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By Lieut. James Z. Shoemaker, U.S.._T., and John G, Lee.

The _ol_owlng paper was subr_itted o'_ _,ne writers as s. tk_:is

to the Department of Aeronautical Engineering, at the _[a_ss_husettc

Ino-_.tute of _ecb_no.o__,y. it constitutes a <eneral theorotica,"

discussion of the day'piny factor in roll, to_ether with the re-

sults of wind tunnel tests on t]_.e conti:_uous rollinT of s U._:_.A,-

30 airfoil. Two _eneral formulas are derived for *Le d_mpin_ of

rol], each of which contains uns.voidable in,!eterminste functions.

Certain of these functions have been evaiuat_ from the test data

Of chief interest is the deduction that +he actut_l _amm_n_ as ex-

. _-" - s theoreticallyperienced in flimht differs from the d¢_,.]..in_a

calculated nv a function of the _in_-tip treasure dist_-ib_tior.,

which is in turn largely influenced by the _orm of the winT-fip

and by the rollin_ _elocity. Finally, it hms been sho,_n that in

the dampin@ equations dC-_L may he substit_.ted for dCzd_ d_ ' even

under full flight conditions, .without serious error.
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int zoduc t! on.

The dsmpinp_ o£.......en ai-_l%ne _n re31 :s 9.n exc#,_di_,-rlv__,._ . com._iex

problem and one ;,_rhichit rosy never be possible to so]_vs som.pletelv,

but if we can form some !de-3 of the ma@n._.tude of the principal

factors involved and of thei..-._ _ -'_ -.__m_._oz_a,..,e in oractioal f!yin_, a

mathematically complete solution can be £isoensed with. Ou_ int-

erest in the dampinc coefficient is mainly _,s a T_ide to the de-

termination of st&bilit7 and as an indication of the forces en-

countered in maneuvers.

The damping coefficient itself is made u_._of many comoonents,

ari_in_ fret, the several elements concerned: u'ings, fuselage, tail,

etc. As long, however, as we confine our tests to the complete

airplane, we have no means of analyzing the source of the ma_i-

tude of the basic elements of da_mping. The chief contributor to

these elements, the wing, is itself affected by a series of com-

ts_er _nd aspect ratio ere only a_iications. Dihedral, st&:_ger,

few of the complicating factors. In view of the foregoing, there-

fore, this tenor% v.i!l be confined principally to the strai@ht

rectan@%_.lar win@ of constant chord and constant section.

Theory of Dimensions.

Probably the simplest _ethod of attacking the oroblem is b?"

the theory of dimensions. We may express the damping coefficient

of a rectangular win_ of constant section as a function of severs1
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variables, thus:

LT the total d_m.pln 6 coefficient

arising from all causes taken

together, as distinguished from

Lp, the damping coefficient of

roll due to roll.

L = the total rolling torque in Ib-ft.

D = enT._iar velocity of roll in radians
per second.

rate of change of the _" "co _ •Ic'_eat of

normal force with anqle of attack
(i.e., the slope of the normal force
curve).

The units of d_ are radiens.

u = air speed in feet per second.

c = win_ chord in feet.

b : wing span in feet.

Z = perpendicvlar distance from the
axis of rotation %o the mid-

point of the wing chord, in feet.

0 : mass density of the air.

 c_z
The term _a is used instead of the anTle of attack because

the same angle of attack does not give the sa:::e results -_or differ-

ant win_ sections, or for the same wing section t_s,_ed at differ-

ent values of VL. Thus we eliminate both sc_ie e_fect and the

dC z
effect of different wing contours, d--¢ is the slope of the curve

of that component of force perpendicular to the line of steady

flight, (the trajectory of the center of gravity) and should not

aq ,
be confused with d6 which is the slone of the lift curve as

read from a wind tunnel plot an@ relates to the force perpendicu.-
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far to the relative wind, _Jhatever direction that may take.

It is ucuall)_ assumed that the torque caused by a force on

an elemental area dS, is _roportiona! to CzdS or to

(dCz/da) (Aa)dS, and it would therefore seem necessary to intro-

duce a Aa term into the foregoing equation. &_ is the differ-

ence between the real anzle of attack at the _oint in ouestion

and that at the plane of symmetry. Ho_eve_, since Aa is always

smell, Aa_ tan(Aa) = py/u, y being the distance from the plane

of s_nnmetry alon_ the start, and since both p and u are al-

ready expressed in the equation it wi_i no_ be necessary to add

any _a term.

Evaluating the various elements in the 3bore equation by the

theory of dimensions, we get:

k ub f,lrb f,,, (1.: \ u / - \c/ _b]

The first of these indeterminate functions contains the

ratio of the linear velocity of rotation of the _<in[-tin to the

wind velocity ._hich amounts to a particular value of tan(A_)

or A_, approximately. The second contains the aspect ratio.

The third contains the ratio of the heizht of the wing above the

rotational axis to the span of the win T. Note that all of these

functions are dimensionless ratios.

Before we can make any use of this equation it will be nec-

essary to examine the three in@eterminate functions more fully,

and check the results of our theory with the experimental data.

To this end a more elaborate, if less convenient theory has been
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developed.

General T{_eorKy-

The dampin_ coefficient in Toll is usually calo_io_ted tl;eo-

retically by assumin_ the ,.-._ingto be ma@euo of _uy minute ele-

ments, the lift on each of which contributes an element of rolii;:_ _

moment. Thus in the accompanying sketch,

dy

....... t ......!%/ -
-2 _ , '

z k Y
g_

]Axis of rotation

/.

L, - 2_ (Lift) (Arm)

Wo/2
= 2 / (Acz)V2y"d 's

Wo

L' = the theoretical rolling torque.

dS = element of area = chord × dy = c(dy

V = resultant wind velocity where

V 2 _ 2 2 Z _V 2 = u _ + (pR) 2 or : u + p y + p_

acz (,",o)
Cz = normal force coefficient = do "

dcz is the slope of the normal
where de
force curve, and is assumed constant,
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t_hile Ac_ -'s the chanFc of an_ie of

attack _long the win_ from the ___ane

o" _v_,metr; ,. D,Cz i% _e d!ffcrcnco
be"- .... > at the v,in_t,,e.,_, tho value of C z

center line and that at any point,
y a!or C the span.

Therefore: #

L' o / c_z t ,u _ + y_

,/o
4-n 2 z 2) (y) (_ 6y)

At any Foint y s lon_ the _ing

A_ is nece, _arJ__.y sm_,nil we may take

Da tan -I py/u, and since

_a := py/u, where Ao is

in radians, without appreciable error.

Then:
/,b/z

, / dOz {¢_-P-_"I
L : _ / d a ',,, u /

_0

(u a -t- p_ y2 + p2 :_2)dy

Integrating, and collecting terms, ,re obtain

This formula neglects the irregular pressure distribution

at the wing-tip, or any chan_e in that distribution due to the

rolling motion. If we generalize the eq_a±ion of roll so n s to

include the tip effects and to include the e{fects of ±he other

rotary and resistance derivatives as well, we }:at the total roll-

ing torque L, thus

L : L' + [f(t)] b _ _v v + Yv v z + _p p z _o.

,_hem'e L' is the theoretical rolling moment @ue to roll obteined

by equation #2>; f(+_) is an ind'eterminate function of the tip pres-

sure distribution, and produces roll by acting in the direction of



- 7 -

lift, at a distance from the axis of rota.tJon ::bich is some frrc-

tion of the -_;._s b, !-_- is -the roiling mcmen< .._.s %o de-sO.iD,

_rherein the side -<'_-" _.... _ _ ' .._n_....,p i_s i_troduce4 by the _c _: ,,na,_¢he _'_"_ ic

rotatin_ at o. nor::_! dis%ante z f)'om the axis of roJ .... v is

the _moan_ of the _ide-siip ve_ocitF; and f-- t_u@. Yo s,re the

lateral forces due to slde-slip -_nd to re31 ._,:pe_.:.u_.velv,.which

mroduce roll b _ actium a!on3 the win_< spen at s,s arm z wit _

respect to the axis of retailer..

If ".resubstiim<te v TM m,S iu e%uet-_on 93 (',There m is ir

radians_. _:,er__:ni% time) and @.ivido throurh. "--,?;p, _c. ob+:_in._.

L L '
-- _ - + rfrt)] h + L-_ z + Yv z_ + -_'p ::
n p _ " p "

and since torque divided by the correcpon_i::",i< -¢elocit_" -'" _[,1 r_.s the

.... {....... r o,)so.elcoefficient, v:e have the femoral coefficient of roll ......

thus:

L_ -- TT + Ff( ,_}p] b + [L7 ;- YO] _ + Yv _ (%

in this equation the f(t_, serves _s a correction f_ctor for

the theoretical dsmpin C of roll (L'p,, wrncn mi_ht be expected

to be too large since it neglects the _al_nT o_ of ohe lift _

wing-tips. The terms Lv, Yv, a_d Yo are the experimental val-

ues for the win_ in question. If no'. we divit_e eou_tJ.on _,_2by

p, we ._et an exDression for L' ' _.e ,_. /p ,. _ . L':_) which may be sub-

stituted into eouation #3. Collectir_g to-ms, we h_ve the co:_ -

plete].y _enerai .... "eq,l_ ion:
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LT = (da j cb3u + 8"--6- u

l /acz% P cb 3 z (5.
[f(t)p}] b + [L v + Yp] z + [Yv + I_ <do /' u

dCz and the
In this equation the three terms involving do

term [f(t)o] b together make up _,That is usually called !:p,

dampin_ of roll due to roll. The first of these 1-_ (,,;jo /co u,

represents the damping obtained by the element theory, if the re-

sultant airsneed is ever_._here taken equal to the speed of flight-

The second term represents the added damping obtained if .vc toke

the airspeed as the resultant of the speed of flight and the nor-

real s_eed due to rotation, and, under full flight conditions

with the maximum probable velocity of roll, is about 2{o of the

dCz first term. The last term (d--_-i pecb3z represents the

further increment of roll added by considering the transverse

component of airspeed across the wing, and amounts at most to a_-

proximately 0.25_o of the first term. The other terms have a!-

ready been discussed.

Discussion of the General Theory.

Obviously the general equation is too comolicated for conven-

ienoe and will have to be simplified by assumption. If we neg-

and thereby introduce an error
lect the two smaller terms in de

of not more than 2 I/2_o, the equation becomes:

1 /dCZhcb3u + [f(t)p] b + [Lv + Yp] z + Yv z= (6.:

Further simplifications will depend upon the specific conditions.
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If z is s_all, both of the last terms disappear; if z is ma-

terial, Yv is usually negligible; Lv and Yp increase with

dihedral, but the latter is apt to be unimportant. In the case

of the rectangular wing of constant section, all thr_e terms

Lv, Yv and Yp,

the form

can probably be neglected and the equation takes

i., dCz cbSu + [f(t)p] b (7.LT = _-2 d_

It will be noted in this case that L T = Lp since the correction

factor [f(t)p] b = Lp - L'p.

A study of equations Nos. 5, 6 and 7, will shed some light

on the variation of L with changes in aspect ratio and wing area.

In equation #5 the first term and the last term involving dC-_z des
da

pend upon cb s, while the _econd term depends on cb 5. The third

term [f(t)p] b, is rather difficult to analyze. Being a func-

tion of the tip pressure distribution, f(t)p evidently depends

upon the chord; also the extent to which this irregular distribu-

tion extends inward will presumably be a function of the chord

rather than of the span. We might say, then, that _f(t)p] b

depends on c_b. However, the question arises as to whether the

form of the tip distribution does not depend upon the normal com-

ponent of the wing-tip velocity, which, in turn depends directly

on the span. In other words, does not [f(t)p] b depend primar-

ily upon c_b 2 ? The latter seems more reasonable. Of the remain-

ing terms, Lv depends upon the area, the amount of the dihedral,

and the span, or on cb 2. Yp and Yv do not depend upon the
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either on c2b or c2b _" the term involving
3

comprises about _o of the total, depends on

2

negligible terms Yp and Yv depend on c

Applying the fo__mula

span to any appreciable extent, but rather on c 2. Summing up,

therefore, it appears that the most imDortant term denends on cb ,

bO;_ of the total de_endsthe term [f(t)p] b, which may amount to _ '
l<IC \_

i _ --Z r which

cb_'; :_nd the .al_ost

where S and R are area and aspect ratio respectively, it fol-

lows that the cb 3 terms depend on SeR; the c_ term on $2

alone; the c2b, if _ve choose to use it, on S3/_ R"_ ", the cbs

term on S3 R_; and the two c _ terms on 3R -_. At first oight

the term involving S 3 R= would assume undue importance. _\ctu-

ally this term also involves p2 (the square of the rolling ve-

locity) which obviously decreases at about the same rate, or, per-

haps, faster, than S s increases in actual flight, so the propor-

tion of _ of L T which was obtained for that term for typical

flight conditions on a 2000-pound airplane, will probably not be

exceeded for airplanes of any size or proportion.

Neglecting these less important terms, vTe come to a stady of

equation #7, wherein the first term depends upon S_R and the

second upon S m or R- depending on how we consider f(t)p.

It seems most reasonable to take [f(t)p] b as dependent upon

cSb a , (or on S_) which has the added advantage of bringin_ in

4

the area without fractional exponents, and checks the b term
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o otained by the theory of dimensions in equation #I. It has been

fo_nd by the N.A.C.A. ,_ however, that fin going from model test to

full flight, LT increases less rapidly than S_, so there is

something to be said for the alternative supposition. In esther

event, the mean exponent of the aspect ratio is bound to be less

than unity, probably around .8, since about 70_ of LT depends

upon aspect ratio to the first power. This also has a bearing on

equation _!.

The Slope of the Normal Force Curve.

Throughout the discussion we have used the term _c rather

than _ If we take lift as perpendicular to the relative wind
dG "

and the "z" force as perpendicular to the line of flight, we have

by the familiar transition

Cz = CLCOSC + CDsino

Differentiating,

dCD .

(8.

(_) here represents the change in angle of attack from the value

at the wing center-line (Aa) is zero at the center-line. At

dCz dC L
that point, therefore, _-- = _-d- + CD"

A full-scale example has been worked out in Fig. !, _or a

U.S.A.-30 wing of 60 ft span and i0 ft. chord, turning at 1.5

radians per second, which is certainly an exaggerated case It

will be seen that the _ curve follows the
dn curve very

* N.A.C.A. Report #167
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closely. Above a = -6 ° the deviation is less than 3 1/2% througn-

out the entire range. This means that for all present-day air-

tiC.. dCT,
planes under ordinary conditions _'_= cl-_. For auto-rotation

the more exact form is required, and a ne_ c_ourve of normal force

must be olotted for each sngle of attack considered, and a graphi-

cal solution must be made if the roll is very rapid.

Experimental Results.

As a conclusion to the theoretical discussion, the results of

the experiments may be summarized. The indeterminate functions

of (_ and c__b_u in equation #1 were investigated for an aspect

ratio of 6. It was found, as might be expected, for the plain

rectangular wing of constant section, that LT was independent of

(@_, at least within the exoerimental error. This follows from

equation 4#6, since Lv, Yp, and Yv are kno_vn to be small. The

other indeterminate f,(p_b_h (uP_ n whereu ,' takes the form of k_

k_ and n vary practically as straight line functions with

da The equation then takes the form LT = k_ (no. j ub_ -

Values for k_ and n are plotted in Fig. 2. The full lines rep-

resent decreasing values of dO and cover the range of an aver-

age lift curve from maximum steepness up to nearly maximum lift.

dC_ z
The dotted lines represent decreasing values of dO , which cover

the range of the lift curve below maximum steepness (i.e., in gen-

eral, below c = 0°) where the lift curve tends to bend upwards

from a straight line. The point of intersection is at the maximum

value of dC_Cz
da " Obviously, with wings having a different maximu]u
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dC_
value of dT, the intersection would take place at some o÷'_n_.or

point, and presumably the dotted line would be displaced vertical-

ly to correspond. The fact that these lines intcrsect at n = O,

for this particular wing, is probably accidental. However, the

full lines, which cover the normal range of flight angles, should

apply equally well to any plain rectangular wing of constant sec-

tion and aspect ratio 6. The curves show very clearly a depart-

ure from a linear relation between rolling moment and rolling

velocity when:the rolling velocity is high.

A value of k_ can be calculated from the element theory on

the a_ssumption that n is equal to O. Using equation #2 and neg-

lecting all terms within the bracket except the first, we have:

l
Lp = -j_-_--,,da / cbs

where the units are homogeneous throughout.

dC z
of Fig. 2, d--a- was taken in ih/sq.ft/mi!e per hour/degree, and

u in N.P.H. This introduces a correction factor o£ 57.3 × !5/22.

A further factor of I/6 is introduced by the substitution of b 4

for cb 3 . The total value of the calculated coefficient, on a

basis comparable with that used in Fig. 2, is therefore, 57._ ×

15/2_ x I/6 × 1/12, or .52. The experimental constant will be

seen to approach the calculated one closely at small values of

d--qzC- but it falls far below at high values of the slope (corre-
da '

spending to angles of attack well below that of maxi_am lift).

in plotting the curves
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FART II.

EX_=_.,_-_--T_,_T. D__ERM±_AT_.... OF lUG......... _............ _._ .... ? "_0__ THE DAYP C'F :_--'r -,• . f]._, ._AJ •

}lethod of Test.

The tests were carried out in the 4-foot wind tunnel at the
i

},[assachusetts Institute of Technolo_r, on an 18:' × $" wood model

of the U.S.A.-S0 _;ing at a wind speed of 60 Z.i:.H. A 19': smindle

I]2" in diameter was mounted axially of the tunnel between a pair

of conical bearings. Each bearing was supported by three wires

to the side of the __unne_, so attached as to keep the bearings

seated snugly on the ends of the soindle. The spindle was provid-

ed with a pair of slots 2" apart, throuTh wh_c_ passed two 1/8"

diameter rods, the rods being screwed into the wing model at mid-

span, one behind the other Special counter-weights were mounted

at the opposite ends of the rods. 7bus, by loosening two set-

screws opposite the spindle slots, both the angle of attack of the

wing and its distance from the sxis of rotation could be altered.

Finally, a light flexible cord was wrapped three times around the

soindle and the ends carried out through the bottom of the tunnel

to a pair of weights, which supplied the drivi_ torque to keep

the model in continuous rotation The mounting is shov_ in Fig. 6.

Runs were made at various torques for five angles of attack

(-4.5 °, 0° 6° 12 °, and 18 °) and at 0° for four nositions of the

wing relative to the axis. Each run was reooated in the reverse

direction and the results aversged to remove any error due Zo warp

in the wing. The soeed of rotation was observed for each value of
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torque by counting the revo].utions of the "__inga_ainst a stop-watch.

The net torcue wss then obtained by subtr_cting a friction and

_vindage correction which has been found independently by experiment.

Torque in foot-lb divided by angular velocity in radians per second

gave the damping coefficient. Tests were also made to determine

the usual characteristics of the wing and are given in Fig. 3.

From these tests the values of _ were obtained.
da

Analysis of Results.

In order to determine the unknown function of z/b in the di-

mensional equation #l, values of L T were plotted against z/b in

Fig. 4 for three values of pb/u. Unfortunately, it was not possi-

ble to make pb/u exactly constant, since in making the exoeri-

merit the speed of rotation for a given torque could not be fore-

told. However, groups gf values were selected in which pb/u is

essentially constant and since all values for all groups lay with-

in 5% of the average, which is within the error of the experiment,

the evidence seemed sufficient to indicate that L is practically

independent of z/b for straight rectangular airfoils. A few

tests were made at a = 12 ° for various v_%lues of z/b to deter-

mine the effect of a change in dC-_z on z/b. These results were
da

slightly more erratic than those at 0°, but nevertheless bore out

the fact that LT is independent of z/b. This is what the theory

led ds to expect, knowing that Lv, Yp, and Yv are small.

To evaluate the pb/u term in equation #1, the runs for each

angle of attack were plotted on logarithmic paper, using pb/u as
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abscissae and LT,/(dCz/dC)ub _ as ordinates. It was found <hat

_...,.,. ,:c,: c,f ,.,_nuu I._W ne_riy slo:l_, a sz.__ai"-._,_"-u line. Accordi]nglv,_. .

from the int.,ceot_ of +his ._.- - ,-, line the values of k_ and n '-:iven _r_

Fi_. o were obtain_'d These values :ve_e o!otted e_.a_n, _. .,::,e

s!.o_e of the lift curve instead of the angle of at%ac:: ,__,0a o to

be of more genera], apolicatio_.

It is interesting to compare the tLeo, e_ica! and cxneri_ent_t]

values of L. Fi_. 5 sbo:-s a ty-pfical comparison. The bettor:: line

represents the experimental values of LT a_d the top line the

theoret_ic_l values of the conventional Lo obtained from equation

_" _. eno th-_t for the s_ral_.:_t#2 omnce both theory snd. e:,r_Der '''_ " _ _o_.oe

rectan_lar win_ the extraueous ter-._s Lv, etc., are ne.<li_i-

hie, it follows that the only difference bct-_-:ecn the theoretic::._].

Lp " r_ _ ] _i e theand the actual "T should be th_ _er;:q [f, _,,p_ "" - .

tip loss correction). With this in mind the central line in Fig.

5 was obtained by solvin_ graphically for Lp and assuminc the

conventional tip pressure distribution of 1/2 the runnin_ lo_d r:,t

the tip, tapering up to full load at .$ of a chord-length inbo-..rd

from the tip. Evidently, then, the tip pressure distribut'Jon is

altered by the rollin_: motion. This is not unexpected.

The comparison shown in _',T_m_. 5 gives _he _restest de_iation

which was found. As the an_le of attack is increased, the devis-

ation becomes less, until near maximum lift the exgerimental value

becomes the greater of the two, as already noted in Pa_t !, in

connection with the discussion of Fig. 2. Except for the varying



- 17 -

distortion of the tip loadin_ no adequate ex_planation accounts

for this oeculiarity.

Conclusion.

Finally, it must be recalled that the fore_oinE is in the

nature of a theoreticsl discussion, and thst the exoerimental data

represents only a sin<le win_ on which we cannot afford to cener-

alize too much. We _mst have further data. 3Decificslly, we re-

quire wind tunnel tests on wings with dihcdral and taper, on bi-

plane combinations, and on different tip forms; we re¢!uire free

flight tests on various airplanes, both large and small, especi-

ally monoplanes. Without these additional data very little tangi-

ble progTess can be made.
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