TECHNICAL NOTES
NATIONAL ADVISORY COMMITTEE FOR AERONAUTIGS.

NO. 99.

NOTES ON THE STANDARD ATEOSPHERE:
By Walter s. Diehl Bureau of Aeronautios, U.S.N.

June, 1922.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

technical note no. 99.

NOTES ON THE STAMDERD ATMOSPHERE.
By Walter s. Diehl.

Summary.

This report contains the derivation of a series of relations between temperature, preasure, density and altitude in a "standard atmosphere" which assumes a uniform decrease of temperature with altitude. The equations are collected and given with proper constants in both metrio and English units for the temperature gradient adopted by the National Advisory Committee for Aeronautics. A table of values of temperature pressure and density at various altitudes in this standard atmosphere is included in the report.

Introduction.

Certain interesting and significant relations exist betweer. pressure, density, temperature, and altitude in a "standard atmosphere" which assumes a linear decrease of temperature with al. titude. Such an atmosphere is in extensive use in Europe and ha recently been adopted by the National Advisory committee for Aero nautics for official use in the United States. The derivation of
the more important of the standard atmosphere relations and their tabulation in form for ready reference seems to be a practical method of indicating the way towards a utilization of the many advantages of a standard atmosphers.

The nomenclature followed throughout this report is standard, i.e.:

$$
\begin{aligned}
p & =\text { pressure }, \\
\rho & \cong \text { mass-density }, \\
T & \cong \text { temperature, absolute, } \\
R & \equiv \text { gas constent for air, } \\
a & =\text { temperature gradient }, \\
\dot{y} & \cong \text { altitude. } \\
& - \\
& \text { Standard Atmosphere. }
\end{aligned}
$$

A discussion of standard Atrosphere may be found in National Advisory Comittee for Aeronantios Report No. 147, by W. R. Gregg. A few brief remarks will be made for the benefit of those who do do not have a copy of that report available for reference.
"Standard Atmosphere," as the name implies, is an atmosphere in which fixed values of pressure, temperature and density are adopted, more or less arbitrarily, for each altitude. Such an atmosphere is required in comparing the performance of aircraft and airgraft power plants. The most satisfactory of all proposed standards is that based on the so-called "Toussaint's Rule," Which assumes the air temperature to deorease uniformly with alt:.
tude from $15^{\circ} \mathrm{C}$ at sea level to $-50^{\circ} \mathrm{C}$ at 10,000 meters, or, express ed in symbols

$$
\begin{equation*}
T=T_{0}-a y \tag{I}
\end{equation*}
$$

where a has the value of .0065 in the metric system (T in ${ }^{\circ}{ }_{C}$, y in meters) and the value . 003567 in the English system (T in ${ }^{\circ}{ }_{F}, y$ in feet); and T_{0} is the temperature at sea-Ievel, i.e.: $273+15=288^{\circ} \mathrm{C}\left(\right.$ OI, $\left.418.6^{\circ} \mathrm{F}\right)$.

While it is desirable that a standard atmosphere be a close approximation to actual conditions, this requirement should not be stressed. The chief purpose of a standard atmosphere is to supply a basis for comparison of performance and not to specify the temperature and pressure obtaining at a given absolute altitude at all times. It so happens that "Toussaint's Rule" expresses with considerable accuracy the average annual conditions for latitude 40° in the united states. This is not altogether accidental since the temperature gradient is based on averages, but it is very doubtful if the standard atmosphere ever expresses the true conditions at a given instant. Nevertheless, the "standard atmosphe::" When properly understood and used is of great value in aeronautics.

Table 2, taken from National Advisory Committee for Aeronautios Report No. 147, gives values of t, ($\left.\frac{\text { R }}{i_{0}}\right)$, ($\frac{p}{\rho_{0}}$) .. $\because\left(\frac{\rho}{\rho_{0}}\right)$ for a series of values of y in both the metric and the English units. It should be noted that the standard eir density used in the United States and England is based on a temperature of $60^{\circ} \mathrm{F}$
instead of $59^{\circ} \mathrm{F}$. This introduces a slight aensity difference Which may lead to confusion in cextain cases uniess the proper value be used. The difference is negligible in engineering cal. culations, however.

Fundamental Relations.

Since for all practical purposes air may be considered as a "perfect gas,n the fundamental relations are the assumed

$$
\begin{equation*}
T=T_{O_{1}}-a y \tag{I}
\end{equation*}
$$

the perfect gas law

$$
\begin{equation*}
\underline{D}=P \mathrm{R} T \tag{2}
\end{equation*}
$$

or,

$$
\begin{equation*}
\left(\frac{P^{P_{0}}}{\underline{0}_{0}}\right)=\left(\frac{P}{P_{0}}\right) \quad\left(\frac{T}{T_{0}}\right) \tag{Ba}
\end{equation*}
$$

and

$$
\begin{equation*}
d \rho=-\rho g d y \tag{3}
\end{equation*}
$$

From these three reletions there may be derived a series of equations which are of groat value to the engineer. The derivatjon of equations (4) to (8) are original, altiougia equations mimilex to (4) and (5) were derived by pistolesi. in "Bollettino Tecnicio N. 18) of the Italien Air Service, and an equation someWhat similar to (7) appears in R \& 4324 of the Eritish AdVisory Commettee for Aeronautios.

Since the preperation of these notes, articles containing similar equations have appeared in the "Bulletan pechnique" (Service Technique de I'Aeronautique) No. 4, March, 1922, and in the Aeronautioal Journal for May, 1923.

Derived relations.

(a) Between temperature and pressure. Dividing (2) by (3) and substituting ($T_{0}-a y$) for T

$$
\frac{d p}{T}=-\frac{g d y}{R T}=-\frac{g d y}{R\left(T_{C}-a y\right)}
$$

Integrating
and

$$
\begin{equation*}
\left(\frac{T}{T_{0}}\right)=\left(\frac{p}{p_{0}}\right)^{\frac{a R}{\xi}} \tag{4}
\end{equation*}
$$

The value of the exponent is obviously independent of the system of units. In the English system $a=: 003567$ and $R=53.34 \mathrm{~g}$ or 1716.3. Therefore,

$$
\frac{a R}{E}=0.190
$$

and

$$
\begin{align*}
& \left(\frac{T}{T_{0}}\right)=\left(\frac{p}{P_{0}}\right)^{0.19} \tag{4a}\\
& \left(\frac{p}{P_{0}}\right)=\left(\frac{T}{T_{0}}\right)^{5.255} \tag{4b}
\end{align*}
$$

(b) Between density and pressure:

$$
\begin{align*}
& \text { From (2a) and (4a) } \\
& \qquad \begin{array}{l}
\left(\frac{\rho}{\rho_{0}}\right)= \\
\left.\left(\frac{\rho}{\rho_{0}}\right)^{1-\frac{a R}{p}}\right)^{0.81} .
\end{array} \tag{5}
\end{align*}
$$

Or

$$
\begin{equation*}
\left(\frac{p}{p_{0}}\right)=\left(\frac{\rho}{p_{0}}\right)^{1 \cdot 2355}=\cdots \cdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot \tag{5b}
\end{equation*}
$$

(c) Between temperature and density:

From (4) and (5)

$$
\begin{align*}
& \left(\frac{T}{T_{0}}\right)=\left(\frac{\rho}{\rho_{0}}\right)^{\frac{a R}{D-a R}} \tag{6}\\
& \left(\frac{T}{T_{0}}\right)=\left(\frac{\rho}{\rho_{0}}\right)^{4 a t \delta} \tag{6a}
\end{align*}
$$

OI

$$
\begin{equation*}
\left(\frac{P}{P_{0}}\right)=\left(\frac{T}{T_{0}}\right)^{4.255} \tag{6b}
\end{equation*}
$$

(d) Between density and altitude:
From (1) and (6)

$$
\begin{align*}
& \left(\frac{\rho}{\rho_{0}}\right)^{\frac{a R}{z-a R}}=\left(1-\frac{a}{T_{0}} y\right) . \tag{7}\\
& \left(\frac{\rho}{\rho_{0}}\right)^{0.235}=\left(I-\frac{a}{T_{0}} y\right) \tag{7a}\\
& \left(\frac{\rho}{\rho_{0}}\right)=\left(1-\frac{a}{T_{0}} y\right)^{4 \cdot 255} \tag{7b}
\end{align*}
$$

(e) Between pressure and altitude: From (I) and (4)

$$
\begin{equation*}
\left(\frac{p}{p_{0}}\right)^{\frac{a R}{E}}=\left(1-\frac{a}{T_{0}} y\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{p}{p_{0}}\right)^{0.19}=\left(1-\frac{a}{T_{0}} y\right) \cdot \tag{8a}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{\dot{p}}{p_{O}}\right)=\left(1-\frac{2}{T_{O}} y\right)^{5: 255} \tag{8b}
\end{equation*}
$$

A modified form of the well-known Halley's equation which is frequently used, is included for convenience:

$$
\begin{equation*}
y=2.3026 \mathrm{H}\left(\frac{T+T_{0}}{2-T_{0}} \log _{10} \quad\left(\frac{p_{0}}{p}\right) .\right. \tag{9}
\end{equation*}
$$

In this equation H is the height of the "homogeneous atmosphere, " i.e., the height to which the atmosphere would have to extend if its density were uniform throughout and of the value required to produce standard preseure at sea-level. This height is 7991 meters, or 26,217 feet.

TABITE 1.

Collected ibrmilee and Constants.

TABLE\& Σ.
Standard Atmosphere.
Gravity Constant
Air Dry
English

$$
\begin{aligned}
\left(\frac{T}{T_{0}}\right) & =(I-.00002257 \% \\
T_{0} & =288^{\circ} \mathrm{C}
\end{aligned}
$$

$P_{0}=76 \mathrm{~cm}$. Hg. $\mathrm{g} \rho_{0}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$
::
$\therefore\left(\frac{T}{T_{0}}\right)=(1-.000006878 y)$
$: \quad m_{0}=418.6^{\circ} \mathrm{F}$
$\therefore \quad P_{0}=29.921$ in. Hg. g $P_{0}=.07635$

