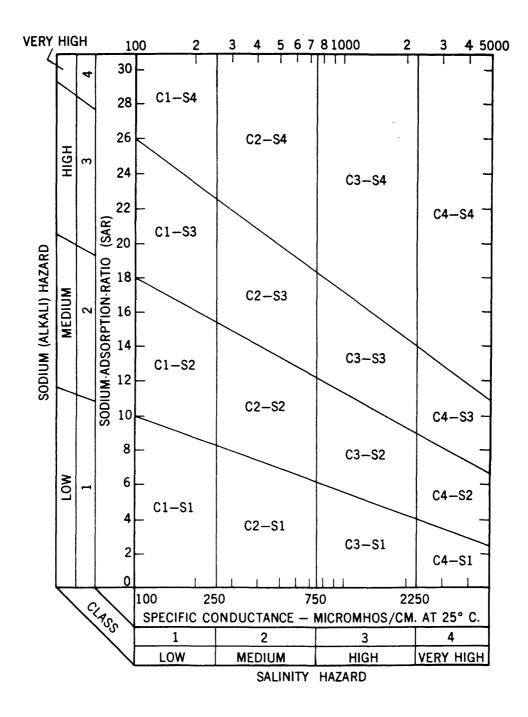
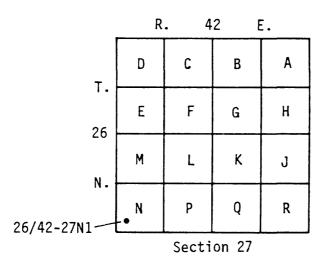



FIGURE 2.--Classification of irrigation waters (U.S. Department of Agriculture, 1954).

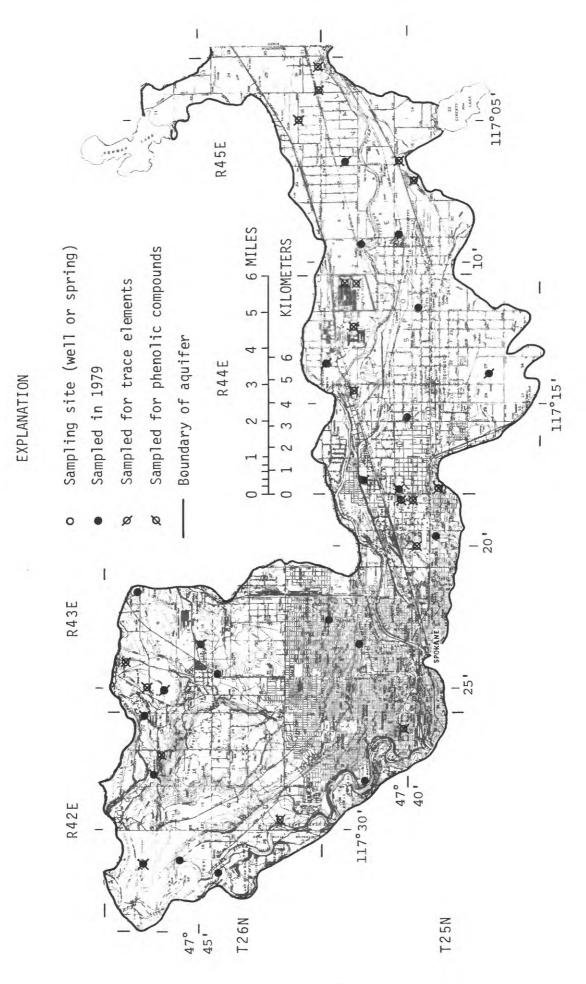
Well- and Spring-Location Numbering System

Wells in Washington are assigned numbers that identify their location in a township, range, and section. Well number $26/42-27 \,\mathrm{N1}$ indicates, successively, the township (T.26 N.) and range (R.42 E.) north and east of the Williamette base line and meridian; the letters indicating north and east are omitted. The first number following the hyphen indicates the section (27) within the township, and the letter following the section gives the 40-acre subdivision of the section, as shown below. The number following the letter is the serial number of the well in the 40-acre subdivision. An "s" following the sequence number indicates that the site is a spring.

SPOKANE REGION

The Spokane Region includes most of Spokane County and small sections of Stevens, Lincoln, and Whitman Counties (fig. 1). The three principal aquifers in the region where ground water was sampled were the Spokane Valley aquifer, the basalt aquifers in the vicinity of Airway Heights, and the aquifer along Chamokane Creek. The Spokane Valley aquifer is shown in figure 3; the Airway Heights and Chamokane Creek subregions are shown in figure 9.

Spokane Valley Aquifer


Description of the Data Base and Previous Investigations

There has been much interest in the Spokane Valley aquifer due to its importance as a source of water for the city of Spokane and much of the surrounding area. The aquifer has been the subject of numerous investigations, some of which have been concerned with the quality of ground water in the aquifer. Because of these studies, the ground-water-quality data base for the Spokane Valley aquifer is extensive, compared with most other major aquifers in the State. It was therefore possible to present a more complete description of the quality of ground water in the Spokane Valley aquifer than for the other principal aquifers.

In this report the ground-water-quality data for the Spokane Valley aquifer include those collected from 22 wells and springs sampled during the summer of 1979 and other data previously collected, which are stored in WATSTORE, the U.S. Geological Survey's computer storage and retrieval system. Most of the historic data resulted from investigations conducted by the U.S. Geological Survey for, or in cooperation with, other agencies. Where possible, these data are summarized to reduce the size of the data tables. Additional data may be found in reports by Drost and Seitz (1978), Bolke and Vaccaro (1979), and Vaccaro and Bolke (1983).

Drost and Seitz (1978) describe the hydrologic characteristics of the Spokane Valley-Rathdrum Prairie aquifer in Washington and Idaho, the population distribution overlying the aquifer, the soils overlying the aquifer, the use and disposal of water withdrawn from the aquifer, and the quality of water in the aquifer. Drost and Seitz accumulated ground-water-quality data for about 1,200 samples from 400 sites from the files of Federal, State, and local agencies, from previous studies, and from private laboratories. Some of the data were tabulated in their report, and all of the data were included when they determined locations where constituent concentrations exceeded drinking water standards. Some information from their report is included in the following discussion for enhancement and clarification.

Bolke and Vaccaro (1979) tabulated hydrologic data from 1977 and 1978 for the Spokane Valley aquifer. Included were nitrogen, phosphorus, chloride, and specific-conductance data for ground-water samples. Vaccaro and Bolke (1983) evaluated the water-quality characteristics of the Spokane Valley aquifer using a solute-transport model. This report contains detailed information on the relation between the hydrologic characteristics of the aquifer and the quality of ground water in the aquifer.

Description of the Aquifer

The boundaries of the Spokane Valley aquifer, as delineated by Drost and Seitz (1978), are shown in figure 3. Although the aquifer extends from Pend Oreille Lake, Idaho, to Long Lake, Wash., this report includes only the part of the aquifer that is in Washington. The aquifer is composed predominantly of Quaternary glaciofluvial deposits of unknown thickness, which lie above the consolidated Precambrian and Tertiary rocks that form the bottom and sides of the valley. Fivemile Prairie, a mesa northwest of the city of Spokane, consists of consolidated Tertiary deposits and separates the aquifer into the Hillyard Trough on the east and the lower Spokane River valley to the southwest.

Ground-Water Use

Water withdrawn from the Spokane Valley aquifer is used for municipal, domestic, irrigation, and industrial purposes. Most municipal use is for domestic and commercial purposes, and some water is used for irrigation and industry. In 1977, water used for municipal purposes was about 70 percent of the total withdrawn, or about 116,000 acre-feet, and water used for irrigation and industry was about 15 percent of the total, or about 24,000 acre-feet (Vaccaro and Bolke, 1983).

Water Quality

Physical and major inorganic-chemical characteristics

The physical and major inorganic-chemical data for samples from the 22 wells and springs sampled during the summer of 1979 appear in table 3 and are summarized in table 4. The percentage of major anions and cations in each of these samples is plotted on figure 4. Calcium and magnesium were the principal cations and bicarbonate was the principal anion in the samples. This is consistent with the findings of Drost and Seitz (1978) and Vaccaro and Bolke (1983).

The specific-conductance values of samples from 1979 and historic data for Spokane Valley aquifer wells and springs are summarized in table 5. Specific-conductance values ranged from 40 to 1,040 micromhos, with a median of 294 micromhos. The equation and graphical representation of the linear regression of dissolved-solids concentration on specific conductance are shown in figure 5. Using the regression equation, the recommended drinking-water standard of 500 mg/L of dissolved solids would correspond to a specific conductance of 916 micromhos. Well 25/45-16K1 is the only well in table 5 from which a sample had a specific conductance greater than 916 micromhos. Five water samples were collected from this well during the period 1973 to 1977. Dissolved-solids concentrations in these samples ranged from 445 to 594 mg/L, with a mean of 492 mg/L.

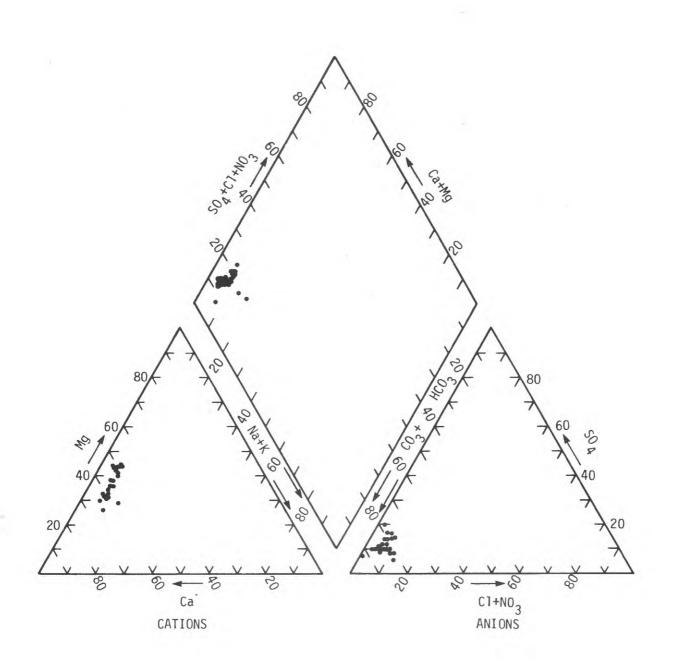


FIGURE 4.--Major ion percentages in water collected from Spokane Valley wells and springs, 1979.

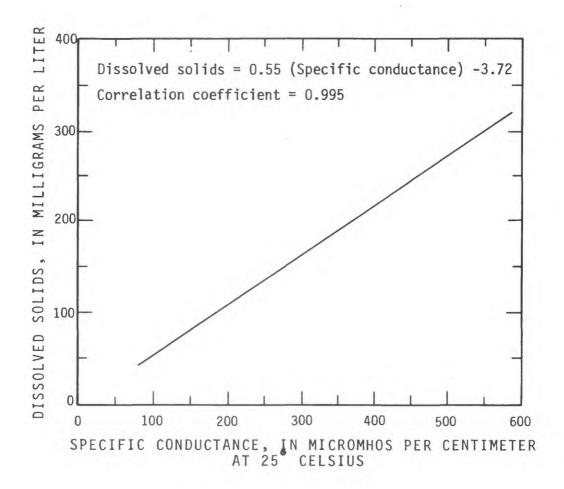


FIGURE 5.--Relation between dissolved-solids concentrations and specific-conductance values for Spokane Valley aquifer ground water.

The areal variation of specific conductance values in Spokane Valley aquifer ground water is shown in figure 6. The contours represent average values resulting from three samplings conducted during 1977 and 1978. Specific-conductance values for the samples collected during 1979 are consistent with the variations shown in figure 6. Generally, specific-conductance values are lowest in the southeastern part of the aquifer and highest in the area around Mead, in the northern part of the aquifer. Also, the specific conductance of ground water is usually greater at the valley perimeter than adjacent to the Spokane River. Local increases in the specific conductance of ground water have resulted from land-use activities (Drost and Seitz, 1978, and Vaccaro and Bolke, 1983). For example, the specific conductance values and chloride concentrations in water from well 25/44-2Q1 were thought to have been affected by wastes from the Kaiser-Trentwood aluminum plant (Drost and Seitz, 1978). The specific-conductance values for water from this well range from 310 to 775 micromhos (table 4).

Specific-conductance values for wells with long-term records are shown in figure 6. No general long-term trend is evident. Because short-term fluctuations exceed long-term variations in water from wells such as 25/42-13B1, it is difficult to evaluate trends. Water from well 25/42-11E1, which has the most complete long-term record, shows an apparent upward trend in specific-conductance values; however, these data must be interpreted with care. Instruments and methods of measurement have changed with time. Also, seasonal and climatic fluctuations in recharge to the aquifer, which influence ground-water quality, are not accounted for in the trend plots. Finally, the quality of water from wells such as 25/42-11E1, which are adjacent to the Spokane River, is influenced by recharge from the river. In such wells, changes in the quality of river water may affect the quality of water in the well more than land-use activities in the vicinity of the well.

Concentrations of NO_3 -N in water sampled historically and in 1979 from Spokane Valley aquifer wells and springs ranged from 0.00 to 9.2 mg/L, with a median concentration of 1.3 mg/L. Nitrate data are summarized in table 6. A plot prepared by Vaccaro and Bolke (1983) of the areal variation in nitrate concentrations is shown in figure 7. The lowest nitrate concentrations occur in the east and central parts of the aquifer, and higher concentrations are found in the peripheral areas.

 NO_3 -N concentrations in water from wells and springs with relatively long-term records are shown in figure 7. As with specific- conductance values, it is difficult to determine trends. In many cases, seasonal or short-term variations exceed long-term variations.

Although none of the NO_3 -N concentrations exceeded the recommended limit for drinking water of 10 mg/L, nitrate concentrations in water from several wells approached that limit. A NO_3 -N concentration of 9.2 mg/L was found in a sample collected from well 25/43-23A1 in February 1972. The mean NO_3 -N concentration in 20 samples collected from this well over a period from 1970 to 1979 was 2.8 mg/L. This well was sampled monthly from September 1971 to September 1972, and except for the NO_3 -N concentration of 9.2 mg/L in the February sample, NO_3 -N concentrations ranged from 1.4 to 3.2 mg/L.

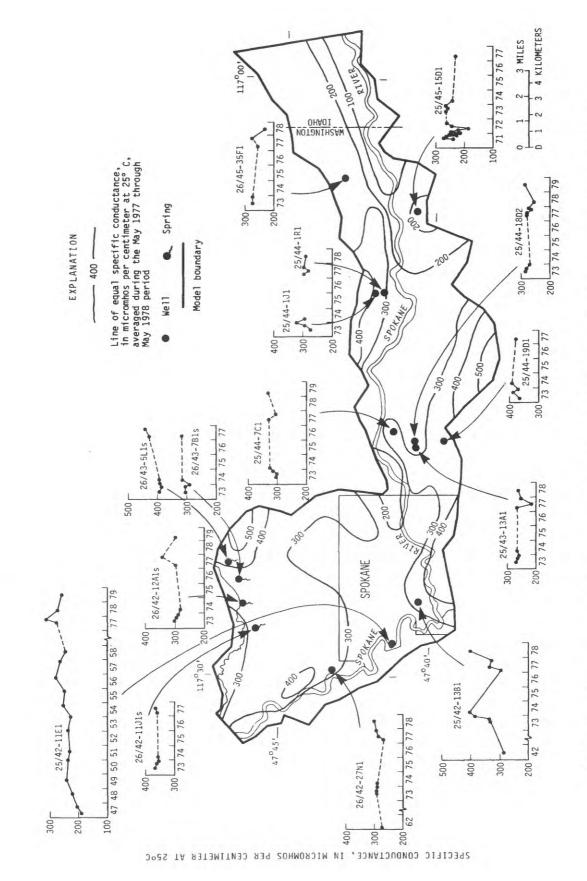
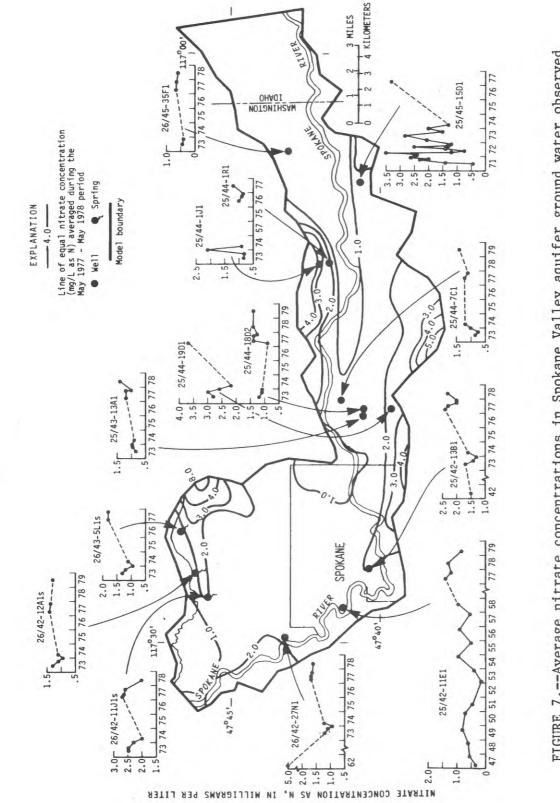
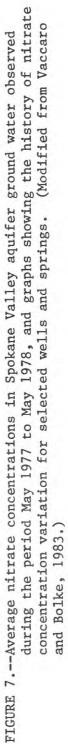




FIGURE 6.--Average specific-conductance values of Spokane Valley aquifer ground water history of specific-conductance variation for selected wells and springs. observed during the period May 1977 to May 1978, and graphs showing the (Modified from Vaccaro and Bolke, 1983.)

Water samples from wells 26/43-3N1, 26/43-3P1, 26/43-8B4, and 26/43-10K1 in the Mead area had NO_3-N concentrations exceeding 8 mg/L. The locations and corresponding graphs of nitrate and chloride concentrations of these and several other wells in the vicinity of Mead are shown in figure 8. In their analysis of the flow and solute transport in the Spokane Valley aquifer, Vaccaro and Bolke (1983) attributed these high nitrate concentrations to high nitrate concentrations in the ground-water inflow from Peone Prairie mixing with ground water in the Spokane Valley aquifer. The source of the nitrate was not identified.

Support for their hypothesis lies in their analysis of ground-water flow in the Spokane Valley aquifer, ground-water inflow from Peone Prairie, and the correlation between chloride and nitrate concentrations in four Mead area wells (fig. 8). Examining their data collected during 1977 and 1978, Vaccaro and Bolke noted the correlation of high chloride and nitrate concentrations in water from wells 26/43-3N1, 26/43-3P1, 26/43-8B4, and 26/43-10K1. This correlation is atypical of most water in the Spokane Valley aquifer, where the correlation coefficient between nitrate and chloride concentrations was 0.442 (Vaccaro and Bolke, 1983). The fluctuations in, and correlations between, nitrate and chloride concentrations in water from the four wells were thought to be caused by variations in the mixing between ground water in the Spokane Valley aquifer and ground-water inflow from Peone Prairie, where there was a common source of nitrate and chloride. Although well 26/43-8G2 is in proximity to well 26/43-8B4, it is in an area where the northward-flowing Spokane Valley aquifer water is just beginning to mix with the inflow from Peone Prairie, and NO₃-N concentrations higher than 4 mg/L were not observed in water from this well.

High chloride concentrations that did not correlate with high nitrate concentrations were found in samples from wells 26/43-8G2, 26/43-16D2, and in the 1964 sample from well 26/43-8B4. Land-use activities that affected chloride, but not nitrate, concentrations were a possible cause.

Of the 22 samples collected during 1979, iron exceeded the recommended maximum concentration for drinking water of 300 ug/L in one sample, and manganese exceeded the recommended maximum concentration of 50 ug/L in two samples. Drost and Seitz (1978) found that iron concentrations exceeded the recommended concentration at 19 percent of the sites tested, and that manganese exceeded the recommended concentration at 6 percent of the sites tested.

Trace elements

Trace-element concentrations in ground-water samples from Spokane Valley aquifer wells and springs appear in table 7 and are summarized in table 8. On two occasions trace-element concentrations in Spokane Valley aquifer ground-water samples exceeded the maximum contaminant levels specified by U.S. Environmental Protection Agency primary drinking water regulations.

1 .

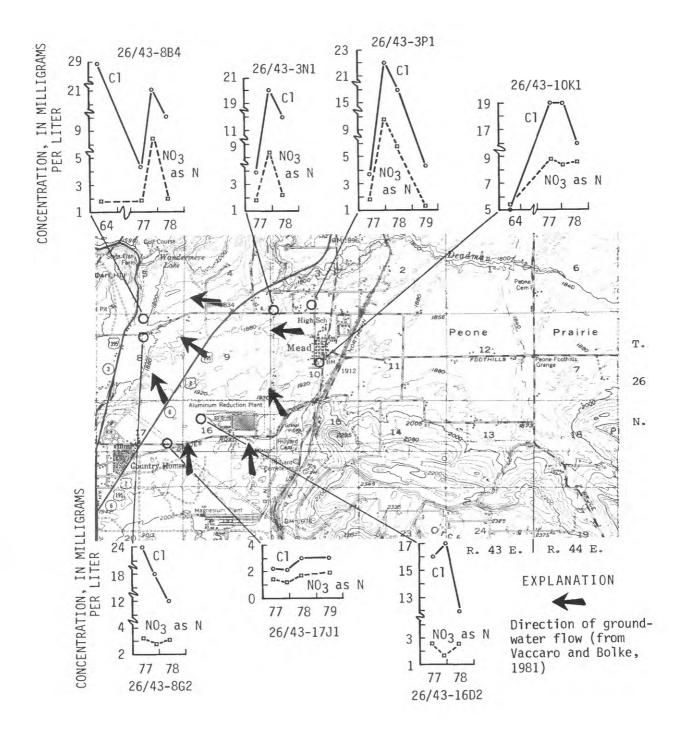


FIGURE 8.--Locations of Mead area wells, graphs of nitrate and chloride concentrations, and the direction of ground-water flow.

A lead concentration of 61 ug/L in a sample collected in March 1977 from well 25/43-13A1 exceeded the maximum contaminant level of 50 ug/L. The median lead concentration in six samples collected from this well was 3.5 ug/L. The concentration of copper in the March 1977 sample from the same well was 280 ug/L, or 5.6 times the median concentration of 50 ug/L in samples from this well. A nearby well, 25/44-18D2, was sampled in April 1977, and no extraordinary lead or copper concentrations were observed.

An arsenic concentration of 64 ug/L in a sample collected on September 26, 1973, from the spring 26/43-7Bls exceeded the maximum contaminant level of 50 ug/L. This may be an isolated occurrence, as four other samples from this spring had concentrations ranging from 2 to 4 ug/L (table 7).

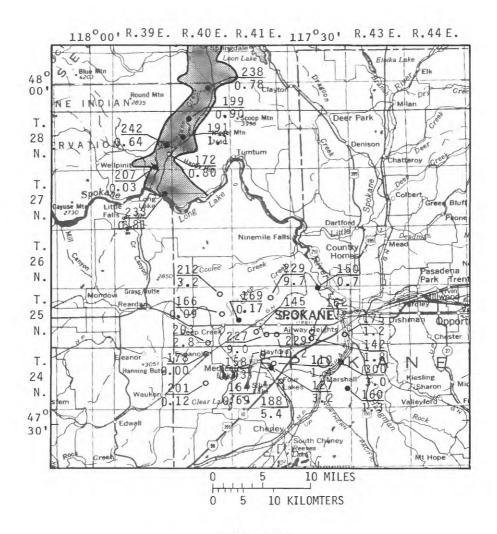
Organic chemicals

The use of phenolic compounds in some of the industries in the Spokane Valley prompted the Environmental Protection Agency to include phenol as one of the analytical determinations for ground-water samples collected from 1973 to 1977. These data, along with methylene-blue-active-substance (detergents) data, are given in table 9.

Primary and secondary drinking water regulations do not include phenol; however, the Environmental Protection Agency (1980) has issued water-quality criteria that include phenol and several phenolic compounds. Based on these criteria, the recommended limit for phenol in drinking water supplies is 3.5 mg/L. There are difficulties in applying these criteria to the data because the analytical method that was used to measure the concentration of phenol in these samples was sensitive to pure phenol and to certain other phenolic compounds. The identity and concentration of individual phenolic compounds was not determined. The analysis for phenol is, however, useful as an indicator of phenolic contamination in ground water. This is especially true in light of the contamination by phenol of water from well 25/44-1J1 (Drost and Seitz, 1978) where, in late 1975, a phenol concentration of 15 mg/L was detected. In samples taken from the well during 1973 and 1974, phenol was not detected (table 9). Phenol concentrations in samples from the Spokane Valley aquifer wells and springs listed in table 9 ranged from 0 to 12 ug/L, with a median of 1.0 ug/L.

The recommended limit for foaming agents (detergents) is 0.5 mg/L in drinking water. For samples from the wells listed in table 9, the concentrations ranged from 0.00 to 0.10 mg/L, with a median of 0.01 mg/L.

Coliform bacteria


No fecal-coliform bacteria were detected in the samples collected from wells during the 1979 sampling. Fecal-coliform bacteria were present in the sample collected from spring 26/42-12Als (table 3), but the probability of sample contamination from a surficial source is high. Drost and Seitz (1978) summarized the potential for the contamination of Spokane Valley aquifer ground water by coliform bacteria. They concluded that, in most cases, positive tests for coliform bacteria in ground-water samples were the result of local contamination.

Airway Heights Subregion

The Airway Heights subregion located west of Spokane includes the vicinity of Airway Heights, Four Lakes, and Medical Lake (fig. 9). The principal ground-water reservoir of the subregion occurs in the lava flows, which constitute the Miocene Columbia River Basalt Group. In much of the area the basalt is only a few hundred feet thick or less, and is underlain by, or interlayered with, the Miocene Latah Formation, which is composed of fine silt and clay of low permeability. The Latah Formation was formed by the accumulation of fine-grained sediment that was deposited as the basalt flows dammed streams and formed lakes. The lowermost beds of the Latah Formation were deposited upon pre-Tertiary plutonic and metamorphic rocks that form the basement complex underlying the area. Generally, this formation is of low permeability and does not produce large quantities of ground water. Where the rocks are weathered or where fractures occur in unweathered rocks, permeability increases, and wells completed in such zones commonly have yields of about 10 gal/min. Glacier-related deposits and extensive glacial flood sediments are found on the plains area north of Four Lakes. These deposits are relatively thin (less than 25 ft), and although these sediments would seem to be good potential aquifers, yields to wells are generally less than 25 gal/min due to low recharge.

Excluding wells for which records were not available, all wells sampled in the Airway Heights subregion were completed in basalt aquifers except for well 24/41E-23Kl, which was terminated in the pre-Tertiary rock of the basement complex.

Ground-water quality in the Airway Heights subregion is generally adequate for most uses; however, NO_3 -N concentrations in samples from wells 25/41-10G1, 25/41-34C1, and 25/41-35C1 have exceeded the maximum contaminant level of 10 mg/L specified in the U.S. Environmental Protection Agency primary drinking water regulations. Nitrate concentrations were consistently high in samples from these wells (see table 10). NO_3 -N concentrations in samples from well 24/41-3N1 were erratic, ranging from 0.00 to 2.1 mg/L. For the subregion in general, there was considerable areal variation of nitrate concentrations in ground water (fig. 9).

EXPLANATION

Area underlain by unconsolidated alluvial and glacial deposits in the vicinity of the sample sites. Source: Huntting, M.T., and others, 1961, Geologic Map of Washington.

- Well sampled in 1979
- Well sampled prior to 1979
- Q Well sampled for trace metals
- 201 dissolved solids, in mg/L
- 0.12 nitrate as N, in mg/L

FIGURE 9.--The Airway Heights and Chamokane Creek subregions showing sample sites and average nitrate and dissolved-solids concentrations. Percentages of anions and cations in ground-water samples from the Airway Heights subregion are plotted in figure 10. Some variations in anionic composition were due to variations in nitrate concentrations. Samples in which magnesium was the principal cation were approximately equal in number to those where calcium was the principal cation.

Physical and major chemical-constituent ground-water-quality data are summarized in table 11. Iron concentrations exceeded the recommended drinking-water limit of 300 ug/L at 4 of the 21 sample sites, and manganese concentrations exceeded the recommended limit of 50 ug/L in 2 of 15 samples. No other constituents, with the exception of nitrate, exceeded limits set by U.S. Environmental Protection Agency primary or secondary drinking water regulations.

Trace-element data for ground water in the subregion are sparse (table 12). A mercury concentration of 1.9 ug/L in a sample from well 24/41E-15A2 approaches the maximum contaminant level of 2.0 ug/L for drinking water. Additional trace-element data are needed to evaluate the ground-water quality of the subregion.

EXPLANATION

- Samples collected in 1979
- Samples collected prior to 1979

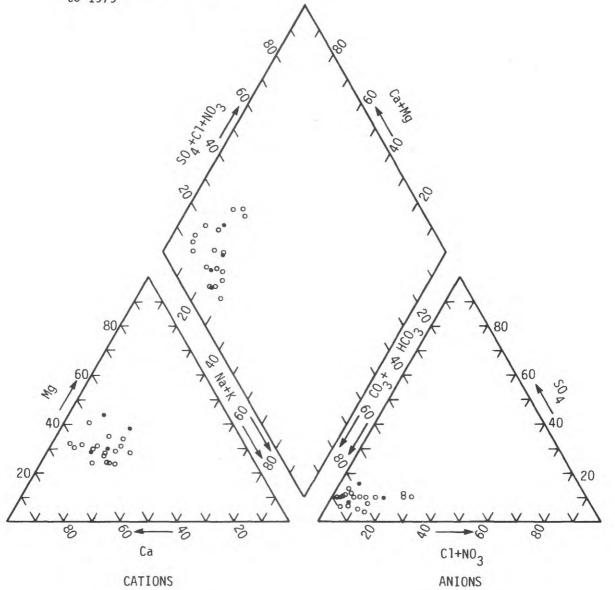


FIGURE 10.--Major ion percentages in water from the Airway Heights subregion wells.

Chamokane Creek Subregion

Chamokane Creek originates in the Selkirk Mountains and flows into the Spokane River below Long Lake Dam. Alluvial and glacial deposits along the lower reach of Chamokane Creek constitute the third principal aquifer where ground water was sampled in the Spokane Region (fig. 9). The Chamokane Creek subregion is sparsely populated, and most wells are used to supply domestic and irrigation water.

The quality of the ground water sampled in the Chamokane Creek aquifer is such that the water is suitable for most uses (tables 13-15). NO_3-N concentrations in ground-water samples ranged from 0.00 to 1.1 mg/L, with a median concentration of 0.78 mg/L. The major ions in the Chamokane Creek aquifer ground water were calcium, magnesium, and bicarbonate (fig. 11). The median dissolved-solids concentration was 207 mg/L.

Iron concentrations in two of seven samples exceeded the recommended limit of 300 ug/L for drinking water. The median dissolved iron concentration in samples from the subregion was 220 ug/L, indicating that iron concentrations are somewhat elevated compared with ground water from many of the other major aquifers. In general, manganese concentrations in the ground water sampled were low (median of 2 ug/L); however, a manganese concentration of 90 ug/L in the sample from well 28/39-35L1 exceeded the recommended limit of 50 ug/L for drinking water.

- Samples collected in 1979 .
- Samples collected prior to 1979 0

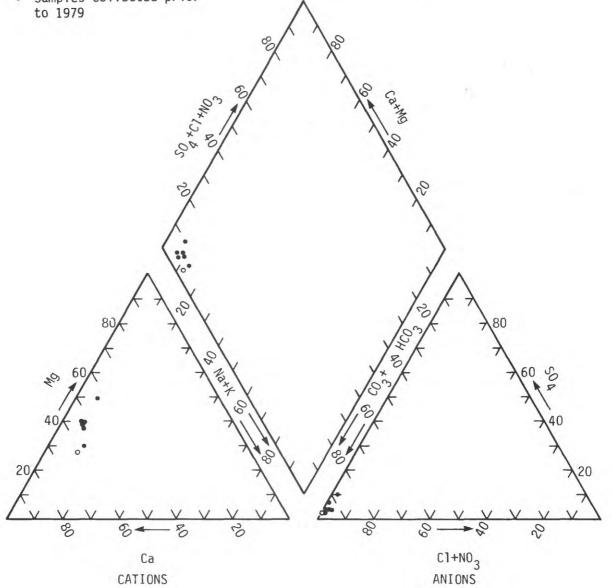


FIGURE 11.--Major ion percentages in water from the Chamokane Creek subregion wells.

NORTHEASTERN REGION

The boundaries of the Northeastern Region are shown in figure 1. The region includes part of Okanogan County, all of Ferry County, and most of Stevens and Pend Oreille Counties. Ground-water sampling in the region was done in three areas where alluvial and glacial deposits form aquifer units—the Curlew-Sanpoil subregion, the Colville-Kettle subregion, and the Pend Oreille subregion (figs. 12 and 14).

Curlew-Sanpoil Subregion

The principal aquifers of the Curlew-Sanpoil subregion are glacial and alluvial deposits along the Sanpoil River and Curlew Creek and along the arc of the Kettle River from where it enters the United States near Ferry to where it flows back into Canada near Danville (fig. 12). The subregion is sparsely populated, and ground water is used mainly for domestic, municipal, and irrigation purposes.

Ground-water-quality data for the subregion appear in tables 16 and 18 and are summarized in table 17. On the basis of these data, the quality of ground water in the subregion is such that the water is suitable for most uses. All constituents were within drinking-water-regulation quidelines, except a total iron concentration of 570 ug/L in water from well 29/33E-4M1. As shown in figure 13, the principal cations in the samples were calcium and magnesium, and bicarbonate was the principal anion. Water from City of Republic wells 36/33E-7F1 and 36/33E-7F2 had a high percentage composition of sulfate compared with other samples from the subregion.

Colville-Kettle Subregion

Alluvial and glacial deposits along the Colville River and the lower reach of the Kettle River are the principal aquifers of the Colville-Kettle subregion. In 1979, five wells adjacent to the Colville River extending from Addy north to Colville were sampled, and two wells were sampled near Boyds adjacent to the Kettle River. Historical ground-water-quality data were collected near Chewela, near Colville, and adjacent to the Columbia River near the mouth of the Colville River (fig. 14).

The ground-water-quality data for the subregion appear in tables 19 and 21 and are summarized in table 20. Except for dissolved-manganese concentrations of 90 ug/L in water from well 33/39E-13C1 and 290 ug/L in water from well 35/39E-10A1, constituent concentrations in ground water sampled in the subregion were below maximum contaminant levels specified by U.S. Environmental Protection Agency primary and secondary drinking water regulations. Hardness values ranged from moderately hard to hard. The median NO₃-N concentration was 0.41 mg/L. City of Colville well 35/39E-10A1 was sampled in 1960 and in 1979, and on both occasions no nitrate was detected. Calcium and magnesium were the major cations and bicarbonate was the major anion in the ground-water sampled (fig. 15). For irrigation purposes, the ground water sampled had a low sodium hazard and a low to medium salinity hazard.

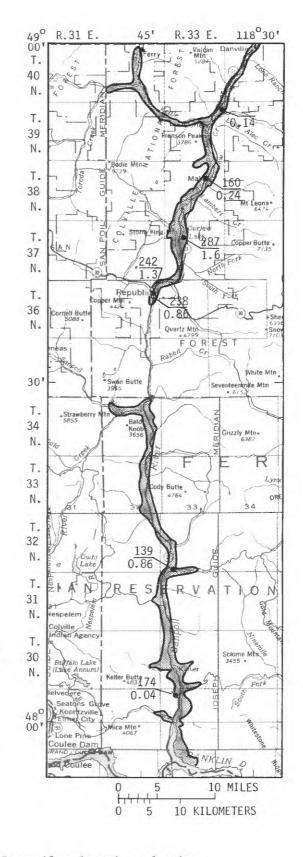


FIGURE 12.--Curlew-Sanpoil subregion showing sample sites and average nitrate and dissolved-solids concentrations.

EXPLANATION

Area underlain by unconsolidated alluvial and glacial deposits.

1961, Geologic Map of Washington,

Well sampled in 1979

242 dissolved solids, in mg/L

1.3 nitrate as N, in mg/L

in Washington.

.

0

Ø

Source: Huntting, M.T., and others,

and Molenaar, Dee, and others, 1980, Principal Aquifers and Well Yields

Well sampled prior to 1979

Well sampled for trace metals

- Samples collected in 1979
- Samples collected prior to 1979

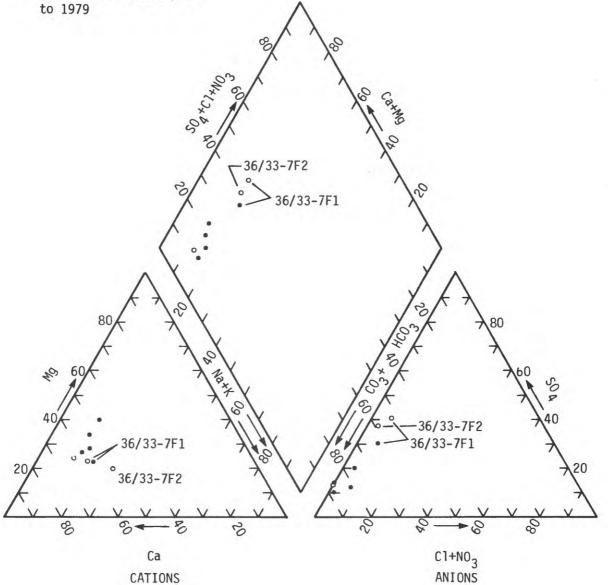


FIGURE 13.--Major ion percentages in water from the Curlew-Sanpoil subregion wells.

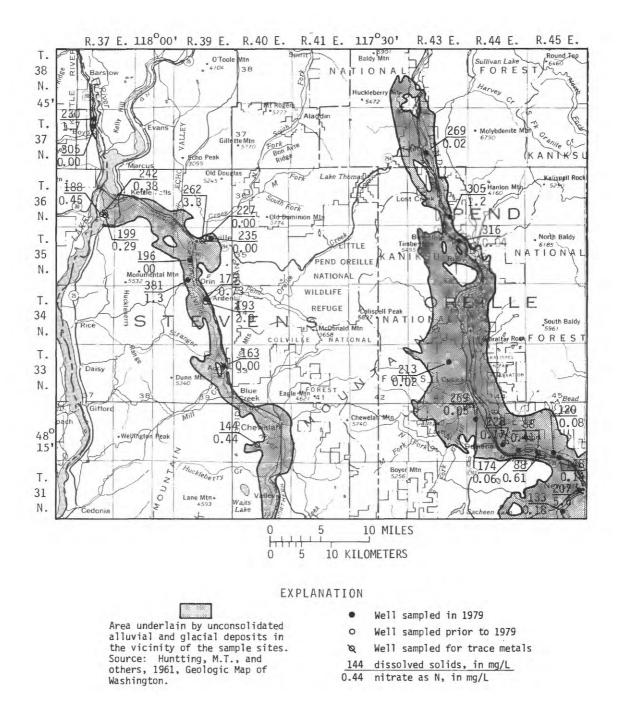


FIGURE 14.--The Colville-Kettle and Pend Oreille subregions showing sample sites and average nitrate and dissolved-solids concentrations.

- Samples collected in 1979
- Samples collected prior to 1979

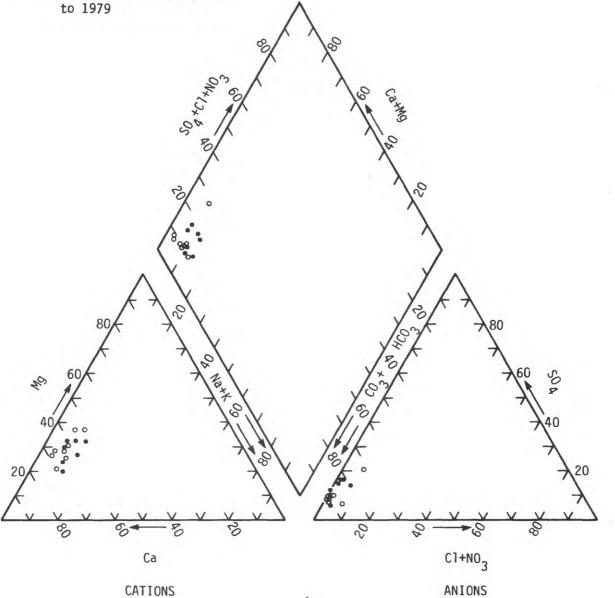
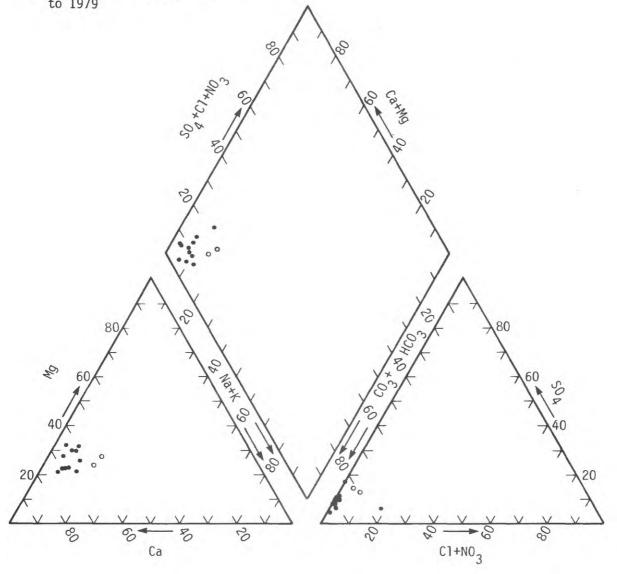


FIGURE 15.--Major ion percentages in water from the Colville-Kettle subregion wells.


Pend Oreille Subregion

Alluvial and glacial deposits along the Pend Oreille River form the principal aquifers in the Pend Oreille subregion. The wells sampled in the subregion extend from the vicinity of Newport north to Tiger (fig. 14). Ground water in the subregion is used primarily for domestic, municipal, and irrigation purposes.

Ground-water-quality data for the subregion appear in tables 22 and 24 and are summarized in table 23. In 5 of the 12 samples for which a manganese determination was done, concentrations exceeded the recommended limit of 50 ug/L. Iron concentrations exceeded the recommended limit of 300 ug/L in 3 of 13 samples. No other constituents exceeded maximum contaminant levels specified by U.S. Environmental Protection Agency primary or secondary drinking water regulations.

Nitrate concentrations were generally low. The median NO_3-N concentration was 0.14 mg/L. The sample from well 31/45-24Bl had a nitrate concentration of 5.6 mg/L. The source of nitrate is unknown, but on the basis of other data it appears to be local. As shown in figure 16, the major ions in the ground water sampled were calcium, magnesium, and bicarbonate. Hardness values ranged from soft to hard.

- Samples collected in 1979
- Samples collected prior to 1979

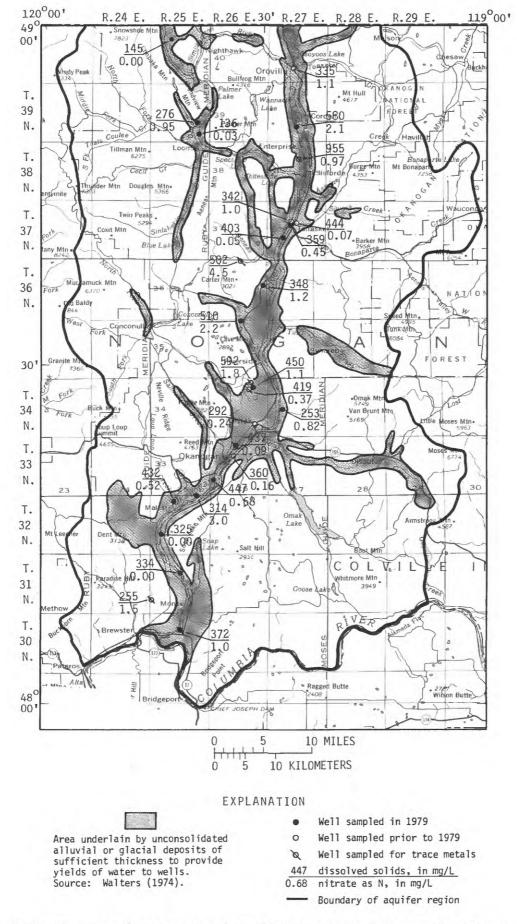
CATIONS

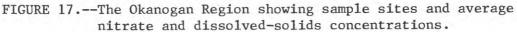
ANIONS

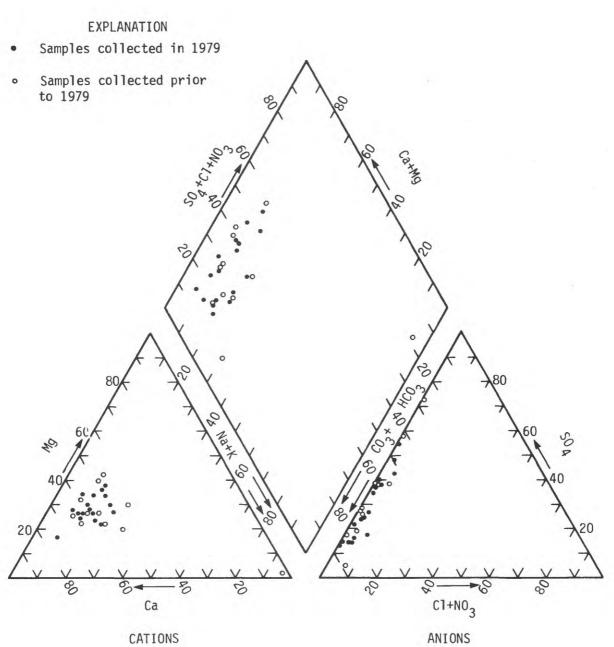
FIGURE 16.--Major ion percentages in water from the Pend Oreille subregion wells.

OKANOGAN REGION

The Okanogan Region is located in north-central Washington, and its boundaries enclose the part of the Okanogan River basin that lies within the United States (fig. 1). Alluvial and glacial deposits, which occur primarily in and adjacent to the major valleys, contain the main volume of ground water in the region (fig. 17). Ground water withdrawn from the aquifer is used for agricultural, industrial, municipal, and domestic purposes.


Physical, chemical, and biological water-quality data for wells sampled in the Okanogan Region are shown in table 25 and are summarized in table 26. Additional trace-element data appear in table 27.


The median values for dissolved-solids concentrations were 359 mg/L for analytical determinations (residue or evaporation at 180° C) and 340 mg/L based on the sum of dissolved constituents. The recommended limit for the dissolved-solids concentration in drinking water of 500 mg/L was exceeded in 5 of 28 samples. For irrigation purposes the salinity hazard of ground-water samples ranged from low to high, and the sodium hazard was low in all samples except from well 38/27E-10N1, where it was high.


Figure 18 illustrates the variation in the chemical composition of ground water sampled in the region. There is a distinct variability in anionic composition where, in many samples, percentages of carbonate and bicarbonate are low compared with ground water from other northeastern-north central aquifer regions. There was less dispersion in the plot of cation percentages than anion percentages; however, the high percentage of sodium in water from well 38/27E-10N1 is unique compared with other samples.

In addition to dissolved solids, other constituent concentrations found to exceed maximum contaminant levels specified by U.S. Environmental Protection Agency primary and secondary drinking water regulations were iron, manganese, sulfate, and selenium. Iron concentrations in excess of the recommended limit of 300 ug/L were found in samples from four wells; however, excessive iron in ground water does not appear to be a pervasive problem in the region. Median concentrations for dissolved and total-recoverable iron were 10 and 50 ug/L, respectively. Manganese concentrations in samples from 5 of 17 wells exceeded the recommended limit of 50 ug/L. The five wells were scattered throughout the region, indicating local influences rather than extensive areas where the ground water had high manganese concentrations. Two samples contained dissolved sulfate in excess of the recommended limit of 250 mg/L. Although a graph showing the percentage composition of anions indicates some shift toward sulfate and chloride (fig. 18), the median sulfate concentration of 73.5 mg/L is well below the recommended limit.

The only constituent to exceed maximum contaminant limits set by the U.S. Environmental Protection Agency primary drinking water regulations was selenium, at a concentration of 12 ug/L in water from irrigation well 30/25E-10N1.

ANIONS

FIGURE 18.--Major ion percentages in water from the Okanogan Region wells.

METHOW REGION

The Methow Region is located in the western one-third of Okanogan County, between the crest of the Cascade Range and the Okanogan River basin (fig. 1). Population in the region is sparse and is concentrated along the Methow River valley between Mazama and Pateros.

Alluvial and glacial deposits along the Methow River and its tributaries constitute the major ground-water reservoir in the region (fig. 19). Ground water is used for agricultural, industrial, municipal, and domestic purposes.

Wells sampled in the Methow aquifer region are shown in figure 19. Physical, chemical, and biological water-quality data for water from these wells appear in tables 28 and 30 and are summarized in table 29. These data indicate that the ground water in the region is of adequate quality for most uses. None of the maximum contaminant levels specified by U.S. Environmental Protection Agency primary and secondary drinking water regulations was exceeded. The hardness of the ground water ranged from soft to moderately hard, making the water acceptable for most uses. Calcium and magnesium were the major cations and bicarbonate was the principal anion in the samples (fig. 20). The ground water had a low sodium-adsorption ratio, indicating its suitability for irrigation.

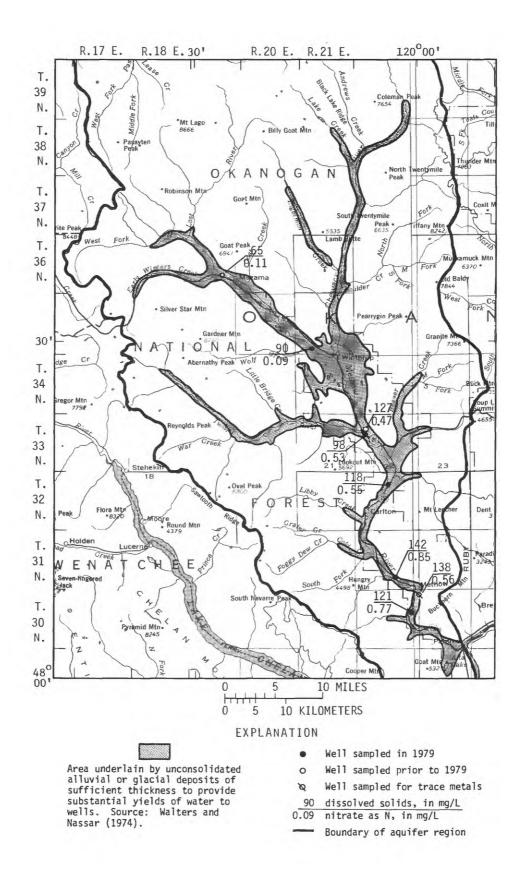


FIGURE 19.--The Methow Region showing sample sites and average nitrate and dissolved-solids concentrations.

.

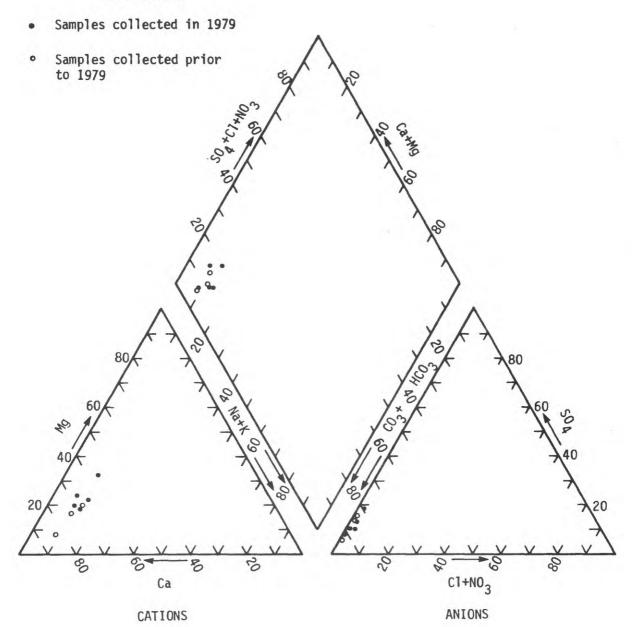


FIGURE 20.--Major ion percentages in water from the

CHELAN REGION

The Chelan Region lies between the Entiat-Wenatchee Region and the Methow Region, extending from the crest of the Cascade Range to the Columbia River (fig. 1). The principal aquifers in the region are the glacial and alluvial deposits along the Stehekin River, a tributary to Lake Chelan, and the glacial terrace deposits along the lower portion of the lake. In the vicinity of Manson, some wells have also been developed in the pre-Tertiary formations, which are chiefly metamorphic, granitic, and consolidated sedimentary rocks with low permeabilities.

The three wells sampled in the region are shown in figure 21. Ground-water development in the area is limited, and most wells are along the lower end of the lake in the terrace deposits or in the hills above the lake. Because of the limited development, only two wells, 28/22-32P1 and 28/22-28B1, were sampled during 1979. Well 28/22-21J1 was sampled in 1971.

Physical, chemical, and biological water-quality data for ground-water samples from the region are shown in table 31. Figure 22 illustrates the variation in chemical composition of ground water sampled in the region. Water from well 28/22-32P1, which was terminated in glacial deposits, had a higher percentage of sodium than water from the wells 28/22-32P1 and 28/22-28B1, which were terminated in the pre-Tertiary rocks. Dissolved-solids concentrations in samples from the three wells ranged from 349 to 480 mg/L, and hardness ranged from moderately hard to very hard.

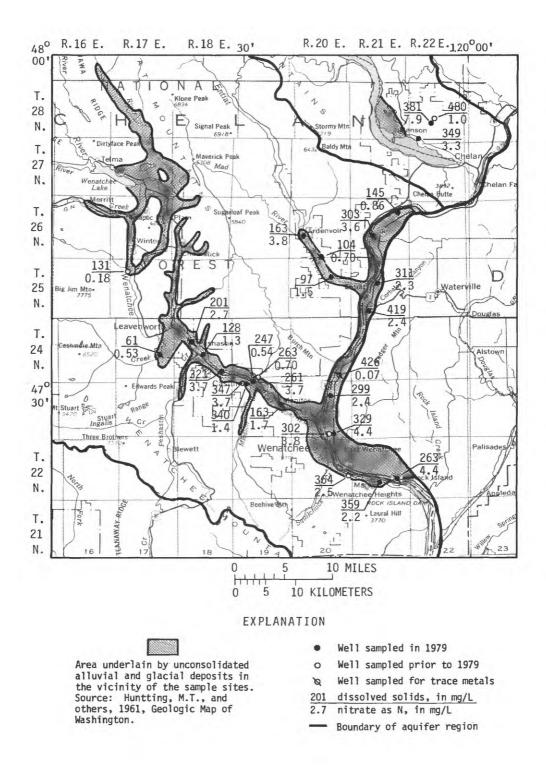


FIGURE 21.--The Chelan and Entiat-Wenatchee Regions showing sample sites and average nitrate and dissolvedsolids concentrations.

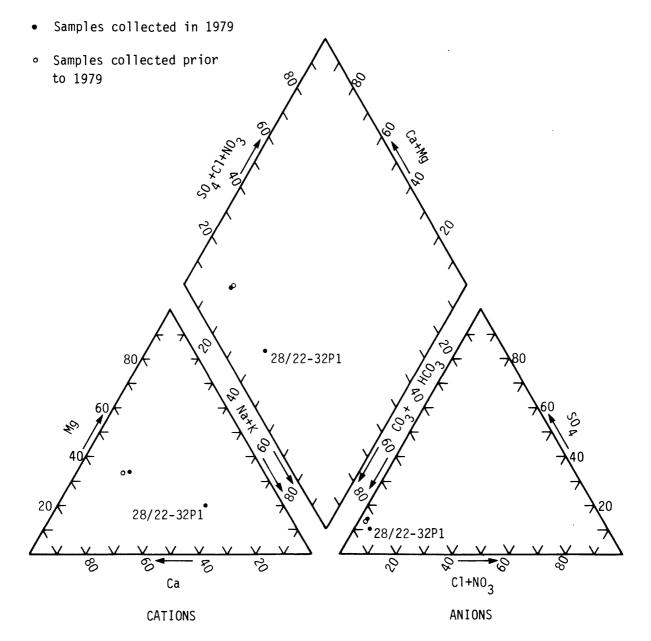


FIGURE 22.--Major ion percentages in water from the Chelan Region wells.

ENTIAT-WENATCHEE REGION

The principal aquifers in the Entiat-Wenatchee Region are the alluvial and glacial deposits in the Entiat and Wenatchee River valleys and the alluvial and glacial deposits along the Columbia River (fig. 21). On the east side of the Columbia River in Douglas County, wells extending from Rock Island north to township 27 N. were sampled. In Chelan County, most sample sites were located along the Entiat and Wenatchee River valleys; however, two wells were sampled on the west side of the Columbia River near Malaga. Ground water withdrawn from these aquifers is used for agricultural, industrial, municipal, and domestic purposes.

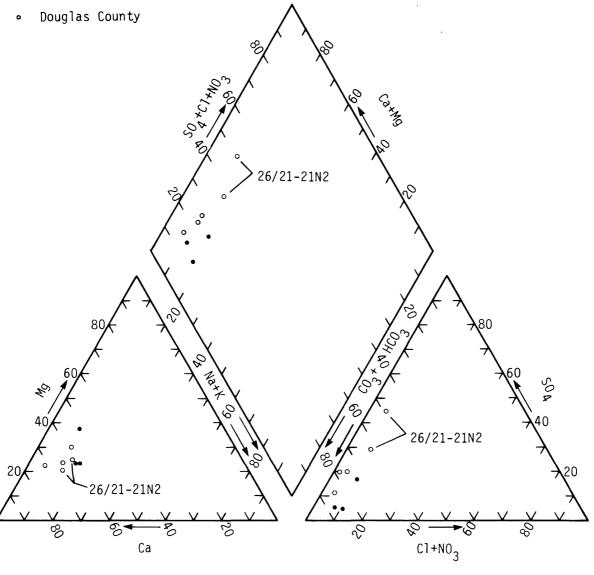
In the following discussion on ground-water quality, the region is divided into the Entiat subregion, which includes the Entiat River valley and the adjacent area on the eastern side of the Columbia River, and the Cashmere subregion, which includes the Wenatchee River valley and the area in townships 22, 23, and 24 N., adjacent to the Columbia River.

Entiat Subregion

In the Entiat subregion, three wells were sampled along the Entiat River valley and four were sampled along the Columbia River in Douglas County. The water-quality data for the subregion appear in tables 32 and 34 and are summarized in table 33. None of the constituent concentrations exceeded maximum contaminant levels specified by U.S. Environmental Protection Agency primary and secondary drinking water regulations. Dissolved-solids concentration samples ranged from 97 to 394 mg/L. The median dissolved-solids concentration in the samples collected from wells along the Entiat River was 104 mg/L, and for samples collected in Douglas County, 307 mg/L. Although the median dissolved-solids concentration was higher in the Douglas County samples, there was no definitive difference in the percentage composition of cations and anions in samples from the two counties (fig. 23). Samples from well 26/21E-21N2 had a higher percentage of sulfate compared with other samples from the subregion.

For irrigation purposes, the ground water sampled had a low sodium hazard and a low to medium salinity hazard.

Cashmere Subregion


Wells sampled in the Cashmere subregion include those in Chelan County in the Wenatchee River valley and along the Columbia River, and those along the Columbia River in Douglas County (fig. 21).

Plots of the percentages of anions and cations in samples from the subregion appear in figure 24, and water-quality data are summarized in tables 35, 36, and 37. In all samples except from well 24/20E-35J1, bicarbonate is the major anion. There is, however, considerable variation in the percentages of calcium and magnesium. Calcium was the principal cation in samples from wells adjacent to the Columbia River in Douglas County. The only sample from a well adjacent to the Columbia River in Chelan County with a complete cation-anion analysis was from well 22/20E-24R1. Calcium was also the principal cation in that sample (fig. 24). Samples from wells in the Wenatchee River valley had, in general, a higher percentage of magnesium than samples from wells along the Columbia River. Samples with the highest percentage magnesium were from wells in township 24 N. and ranges 17 and 18 E. Dissolved-solids concentrations in samples from Douglas County wells ranged from 238 to 426 mg/L, and from wells in Chelan County, from 41 to 364 mg/L. Well 24/17E-23Ql, which is adjacent to Icicle Creek, was sampled in 1970 and 1979. Dissolved-solids concentrations in these samples were 81 and 41 mg/L, respectively, which were the lowest of the subregion.

Nitrate concentrations in ground-water samples from the subregion appear on figure 21 and in table 35. The median NO_3-N concentration was 2.7 mg/L, and there were few samples in which the NO_3-N concentration was less than 1 mg/L. In the upper part of the Wenatchee River basin, NO_3-N concentrations were less than 1 mg/L in samples from well 25/17E-8G1, sampled in 1965, and in well 24/17E-23Q1, sampled in 1970 and 1979. NO_3-N concentrations of 0.70 and 0.54 mg/L were found in samples from City of Cashmere wells 23/19E-24D1 and 23/19E-24D2, respectively. These wells were sampled in 1961 and 1939. A third City of Cashmere well, 24/19E-24E1, located near wells -D1 and -D2 and was sampled in 1979, had a NO_3-N concentration of 3.7 mg/L. In Douglas County, well 24/20E-35J1 was sampled in 1971, and the nitrate concentration of the sample was 0.07 mg/L as N. No other water from wells in the subregion sampled during or prior to 1979 had a lower nitrate concentration; however, this well, which is terminated at 260 ft, is over 100 ft deeper than any of the other wells sampled.

The only constituents in ground-water samples from the subregion that exceeded maximum contaminant levels specified by U.S. Environmental Protection Agency primary and secondary drinking water regulations were iron and manganese (table 35). For irrigation purposes, the ground water sampled had a low sodium hazard and a low to medium salinity hazard.

• Chelan County

CATIONS

.

ANIONS

FIGURE 23.--Major ion percentages in water from the Entiat subregion wells.

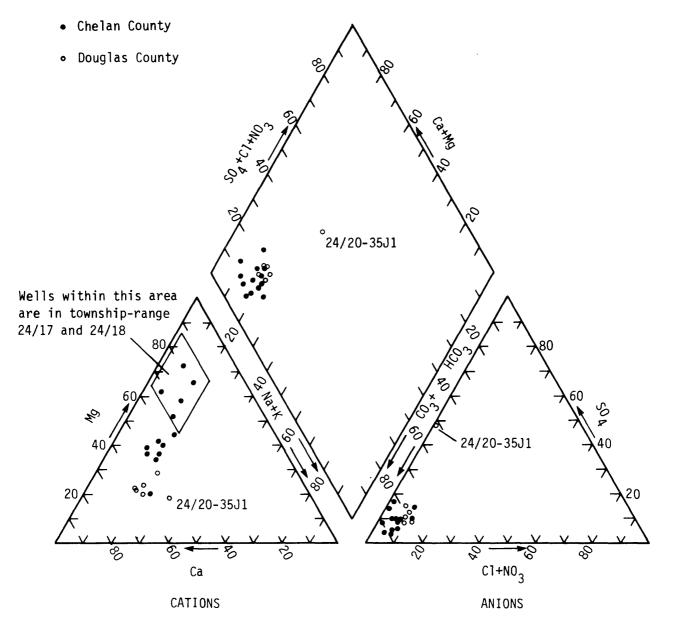


FIGURE 24.--Major ion percentages in water from the Cashmere subregion wells.

SELECTED REFERENCES

- Bolke, E. L., and Vaccaro, J. V., 1979, Selected hydrologic data for Spokane Valley, Spokane, Washington, 1977-78: U.S. Geological Survey Open-File Report 79-333, 98 p.
- Dion, N. P., and Lum, W. E., II, 1977, Municipal, industrial, and irrigation water use in Washington, 1975: U.S. Geological Survey Open-File Report 77-308, 34 p.
- Drost, B. W., and Seitz, H. R., 1978, Spokane Valley-Rathdrum Prairie Aquifer, Washington and Idaho: U.S. Geological Survey Open-File Report 77-829, 79 p.
- Faust, S. D., and Mikulewicz, E.W., 1967, Factors influencing the condensation of 4-aminoantipyrine with derivatives of hydroxybenzene-II. influence of hydronium ion concentration on absorptivity: Water Research, v. 1, p. 509-522.
- Harkness, R. E., Myers, D. A., and Bortleson, G.C., 1974, Water resources of the Colville Indian Reservation, Washington: U.S. Geological Survey Open-File Report, 149 p.
- Hem, J.D., 1970, Study and interpretation of the chemical characteristics of natural water (2d ed.): U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Huntting, M.T., Bennett, W.A.G., Livingston, V. E., Jr., and Moen, V. S., 1961, Geologic map of Washington: Washington Division of Mines and Geology, 1:500,000, two sheets.
- Luzier, J. E., and Burt, R. J., 1974, Hydrology of basalt aquifers and depletion of ground water in east-central Washington: Washington Department of Ecology Water-Supply Bulletin 33, 53 p.
- Molenaar, Dee, Grimstad, P., and Walters, K. L., 1980, Principal aquifers and well yields in Washington: U.S. Geological Survey Geohydrologic Monograph 5, 1:500,000, one sheet.
- National Academy of Sciences, National Academy of Engineers, 1974, Water quality criteria: EPA-R3-73-033, 594 p.
- Olson, T. M., and others, 1975, Geology, ground water, and water quality of part of southern Spokane County, Washington: Eastern Washington State College, 139 p.
- Sawyer, C. N., 1960, Chemistry for sanitary engineers: New York, McGraw-Hill, 367 p.
- U.S. Department of Agriculture, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department of Agriculture Handbook 60, 156 p.

- U.S. Environmental Protection Agency, 1976, National interim primary drinking water regulations: U.S. Government Printing Office, 159 p.
- -----1977a, National secondary drinking water regulations: Proposed regulations: Federal Register, v. 42, no. 62, p. 17143-17146.
- ----1977b, Quality criteria for water, 1976: Washington D. C., 256 p.
- -----1980, Water quality criteria documents; availability: Federal Register, v. 45, no. 231, p. 79318-79382.
- Vaccaro, J.J., and Bolke, E.L., 1983, Evaluation of water quality characteristics of part of the Spokane aquifer, Washington and Idaho, using a solute-transport digital model: U.S. Geological Survey Water-Resources Open-File Report 82-769, 69 p.
- Viets, F.G., Jr., and Hageman, R. H., 1971, Factors affecting the accumulation of nitrate in soil, water, and plants: U.S. Department of Agriculture, Handbook No. 413, 63 p.
- Walters, K. L., 1974, Water in the Okanogan River basin, Washington: Washington Department of Ecology Water-Supply Bulletin 34, 136 p.
- Walters, K. L., and Nassar, E. G., 1974, Water in the Methow River basin, Washington: Washington Department of Ecology Water-Supply Bulletin 38, 73 p.

626	HARD- NESS+ Noncar- Bonate (MG/L Caco3)		30	01	31	29	10	20	19	10	30	10	10	12	0	20	20]4	10	20	9 O E	20	20
ed during 19	HARD- NESS (MG/L AS CACO3)		130		170	260	210	120	140	140	250	150	150	19	170	140	150	80	160	160	160	160	130
ater sample	COLI- FORM+ FECAL+ 0.7 UM-MF (COLS+/ 100 4L)		₫ 5	7 7			1	1 ~	! ~	1 ~	\$! >	1 ×	1 ~	`	</td <td>X14</td> <td>۲۰</td> <td>1></td> <td>1~</td> <td>1></td> <td><1></td> <td><!--</td--></td>	X14	۲ ۰	1 >	1 ~	1 >	<1>	</td
ey ground w	TEMPER- Ature, Ature, Odg C)		10.4	1.1.1	11.4	11.5	10.8	13.0	9•8	10:5	12.4	9•2	0*6	11.2	11.2	11.7	12.0	7.8	9•6	12.2	11.8	11.6	10.8
ookane Vall	FIELD (UNITS)	~	8•0 7 7	- 0 - 8	7.5	7.4	7.5	7.7	7.5	7.5	7.7	7.6	7.6	7.6	8.1	8.0		٠	7.8	٠	٠	•	8.2
data for S ₁	SPE- CIFIC CON- DUCT- ANCE (MICRO- (MICRO-	Spokane County	261	4 6 2	342	515	310	244	286	285	498	316	311	167	367	162	295	176	350	310	328	320	ហ
constituent	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	Spo	1707.00	1946.00	1935.00	989.8	1956.00	2040.20	2015.00	1951.00	2013.50	2050.00	2021.00	2036.00	1740.00	1560.00	1590.00	1640.00	1624.00	1887.00	1790.00	1966.00	1949.00
· chemical-	DEPTH OF WELL' Total (FEET)		201	124	142	122	06	N	128	S	ao –	138	170	215	300	38	1	72	140	203	164	248	286
l, and major	DATE 06 SAMPLE		79-06-22	01-10-61	79-06-19	79-06-20	79-06-20	79-06-19	79-06-20	79-06-20	79-06-19	79-07-10	79-07-06	79-07-06	79-07-12	79-06-21	79-06-21	79-06-21	79-06-22	79-06-20	79-06-21	79-06-20	79-06-21
l, biologica	GEO- LOGIC UNIT		1126LCV	1126LCV	1126LCV	1126LCV	112GLCV	1126LCV	112GLCV	1126LCV	1126LCV	1126LCV	112GLCV	1126LCV	112GLCV	11UAL VM	110ALVM	112GLCV	1126LCV	1126LCV	1126LCV	1126LCV	1126LCV
TABLE 3Physical, biological, and major chemical-constituent data for Spokane Valley ground water sampled during 1979	LOCAL IDENT- I- FIER		25/42E-11E01	23/43E=U44U2 25/43E=08&0]	25/43E-23A01	25/44E-03801	25/44E-07C01	25/44E-13M01	25/44E-16E01	25/44E-18002	25/44E-27L01	25/45E-03M01	25/45E-07A03	25/45E-17D03	26/42E-08A01	26/42E-11F01	26/42E-12A01S	26/42E-17A02	26/42E-20801	26/43E-03P01	26/43E-07K01	26/43E-17J01	26/43E-20001

K Based on colony count outside the ideal range.

CHL 0-	RIDE, DIS- Solved (MG/L	AS CL)	4 • l	2°2	2 : 2 :	5.0	8 ° S	2.7	2.0	2.0	2.0	8 • 4	1.2	1.0	6•	1.7	3•2	2.8	1.6	4.1	4 • 4	5. 4	3.0	•
	SULFATÉ DIS- Solved (MG/L	AS 504)	18	15	15	15	19	16	12	15	15	18	17	17	12	16	22	- 22	16	18	16	24	20	21
	ALXA- LINITY (MG/L AS	CAC03)	100	120	110	139	231	140	100	121	130	220	140	140	67	180	120	130	66	150	140	130	140	110
	CAR- BONATE (MG/L	AS C03)	0	o	0	0	0	0	0	0	•	0	0	•	0	0	0	0	0	0	0	0	0	o
	BICAR- Bonate (MG/L AS	НС03)	122	146	134	170	282	171	122	147	159	268	171	171	82	220	146	159	80	183	171	159	171	134
	• •	AS K)	1.9	2.1	1.8	J • 4	6.4	2.3	1.9	2°0	2.1	3.7	2.2	2.0	1.6	3•1	1,3	2.4	1.9	3.0	2.3	2•3	2.3	1.8
MUIDOS	AU- Sorp- Tion Ratio		.1	•1	•1	•	°.	.1	•1	•1	•	۳	.1	.1	•1	•		•1	م ع	e.	۰.	°.	.1	• 1
	SODIUM, DIS- Solved (MG/L	AS NA)	3.8	3.4	3.1	6.1	8•6	4.2	3.0	3.2	3 • 4	6°6	3.0	3.2	2.1	4 .l	3.7	3 ° 5	3.1	10	4 • 5	4 • 5	3.7	2 • C
MAGNE-	SIUM. DIS- SOLVED	AS MG)			10			17	10	14	14	21	17	17	7.7	20	15		5°2	13			19	
	CALCIUM DIS- SOLVED (MG/L	AS CA)	EE.	28	32	**	68	58	32	33	34	65	33	33	19	37	32	32	23	64	4 0	33	34	28
	LOCAL IDENT- I- FIFR		25/42E-11E01	25/43E-04802	25/43E-08A01	25/43E-23A01	25/44E-03B01	25/44E-07C01	25/44E-13M01	25/44E-16E01	25/44E-18002	25/44E-27L01	25/45E-03M01	25/45E-07A03	25/45E-17D03	26/42E-08A01	26/42E-11F01	26/42E-12A01S	26/42E-17A02	26/42E-20801	26/43E-03P01	26/43E-07K01	26/43E-17J01	26/43E-20D0l

	MANGA- NESE DIS- Solveu (UG/L AS MN)	0 1 V 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 1	1 × 1 × 1 × 1 × 0 0 0 0 0 0 0 0 0 0 0 0	360 360 0 10	00
	IRON, DIS- Solved (UG/L AS FE)	10 10 10 10	20 10 10 10	0 0 1 1 0 0	0 1800 10 0	10
p	NITRO- 6EN+ 02+N03 015- SolvED (MG/L AS N)	5 8 4 5 8 4 5 8 6 5 8 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8		1.1 1.0 .66 1.4	1.3 0.0 2.4 2.1 4.4 2.1	1.9 1.1
TABLE 3Continued	SOLIDS. SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	147 154 1466 318	201 139 158 165 297	175 174 98 204 166	174 102 220 185 185	184 141
TABLE 3	SILICA. DIS- Solved (MG/L AS SIO2)	55 57 57 57 57 57 57 57 57 57 57 57 57 5	9.8 11 9.7 10 18	11 11 11 11	9.8 9.3 12 9.9	9.3 .1
	FLUO- RIDE, DIS- Solved (MG/L AS F)					•••
	LOCAL IVENT- I- FIER	25/42E-11E01 25/43E-04802 25/43E-04801 25/43E-28A01 25/44E-03401 25/44E-03401	25/44E-07C01 25/44E-13M01 25/44E-16E01 25/44E-18U02 25/44E-27L01	25/45E-03M01 25/45E-07A03 25/45E-17D03 26/42E-08A01 26/42E-11F01	26/42E-12A01S 26/42E-17A02 26/42E-20B01 26/43E-03P01 26/43E-07K01	26/43E-17J01 26/43E-20D01

TABLE 4,--Summary of physical, biological, and major chemical-constituent data for Spokane Valley ground water sampled during 1979

[Yalues in milligrams per liter except as indicated umho, micromho; col/100 mL, colonies per 100 milliliter; ug/L, microgram per liter]

H (units) emperature (^O C) ecal-coliform bacteria (col/100 mL) ardness (as CaCO ₃) ardness, noncarbonate (as CaCO ₃) alcium, dissolved agnesium, dissolved odium, dissolved odium-adsorption ratio otassium, dissolved icarbonate arbonate lkalinity (as CaCO ₃) ulfate, dissolved hloride, dissolved luoride, dissolved ilica, dissolved (as SiO ₂) olids, dissolved (sum of constituents	Number of <u>Trace element concentra</u>					
Constituent	sample sites	Maximum	Minimum	Median		
Specific conductance (umho)	22	515	167	303		
pH (units)	22	8.2	7.4	7.6		
Temperature (^O C)	22	7.4	8.2	7.75		
Fecal-coliform bacteria (col/100 mL)	21	14	<1	<1		
Hardness (as CaCO ₃)	22	260	7 9	150		
Hardness, noncarbonate (as CaCO ₃)	22	70	0	20		
Calcium, dissolved	22	68	19	33		
Magnesium, dissolved	22	23	5.5	15		
Sodium, dissolved	22	10	2.1	3.6		
Sodium-adsorption ratio	22	.3	.1	.1		
Potassium, dissolved	22	4.3	1.3	2.1		
Bicarbonate	22	282	80	164		
Carbonate	22	0	0	0		
Alkalinity (as CaCO ₃)	22	231	66	1 30		
Sulfate, dissolved	22	24	12	16.5		
Chloride, dissolved	22	8.5	.9	2.6		
Fluoride, dissolved	22	.2	.1	.1		
Silica, dissolved (as SiO ₂)	22	28	.1	11		
Solids, dissolved (residue at 180 ⁰ C)						
Soilds, dissolved (sum of constituents)	22	318	98	174		
Nitrate (as N)	22	5.8	. 01	1.4		
Iron, total recoverable (ug/L)						
Iron, dissolved (ug/L)	22	1,800	10	. 10		
Manganese, total recoverable (ug/L)						
Manganese, dissolved (ug/L)	22	360	<1	10		

TABLE 5.--Summary of specific-conductance values in ground-water samples from the Spokane Valley

LOCAL IDENTIFIER	DEPTH OF WELL	BEGIN YEAR	END YEAR	MAXIMUM (MICRO- MHOS)	MINIMUM (MICRO- MHOS)	MEAN MICRO- MHOS)	NUMBER OF Samples
25/42E-03H01	124	1977	1978	300	251	273	3
25/42E-11E01	201	1947	1979	325	194	249	17
25/42E-11E02	52	1948	1961	275	184	207	14
25/42E-11M02	230	1955	1965	279	257	273	8
25/42E-13B01	200	1942	1978	410	258	344	10
25/42E-14J01	160	1977	1977	189	189	189	1
25/42E-23B01 25/43E-04B02 25/43E-08A01	59 227 124	1977 1952 1978	1978 1980 1980	300 372 252	258 274 233	278 326 240	3 3 3
25/43E-08D01	32	1942	1942	245	245	245	1
25/43E-09G01		1951	1951	73	73	73	1
25/43E-09G03	73	1977	1978	190	97	149	3
25/43E-10P02	96	1977	1978	350	260	285	15
25/43E-11B03	128	1977	1978	145	111	132	3
25/43E-11D02	80	1977	1978	165	145	154	3
25/43E-11E02	-	1977	1977	160	160	160	1
25/43E-11G04	44	1962	1962	294	294	294	
25/43E-11J03 25/43E-11M03 25/43E-11N01 25/43E-11R01	125 98 70 104	1960 1977 1977 1977	1962 1978 1978 1978	301 280 320 440	287 245 300	293 267 309	3 16 3 3
25/43E-12H01 25/43E-12L02	94 100	1971 1971 1977	1978 1978	360 490	281 264 340	350 313 415	18 2
25/43E-13A01	110	1973	1978	270	216	257	9
25/43E-13H01	71	1974	1974	265	265	265	1
25/43E-13R01	140	1977	1977	275	275	275	1
25/43E-14E01	211	1977	1978	255	225	238	16
25/43E-14K01	83	1973	1978	400	225	265	9
25/43E-14L01	120	1977	1978	265	225	244	14
25/43E-15G02	129	1977	1978	270	235	256	3
25/43E-16K01	65	1977	1978	290	232	271	
25/43E-17R01	100	1977	1978	450	380	423	3
25/43E-21B01	87	1977	1977	305	305	305	1
25/43E-22F01	77	1977	1978	397	350	370	3
25/43E-23A01	142	1970	1979	370	234	309	20
25/43E-23A02	150	1972	1973	400	280	312	15
25/43E-24G01 25/44E-01J01 25/44E-01R01 25/44E-02B01	144 160 150 127	1971 1973 1977 1955	1973 1974 1978 1978	420 325 300 430	360 284 280	391 300 292	14 4 5
25/44E-02001	129	1955	1978	775	319 310	352 550	4 11

LOCAL IDENTIFIER	DEPTH OF WELL	BEGIN YEAR	END YEAR	MAXIMUM (MICRO- MHOS)	MINIMUM (MICRO- MHOS)	MEAN MICRO- MHOS)	NUMBER OF SAMPLES
25/44E-03B01 25/44E-04R03 25/44E-05D01 25/44E-05K01 25/44E-05R01	122 118 202 234 130	1977 1971 1977 1977 1977	1979 1978 1978 1978 1978 1978	515 296 290 270 320	465 267 240 270 261	483 281 270 270 299	3 5 3 2 3
25/44E-06A01 25/44E-07B01 25/44E-07C01 25/44E-07J02 25/44E-07J03	104 120 90 110	1955 1977 1973 1977 1979	1978 1978 1979 1978 1981	228 350 330 332 304	204 260 306 300 284	216 320 314 313 295	2 3 7 3 61
25/44E-08D01 25/44E-08N01 25/44E-09C01 25/44E-09C02 25/44E-09E01	112 135 125 150	1977 1978 1977 1977 1977	1978 1978 1978 1978 1978	340 301 285 310 300	271 290 250 250 270	310 295 267 275 288	3 2 3 16 3
25/44E-09P01 25/44E-12D01 25/44E-12M01 25/44E-13M01 25/44E-15E01	121 100 125 156	1977 1977 1978 1977 1942	1978 1978 1978 1979 1978	325 320 300 370 300	290 280 280 210 269	303 298 295 275 283	16 3 4 3 4
25/44E-15E02 25/44E-15J01 25/44E-16E01 25/44E-17A01 25/44E-17M01	150 156 128 125 114	1970 1977 1978 1977 1977	1973 1978 1979 1978 1978	360 410 286 300 270	232 190 280 285 256	265 278 284 292 265	15 3 3 3 3
25/44E-17R01 25/44E-18D02 25/44E-18F01 25/44E-18M01 25/44E-19D01	125 120 110 79 88	1977 1973 1977 1951 1973	1978 1979 1978 1951 1977	375 285 263 237 394	225 255 221 237 369	269 273 247 237 381	16 9 3 1 5
25/44E-20K01 25/44E-21J01 25/44E-21L01 25/44E-21N01 25/44E-22H02	129 117 177 181 160	1977 1977 1977 1977 1977	1978 1978 1978 1978 1978 1978	360 340 537 337 380	294 241 247 269 250	327 297 360 297 315	2 3 3 3 2
25/44E-22R01 25/44E-26L01 25/44E-27E01 25/44E-27L01 25/44E-28L01	176 166 220 180 131	1977 1977 1977 1977 1977	1978 1978 1978 1979 1978	410 390 355 529 520	222 320 295 378 309	316 350 323 482 443	2 3 4 3

LOCAL	DEPTH OF	BEGIN	END	MAXIMUM (MICRO-	MINIMUM (MICRO-	MEAN MICRO-	NUMBER OF
IDENTIFIER	WELL	YEAR	YEAR	MHOS)	MHOS)	MHOS)	SAMPLES
25/44E-28P01	167	1977	1978	493	440	467	2
25/44E-28R01	132	1977	1978	530	374	461	3
25/44E-29A01	157	1977	1978	533	354	444	2
25/44E-29H01	154	1978	1978	367	367	367	1
25/45E-01H03	165	1977	1978	112	110	111	2
			_				
25/45E-02G02	235	1977	1978	263	240	249	3
25/45E-03M01	138	1977	1980	316	310	314	3
25/45E-04A01	135	1951	1951	297	297	297	1
25/45E-05H01	137	1977	1977	255	255	255	1
25/45E-05R02	130	1978	1978	375	250	326	10
25/45E-06D03	146	1977	1978	635	435	505	3
25/45E-07A03	170	1977	1980	311	275	295	4
25/45E-08R02	165	1978	1978	205	195	200	5
25/45E-09801	107	1977	1978	140	135	138	2
25/45E-10F01	85	1977	1978	155	73	110	3
257452 10,01	05	* 211	1910	100	15	110	5
25/45E-11K02	225	1977	1978	115	94	105	2
25/45E-14C01	238	1977	1978	210	185	198	2
25/45E-15C01	157	1977	1978	243	240	242	2
25/45E-15D01	195	1972	1977	270	184	241	21
25/45E-15R01	155	1971	1978	145	40	116	18
254455 14401	105	1070	1077	10/0	-		-
25/45E-16K01	185	1973	1977	1040	780	860	5
25/45E-17D02	213	1977	1977	187	187	187	1
25/45E-17D03	215	1978	1980	170	155	164	3
25/45E-17P01	203	1977	1977	180	180	180	1
25/45E-17P02	218	1978	1978	200	165	183	2
25/45E-18A01	118	1942	1942	183	183	183	1
25/45E-18R01	190	1970	1978	210	120	165	16
25/45E-18R02	227	1978	1978	170	170	170	1
26/42E-02N01	29	1977	1978	308	280	294	2
26/42E-03E01S	-	1977	1978	265	244	255	3
26/42E-05C03	22	1977	1079	208		272	3
26/42E-05E01			1978	288	258	273	
	64	1977	1978	495	325	424	16
26/42E-05F02	25	1977	1978	315	272	291	3
26/42E-06L01	94	1977	1978	315	297	306	2
26/42E-07A04	126	1977	1978	241	174	207	3
26/42E-07G01	45	1951	1951	569	569	569	1
25/42E-08A01	300	1977	1980	367	324	341	4
26/42E-08N01	58	1977	1978	374	300	329	3
25/42E-10F01	9	1977	1978	350	273	305	3
26/42E-11F01	38	1977	1979	300	280	291	4

	DEPTH		7.11	MAXIMUM	MINIMUM	MEAN	NUMBER
LOCAL	OF	BEGIN	END	(MICRO-	(MICRO-	MICRO-	OF
IDENTIFIER	WELL	YEAR	YEAR	MHO'S)	MHOS)	MHOS)	SAMPLES
26/42E-11J015	-	1973	1978	367	320	354	9
26/42E-12A015	-	1973	1979	344	287	302	7
26/42E-12L01	126	1964	1978	349	312	330	4
26/42E-17A02	72	1977	1979	280	169	218	4
26/42E-20B01	140	1977	1979	350	330	343	4
	140	• • • •	• • • •	550	550		·
26/42E-20N01	159	1954	1961	283	222	271	8
26/42E-21F02	-	1977	1978	482	301	400	3
26/42E-21R03	93	1977	1978	820	730	780	3
25/42E-23P01	578	1977	1978	300	239	270	2
26/42E-27F01	126	1977	1978	530	270	425	17
26/42E-27N01	129	1962	1978	300	269	287	9
26/42E-27N02	150	1962	1962	278	278	278	1
26/42E-34N03	71	1977	1978	306	300	303	2
26/43E-03N01	180	1977	1978	639	298	442	3
26/43E-03P01	203	1977	1979	650	300	438	4
26/43E-05D01	30	1977	1978	530	351	414	3
26/43E-05L01S	-	1973	1978	445	387	407	6
26/43E-06G01	30	1977	1978	350	260	313	3
26/43E-06J01	75	1977	1978	440	300	386	3
26/43E-07801S	-	1973	1977	320	294	307	5
							_
26/43E-07601	-	197B	1978	420	310	369	7
26/43E-07K01	164	1977	1979	361	249	309	4
26/43E-07P01	126	1977	1978	387	246	308	3
26/43E-08604	90	1964	1978	632	301	427	4
26/43E-08G02	49	1977	1978	710	602	641	Ł
26/43E-10K01	107	1964	1978	637	472	567	4
26/43E-16D02	285	1977	1978	350	312	334	3
26/43E-16F02	268	1960	1960	291	290	290	2
26/43E-17801	220	1978	1978	340	336	338	2
26/43E-17J01	248	1977	1979	320			
287432-17301	240	1911	1919	320	304	314	4
26/43E-19A01	163	1942	1978	308	243	270	4
26/43E-19L03	-	1977	197в	341	321	332	3
26/43E-20D01	286	1977	1979	306	215	258	4
26/43E-20N01	238	1977	197в	270	249	260	3
26/43E-21E02	246	1978	1978	387	387	387	1
24 44 25 - 21 841	34.0	1070	1074	D (F	245	275	,
26/43E-21R01	260	1978	1978	365	365	365	1
26/43E-27E01	258	1951	1978	310	248	276	4
26/43E-28001	274	1978	1978	350	270	308	10
26/43E-30F01	312	1977	1978	317	310	312	3
26/43E-30H01	310	1977	1978	243	215	233	3

	DEPTH			MAXIMUM	MINIMUM	MEAN	NUMBER
LOCAL	OF	BEGIN	END	(MICRO-	(MICRO-	MICRO-	0 F
IDENTIFIER	WELL	YEAR	YEAR	MHOS)	MHOS)	MHOS)	SAMPLES
26/43E-30R02	293	1964	1978	263	235	245	4
26/43E-31A01	270	1977	1978	242	208	225	З
26/43E-34P01	210	1977	1978	340	276	319	3 3
26/44E-32R01	113	1955	1955	358	358	358	1
26/45E-25J01	263	1977	1978	300	225	289	15
26/45E-33N01	120	1978	1978	340	320	327	3
26/45E-34L01	198	1978	1978	240	240	240	1
26/45E-34L03	212	1977	1978	255	220	238	3 1 2 5 2
26/45E-35F01	232	1973	1978	277	230	262	5
26/45E-35F02	223	1977	1978	270	245	258	2
26/45E-36E01	149	1942	1942	295	295	295	1
26/45E-36N01	145	1973	1974	305	296	301	1 3 3
26/45E-36Q01	-	1973	1974	279	274	276	3
26/46E-30D01	190	1977	1978	300	250	262	16
26/46E-30M01	140	1978	1978	210	210	210	1
26/46E-31M01	249	1970	1978	315	208	240	15
26/46E-31M04	223	1977	1977	242	242	242	1 2
26/46E-31M05	222	1978	1978	315	230	272	
26/46E-31M06	184	1978	1978	350	280	308	10

TABLE 6Summary of nitrate concentrations in ground	water samples from the Spokane Valley
--	---------------------------------------

IDENTIFIER	DEPTH OF WELL	BEGIN YEAR	END YEAR	MAXIMUM NITRATE (MG/L AS N)	MINIMUM NITRATE (MG/L AS N)	ME≜N NITRATE MG/L AS N)	NUMBER OF Samples
25/42E-03H01 25/42E-11E01 25/42E-11E02 25/42E-11H02 25/42E-13801	124 201 52 230 200	1977 1947 1948 1955 1942	1978 1979 1961 1965 1978	1.70 1.40 1.08 1.11 2.40	1.20 0.29 0.23 0.84 1.30	1.43 0.74 0.48 1.02 1.85	3 17 13 8 10
25/42E-14J01 25/42E-23601 25/43E-04802 25/43E-08A01 25/43E-08D01	160 59 227 124	1977 1977 1952 1978 1942	1977 1978 1980 1980 1942	0.76 1.80 3.61 1.40 0.99	0.76 1.20 1.10 1.10 0.99	0.76 1.50 2.27 1.30 0.99	1 3 3 1
25/43E-09601 25/43E-09603 25/43E-10P02 25/43E-11B03 25/43E-11D02	32 73 96 128 80	1951 1977 1977 1977 1977	1951 1978 1978 1978 1978	0.09 0.72 2.10 0.41 0.46	0.09 0.24 1.20 0.17 0.00	0.09 0.45 1.53 0.26 0.19	1 3 15 3 3
25/43E-11E02 25/43E-11G01 25/43E-11G04 25/43E-11J03 25/43E-11M03	37 44 125 98	1977 1939 1962 1960 1977	1977 1939 1962 1962 1978	0.67 0.72 1.04 0.97 0.94	0.67 0.72 1.04 0.90 0.80	0.67 0.72 1.04 0.94 0.89	1 1 2 16
25/43E-11N01 25/43E-11R01 25/43E-12H01 25/43E-12L02 25/43E-13A01	70 104 94 100 110	1977 1977 1971 1977 1973	1978 1978 1978 1978 1978 1978	1.00 1.50 1.80 1.40 1.40	0.90 1.30 0.68 1.30 0.84	0.95 1.40 1.26 1.35 1.08	3 3 18 2 9
25/43E-13H01 25/43E-13R01 25/43E-14E01 25/43E-14K01 25/43E-14L01	71 140 211 83 120	1974 1977 1977 1973 1973	1974 1977 1978 1978 1978	1.00 1.40 1.30 1.40 1.50	1.00 1.40 1.10 0.90 1.30	1.00 1.40 1.21 1.17 1.40	1 16 9 14
25/43E-15G02 25/43E-16K01 25/43E-17K01 25/43E-21H01 25/43E-22F01	129 65 100 87 77	1977 1977 1977 1977 1977	1978 1978 1978 1977 1978	1.50 1.70 3.90 2.80 4.20	1.30 1.40 3.50 2.80 3.70	1.40 1.53 3.73 2.80 4.03	3 3 1 3
25/43E-23A01 25/43E-23A02 25/43E-24G01 25/44E-01J01 25/44E-01R01	142 150 144 160 150	1970 1972 1971 1973 1977	1979 1973 1973 1974 1978	9.20 3.50 5.60 2.10 1.20	1.40 1.60 2.30 0.71 0.88	2.84 2.52 3.64 1.11 0.98	20 15 14 4 5

IDENTIFIER	DEPTH OF WELL	BEGIN YE a r	END YEAR	MAXIMUM NITRATE (mg/l AS N)	MINIMUM NITRATE (MG/L AS N)	MEAN NITRATE MG/L AS N)	NUMBER OF SAMPLES
25/445-02801	127	1955	1978	3.40	1.54	2.38	4
25/44E-02001	129	1973	1978	5.40	1.40	2.68	6
25/44E-03B01	122	1977	1979	6.50	4.30	5.53	3
25/44E-04R03	118	1971	1978	1.50	1.33	1.41	4
25/44E-05D01	202	1977	1978	2.60	2.20	2.43	3
25/44E-05K01	234	1977	1978	1.80	1.70	1.75	2
25/44E-05R01	130	1977	1978	1.50	1.20	1.30	3 2
25/44E-06A01 25/44E-07801	104 120	1955 1977	1978 1978	1.80 1.30	1.13	1.46	2
23/442-07801	120	1977	19/0	1.50	1.20	1.27	3
25/44E-07C01	90	1973	1979	1.40	0.76	1.07	7
25/44E-07J02	110	1977	1978	1.20	1.10	1.17	3
25/44E-07J03	-	1979	1981	1.40	0.86	1.05	67
25/44E-08D01	112	1977	1978	1.60	1.30	1.43	3
25/44E-08N01	135	1978	1978	1.60	1.00	1.30	2
25/44E-09C01	125	1977	1978	1.20	1.10	1.13	3
25/44E-09C02	150	1977	197B	1.20	1.00	1.11	16
25/44E-09E01	_	1977	1978	0.84	0.82	0.83	3
25/44E-09P01	121	1977	1978	1.00	0.84	0.93	16
25/44E-12D01	-	1977	1978	1.20	1.00	1.10	3
25/44E-12M01	100	1978	1978	0.83	0.73	0.79	5
25/44E-13M01	125	1977	1979	2.60	1.00	1.73	3
25/44E-15E01	156	1942	1978	1.20	0.54	1.01	4
25/44E-15E02	150	1970	1973	2.50	0.16	1.05	15
25/44E-15J01	156	1977	1978	2.60	0.76	1.65	3
25/44E-16E01	128	1978	1979	1.40	1.10	1.30	З
25/44E-17A01	125	1977	1978	1.20	1.00	1.10	3
25/44E-17M01	114	1977	1978	1.80	1.30	1.50	3
25/44E-17R01	125	1977	1978	2.40	1.20	1.55	16
25/44E-18D02	120	1973	1979	1.40	0.91	1.25	9
25/44E-18F01	110	1977	1978	1.40	1.10	1.23	З
25/44E-18M01	79	1951	1951	1.17	1.17	1.17	1
25/44E-19D01	88	1973	1977	3.70	2.20	2.86	5
25/44E-20K01	129	1977	1978	2.70	2.60	2.65	2
25/44E-21J01	117	1977	1978	2.30	1.50	1.87	3
25/44E-21L01	177	1977	1978	3.20	1.70	2.63	3
25/44E-21N01	181	1977	1978	3.50	2.00	2.63	3
25/44E-22H02	160	1977	1978	2.60	1.60	2.10	2
25/44E-22H01	176	1977	1978	2.80	1.60	2.20	2
25/44E-26L01	166	1977	1978	2.80	2.50	2.70	3

IDENTIFIER	DEPTH OF WELL	HEGIN Year	END YEAR	MAXIMUM NITRATE (MG/L AS N)	MINIMUM NITRATE (MG/L AS N)	MEAN NITPATE MG/L AS N)	NUMBER OF SAMPLES
25/44E-27E01	220	1977	1978	2.60	2.10	2.40	3
25/44E-27L01	180	1977	1979	5.70	3.70	4.75	4
25/44E-28L01	131	1977	1978	6.00	5.80	5.90	3
25/44E-28P01	167	1977	1978	5.80	5.60	5.70	2
25/44E-28K01	132	1977	1978	5.70	3.70	4.73	3
25/44E-29A01	157	1977	1978	5.60	3.60	4.60	2
25/44E-29H01	154	1978	1978	3.70	3.70	3.70	1
25/45E-01H03	165	1977	1978	0.74	0.70	0.72	2
25/45E-02602	235	1977	1978	1.00	0.89	0.93	3
25/45E-03M01	138	1977	1980	1.10	0.94	1.05	3
25/45E-04A01	135	1951	1951	1.22	1.22	1.22	1
25/45E-05H01	137	1977	1977	0.84	0.84	0.84	1
25/45E-05R02	130	1978	1978	1.40	1.20	1.27	10
25/45E-06D03	146	1977	1978	6.00	4.40	5.20	3
25/45E-07A03 25/45E-08R02 25/45E-09B01 25/45E-10F01 25/45E-11K02	170 165 107 85 225	1977 1978 1977 1977 1977	1980 1978 1978 1978 1978 1978	1.10 1.00 0.79 0.95 1.00	0.83 0.76 0.72 0.35 0.64	0.94 0.84 0.75 0.52 0.82	4 5 2 3 2
25/45E-14C01 25/45E-15C01 25/45E-15D01 25/45E-15R01 25/45E-16K01	238 157 195 155 185	1977 1977 1972 1971 1973	1978 1978 1977 1978 1978 1977	2.80 2.50 3.50 1.80 1.60	2.40 1.50 0.45 0.01 0.95	2.60 2.00 1.93 0.81 1.17	2 2 21 19 5
25/45E-17D02	213	1977	1977	0.81	0.81	0.81	1
25/45E-17D03	215	1978	1980	0.82	0.66	0.76	3
25/45E-17P01	203	1977	1977	1.50	1.50	1.50	1
25/45E-17P02	218	1978	1978	1.40	1.30	1.35	2
25/45E-18A01	118	1942	1942	0.52	0.52	0.52	1
25/45E-18R01 25/45E-18R02 26/42E-02N01 26/42E-03E01S 26/42E-05C03	190 227 29 - 22	1970 1978 1977 1977 1977	1978 1978 1978 1978 1978 1978	2.00 0.89 0.24 0.91 0.35	0.05 0.89 0.01 0.82 0.20	0.97 0.89 0.12 0.86 0.29	16 1 2 3 3
26/42E-05E01	64	1977	1978	1.60	0.00	1.07	16
25/42E-05F02	25	1977	1978	1.60	0.05	0.57	3
26/42E-06L01	94	1977	1978	1.40	1.20	1.30	2
25/42E-07A04	126	1977	1978	0.85	0.34	0.52	3
26/42E-07G01	45	1951	1951	7.23	7.23	7.23	1

IDENTIFIEP	DEPTH OF WELL	BEGIN	END	MAXIMUM NITRATE (MG/L	MINIMUM NITRATE (MG/L	MEAN NITPATE MG/L	
IDENTITE:	FLLL	YEAR	YEAR	AS N)	AS N)	AS N)	SAMPLES
26/42E-08A01	300	1977	1980	0.00	0.00	0.00	4
26/42E-08N01	58	1977	1978	2.80	2.50	2.63	3
26/42E-10F01	9	1977	1978	0.10	0.04	0.06	3
26/425-11F01	38	1977	1979	1.40	1.30	1.37	4
						- • -	
26/42E-11J01S	-	1973	1978	2.70	2.00	2.42	9
26/42E-12A01S	-	1973	1979	1.40	0.92	1.22	7
26/42E-12L01	126	1964	1978	2.70	2.17	2.44	4
26/42E-17A02	72	1977	1979	0.01	0.00	0.00	4
26/42E-20B01	140	1977	1979	2.40	1.90	2.20	4
26/42E-20N01	159	1954	1961	2.01	0.05	1.33	8
26/42E-21F02	-	1954	1978	2.80	2.20	2.43	3
26/42E-21R03	93	1977	1978	3.50	3.40	3.47	3
26/42E-23P01	578	1977	1978	0.00	0.00	0.00	2
26/42E-27F01	126	1977	1978	4.50	3.20	3.98	17
	120		.,,,,	4.50	5.20	3./0	• •
26/42E-27N01	129	1962	1978	4.97	0.97	1.80	9
26/42E-27N02	150	1962	1962	4.74	4.74	4.74	1
26/42E-34N03	71	1977	1978	1.70	1.70	1.70	2
26/43E-03N01	180	1977	1978	8.40	1.80	4.13	3
26/435-03001	203	1977	1979	8.80	1.40	4.45	4
26/43E-05D01	30	1977	1978	0.80	0.34	0.58	3
26/43E-05L01S	-	1973	1978	1.80	0.95	1.34	6
26/432-06601	30	1964	1978	1.50	1.33	1.46	4
26/432-06001	75	1977	1978	1.50	1.40	1.43	
26/43E-07801S	-	1973	1977	1.60	0.85	1.19	5
		1715	1 2 7 7 7	1.00	0.05		5
25/43E-07G01	-	1978	1978	2.00	1.50	.1.73	3
26/43E-07K01	164	1977	1979	2.20	1.60	1.87	4
26/43E-07P01	126	1977	1978	2.20	1.60	1.80	3
25/43E-08B04	90	1964	1978	8.40	1.76	3.47	4
26/43E-08G02	49	1977	1978	3.20	2.80	3.03	3
26/43E-10K01	107	1964	1978	8.80	5.42	7.80	4
26/432-16002	285	1977	1978	2.60	1.70	2.30	3
26/43E-16F02	268	1960	1960	1.13	1.13	1.13	1
26/43E-17B01	220	1978	1978	1.80	1.70	1.75	2
26/43E-17J01	248	1977	1979	1.90	1.20	1.55	4
	_,0	1					•
26/43E-19A01	163	1942	1978	2.20	1.00	1.33	4
26/43E-19L03	-	1977	1978	2.30	1.90	2.10	3
26/43E-20D01	286	1977	1979	2.10	1.00	1.32	4
26/43E-20N01	238	1977	1978	1.50	1.40	1.43	3
26/43E-21E02	246	1978	1978	2.40	2.40	2.40	1

.

TABLE 6.--Continued

	DEPTH OF	HEGIN	END	MAXIMUM NITRATE (MG/L	MINIMUM NITRATE (MG/L	MEAN NITRATE MG/L	NUMBER OF
IDENTIFIER	WELL	YEAR	YEAR	AS N)	AS N)	AS N)	SAMPLES
25/43E-21R01	260	1978	1978	0.91	0.91	0.91	1
26/43E-27E01	258	1951	1978	1.70	0.88	1.25	4
26/435-28001	274	1978	1978	2.60	1.10	1.68	10
26/435-30F01	312	1977	1978	2.40	1.80	2.10	3
26/43E-30H01	310	1977	1978	0.89	0.79	0.86	3
26/43E-30R02	293	1964	1978	1.50	1.04	1.31	4
25/43E-31A01	270	1977	1978	1.10	1.00	1.07	3
26/43E-34P01	210	1977	1978	1.30	0.00	0.59	3
26/44E-32R01	113	1955	1955	2.48	2.48	2.48	3 1
	•••	1755	1755	2.40	2040	2.40	•
25/45E-25J01	263	1977	1978	0.70	0.56	0.63	15
26/45E-33N01	120	1978	1978	1.80	0.88	1.49	3
26/45E-34L01	198	1978	1978	0.82	0.82	0.82	1
26/45E-34L03	212	1977	1978	0.75	0.74	0.74	2
26/45E-35F01	232	1973	1978	0.69	0.43	0.56	5
26/45E-35F02	223	1977	1978	0.64	0.62	0.63	2
26/45E-36E01	149	1942	1942	0.38	0.38	0.38	ī
25/45E-36N01	145	1973	1974	0.87	0.62	0.75	3
26/45E-36Q01	-	1973	1974	1.00	0.94	0,98	3
26/46E-30D01	190	1977	1978	1.20	0.88	0.98	16
						•••	••
26/46E-30M01	140	1978	1978	0.57	0.57	0.57	1
26/46E-31M01	249	1970	1973	1.40	0.06	0.85	14
26/46E-31M04	223	1977	1977	0.94	0.94	0.94	1
26/46E-31M05	222	1978	1978	1.10	1.10	1.10	2
25/46E-31M06	184	1978	1978	1.70	1.10	1.37	10

Valley
rom Spokane
from
samples from Spol
n ground-water
Ľ.
concentrations:
TABLE 7Trace-element

ALUM- INUM: INUM: DATE RECOV- OF ERABLE SAMPLE (UG/L AS AL)		73-06-28 73-09-26 73-12-17 73-12-17 73-03-20 77-03-24	77-10-04 73-06-29 73-09-25 73-12-17 74-03-22	77-03-25 77-10-03 73-09-25 73-09-25 73-09-25 73-09-25	73-12-17 74-03-20 77-03-24 77-10-03 73-10-03	73-09-25 73-12-18 74-03-20 77-03-25 77-10-04	73-06-27 73-09-25 73-12-18 74-03-20 77-03-20	77-10-03 79-06-20 70-11-10 30
ALUM- INUM- DIS- E SolvED (UG/L AS AL)								°
ARSENIC DIS- Solved (UG/L AS AS)	Spokane County	0 F 10 G 0	እ እ ስ ላ ት ሪ	m⊣uοο	0 - 0 0 m	4 4 M U M	4 0 M () M	m∾
BARIUM. DIS- Solved (UG/L AS BA)	ounty	!!!!°	°	°° ¦	° °	00	 °	100
CADMIUM DIS- Solved (UG/L AS CD)			0-000	00070		••••	~0000	0 7
CHPO- MIUM. DIS- Solved (UG/L AS CR)		0 0 0 0 0		0 0 0 0 0	00000		00000 M	10 0 < 30
COPPER. DIS- Solved (UG/L AS CU)		N 4 M 2 H	6 6 6 6 0 N	280 300 400	0 - - - + M -	ง เ เ เ เ เ เ เ เ เ เ เ เ เ เ เ เ เ เ เ	0 M 4 4 M	2 1 <50
LEAD. DIS- Solved (UG/L AS PB)		040-10	00041	\$ 10-4-00		807 N7	m la o - o	0 2 <100
MFRCURY TOTAL RECOV- ERABLE (UG/L AS HG)				00070	00700	C C C Ø C • • • • • •	07000	:::
MERCURY DIS- Solved (UG/L AS HG)					11111			•
SELE- NIUM, DIS- SOLVED (UG/L AS SE)		°	°	••	° °		°	°°¦
SILVER. DIS- Solved (UG/L AS AG)		 °	°	°°	° °	° °	1 °	°°¦
ZINC. DIS- Solved (UG/L AS ZN)		0000 0000 0000	74 000 100000	0000 000 000 000 000 000 000 000 000 0	0 0 0 0 N N N N	20 20 10	360 80 10	0 20 <10

•

66

	ZINC. DIS- Solved (UG/L AS ZN)	20 20 20 20	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 10 10 10	100 100 100 170 170 170	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e e
	SILVER. DIS- Solved (UG/L AS AG)	¦ °	° °	, , , , , , , , , , , , , , , , , , ,	°°¦¦¦ °	10011 1100	•
	SELE- NIUM. DIS- Solved (UG/L AS SE)		~ 0	¦ ¦¦ ¦°	°°¦!¦ °¦!!	~° °°	°
	MERCURY DIS- Solved (uG/L AS HG)				°°''''''''''''''''''''''''''''''''''''	?	: :
	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	70000	°°°°°			N	.
	LEAD. DIS- Solved (UG/L AS PB)	0-0-0	07000	04044		0000M 0N40	
	COPPER. DIS- Solved (UG/L AS CU)	שששע	D 4 M N 4	רה מאויא מא	שמשיים שמשסיי שיים שמשסיי	04000 4W04	1 0
	CHRO- MIUM. DIS- Solved (UG/L AS CR)	00 0 00	****	0 0 0 0 0	00000 00000 T	00000 0000 7	0 C
Da	CADMIUM DIS- Solved (UG/L AS CD)	-0-00	000	-0000	0N-00 00-00	00M-0 0000	- 0
IABLE /	BARIUM. DIS- Solved (UG/L AS BA)	⁰	00	1 1 1 0 0	00111 10111 0m111 10111		: :
IABLE	ARSENIC DIS- Solved (UG/L AS AS)	ው ው ო ო	00401 0	40040	ທຸດເບັນ ທີ່ເບັດເບັນ	୦୦ ୦ ୦୦ ተጠጠጠ	1 0
	ALUM- INUM. DIS- Solved (UG/L AS AL)		:::::	:::::	°°¦¦¦	°	: :
	INUM INUM TOTAL RECOV ERABLE (UGAL AS AL)	:::::	:::::	:::::			: :
	UATE OF SAMPLE	73-06-27 73-09-25 73-12-18 74-03-19	73-06-27 73-09-25 73-12-18 77-04-01 77-10-04	73-06-27 73-09-26 73-12-18 74-03-20 77-03-25	79-06-19 79-07-10 73-09-28 73-09-25 73-09-25 73-09-25 73-03-31 73-09-28 73-09-28 73-09-25 73-12-18	74-03-20 79-07-12 73-05-27 73-05-27 73-09-26 73-09-26 73-09-26 71-03-24 71-03-24	73-06-29 73-09-26
	LOCAL IDENT- I- FIER	25/44E-07C01	25/44E-18D02	25/44E-19D01	25/44E-27L01 25/45E-15D01 25/45E-15D01 25/45E-16K01	26/42E-11J01S 26/42E-11J01S	26/42E-12A01S

TABLE 7.--Continued

.

ZINC. DIS- Solved (UG/L AS ZN)	0000 0000 000	40 130 160 160	200 200 200	5000 5000 5000	100 30 30 00	10 560 250 120	120 160
SILVER, DIS- Solved (UG/L AS AG)	°°	°	, [°] °	°	°°¦¦°	°	::
SELE- NIUM. DIS- Solved (UG/L AS SE)	° °	°	11100	11110	00110	° {	::
MERCURY DIS- SOLVED (UG/L AS HG)			::::		° • • • • • • •	:::::	11
MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)		00077	00070	0,0,0,0	700	07000	•••
LEAD. DIS- Solved (UG/L AS PB)	0 N N O O	m o → 4 o	M0N00	0-0-7	6 2 0 1 1 1 1 0 2 M	0 4 1 1 0 0 1 1 0	4 0
COPPER. DIS- Solved (UG/L AS CU)	0 F O O N	⊃N400	3 0 N 0 4	20-100		0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0	- 4
CHRO- MIUM. DIS- Solveu (UG/L AS CK)	••••		00000		0 0 0 0 0 T		00
CADWIUM DIS- Solved (UG/L AS CD)	000 0 7	00007	0 0 0 0 N	-0000	-0-00	0 0 0 1 0	
BARIUM. DIS- Solved (UG/L AS BA)	° °		11100	 °	09110	001111	11
AKSENIC DIS- Solved (UG/L AS AS)	ະກ N 4 ຕາມ	r40m0 1	n → v v v	4 4 M N M 9	∾ ∾ ⊣ ∾ ฅ	NO 3 F 4	31 6
ALUM- INUM. DIS- Solved (UG/L AS AL)					° ° 		11
ALUM- INUM- TOTAL RECOV- ERABLE (UG/L AS AL)	11111	:::::	11111	11111	1111		11
DATE OF SAMPLE	73-12-17 74-03-19 77-03-24 77-10-04 73-06-29	73-09-26 73-12-17 74-03-19 77-03-24 73-06-29	73-09-26 73-12-17 74-03-19 77-03-28 77-10-04	73-06-29 73-09-26 73-12-17 74-03-19 77-03-24	79-06-21 79-06-28 73-06-28 73-09-25 77-03-25	77-10-04 73-06-28 73-09-26 73-12-18 73-12-18 73-06-27	73-09-26 73-12-18
LOCAL IPENT- I- FIEH	26/42E-12A01S 26/42E-27N01	26/43E-05L01S		26/43E-07B01S	26/43E-07K01 26/43E-17J01 26/45E-35F01	26/45E-36N01 26/45E-36Q01	

TABLE 7.--Continued

	Number of	Trace elem	ent concen	trations
Constituent	sample sites	Maximum	Minimum	Median
Total aluminum	22	100	0	0
Dissolved aluminum	6	0	0	0
Dissolved arsenic	26	64	0	3.5
Dissolved barium	22	100	0	0
Dissolved cadmium	26	3	0	.2
Dissolved chromium	27	∡ 30	0	0
Dissolved copper	27	280	0	3.3
Dissolved lead	27	∠100	0	1.5
Total mercury	20	.6	0	.03
Dissolved mercury	6	.9	0	0
Dissolved selenium	22	1	0	0
Dissolved silver	22	0	0	0
Dissolved zinc	27	560	0	16

TABLE 8Summary of trace-element concentrations	in ground-water
samples from the Spokane Valley	-

[Values in micrograms per liter]

¹For calculation of medians, values expressed as "less than" were treated as absolute values.

			METHY-				METHY-
LOCAL I DENT - I -	DATE OF SAMPLE	PHENOLS	LENE BLUE ACTIVE SUB-	LOCAL I DENT- I -	DATE OF SAMPLE	PHENOLS	LENE BLUE ACTIVE SUB-
FIER		(UG/L)	STANCE (MG/L)	FIER		(UG/L)	STANCE (MG/L)
25/42E-13R01	73-06-28	0	.00	25/45E-15001	73-06-28	0	.00
	73-09-26	1	.03		73-09-25 73-12-18	4	•04 •02
	73-12-17 74-03-20	0	.02 .01		74-03-20	0	• • • 2
	77-03-24	2	.00		77-03-31	Ő	.00
_	77-10-04	2		25/45E-16K01	73-06-28	1	.00
25/43E-13A01	73-06-29	0	.00		73-09-25	3	• 05
	73-09-25 73-12-17	0	•10 •00		73-12-18 74-03-20	1 0	•04 •04
	74-03-22	0	.00		77-03-31	3	.10
	77-03-25	S	•00	26/42E-08A01	79-07-12	1	
	77-10-03	4		26/42E-11J015	73-06-27	5	•00
25/43E-13H01	73-09-25	0	.10		73-09-26 73-12-17	1.	•00
25/4JE-14K01	73-06-27 73-09-25	0 S	•00 •00		74-03-19	0	•03
	73-12-17	0	.03		77-03-24	1	•00
	74-03-20	0	•00		77-10-04	5	
	77-03-24	1	•00	26/42L-12A015	73-06-29	3	•00
	77-10-03	4			73-09-26	4	•00
25/44E-01J01	73-06-27	0	•00		73-12-17	0	.03
	73-69-25	0	•06		74-03-19	0	• 0 5
	73-12-18 74-03-20	0	•01 •04		77-03-24	1	•00
25/446-01201	77-03-25	2	.00		77-10-04 79-66-21	4	
	77-10-04	5		26/466-21N01	73-06-29	12	.00
25/446-02401	13-06-27	7	.03		73-09-26	1	.04
23/446-02001	73-09-25	0	•05		73-12-17	0	• 02
	73-12-18	õ	•02		74-03-19	0	•02
	74-03-20	0	.04		17-03-24	1	.00
	77-03-28	0	•00	26/43t-05L015	73-06-29 73-09-26	0 2	•00 •00
	77-10-03	5					
25/44E-03H01	19-06-20	0			73-12-17	0	• 05
25/44E-07C01	73-06-27	0	•00		74-03-19 77-03-28	0	•03
	73-09-25 73-12-18	0 2	.UO .U3		77-10-04	3	•00
	74-03-19	0	•00	26/43E-074015	73-06-29	4	• 0 0
	77-10-04	3					
25/44E-18002	73-06-27	S	.00		73-09-26	1	
					73-12-17	0	• 05
	73-09-25	0	•08		74-03-19 77-03-24	0	.00
	73-12-18	0	•06	26/43E-17J01	79-06-20	1	•10
	77-04-01 77-10-04	2	•00		17 00 20	Ū	
	79-06-20	Ô		26/45E-35F01	73-06-28	4	.00
					73-09-25	0	.04
25/442-19001	73-06-27	0	.00		77-03-25	2	.00
	73-09-26	S	•04	76116-11101	77-10-04	2	
	73-12-18	0	•04	26/45E-36N01	73-06-28	1	•00
	74-03-20	0	•03		13-00-24	,	0.0
	77-03-25	2	•00		73-09-26 73-12-18	1	•00 •00
				26/451-36001	73-06-27	0	•00
					73-09-20	2	.03
					73-12-18	Ō	.00
			•				

TABLE 9.--Phenol and methylene-blue-active-substance concentrations in ground-water samples from the Spokane Valley

CALCIUM DIS- Solved (MG/L AS CA)		23 30 30 30 30 30 30 30 30 30 30 30 30 30	0 0 0 0 0 0 9 9 9 9 9	30 31 29 20		61 61 61 61		18 18 18 38 88 38 88
HARD- NESS+ Noncar- Bonate (MG/L (ACOJ)					04000			0000 0
HARO- NESS (MG/L AS CACO3)		97 100 118 116 116	118 118 118 124	124 127 90 86	888888 703888 7037	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58 98 96 96 96	82 83 80 136
TEMPER- Ature (deg c)		14 13 13 15 0 5 5 5 5 15 15 15 15 15 15 15 15 15 15 1	12.0 18.0 18.0	8.0 17.0 15.0 16.0	ស 4.00.00 I	· · · · · · · · · · ·	14 • 5 20 • 5 13 • 5 13 • 5	14.0 124.0 13.0 16.0
PH (STAND- ARD UNITS)		2000 2000 2000 2000 2000 2000 2000 200	88°2 8°0 7'5 9°5	4 - 1 - 1 - 4 - 4 - 6 - 6 - 6 - 6	• • • • •		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 4 0 4 5 4 4 0 4 5 7 4 7 4 7 7 7 7
SPE- CIFIC CON- DUCT- ANCE (UMHOS)	unty	255 265 284 277 294	296 293 293 295	298 220 220 225	215 215 212 212 215 215 215 203	18 212 212 212 215 215 215 215 215 215 215		215 215 216 216 283
ELEV. OF LAND Surface Datum (Ft. Above NgVD)	Spokane County	2375.00 2375.00 	::::	2375.00 2375.00 2375.00	375.0 375.0 375.0 375.0 375.0	375.0 375.0 375.0 375.0 375.0 375.0	375.0 375.0 375.0 375.0	2375.00 2375.00 2375.00 2375.00 2375.00
DEPTH OF Well, Total (Feet)		4 4 M W W 4 4 4 4 4 0 0 0 0 0 0		₩ ₩ 4 4 1 1 4 4 № 1 0 0 1 0 № 0 0 0 0	44444	44444 4 		4 4 4 4 4 0 1 1 1 1 0 0 0 0 0
DATE OF SAMPLE		59-12-01 60-05-16 57-11-06 58-07-22 59-09-23	60-09-12 60-11-08 61-10-06 62-10-06 64-04-29	65-03-12 65-12-08 47-02-26 47-08-05 48-01-01	8-08-1 9-07-1 0-12-0 1-00-0 3-01-1	3-12-1 4-10-0 5-06-1 6-10-3 6-10-3 7-07-3 7-7-3		64-04-29 65-03-12 65-11-22 67-12-12 61-10-06
GEU- L OGIC UNIT		122CBRV 122CBRV 122CBRV 122CBRV 122CBRV 122CBRV	122CBRV 122CBRV 122CBRV 122CBRV 122CBRV 122CBRV	122СВКV 122СВКV 122СВКV 122СВКV 122СВКV 122СВКV	122CBHV 122CBHV 122CBRV 122CBRV 122CBHV	122C5HV 122C5HV 122C5HV 122C5HV 122C5HV	122CBHV 122CBHV 122CBHV 122CBHV	122СВРV 122СБНV 122СВRV 122СВRV 122СВRV 122СВRV
LOCAL IDENT- I- FIER		24/40E-03401 24/40E-22L01		24/41E-03N01				24/41E-03N02

TABLE 10.--Physical and major chemical-constituent data for ground-water samples from the Airway Heights subregion

nued
ţ
Cont
Ī
1
Щ
TABL
-

FLUO- RIDE, DIS- Solved (mg/l AS F)	0. I 0. M 4 • I • • •	ო.უ. ჭ.ო.ჭ ა.ა.ა.ა	ທຸ ແ ຟ ສ ຫ	N N N 4 M	, , , , , , , , , , , , , , , , , , , ,	∩ m 4 4 m • • • • •	ব ব প ৰ প • • • • •
CHLO- RIDE. DIS- Solved (MG/L AS CL)	ດ ຍ ທີ່ ຄ.ຍ.ຍ. ຍ.ຍ.ຍ.ຍ.ຍ.ຍ. ຍ.ຍ.ຍ.ຍ.ຍ.ຍ.ຍ.ຍ.ຍ.ຍ		44000 •••• ••••	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	80808 ••0 ••0 ••0 ••0	0.0800 0.090 0.00000000	90000 90000 90000
SULFATE DIS- Solved (Mg/L AS SO4)	11 20 21 21	20 20 20 20	20 20 11	11 12 10 11	9.7 11 10 11 14	11 11 12 12 12	11 12 14
ALKA- LINITY FIELD (MG/L AS CACO3)	122 121 121 123 123	~~~~~	133 131 107 107	100 79 104 102	71 103 106 99 93	71 97 103 89 87	100 100 80 127
CAH- BONATE FET-FLD (MG/L AS CO3)	6066N		00000	00000	00000	00000	00000
BICAH- BONATE FET-FLD (MG/L AS HCO3)	1 1 4 4 4 4 1 4 8 4 4 2 4 8 8 4 2 4 8 8 4	ບໍ່ມີມີບໍ່ບໍ່	162 160 130 130	122 96 127 127	87 125 129 121 121	86 118 126 109	122 122 98 119 155
POTAS- SIUM. DIS- Solved (mg/l AS K)	1.7 2.8 3.0 3.0	• • • • •	2°.9	0.0 N	2 - 2 - 2 - 2 2 - 6 2 - 6 2 - 6 2 - 7 2 -	2.1 2.1 2.1 2.1 2.0	2.1 2.1 2.1 2.3 2.1 2.3
SODIUM AD- Sorp- Tion Katio	3000	00000	••••	000 •••	0 2 0 0 0 • • • • •		9 N 9 N N • • • • •
SODIUM. DIS- Solved (MG/L AS NA)	15 15 16			11 12 12		113 113 115 113	13 14 11 5 • 3
MAGNE- SIUM. DIS- Solveu (MG/L AS MG)	7.7 11 10	111111	110 00 00 00 00 00 00 00 00 00 00 00 00	04 04 05 04 05 04 05 05 05 05 05 05 05 05 05 05 05 05 05	000000 •••••	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOCAL IDENT- I- FIER	24/40E-03N01 24/40E-22L01		24/41E-03N01				24/41E-03N02

nued
4
E
ā
ē
Ť
1
•
0
ш
-
<u>u</u>
A
1

MANGA- NESE, DIS- Solved (UG/L AS MV)	1	; ;	: :	;	;	;	;	;	:	;	;	;	1	8	:	;	;	1	;	;	;	;	;	:	!	;	;	;	;	;	:	:	;	;
MANGA- NESE Total Recov- Eable (UG/L AS MN)	;	: :		;	;	•	<50	<50	<50	<50	<50	;	;	:	:	ł	;	;	:	:	:	1	;	:	;	;	ţ	;	<50	<50	<50	<50	170	<50
IRON. DIS- Solveu (UG/L AS FE)	!	; ;			;	;	;	:	;	;	;	;	;	;	;	1	;	;	:	;	;	;	;	:	:	;	;	!	;	;	;	!	;	;
IRON, TOTAL Recuv- Erable (UG/L AS FE)	200	101	JI	100	30	70	10	30	60	200	40	20	20	40	60	130	50	10	40	30	80	100	460	120	30	170	;	290	330	200	210	200	065	<10
NITRO- GEN, GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	;	; ;	; ;	;	1	!	;	;	:	;	;	;	;	;	;	;	;	;	;	;	;	;	!	:	;	;	;	;	;	!	!	;	;	;
NITRO- GEN. GEN. NU2+NO3 TOTAL (MG/L AS N)	ł	; ;		1	;	;	;	!	;	!	;	ļ	;	;	ł	;	;	;	ł	1	!	;	;	:	:	ļ	;	;	1	;	;	;	;	:
NITRO- GEN: NITRATE TOTAL (MG/L AS NO3)	00•	1 4	•	00.	.20	.20	0	-	2	• 00	4.]	.10	. 00	• 00	.90	3.5	.30	.20	• 10	8•0	4	.20	•	1.0	6 •3	.40	.60	2.3	3.0	.00	.10	5.1	.40	3.7
SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	185			208	201	203	201	206	205	204	206	1	;	:	;	;	170	169	167	. n	Q	169	Q	ິ	;	;	9	ഹ	142	ം	158	4	4	•
SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVEU (MG/L)	10	101	r a	201	205	ጉ	0	0	0	Ċ,	0	163	Q	9	- S	ŝ	<u>م</u>	ŝ	166	143	S	156	Q.	n -	139	ŝ	Q	١N	155	· • ∩	151	4	4	ŝ
SILICA. DIS- SOLVED (MG/L AS SIO2)	4 U	: ;		4	64	4	43	44	44	4 0	[+	51	50	51	55	9 4	50	- T	44	64	48	50	47	42	;	;	47	4 U	35	4 4	41	41	30	19
LOCAL IDENT- I- FIER	24/40E-03N01		24/40C-CCC01									24/41E-03N01																						24/41E-03N02

CALCIUN DIS- Solved (MG/L AS CA)	161113 41114 9113	17 36 218 218	30 30 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	20 20 21 22 22 22	21 21 32 32 31 31 31 31	29 33 38 38 38 38 38 38 38 38 38 38 38 38		36 31 36
HARD- NESS+ Noncar- Bonate (4G/L Caco3)	00004	0 19 19 19 19 19 19 19 19 19 19 19 19 19	~ ~ ~ ~ ~	****	00000	1 9 6 0 2 9 6 7 2 9 6 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 22 29
HARD- NESS (MG/L AS CACO3)	119 51 52 52 50	135 207 83	401 110 121 121 110	9999 999 049 049	98 98 112 111	111 160 133 120		130 116 129
TEMPER- Ature (deg c)	11+0 13•0 15•0 10•0	12.5 13.6 13.0 9.8 8 8	13.5 11.5 8.0 17.0 14.5	20 • 0 1 • • 0 1 • • 0 • • • 0 • • • 0 • • • 0	10.5 6.5 210.5 15.0	12•0 16•0 19•0 12•0	0.000 0.000 0.000 0.000 0.000	12•0 14•5 12•0
PH (STAND- ARD UNITS)	7 4 4 7 5 7 9 8 9 9 9	7.6 7.7 7.5 7.5 7.5 7.9		7 4 8 8 4 . 9 . 9 . 1 . 2 . 1 . 2 .	7.2 6.8 7.8 7.7 .7	7 • 7 • 7 • 6 • 7 • 6 • 6 • 8 • 7 • 8	6 • 0 7 • 5 7 • 5 7 • 6	8.0 7.6 4.6
SPE- CIFIC CON- DUCT- ANCE (UMHOS)	247 129 121 136 135	258 245 258 258 258 258 258 258 258 258 258 25	288 286 311 290 229	240 245 243 243 243	242 239 283 281 282	288 373 334 291 291	244 230 311 330 302	327 291 319
ELEV. OF LEND Surface Uatum (ft. Adove Ngvd)	 2411.00 2411.00 2411.00 2411.00	2420.00 2410.00 2410.00 1980.00	[]]]]		2358.00 2358.00 2358.20	2358.00 2344.00 	2432.00 2432.00 2400.00 2400.00 2400.00	2400.00 2400.00 2400.00
DEPTH OF Well, Total (Feet)	274 274 274 274 274 274	148 200 227 227	196 196 196 196	356 356 356 356	356 356 196 196	196 150 150 150	325 315 564 564 564 564	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
DATE OF SAMPLE	64-04-29 57-11-05 58-07-22 59-09-23 60-11-08	79-07-19 70-11-10 71-05-20 71-10-06	62-10-04 64-04-29 65-03-12 65-12-08 57-11-06	58-07-22 59-09-23 60-11-08 61-10-00 62-10-00	64-04-29 65-03-12 57-11-05 58-07-22 59-09-23	60-11-08 57-11-08 58-07-22 59-09-23 59-09-23	79-07-16 53-12-16 56-10-30 58-07-23 59-09-22	60-11-08 61-10-13 62-10-04
GE0- L 061C UNIT	122CBHV 122CBHV 122CBRV 122CBRV 122CBRV 122CBRV	122CBHV 122CBHV 122CBHV	 122CBRV	122CBRV 122CBRV 122CBRV 122CBRV 122CBRV	122CBRV 122C9RV 	122084V 122084V 122084V 122084V 122084V	122СВНV 122СБНV 	
LOCAL IDENT- I FIER	24/41E-03NU2 24/41E-11N01	24/41E-15402 24/41E-23K01 24/42E-11R01 24/42E-25601	25/40E-02001 25/40E-14R01		25/40E-34P01	25/41E-10601	25/41E-19803 25/41E-28L01 25/41E-34C01 25/41E-34C01	

FLUU- RIDE, DIS- SOLVED (MG/L AS F)	4 N N N N	N	ບ ບ ບ ບ ບ ອ		4 IN M 4 20	4 0 4 M	4 M M M N • • • • • •	••• ₩₩.4
CHLO- RIDE, DIS- Solved (MG/L AS CL)	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.9 1.7 1.7 1.7 2.2	6.8 6.8 7.2 3.0	ນພູນຈູທ ທີ່ສູນ ທີ່ສູນ	N N O N N N N O N N N O N N	0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.1 2.8 7.8 7.0 7.0	9.5 8.5 8.5
SULFATE DIS- Solveu (MG/L AS SO4)	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.5 10 26 9.0	00400 00400	88 4 8 4 6 4 4 6 4 7 8 4 8 7 8 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9	ע ע א א א א ייייע א יייע א	5.0 22 18 17	9 10 14 13	1 1 1 7 4 1 7 4
ALKA- LINITY FIELD (MG/L AS CACO3)	109 51 490 490	53 118 121 205 92	124 121 125 121 121	113 116 116 116	119 117 125 125	125 118 112 104	1110 107 100 97 98	99 94 100
CAR- BONATE FET-FLD (MG/L AS CO3)	00000	00000	00000	00000	00000		00000	000
RICAR- BONATE FET-FLD (MG/L AS HC03)	1 60 60 100 00	65 144 250 112	151 148 152 152 129	1111 1986 1444 1444 1447	145 143 152 153	152 144 137 121	134 130 122 118 120	121 115 122
POTAS- SIUM, UIS- UIS- Solved (MG/L AS K)	1	24 II 26		 ••••• •••••	8 8 8 8 9 7 7 8 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	89899 8989 8989 8989 8999 8999 8999 89	8 4 9 4 7 9 9 4 4 7 9 9 4 7 9 9 4 7 9 9 4	1 1 1 • • • • • •
SODIUM AU- Sorr- TION RATIO	U M M 4 4	00104	C 8 L 6 L	01100	81100	 00 4 4 1 N	00000 0	0 0 0 0
SODIUM. DIS- Solved (MG/L AS NA)	ດຕອງວ • • • • ຈທຈະດທ	4 0 1 4 0 1 8 0 4 4 0 1 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	17 15 17 18	4 4 0 0 0 0 8 0 0 0 0	1991 1991 1991	1122122	13 5.3 444 144	1 1 1 1 4 4 1 4
MAGNE- SIUM, DIS- Solved (MG/L AS MG)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 11 11 15 7.5	ອອດ ອອດ ເບິດ ອອດ ອອດ ອອດ	21 11 10 10 10	11 4.2 8.3 8.2	9. 14 13 13	11 9.5 8.0 8.0	2 2 2 • • • • 0 4 4
LOCAL IDENT+ I- FIER	24/41E-03N02 24/41E-11N01	24/41E-15A02 24/41E-23K01 24/42E-11R01 24/42E-25G01	25/40E-02001 25/40E-14R01		25/40E-34P0]	25/41E-10G01	25/41E-19803 25/41E-28L01 25/41E-34C01	

TABLE 10.--Continued

75

MANGA- NESE+ DIS- Solved (UG/L AS MN)	:::::	41114	:::::	:::::			÷
MANGA- NESE TOTAL Recov- Erable (UG/L AS MN)	22 22 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20	<pre><20 <50 <50 <50 <50 <50 <50</pre>				0001 1111 100 0001 1111 100
IRON. DIS- Solved (UG/L AS FE)			:::::			::::	
IRON TOTAL RECOV- Erable (UG/L AS FE)	2500 80 30 10	120 120 140	<pre>> * * * * * * * * * * * * * * * * * *</pre>	10440	110 1300 40 410 410	001 00 001 00 001 00	130 130 130 130 220 220 220
NITR0- 6EN, 6EN, DIS- Solved (MG/L AS N)	:::::	3.2 1.3 1.3					5
NI TRO- 66N 1022+N03 101AL (MG/L AS N)	:::::		:::::	:::::			
NITRO- GEN, NITRATE TOTAL (MG/L AS 403)	40010 40010 40010	2 4 1	13 13 16 15	1.00 ••••00 ••••00 •••00	• 00 • 12 • 10 • 13 • 13	רה רד מי מטיחה (רה רד דאי תי א	1 1 1 1 1 1 1 1 1 1 1 1 1 1
SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	44 101 102 98	113 163 294 154	194 187 198 191	171 173 173 173 173	171 167 192 196	1991 1992 1985	168 186 188 188 198 193 193 193 193 193 193 193 193 193 193
SOLIDS HESIDJE AT 180 DEG. C DIS- SOLVEU (MG/L)	148 110 110 112 112	188 188 300	213 207 216 206 155	~~~~~	N 9000 0	2557 2557 219 203	2356 2356 2356 2319 2319 2319 2319 2319 2319 2319 2319
SILICA. DIS- SOLVED (MG/L AS SIO2)	17 42 39 35	44 93 43 43 48 48	0 4 4 4 0 0 0 0	4444 V M 4 M 4 · ·	4444.04	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	401444 4014 δ-1003 σαοο
LOCAL IDENT+ I- FIER	24/41E-03N02 24/41E-11N01	24/41E-15A02 24/41E-23K01 24/42E-11R01 24/42E-25G01	25/40E-02001 25/40E-14R01		25/40E-34P01	25/41E-10601	25/41E-19B03 25/41E-28L01 25/41E-34C01 25/41E-34C01

Continued	
10	
TABLE	

.

CALCIUM DIS- Solved AGVL AS CA)	9 0 0 1 0 9 9 0 0 1 0 9 9 0 0 1 0 9	2 5 1 8 8 8 2 5 1 8 8 8	19 219 219	0 0 0 3 0 5 5 5 5 3 9	20 22 19
HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	23 26 371 84 74	12 17 13 13	00000	00000	000
HARD- NESS (MG/L AS CACO3)	126 129 138 133	90 140 160 111	89 89 80 99 19	116 93 88 90 91	91 96 75
TEMPER- Ature (deg c)	14.5 13.5 10.0 9.0	12•3 10•5 13•0	111.0 111.5 5.0	4 4 10 0 0 0 0 0	5.5 5.5 12.0
PH (STAND- ARD UNITS)	8°777 8°777 8°777 8°777	88778 4°77 4°77 8°77 8°76	8°1 7°8 8°1 7°8	4°8 8°0 8°0 8°0 8°0	7.6 7.6 7.6
SPE- CIFIC CON- DUCT- ANCE (UMHUS)	317 263 342 336	212 284 305 211 211 253	213 213 213 213 213	258 220 216 209 218	260 219 176
ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	2400.00 2400.00 2400.00 2400.00 2400.00	 2320.00 2320.00	2320.00 2320.00 2320.00 2320.00 2320.00	2320.00 2320.00 2320.00 2320.00 2320.00	2320.00 2320.00
DEPTH Of Well, Total (FEET)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	275 261 261 380 380	380 380 380 380 880 880 880 880 880	0 0 0 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0	380 380 630
DATE OF SAMPLE	64-04-29 65-11-08 66-12-05 67-12-12	79-07-20 59-09-22 60-11-08 52-02-14 52-10-15	53-10-27 55-01-07 55-12-22 56-12-18 56-12-18	58-09-26 59-09-29 60-09-21 61-10-03 65-02-09	66-01-12 66-11-15 62-02-05
6E0- L06IC UNIT		122CBRV 122CBRV 122CBRV	122CBHV 122CBHV 122CBHV 122CBHV 122CBHV 122CBHV	122084v 12208rv 12208rv 12208rv 12208rv 12208rv	122CBRV 122CBRV 122CBRV
LOCAL IDENT- I- FIER	25/41E-34C01 25/41E-35C01	25/42E-04801 25/42E-25P01 25/42E-29R01			25/42E-32J01

	FLUO- Ride, Dis- Solved AS F)	•••• ₩₩ 4 4	•	110	• 1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	CHLO- RIDE, DIS- Solved (4G/L AS CL)	ດດອະ 	8.5	ດ ທ ດ • • • •	1 • 8 4 • 5	2 1 1 2 4 2 8 8 2 8 8 0 8 0 8	о ко с ко • • • • • • • • • • • • • • • • •	1.5 4.5 5
	SULFATE DIS- Solved (MG/L AS SO4)	64771 1111		10 16 16	6.7 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 0 G 4 4 0 G 4 4 0 G 1 4 6 0 G 1 4 6 0 G 1 6 6 6 G 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7.6 8.8
	ALKA- LINITY FIELD (MG/L AS CACO3)	103 103 107	103	84 128 143	100 98	999 96 99 96	107 98 97 98 100	99 100 66
	CAR- BONATE FET-FLD (MG/L AS CO3)	0000	0	000	00	00000		000
tinued	BICAR- BONATE FET-FLD (mg/L AS HCO3)	125 126 129	126	103 156 174	122 119	121 114 117 121 121	130 119 119 122	121 122 80
ABLE IU Continued	POTAS- SIUM. DIS- Solved (mg/L AS K)	4 M 4 0 0	۲ • ۱	2.6	2•5 2•1	6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28-28-28 28-28-28 29-28-28-28-28-28-28-28-28-28-28-28-28-28-	1.7 2.6 1.3
IAB	SODIUM AD- Sorp- Tion Ratio	, ທູ ດູ ທູ ເ	•	~~~~	ູ້ ຕໍ	4444	M 4 4 4 4 • • • • •	••• •••
	SODIUM. DIS- Solved (mg/L AS NA)	900541 9979		4 N U • • 0 N 4	9°7 7.6	₽₽₽₽₽ ••••• 4 ⊂ И Л Й	8 M N N N • • • • • • • • • • • •	
	MAGNE- SIUM- DIS- Solved (MG/L AS MG)	0110	12	411	10	10 10 10 • • •	10 9. 10 2	10 10 6.7
	LOCAL IDENT- I- FIER	25/41E-34C01	25/41E-35C01	25/42E-04901 25/42E-25P01	25/42E-29201			25/42E-32J01

TABLE 10.--Continued

78

MANGA- NESE. DIS- SOLVED (UG/L AS MN)	:	;	!	;	1	<1 <	;	:	:	1	:	;	;	!	1	:	ł	:	!	:	:	!	:
MANGA- NESE TOTAL Recov- (ug/L AS MN)	<50	<50	20	<5	<50	:	;	;	ł	!	!	ł	:	1	8		!	!	;	<50	<50	5	<50
IRON+ DIS- Solved (UG/L AS FE)		;	;	:	:	<10	1	;	;	:	:	;	:	!	1	:	;	;	:	;	:	;	;
IRON. Total Recov- Erable (ug/L As Fe)	50	340	250	230	180	ł	<10	06	40	90	5 U Č	60	<10	20	70	30	20	10	<10	10	10	10	110
NITRO- 6EN. 6EN. 024-N03 D15- S0LVED (MG/L AS N)	;	;	ł	1	;	.70	;	ł	ł	:	:	;	1	1	8	:	1	:	;	:	:	1	;
NITRO- 6EN: 02403 NO24N03 T01AL (MG/L AS N)	;	:	:	!	:	:	1	;	:	:	:	;	!	!	:	:	!	1	:	:	:	!	;
NITRO- GEN. NITRATE NUTRATE (MG/L AS N03)	9F	5 5	44	ч	4 N	:	5.1	5.6	2.0	12	3.2	2.6	4.2	4.2	o•3	9.7	5.8	5•3	4.7	4.7	6°E	9°6	d.l
SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	30	æ	193	9	æ	146	172	179	160	170	•	155	4	4	!	- 30	ŝ	153	ŝ	ŝ	ഹ	155	e
SOLIDS. RESIDUE AT 180 DEG. C DEG. C SOLVED (MG/L)	232	222	232	232	229	;	173	177	166	188	155	160	153	157	153	195	161	161	153	155		150	142
SILICA. DIS- SOLVEU (MG/L AS SIO2)	42	9 0	99	42	37	4 Ú	21	14	かす	44	51	54	41	99	:	5 t	¢	4 U	4 O	40	64	42	5 U
LOCAL IDENT- I- FIER	25/41E-34C01				25/41E-35C01	25/42E-04901	25/42E-25P01		25/42E-29R01														25/42E-32/01

TABLE 10.--Continued

TABLE 11.--Summary of physical and major chemical-constituent data for ground-water samples from the Airway Heights subregion

[Values in milligrams per liter except as indicated umho, micromho; col/100 mL, colonies per 100 milliliter; ug/L, microgram per liter]

Constituent	Number of sample sites	Trace elem Maximum	ent concent Minimum	Median
	34mp7C 370C3	PidAtindin		neurun
Specific conductance (umho)	21	458	121	260
pH (units)	21	8.4	6.8	7.6
Temperature (⁰ C)	21	21.0	4.5	12.6
Fecal-coliform bacteria (col/100 mL)				
Hardness (as CaCO ₃)	21	210	50	109
Hardness, noncarbonate (as CaCO ₃)	21	42	0	2
Calcium, dissolved	21	58	13	28
Magnesium, dissolved	21	15	4	9.9
Sodium, dissolved	21	18	3.1	11.8
Sodium-adsorption ratio	21	2.2	.1	.5
Potassium, dissolved	21	5.1	1.1	1.7
Bicarbonate	21	250	59	132
Carbonate	21	2	0	0
Alkalinity (as CaCO ₃)	21	205	48	108
Sulfate, dissolved	21	26	4.5	10
Chloride, dissolved	21	10	1	3.1
Fluoride, dissolved	21	.8	.0	.3
Silica, dissolved (as SiO ₂)	21	55	14	43
Solids, dissolved (residue at 180°C)	17	300	107	178
Solids, dissolved (sum of constituent	:s) 21	306	105	172
Nitrate (as N)	21	12	.00	1.3
Iron, total recoverable (ug/L)	17	2,500	0	73
Iron, dissolved (ug/L)	4	10	0	0
Manganese, total recoverable (ug/L)	11	170	5	.<50
Manganese, dissolved (ug/L)	4	10	١	1

LOCAL IDENT- I- FIER	UATE OF SAMPLE	ALUM- INUM, Total Recov- Erable (Ug/L AS AL)	ALUM- INUM, DIS- Solved (Ug/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA) Spokane <u>Cou</u>	CADMIUM DIS- SOLVED (UG/L AS CD) nty	CHRO- MIUM, DIS- Solved (UG/L AS CR)
24/41E-15A02 24/41E-23K01 24/42E-11R01	79-07-19 70-11-10 71-10-06	10 10	0 	2 	20	<1 	0 <30 <30
		COPPER, DIS- SOLVED (UG/L AS CU)	LEAD, DIS- Solved (Ug/L AS PR)	MERCURY DIS- SOLVED (UG/L AS HG)	DIS-	SILVER, DIS- Solved (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
		1 <50 <50	0 <100 <100	1.9	 	0 	110 200 70

TABLE 12.--Trace-element concentrations in ground-water samples from the Airway Heights subregion

•

										-
LOCAL IDENT- I- FIER	GEO- Logic Unit	DATE OF Sample	DEPTH OF WELL, Total (FEET)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) Stevens (SPE- CIFIC CON- DUCT- ANCE (UMMOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS (4g/l AS CACO3)	HARD- NESS+ Noncar- Bonate (Mg/L Caco3)
27/39E-13F01	110ALVM	79-07-25	282		390	8.1	17.1	<1	197	7
28/39E-24G01	110ALVM	79-07-25	42		412	7.6	11.5	<1	210	
28/39E-25H01		59-12-01	350	1771.00	271	7.8			129	ő
		60-05-17	350	1771.00	279	8.0	12.0		132	ő
28/39E-35L01	110ALVM	79-07-25	131	1700.00	355	7.9	15.5	<1	165	0
28/402-05001	110ALVM	79-07-25	60		339	7.6	12.3	<1	165	5
28/40E-17L01	110ALVM	79-07-25	41		325	7.8	10.9	<1	154	
29/40E-22001	110ALVM	79-07-25	61		397	7.8	10.3	<1	197	0

.

TABLE 13.--Physical, biological, and major chemical-constituent data for ground-water samples from the Chamokane Creek subregion

CALCIUM DIS- Solved (MG/L AS CA)	MAGNE- SIUM+ DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- Solved (Mg/L AS NA)	SODIUM AD- Sorp- Tion Ratio	POTAS- SIUM. DIS- Solved (Mg/L As K)	BICAR- BONATE FET-FLD (MG/L AS HCD3)	CAR- BONATE FET-FLO (MG/L AS CO3)	ALKA- LINITY FIELD (Mg/L AS CACO3)	SULFATE DIS- Solved (Mg/L AS SO4)	CHLO- RIDE, DIS- Solved (Mg/L AS CL)
74	24	4 7	,				100	20	
36	26 22	4.3 5.1	.1 .2	*.2 2.8	232 256	0	190 210	20 9.7	1.5
48						-			
36	9.5	7.3	.3	2.2	173	0	142	5.9	1.2
					176	0	144		
43	14	10	• 4	3.0	207	0	170	11	.8
38	17	5.0	.2	2.6	195	0	160	7.8	1.2
37	15	6.0	.2	2.4	183	0	150	6.7	1.2
46	20	5.4	.2	3.1	244	0	200	7.5	1.3

FLUO- RIDE, DIS- SOLVED (MG/L A> F)	SILICA+ DIS- SOLVED (MG/L AS SI02)	SOLIDS; RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRD- GEN+ NITRATE TOTAL (MG/L AS NO3)	NITRO- GEN+ NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON+ OIS- Solved (UG/L AS FE)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)
.1	13		220		.81		360	2
.1	24		239		.64		100	<1
.5	24	165	172	.00		10		
.3	2 2		207		•03		330	90
.1	27		195		.90		150	2
.2	27		186		1.1		110	<1
.1	31		235		•78		290	2

82

TABLE 14.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Chamokane Creek subregion

[Values in milligrams per liter except as indicated umho, micromho; col/100 mL, colonies per 100 milliliter; ug/L, microgram per liter]

• · · · ·	Number of	Trace element concentration			
Constituent	sample sites	Maximum	Minimum	Median	
Specific conductance (umho)	7	412	271	355	
pH (units)	7	8.1	7.6	7.8	
Temperature (^O C)	7	17.1	10.3	12.0	
Fecal-coliform bacteria (col/100 mL)	6	<1	<1	<1	
Hardness (as CaCO ₃)	7	210	130	170	
Hardness, noncarbonate (as CaCO ₃)	7	10	0	0	
Calcium, dissolved	7	48	36	38	
Magnesium, dissolved	7	26	9.5	17	
Sodium, dissolved	7	10	4.3	5.4	
Sodium-adsorption ratio	7	.3	.1	.1	
Potassium, dissolved	7	4.2	2.2	2.8	
Bicarbonate	7	256	173	207	
Carbonate	7	0	0	0	
Alkalinity (as CaCO ₃)	7	210	142	170	
Sulfate, dissolved	7	20	5.9	7.8	
Chloride, dissolved	7	1.5	.8	1.2	
Fluoride, dissolved	7	.5	.1	.1	
Silica, dissolved (as SiO ₂)	7	31	13	24	
Solids, dissolved (residue at 180 ⁰ C)	1	165	165	165	
Solids, dissolved (sum of constituents)	7	242	172	207	
Nitrate (as N)	7	1.1	.00	.78	
Iron, total recoverable (ug/L)	1	10	10	10	
Iron, dissolved (ug/L)	. 6	360	100	220	
Manganese, total recoverable (ug/L)				•	
Manganese, dissolved (ug/L)	6	90	<1	2	

LOCAL IDENT- I- FIER	DATE OF SAMPLE	ALUM- INUM, DIS- Solved (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS) <u>Stev</u>	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- Solved (UG/L AS CR)	COPPER, DIS- Solved (UG/L AS CU)
28/39E-35L01	79-07-25	10	9	80	<1	10	4

TABLE 15.--Trace-element concentrations in ground-water samples from the Chamokane Creek subregion

SILVER,	ZINC,
DIS-	DIS-
Solved	SOLVED
(UG/L	(UG/L
AS AG)	AS ZN)
	DIS- SOLVED (UG/L

0	•1	0	0	110	
---	----	---	---	-----	--

TABLE 16.--Physical, biological, and major chemical-constituent data for ground-water samples from the Curlew-Sanpoil subregion

LOCAL IDENT- I- FIER	GEO- Logic Unit	DATE OF SAMPLE	DEPTH OF WELL+ Total (FEET)	ELEV. OF LAND SURFACE DATUM (FT. NGVD) Ferr	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS) y County	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLI- FORM+ FECAL+ 0.7 UM-MF (CDLS-/ 100 ML)	HARD- NESS (Mg/L AS CACD3)	HARD- NESS. Noncar- Bonate (Mg/l Cacd3)
					y councy					
29/33E-04M01 32/33E-32N01 36/33E-07F01	110ALVM 110ALVM 110ALVM 112GLCV 112GLCV	67-10-17 79-06-25 79-06-25 70-11-12 71-05-27	205 205 18 80 80	1304.00 1304.00 1640.00 2270.00 2270.00	286 292 225 444 318	7.8 7.4 7.0 7.2 7.6	10.6 11.8 9.4 7.2 5.8	<1 <1	131 120 98 188 130	3 0 9 66 30
36/33E-07F02 37/33E-08j01 38/33E-11N01	1126LCV 1126LCV 1126LCV 1126LCV 1126LCV 1126LCV	79-06-25 60-04-07 60-10-20 79-06-24 79-06-23	80 79 79 97 63	2270.00 2270.00 2270.00 2330.00 2200.00	355 375 394 490 285	7.3 7.0 7.2 7.6 7.4	8.2 7.0 10.8 8.4	<1 <1 <1	140 150 167 220 120	30 43 59 20 0
39/33E-01J01	110ALVM	79-06-24	36	1750.00	135	7.1	10.4			
	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- Solved (Mg/L As Mg)	SODIUM. DIS- Solved (Mg/L AS NA)	SODIUM AD- Sorp- Tion Ratio	POTAS- SIUM, DIS- Solved (Mg/L AS K)	BICAR- BDNATE (MG/L AS HCO3)	CAR- Bonate (Mg/L As CD3)	ALKA- LINITY (Mg/L AS CACD3)	SULFATE DIS- Solved (Mg/L AS S04)	CHLO- RIDE, DIS- Solved (Mg/L AS CL)
	38 35 21 54 36	8.6 9.0 11 13 8.8	8.4 9.1 6.6 17	•3 •4 •3 •5	1.3 1.4 1.2 2.7	156 159 109 149 117	0 0 0 0 0	128 130 89 122 96	17 20 13 86	•4 •7 3•1 7•3 4•1
	40 46 54 33	10 8.6 21 9.8	15 14 14 9.4	.6 .5 .4 .4	2.2 2.6 2.3 2.0	134 130 132 244 159		110 107 108 200 130	52 65 49 13	5.2 4.2 2.4 1.5
						68	0	56	8.3	1.3
	FLUO- RIOE, DIS- SOLVEŮ (MG/L AS F)	SILICA; DIS- SOLVEU (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)		NITRO- GEN+ NITRATE TOTAL (MG/L AS NO3)	NITRO- GEN+ NO2+NO3 DIS- SOLVED (MG/L AS N)		IRON+ DIS- Solved (UG/L AS FE)	MANGA- NESE, Total Recov- Erable (Ug/L As MN)	MANGA- NESE, DIS- Solved (Ug/L As MN)
	.3 .3 .4 .2	21 21 25 26	183 309	172 175 139 262	.30 	.0086	570 70	0	<50 <20	<1
	.3 .3 .5 .3	27 29 17 12	248	222 238 287 160	3.8	1.0 1.6 .24	20	10 0 30		
	.3					.14				

TABLE 17.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Curlew-Sanpoil subregion

[Yalues in milligrams per liter except as indicated umho, micromho; col/100 mL, colonies per 100 milliliter; ug/L, microgram per liter]

	Number of		Trace element concentration			
Constituent	sample sites	Maximum	Minimum	Median		
Specific conductance (umho)	7	490	135	289		
pH (units)	7	7.8	7.0	7.4		
Temperature (^O C)	7	11.8	5.8	9.4		
Fecal-coliform bacteria (col/100 mL)	5	<1	<1	<1		
Hardness (as CaCO ₃)	6	220	98	139		
Hardness, noncarbonate (as CaCO ₃)	6	66	0	14.5		
Calcium, dissolved	6	54	21	40		
Magnesium, dissolved	6	21	8.6	10.1		
Sodium, dissolved	6	17	6.6	11.7		
Sodium-adsorption ratio	6	.6	.3	.4		
Potassium, dissolved	6	2.7	1.2	2.2		
Bicarbonate	7	244	68	133		
Carbonate	7	0	0	0		
Alkalinity (as CaCO ₃)	7	200	56	109		
Sulfate, dissolved	7	86	8.3	18.5		
Chloride, dissolved	7	7.3	.4	2.4		
Fluoride, dissolved	7	.5	.2	.3		
Silica, dissolved (as SiO ₂)	6	29	12	23		
Solids, dissolved (residue at 180 ⁰ C)	3	309	183	248		
Solids, dissolved (sum of constituents)	6	287	139	206		
Nitrate (as N)	7	1.6	.04	.86		
Iron, total recoverable (ug/L)	3	570	20	70		
Iron, dissolved (ug/L)	5	30	0	10		
Manganese, total recoverable (ug/L)	2	< 50	< 20			
Manganese, dissolved (ug/L)	5	1	<1	<1		

LOCAL IDENT- I- FIER	DATE OF SAMPLE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- Solved (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA) ERRY COUNT	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM+ DIS- SolveD (UG/L AS CR)
						<u> </u>	
29/33E-04M01	67-10-17 79-06-25		10	<10 5	<1000 40	<5 1	<50 0
36/33E-07F01	70-11-12	40					< 30
	79-06-25		0	5	40	<1	0
		COPPER, DIS- SOLVED (UG/L AS CU)	LEAD, DIS- SOLVED (UG/L AS PH)	MERCURY DIS- Solved (UG/L AS HG)	SELE- NIUM+ DIS- SOLVED (UG/L AS SE)	SILVER, DIS- Solved (UG/L AS AG)	ZINC, DIS- Solved (UG/L AS ZN)
		<400 0 <50	<40 0 <100	 •4 	<10 0 2	<40 0 0	<500 10 <10
		4	0	•5	۲	U	20

TABLE 18.--Trace-element concentrations in ground-water samples from the Curlew-Sanpoil subregion

TABLE 19.--Physical, biological, and major chemical-constituent data for ground-water samples from the Colville-Kettle subregion

LOCAL IDENT- I- FIER	GEO- Logic Unit	DATE OF Sample	DEPTH OF WELL; Total (FEET)	ELEV. OF LAND Surface Datum (Ft. NgVD)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE. WATER (DEG C)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, Noncar- Bonate (Mg/L Caco3)
				Ferry Co	ounty					
37/37E-08A02 37/37E-08R02	110ALVM 110ALVM	79-06-22 79-06-23	64 41	1340.00 1320.00 Stevens	408 525 County	7.4 7.4	13.0 13.6	<1 <1	180 240	10 0
32/40E-28801 33/39E-13C01 34/39E-10F02 34/39E-10L01 35/39E-09J01	112GLCV 110ALVM 110ALVM 112GLCV	71-10-06 79-06-21 79-06-21 61-05-02 71-10-06	110 520 48 38 90	2060.00 1620.00 1600.00 1600.00 1863.00	208 280 300 303 427	8.0 7.7 7.7 7.6 7.8	10.0 13.4 10.4 11.5 10.8	<1 	96 130 130 147 200	0 0 6 34
35/39E-10A01	112GLCV 112GLCV 112GLCV	60-01-25 60-05-17 79-06-22	236 236 236	1900.00 1900.00 1900.00	392 393 420	7.8 7.8 7.4	10.0 10.4	 <1	206 210 200	14 20 10
35/39E-10801 35/39E-20K01	112GLCV 110ALVM	58-03-27 79-06-22	210 110	1560.00	382 325	7.7	10.0	<1	200 150	11 10
35/39E-32P02 36/37E-26001 36/37E-26R01 36/37E-35A01	112GLCV 110ALVM 110ALVM 110ALVM 110ALVM	79-06-22 67-09-26 70-11-11 71-05-26 67-09-20	290 58 67 67 72	1880.00 1307.00 1325.00 1325.00 1325.00	635 298 403 418 327	7.4 8.1 7.9 8.4 8.1	12.4 10.0 8.4 9.4 8.3	<1 	280 145 203 210 165	0 3 3 0 6
LOCAL IDENT- I- FIER	CALCIUM DIS- Solved (Mg/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- Sorp- Tion Ratio	POTAS- SIUM, DIS- Solved (Mg/L AS K)	BICAR- Bonate (Mg/L AS HCO3)	CAR- Bonate (Mg/L As CO3)	ALKA- LINITY (Mg/L AS CACO3)	SULFATE DIS- Solved (Mg/L AS SO4)	CHLO- RIDE, DIS- Solved (Mg/L As CL)
				Ferry	County					
37/37E-08A02 37/37E-08R02	49 61	15 21	6.1 16	.2 .5	1.0 4.0	207 317	0 0	170 260	27 30	4.5 1.3
				SLEVE	ns County					
32/40E-28801 33/39E-13C01 34/39E-10F02 34/39E-10L01 35/39E-09J01	23 33 39 46 50	9.4 11 8.4 7.8 19	5.0 5.6 6.1 6.2 6.5	•2 •2 •2 •2	1:8 1.5 1:8 1:7 2.3	129 159 171 172 206	0 0 0 0	106 130 140 141 .69	6.3 17 9.4 8.2 47	2.2 .5 1.6 1.5 2.9
35/39E-10A01	60	14	3.9	<u>.1</u>	1.4	234 232	0 0	.92 190	20	• 8
35/39E-10B01 35/39L-20K01	55 57 40	16 14 11	4.9 3.6 8.1	.2 .1 .3	1.5 2.0 4.5	232 231 171	0 0 0	190 189 140	32 20 28	2.6 .0 1.3
35/39E-32P02 36/37E-26Q01 36/37E-26R01	86 42 55	15 9.6 16	16 5.3 6.5	•4 •2 •2	3.8 2.3 3.8	354 173 244	0 0 0	290 142 200	54 15 18	2.4 .8 .8
36/37E-35A01	57 46	17 12	5.4	.2	2,8	273 194	 0	224 159	15	1.3 .8

TABLE 19.--Continued

LOCAL IDENT- I- FIER	FLUO- RIDE, DIS- Solved (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS NO3)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON+ TOTAL RECOV- ERABLE (UG/L AS FE)	IRON+ OIS- Solved (Ug/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE+ DIS- Solved (UG/L AS MN)
			<u>!</u>	Ferry Count	Y						
37/37E-08A02	•4 •5	17		230			1.7		10		<1
37/37E-08R02	•5	15		305			.00		0		3
				Stevens Co	unty						
32/40E-28801	• 0	31	150	144		•44		50		<20	
33/39E-13C01	.1	16		163			.00		190		90
34/39E-10F02	.2	21		175			.73		10		2
34/39E-10L01	•2	23	202	193	13			<10			
35/39E-09J01	.0	18	284	262		3.3		40		<20	
35/39E-10A01	.2	14	225	229	.00			90			
	•1	14		241			.00		30		290
35/39E-10801	.2	16	240	227	.00			130			
35/39E-20K01	•2	19		196			.00		10		5
35/39E-32P02	.2	23		381			1.3		0		<1
36/37E-26Q01	•5	25	191	188	2.0			60		<50	
36/37E-26R01	.3	20	237	242	1.7			120		<20	
36/37E-35A01	•3	20	198	199	1.3			50		<50	

TABLE 20.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Colville-Kettle subregion

[Values in milligrams per liter except as indicated umho, micromho; col/100 mL, colonies per 100 milliliter; ug/L, microgram per liter]

	Number of	Trace element concentration			
Constituent	sample sites	Maximum	Minimum	Median	
Specific conductance (umho)	14	635	208	354	
pH (units)	14	8.4	7.4	7.7	
Temperature (⁰ C)	14	13.6	8.3	10.6	
Fecal-coliform bacteria (col/100 mL)	6	<1	<1	<1	
Hardness (as CaCO ₃)	14	280	96	173	
Hardness, noncarbonate (as CaCO ₃)	14	34	0	4.5	
Calcium, dissolved	14	86	23	47.5	
Magnesium, magnesium	14	21	7.8	13	
Sodium, dissolved	14	16	3.6	6.1	
Sodium-adsorption ratio	14	.5	.1	.2	
Potassium, dissolved	14	4.5	1.0	2.2	
Bicarbonate	14	354	129	200	
Carbonate	14	0	0	0	
Alkalinity (as CaCO ₃)	14	290	106	164	
Sulfate, dissolved	14	54	6.3	19	
Chloride, dissolved	14	4.5	.0	1.4	
Fluoride, dissolved	14	.5	.0	.2	
Silica, dissolved (as SiO ₂)	14	31	14	19.5	
Solids, dissolved (residue at 180 ⁰ C)	8	284	1 50	214	
Solids, dissolved (sum of constituents)	14	381	144	213	
Nitrate (as N)	14	3.3	.00	.4	
Iron, total recoverable (ug/L)	8	130	<10	55	
Iron, dissolved (ug/L)	7	190	Ο.	10	
Manganese, total recoverable (ug/L)	5	< 50	< 20	< 20	
Manganese, dissolved (ug/L)	7	290	<1	3	

LUCAL IDENT- I- FIER	UATE UF SAMPLE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- Solved (UG/L AS CR)
32/40E-28801 33/39E-13C01 35/39E-09J01 35/39E-10A01 36/37E-26001	71-10-05 79-06-21 71-10-05 79-06-22 67-09-25	<10 120	0 	 7 1 <10	100 100 <1000	<1 <1 <5	<30 0 <30 0 <50
36/37E-26R01 36/37E-35A01	70-11-11 67-09-20	3U 		<10	<1000	 <5	<30 <>0

TABLE 21.--Trace-element concentrations in ground-water samples from the Colville-Kettle subregion

			JELL		
COPPER, DIS- SOLVED (UG/L AS CU)	LEAD, DIS- SOLVED (UG/L AS PB)	MERCURY DIS- SOLVED (UG/L AS HG)	NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
<50	<100				<10
0	0	• 4	0	0	<3
<50	<100				<10
1	0	•5	0	0	٤>
<400	<40		<10	<40	<500
<50	<100				70
<400	< 4 0		<10	< 4 0	<500

SELE-

LOCAL IDENT- I- FIER	GED- Logic Unit	DATE OF Sample	DEPTH OF WELL+ Total (FEET)	ELEV. OF LAND Surface Datum (Ft. Above NgVD)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- Ature (Deg C)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BUNATE (MG/L CACO3)
31/45E-24301 31/45E-34G01 32/44E-07R01 32/44E-27G01 32/44E-36C01	110ALVM 112GLCV 110ALVM 110ALVM 110ALVM	79-07-18 79-08-03 79-07-18 79-08-02 79-08-02	175 208 77 99 57	2166.00	330 211 470 360 292	7.9 8.2 7.5 8.0 7.8	10.5 16.2 10.9 12.4 12.2	<1 <1 <1 <1	144 109 242 178 143	14 9 2 0 3
32/45E-32E01 32/45E-32401 32/45E-33H01 32/45E-34P01	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	61-05-02 70-11-11 71-05-26 79-08-02 79-08-03	37 50 50 91 171	2060.00 2065.00 2065.00	120 123 116 200 240	6.7 6.8 8.1 8.2 8.0	9.5 7.2 8.7 11.4 11.4	 <1 <1	50 50 46 96 119	1 1 0 9 0
33/43E-11N01 35/43E-12L01 36/43E-35F01 37/43E-29K01	llualvm llualvm lloalvm lloalvm	79-08-03 79-08-03 79-08-02 79-08-02 79-08-02	160 60 87 90	 2080.00 	357 545 504 450	7.8 7.2 7.4 6.7	12.0 15.0 9.8 9.1	<1 <1 <1 <1	179 289 263 220	0 9 3 0
LUCAL IDENT- I- FIER	CALCIUM DIS~ SOLVED (MG/L AS CA)	MAGNE- SIU4, DIS- Solved (Mg/L As Mg)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- SorP- Tion Ratio	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CU3)	AL <a- LINITY FIELD (mg/L AS CACO3)</a- 	SULFATE DIS- Solved (MG/L AS SO4)	CHLO- RIDE: DIS- SOLVED (MG/L AS CL)
31/45E-24801 31/45E-34601 32/44E-07R01 32/44E-27G01 32/44E-36C01	41 24 74 53 42	10 8.8 14 11 9.2	8.1 3.6 5.5 11 4.9	•3 •2 •4 •2	2.2 1.5 2.7 2.4 1.5	159 122 293 232 171	 0 0 0	130 100 240 190 140	11 14 7.9 15 14	7.6 .5 1.9 .8 .6
32/45E-32E01 32/45E-32M01 32/45E-33H01 32/45E-34P01	14 13 12 26 35	3.6 4.2 3.8 7.5 7.7	4.2 4.6 3.1 3.3	.3 .3 .1 .1	.9 .9 1.0 1.5	60 60 61 106 146	0 0 0 0	49 49 50 87 120	8.6 7.6 15 13	.8 1.7 .9 .5 1.2
33/43E-11N01 35/43E-12L01 36/43E-35F01 37/43E-29k01	47 78 74 65	15 23 19 14	6.6 4.1 5.2 9.9	.2 .1 .1 .3	2.7 2.6 1.6 2.1	220 341 317 268	0 0 0 0	180 280 260 220	14 22 16 22	.5 1.2 1.0 .7

TABLE 22.--Physical, biological, and major chemical-constituent data for ground-water samples from the Pend Oreille subregion

.

-

TABLE 22.--Continued

LOCAL IDENT- I- Fier	FLUO- RIDE- DIS- SOLVED (Mg/L AS F)	SILICA, DIS+ Solved (MG/L AS SIO2)	SULIDS, RESIDUE AT 180 DEG. C DIS- SGLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN; NITRATE TOTAL (MG/L AS NO3)	NITRO- GEN+ NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON+ TOTAL RECOV- ERABLE (UG/L AS FE)	IRON+ DIS- SOLVED (UG/L AS FE)	MANGA- NESE+ Total Recov- Erable (JG/L As MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
31/45E-24801	•1	24		162		5.6		<10		7
31/45E-34301	.1	15		133		.18		80		2
32/44E-07P01	.3	18		269		.05		130		320
32/44E-27G01	.2	19		227		.17		140		240
32/44E-36001	•1	17		174		.06		<10		590
32/45E-32E01	•2	24	89	86	1.8		<10			
32/45E-32401	.1	23	85	85	2.7		60		<20	
32/45E-33401	• 1	14		119		.08		110		1
32/45E-34201	•1	13		147		.14		340		7
33/43E-11N01	•1	18		213		.02		360		100
35/43E-12L01	.1	17		16 ف		• 0 4		230		< 10
36/43E-35F01	•2	26		299		1.2		<10		<1
37/43E-29Kul	•1	21		269		.02		1800		180

TABLE 23.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Pend Oreille subregion

[Valu	es in mill	igrams per 1	iter exce	pt as	indicated
			colonies	per 1	00 milliliter;
ug/L,	microgram	per liter]			

	Number of	Trace element concentration					
Constituent	sample sites	Maximum	Minimum	Median			
Specific conductance (umho)	13	545	116	330			
pH (units)	13	8.2	6.7	7.8			
Temperature (^o C)	13	16.2	7.2	11.4			
Fecal-coliform bacteria (col/100 mL)	11	<1	<1	<1			
Hardness (as CaCO ₃)	13	290	46	140			
Hardness, noncarbonate (as CaCO ₃)	13	10	0	0			
Calcium, dissolved	13	78	12	42			
Magnesium, dissolved	13	23	3.6	10			
Sodium, dissolved	13	11	3.1	4.9			
Sodium-adsorption ratio	13	.4	.1	.2			
Potassium, dissolved	13	2.7	.9	1.6			
Bicarbonate	13	341	60	171			
Carbonate	13	0	0	0			
Alkalinity (as CaCO ₃)	13	280	49	140			
Sulfate, dissolved	13	22	7.6	14			
Chloride, dissolved	13	7.6	.5	.8			
Fluoride, dissolved	13	.3	.1	.1			
Silica, dissolved (as SiO ₂)	13	26	13	18			
Solids, dissolved (residue at 180°C)	2	89	85				
Solids, dissolved (sum of constituents)	13	316	8 8	207			
Nitrate (as N)	13	5.6	.02	.14			
Iron, total recoverable (ug/L)	2	60	< 10				
Iron, dissolved (ug/L)	11	1,800	0	1 30			
Manganese, total recoverable (ug/L)	1	< 20	< 20 ·				
Manganese, dissolved (ug/L)	10	590	<1	10			

LOCAL IDENT- I- FIER	UATE OF Sample	ALUM- INUM. TOTAL RECOV- Eraðlé (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	HARIUM, DIS- Solved (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SolvED (UG/L AS CR)
31/45E-24801 32/45E-32M01 36/43E-35F01	79-07-18 70-11-11 79-08-02	<10		$\frac{3}{1}$	60 50	2 <1	0 0 E > 1 0

.

TABLE 24.--Trace-element concentrations in ground-water samples from the Pend Oreille subregion

COPPER• DIS- Solved (UG/L AS CU)	LEAD, DIS- Solved (UG/L AS PB)	MERCURY DIS- Solved (UG/L AS HG)	SELE- NIUM, DIS- Solved (UG/L AS SE)	SILVER, DIS- Solved (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
15 <50 2	2 <100 2	• 0 • 0		$-\frac{0}{0}$	70 220 150

HARD-	NONCAR- BONATE (MG/L CACO3)		10				4 0	140	4	120	o م	9		56				110	4	4 (61	28		EI	0	0	0	0	0	0	06	0		19
the Ukanogan Kegion COLI- FORM.	HARD- NESS (MG/L AS CACO3)		250	-	s o	0	•	0	Ň	320	σ	m.	2	256	σ	ŝ	9	~	80	270	n	258	m I	2	4	σ	38		190	¢.		_	N	221
m the Ukano COLI- FORM.			5		;	;	12		;	<1	;	;	;	1	;	!	;	ţ	ł		1	;	!	; ·	1>	:	1	!	;	:	:	:	;	:
samples trom	TEMPER- Ature, Water (deg c)		14.0	• •		e.	e.	ີ່	*	14.8	-	•	6	15.5			٠	.	.	12.5	5	11.5	n,		•	r.	4	16.3	ŝ	θ.	٠	•	13.5	ł
ground-water samples	PH FIELD (UNITS)		7.7	•	• •	•	٠	٠	٠	7.5	٠	•	٠	8.0	٠	٠	٠	٠	٠	4.1	•	7.6	٠	٠	٠	٠		8.2	٠	•	•	•	•	7.7
	MHOS)	Okanogan County	610 510	9 4 0 1 4		675	530	670	567	690	866		0	519	- (T)	430	170	788	ເດີຍ ເດີຍ ເດີຍ	000	571	0 1	\sim	N	ው	<u>م</u>	1390	Q	N	o	- 4	4	515
	OF LAND SURFACE DATUM (FT. NGVD)	<u>Okanog</u>	780.00	0.07	850.0	30.0	60.0	40.0	80.0	06	30.0	20.0	330.0	820.00	20.0	20.02	880.0	020.0	0.00	1050.00	a		:		0.00	0.0	210.0	1210.00	220.0	180.0	50.0	35.0	35.0	935.00
and major chemical-constituent FiFV.	UEPTH OF WELL. TOTAL (FEET)		61	577 571	7 90 1 90	237	142	117	118	78	118	117	-	3 0	90	9 0	73	82	9	172	n	155	130	en 1	E /	52	372	372	78	06	25			33
•	DATE OF SAMPLE		79-06-28		-06-2	-06-2	9-06-2	9-06-2	8-03-2	79-06-27	1-10-0	9-06-2	1-05-2	59-10-21	0-05-1	0-10-5	9-06-2	9-06-2	1-10-0	79-06-27	7 - 1 O - C	60-05-17	9-10-2	0-05-1	2-90-6	5-06-5	(-11-)	71-05-27	9-06-2	9-06-2	9-06-2	9-06-5	-01-6	60-05-17
, biological	6E0- L06IC UNIT		11UALVM	1126FCV	1 1 DAL VM	112GLCV	1126LCV	1126LCV	112GLCV	110ALVM	1126LCV	1126LCV	112GLCV	110ALVM	110ALVM	110ALVM	110ALVM	112GLCV	:	1126LCV	1120211	1126LCV	112GLCV	112GLCV	1 I ZGLCV	1126LCV	1126600	1126LCV	1126LCV	1126LCV	110AL VM	:	IIUALVM	11UAL VM
TABLE 25Physical,	LOCAL IDENT- I- FIER		30/25E-10N01	31/255-30401 31/255-30401	32/255-02401	32/25E-04P01	32/25E-29001	33/26E-09B01	26E-16F0	33/26E-30L01	26E-02L0	34/26E-02P01	34/26E-11D01	34/26E-26Q01			34/27E-20F01	35/26E-03C01	36/26E-03D01	36/26E-13K02	31/215-10002		37/27E-16H01		31/21E-16L03		38/27E-10N01		39/25E-26801	39/25E-35A01	39/27E-28J01	40/25E-08J02	40/27E-28L01	

.

CHL0- RIDE, DIS- Solved (MG/L AS CL)	44000 •••000 •••000	10.03 4.0 4.0	2 8 2 8 2 8	01 804700 • • • • • • • ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SULFATE DIS- SOLVED (MG/L AS SO4)	80 960 1651 140	62 190 150 260	130 130 75 55	33 160 160 72 58	490 490 491 2415 616 61
ALKA- LINITY (MG/L AS CACO3)	240 180 199 220	220 160 196 207	200 200 200 200 200 200 200 200 200 200	190 260 237 230 230 230 230 231	312 250 250 250 250 200 200 200 200 200 20
CAR- BONATE (MG/L AS CO3)	00000	00000	00000	00000 00	
BICAR- BONATE (MG/L AS HCO3)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	268 195 227 243 252	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m 1 8 8 ► 80	00400 00000 00000 000000
POTAS- SIUM. DIS- Solved (MG/L AS K)	ທີ່ມີພູກ ພິດເປັນທີ່ນີ້	4 M 4 M 9 9 M 9 0 M	ດບບ4 ••••• ພບທວ່	₩₩₩₩₩ ₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩	40 - 000 - 4 104 01-04 001
SODIUM AD- SORR- TION RATIO		ы • • • • • • • • • • • • • • • • • • •	•••• Ν 4 4 ω Ι	ເບັນ 4.4 ຕໍ່ 1.0 ເບັນ 4.4 ຕໍ່ 1.0	1 8 5 1 5 2 5 1 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SODIUM. DIS- Solveů (mg/l As NA)	28 27 24 8,6 21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 15 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 27 27 314 15 15 31 31 27
MAGNE- SIUM. DIS- Solved (mg/r AS mg)	С С С С С С С	6 9 9 9 9 6 7 9 9 9 9 6 7 9 9 9 9 9 6	24 23 23 23	19 33 26 19 26 21 21 21	17 21 3.2 15.2 33.2 15.7 16.4
CALCIUM UIS- SOLVED (MG/L AS CA)	6 7 4 7 5 7 1 1 7 1	1 4 4 4 4 0 0 4 4 4 0 0	964 557 1	43 96 97 97 97 10 10	6.4 6.4 6.4 6.4 7 6.4 7 6.4 7 6.4 7 6.4 7 6.4 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
LOCAL IDENT- I- FIER	30/25E-10N01 31/25E-15C01 31/25E-30M01 32/25E-02A01 32/25E-04P01	32/25E-29001 33/26E-09801 33/26E-16F01 33/26E-30L01 34/26E-02L01	34/26E-02P01 34/26E-11D01 34/26E-26Q01	34/27E-20F01 35/26E-03C01 36/26E-03D01 36/26E-13K02 37/27E-16C02 37/27E-16H01	37/27E-16L03 37/27E-20K01 38/27E-10N01 39/25E-26A01 39/25E-35A01 39/27E-28J01 39/27E-28J01 40/27E-28L01

TABLE 25.--Continued

MANGA- NESE. DIS- Solved (UG/L AS MN)	0 0 1 1 1 1 1 1 1 1 1	90 100 1 v	⊽!!!!	4 1 1 0 1	330 330 330	11201	√
MANGA- NESE: TOTAL RECOV- ERABLE (UG/L AS MN)		4			::::	0 V	:::
IRON. DIS- Solved (UG/L AS FE)	00100	110	0	0 1 4 1	130 130	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	•
IRON. TOTAL RECOV- ERABLE (UG/L AS FE)		4 1 4 0 1 4 0 1 0	1 2 0 1 9 0 1 1 0	0 0 M 4	1600	Ω Ω	20
NITRO- GEN. GEN. NO2+NO3 DIS- Solved (MG/L AS N)	1.00 .00 3.00	00191		2.2 2.2 1.2	• • • • • • • • • • • • • • • • • • •		011
NITRO- GEN: NO2+NU3 TOTAL (MG/L AS N)			15,111	4 1 1 0 1 1	:::::	:::::	:::
NITRO- GEN• NITRATE Total (MG/L AS NO3)			1.66 .50	* • • • •		4 	4 8 8
SOL IDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	3372 334 316 432 432	925 947 947 947	4 4 50 3 4 1 9 2 5 9 1 4 9 1 4 9	250 250 346 346 246 246 246 246 246 246 246 246 246 2	4 00 4 100	955 276 136 580	145 335
SOLIDS, RESIDUE AT 180 DEG, C DIS- SOLVED (MG/L)	2 0 B	00 00	320 320 257	576 337	4 1 4 1 4	686 1	328 1-
SILICA, DIS- Solved (Mg/L AS SI02)	19 25 20 21 21 21	239 239 239 239 239 239 239 239 239 239	22 24 28 28 23	18 22 25 20 23 23	32 - 33 - 39	17 19 18 26	16 22
FLUO- RIDE, DIS- Solvev (MG/L AS F)	୯. ୩ ୩ . ୩	m ⊅3 m ⊶	ດ ທ ທ 4 1 ພັນ ທ 4 1	₩ 4 M 4 4	1 • 1 0 0	ο Ι Λ - Λ	ч. Т. е.
LOCAL IDENT- I- FIER	30/25E-10N01 31/25E-15C01 31/25E-30M01 32/25E-02A01 32/25E-04P01	32/256-29001 33/266-09801 33/266-16F01 33/266-30L01 34/266-02L01	34/26E-02P01 34/26E-11D01 34/26E-26Q01	34/27E-20F01 35/26E-03C01 36/26E-03D01 36/26E-13K02 37/27E-16C02	37/27E-16H01 37/27E-16L03 37/27E-20K01	38/27E-10N01 39/25E-26801 39/27E-28J01 39/27E-28J01	40/25E-08J02 40/27E-28L01

TABLE 25.--Continued

98

.

TABLE 26.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Okanogan Region

[Values in milligrams per liter except as indicated umho, micromho; col/100 mL, colonies per 100 milliliter; ug/L, microgram per liter]

Constituent	Number of sample sites	Trace element concentration Maximum Minimum Median						
	Sumpre Sices		11111111111	neurun				
Specific conductance (umho)	33	1,461	224	585				
pH (units)	33	8.2	7.2	7.6				
Temperature (^O C)	32	16.3	8.2	12.4				
Fecal-coliform bacteria (col/100 mL)	5	<1	<1	<1				
Hardness (as CaCO ₃)	33	390	9	257				
Hardness, noncarbonate (as CaCO ₃)	32	190	0	29				
Calcium, dissolved	29	110	3.4	65				
Magnesium, dissolved	29	33	.2	23				
Sodium, dissolved	28	314	4.1	20.5				
Sodium-adsorption ratio	28	22	.2	.5				
Potassium, dissolved	28	7.8	1.3	4.8				
Bicarbonate	33	403	120	252				
Carbonate	33	0	0	0				
Alkalinity (as CaCO ₃)	33	331	98	207				
Sulfate, dissolved	28	49 0	14	73.5				
Chloride, dissolved	29	17	.7	3.2				
Fluoride, dissolved	28	.6	.1	.3				
Silica, dissolved (as SiO ₂)	28	39	16	22				
Solids, dissolved (residue at 180°C)	10	983	208	359				
Solids, dissolved (sum of constituents)	28	955	136	340				
Nitrate (as N)	28	4.5	.00	.60				
Iron, total recoverable (ug/L)	11	1,600	20	50				
Iron, dissolved (ug/L)	17	340	0	10				
Manganese, total recoverable (ug/L)	5	40	< 20	[.] < 20				
Manganese, dissolved (ug/L)	17	330	<1	<1				

.

TABLE 27Trace-element	concentrations	in	ground-water	samples	; from	the	Okanogan Re	gion
-----------------------	----------------	----	--------------	---------	--------	-----	-------------	------

LOCAL IDENT- I- FIER	DATE OF SAMPLE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) Ok	ALUM- INUM, DIS- SOLVED (UG/L AS AL) Kanogan Cou	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- Solved (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- Solved (UG/L AS CR)	COPPER, DIS- Solved (UG/L AS CU)
30/25E-10N01	79-06-28		10	5	50	<1	0	3
31/25E-30M01	71-10-08	30					<30	<50
33/26E-09B01	79-06-27		20	6	40	<1	0	2
34/26E-02L01	71-10-08	50					< 30	<50
34/26E-11D01	71-05-27	<10					<30	<50
36/26E-03D01	71-10-08	90					<30	<50
37/27E-16L03	74-06-26		10	2	40	<1	0	1
38/27E-10N01	70-11-12	30					<30	<50

•

LEAD, DIS- SOLVED (UG/L AS PB)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- Solved (UG/L AS ZN)
0 <100 0 <100	• 0 • 0	12	 	3 <10 <3 <10
<100 <100 0 <100	0			<10 <10 5 70

TABLE 28.--Physical, biological, and major chemical-constituent data for ground-water samples from the Methow Region

LOCAL IDENT- I- FIER	GEO- Logic Unit	DATE OF Sample	DEPTH OF WELL; Total (FEET)	ELEV. OF LAND Surface Datum (Ft. NGVD)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLI- FORM+ FECAL+ 0+7 UM-MF (COLS+/ 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ Noncar- Bonate (Mg/L Caco3)
				<u>Okanogan</u> (County					
30/22E-13G01 30/23E-06K01 31/22E-26N01	110ALVM 110ALVM 110ALVM 110ALVM	79-07-10 70-11-12 71-05-27 79-07-10	52 75 75 41	1040.00	215 230 113 240	7.8 7.7 7.9 7.6	11.0 9.6 10.8 11.0	<1 <1	89 107 46 100	0 2 0 0
32/22E-10F01	110ALVM	79-07-10	105	1490.00	290	7.8	12.3		82	ĩ
33/22E-08N01 33/22E-17D01	110ALVM 110ALVM 110ALVM	59-10-20 60-05-18 79-07-09	50 50 100	1608.71	215 190 176	7.2 7.2 7.4	11.0 8.0 8.8		100 98 74	9
35/21E-32K01 36/19E-26801	- 110ALVM 110ALVM	79-07-10 59-09-16	103 50	1830.00	160 111	7.3 7.1	10.5	<1	71 49	3 0 0
	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- Solved (Mg/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AO- Sorp- Tion Ratio	POTAS- SIUM, DIS- Solved (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- Bonate (mg/l As co3)	ALKA- LINITY (Mg/L AS CACO3)	SULFATE DIS- Solved (mg/l AS S04)	CHLO- RIDE, DIS- Solved (MG/L AS CL)
	28 33 14 31	4.7 5.8 2.8 6.2	5.4 6.0 	.2	1:3 1.0 	109 128 70 134	0 0 0	89 105 57 110	10 13 	1.0 .6 1.0 .8
	21	7.1	4.6	.2	1.4	99	Ō	81	17	1.1
	33	4.1 	4.3	.2	1.2	111 109	0 0	91 89	14	.8
	23 21 18	4.1 4.4 1.0	3.0 2.7 1.9	.2 .1 .1	.5 .5 .5	87 91 62	0 0 0	71 75 51	9.4 6.0 3.7	1.3 .5 .0
	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 UEG. C DIS- SOLVED (MG/L)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	NITRO- GEN+ NITRATE Total (Mg/L As NO3)	NITRO- GEN+ NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON+ TOTAL Recov- Erable (UG/L AS FE)	IRON+ DIS- Solved (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE: DIS- Solved (UG/L AS MN)
	•2 •1	13	138	121 139	2.5	.77	20	10	<20	<1
	 .2	15 14		142 118		.85	 	 0 <0		<1 <1
	.0	14	127	128	Z.1		20			
		 11				.53				
	.1	9.9 9.0	65	90 66	.50	.09	20	0		<1

TABLE 29.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Methow Region

[Values in mill	igrams per l	iter except a	is indicated
umho, micromho;	col/100 mL,	colonies per	100 milliliter;
ug/L, microgram	per liter]		

	Number of	Trace element concentration							
Constituent	sample sites	Maximum	Minimum	Median					
Specific conductance (umho)	10	290	111	203					
pH (units)	10	7.9	7.1	7.5					
Temperature (⁰ C)	9	12.3	8.0	10.8					
Fecal-coliform bacteria (col/100 mL)	4	<1	<1	< 1					
Hardness (as CaCO ₃)	10	107	46	86					
Hardness, noncarbonate (as CaCO ₃)	10	9	0	.5					
Calcium, dissolved	9	33	14	23					
Magnesium, dissolved	9	7.1	۱	4.4					
Sodium, dissolved	8	6.6	1.9	4.5					
Sodium-adsorption ratio	8	.3	.1	.2					
Potassium, dissolved	8	1.4	.5	1.1					
Bicarbonate	10	134	62	104					
Carbonate	10	0	0	0					
Alkalinity (as CaCO ₃)	10	110	51	85					
Sulfate, dissolved	8	17	3.7	10.5					
Chloride, dissolved	9	1.3	.0	.8					
Fluoride, dissolved	8	.2	.0	.1					
Silica, dissolved (as SiO ₂)	8	15	9	13					
Solids, dissolved (residue at 180 ⁰ C)	3	138	65	127					
Solids, dissolved (sum of constituents)	8	142	66	120					
Nitrate (as N)	8	.85	. 09	. 54					
Iron, total recoverable (ug/L)	3	20	20	20					
Iron, dissolved (ug/L)	5	10	Ο.	0					
Manganese, total recoverable (ug/L)	1	< 20	< 20	< 20					
Manganese, dissolved (ug/L)	5	2	1	<1					

LOCAL IDENT- I- FIER	UATE OF Sample	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM+ DIS- Solved (Ug/L AS AL)	ARSENIC DIS- Solved (UG/L AS AS)	BARIUM, DIS- Solved (Ug/L As ba)	CADMIUM DIS- Solved (UG/L AS CD)	CHRO- MIUM, DIS- Solved (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)
				<u>0</u>	kanogan Cou	inty		
30/23E-06K01 33/22E-17D01	70-11-12 79-07-09	70		. 	10	<1	<30 0	<50 0

TABLE 30.--Trace-element concentrations in ground-water samples from the Methow Region

LEAD. DIS- SOLVED (UG/L AS PB)	MERCURY DIS- Solved (UG/L AS HG)	SELE- NJUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- Solved (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
<100 0	• 0		0	<10 10

TABLE 31.--Physical, biological, and major chemical-constituent data for ground-water samples from the Chelan Region

LOCAL IDENT- I- FIER	GEO- Logic Unit	DATE OF Sample	UEPTH OF WELL, TOTAL (FEET)	ELEV. OF LAND SURFACE DATUM (FT. NGVO)	SPE- CIFIC CON- OUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	UM-MF	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
				<u>Che</u>	lan County					
28/22E-21J01 28/22E-28801 28/22E-32P01	112GLCV	71-10-20 79-07-24 79-07-11	65	2150.00 2050.00 1200.00	750 610 560	7.3	11.2	<1	350 260 140	0 0 0
		CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- Sorp- Tion Ratio		BICAR- BONATE (MG/L AS HCO3)	CAR- Bonate (mg/l As co3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- Solved (Mg/L AS S04)
		86 60 33	34 27 14	30 25 69	•7 •7 2•5	2.6 2.8 3.2	437 354 305	0 0 0	358 290 250	56 44 30
		CHLO- RIDE, OIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA. DIS- Solved (MG/L AS SI02)	RESIDUE AT 180	SOLIDS SUM OF CONSTI- TUENTS- DIS- SOLVED (MG/L)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	(MG/L	IRON• Total Recov- Erable (Ug/L As Fe)	IRON. DIS- Solved (Ug/L AS FE)
		8.1 6.0 3.3	•4 •2 •4	44 38 31	490 	480 381 349	1.0	.79 3.3	40 	 0 10
		MANGA- NESE, Total Recov- Epable (UG/L AS MN)	MANGA- NESE, DIS- Solved (UG/L AS MN)	ALUM- INUM. Total Recov- Erable (UG/L AS AL)	CHRO- MIUM. DIS- Solved (UG/L AS CR)	COPPER. DIS- Solved (Ug/L AS CU)	LEAD• DIS- Solved (UG/L AS PU)	ZINC; DIS- Solved (Ug/L AS ZN)		
		<20 	<1 <1	40	<30	<50	<100	<10		

TABLE 32.--Physical, biological, and major chemical-constituent data for ground-water samples from the Entiat subregion

LOCAL IDENT- I- FIER	GEO- Logic Unit	GIC OF WE		ELEV. OF LAND SURFACE Datum (Ft. NGVD)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE: WATER (DEG C)	COLI- Form, Fecal. 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS (mg/l AS CACO3)	HARD- NESS, Noncar- Bonate (Mg/L Caco3)
				Che	elan County					
25/20E-03D01 25/20E-14901 26/20E-20P01	lloalvm llualvm lloalvm	79-07-12 79-07-24 79-07-12	75 40 40	1013.00 890.00 1235.00 Do	165 145 275 Duglas Coun	7.1 7.2 7.5 ty	9.4 11.8 13.1	 <1	71 60 120	0 9 0
25/212-16×01 25/212-32×02 26/212-11402 26/212-21N02	112GLCV 112GLCV 112GLCV 112GLCV 112GLCV 112GLCV	79-07-11 79-07-11 79-07-11 71-05-25 71-10-20	115 97 164 159 159	760.00 720.00 720.00 801.00 801.00	510 725 255 399 499	7.3 7.3 7.7 8.2	11.8 13.1 12.2 13.7 13.6	<1 	270 300 110 170 220	40 30 19 48
	112GLCV	79-07-11	159	801.00	520	7.6	14.0		250	110
LOCAL IDENT- I- FIER	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- Solved (Mg/L AS Mg)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- Sorp- Tion Ratio	POTAS- SIUM, DIS- Solved (Mg/L As K)	BICAR- BONATE (MG/L AS HC03)	CAR- Bonate (Mg/L As CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- Solved (Mg/L AS SO4)	CHLO- RIDE, DIS- Solved (Mg/L As CL)
					Chelan	County				
25/20E-03001 25/20E-14001 26/20E-20P01	20 17 29	5.0 4.3 12	5.1 4.3 6.2	.3 .2 .2	1.7 2.3 2:4 Douglas	91 62 146 County	0 0 0	75 51 120	5.6 10 6.3	2.4 1.0 1.3
25/21E-16K01 25/21E-32K02 26/21E-11H02 26/21E-21N02	82 79 32 48 68	15 25 7.2 12 13	8.5 18 5.7 12	.2 .5 .2 .4	2.3 3.8 1.9 3.6	280 329 111 148	0 0 0 0	230 270 91 121	29 65 24 54	3.4 2.8 2.2 4.4 7.9
	76	14	14	.4	4.2	171	0	140	120	7.1
LOCAL IDENT- I- FIER	FLUO- RIDE, DIS- Solved (MG/L AS F)	DIS- Solved	SOLIDS; RESIDUE AT 180 DFG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SULVED (MG/L)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, TOTAL RECOV- EPABLE (UG/L AS FE)	IRON+ DIS- Solved (Ug/L AS FE)	MANGA- NESE; Total Recov- Erable (Jg/L As MN)	MANGA- NESE+ DIS- Solved (Ug/l AS MN)
					Chelan Cou	nty				
25/20E-03001 25/20E-14001 26/20E-20001	• 1 • 1 • 1			104 97 163	 Douglas Co	.70 1.5 3.8 unty		0 0 0		<1 <1 <1
	~	2.7		-				0		<1
25/21E-16K01 25/21E-32K02 26/21E-11402 26/21E-21N02	.2 .2 .2 .2	27 13 27	262	311 393 145 250	3.7	2.3 2.4 .86 	10	0 10 	<20	<1 <1
	.Ξ	21		356		3.4		10		<1

TABLE 33.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Entiat subregion

[Val	ues in mil	ligrams per	liter exc	ept a	as indicate	ed
umho,	micromho;	col/100 mL,	colonies	per	100 millil	iter;
ug/L,	microgram	per liter]				

	Number of	Trace element concentration							
Constituent	sample sites	Maximum	Minimum	Median					
Specific conductance (umho)	7	725	145	275					
pH (units)	7	8.2	7.1	7.3					
Temperature (^O C)	7	14.0	9.4	12.2					
Fecal-coliform bacteria (col/100 mL)	2	<1	< 1	<1					
Hardness (as CaCO ₃)	7	300	60	120					
Hardness, noncarbonate (as CaCO ₃)	7	110	0	19					
Calcium, dissolved	7	82	17	32					
Magnesium, dissolved	7	25	4.3	12					
Sodium, dissolved	7	18	4.3	6.2					
Sodium-adsorption ratio	7	.5	.2	.2					
Potassium, dissolved	7	4.2	1.7	2.3					
Bicarbonate	7	329	62	146					
Carbonate	7	0	0	0					
Alkalinity (as CaCO ₃)	7	270	51	120					
Sulfate, dissolved	7	120	5.6	24					
Chloride, dissolved	7	7.9	1.0	2.4					
Fluoride, dissolved	7	.3	.1	.2					
Silica, dissolved (as SiO ₂)	7	27	13	21					
Solids, dissolved (residue at 180 ⁰ C)	1	262	262	262					
Solids, dissolved (sum of constituents)	7	394	97	163					
Nitrate (as N)	7	3.8	.7	2.3					
Iron, total recoverable (ug/L)	1	10	10	10					
Iron, dissolved (ug/L)	7	10	0	0					
Manganese, total recoverable (ug/L)	I	20	20	20					
Manganese, dissolved (ug/L)	7	<1	<1	<1					

LOCAL IDENT- I- FIER	DATE OF Sample	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM+ DIS- SOLVED (UG/L AS CR
25/20E-03D01	79-07-12		0	0	30	<1	0
26/21E-21N02	71-05-25 79-07-11	<10	0	 2	80	<1	<30 0
		COPPER, DIS- SOLVED (UG/L AS CU)	LEAD, DIS- Solved (UG/L AS PB)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- Solved (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
		2	0	• 0	0	0	<3
		<50 2	<100	• 0			<10 <3

TABLE 34.--Trace-element concentrations in ground-water samples from the Entiat subregion

uo	HARD- NESS; Noncar- Bonate (MG/L Caco3)		•	00	20	00	: -	0	10	15	00		00	ы С	41	30
iere subregi	HARD- NESS (MG/L AS CACO3)		252	208	200	260 240	320	57	22 130	110	250 88	·	180	168	196 230	210
m the Cashn	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)		₹		:	⊽ I	⊽	:	⊅	۲ ۰	⊽		₫ ₹	; ;		;
samples fro	TEMPER- Ature, Water (deg c)		15•0 14•8	10.0	10.7	13.2 11.8	12.2	8.4	7.2	11.3	11.8		15.0 13.8	14.5	14•5 14•7	16.4
und-water :	PH FIELD (UNITS)		7.5 7.6	7.2	7 . 3	7.3		7.8	7.2 6.9	7.1	7.4 6.8		7.5	7.6	7.5	7.8
ata for gro	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)		591 610	44 1	505	575 574	671 290	117	55 300	220	540 211	Ę	420 790	377	444 000	680
onstituent d	ELEV. OF LAND Surface Datum (F1. NGVD)	Chelan County		780.00	820.00	860.00 880.00	880.00 680.00	1150.00	1150.00 1040.00	1120.00	870.00	Douglas County	670.00 650.00	645.00	645.00 651.00	660.00
chemical-c	UEPTH OF WELL• TOTAL (FEET)	님	52 118	47 64	63	60 65	65 39	80	80 20	62	74 74		82 95	60	6 0 50	260
, and major	DATE OF SAMPLE		61-05-03 79-07-12	61-05-11 39-01-24	79-07-13	79-07-23 71-05-25	71-10-20	70-11-09	79-07-25 79-07-25	22-10-61	79-07-23 65-03-24		79-07-25	59-10-20	60-05-18 79-07-12	71-10-20
, biological	660- LUGIC UNIT		 1126LCV	110ALVM 110ALVM	110ALVM	110ALVM 110ALVM	110ALVM 110ALVM	1126LCV	1126LCV 1126LCV	1126LCV	110ALVM 		1126LCV	110ALVM	110ALVM 110ALVM	112GLCV
TABLE 35Physical, biological, and major chemical-constituent data for ground-water samples from the Cashmere subregion	LOCAL Ident- I- Fier		22/20E-24R01 22/21E-28H01	23/19E-04D01 23/19E-04D02	23/19E-04E01	23/19E-05L02 23/19E-05M02	23/19F-13N02	24/17E-23001	24/18E-17J01	24/18E-22N01	24/18E-35J03 25/17E-08G01		22/21E-26801 23/205-10001	23/20E-34R01	23/20E-35N01	24/20E-35J0]

108

CHLO- RIDE, DIS- Solved (MG/L AS CL)		5.2	13 4 5	2.6	7.4	2.6	2.1	2.2	2.9	•	т. •	4.2	1.3	ທູ ທີ່	•		4 • 2	3.6	3.8	ດ . ບ	14	4 0
SULFATE DIS- Solved (MG/L AS SO4)		28	4 -	16	23	20	27	ł	0°6	2.4	3.9	21	8.3	29	Γ		20	44	14	25	23	160
ALKA- LINITY (MG/L AS CACO3)		273	200	207	180	280	261	1	130	57	22	120	95	250	16		180	210	163	182	230	180
CAR- Bonate (MG/L AS CO3)		0	0 0	00	0	C	0	3	0	0	0	0	0	0	0		0	0	0	0	0	0
BICAR- Bonate (Mg/L AS HC03)		333	317	252	220	341	318	ł	158	69	27	146	116	305	111		220	256	199	222	280	219
 POTAS- SIUM, DIS- Solved (MG/L AS K)	Chelan County	4 • E	ካ - - -	2 • 2	2.2	2.1	1.5	:	2.4	2.1	1.9	3.3	1.4	3°6'	4 • 5	Douglas County	4.2	4.7	3.0	3.1	4 • l	9.4
SODIUM AD- Sorp- TION RATIO	Chelan	6•	1 1	•	. 9	.	٠٦	;	۳ .	•1	.1	۳ .	•1	ທ ີ	۳ .	Doug	•	.7	ñ,	• •	٠٦	1.2
SODIUM, DIS- Solved (MG/L AS NA)		32	35 16	0 4 4 (18	23	25	1	6.3	1.9	6.	8.3	3.0	19	7.0		19	23	14	16	23	39
MAGNE- SIUM. DIS- Solved (MG/L AS MG)		16	:	32	21		32	35	15	11	6 • 4	19	17	4]	8.8		11	17	11	13	16	14
CALCIUM DIS- Solveu (MG/L AS CA)		74	71 * B	0 u 1 4) 4 • 4	53	42	72	25	4 • 6	1.9	20	14	31	21		52	48	40	58	65	61
LOCAL IDENT- I- FIER		22/20E-24R01	22/21E-28H01	23/195-04002 23/195-04002	23/19E-04E01	23/19E-05L02	23/19E-05M02		23/19E-13N02	24/17E-23Q01		24/18E-17J01	24/18E-22N01	24/18E-35J03	25/17E-08601		22/21E-26801	23/20E-10R01	23/20E-34R01		23/20E-35N01	24/20E-35J01

TABLE 35.--Continued

-
Pa a
<u>e</u>
2
<u> </u>
4
C
0
C
1
- i
•
ъ.
35.
35.
щ
щ
ABLE
BLE

MANGA- NESE. DIS- Solved (UG/L AS MN)		11114	41141	221	4 4	:
MANGA- NESE TOTAL RECOV- ERABLE (UG/L AS MN)		:::::	20 20 20 20		11111	120
IRON• DIS- Solved (ug/L AS FE)		::::°	<u>9</u> 11°1	00001	0110	1
IRON. TOTAL Recov- Erable (UG/L AS FE)		20 410 100	20 20 120	2100	100	066
NITRO- 6EN 6EN 015- 50LVED (MG/L AS V)		2°5 3°7	3.7 1.7	.04 2.7 1.3 3.7	4 4 4 4 4 4	1
NITRO- GEN: NO2+NO3 TOTAL (MG/L AS N)		:::::		:::::		• 0 7
NITRO- GEN. GEN. NITRATE TOTAL (MG/L AS NO3)		11 3.1 2.4	• •	891111	16 18 18	:
SOLIDS. SUM OF CONSTI- TUENS: DIS- SOLVED (MG/L)	Chelan County	364 359 263 264 261	347 340 163 81	- 41 - 201 - 128 - 321 0 131 Douglas County	263 298 238 329	426
SOLIDS. RESIDUE AT 180 DEG. C DEG. C JIS- SOLVED (MG/L)	45	362 256 237	300 300 77		235	488
SILICA. DIS- Solved (mg/L AS SI02)		30 26 19 20	32 39 15 20	14 20 18 18	24 29 26 26	29
FLUO- RIDE. DIS- Solved (MG/L		N N N O N	w w - 0	0 N - M N	4 m N N M M	• 5
LOCAL IVENT- FIER		22/20E-24R01 22/21E-28H01 23/19E-04D01 23/19E-04D02 23/19E-04D02	23/19E-05L02 23/19E-05M02 23/19E-13N02 24/17E-23Q01	24/18E-17J01 24/18E-22N01 24/18E-35J03 25/17E-08G01	22/21E-26801 23/20E-10R01 23/20E-34R01 23/20E-35N01	24/20E-35J01

TABLE 36.--Summary of physical, biological, and major chemical-constituent data for ground-water samples from the Cashmere subregion

	Number of	Trace element concentration		
Constituent	sample sites	Maximum	Minimum	Median
Specific conductance (umho)	17	680	55	500
pH (units)	17	7.9	6.8	7.4
Temperature (^O C)	18	16.4	4.4	11.9
Fecal-coliform bacteria (col/100 mL)	8	<1	<1	<1
Hardness (as CaCO ₃)	17	320	22	199
Hardness, noncarbonate (as CaCO ₃)	17	30	0	0
Calcium, dissolved	18	74	1.9	48
Magnesium, dissolved	17	41	4.3	17
Sodium, dissolved	18	39	.9	18.5
Sodium-adsorption ratio	17	1.2	.1	.5
Potassium, dissolved	18	9.4	1.4	3.2
3icarbonate	18	341	27	236
Carbonate	18	0	0	0
Alkalinity (as CaCO ₃)	18	280	22	194
Sulfate, dissolved	18	160	2.4	20.5
Chloride, dissolved	14	14	.3	4.2
Fluoride, dissolved	18	.5	.0	.2
Silica, dissolved (as SiO ₂)	18	41	14	24.5
Solids, dissolved (residue at 180 ⁰ C)	8	488	77	254
Solids, dissolved (sum of constituents)	18	426	41	263
Nitrate (as N)	19	4.4	.04	2.4
Iron, total recoverable (ug/L)	8	2,100	10	60
Iron, dissolved (ug/L)	9	10	0	10
Manganese, total recoverable (ug/L)	4	400	20	70
Manganese, dissolved (ug/L)	9	1	<1	<1

[Values in milligrams per liter except as indicated umho, micromho; col/100 mL, colonies per 100 milliliter; ug/L, microgram per liter]

LOCAL IDENT- I- FIER	DATE OF Sample	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SolvED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- Solved (UG/L AS BA)	CADMIUM DIS- Solved (UG/L AS CD)	CHRO- MIUM, DIS- Solved (Ug/L AS CR)
				Chelan C	ounty		
23/19E-05M02 23/19E-13N02 24/17E-23Q01 24/18E-17J01	71-05-25 79-07-13 70-11-09 79-07-25	<10	0 10	 1 2	70 70 70	<1 <1	<30 0 <30 0
				Douglas	County		
22/21E-26801 24/20E-35J01	79-07-25 71-10-20	 40	0				0 <30

TABLE 37.--Trace-element concentrations in ground-water samples from the Cashmere subregion

COPPER. DIS- Solved (UG/L AS CU)	LEAD, DIS- Solved (UG/L AS PB)	MERCURY DIS- SOLVED (UG/L AS HG) Chelan	SELE- NIUM, DIS- SOLVED (UG/L AS SE) COUNTY	SILVER. DIS- Solved (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
<50	<100				<10	

,

<50	<100				<10
100	0	• 0	0	0	40
<50	<100	~~	~~		40
4	3	• 0	0	0	<3
		Douglas	County		
2	8	• 0	0	0	
<50	<100		~-		<10