ESTIMATION OF STREAMFLOW CHARACTERISTICS AND ASSESSMENT OF TRENDS IN THE NIOBRARA RIVER AT MARIAVILLE, NEBRASKA

By Edward E. Fischer

U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 87-4073

Prepared in cooperation with U.S. BUREAU OF RECLAMATION

Lincoln, Nebraska 1987 U.S. DEPARMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write: District Chief U.S. Geological Survey 406 Federal Building 100 Centennial Mall, North Lincoln, Nebraska 68508 Copies of this report can be purchased from: Books and Open-File Reports U.S. Geological Survey Box 25425, Federal Center Lakewood, CO 80225

CONTENTS

Page

Abstract	1
Introduction	1
Description of the Niobrara River and basin	4
Data used	4
Synthesizing long-term streamflow record at Mariaville	5
Streamflow statistics and probabilities	6
Analysis of the synthesized streamflow record	18
References cited	23

ILLUSTRATIONS

Figure	1.	Map of Niobrara River drainage basin showing locations of	
		streamflow gaging sites used in this study	2
	1a.	Enlargement from figure 1	3
	2.	Graph showing comparison of routed streamflow with observed	
		streamflow, Niobrara River at Mariaville	8
	3.	Graphs showing yearly mean 1-, 3-, 7-, 14-, 30-, and 60-day low flows during the period April through November for the synthe-	
			19
	4.	Graph showing annual rainfall at Ainsworth, Nebraska	20
	5.	Graphs showing yearly mean 1-, 3-, 7-, 14-, 30-, and 60-day low flows during the period April through November, and the average values for 1953-63 and 1964-82 synthesized streamflow	
		record, Niobrara River at Mariaville	21

TABLES

			Page
Table	1.	List of streamflow gaging stations in the lower Niobrara River basin, Nebraska, used in this study	5
	2.	Physical and calibrated model parameters for the Niobrara River study reaches	7
	3.	Summary of the comparison of routed and observed daily mean discharges for Niobrara River at Mariaville (06463720)	9
	4.	Selected streamflow statistics, Niobrara River near Norden, Nebraska (06462000)	10
	5.	Selected streamflow statistics, Plum Creek at Meadville, Nebraska (06462500)	12
	6.	Selected streamflow statistics, Long Pine Creek near Riverview, Nebraska (067463500)	14
	7.	Selected streamflow statistics of the synthesized record, Niobrara River at Mariaville, Nebraska (06463720	16

CONTENTS

CONVERSION FACTORS

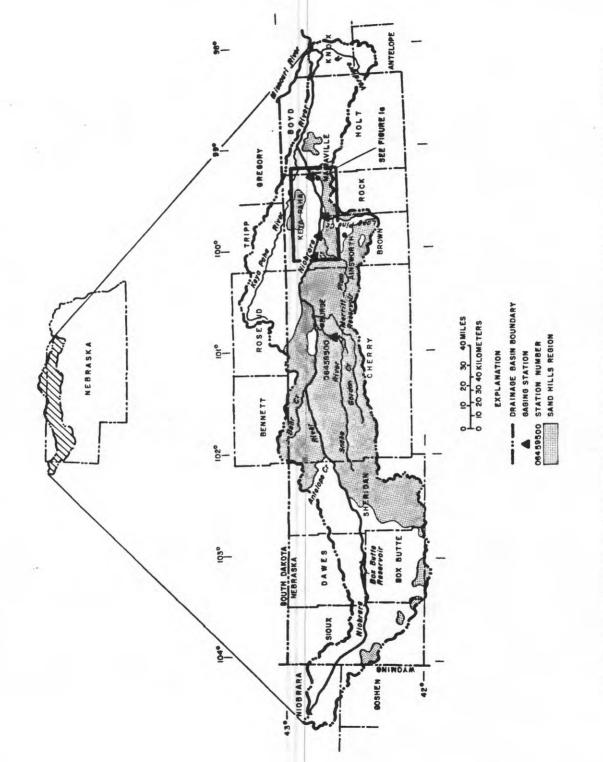
Factors for converting inch-pound units used in this report to International System (SI) metric units are given below.

Multiply inch-pound units	By	To obtain SI units
foot	0.3048	meter
square foot per second	0.09294	square meter per second
cubic foot per second	0.02832	cubic meter per second
second-foot-day	2,447	cubic meter
mile	1.609	kilometer
square mile	2 .59 0	square kilometer

ESTIMATION OF STREAMFLOW CHARACTERISTICS AND ASSESSMENT OF TRENDS IN THE NIOBRARA RIVER AT MARIAVILLE, NEBRASKA

By Edward E. Fischer

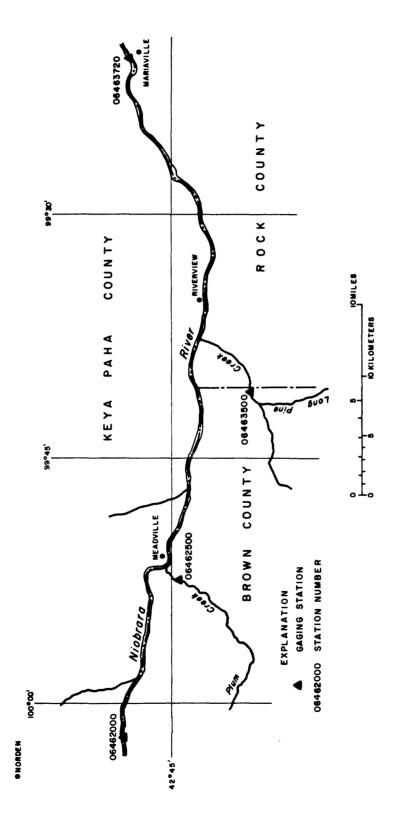
ABSTRACT


A computer model was used to synthesize a long-term streamflow record for the Niobrara River at Mariaville, Nebraska. The record was developed on the basis of 30-plus years of streamflow data from 3 upstream sites, and the U.S. Geological Survey's CONROUT model was calibrated using 294 days of measured flow at Mariaville; for the calibration period, 87 percent of the synthesized daily discharges were within 15 percent of the measured values. The synthesized record was analyzed for trends in streamflow characteristics. A marked decrease in the average consecutive-day low-flow discharges was detected after 1964, ranging between 162 cubic feet per second less for the 1-day low flow and 200 cubic feet per second less for the 14-day low flow. The decrease probably was caused by the startup of operations at Merritt Reservoir.

INTRODUCTION

The U.S. Geological Survey was requested by the U.S. Bureau of Reclamation to synthesize a long-term streamflow record of the Niobrara River at Mariaville, Nebraska (fig. 1), estimate selected streamflow statistics and probabilities, and estimate streamflow trends as part of a preliminary study for the Bureau's proposed O'Neill Alternative Project. This project, using recommendations made by the Nebraska Department of Water Resources (Becker, 1985), would withdraw water from the river for irrigation and ground-water recharge through a series of infiltration galleries buried near the streambed.

The method selected to synthesize the long-term discharge record was the flow-routing computer model, CONROUT (Doyle and others, 1983). A streamflow gaging station was established near the proposed withdrawal site in 1985 to facilitate calibration and verification of the model. Once calibrated, the model was used with the long-term records from the upstream gaging stations to synthesize a long-term record at the withdrawal site. This long-term, synthesized record was then used to compute streamflow statistics for the study site.


Interpretation of the synthesized streamflow record was complicated by existing upstream reservoirs, diversions and irrigation projects. Their cumulative effect on streamflow was investigated by analyzing trends of selected streamflow characteristics.

••

Figure 1.--Niobrara River drainage basin showing locations of streamflow gaging sites used in this study.

2

•

DESCRIPTION OF THE NIOBRARA RIVER AND BASIN

The Niobrara River basin includes parts of Wyoming, Nebraska, and South Dakota (fig. 1). The total basin area is 13,180 square miles. The basin area upstream from the proposed withdrawal site at Mariaville is about 9,810 square miles. The river is perennial throughout its eastward meandering path through Nebraska. In the vicinity of Mariaville, the average channel width is approximately 2,000 feet with an active channel width of about 1,000 feet (from topographic maps). The streambed is sand, and during periods of low flow the channel is braided.

A major part of the basin is comprised of the Sand Hills (fig. 1). Because of the high permeability of the sand, there is little overland runoff in this region except in areas adjacent to streams during heavy rains. Therefore, flooding seldom occurs, although occasionally ice jams cause local flooding in low areas bordering the main stem of the river (Newport, 1959, Shaffer, 1975).

Two major water projects in the Niobrara River basin directly affect flow in the river above the proposed withdrawal site--the Mirage Flats Project (Box Butte Reservoir) on the Niobrara River and the Ainsworth Irrigation Project (Merritt Reservoir) on the Snake River (fig. 1). Streamflow was first affected by the Mirage Flats Project when Box Butte Reservoir began storing water in 1945. Streamflow was affected by the Ainsworth Project when Merritt Reservoir began storing water in 1964 (Shaffer, 1975). A portion of the water diverted from the Snake River basin at Merritt Reservoir may re-enter the Niobrara River as return flow via Long Pine Creek. Any such return flow is included in the streamflow record collected at Long Pine Creek near Riverview (station No. 06463500).

Irrigation in the basin using ground water began in 1938 and has steadily increased (Shaffer, 1975). A sharp rise in the number of registered wells occurred in the mid 1950's, due to drought conditions. Another substantial increase started in the mid 1960's and was caused by a combination of drought, the availability of center-pivot irrigation systems, and favorable economic conditons. Despite the increased use of ground water, ground-water levels throughout most of the Niobrara River basin have remained largely unchanged (Ellis and Pederson, 1986).

DATA USED

The long-term streamflow record for the proposed infiltration gallery site on the Niobrara River at Mariaville was synthesized using existing records obtained at three upstream sites, Niobrara River near Norden (06462000), Plum Creek at Meadville (06462500), and Long Pine Creek near Riverview (06463500) (fig. la). A streamflow gaging station, Niobrara River at Mariaville (06463720), was installed during September 1985 near the proposed site in order to obtain a record of the actual streamflow for calibration and verification of streamflows routed to the site. The long-term record at Snake River River near Burge (06459500) was analyzed to determine the effects of the operation of Merritt Reservoir. A list of the stations and the period of record available at each site is given in table 1.

4

Station number	Station name	Period of record
06459500	Snake River near Burge	06/47 to current year
06462000	Niobrara River near Norden	10/52 to 9/83; 10/85 to current year
06462500	Plum Creek at Meadville	12/47 to 9/75; 10/76 to current year
06463500	Long Pine Creek near Riverview	4/48 to 1/54; 9/54 to current year
06463720	Niobrara River at Mariaville	10/85 to current year

Table 1.--List of streamflow-gaging stations in the lower Niobrara River basin, Nebraska, used in this study

SYNTHESIZING LONG-TERM STREAMFLOW RECORD AT MARIAVILLE

The long-term streamflow record for Niobrara River at Mariaville was synthesized using the Geological Survey's digital computer model, CONROUT, which is based on convolution methods of hydrologic routing. In this study, the model uses the streamflows at the upstream stations, streamflow at an index station adjusted to account for streamflow from the ungaged drainage area, and an optimized set of routing parameters that best duplicate the relationship between daily discharge at the upstream stations and the station at Mariaville.

The river was divided into three reaches: from Niobrara River near Norden to the mouth of Plum Creek, from the mouth of Plum Creek to the mouth of Long Pine Creek, and from the mouth of Long Pine Creek to Niobrara River at Mariaville. It was assumed that the inflow to the Niobrara from each tributary was the same as the discharges measured at the respective gaging stations, which are upstream of the mouths (fig. 1a).

The CONROUT model has the following three parameters: the routing distance (X, in units of miles), the flood wave celerity (C, in units of feet per second), and the wave dispersion coefficient (K, in units of feet squared per second). Only C and K require calibration. Initial values for C and K were computed for each reach of the river from the average channel slope, average channel width at average discharge, and approximate change in discharge with stage at average discharge. The model was run and the synthesized discharge compared with the observed discharge at Mariaville. Adjustments were made in C and K, the model was rerun, and the results were compared again. This optimization process was repeated until it was determined that a best fit was obtained.

5

The synthesized (routed) streamflow at Mariaville during the period used for model calibration compares favorably with the observed streamflow. The calibrated parameters are listed in table 2. The concurrent routed and observed daily mean discharges are compared in figure 2 and the comparison summarized in table 3. As shown in table 3, 87 percent of the total routed observations were within 15 percent of the respective observed discharge. In addition to modeling errors, differences between the routed and observed values can be attributed to variation in the pattern of precipitation across the basin in different runoff events and, to a lesser extent, the inaccuracies in measuring the streamflows at Niobrara River near Norden and Niobrara River at Mariaville. While only a short period of record (294 days) was available to calibrate the parameters, the values that were chosen were judged to be sufficiently accurate for estimating long-term flow characteristics.

Once the parameter values were calibrated, the model was used to synthesize the long-term streamflow record for Niobrara River at Mariaville based on the long-term records of the upstream gages. The concurrent period of record at the three upstream stations begins in October 1952 and continues through to the present (1986), with breaks in 1954 (Long Pine Creek), 1975-76 (Plum Creek), and 1983-85 (Niobrara River near Norden) (see table 1). Because the streamflows in Plum Creek and Long Pine Creek are fairly uniform and because both streams together contribute less than 25 percent to the total flow at Mariaville, the monthly mean values for the respective streams were substituted for missing daily values in 1954 and 1975-76. Hence, a continuous streamflow record at Mariaville was synthesized for the period October 1952 through September 1983.

STREAMFLOW STATISTICS AND PROBABILITIES

Streamflow statistics and probabilities were compiled for the period of record for each of the three upstream stations and on the synthesized period of record for Niobrara River at Mariaville. The statistics include the maximum and minimum monthly and annual mean discharges, and the mean monthly and mean annual discharges. Also tabulated are the corresponding standard deviation, skewness, and coefficient of variation, and duration of daily mean discharges. Probabilities were computed on annual consecutive-day high flows and annual consecutive-day low flows. The results are presented in tables 4 through 7. Table 2.--Physical and calibrated model parameters for the Niobrara River study reaches [Ft/ft, foot per foot; ft/s, foot per second; ft²/s, square foot per second. "Ratio" is a factor governing the addition of flow at a node in the model. At the last node (06463720, Niobrara River at Mariaville), 1.42 times the daily flow at 06462500 (Plum Creek) was determined by calibration to account for the ungaged drainage area between 06462000 (Niorara near Norden) and Mariaville.]

Station number	Drainage area above station (mile ²)	Length of reach (mile)	Average width of reach (foot)	Average slope of reach (ft/ft)	Flood wave celer- ity, C (ft/s)	Wave dispersion coeffi- cient, K (ft ² /s)	Ratio
06462000	8,390 <						
		> 1 11.4	1,000	0.00126	3.2	396	
06462500	600 <	> ² 12.6	1,000	.00155	3.2	323	
06463500	390 <		1,000	•00100	J•2	525	
		> ³ 17.0	1,000	.00143	3.2	350	
06463720	9,810 -						1.42

 $\frac{1}{2}$ From Niobrara River near Norden to mouth of Plum Creek.

² From mouth of Plum Creek to mouth of Long Pine Creek.

³From mouth of Long Pine Creek to Niobrara River at Mariaville.

Figure 2.--Comparison of routed streamflow with observed streamflow, Niobrara River at Mariaville.

discharges for Niobrara	River at Mariaville
Unit of comparison:	Daily mean discharge (cubic feet per second)
Number of comparisons:	294 values (1 per day)
Mean negative error:	7.04 percent for 162 days
Mean positive error:	7.36 percent for 132 days
Mean error:	7.18 percent for 294 days
Routed streamflow volume:	454,774 second-foot-days
Observed volume:	458,538 second-foot-days
Volume error:	-0.82 percent
Percentage of total observations (percent) 47 74 87 93 93 97	Upper limit of percentage error (percent) 5 10 15 20 25

Table 3.-- Summary of the comparison of routed and observed daily mean discharges for Niobrara River at Mariaville

(Example: 74 percent of the routed daily values differed from the corresponding observed daily value by 10 percent or less.)

.

Nonthly and annual mean discharges Month Maximum (ft ³ /s) Minimum (ft ³ /s) Mean (ft ³ /s) Standard deviation (ft ³ /s) Skewness of variation (ft ³ /s) Coefficient of variation (percent) Monthly mean discharge, 10/53 to 9/83, 10/85 to 7/86:	Table 4Selected streamflow statistics , Niobrara River near Norden, Nebraska (06462000)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Month	ly and a	nnual mear	n discharges		
$\begin{array}{c ccccccc} October & 1020 & 571 & 763 & 120 & 0.06 & 0.16 \\ November & 961 & 588 & 855 & 97.1 & -1.47 & 0.11 \\ December & 1020 & 563 & 867 & 103 & -0.76 & 0.12 \\ January & 1030 & 588 & 859 & 105 & -0.46 & 0.12 \\ February & 1220 & 622 & 980 & 115 & -0.65 & 0.12 \\ March & 1640 & 714 & 1090 & 223 & 0.30 & 0.20 \\ April & 1400 & 704 & 1020 & 170 & 0.59 & 0.17 \\ May & 1560 & 693 & 986 & 204 & 0.76 & 0.21 \\ June & 1540 & 593 & 899 & 221 & 1.41 & 0.25 \\ July & 1360 & 407 & 710 & 195 & 1.43 & 0.28 \\ August & 938 & 458 & 654 & 141 & 0.17 & 0.22 \\ September & 985 & 489 & 687 & 139 & 0.33 & 0.20 \\ \hline \\ $		(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	deviation (ft ³ /s)		of variation
November96158885597.1 -1.47 0.11December1020563867103 -0.76 0.12January1030588859105 -0.46 0.12February1220622980115 -0.65 0.12March164071410902230.300.20April140070410201700.590.17May15606939862040.760.21Jule15405938992211.410.25July13604077101951.430.28August9384586541410.170.22September9854896871390.330.20Annual mean discharge, water years 1953-83:Duration of daily mean discharges, water years 1953-83Disting days dischargedischargewas equaled ordischargedischargewas equaled ordischargewas equaled or(ft ³ /s)exceeded110014.140099.512008.545098.514003.249095.915002.255090.817001.061084.019000.567076.921000.3	Monthly mea	an discharg	e, 10/53	to 9/83,	10/85 to 7/8	86:	
Daily mean Percentage of days discharge Daily mean Percentage of days discharge discharge (ft ³ /s) was equaled or exceeded discharge (ft ³ /s) was equaled or exceeded 130 100.0 910 37.3 330 99.9 1000 24.1 360 99.8 1100 14.1 400 99.5 1200 8.5 450 98.5 1400 3.2 490 95.9 1500 2.2 550 90.8 1700 1.0 610 84.0 1900 0.5 670 76.9 2100 0.3	November December January February March April May June July August September	961 1020 1030 1220 1640 1400 1560 1540 1360 938 985 n discharge	588 563 588 622 714 704 693 593 407 458 489 , water 1	855 867 859 980 1090 1020 986 899 710 654 687 years 1953	97.1 103 105 115 223 170 204 221 195 141 139 8-83:	-1.47 -0.76 -0.46 -0.65 0.30 0.59 0.76 1.41 1.43 0.17 0.33	0.11 0.12 0.12 0.20 0.17 0.21 0.25 0.28 0.22 0.20
740 67.4 2300 0.2 830 52.4 2800 0.1	Daily mean discharge (ft ³ /s) 	Perc days e was exce 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	entage of dischar equaled eded 0.0 9.9 9.8 9.5 8.5 5.9 0.8 4.0 6.9	f ge or	Daily mean discharge (ft ³ /s) 	Perce days was e excee 37 24 14 14 14	entage of discharge equaled or eded

Table 4.--Selected streamflow statistics, Niobrara River near Norden, Nebraska (06462000) --continued

Probability of annual high flows, water years 1953-83								
Exceedence	Recurrence		Highes	st avera	age flow	w (ft ³ /s	5)	
probability :	interval (years)	Consecutive days						
	(years)	1	3	7	15	30	60	
99	1.01	1190	1130	997	917	852	824	
50	2	1820	1650	1540	1410	1280	1150	
10	10	3010	2550	2170	1810	1550	1360	
4	25	3840	3140	2520	1990	1640	1450	
2	50	4580	3640	2790	2110	1710	1500	
1	100	5420	4200	3070	2240	1770	1550	

Probability of annual high flows, water years 1953-83

Probability of annual low flows, climatic years 1954-83

Non-	-		Lowest	averag	e flow	(ft^3/s)	
exceedence probability	Recurrence interval, in years		с С	consecut	ive day	ys	, <u></u>
(percent)		1	3	7	14	30	60
1	100	134	215	355	357	371	390
2	50	163	241	369	375	390	411
5	20	212	283	391	404	421	445
10	10	258	321	413	432	450	478
20	5	316	368	443	470	490	520
50	2	414	454	511	554	578	613
50	2	414	454	511	554	578	61

Table 5.--Selected streamflow statistics, Plum Creek at Meadville, Nebraska (06462500)

	Montl	nly and an	nual mean	discharges					
Month	Maximum (ft ³ /s)	Minimum (ft ³ /s)	Mean (ft ³ /s)	Standard deviation (ft ³ /s)	Skewness	Coefficient of variation (percent)			
Monthly mea	n dischar	ge, 1/48 t	o 7/86:						
October November December January February March April May June July August September	145 167 132 141 248 246 399 356 276 390 164 144	78.8 79.9 78.5 73.4 80.0 82.6 91.4 83.7 85.9 73.2 73.3 76.7	96.9 96.6 108 130 146 145 130 114	12.9 16.4 10.8 14.4 30.3 37.9 58.6 56.0 42.0 64.4 21.2 16.2	1.66 2.32 0.96 1.20 3.08 1.54 2.54 1.93 1.55 3.55 1.74 1.40	0.13 0.17 0.11 0.15 0.28 0.29 0.40 0.39 0.32 0.56 0.22 0.17			
Annual mean	Annual mean discharge, water years 1949-85:								
	188	91.6	113	21.6	2.04	0.19			

Duration of daily mean discharges, water years 1949-75, 1977-85

Daily mean discharge (ft ³ /s)	Percentage of days discharge was equaled or exceeded	Daily mean discharge (ft ³ /s)	Percentage of days discharge was equaled or exceeded
15.0	100.0	180	6.2
53	99.9	210	4.0
61	99.7	240	2.7
_70	99.1	280	1.8
80	94.0	320	1.2
92	70.4	370	0.8
110	32.1	430	0.5
120	23.1	490	0.3
140	13.2	560	0.2
160	9.1	750	0.1

Table 5.--Selected streamflow statistics, Plum Creek at Meadville, Nebraska (06462500)--continued

Probabilit	y of annual hi	.gh flows	s, water	r years	1949-75	, 1977-	85		
Exceedence	Recurrence	Highest average flow (ft ³ /s)							
probability	interval	Consecutive days							
(percent)	(years)	1	3	7	15	30	60		
99	1.01	119	117	113	105	102	97.6		
50	2	334	296	248	210	176	152		
10	10	793	676	512	383	295	239		
4	25	1160	976	708	497	373	294		
2	50	1500	1260	889	5 9 7	440	341		
1	100	1920	1610	1100	709	514	392		

Probability of annual high flows, water years 1949-75, 1977-85

Probability of annual low flows, climatic years 1949-75, 1978-86

Non- exceedence	Recurrence	Lowest average flow (ft ³ /s)							
probability (percent)	interval (years)	Consecutive days							
		1	3	7	14	30	60		
1	100	15.7	38.8	54.6	64.3	69.1	75.3		
2	50	20.3	42.3	56.7	65.5	70.0	75.9		
5	20	28.4	48.0	60.0	67.4	71.7	77.0		
10	10	36.7	53.2	63.1	69.5	73.6	78.4		
20	5	47.4	59.5	67.1	72.3	76.3	80.5		
50	2	66.7	71.5	75.6	79.2	83.3	86.8		

-

.

Table 6.--Selected streamflow statistics, Long Pine Creek near Riverview, Nebraska (06463500)

Monthly and annual mean discharges								
Month	Maximum (ft ³ /s)				Skewness	Coefficient of variation (percent)		
Monthly mea	n discharg	e, 5/48 t	o 12/54,	10/55 to 6/8	86:			
October November December January February March April May June July August September Annual mean	164 165 166 172 203 212 309 246 396 368 236 187 discharge 202	100 101 102 103 96.5 106 114 103 105 99.0 92.9 88.1 , water ye	144 139	15.8 15.9 16.4 17.7 19.6 28.9 34.3 38.7 49.3 53.0 35.4 25.9 9-53, 1955-8 19.9		0.12 0.13 0.14 0.15 0.19 0.22 0.24 0.31 0.36 0.10 0.19		
Duratio	n of daily	mean dis	charges,	water years	1949-53, 1	955-85		
Daily mean discharge (ft ³ /s)	days was d	entage of discharge equaled of eded	e	Daily mean discharge (ft ³ /s)	days	ntage of discharge qualed or ded		
44 76 85 95 110 120 130 150 160 180 200 230	99 99 89 71 55 21 11	0.0 9.9 9.7 8.6 9.1 1.0 2.9 7.7 8.2 8.3 5.3 3.2		260 280 320 350 400 440 490 550 610 690 950	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.2 .8 .2 .0 .8 .6 .5 .4 .3 .2 .1		

....

Probabilit	cy of annual hi	gh flows	s, water	years	1949-53	, 1955-	·85			
Exceedence	Pequeronao		Highest average flow (ft ³ /s) Consecutive days							
probability (percent)	Recurrence interval (years)									
		1	3	7	15	30	60			
99	1.01	131	130	129	129	128	124			
50 10	2 10	467 1220	348 767	265 488	220 366	189 284	170 240			
4 2	25 50	1800 2350	1070 1350	636 765	461 541	344 393	282 317			
ī	100	3020	1670	911	632	447	355			

Table 6.--Selected streamflow statistics, Long Pine Creek near Riverview, Nebraska (06463500) --continued

Probability of annual low flows, climatic years 1950-53, 1956-86

and a

Non- exceedence	D	Lowest average flow (ft ³ /s) Consecutive days						
probability (percent)	Recurrence interval (years)							
		1	3	7	14	30	60	
1	100	49.2	64.8	74.5	81.6	90.1	93.3	
2	50	54.6	68.4	77.1	83.8	91.9	95.4	
5	20	63.2	74.0	81.5	87.5	95.0	99.0	
10	10	71.1	79.4	85.7	91.2	98.2	103	
20	5	80.8	86.3	91.4	96.2	103	107	
50	2	98.8	101	104	108	114	119	

IV.	IODIALA KI	vei at Ma	LIAVIIIe,	Nebraska ()	004037207	
	Mon	thly and	annual me	an discharg	es	
Month	Maximum (ft ³ /s)	Minimum (ft ³ /s)		Standard deviation (ft ³ /s)	Skewness	Coefficient of variation (percent)
Monthly mea	n discharg	e, 10/53	to 9/83,	10/85 to 6/8	86:	
October November December January February March April May June July August September Annual mean	1380 1390 1420 1400 1740 2110 2240 2620 2180 2670 1440 1370 discharge 1580	901 942 878 921 969 1060 1050 1040 1000 752 772 823 *, water y 1090	1550 1500 1490 1370 1140 1030 1050	121 108 118 119 139 274 267 334 300 385 167 144 3-83: 118	-0.06 -0.95 -0.76 -0.23 0.01 0.16 1.07 1.42 1.30 2.98 0.73 0.29	0.11 0.09 0.10 0.10 0.10 0.18 0.18 0.22 0.22 0.22 0.34 0.16 0.14
Du Daily		daily mea		rges, water Daily		-83 entage of
mean discharge (ft ³ /s)	days was	discharg equaled o eded	e	mean	days was e excee	discharge equaled or
447 670 790 850 930 1000 1100 1200 1300 1400 1500 1600	9 9 8 8 5 3 2 1	0.0 99.9 8.1 5.7 39.2 31.1 58.5 53.9 57.2 24.5 .6.3 .1.1		1800 1900 2100 2300 2400 2600 2900 3100 3400 3700 4000		5.7 4.3 2.6 1.8 1.5 1.0 0.7 0.4 0.3 0.2 0.1

Table 7.--Selected streamflow statistics of the synthesized record, Niobrara River at Mariaville, Nebraska (06463720) Table 7.--Selected streamflow statistics of the synthesized record, Niobrara River at Mariaville, Nebraska (06463720) --continued

Exceedence	Recurrence		Highes	st avera	age flo	w (ft ³ /	5)	
probability (percent)	interval (years)	Consecutive days						
		1	3	7	15	30	60	
99	1.01	1560	1520	1400	1300	1260	1250	
50	2	2540	2430	2250	2020	1810	1640	
10	10	4370	4060	3380	2730	2330	2060	
4	25	5660	5160	4040	3080	2590	2280	
2	50	6810	6130	4570	3330	2770	2440	
1	100	8140	7240	5140	3590	2960	2600	

Probability of annual high flows, water years 1953-83

Probability of annual low flows, climatic years 1954-83

Non- exceedence	Recurrence		Lowest	averag	e flow	(ft ³ /s)		
probability inte	interval (years)	Consecutive days						
	(years)	1	3	7	14	30	60	
1	100	459	520	662	668	691	731	
2	50	498	552	678	692	716	755	
5	20	55 6	602	704	728	755	794	
10	10	608	646	729	762	790	830	
20	5	668	700	764	806	836	875	
50	2	772	798	843	898	929	970	

ANALYSIS OF THE SYNTHESIZED STREAMFLOW RECORD

Streamflow characteristics that are of greatest importance in the planning for diversions are those that reflect the availability of water during low-flow periods. Therefore, the synthesized streamflow record was analyzed for any trends in the low-flow parameters that might be attributed to or initiated by the building of water projects in the basin or to other changes in basin parameters. Box Butte Reservoir was completed before records were kept at the gaging stations used in this study, and the reservoir's effect on streamflow is difficult to assess. The other project that might affect low-flow parameters is the Ainsworth Irrigation Project and Merritt Reservoir, which was completed in 1964. Only the ice-free period April through November (8 months) of each year of record was evaluated.

Trends in the streamflow record of the Niobrara River at Mariaville were partially evaluated by comparing mean annual 1-, 3-, 7-, 14-, 30-, and 60-day These low-flow statistics were computed for the period April 1 low flows. through November 30 of each year of synthesized streamflow record and are plotted as bar graphs in figure 3. The solid line is a 15-year weighted moving average of the yearly values, and the dotted lines represent 1 weighted moving standard deviation from this line. In all figures, there is a decrease in the weighted average that is centered approximately on 1964, and there is a small increase near the end of the record. The annual rainfall at Ainsworth (fig. 4) does not show the decline in the mid 1960's, but does show an increase in the most recent years. The decrease in discharge may be attributed to the filling of Merritt Reservoir in 1964 and to the subsequent interception of low flows in The weighted average begins to decrease before the Snake River since then. 1964 because the moving average algorithm computes the weighted average for a particular year from the 7 years before through the 7 years after that year. The increase in the weighted average after 1975 is probably due to the increase in precipitation during the last few years (see fig. 4); it also may include the effects of a new equilibrium being established with return flow from the project.

Values in each of the low-flow categories were determined for the period prior to and following completion of Merritt Reservoir, 1953-63 and 1964-82, and a regression analysis performed on each period. No significant trends were detected within either of the periods for any of the low-flow categories; that is, the best "predictor" for a particular period was its average (fig. 5). However, there is a marked difference between the averages of the two periods in each category. Examination of the streamflow record for Snake River near Burge (06459500), which is 2 miles downstream from Merritt Reservoir, and for Niobrara River near Norden yields a similar pattern (table 8). Therefore, the difference as computed for Niobrara River at Mariaville is probably a result of the regulation by Merritt Reservoir.

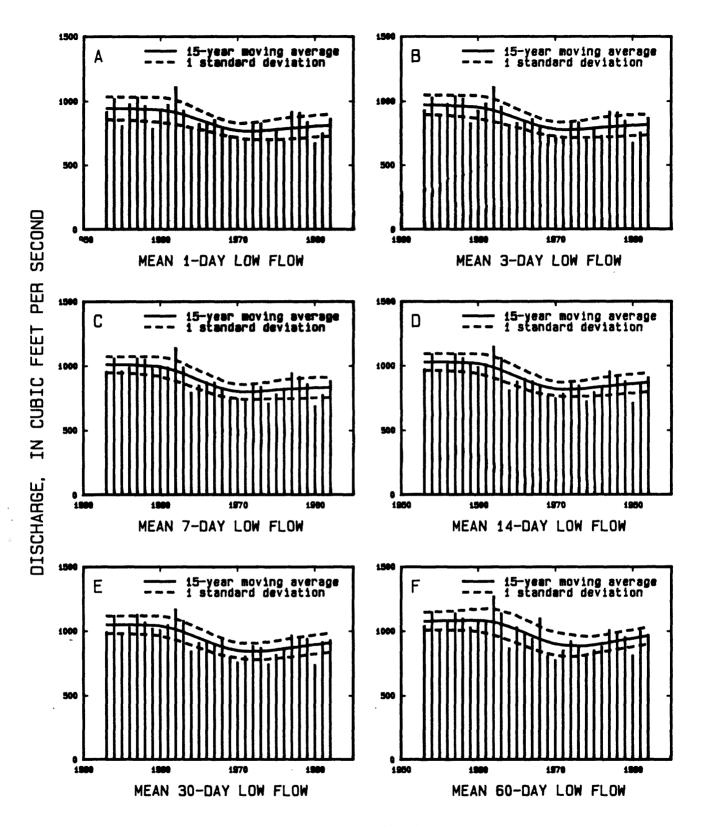


Figure 3.--Yearly mean 1-, 3-, 7-, 14-, 30-, and 60-day low flows during the period April through November for the synthesized streamflow record, Niobrara River at Mariaville.

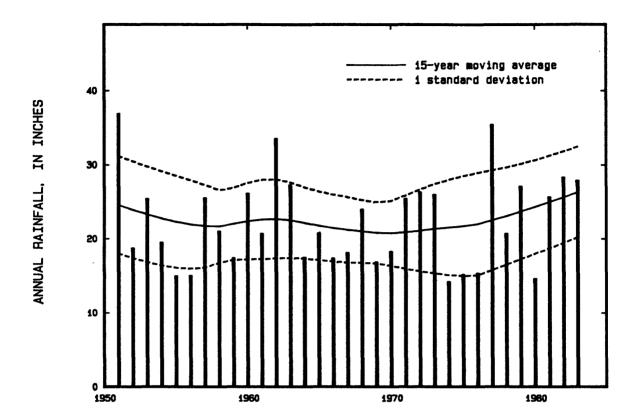


Figure 4.--Annual rainfall at Ainsworth, Nebraska.

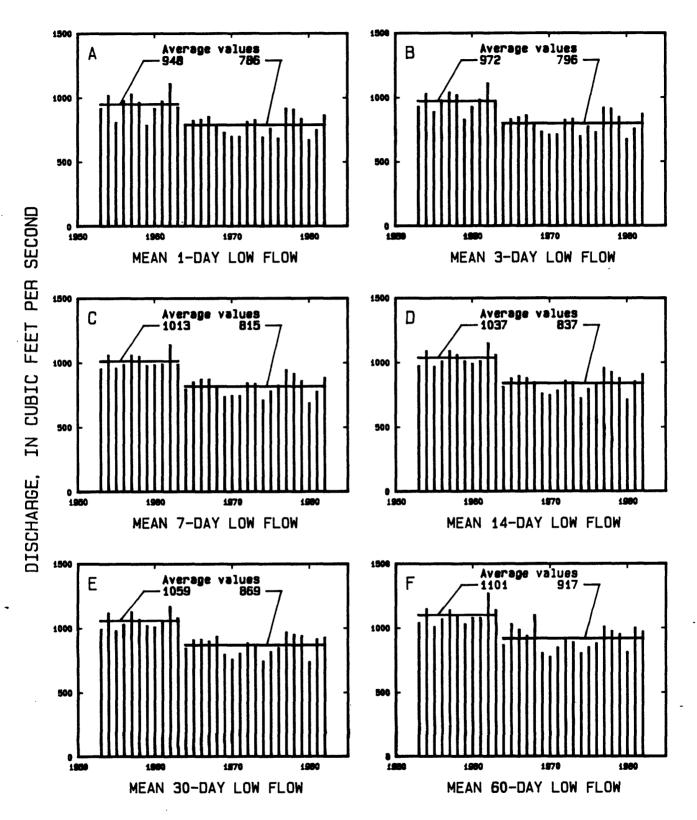


Figure 5.--Yearly mean 1-, 3-, 7-, 14-, 30-, and 60-day low flows during the period April through November and the average values for 1953-63 and 1964-82 synthesized streamflow record, Niobrara River at Mariaville.

(days) Snake River no 1 3 7	ear Burge: 194	Average low flow, 1964-82 (ft ³ /s)	averages (ft ³ /s)
-	194		
1 3 7			
3 7		11.7	-182
	200	12.1	-188
14	212 217	13.9 17.4	-198 -200
30	217	22.4	-200
60	228	31.8	-196
Niobrara Rive	r near Norden:		
	592	435	-157
1 3 7	629	454	-175
7	683	473	-210
14	708	490	-218
30	729	514	-215
60	759	555	-204
Niobrara Rive	r at Mariaville:		
1	948	786	-162
1 3 7	972	796	-176
-	1013	815	-198
14	1037	837	-200
30 60	1059 1101	869 917	-190 -184

Table 8.--Average April through November low flows, 1953-63

Since there is no significant trend in the synthesized streamflow data other than a marked decrease in low-flow values since 1964, the synthesized streamflow record can be accepted as repesenting flow in the Niobrara River at Mariaville until there is a marked change in basin conditions. Streamflow statistics and probabilities were recompiled from the synthesized record for Niobrara River at Mariaville for the period 1964-83. They are presented in table 9.

REFERENCES CITED

- Becker, H.L., 1985, Nebraska state-led O'Neill unit alternatives study: Nebraska Department of Water Resources, Lincoln, Nebraska, 31 p.
- Doyle, W.H., Jr., Shearman, J.O., Stiltner, G.J., and Krug, W.R., 1983, A digital model for streamflow routing by convolution methods: U.S. Geological Survey Water-Resources Investigations Report 83-4160, 130 p.
- Ellis, M.J., and Pederson, D.T., 1986, Groundwater levels in Nebraska, 1985: The University of Nebraska-Lincoln, Conservation and Survey Division, Nebraska Water Survey Paper Number 61, 65 p.
- Newport, T.G., 1959, Ground-water resources of the lower Niobrara and Ponca Creek basins, Nebraska and South Dakota: U.S. Geological Survey Water-Supply Paper 1460-G, 51 p.
- Shaffer, F.B., 1975, History of irrigation and characteristics of streamflow in northern Nebraska: U.S. Geological Survey Open-File Report 7501, 114 p.

Table 9.--Selected streamflow statistics of the synthesized record, Niobrara River at Mariaville, Nebraska (06463720), since 1964

	Мог	nthly and	annual m	ean discharge	es	
Month	Maximum (ft ³ /s)	Minimum (ft ³ /s)	Mean (ft ³ /s)	Standard deviation (ft ³ /s)	Skewness	Coefficient of variation (percent)
Monthly mea	an dischar	ge, 10/64	to 9/83,	10/85 to 6/	86:	· ·
October November December January February March April May June July August September Annual mean	1380 1390 1420 1400 1740 2090 2620 2160 2250 1170 1300 1300	901 942 878 921 969 1060 1050 1040 1000 752 772 823 e, water y 1090	1070 1190 1200 1350 1480 1480 1450 1340 1060 970 1010 vears 196	115 126 132 138 164 287 275 384 299 321 161 135 5-83: 116	0.86 -0.36 -0.43 -0.14 0.02 0.47 0.84 1.73 1.46 3.04 1.51 0.65	0.11 0.11 0.11 0.12 0.19 0.19 0.26 0.22 0.30 0.17 0.13
Dı	ration of	daily mea	n discha	rges, water	years 1965-	-83
Daily		centage of		Daily		entage of

mean discharge (ft ³ /s)	days discharge was equaled or exceeded	mean discharge (ft ³ /s)	days discharge was equaled or exceeded
580	100.0	1600	9.8
660	99.9	1700	6.8
710	99.6	1800	5.2
760	98.6	1900	4.0
810	96.2	2100	2.4
860	92.7	2200	2.0
920	85.5	2300	1.6
990	75.1	2500	1.1
1100	60.4	2700	0.8
1200	45.8	2900	0.6
1300	31.3	3100	0.3
1400	21.1	3300	0.2
1500	14.3	3700	0.1

Table 9.--Selected streamflow statistics of the synthesized record, Niobrara River at Mariaville, Nebraska (06463720), since 1964-continued

Exceedence	Recurrence		Highes	st avera	age flow	w (ft ³ /s	5)	
probability (percent)	interval (years)		(Consecutive days				
	· · · · · · · · · · · · · · · · · · ·	1	3	7	15	30	60	
99	1.01	1570	1540	1410	1250	1180	1180	
50	2	2460	2340	2140	1950	1760	1590	
10	10	3860	3600	3130	2600	2260	1980	
4	25	4750	4390	3700	2900	2490	2170	
2	50	5510	5060	4160	3130	2660	2320	
1	100	6350	5790	4660	3350	2830	2460	

Probability of annual high flows, water years 1965-83

Non- exceedence probability (percent)	Recurrence interval (years)		Lowest average flow (ft ³ /s) Consecutive days					
		1	3	7	14	30	60	
1	100	556	603	664	674	691	733	
2	50	577	620	678	693	712	753	
5	20	610	645	700	721	744	782	
10	10	639	669	720	746	771	809	
20	5	675	700	746	777	804	842	
50	2	745	762	799	833	866	906	

•