SEDIMENTATION AND WATER QUALITY IN THE WEST BRANCH SHADE RIVER BASIN, OHIO, 1983-85

By Carolyn J. Oblinger Childress and Rick L. Jones

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 87-4262

Prepared in cooperation with the

OHIO DEPARTMENT OF NATURAL RESOURCES, DIVISION OF RECLAMATION

Columbus, Ohio

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

e.

′ .

District Chief Water Resources Division U.S. Geological Survey 975 W. Third Avenue Columbus, OH 43212-3192 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Box 25425, Federal Center Denver, CO 80225

CONTENTS

Page

Abstract	1
Introduction	2
Background	2
Purpose and scope	3
Description of the Shade River basin	7
Location and physical setting	7
Mining history	8
Reclamation	8
Methods of study	10
Sedimentation	12
Mean suspended-sediment concentration	13
Channel scour and fill	16
Water quality	19
Summary and conclusions	27
Selected references	28

ILLUSTRATIONS

Figure	1.	Map of the lower reach of an unnamed trib- utary to the West Branch Shade River near Harisonville showing the active channel in 1951 and 1982	4
	2.	Map showing the location of gages, stream- channel cross sections, and water-quality sites in the Shade River basin	5
	3.	Photograph of an old fence line buried by sediment from runoff from an abandoned mine in the West Branch Shade River basin	6
	4.	Map showing the approximate location of abandoned and reclaimed surface coal mines in the West Branch Shade River basin, October 1984	9
5	-8.	Graphs showing the distribution of water- quality data at mined and unmined sites on West and East West Branches of Shade River from samples collected from 1983 through 1986:	
		 Alkalinity concentrations and pH values Acidity and sulfate concentrations Dissolved-iron and manganese concentrations 	20 21 22
		8. Dissolved-aluminum concentrations and specific-conductance values	24

TABLES

Table	1.	Annual total precipitation and departure normal at Carpenter, Ohio, for water years 1983 through 1985	7
	2.	Total suspended-sediment load, total stream discharge, and mean suspended-sediment concentration for West Branch Shade River near Harrisonville and near Burlingham and East Branch Shade River near Tuppers Plains, Ohio	14
	3.	Cross-sectional area, normalized area, and positive or negative change in area be- tween measurements from surveys made at 10 locations in the Shade River basin	17
	4.	Results of water-quality analyses for West Branch Shade River near Harrisonville, at Snowville, and near Burlingham; for the tributary to West Branch Shade River near Burlingham; and for East Branch Shade River near Tuppers Plains, Ohio, from June 1983 through July 1986	25
	5-7.	Daily mean streamflow, daily mean suspended- sediment concentration, and daily suspended- sediment discharge during water years 1983 through 1985:	
		5. East Branch Shade River near Tuppers Plains, Ohio	30
		6. West Branch Shade River near Burlingham,	40
		Ohio 7. West Branch Shade River near Harrisonville,	_
		Ohio	50

CONVERSION FACTORS AND ABBREVIATIONS

For the convenience of readers who may prefer to use metric (International System) units rather than the inch-pound units used in this report, values may be converted by using the following factors:

Multiply inch-pound unit	By	<u>To obtain metric unit</u>
<pre>inch (in.) foot (ft) mile (mi) square foot (ft²) square mile (mi²) acre cubic foot per second-day</pre>	25.4 0.3048 1.609 0.09290 2.590 0.4047 0.2447	millimeter (mm) meter (m) kilometer (km) square meter (m ²) square kilometer (km ²) square hectometer cubic hectometer (hm ³)
<pre>(cfs-day) cubic_foot per second (ft³/s) ton ton per acre-foot (ton/acre-ft)</pre>	0.02832 0.9072 0.07358	<pre>cubic₃meter per second (m³/s) megagram (Mg) megagram per cubic hectometer (Mg/hm³)</pre>

Temperature in degrees Celsius ($^{\circ}C$) can be converted to degrees Fahrenheit ($^{\circ}F$) by the following equation:

 $F = 1.8(^{\circ}C) + 32$

v

SEDIMENTATION AND WATER QUALITY IN THE WEST BRANCH SHADE RIVER BASIN, OHIO, 1983-85

By C. J. Oblinger Childress and Rick L. Jones

ABSTRACT

Loss of channel conveyance from deposition of sediment from abandoned surface mines in the West Branch Shade River basin has resulted in frequent flooding. In addition, water quality in the West Branch Shade River and some of its tributaries is typical of streams affected by acid mine drainage. About 938 acres were surfaced mined and abandoned in West Branch Shade River basin. By the end of 1984, about 450 acres were reclaimed. The purpose of this study was to measure the effects of abandoned surface mines and their reclamation on suspended-sediment load, channel crosssection profile, and water quality of West Branch Shade River.

Sediment data were collected from June 1983 through September 1985. Daily suspended-sediment samples were collected and continuous streamflow data were recorded at two locations in West Branch Shade River basin and one location in the unmined, East Branch Shade River basin. Water-quality samples were collected three times per year, from June 1983 through July 1986, at four locations in the West Branch Shade River basin and at one location in East Branch Shade River basin. Stream-channel cross sections were surveyed at least twice per year at 10 locations.

During the period of study, annual mean suspended-sediment concentration was unchanged for the unmined, East Branch Shade River basin; 0.28 ton per acre-foot of runoff in 1984 and 1985 water years. Annual suspended-sediment concentration, in tons per acre foot, in West Branch Shade River near Harrisonville, which was 100 percent reclaimed by the end of 1984, decreased from 8.6 in 1984 water year to 0.15 in 1985 water year. In West Branch Shade River near Burlingham, where 48 percent of the abandoned mines were reclaimed by the end of 1984, annual mean suspended-sediment concentration was unchanged (0.5 ton per acre-foot of runoff) in 1984 and 1985 water years and was twice that of the unmined basin.

Channel profiles, surveyed at each of the 10 cross sections, indicated scouring at two locations and filling at one location. West Branch Shade River near Harrisonville was scouring, whereas West Branch Shade River near Burlingham was filling. Although the source of sediment in the headwaters has been greatly reduced with reclamation, the sediments previously deposited and stored in the channel of West Branch Shade River most likely will continue to provide a suspended-sediment supply and contribute to channel filling farther downstream. In addition, part of West Branch Shade River basin is still largely unreclaimed and continues as a suspended-sediment source. On the basis of successive cross-section profiles, the downstream-most cross section surveyed in Kingsbury Creek, a tributary to West Branch Shade River, also appeared to be scouring. The cause of the scouring is unknown, as no reclamation activities have occurred in that part of the basin.

The quality of West Branch Shade River was characteristic of streams draining abandoned or improperly reclaimed surface mines in southeastern Ohio. Median alkalinity was less than 25 mg/L (milligrams per liter) as $CaCO_3$ at the three mined sites. Median sulfate concentration was 44 mg/L at the unmined site compared to 128 mg/L at the mined sites. Median manganese concentration was 10 times higher at the mined sites than the unmined sites. Both sulfate and manganese are indicators of the presence of acid mine drainage.

The greatest change in water quality during the study period was observed in West Branch Shade River near Harrisonville, above which all abandoned mine lands were reclaimed. The pH at that site increased to neutral by the end of the study. In addition, alkalinity concentration increased, and acidity concentration decreased. As has been observed in previous studies of abandoned surface mines that have been reclaimed, manganese and sulfate concentrations did not change following reclamation. No change in water quality was observed at the two downstream sites during the period of study. However, the percentage of abandoned mined lands that were reclaimed was much smaller above these sites (48 percent).

INTRODUCTION

Background

West Branch Shade River basin was surface mined for coal from the mid-1940's through the early 1960's. Although mine operators were required under Ohio law to reclaim surface mines, reclamation, at that time, generally consisted of only regrading and seeding. Mine spoils in this area typically are too acid and too erodible to support new vegetation and the law did not require that spoils be chemically treated to enhance the likelihood of plant survival. Barren slopes with no vegetation for protection against erosion redeveloped in many areas after reclamation. As a result, much of the area in the headwaters of West Branch Shade River basin is marked by disturbed land, highwalls, and spoil piles that are devoid of vegetation. Soils from these unvegetated areas are subject to erosion. During periods of storm runoff, soils are transported to the stream channel.

Loss of channel conveyance caused by this deposition of sediment has resulted in frequent flooding. Dredging at bridge crossings has been necessary to reduce flooding of roadways. The filling of West Branch Shade River channel following mining activities is evident from aerial photographs taken in 1951 and in

Figure 1 shows the channel width of the unnamed tributary 1981. to West Branch Shade River as seen from these aerial photographs (the cross-section location shown in fig. 1 corresponds to cross section 3 in fig. 2). In 1951, the active channel was narrow and well defined and riparian land was typically under cultivation. In 1981, nearly 30 years after the most active period of surface mining, the channel had widened considerably. Excessive sediment loads from abandoned mines had been deposited in the river valley and alluvial fans had developed at the mouths of each tributary. Thus, much of the riparian land under cultivation in 1951 had become swamp by 1981 and remains so today. In many areas, the depth of deposited sediments also can be clearly gauged. For example, in a photograph taken downslope from abandoned mines in 1984 (fig. 3) the tops of fence posts are all that remain exposed of a fence line that has been buried by the accumulation of sediment.

In addition to excessive sediment transport and deposition, water quality in West Branch Shade River and some of its tributaries is of concern (Ohio Board of Unreclaimed Strip Mine Lands, 1974). The quality of the headwaters of West Branch Shade River basin generally are degraded, typical of streams affected by acid mine drainage.

In 1978, the U.S. Department of Agriculture, Soil Conservation Service and the Ohio Department of Natural Resources, Division of Reclamation began reclaiming some of these abandoned surface mines with funds made available through the Surface Mining Reclamation and Control Act (PL 95-87). Reclamation is expected to reduce sediment loads from source areas and, ultimately, should increase channel conveyance. In addition, reclamation is expected to result in improved water quality.

A study was begun in 1983 in cooperation with the Ohio Department of Natural Resources, Divison of Reclamation, to measure the effects of reclamation of abandoned surface mines in West Branch Shade River basin on sedimentation and water quality.

Purpose and Scope

This report presents a summary and analysis of data on suspended-sediment load, channel conveyance, and water quality that were collected between June 1983 and July 1986. Comparisons are made between data from the mined West Branch Shade River basin and the unmined East Branch Shade River basin.

Daily suspended-sediment and streamflow data were collected at three streamflow-gaging stations located on West and East Branches of the Shade River (fig. 2). Water-quality data were collected at five locations on West and East Branches of the Shade River, and stream-channel cross-section elevations were surveyed at 10 locations on East and West Branch Shade River and West Branch Shade River tributaries.

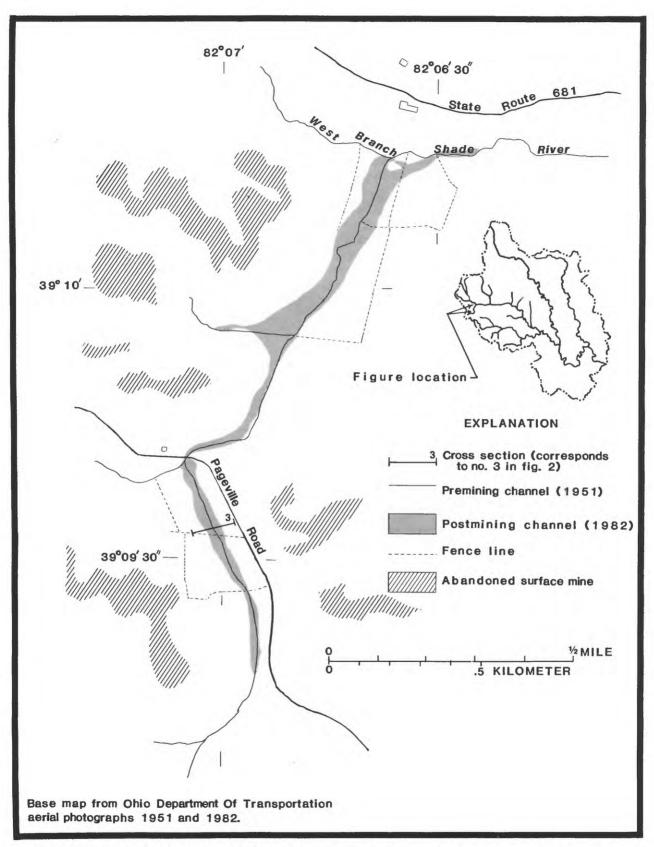
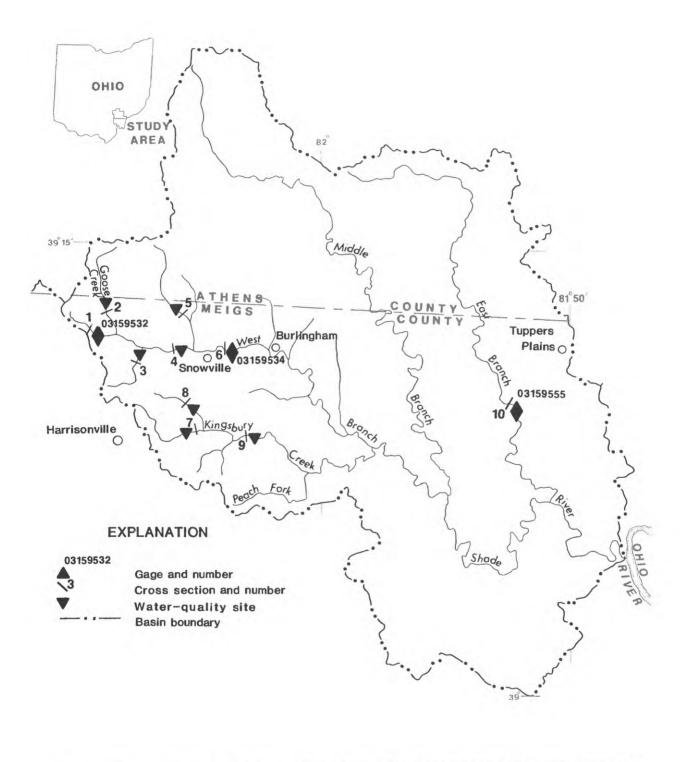



Figure 1.--Lower reach of the unnamed tributary to West Branch Shade River near Harrisonville showing the active channel in 1951 and 1982.

Base from Ohio Department of Natural Resources Shade River and Leading Creek basins,1958

Figure 2.--Locations of gages, stream-channel cross sections, and water-quality sites in the Shade River basin.

Figure 3.--An old fence line buried by sediment from runoff from an abandoned surface mine in the West Branch Shade River basin. (View to south)

DESCRIPTION OF THE SHADE RIVER BASIN

Location and Physical Setting

Shade River is a tributary to the Ohio River and drains 221 mi² (square miles), most of which is in eastern and northcentral Meigs County in southeastern Ohio. There are three main branches: West (drainage area, 71.3 mi²), Middle (57.6 mi²), and East (54.9 mi²).

The Shade River basin is located in the unglaciated Appalachian Plateaus physiographic province, which is characterized by eastward dipping strata dissected by steep, narrow valleys. Rocks of the Conemaugh and Monongahela Formations of Pennsylvanian age crop out in the central and western coal-producing part of Meigs County, and rocks of the Dunkard group of Pennsylvanian and Permian age crop out in the eastern third of the county (Brant and DeLong, 1960). Bedrock is primarily sandstone and shale. Limestone strata are not well developed. The main coal-producing seams are the Lower Kittaning, Upper Freeport, Pittsburgh, Pomeroy, and Meigs Creek.

The mean annual temperature was 53.2 degrees Fahrenheit over an 18-year period at Carpenter, Ohio, located 4 miles westsouthwest of the West Branch Shade River gage near Harrisonville (U.S. Department of Commerce 1982). Annual precipitation has averaged 40.4 inches over the same period (U.S. Department of Commerce, 1983). Annual total precipitation and departure from normal for each year of the study are shown in table 1.

Water year ¹	Total precipitation, in inches	Departure from the mean for the period, in inches
1983 ²	3 ^{15.6}	-4.2
1984	40.4	0
1985	42.7	+2.3

Table	1 <u>Annual</u>	total	prec	ipitat:	ion and	l depa	arture	from	normal	at
	Carpenter	, Ohio,	for	water	years	1983	throug	ah 198	5	

¹Water year extends from October 1 of the previous year through September 30.

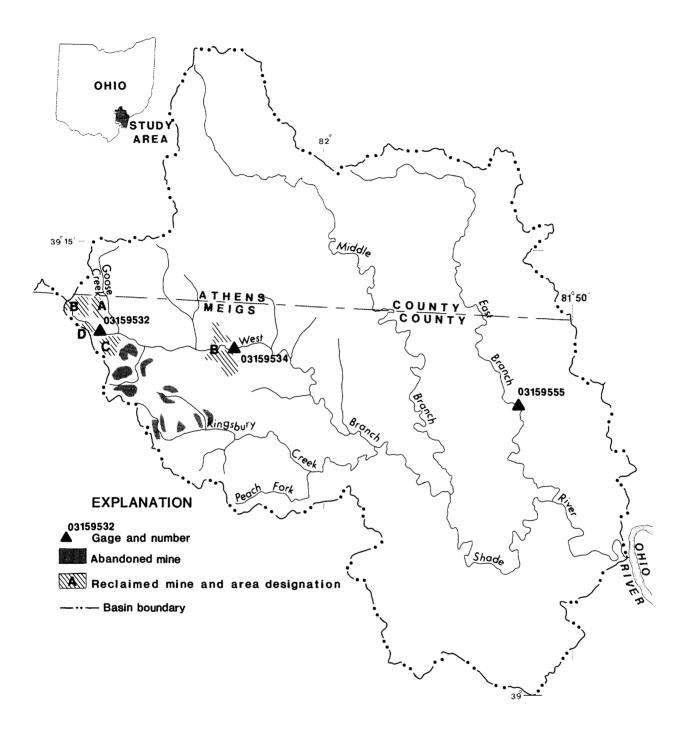
²Total is for the partial water year, from May through September, during which data were collected.

³Estimated with record from a nearby station (McArthur, Ohio) for months with missing record.

The channel of East Branch Shade River is characterized by series of pools and riffles typical of Ohio streams. Streambed material is primarily cobbles and sand. Streamflow at the gage (fig. 1) is intermittent during the driest months of the year.

The channel of West Branch Shade River lacks pool-and-riffle sequences and is braided above Snowville (fig. 1). Bed material is primarily composed of sand and silt. A braided channel can be a response to a sediment load that is too large to be handled by a single channel and often is associated with an aggrading stream (Leopold and others, 1964, p. 294). Flow at the two West Branch Shade River gages is intermittent during all but the wettest months of the year.

Mining History


Although coal mining was first reported in Meigs County in 1806, the first report of surface mining was not until 1940. Most coal was extracted from the basin through the 1950's and into the 1960's. By the mid-1960's, almost all mining activity had ended. Today there are no active surface coal mines in the basin.

About 938 acres have been surface mined in the Shade River basin (U.S. Department of Agriculture, 1985); most were unreclaimed or inadequately reclaimed after mining. Mining was most intense in the upper part of West Branch basin; approximately 19 percent of the drainage area above the West Branch Shade River gage near Harrisonville (station 03159532) and 8 percent of the drainage area above the West Branch Shade River gage near Burlingham (station 03159534) had been surface mined (fig. 4). East Branch Shade River basin was not surface mined and serves as a control site for this study.

Reclamation

Reclamation of abandoned or unsuccessfully reclaimed mines in West Branch Shade River basin was begun in 1978 by the U.S. Department of Agriculture, Soil Conservation Service, and the Ohio Department of Natural Resources, Division of Reclamation. These agencies had reclaimed approximately 450 acres of abandoned surface mines in the West Branch Shade River basin by the end of 1984 (fig. 4). The reclamation process included regrading the land surface to reduce slopes and provide surface or subsurface drainage, addition of a layer of top soil, incorporation of fertilizer and (or) lime, and finally seeding and mulching. During reclamation, sediment ponds were constructed and used to prevent sediment from reaching the receiving stream.

The Ohio Department of Natural Resources funded reclamation of 100 acres (area A, fig. 4) in 1978, and 235 acres (area B, fig. 4) in the summer of 1984 (M. Farley, Ohio Department of Natural Resources, oral commun., 1984). The U.S. Department of

Base from Ohio Department of Natural Resources Shade River and Leading Creek basins,1958

Figure 4.--Approximate location of abandoned and reclaimed surface coal mines in the West Branch Shade River basin, October 1984. Agriculture, Soil Conservation Service, funded reclamation of about 88 acres (area C, fig. 4) in 1982 and 30 acres (area D, fig. 4) in 1983 (D. Hire, U.S. Department of Agriculture, oral commun., 1984). In all, 188 acres were reclaimed before the beginning of data collection. These areas comprise only 1 percent of the basin above the Burlingham gage.

METHODS OF STUDY

Three continuous-record streamflow-gaging stations were constructed. Two were located on the West Branch Shade River, near Harrisonville (03159532) and near Burlingham (03159534, fig. 2). The third, on East Branch Shade River near Tuppers Plains (03159555, fig. 2), was a control site. East Branch Shade River basin was selected as a control for this study because of the physiographic, topographic, and lithologic similarity to West Branch Shade River basin. (See the section on Location and Physical Setting.) With the exception of coal mining (there has been no mining in the East Branch basin), land use also is similar--primarily agriculture, forest, and rural residential.

The West Branch Shade River gaging station near Burlingham and the East Branch Shade River gaging station were equipped with manometers to measure stream stage, U.S. Geological Survey PS-69 automatic sediment samplers, and data loggers to record stage at 15-minute to 1-hour intervals, depending on flow conditions. The West Branch station near Harrisonville was equipped with a stilling well and float to measure stage, an automatic sampler, and a digital recorder to record stage at 5-minute intervals. Data collection began in June 1983.

Suspended-sediment samples, collected manually using the equal-transit-rate method (U.S. Geological Survey, 1977), were used to establish sediment concentration during base-flow periods.

Suspended-sediment samples were collected during periods of runoff by the automatic samplers. At the stations on East Branch Shade River and West Branch Shade River near Burlingham, the automatic sampler was activated when the stage rose above pre-set thresholds of 7.0 and 3.5 feet, respectively. When the automatic sampler was activated, samples were collected at 15-minute intervals or when a change in stage of 0.5 foot or more occurred. At the station on West Branch Shade River near Harrisonville, the sampler was activated when the stage rose 0.5 foot above base-flow stage. Samples were collected at 5-minute intervals until the stage dropped below the level at which the sampler was activated.

The automatic suspended-sediment sampler withdrew a water sample from a fixed point in the cross section; thus, the point concentration needed to be adjusted to the average suspendedsediment concentration for the cross section. This cross-section average was determined empirically by collecting a manual sample simultaneously with a sample collected by the automatic sampler. The manual sample was collected using an integrating method that yields a sample that represents the average suspended-sediment concentration within the cross section. The relation between point sample and integrated sample was used to calculate a correction coefficient. This coefficient was used to adjust pointsample concentration to the average concentration in the cross section (Porterfield, 1972, p. 12). For East Branch Shade River near Tuppers Plains, the coefficient was 1.0. For West Branch Shade River near Burlingham, the coefficient was 0.84. For West Branch Shade River near Harrisonville, the coefficient was 1.0.

Sediment samples were analyzed at the U.S. Geological Survey District office in Columbus, Ohio, from May through September 1983 using a method for suspended sediment (Guy, 1969). Heidelberg College Water Quality Laboratory in Tiffin, Ohio, analyzed samples thereafter. The Heidelberg College Laboratory used a method for suspended solids (American Public Health Association and others, 1975) for analyses of samples. To compare the equivalency of the two methods for analysis of sediments in the Shade River, duplicate suspended-sediment samples were collected. One duplicate was analyzed in Heidelberg College Laboratory using the suspendedsolids method and the other was analyzed in the U.S. Geological Survey Ohio District office using the suspended-sediment method. Results indicate that there was no significant difference in concentration because of analytical method for suspended-sediment samples from West Branch Shade River.

Daily suspended-sediment load was calculated using one of several methods depending on the completeness of data. For East Branch Shade River near Tuppers Plains, data collection was uncomplicated because of a relatively stable streambed and fairly continuous streamflow. As a result, few data were missing and daily suspended-sediment load was calculated from measured concentrations of suspended sediment and measured streamflow. For days with suspended-sediment concentration missing, loads were estimated from suspended-sediment concentration for comparable streamflow conditions (Porterfield, 1972, p. 20). For West Branch Shade River near Burlingham, record was less complete because the equipment used to measure stage was not sensitive to discontinuous or low streamflow. In addition, extreme shifts in the streambed generally caused the equipment to fail. For days when suspendedsediment concentration was missing, the concentration was assumed to be the same as the suspended-sediment concentration measured under the most recent similar streamflow and antecedent-weather conditions (Porterfield, 1972, p. 20). For days with missing stage record, daily streamflow was determined from record of rainfall and stage on days preceding and following the missing record or was estimated from a nearby gage.

For West Branch Shade River near Harrisonville, data were the least complete because of the same equipment and stream conditions described for the Burlingham gage. For days with missing stage record, streamflow was determined as described above. Furthermore, because of the small drainage-basin size, it was very difficult to reach the site and collect a suspended-sediment sample in the short time between initial rainfall and peak runoff. As a result, daily suspended-sediment loads were calculated from suspended-sediment rating curves. Instantaneous streamflow data, in cubic feet per second, were related to the corresponding instantaneous suspended-sediment discharge, in tons per day, on logarithmic graph paper. S-shaped curves were manually fit to the data (Colby, 1956). Four suspended-sediment rating curves were developed, each describing a different time period and representing a change in the relation between streamflow and suspendedsediment. These ratings were used with record of daily streamflow to calculate daily suspended-sediment loads.

Stream cross sections were surveyed at nine locations in West Branch Shade River basin and one location in East Branch Shade River basin (fig. 2). The cross sections were surveyed quarterly from July 1983 until September 1984 and twice a year thereafter. Elevations at each point in the cross section were measured relative to an arbitrary datum of 50 feet established on the left bank of each cross section. Elevations were recorded to the nearest 0.1 foot. At least two reference points also were established at each cross section and measured with each survey to cross check the accuracy of the primary reference mark.

Water-quality samples were collected at each of the three gaging stations and at two other locations in West Branch Shade River basin (fig. 2) in the winter, spring, and early summer during the study period. Samples were analyzed by U.S. Geological Survey Central Laboratory for concentrations of total and dissolved aluminum, iron, and manganese, and dissolved sulfate using methods described in Skougstad and others (1979). Water discharge, pH, water temperature, and concentrations of alkalinity and acidity were determined on site at the time of sample collection. Alkalinity concentration was determined as described in Skougstad and others (1979, p. 517). Acidity concentration was determined as described in American Public Health Association and others (1975, p. 275).

SEDIMENTATION

During surface mining, overburden that is removed to expose the coal-bearing strata is accumulated in spoil piles. Spoil piles typically have steep slopes and are lacking topsoil to help support vegetation. As a result, erosion rates from these areas are higher than for any other land use in Ohio (U.S. Department of Agriculture, 1985). The U.S. Department of Agriculture (1985) measured soil-loss rates in excess of 200 tons per acre per year from spoil piles in Meigs County. Most material eroded from the land surface is deposited downslope or in the channel of the receiving water; however, only about 5 to 10 percent is exported from the basin by receiving waters (Trimble, 1975). When the suspended-sediment load exceeds the transport capacity of stream-water discharge, the channel typically begins to fill with sediment (Foster and Meyer, 1977). The West Branch Shade River basin is typical of much of southeastern Ohio, where surface mining usually occurs on hillsides and transport capacity decreases as runoff from hillsides reaches the receiving stream in the flat, valley area. Under these conditions, deposited material may form alluvial fans at the confluence of receiving streams and tributaries. Subsequent backfilling of the tributary and main channels further reduces channel capacity and may result in more frequent out-of-bank flooding. These channel overflows may, in turn, lead to deposition of suspended sediment in the flood plain adjacent to the filled channel (Happ and others, 1940, p. 71) and to the formation of elevated natural levees.

However, when suspended-sediment loading decreases so that the stream has the capacity to carry a greater quantity of suspended sediment than is received by the stream from runoff, scouring of the stream channel will occur. This has often been observed below newly built reservoirs because the reservoir acts as a sediment trap. The clear water released below the reservoir in place of the once sediment-laden water causes the channel to scour. Eventually, scouring causes the slope of the streambed to flatten so that the sediment-carrying capacity decreases and a new equilibrium is achieved (Leopold and others, 1964, p. 454-5). A significant reduction in suspended-sediment loading resulting from abandoned surface mine reclamation would be expected to have the same effect on the receiving stream channel.

Mean Suspended-Sediment Concentration

Mean suspended-sediment concentrations were used to assess whether reclamation in the West Branch Shade River basin was resulting in a decrease in the quantity of suspended sediment carried by the West Branch Shade River. Mean suspended-sediment concentration for a specific period was calculated from total suspended-sediment load and total streamflow for that period. Sediment load is, in part, a function of total annual runoff; thus, total annual load varies due to natural annual variation in rainfall and runoff at each site and varies from site to site due to differences in drainage basin size. Suspended sediment is expressed in this report as total mean concentration, in tons per acre-foot of runoff, in an effort to account for these variations. These data are shown in table 2 for the 1983 through 1985 water years. Because data collection began in the summer of 1983, only 4 months of data were collected in the 1983 water year. Data for the same 4-month period in the 1984 and 1985 water years are presented so that the 1983 partial year may be compared to the same period in following years.

Table 2T <u>otal suspended-sediment load, total stream discharge, and mean suspended-sediment concentration for West</u> Branch Shade River near Harrisonville and near Burlingham, and East Branch Shade River near Tuppers Plains, Ohio [CFS-days, cubic foot per second-days; Dash indicates data were not collected for the period]	spended-sec r near Hari lays, cubic	al suspended-sediment load, to River near Harrisonville and [CFS-days, cubic foot per seco	<pre>/ total stream discharge, an and near Burlingham, and Eas second-days; Dash indicates</pre>	able 2 <u>Total suspended-sediment load, total stream discharge, and mean suspended-sediment concentration for We</u> Branch Shade River near Harrisonville and near Burlingham, and East Branch Shade River near Tuppers Plains, Ohio [CFS-days, cubic foot per second-days; Dash indicates data were not collected for the period]	id mean suspended-sediment concentration it Branch Shade River near Tuppers Plain data were not collected for the period]	ment concentr near Tuppers ed for the pe	:ation for West <u>Plains, Ohio</u> eriod]
				Period	đ		
			June through September	September	Octo	October through S	September
	-	Total suspended- sediment	Total stream discharge	Mean Suspended- sediment	Total suspended- sediment	Total stream discharge	Mean Suspended- sediment
Station	water Year	load for the period (tons)	ror the period (CFS-days)	concentration for the period (tons per acre-foot)	load for the period (tons)	ror the period (CFS-days)	concentration for the year (tons per acre-foot)
West Branch Shade	1983	34	6	1.9	l	l I	I
kiver near Harrisonville	1984	70	13	2.7	13,600	796	8.6
	1985	3	34	.03	111	380	.15
West Branch Shade	1983	4,830	474	5.1	ł	8 1	ł
kiver near Burlingham	1984	794	266	1.5	8,420	8,330	.51
	1985	62	247	.13	9,960	10,200	.49
East Branch Shade	1983	460	655	• 35	1	1	-
Tuppers Plains	1984	123	389	.16	7,700	14,000	.28
	1985	66	276	.12	6,680	12,100	.28

14

-

r

East Branch Shade River basin above the sampling location is unmined and no major land-use changes occurred during the study period. Mean suspended-sediment concentration at East Branch Shade River was 0.28 ton per acre-foot of runoff per year during 1984 and 1985 water years (table 2). More than 70 percent of the annual-suspended-sediment load was transported from February through May (table 5, at back of report).

Mean suspended-sediment concentration for the period June through September for the East Branch site was 0.35 ton per acrefoot of runoff in 1983, 0.16 in 1984, and 0.12 in 1985. However, less than about 2 percent of the total annual suspended-sediment load was transported from June through September (table 5). The relatively high concentration for the period in 1983 compared with the same period for 1984 and 1985 is due to one storm that occurred in July 1983, runoff from which transported 364 tons of suspended sediment or 79 percent of the load measured in the 1983 water year (table 5). In Ohio, summer thunderstorms are common, and a single thunderstorm with high rainfall intensity can produce high suspended-sediment concentrations in runoff.

Mean suspended-sediment concentration in West Branch Shade River near Burlingham was about 0.5 ton per acre-foot of runoff during 1984 and 1985 water years (table 2)--nearly twice that for East Branch Shade River basin. No decrease in mean concentration was observed following reclamation of 46 percent of the abandoned-mine lands in 1983 and 1984. The seasonal distribution of suspended-sediment transport was similar to East Branch; more than 60 percent of the annual load was transported from February through May and less than 9 percent was transported from June through September (table 6, at back of report).

Mean suspended-sediment concentration for the period June through September at the Burlingham site, in tons per acre foot of runoff, was 5.1 in 1983, 1.5 in 1984, and 0.13 in 1985. The extremely high suspended-sediment load in June and July of 1983 (table 6) may be due to a combination of factors--erosion from unreclaimed surface mines just upstream from the site and greater total streamflow for the period June through September compared with the same period in 1984 and 1985. In the summer of 1983, none of the abandoned-mine lands immediately upstream of this site had been reclaimed (area B, fig. 4). Reclamation activities began in this area in March 1984 and ended in October 1984.

Mean suspended-sediment concentration for the headwaters of West Branch Shade River near Harrisonville was 8.6 and 0.15 tons per acre-foot of runoff in the 1984 and 1985 water years, respectively (table 2). The pronounced decrease in mean suspendedsediment concentration corresponds to completion of reclamation activities. By the autumn of 1984, 100 percent of the abandonedmine lands above this site had been reclaimed. Construction of a retention pond (area B, fig. 4) in part accounts for the extremely low annual mean suspended-sediment concentration in 1985. More than 50 percent of the annual load was transported in February through May and less than 2 percent from June through September (table 7, at back of report). Mean suspended-sediment concentration, in tons per acrefoot of runoff, for the period June through September for the Harrisonville site was 1.9 in 1983, 2.7 in 1984, and 0.03 in 1985 (table 2). Reclamation activities were ongoing during the summers of 1983 and 1984. In a 1-week period in March, during which access roads and retention ponds were constructed as the initial phase of reclamation, 5,810 tons of suspended-sediment (41 percent of the annual suspended-sediment load) was transported past the Harrisonville gage in runoff from two storms (table 7). By October 1984, all abandoned surface mines above the Harrisonville gage had been reclaimed.

Channel Scour and Fill

Successive surveys of cross-section profile were used to assess channel scour or fill following reclamation. The following data were calculated from these surveys (table 3): Crosssection area, normalized cross-section area, whether the difference between successive measurements was positive or negative, and the average difference in normalized area between measurements. Normalized area was calculated by dividing each crosssection area by the initial cross-section area. Thus, each area was expressed as a proportion of the initial cross-section area and comparison could be made between streams of differing total area.

No long-term net fill or scour of the stream channel is expected under conditions of equilibrium, although some short-term variation in channel configuration is typical. A long-term net scour or long-term net fill of the channel may indicate a change in the sediment-carrying capacity of the stream (that is, a change in channel conveyance). A positive change in area indicates channel scour, whereas a negative change in area indicates filling of the channel.

For the two cross sections measured in areas with no abandoned surface mines, East Branch Shade River (site 10) and tributary to West Branch Shade River (site 5), cross-section area fluctuated so that the number of times the channel was observed to have filled (that is, there was a negative difference in area between measurements) approximately equalled the number of times the channel was observed to have scoured (table 3). Furthermore, the average change in normalized area was small, -0.1 and 0, respectively.

Five of the cross sections measured in areas with abandoned surface mines also appeared to be in equilibrium--two sites in the headwaters of Kingsbury Creek (sites 7 and 8); Goose Creek (site 2); a tributary to West Branch Shade River (site 3); and West Branch Shade River at Snowville (site 4). Like the cross sections in the two unmined basins, the cross-section area at these five sites flucuated, and average change in normalized areas was near zero. Table 3.--Cross-sectional area, normalized area, and positive or negative change in area between measurements from surveys made at 10 locations in the Shade River basin

5		
5		
• * * * * * * * * * * * * * * * * * * *		
•		

	<u>d</u>)	ositive	(Positive or negative	e change in	Area, Norm area	square feet zed area ween measur	in square feet alized area between measurement and] previous measurement)	ie as ur emen	t)
Site	Site	1983		1984			1985		1986	- Average change in
ber		July	October	January	June	October	March	September	July	
	West Branch Shade Diver near	13.0	11.3 87	13.1 1 01	15.5 1 19	16.9 1 30	17.7 1 36	19.7 1 5.2		60
	Harrisonville) • •	(-)	(+)	(+)	(+)	(+)	(+)	E E	
7	Goose Creek	39.4	37.1	36.0	37.8	39.0	36.2	37.8	1	01
	near Harrisonville	 	•94 (-)	.91 (-)	• 96 (+)	. (+)	.92	.96 (+)	1	
ę	Tributary to West Branch Shade	124.5	114.6 92	133.3 1 07	117.3	93.9 75	127.5	:		00.
	River near Harrisonville	> • •	· (-)	(+)	· (-)	(-)	70 • T (+)	1	1	
4	West Branch	150.0	146.6	127.8	137.3	137.6	136.5	132.7	148.2	00.
	Shade Kıver at Snowville	 	86 • (-)	c 8 • (-)	2 6 • (+)	76° (+)	т6 ・)	• 88 (-)	وبوبو (+)	
ъ	Tributary to	57.3		60.2	62.0	57.4	53 . 5	56.7	56.7	.00
	west brancn Shade River near Burlingham	0 . .	(+)	(-)	80 •T	00•T	. (-)	• • • • • • • • • • • • • • • • • • •	• N	
u	Mont Dranch	1 UZ L	2 221	0 171	0 231	L 371	3 7 7 1	160 6	1 60 4	5
D	shade near	1.00 1.0	86°	96°	86°	86°	26°	76°	46°	T 0 • H
	Burlingham	1	(-)	(-)	(+)	(-)	(-)	(-)	(-)	
٢	Kingsbury Creek	26.1 1 0	24.0	23.2	25.7	24.6	22.8 87	25.2 06	1 1	01
	ville	> • •	(-)	(-)	(+)	· (-)	(-)	(+)	1	
8	Tributary to	24.8	25.0	23.]	23.5 05	20.8 81	21.0 85	21.2		02
	ville	• I • I		(-)	(+)	(-)	(+)	(+)	1	
6	Kingsbury Creek	37.7	40.0	37.8	39.2	39.4	39.6	41.7	48.3	.04
	near Burling- ham	1•0 	1.06 (+)	1.0	1.04 (+)	1.04 (+)	I.05 (+)	I.II (+)	1.28 (+)	
10	East Branch Shade Shade River near Tuppers Plains	1 1 1 1 1 1		140.4 1.0 	134.7 .96 (-)	131.6 .94 (-)	132.0 .94 (+)	133.9 .95 (+)	135.2 .96 (+)	01
	CHARTS FIGHT								~	

Three sites do not appear to be in equilibrium: West Branch Shade River near Harrisonville and near Burlingham and Kingsbury Creek near Burlingham. Scour of the channel of West Branch Shade River near Harrisonville is evident from consistent positive change between successive measurement of cross-section area (table 3), from the relatively large average change in normalized area, and from visual observations of the streambed. Each successive measurement after the first period of reclamation in 1983 indicated scour. In addition, over the course of the study, the water intake for the streamflow gage needed to be lowered repeatedly because of a drop in the streambed elevation. The change in composition of the bed material also provides evidence that the By the end of the study period, streambed bed was scouring. materials had changed from predominantly sands and silts to predominantly sands and gravels. This change in composition of the bed material was visible from the headwaters to the confluence with Goose Creek. Below the confluence with Goose Creek, the West Branch Shade River widens considerably and the active channel is poorly defined. Much of the river valley from this point to the confluence with the next major tributary is swampland, which acts as a sediment trap.

The channel of West Branch Shade River near Burlingham appears to be filling, based on change in area between measurements. Except for one period, between January and June 1984, cross-section area decreased (negative change in area) with each successive measurement (table 3). This indicates that the channel was filling even after reclamation, in 1984, of about 168 acre of abandoned-mine lands immediately upstream of the cross section. Indeed, this is supported by the computed annual suspendedsediment loads; loads did not decrease during the study. However, the magnitude of fill was small; average change in cross section area was only -0.1, the same as at the control site. More data are needed to confirm if the channel will continue to fill.

Although the source of sediment near the headwaters has been greatly reduced because of reclamation of abandoned-mine lands, sediment previously deposited and stored in the channel of the West Branch Shade River most likely continues to provide a supply of suspended sediment (Foster and Meyer, 1977). In addition, unreclaimed mines in the basin (fig. 4) continue to provide a source of suspended sediment. These two factors, no doubt, account for the continuing high suspended-sediment load near Burlingham and to possible channel filling.

Although bed elevations in the headwaters of Kingsbury Creek appeared to be in equilibrium, a cross section (site 9, fig. 2) in the lower part of the basin appeared to be scouring. No reclamation activities have occurred in the Kingsbury Creek basin to reduce suspended-sediment load, and the reason for the scouring is unknown.

WATER QUALITY

Weathering and oxidation of pyrite, which is found in bedrock in southeastern Ohio, produces acidity and sulfate. This weathering process is intensified as a result of surface coal mining because of the increased surface area of bedrock exposed when coal is extracted. Furthermore, streams draining abandoned surface mines in areas where local bedrock is composed of few limestonebearing members have relatively low buffering capacity (that is, contain low concentrations of alkalinity); therefore, pH typically is well below neutral. Streams with low pH and high acidity concentrations also typically have high concentrations of dissolved metals as a result of dissolution of minerals in soils and bedrock. These metals remain in solution in accordance with the pH-solubility relationship for each metal.

Streams draining unmined basins in southeastern Ohio typically have relatively high alkalinity and low acidity concentration, near-neutral pH values, and relatively low concentrations of dissolved metals compared with streams draining abandoned-mine lands (Childress, 1984). Comparison of selected chemical constituents in the mined area of West Branch Shade River basin with unmined areas illustrates the significant effect that abandoned mines can have on the water quality of the receiving stream.

pH is a measure of the hydrogen-ion concentration expressed as a negative logarithm to base 10. Medians of pH at the mined sites were less than neutral (7.0), whereas medians of pH were greater than neutral at the unmined sites (fig. 5). Alkalinity concentration is a measure of the capacity of stream water to neutralize acids. Median alkalinity concentration for the unnamed tributary to West Branch Shade River near Burlingham that drains an unmined area of the basin was 67 mg/L (milligrams per liter) as CaCO, (fig. 5). The median concentration for the East Branch, which drains the more calcareous bedrock formations in the eastern part of the county and which also is unmined, was 120 mg/L. In contrast, median alkalinity concentrations were less than 25 mg/L at the mined sites (fig. 5). Acidity concentration is a measure of the capacity of the stream water to react with hydroxyl ions. For streams with pH above 7.0, acidity was assumed to be equal to zero and therefore was not measured. Concentrations of acidity were assumed to be 0 mg/L at the two unmined sites based on pH. Median concentrations at the mined sites ranged from 5 to 50 mg/L (fiq. 6).

Median sulfate concentrations were 3 times higher at the mined sites than at the unmined sites (fig. 6). Median dissolvedmanganese concentrations were at least an order of magnitude higher at mined sites than at unmined sites (fig. 7). Both dissolved sulfate and dissolved manganese concentrations were highest in the headwaters of West Branch Shade River where a greater proportion of the basin was mined. Dissolved-iron concentrations fluctuated seasonally, but median concentrations generally were also higher at the mined sites (fig. 7).

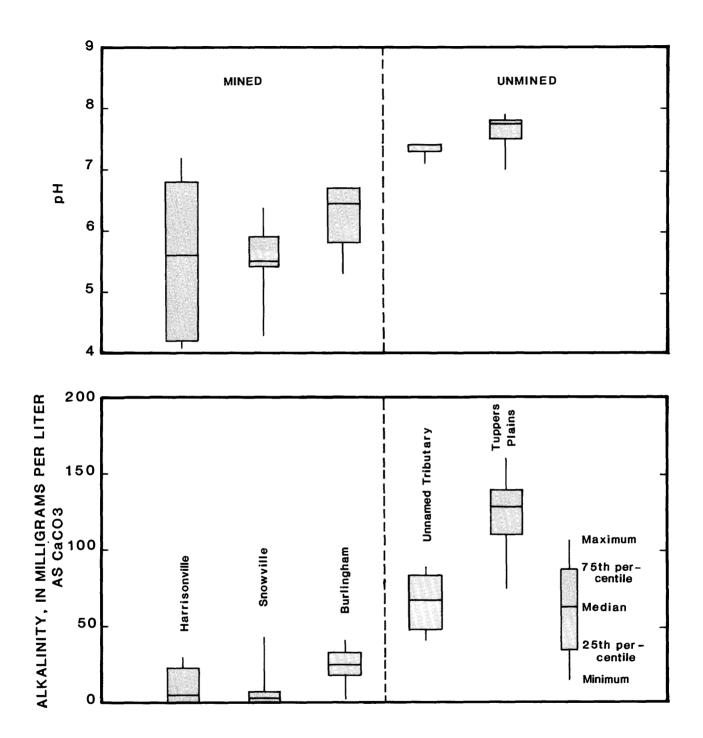
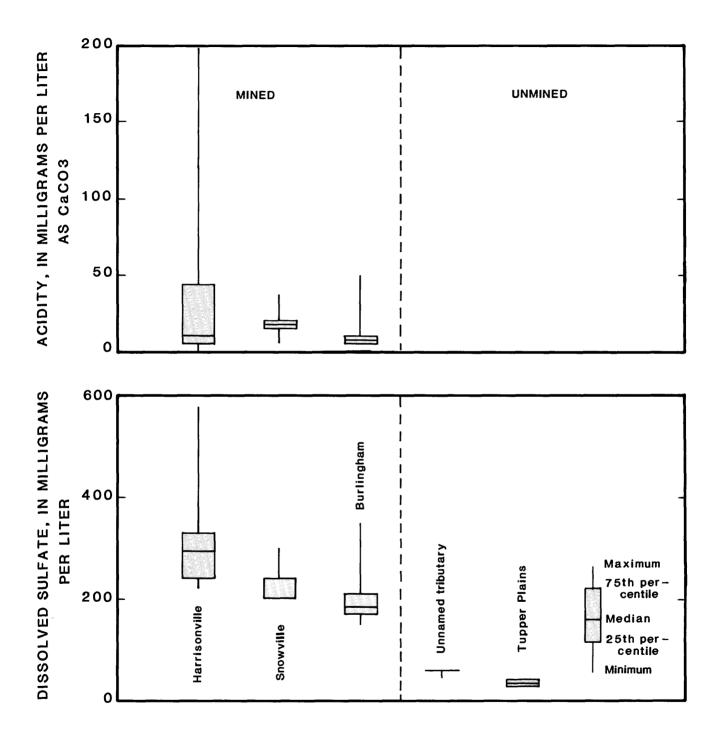
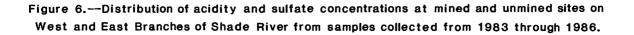




Figure 5.--Distribution of pH values and alkalinity concentrations at mined and unmined sites on West and East Branches of Shade River from samples collected from 1983 through 1986.

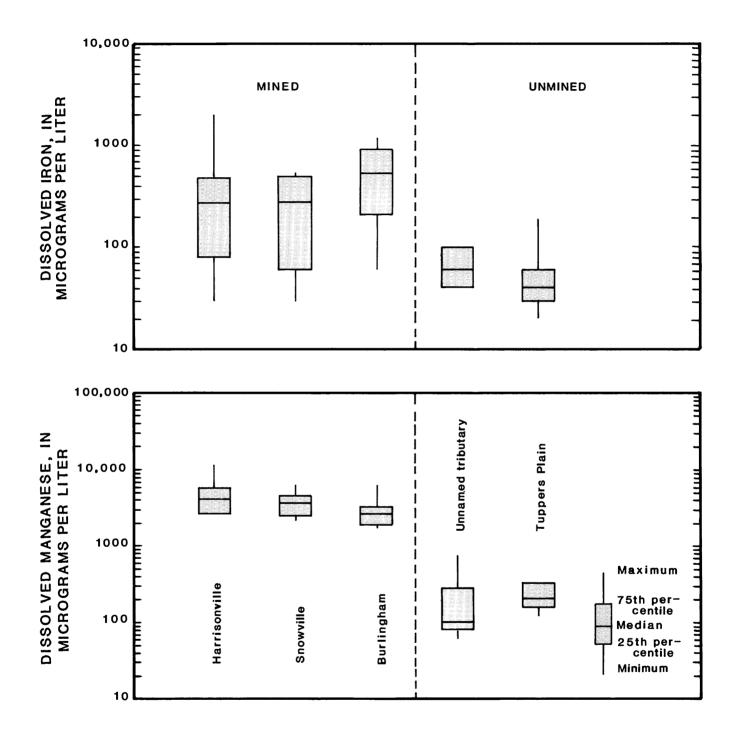


Figure 7.--Distribution of dissolved -iron and -manganese concentrations at mined and unmined sites on West and East Branches of Shade River from samples collected from 1983 through 1986.

Dissolved-aluminum concentration is related to pH and is rarely found in natural waters at concentrations above 100-200 ug/L, except in waters of very low pH (Hem, 1985, p. 73). Median dissolved-aluminum concentrations were near 900 ug/L at the two upstream stations on West Branch Shade River and less than 200 ug/L at the unmined sites (fig. 8). Specific conductance is a general indicator of the concentration of dissolved minerals. Median values were highest progressing upstream in West Branch Shade River basin and lowest in the streams draining unmined areas (fig. 8).

The period over which data were collected was insufficient to perform valid statistical tests of water-quality trends. The Seasonal Kendall test (Hirsch and others, 1982) is most suitable for application to water-quality data that are typically not normally distributed and that vary seasonally. However, because the period of study was relatively short, there were, at most, two samples per season for trend analysis. Additional data are needed over several more years to test whether there are statistically significant trends in water-quality constituents at any of the sites.

However, changes in concentrations and values of constituents analyzed during the study period suggest that some water-quality improvements are occurring at some sites. All water samples were collected during periods of base flow when drainage from the abandoned mines was not diluted with surface runoff.

Alkalinity concentrations appear to have increased at the West Branch Shade River near Harrisonville, where all abandoned surface mines have been reclaimed. Alkalinity was 0 mg/L in 1983 and 30 mg/L in 1986 at approximately the same streamflow. Despite that increase, the alkalinity concentration in 1986 was still less than the concentrations at either unmined site (table 4). Likewise, pH, which in 1983 was lower in the headwaters than anywhere else in the basin, was neutral when measured The fact that pH is neutral, yet alkalinity concentrain 1986. tion is lower than found in unmined areas of the West Shade River basin, may indicate that there is some continuing acid production but that it is buffered. In contrast, there was no apparent change in alkalinity or pH at Snowville or Burlingham during the study period (table 4).

Dissolved-manganese concentration decreased from 1983 to 1986 at the Harrisonville site. At the sites near Burlingham and Snowville, the concentrations did not change appreciably. The concentration of dissolved manganese at all three mined sites remained well above the concentrations at the two unmined sites (table 4). Dissolved-sulfate concentration did not change appreciably at any of the mined sites and the concentrations remained well above the concentrations at the two unmined sites (table 4).

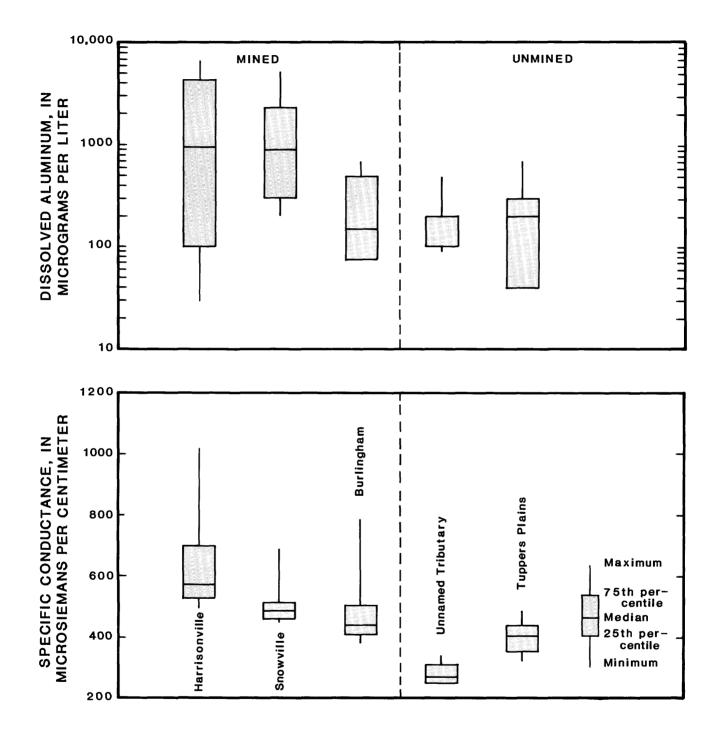


Figure 8.--Distribution of dissolved-aluminium concentrations and specfic conductance values at mined and unmined sites on West and East Branches of Shade River from samples collected from 1983 through 1986.

l ^o C, degrees Celsius; ft ³ /s, cubi at 25	bic feet per se	second; elsius.	ug/L, Dash	micrograms _I indicates no	per liter; o data avai	uS/cm, lable]	microsiemen	s per	centimeter
Station	Date	Time	Temper- atyre (C)	Temper- ature, air (^o C)	Stream- flow, instan- tangous (ft /s)	Spe- cific con- duct- ance (uS/cm)	Hď	Alka- ¹ linity (mg/L as CaCO ₃)	Acidity (mg/L caCO ₃)
Mined sites:									
West Branch Shade River near Harrisonville	06-28-83 01-16-84 05-22-84 01-10-85 06-03-85 07-09-86	1230 1600 0800 0915 1510 1215	27.0 16.5 334.5 30.6	-1.0 5.5 32.0	0.07 0.33 0.2 0.12 0.08	1020 560 572 495 580 815	404907. 2.81112 2.81112	0 m 7 0 m 0 m 7 0 m 7 0	200 94 50 - 9-9
West Branch Shade River at Snowville	01-16-84 05-22-84 01-09-85 06-03-85 07-09-86	1500 0900 1500 1200 1400	0.0 0.0 0.0 70 70 70 70 70 70 70 70 70 70 70 70 70	-1.0 21.5 24.0 27.0	2.8 1.9 0.95 0.18	513 451 485 685	იიედ4 4.ით4.ი	4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	20 15 5.0 37
West Branch Shade River near Burlingham	06-28-83 01-16-84 05-21-84 01-09-85 06-03-85 06-03-85	1400 1200 1450 1630 1300	25.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	2.5 27.0 37.5 36.0	2.4 6.7 135.4 13.0 2.8 2.8	502 4155 4111 4200 4200	000000 000000 000000000000000000000000	91183 410 910 910 910 910 910 910 910 910 910 9	50 1 1 50 1 1 50
Unmined sites:	0-01-/	5 7	•	•	-	00/	• •	7	D T
Unnamed tributary to West Branch Shade River near Burlingham	02-02-84 05-21-84 01-10-85 06-04-85 07-09-86	1300 1615 1155 0840 1500	0.0 22.0 0.5 18.5 25.0	8.0 27.5 6.0 16.0 32.0	7.8 1.4 2.6 0.62 0.01	247 270 250 310 340	ССССС 	4 67 83 83	00000
East Branch Shade River near Tuppers Plains	07-05-83 01-17-84 05-21-84 01-09-85 06-04-85 07-10-86	1215 0930 1245 1210 1000 1045	25.5 0.0 20.0 1.0 24.5	25.0 1.0 6.0 16.0 26.5	3.5 3.5 11.0 11.0 22.0 3.6 0.83	441 355 392 420 490	777777 0887.20	140 110 130 74 120	000000

25

Table 4.--Results of water-guality analyses for West Branch Shade River near Harrisonville, at Snowville, and near Burlingham: for the tributary to West Branch Shade River near Burlingham: and for East Branch Shade River near Tuppers Plains, Ohio, from June 1983 through July 1986--Continued

Station	Date	Sulfate dis- solved (mg/L)	Iron, total recov- erable (ug/L)	Iron, dis- solved (ug/L)	Manga- nese, total recov- erable (ug/L)	Manga- nese, dis- solved (ug/L)	Alum- inum, total recov- erable (ug/L)	Alum- inum, dis- solved (ug/L)
Mined sites:								
West Branch Shade River near Harrisonville	06-28-83 01-16-84 05-22-84 01-10-85 06-03-85 07-09-86	580 300 220 3240 330 330	640 2,900 1,400 1,400 2,400	480 2,000 30 470 80 80	12,000 5,800 3,300 2,800 2,800	12,000 5,800 5,200 3,100 2,700	1,000 7,000 4,600 1,800 1,000	1,000 6,900 4,300 100 900 30
West Branch Shade River at Snowville	01-16-84 05-22-84 01-09-85 06-03-85 07-09-86	240 200 3240 300	960 550 1,600 910	540 540 330 500	4,600 3,800 2,800 3,900 6,400	4,600 2,200 3,700 6,500	2,900 1,600 3,200 1,400 5,100	2,300 300 200 900 5,200
West Branch Shade River near Burlingham	06-28-83 01-16-84 05-21-84 01-09-85 06-03-85 07-10-85	210 200 170 150 350	1,700 1,400 670 1,400 1,400	210 210 650 410 610	3,300 3,300 2,200 1,900	3,300 3,300 2,000 1,900	1,000 1,000 1,000 1,200 700	<pre><100 <100 <100 200 500</pre>
Unmined sites:)))		1))
Unnamed tributary to West Branch Shade River near Burlingham	02-02-84 05-21-84 01-10-85 06-04-85 07-09-86	64 61 62 49	90 250 440 380 3,000	60 100 100 100	150 70 340 110 1,500	100 60 280 80 770	200 100 300 800 1,600	200 500 90
East Branch Shade River near Tuppers Plains	07-05-83 01-17-84 05-21-84 05-21-84 06-04-85 07-10-85	0 7 7 7 7 7 8 7 8 0 7 0 7 0 7 0	1,200 130 760 1,100	190 190 190 190	400 160 330 300 230	340 160 1200 2500 2500	700 <100 200 1,100	300 100 300 40

 1 Alkalinity is assumed to be zero when pH is less than 5.0.

.

 $^2\mathrm{Acidity}$ is assumed to be zero when pH is greater than 7.0.

Previous studies have shown that, in southeastern Ohio, concentrations of manganese and sulfate typically remain at prereclamation levels even after reclamation (Childress, 1984; Pfaff and others, 1981). In fact, sulfate and manganese concentrations are typically reliable indicators of past disturbance from surface mining.

SUMMARY AND CONCLUSIONS

Daily mean streamflow and suspended-sediment concentrations were measured from June 1983 through October 1985 at three streamflow gages located in the Shade River basin--East Branch Shade River near Tuppers Plains and West Branch Shade River near Harrisonville and Burlingham. In addition, water samples for chemical-quality analyses were collected at five locations on East and West Branches, and channel cross sections were surveyed at 10 locations from June 1983 through September 1986. East Branch Shade River basin has never been mined for coal, whereas there are more than 900 acres of abandoned-mine lands in West Branch Shade River basin.

During the study period, about 450 acres of abandoned-mine lands were reclaimed, including all of the abandoned-mine lands above the Harrisonville site and 41 percent of the abandonedmine lands above the Burlingham site. The mean annual suspendedsediment concentrations at the two sites in West Branch basin were more than twice as high (0.51 and 8.6 ton per acre-foot of runoff) in the 1984 water year (before the completion of reclamation activities) as the mean annual suspended-sediment concentrations for the unmined East Branch basin (0.28 ton per acre-foot of run-In the 1985 water year, after the completion of reclamation off). activities, mean annual suspended-sediment concentration decreased at Harrisonville to 0.15 ton per acre-foot of runoff and was unchanged near Burlingham (0.49 ton per acre-foot of runoff). Mean annual suspended-sediment concentration also was unchanged for the unmined East Branch basin in 1985.

Surveys of stream cross sections were made at least twice a year and were used to calculate a cross-section area. The cross section surveyed in the headwaters of West Branch Shade River basin near Harrisonville had scoured. This was confirmed by visual observation of the streambed and by changes in the stagedischarge relation over the study period. The cross section surveyed near Burlingham, however, appeared to be filling. The cross section surveyed at Snowville appeared to be in equilibrium, neither filling nor scouring consistently over the period of Although the source of sediment from the headwaters has study. been greatly reduced because of reclamation, the sediment previously deposited in the channel continues to provide a sediment supply. In addition, there is a continuing supply from the remaining abandoned mines.

Of the tributaries to West Branch Shade River that were surveyed, only one series of cross sections, on Kingsbury Creek, indicated a change in channel configuration. This cross section was scouring over the study period. The channel configuration of two cross sections in the headwaters of Kingsbury Creek and nearest to the abandoned-mine lands appear to be in equilibrium over the study period.

Water quality for the West Branch Shade River basin was characteristic of streams draining abandoned-mine lands. In general, pH and alkalinity concentrations were low and acidity, dissolved-sulfate, and dissolved-manganese concentrations were high compared with East Branch Shade River and the tributary draining an unmined part of West Branch Shade River basin.

Improvements in water quality at West Branch Shade River near Harrisonville were observed following a significant amount of reclamation. All abandoned mines in the headwaters of West Branch Shade River basin were reclaimed by the end of the study period. Alkalinity concentrations and pH values in the headwaters were higher at the end of the study than at the beginning of the study at nearly identical streamflow. Dissolved-manganese concentrations were lower at the end of the study compared with the beginning of the study, although concentrations were still an order of magnitude higher than at the unmined sites.

SELECTED REFERENCES

- American Public Health Association, 1975, Standard methods for the analysis of water and wastewater, 14th edition: p. 275-277.
- Brant, R. A., and Delong, R. M., 1960, Coal resources of Ohio: Ohio Division of Geological Survey Bulletin 58, 245 p.
- Childress, C. J. O., 1984, Classification of stream basins in southeastern Ohio according to extent of surface coal mining: U.S. Geological Survey Water-Resources Investigations Report 84-4212, 83 p.
- Childress, C. J. O., and Jones, R. L., 1985a, Sediment and waterquality data for the West Branch and East Branch Shade River basins, Ohio, 1983 water year: U.S. Geological Survey Open-File Report 85-187, 16 p.
- ----- 1985b, Sedimentation and water quality in the West Branch Shade River Basin, Ohio, 1984 water year: U.S. Geological Survey Water-Resources Investigations Report 85-552, 26 p.
- Colby, B. R., 1956, Relationship of sediment discharge to streamflow: U.S. Geological Survey Open-File Report, 170 p.

- Fenneman, N. M., 1938, Physiography of eastern United States: New York, McGraw-Hill, 691 p.
- Foster, G. R., and Meyer, L. D., 1977, Soil erosion and sedimentation by water--An overview, <u>in</u> National Symposium on Soil Erosion and Sedimentation by Water: Chicago, IL, p. 1-13.
- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. Cl, 58 p.
- Happ, S. C., Rittenhouse, G., and Dobson, G. C., 1940, Some principles of accelerated stream and valley sedimentation: U.S. Department of Agriculture Technical Bulletin 695, 133 p.
- Hirsch, R. M., Slack, J. R., Smith, R. A., 1982, Techniques of trend analysis for monthly water-quality data: Water Resources Research, v. 18, no. 1, p. 107-21
- Leopold, L. B., Wolman, M. G., Miller, J. P., 1964a, Fluvial Processes in geomorphology: W. H. Freeman and Company, San Francisco, 522 p.
- Ohio Board of Unreclaimed Strip Mine Lands, 1974, Land reborn: Ohio Department of Natural Resources, 91 p.
- Pfaff, C. L., Helsel, D. R., Johnson, D. P., and Angelo, C. G., 1981, Assessment of water quality in streams draining coalproducing areas in Ohio: U.S. Geological Survey Water Resources Investigations/Open-File Report 81-409, 98 p.
- Porterfield, G., 1972, Computation of fluvial-sediment discharge:
 U.S. Geological Survey Techniques of Water-Resources
 Investigations, book 3, chap. C3, 66 p.
- Skougstad, M. W., and others, 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. Al, 626 p.
- Trimble, S. W., 1975, Denudation studies--Can we assume stream study state: Science, v. 188, p. 1207-1208.
- U.S. Department of Commerce, 1982, Climatological Data, Annual Summary, Ohio.
- ----- 1983, Climatological Data, Annual Summary, Ohio.
- U.S. Department of Agriculture, 1985, Assessment and Treatment of Areas in Ohio Impacted by Abandoned Mines: 73 p.
- U.S. Geological Survey, 1977, Sediment, in National handbook of recommended methods for water-data acquisition.

Tup: [ft ³ /s	T <u>uppers Plains, Ohio</u> t ³ /s, cubic feet per		mg/L, licate	milligrams per li s no data availabl	: liter; tons/d, .able.]	tons per day.
Day	Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)
			Water year	1983		
		June			July	
ЧСС4гО ЧСС	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	117 411 253 25	1.1 7.62 3.2 3.2	94799 979 979 979 979 979 979 979 979 97	74003 74003	0.11 .09 .08 .25
1 8 10 8 7 6	ч 1 2 4 3 1 1 2 6 7 0 4 8	25 10 10	2.0 6.3 .491 .38	2.7 1.6 1.2 .73	25 118 175	.18 .07 .04
11 12 14 15	11 8.8 5.1 5.2	00000	.30 .19 .16	. 12 . 22 . 12 . 19	120 1198 155	003 003 000 000
16 17 18 20	4.7 4.5 15 22 22	10 10 410	.13 .12 4.6 2.4	.12 .12 .47	16 214 176	000 000 00 00 00 00 00
21 23 24 25	80014 80014 80014	00000	224 118 114 09	.47 .47 2.8 8.2 8.2	20 16 1590 135	.03 .02 .02 364 3.0
26 28 30 31	1 8 8 7 3 8	0111000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.4.4.4.4.4.4.8.3.4.6.8.3.4.6.8.3.4.6.8.3.4.6.4.6.4.4.6.4.6.4.4.6.4.4.4.4.4.4.4	2 2 8 4 2 9 8 2 3 8 4 2 9 8	. 401 . 20 . 12 . 08 . 08
Total	472	-	41.00	130	ł	391

	Daily	Daily mean suspended- sediment	Daily suspended-	Daily	Daily mean suspended- sediment	Daily suspended-
рау	mean streamflow (ft ³ /s)	concen- tration (mg/L)	sediment discharge (tons/d)	mean streamflow (ft ³ /s)	concen- tration (mg/L)	sediment discharge (tons/d)
		Water	r year 1983-	-Continued		
		August			September	
Ч	•		~ ~ ·	0.00	0	0.00
c4 m	•		• 34	00.	00	00.
)44 ΓΩ	1.0	14 25	.07	000.	000	00.
9	27	301	24	00.	0	.00
7	<u>ہ</u>	ഹ	2.1	00.	0	00.
ωσ	2.7 1 8	95 70	. 69	00.	00	00
10	• •	30	.10	00.	00	00.
	α.	46	01.	00.	C	00-
12	.54	25	.04	00.	0	00.
	-1 4	57 57	.17	00.	00	00.
	.30	32	.03	.00	00	00.
16	.19		.02	.00	0	.00
17	.14		00.	00.	00	00.
6 T 6	10	16	000	00.	000	00.
07	• 14		• • •		D	00.
21	.26	25	.02	00.	00	00.
23	00.	17	00.	00.	00	00.
24 25	.00	0 24	00.	00.	00	00.
26	.02	23	.00	00.	0	.00
27	00.		00.	00.	00	00.
2 0 2 9	00.	00	00.	00.	00	00.
30 31	00.	00	00.		0	00.
Total	52.8	1	28.5	0.00	*	00.00
June tl	through September 655	nber: 460				

Daily suspended sediment discharge (tons/d)		0.33 .19 .18 10	24 8.7 2.1 8.1 51	297 297 18 7.4	1.1 .26 .18	211 211 18 183	.59 .59 1.3 .63 .22
Daily mean suspended- sediment concen- tration (mg/L)	(December 4 3 91 33	61 29 89	2 25 2 4 5 3 3 3 0	0 N N N O	25 488 98	53 4 737 13 4 737
Daily mean streamflow (ft ³ /s)		31 24 110 110	131 103 65 198	1433 1444 90 20	2 3 4 4 6 2 3 4 0 9	25 305 128 44	1832261 183226 193
Daily suspended- sediment discharge (tons/d)	60.000	0 .339 .466 .246	.15 .12 .10 .10 200	115 6.7 1.5 36	19 6.3 2.2 1.7	.94 .32 .40	-22 48 -23 5.8 -1-
Daily mean suspended- sediment concen- tration (mq/L)		November 21 27 23 14	10 10 11 239	158 31 14 75	255 200 200	1 2 2 8 7 9 5 8	5 6 106 27 7
Daily Daily mean streamflow (ft ³ /s)	Water	6 4 5 0 6 4 4 0 8 0 • 4 4 0	33334 8 33334 2 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5	408 76 41 28 118	128 94 32 32	29 21 19	16 14 155 47
Daily suspended- sediment discharge (tons/d)		000000000000000000000000000000000000000	00000	000000	4 4 6 6 6 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9	5.5 7.2 393 140 26	L.6 .77 .553 .3899.27
Daily mean suspended- sediment concen- tration (mq/L)		October 0 0 0 0	00000	12 12 11	119 186 208 208 208	53 53 1880 685	1220 1200 1800
Daily Daily streamflow (ft ³ /s)		000000000000000000000000000000000000000	00000		1.0 .84 .633.384	31 39 254 118	27 19 9.1 5.5
Dav		u u u u u	10 8 10 10	11112 1432 154	16 17 19 20 20	2222 24321	26 28 30 31 30 31

suspended-sequment mean ended Daily ment suspended sediment	charge ons/d)				r.m.0.6.	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.95 .68 .77 .07	90	<u>م</u> وب	
Doed Bus	dis (to			0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	о 4 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	г	7	1040 61 16 55	10 1396 234 20 60 60	1,640
	tration (mg/L)		March	30 23 95 33	119 23 8 19 23	6 8 8 3 3 3 8 6 1 1 2 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	365222 3652228 3652228	905 50 31 28	45 305 305 305 305	a a r
concentration, and daily s Plains, OhioContinued baily ily susp pended Daily sedi iment con	streamflow (ft ³ /s)			800000000 900400	119 76 38 33	5 4 5 4 6 7 7 7 7 7 7	1201 190 190	410 172 116 79 66	82 1676 1162 1199	2,550
ppers Plains paily baily suspended- sediment	discharge (tons/d)	-Continued		1.2 2.2 2.2 2.2	. 33 . 47 . 24 . 23	.41 1.2 63 9.9	0.04 0.04	6 6 8 8 4 7 2 8 8 9 4 7 2 8 8 8 9 4 7 2 8 8 8 9 4 7 2 8 8 9 4 7 2 8 8 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	•54 •54 •1- •1-	517
iver near Tu iver near Tu Daily mean suspended- suspended- concen-	tration (mg/L)	ar 1984Con	February	14 17 25 18	0 Y Y Y Y	1 8 1 36 1 36 45	141 141 141	L 0 0 0 0 1	10 512 138 	
Leamilow, daily mean suspended - sequent concent. for East Branch Shade River near Tuppers Plains. Daily mean Daily suspended - Daily suspended - sediment suspended - Daily sediment suspended	streamflow (ft ³ /s)	Water yea		4 8 8 6 6 2 2 4 4 3 3 4 5 7 5	34 1253 178	19 27 199 80	8 6 8 4 5 3 3 3 4 5 2	3347393 3447393 3447393	20 18 154 154	1320
for East Daily suspended	discharge (tons/d)			0.16 .11 .08 .08	11. 118 112 112	1917 1917 1917 1917 1917 1917 1917 1917		.14 .10 .10 .10 .10	16 1.2.55 1.1.555 1.1.555 1.1.555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.55555 1.55555 1.55555 1.555555 1.55555 1.5555555 1.55555555	201
<u>Jaily mean st</u> discharge Daily mean suspended- sediment concen-	tration (mg/L)		January	4 m N N N	m N m m m	ი η 4 ω 4 .	までしてし	8 6 139 125	133818 1113818 131818	1
Table 5L I Daily mean	streamflow (ft ³ /s)			1114 144 144	44404	133 133 133	12 10 8.0 7.0	6.6 6.2 6.2 172 196	101 661 433 433 43	984
	Ъау			H O M 4 D	109876 1	11111 14321	116 118 20 9	222 243 254 254 254 254 254 254 254 257 254 257 257 257 257 257 257 257 257 257 257	26 28 30 31	Total

Daily mean suspended- sediment trationDaily suspended- sediment trationSuspended- concen- trationDaily suspended- sediment discharge (mg/L)AprilSediment discharge (mg/L)April20203.22120223.2338.4338.4338.45311815723.2202.0212.3223.0233.2131.3131.1241.1131.3131.3202.0111.1241.1253.4263.727384283.6202.8211.7<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r year 1984Continued May June 20 1.4 26 22 1.5 20 1.2 19 28 1.4 35 2.8 15 27 1.1 80 11 12 2.2 77 20 1.7 9.5 17 .44	23 2.0 7.9 14 .30 22 2.1 6.6 13 .23 32 3.6 5.7 19 .29 55 13 5.0 24 .32 16 1.7 4.3 19 .22	11 .92 3.7 17 .17 76 26 3.1 23 .19 27 3.0 2.8 23 .17 15 1.3 2.3 27 .17 15 1.0 2.0 25 .14	17 .92 1.5 27 .11 18 .87 1.5 34 .14 19 .77 1.5 33 .13 20 .76 2.0 32 .17 20 .65 1.7 25 .11	.1 21 .57 1.7 16 .07 .1 23 .57 1.4 17 .06 30 1.1 1.4 22 .08 39 1.3 1.5 3.4 40 .37	.1 25 .48 2.1 19 .11 .6 25 .45 1.5 28 .11 933 1350 1.2 20 .06 344 634 1.7 45 .26 57 13 1.3 1.3 46 .15
Daily mean suspended- sediment concen- tration (mg/L)AprilAprilApril1536531201213212223232323232323232313241325261327283020202020202020202020202020202020202020	Daily uspended- Dail ediment mean ischarge stream tons/d) (ft ³ /	Water ye 3.2 26 1.9 226 6.8 26 72 81 31	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 4 4 0 2 3 4 4 4 0 2 3 4 4 4 0		.95 4 .95 6 .9. 13 7.5 .8. 8.	76.1 76.1
	aily mean suspended- sediment concen- tration (mg/L)		01532	1 M N Q O	40940	0 8 1 1 3 8 0 2 3 0	

	Table 5	<u>Daily mean s</u> t discharge	treamflow. for East	<mark>daily mean su</mark> Branch Shade Ri	<u>suspended-sediment</u> e River near Tupper		ation. Ohio-	and daily suspen -Continued	suspended-sediment
рау	Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)	Daily Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended sediment discharge (tons/d)
				Water yea	ar 1984-	-Continued			
		July			August			September	
н и м ч п	9.00 1.8 1.8	74 38 12 12	1.7 .58 .10 .06	1.2 9.1 45 45	18 24 32 32 33 32 33	0.06 .10 2.1 41	0. . 355 . 300 . 20 . 20 . 20 . 20 . 20 . 20 . 20	533 36 5333 533 533 533 533 53 53 53 53 53 53	0.022
108876 10876	4 - 4 2 4 - 1 - 4 - 1	133 133 133 133 133 133 133 133 133 133	.85 .11 .07	15 7.1 3.3 3.3	946 341 341	1.4 1.4 .55 .27	.22 .19 .19	221222	100.00
113 14 13 14	4.2.4. 4.2.4.4 4.2.4 L	₩ 4 6 W G ₩ 4 10 W D		1.69 1.23 1.69	4231 12831 145		.16 .12 .30 .30	00066 17555	00000
16 198 209 209	 ბდისიკ სეკეკის	12460 12460	.05 .024 022 022	1.1.2 4.1.2 5.0 2.0 2.0	20 3 3 3 3 3 3 3 3 3 8 8 5 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 8 8	.066 .056 .118 .11	.226 .199 .166	66178 6817 817	11000
227 257 257 257 257 257 257 257 257 257	744. 744. 7544.	01110	10.10.10.	40014 40014	169 169 169 169 169 169 169 169 169 169	89999 20000 		1128 1128 1178	00000
33 8 874 333 8 874 310	120011 12001 12081 1208	10 111 137 24 17	.01 .04 3.3 .05 .07 .07	1.2 1.0 .63 .30 .30	252 252 255 255	00333900 00333900 00550		17 17 16	000000000000000000000000000000000000000
Total Year 14	. 74.0 14,000		9.41 ,700	160		104	5.40	-	0.18

Daily suspended sediment discharge (+ons/d)	(tons/d)		1.4 .50 .352 46	.29 .21 .21 .20 64	34 14.1 1.1	1.0 .77 .68 14	85 38 20 10 7.7	3.6 2.1 1.4 1.4 11 .95 76
an rted-	(IJ/ĒM)	December	7 116 116	11 11 11 11 11 11 11 11 11 11 11 11 11	100 23 12 12	12 11 21 115	4 17 4 17 130 70 38 38	4 2041475 041470
I Daily mean streamflow (f+ ³ /s)	(ft /s)		231 233 183 183 183 183 183 183 183 183 183 1	18 133 122 122	1 66 3355 46 855 855 855 855 855 855 855 855 855 85	409 56	288 3 94 70 75	4 4 7 7 7 4 8 Q の ゆ の み ゆ の 4 Q
Daily suspended- sediment discharge (+ons/d)	(tons/d)		0.39 .27 .15 .80	.76 .34 .18 29 66	78 6.2 1.1 .28	.25 .24 8.5 5.1	1.9 .97 .52 .39	.36 7.24 8.0 1.7
Daily mean suspended- sediment concen- tration	(mg/L) er year 1985	November	0 8 7 8 7 3 1 5 5 3 3 1 5 5 3	28 18 98 1 84	1 1 1 8 8 8 8 8	2 6 4 9 7 4 3 5 0 7	1123 1133 112	1 6 8 4 1 9 8 8 9 1 1 7 5 8 9 1
Daily Daily mean streamflow (ft ³ /s)	(it /s) Water		4 m m m m m 0 0 0 0 4 . 0 0 0 0 4 .	10 7.0 5.5 129	173 51 25 13	13 9.9 135 78	337 194 136 13	12 10 44 36
Daily suspended- sediment discharge	(tons/d)		000000	00000	000000	.00 .00 .02 .02	.03 .57 .17	.13 .11 .47 8.2 3.3 .71
Daily mean suspended- sediment concen- tration	(лд/Гл)	October	с 44 с 1111	12223 12223		9 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0	16 335 22 22 22	219 219 38 38 38 38 38 38 38 38 38 38 38 38 38
ily an amflow 3/s/	(ft /s)		0.06 .13 .14 .17		.17 .17 .17 .18	.25 .25 .46	.2088 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	2.6 2.0 19 6.9
ue (l	Day		н си та ф го Г	10896 1	1112 143 154	16 19 20 20	007701 00000	310008700 33008700 3300

.ly nded ent arge	(tons/d)							0	49 412 41
Daily suspended sediment discharge	(ton			ЧЧ 4		217 977 33 11 5.5	9090 11229 11229	1.1 1.0 5.3 1.1	4 4 4 4 4 5 4 4 5 4 4 5 6 4 4 5 6 6 4 4 5 6 6 7 6 7 6 7 6 7 6 7 7 6 7 7 7 7 7 7
Daily mean suspended- sediment concen- tration	(mg/L)		March	100 113 101 101 101 101 101 101 101 101		500 500 85 281 281	23 22 17 18	79807 79807	୧୦୦ ୧୦୦ ୨୦୦
Daily mean streamflow	(ft ³ /s)			4 K C C 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 0 0 0 0 0 4 0 C 0	145 144 101 101	2333456 2333456	7 4 4 7 7 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7	5332 558 57 57 57 57 57 57 57 57 57 57 57 57 57
Daily suspended- sediment discharge	(tons/d)	-Cont inued		14 .42 .27 .20 .20	.20 .17 .17	81 - 28 81 - 28 3.4 4.1	3.0 2.3 2.1 2.1 25	82 679 156 30	14 35.5 3.1
Daily mean suspended- sediment concen- tration	(mg/L)	year 1985-	February	49 117 88	∞∞∽∽∽	2 3 5 8 4 1 5 0 8	19 15 81 81	159 470 160 100	55 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3	(ft ³ /s)	Water		, 9,9,9,9,9 9,9,9,9,9,9,9,9,9,9,9,9,9,9	00000 00000	533 13 13 13 13 13 13 13 13 13 13 13 13 1	55 53 86 80 81	158 453 633 111	92 68 72 111
Daily suspended- sediment discharge	(tons/d)			47 29 13 5.8	₫₫ო 0,000,00 0,000,00,00,00,00,00,00,00,00,	4 9 9 2 9 • • • • 0 • • • • 0	. 6 9 9 9 9 9 . 9 9 9 9 9 . 9 9 9 9		
Daily mean suspended- sediment concen- tration	(mg/L)		January	1090 1090 109 109	ດດດ4 ປາດ	10555 10555 10555	6 6 6 7 7 7	881 738 68 738	040040 080740 080
Daily mean streamflow	$+ \sim +$			9 4 4 5 6 9 4 4 5 0 9 0 3 4 4 5 0	23 23 23 23 23 23 23 23 23 23 23 23 23 2	20 119 156	144 112 112	10 9.6 4.6	
	рау			H CI M 47 10	108876 10	1177 14 12 12	16 19 20	22 24 24 24 25	20 310 310 310 310 310 310 310 310 310 31

		Daily mean			Daily mean	Daily mean	Daily	Daily mean	
	Daily mean streamflow (ft ³ /s)	<pre>suspended- sediment concen- tration (mg/L)</pre>	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	<pre>suspended- sediment concen- tration (mg/L)</pre>	Daily suspended sediment discharge (tons/d)
				Water yea	r 1985-	-Continued			
		Apr il			Мау			June	
	216 111	122	77 12	5.2	17 232	0.2 4 229	5.2 4.4	4 5 2 2 2	0.63
	79 59	21	ດ ເມີນ ເມີນ	286 66	150 35	139 6.2		2 S 2 S	. 55
ъ	47	19		37	22	•	•	52	•53
92890	4 5 6 4 4 5 5 5 5 5	16 50 133 133	1.9 16.1 3.4 1.6	237 188 135 13	2233331 223333 225	1.5 1.4 .89 .77	8 4 4 4 N ••••• ••••	442 3347 347	.48 .41 .338 .29
H Cl Ch 44 LD	23334 070 0710	12 17 18 19 19	с. 	12 12 12 12 61	19 16 18 232 232	.62 .48 .58 .78 229		31 70 61 58	.26 1.2 .68 .49
92840	122 122 123	20 19 19	1.2 .92 .87	230 392 477 26	150 35 80 37	139 8.7 2.8 10 2.6	0.1228 2.128 2.128	5 2 2 4 4 7 2 7 4 4 7 2 7 4	.41 .338 .27 .24
H 01 07 47 10	13 11 8.7 8.5	17 18 16 15	0.044 0.0084 0.0084	1138 1138 1138	9005094 4005	.5093 .5093 .5093	1.7 2.0 2.0	4 0 0 0 0 4 4 0 0 0 0 4	.19 .17 .17 .19 .18
908901	001441	1 14 19 19 19 18	.28 .31 .33 .26	5.7723 5.7235 5.7723	ц 4 4 4 б Н 8 6 0 Г 4	1.2 .95 .95 .67	11.6 1.1 .94 44	221122	.14 .08 .06
Total	1,100	8	139	1,380	8 3 6	062	88.2	7	11.7

	Table 5	<u>Daily mean s</u> <u>discharge</u>	treamflow. for East B	aily mean su anch Shade R	<u>spended-sed</u> i iver near Tu	<mark>daily mean suspended-sediment concentration, and daily</mark> t <mark>ranch Shade River near Tuppers Plains, Ohio</mark> Continued	ration, and , OhioCont	<mark>daily suspe</mark> r inued	suspended-sediment
	Y If low	Daily mean suspended- sediment concen- tration	עסימיס ו	Y Iflow	Daily mean suspended- sediment concen- tration	ע מיסימים	Daily mean reamflow	Daily mean suspended- sediment concen- tration	Daily suspended sediment discharge
Day	(ft ^{-/} s)	(mg/L)	(tons/d)	(ft ^{~/s)} Water year	(mg/L) 1985-	(tons/d) -Continued	(ft ⁷ /s)	(mg/L)	(tons/d)
		July			August			September	
7 7	0.93 1.0	23 23	0.06 .06	0.93 .75	16 19	0.04 .04	2.4 1.4	35 29	0.23.11
ი -	2.4	800	-	.62	18	0.0	•	23	.06
4 LO	• •	21	.12	.50	12	.02	.50	12	.02
91	•	21	.10	.50	10	.01	45 °	15	.01
~ @ ¢	00 1 7 0 1	21	51.	44	9 0 0	.01	. 00 . 00 . 0	10	000
10	• •	21	.10	• 4 4 • 4 3	7 0	00.	.24	νu	00.
	•	20	2	- et (г (00.	.21	<i>с</i> п с	00.
13	1.7	21	60 ·	.29		00.	.03	00	00.
	•	20 174	0	N N	6	00.	00.	00	00.
16	•	107	5	.25	տո	00.	00.	00	00.
18	0 m 4 n 7 r	55 1	. 34 46.	• 40 • 68 • 68	ດເດມ	000			000
20		34	.12	1.0	പ	.010	00.	00	00.
21		72	2.4	.72	5	00.	00.	00	00.
9 M 4 9 M 6	- 9 r • • • r	00 14 00		. 62	0 10 1			000	
29 25	• •	27	.12	23	69	• 0 1 8 • 2	00.	00	00.
26 27	1.3 2.0	23 20	.08 .11	8.8 2.4	111 58	2.6 .38	00.	00	00.
28 298	• •	16 14	00. 70.	1.4	4 L 7 L	.10	00.	00	00.
30 31	1.1 .95	15 15	• 04	5.0	36	.12	00.	0	00.
Total	124	1 1 1	41.1	55.8	1 1 1	12.6	7.80	1	0.47
Year 12	2,100	U	6,680						

. ų

lft	³ /s, cubic	eet per	second; mg/L, mi no data ava	milligrams per vailable.]	liter.	Dash indicates
рау	Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)	Daily Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	 Daily suspended- sediment discharge (tons/d)
			Water year	1983		
		June			July	
L1 C1 C1 4 L1	115 118 220	5 5 2,300 6,050 1 413	0.20 .15 334 ,100 29	4 0.00 4.00 8.00 8.00 8.00	8,130 353 219 134	1,510 8.8 .30 2.2
6 1 10	15 12 5.6 5.2	1130 275 10 5	59 11 .21 .08	1.3 1.3 .73 .73 .73	0 0 8 0 0 5 7 7 3 3	, 14 , 11 , 08 , 04
11111 128432	4446 99779 99779	ហហហហហ	.06 06 05 05		120 156 145 156	02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03 03 03
16 176 198 20	1 4 1 4 1 5 1 2 8	5 5 2,030 820	.05 .05 .05 .06 .331 .38	.49 .49 1.2	12 10 2,170 80 20	.02 .01 .48 .06
0 7 7 3 3 5 1 2 7 7 3 5 1	84666 29466 29470	ບ ບັບເບັບ ບັບເບັບ	.59 .06 .04	1.0 .94 .91 42. 9.3	15 15 10 4,290 1,830	.04 .04 .02 826 147
226 229 31 31	133.00 134.33 14.3	5 55 1,820 	04 04 04 -04 -04 -12 242	7.0 2.3 1.4 .97 .60	1,090 15 15 10 10	30 - 09 - 06 - 03 - 02
Total	287	2	2,050	152	1	2,620

Table 6.--Daily mean streamflow, daily mean suspended-sediment concentration, and daily suspended-sediment discharge for West Branch Shade River near

6 <u>Daily mean streamflow, daily mean suspended-sediment concentration.</u> daily suspended-sediment discharge for West Branch Shade River near ingham, OhioContinued	ily meanDaily meanuspended-Dailyuspended-Dailyuspended-Dailyuspended-suspended-concen-sedimentsedimentmeanconcen-sedimenttrationdischargeattion(tons/d)(ft ³ /s)(mg/L)(tons/d)(ft ³ /s)	Water year 1983Continued	August September	7,340 156 0.00 0 0.00 60 .60 .00 0 0.00 10 .04 .00 0 .00 10 .30 .00 0 .00	 υ υ υ υ υ υ 02 01 00 <li< th=""><th>υυσυν 00 00 00 00 00 00 00 00 00 0</th><th>0 .00 .10 0 .00 .11 0 .00 .15 0 .00 .06 0 .05 .00 0 .05 .00 0 .05 .00 0 .05 .00 0 .05 .00 0 .05 .00</th><th>0 .00 .21 0 .00 .14 0 .00 .06 0 .06 .00 0 .06 .00 .00 .06 .00 .00 .06 .00 .00 .06 .00 .00 .00 .00 .01 .02 .00 .02 .03 .00 .03 .04 .00 .04 .00 .00</th><th></th><th></th></li<>	υυσυν 00 00 00 00 00 00 00 00 00 0	0 .00 .10 0 .00 .11 0 .00 .15 0 .00 .06 0 .05 .00 0 .05 .00 0 .05 .00 0 .05 .00 0 .05 .00 0 .05 .00	0 .00 .21 0 .00 .14 0 .00 .06 0 .06 .00 0 .06 .00 .00 .06 .00 .00 .06 .00 .00 .06 .00 .00 .00 .00 .01 .02 .00 .02 .03 .00 .03 .04 .00 .04 .00 .00		
<mark>an streamflow</mark> ded-sediment c Continued	L L	Water	August	,340 60 10 15	ហហហហហ	ካ ካ ካ ካ ካ	ህ ህ ህ ህ ህ	n n o o o		
ble 6 <u>Daily mean</u> and daily suspende Burlingham, Ohio	Daily Daily mean streamflow (ft ³ /s)			21 3.2 1.6 .68	1.7 .76 .55 .21	.33 .33 .21 .18	.14 .12 .12 .10	.02 .00 .00	000000	
Table and Burl	Day			Ч О М Ф Ю Р	109876	11 14 15 15	16 17 19 20	22 24 24	26 28 310 310	

157 4,830

34.0 474

June through September

.

Daily suspended sediment discharge (tons/d)		2.1 1.7 1.7 120 17	48 110 3.8 55	20 180 59 7.7	2.1 1.1 .57	3.8 50.8 1.1 1.1	2003 2003 2003 2003	
Daily mean suspended- sediment concen- tration (mg/L)	December	55 49 121 121	196 112 47 221	169 389 117 69	27 155 133	168 168 28 20	41 11 10 10 10 10 10 10 10 10 10 10 10 10	
Daily mean streamflow (ft ³ /s)		14 13 121 51	8 80 91 91	1 706 423 22	239 157 135	20 110 33 21	9460111 941111	
Daily suspended- sediment discharge (tons/d)	4	0.04 .04 .11 .13	.10 .07 .06 .06 318	150 3.5 .46 15 15	17 7.6 2.2 1.8	1.9 .94 .59	.40 .43 90 5 3.4 	
Daily mean suspended- sediment concen- tration (mg/L)	Water year 198 November	∞ ∞ ∞ ∞ ∞	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	346 42 10 118	128 499 499	4 2 3 3 3 2 5 9 2 5 9 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	18 222 101 67	
Daily mean streamflow (ft ³ /s)	Wa	000770 000770 000770	4.8 3.1 2.8 140	128 31 17 36	50 37 17 15	77777777777777777777777777777777777777	8.2 7.2 107 35 19	
Daily suspended- sediment discharge (tons/d)		000000000000000000000000000000000000000	00000	003800	00000	3.5 47 414 191 63	2.7 .42 .114 .08	
Daily mean suspended- sediment concen- tration (mg/L)	October			4 4 1,120 71 8	ব ব ব ব ব	89 313 416 372	1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Daily mean streamflow (ft ³ /s)		000000000000000000000000000000000000000	00000	.04 18 08 08	.04 .10 .10 .50	14 27 107 52	л 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
Ъау		Ч <i>С</i> м 4 Ю	109876 10987	11 13 15 15	506870 511870	22 23 24 25 25	26 30 30 30 30 30 30 30 30 30 30 30 30 30	

ily	suspended sediment discharge (tons/d)			38 38 6	8 60 4 12 7 4 1- 2 4 1-	4 2 2 8 2 7 2 4 4 2 8 2 7 2 4 4 5 8 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.53 .64 .81	0.0	ია
1.				25 O	юнн			565 274 235	649 649 1999 1999 1999 1999 1999 1999 19
aily mean suspended	sediment concen- tration (mg/L)		March	10 11 17 109	333 77 1117 1117	85222	333723 5753 5753 5753 5753 5753 5753 575	1,150 356 185 42 29	24 24 755 1,030 332 157
10Continue Dailt	uaiiy mean streamflow (ft ³ /s)			446 446 832 11	233 239 241	1119 101 101	11111 53455	171 75 28 28	233 234 44 44
Shade River near Burlingham. OhioContinued Daily mean suspended - Daily iv catimore custondad - Daily	suspended- sediment discharge (tons/d)	-Continued		ບ 1 ອ ດ ດ 1 ເມືອ ດ ດ 1 ບ	1.266921 1.667 1.7	2.3 3.1 11 11	3.6 1.8 1.1 .97	. 53 . 53 . 53 . 53	•••••••• •••••••••••••••••••••••••••••
lver near Bu Daily mean suspended-	sediment concen- tration (mg/L)	ar 1984Con	February	4 2 3 6 0 6 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22 60 31 27	2 3 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	46 155 155	1143 1336 1430 1330 1430 1330 1330 1330 1330 1330	
	bairy mean streamflow (ft ³ /s)	Ye		335445 33445 3335445	16 13 16 16	230 230 425	523 523 523 523 523 523 523 523 523 523	165 117 165	1
Daily	suspended- sediment discharge (tons/d)			0.36 .32 .31 .31	.29 .28 .25	. 29 . 29 . 29 . 29	. 22 . 25 . 18 . 18	.16 .15 .13 117 36	115 5.6 2.2 2.2
<u>aischarge</u> Daily mean suspended-	sealment concen- tration (mg/L)		January	123322		665 53 10111	40008 11111	144 134 156 156	0044839 10046839
. Lied	bairy mean streamflow (ft ³ /s)			11 10 9.6		4 4 0 0 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	40.0826 40.085 40.085	4.3 4.0 50 157	9 9 9 1 5 2 3 3 4 5 5 3 3 9 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	рау			10m4r0	6 10 10	11 12 14 15	16 17 18 19 20	22 23 24 25	20 33 30 3 30 3 30 3 30 3 30 3 30 3 30

Table	6 <u>Daily mean</u>	an streamflow, daily discharge for Wes	2W. daily mea 2 for West Br	<u>m suspended-</u> anch Shade R	<u>sediment cor</u> liver near Bu	. daily mean suspended-sediment concentration, and daily suspended-sediment for West Branch Shade River near Burlingham, OhioContinued	<u>and daily su</u> <u>io</u> Continue	l <mark>spended-sed</mark> ; d	lment
Дау	Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s) 0	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily mean suspended- sediment concen- tration (mg/L)	Daily suspended sediment discharge (tons/d)
				Water ye	year 1984Continued	ıtinued			
		Apr i l			Мау			June	
H 01 W 41 D	33 26 160 160	60 48 210 1080 621	5.4 3.4 52 270	20 18 22 27	59 414 1417 67	3.1 3.1 19 5.1	21 16 12 6.3	320 99 15 18	17 4.0 .94 .32 .31
0 10 10 10	2 2 8 2 9 8 2 3 4 2 4 2 4 2 3 8 2 3 4 2 4 2 5 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	466 185 67 53	۰ ۵ ۵ ۵ ۳ ۰ ۰ ۵ ۵ ۳ ۰ ۵ ۵	334 334 233	153 70 152 145	15 6.4 11 11	4 m m m 4 • • • • • • • • • • • • • •	68 53 111 211 211	.27 .11 4.7 .06
12 14 15 15	22 19 16	6 7 7 7 6 8 8 7 7 7 7 7	2.3 1.8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	21 29 18 16	44 43 67 95	12.5 14.5 1.4 1.3	2.8 1.68 1.168 1.168	335 35 35	.05 .77 .15 .15
16 17 19 20	14 14 16 16	22 55 124 24		10 10 10 10 10 10	77 30 35 35	2.5 .81 .69 .14	0.49 • 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9 •	13 17	.056 .058 .88 .078 .078
22 23 24 25	14 117 107 55	17 692 399 158	410.64 126 106 25	5 5 1 3 5 8 5 8 5 8 5 8 5 8 5 8 5 8 8 5 8	73 69 27 88	1.66 5.9 2.57	1.8 1.4 1.4 3.3	40 21 15 203 241	.25 .08 9.3 2.1
26 27 28 30 31	440 33440 1223	1152 1168 116 422 	5.6 13 3.1 2.9 	4.3 3.9 103 41 29 29	11 2,820 397 189 569	.13 .08 868 204 21 42		108 21 7 76 169 	.38 .06 .06 1.4
Total	1480	1	1,910	870	[1,310	133	8	45.3

ι

Da ily me an	Daily-mean suspended- sediment concen-	Daily suspended- sediment	Daily mean	Daily mean suspended- sediment concen-	Daily suspended- sediment	Daily mean	Daily mean suspended- sediment concen-	Daily suspended sediment
streamflow (ft ³ /s)	tration (mg/L)	disch a rge (tons/d)	streamflow (ft ³ /s)	tration (mg/L)	discharge (tons/d)	streamflow (ft ³ /s	tration (mg/L)	discharge (tons/d)
			Wa	Water year 198	15			
	October			November			December	
00.	000	00.0	4.2 2.1 0	19 41 71	0.22	35 21 18	98 30 30	
000	000	00.		97 97 97	.91	1346	20 15	
00000		00000	3.8 2.4 33 87 87	23 19 747 906	.24 .12 .08 135 234	81114 83747	122 122 194	•45 4.1 1.0 67
00000		00000	78 21 13 9.8	1,770 440 52 28 19	381 25 1.8 .47	224 224 224	200 68 81 30 24	38 •••• •••8 3 4 9
13 06 05 05	ഷ് ന ന ന ന	00000	8 8 8 3 3 3 3 3 3 5 6 6 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	17 17 856 1,650 500	.39 .28 .118 370 53	222 222 222	31179 3173 3173 3173 3173 3173 3173 3173	.97 .73 3 3 3 3 3 3 3 3
22 22 90	8225 137 82 82 82 82 82 82 82 82 82 82 82 82 82	00 3 .11104	20 17 11 8.8	4 M V 8 4 9 8 6	2.6 1.6 .144 .144	154 225 74 55 65	448 483 969 969	367 793 30 20 16
50 6440 50 54420 50 54420	12 86 30 179 65	.02 .00 .61 .4.3 .79	7.2 6.5 29 21	6 230 200 67	.12 .11 34 16 5.5	4,4,0,0,0 10,0,0,0,0 10,0,0,0,0,0	214 214 200 4 200 4 200	1 2 1 1 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8
. 4		62.0	608		1,380	1,350		1,390

1 Daily suspended sediment discharge	(tons/d)			6.2 5.1 4.0 13	ເບ 4 L ເບ 4 ວີວິດ 4	79 482 58 23 9.1	го4кк ∙∙о4кк	3.0 13.2 4.9	3.6 2.9 1.7 1.7
Daily mean suspended- sediment concen- tration	(mg/L)		March.	4 0 0 7 0 4 0 0 7 0 7	0010 9010 9010 9010 9010 9010 9010 9010	130 150 150 39	900 900 900 900 900	3 4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	30 23 119 1130 1130
Daily mean streamflow	(ft ³ /s)			С 8 С С 8 С 8 С С 8	4 0338 7 038 7 038	146 440 118 86	47 47 38 38 38	29 71 52 11	455 399 370 370 370 370 370 370 370 370 370 370
Daily suspended- sediment discharge	(tons/d)	-Continued		0.14 .14 .12 .12 .12	01. 010. 00. 70.	.12 6.4 20 15	112 9.6 8.018	96590 5297 54970	14 14 8.7
Daily mean suspended- sediment concen- tration	(mg/L)	ar 1985-	February	007700	ል ወ ወ ወ 4	125 125 125 128	111 98 84 82	205 655 330 160	95
Daily mean streamflow	(ft ³ /s)	Water ye		~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* * * * * * • • • • • • • • • • • •	1919 1918 1928 1919	4 4 4 4 0 0 0 0 0	100 316 469 125	88 71 54
Daily suspended- sediment discharge	(tons/d)			иоции ••••• •••••	ი ი	09696 94666 		.20 .18 .18	1
Daily mean suspended- sediment concen- tration	(mg/L)		January	5 5 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 8 7 7 7 8 7 8	2 7 2 8 0 8 7 2 8 0	1723 172 172	11001	თ თ თ თ დ	∞ ∞ ∞ ∞ ∞ 0
Daily mean streamflow	+ -			51 451 322 27 27	24 19 15	14 112 111 112	10 9.6 8.889.6	8. 7.6881 .246	00000 00000000000000000000000000000000
	Day			H0040	6 10 10	1172 14 15	16 17 19 20	22 24 25 4 25	30 6 870

Daily suspended sediment	discnarge (tons/d)			0.55 .43 .35 .35	• 35	2345 2345 2346 2340 240 240 240 240 240 240 240 240 240 2	.75 .9 .39 .35	.33 .27 .34	.25 .23 .23	1.1.1.0 1.1.4 1.2.4 1.2.4
Daily mean suspended- sediment tration			June	ርጋ ርጋ ቁ ጥ ር ቁ ቁ ቁ ቁ ቁ ቁ	42	4 4 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 C 4 4 4 8 C 6 C 9	ম মৰাৰাৰ ম বাৰাৰাৰা	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	31 31 25
Daily mean	streamilow (ft ³ /s)			4°°°°°	3. I	и а а. 	1.3 5 2.3 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 1.0 8 1.0 8 1.0 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 8 1.0 1.0 8 1.0 1.0 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		**'	
Daily suspended- sediment	aiscnarge (tons/d)	t inued			6.6	3.8 2.1 1.1 .87 .87	.72 1.1 1.7 151	152 92 144 155 27	8.8 4.0 1.88 1.28	4.5 4.5 11.7 1.0 65
Daily mean suspended- sediment concen- tration	uration (mg∕L)	ar 1985Continued	May	80 1070 290 80	41	47 0 0 7 0 0 0 0 7 0 0 0 0 7 0 0	344 251 380 380 380	360 4930 260 260 260	1 44 0 5 5 0 5 8 8 0 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8	L 401 45068114 6068114
Daily mean ctrosmflow	streamriow (ft ³ /s)	Water year		4 .5 100 170 110	60	35 20 114 9.2	7.8 12. 81.5	156 148 78 82 38	22 15 10	7.5 112 11 5.5
Daily suspended- sediment	discnarge (tons/d)			142 32 15	I 3	240 210 5.21 5.21	9.1.9.9.5 9.1.9.9.0 9.1.9.9.0		1.1 .97 .81 .83	62 488 1331 1311 1311 132 132 132 132 132 132
Daily mean suspended- sediment concen-			April	105 105 16		136 175 46 34	с с с с с 4 с с с с с 4 с го 4 4	33333333333333333333333333333333333333	330 330 330 330 330 330 330 330 330 330	22 28 28 28 28 28 28 28 28 28 28 28 28 2
Daily mean ctrosmflou	streamilow (ft ³ /s)			188 112 90 73	63	5 7 3 6 5 0 7 3 6 5 5 0	и а а и и и и о н о и	103 103 103 103 103 103 103 103 103 103	13 110 • 4	80 м л л л л л л л л л л л л л л л л л л
	Day			<u> ころま</u>	ß	100876 10	11577 11577 11577	16 17 19 20 20	25 23 25 25 25 25 25 25 25 25 25 25 25 25 25	31 33 31 31 31 31 31 31 31 31 31 31 31 3

	Daily	Daily mean suspended- sediment	Daily suspended-	Daily	Daily mean suspended- sediment	Daily suspended-	Daily	Daily mean suspended- sediment	Daily suspended
Day	mean_ streamflow (ft ³ /s)	concen- tration (mg/L)	sediment discharge (tons/d)	mean streamflow (ft ³ /s)	concen- tration (mg/L)	sediment discharge (tons/d)	mean streamflow (ft ³ /s)	concen- tration (mg/L)	sediment discharge (tons/d)
				Water ye	year 1985Cor	-Continued			
		July			August			September	
Ч Ч М Ч Ю Н	3.3.4 9.05 3.1.1.80 1	24 23 26 26 26 26 26 26 26 20 20 20 20 20 20 20 20 20 20 20 20 20	0.16 .19 .22 .21	0000 000 0		0000 0000 0	1.5 .84 .60 .28	17 15 15 12	0.07 .04 .01 .01
л 1 1 9 8 9 8 7 6	1.88 1.88 1.88 1.88	222 222 222 222 222		000000		000000	.15 .10 .06	н 2073 281	000000
11 14 14 14	2.1 1.7 13.7	20 18 18 55	.11 .09 .08 1.4	00000	00000	00000		00000	00000
114 118 200 200	2.8 .81 .65 .64	2011 2011 2011	. 20 . 09 . 03	000000	00000	000000	000000	00000	00000
247351 77777 77777	35 6.9 1.9 1.3	374 115 68 49	35 2.0 .53 .17	.00 .00 .05 14	90200 97500 97500		000000	00000	00000
26 27 310 310 310 310 310 310 310 310 310 310	9.08 9.9 0.0 002 002 002 002 002 002 002 002 002	95 32 9 0	2.3 1.6 .00 .00	4.5 1.5 .64 3.0	9994809 3094809	. 4 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	000000	00000 	00000 00000 00000
Total	119	8	46.4	25.8	ļ	3.31	4.19	1	0.14
Year 1(10,200		9,960						

		[ft ³ /s, cubic	feet per	Harrisonville, Ohio second. Dash indic	ates no	data available	le.]	
	Daily mean streamflow	Daily suspended- sediment discharge	Daily mean streamflow	Daily suspended- sediment discharge	Daily mean streamflow (+1 ³ /2)	Daily suspended sediment discharge	Daily mean streamflow	Daily suspended sediment discharge
Uay	m	(cons/d)	8	(tons/d) Water year 19	(ITC	(cons/d)	(12 / 2)	
	June	ле	July	X	August	st	Sept	September
ユ234m			0.03 .03 003 003	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.94 .155 .50 .20	5.0 3.9 1.9 2.0	00000	000000000000000000000000000000000000000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000 2000 2000	 2.1 .75 .64	998888 0800 0800 0800 0800	, <u>––––</u>	4 N O O O	801000 00000000000000000000000000000000	00000	00000
12 13 12 13 12	.20 .20 .19 .18	• 56 • 55 • 49	.08 .08 .07 .07	.18 .16 .16	000000	00000	00000	000000
16 17 19 20	.17 .19 .40 .81	• 46 • 52 • 60 3.9	.06 .08 .03	.13 .13 .18 .16	000000	00000	.00 .044 .00 .00 .00	.00 •00 •00 •00
21 23 25 25 25	004 004 006 006	.18 .13 .13	.00 .06 .58 .06	.13 .13 .13 .13	000000	00000	00000	00000
26 28 30 3 3 28 26 3 3 26 3 3 26 3 3 26 3 3 3 3 3 3 3 3	 	111 10 08 08 03 03	.00 .00 .00 .00 .00 .00 .00	.006 06 06 06	000000	000000	.01 .02 .03 .04 .1	0.064 0.064 111
Total	4.63	15.4	2.43	6.61	1.87	11.4	0.27	0.56
June tl	through September 9.20 34	nber 34.0						

Table 7.--Daily mean streamflow and daily suspended-sediment discharge for West Branch Shade River near

			Harriso	Harrisonville, Ohio-	<u>ohio</u> Continued	101 1001		1461 11691
	Daily mean streamflow	Daily suspended- sediment discharge	Daily mean streamflow	Daily suspended- sediment discharge	Daily mean streamflow	Daily suspended sediment discharge	Mean daily streamflow	Daily suspended sediment discharge
рау	(ft ³ /s)	(tons/d)	(ft ³ /s)	(tons/d)	(ft ³ /s)	(tons/d)	(ft ³ /s)	(tons/d)
				Water year 19	984			
	Oct	October	November	ler	December		January	
н (0.00	0.00	0.65	2.8	7.6	100	0.71	3.2
7 6		00.	•	4.U		011	C0.	2•2 2
ר קי	00.	00.	1.24	7.5		237	.56	2.3
ß	• 00	00.	•	2.0	12	165	.52	2.1
9	.00	.00	.24	.70	16	220	.49	1.8
- 0	00.	00.	1.2	7.5	12	165	.47	1.7
ж с	00	00-			12	165 208	.44 40	9 °
10	00.	00	•	220	16	220	.40	1.4
[[00.	00.		104	17	237	95	
12	.00	00.	6.4	58	22	300	.37	1.3
5 T 3	00.	00.	٠	50	17	237	.36 2F	٠
15	00.	00.	• •	110	-T 8.9	120	46.	• •
16	.00	.00	9.4	125	7.6	98	•33	1.1
17	00.	00	8°0	105	6.7 E 0	86	.32	••
6 T	00.	00	9.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- CL	99 97	1000	96. 196.
20	00.	• 00	7.5	97	4.8	57	• 29	06.
21	00.	00.	•	95 84	15 22	210	-28 28	88 88 88 88 88 88 88 88 88 88 88 88 88
23	00.			80	۰œ	118	1.5	
25 4	8.4 1.6	110 12	6.6 6.5	84 83	4.5 2.8	53 28	7.1 4.8	92 58
26	06.			80	1.6	12	3.3	34
27	.70		7.3	95	1.3	80 10 10	2.7	26
2 9	.68		5°9	135	.96	•	2.1	18
30 31	. 68 . 68	3.0 3.0	8.0	107	.85	4 2 34	2.0 1.9	17 15
Total	14.3	142	172 2,	2,180 2	292 4,	4,010	37.0	327

Table 7.--Daily mean streamflow and daily suspended-sediment discharge for West Branch Shade River near

			-				
Daily mean streamflow (ft ³ /s)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)	Mean daily streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)
		Wate	year 19	Continued			
Febru	ary	Marci	Le	Apr i 1		W	Мау
•		2.1	18	4.2		•	0.22
•		1.0	5.3	4.1	•	.80	.18
•	~ 0	1.0	5.3	4.7	•	3.4	2.4
• •		5 . 3	64	11	32	1.3	.39
.88	4.6	2.5	23	0.0	20	1.6	. 55
<u>ه</u> .	5.2	1.9	16	7.9	ŝ	1.7	.61
ب ہ	6.5 * *	8 °	14	5°.5	•	1.7	.61 20
20	3.2 3.2	1.8	14	2.2	• •	1.3	. 39
σ	4.8	7.1	۲. ۲		נצ		26
	6.5	1.5	2		.26	1.4	.44
	ۍ ۳	۰ ۱		• 78 73	•18 16	Πα	
	7	.84		.67	.14	.71	.15
•	59	•	5,5	.64	.13	.58	11.
•	6	•	4.8	. 72	.16	.47	.08
•	7.5	•		.91	.22	• 38	•0e
• •	7.5		20	.75	.17	.24	.03
•	7.5	•6	53	.70	.15	.22	.03
•	6.5	٠	7.5	•	•	.40	.07
••	5.6	.92	4.9	•	•	.59	.12
סת	0.0 8.4	. 68	3.0		• •	. 26	.04
.92	•	. 68	3.0	1.8	• 68	.20	• 03
٠	ۍ د	68	3.0	1.5	5	- 29	•
		o -1	4,280 8,3	L.4	4 M		0.1 7.4
		4.5 4.3	4.3	1.0	3	1.3	• 68
58.7	559	69.1	6 , 120	0.06	159	40.1	23.5
	Rebru (ft.3/s) (ft.3/s) 1.1 1	44 (to (to) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mat Mat (tons/d) (ft ³ /s) (tons/d) (ft ³ /s) 0ruary Mat 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 12 12 12 12 12 12 114 1.8 114 1.8 114 1.8 114 1.9 113 1.1 114 .84 7.5 2.3 7.5 2.3 7.5 2.3 7.5 2.3 7.5 2.3 7.5 2.3 7.5 2.3 8.6 .68 7.6 .76	Mater year 19(tons/d)(ft 3 /s)(tons/d)(tons/d)(ft 3 /s)(tons/d)pruaryMater year 19pruaryMater year 19pruaryMater year 19pruaryMatch171.05.3121.05.3121.05.36.55.3646.55.3646.51.914121.05.36.51.9146.51.9146.51.9146.51.9146.51.9146.51.9146.51.9141141.8141151.1116.51.61.5307.52.33.07.58.61.5307.51.27.59.61.64.97.51.64.97.51.64.97.51.64.97.51.64.78.33.04.77.53.2314.54.355969.16.12055969.16.120	The stream tow Constant ye Stream tow Lactor time runary (tons/d) (ft $^3/s$) (tons/d) (ft $^3/s$) runary Mater year 1984Continu Mater year 1984Continu (ft $^3/s$) (ft $^3/s$) (ft $^3/s$) runary March In 8.3 9.0 (ft $^3/s$) (ft $^3/s$) runary March In 1.0 5.3 4.1 13 12 1.0 5.3 1.0 5.3 4.1 11 8.6 5.3 1.6 1.1 1.6 5.3 4.1 1.1 8.7 1.8 1.4 3.5 1.1 5.3 4.1 6.6 8.7 1.8 1.4 4.1 5.3 5.7 6.4 13.2 1.18 1.4 4.1 6.7 6.4 1.1 13.2 1.18 1.4 4.1 6.1 6.4 1.1 13.2 1.18 1.4 1.4 4.1 6.7	Mater year l984Continued Nater year l984Continued 17 1.0 5.3 4.1 1.1 1.0 5.3 4.1 7.9 4.6 2.5 1.1 1.1 1.1 1.14 2.12 1.1 1.1 1.1 4.1 1.4 2.2 1.1 1.1 1.14 2.15 1.1 1.1 1.1 1.14 2.15 1.1 1.1 1.1 5.5 1.1 4.1 1.1 1.1 </td <td>The second se</td>	The second se

Table .	7 <u>Daily mean</u>	mean streamflow	and	<mark>daily suspended-sediment discharge</mark> <u>Harrisonville, Ohio</u> Continued	<u>ediment discharge</u> <u>Ohio</u> Continued	for West Br	Branch Shade R	Shade River near
Day	Daily mean streamflo (ft ³ /s)	Daily suspended- sediment ow discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)	Mean daily streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)
			Water	year l	984Continued			
		June	July		August	L.	September	mber
	0.90 .66 .34 .25	0.22 .14 .09 .05	0.25 .09 1.0 6.2	0.37 .01 .26 8.6	0.00 .000 .01 02	000000	00000	000000000000000000000000000000000000000
6 10 10 10	10 00 00 00 00 00	10000	.32 .12 .03 .01	000000000000000000000000000000000000000	.02 .01 .01 .01	00000	00000	00000
11111 14 14	000000	00000	.02 .04 .01 .02	.58 .00 3.5	m 0 0 0 0 0	00000	00000	00000
116 118 209 209	.00 .00 .04 .01	00100 004100	.05 .01 .00 .00	00000	00000	00000	00000	00000
22 23 24 23	01 00 10 02	16 . 00 16 . 00	00000 00000 00000		000000	00000	00000	00000
27 27 33 30 310 310 310 310 310 310 310 310 3	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	.00 .00 .00 .00 .00	33 •00 •00 •00	000000	00000	00000	00000
Total	4.91	17.0	8.40	53.0	0.13	0.00	0.00	0.00
Year	796	13,600						

	Daily mean streamflow	Daily suspended- sediment	Daily mean streamflow	Daily suspended- sediment discharge	Daily mean streamflow	Daily suspended sediment discharge	Mean daily streamflow	Daily suspended sediment
Day	(ft ³ /s)	(tons/d)	(ft ³ /s)	(tons/d)	(ft ³ /s)	(tons/d)	(ft ³ /s)	(tons/d)
				Water year 19	.85			
	Octobe	ober	November	er	December	er	January	ary
٦	0.00	0.00	0.21	0.01	0.95	0.07	1.3	0.13
20	0	00.	.21	10.	.52	.03	.98	.08
m =	00	00.	.16	-01	.44	.02	.82	.06
ۍ ت	00.	00.	.50	.04	.31	.01	. 62	.04
9	00.	00.	.19	.01	.54	.03	• 55	.03
7	00.	00.	.12	00.	.28	.01	.50	.03
ω (00.	00.	.12	00.	.38	.02	.45	.02
ۍ د د	00.	00.	.13 3 6	00.	.62 F 8	.04	.41 30	.02
	•	• • •	0.0		0.0	T•T	• 20	• •
	00.	.00	1.9	.22	1.7	.16	• 35	.02
	00.	00.	••	-08	. 75	.05		.02
14	00.	00.		.02	-61	.04	50 50	10.
	00.	00.	.35	.02	.61	.04	.28	.01
	00.	00.	.35	.02	.61	.04	.27	.01
	00.	00.	•	.01	.61	.04	.25	.01
	00.	00.		.12	-60	.04	.24	.01
20 20	00.	00.	3.7 1.5	.04 .10	. 60	.04	.23	
į				ţ		•	0	ä
2 F	.00	00.	- 92	.07	11 2,8	5.0	.23	10.
23	.13	00.	.58	.04	.37	.02	.21	.01
24 24	.07	00.	.48	.03	.17	10.	.21	10.
0	cn•	• •	• .0	- 0.2	8.2	.40	07.	τη.
26	.03	00.	.30	.01	2.0	.23	.20	.01
28	.02	00.	.30	.18	1.4 .92	.13	.19 19	00.
3 0	1.1	.02	.60	60.	.66	.32	.19	00.
31	.26	.01	1 1 1		1.6	.16	.18	• 00
Total	2.44	0.14	24.3	2.53	43.6	8.95	11.7	0.66

Table 7.--Daily mean streamflow and daily suspended-sediment discharge for West Branch Shade River near

			Harriso	Harrisonville, Ohio-	<u>Ohio</u> Continued		5 5 5 5 5	4 4
Рау	Daily mean streamflow (ft ³ /s)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)	Mean daily streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)
			Water	year 1985-	-Continued			
	Febr	February	March	_	Apr i l		Мау	Y
- 7 F		0.00	1.5	0.15	• •	0.03		0.00 1.4
ლი ძ . ია	.17 .17 .17	000.	1.5 .4 .4	.01 10.	2.0 1.9	.02	0.000 0.000 0.000	.76 .64 .59
109876 109876	.17 .17 .16 .16	00000	4447 4444 7		1111 23 4 55 233		5.6 1.1 .0 .94	.21 .00 .000
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		00000	1 6.9 5.5 .1655	3.0 .20 .13 .08	1.1 1.1 .91 .85	000000000000000000000000000000000000000	.87 .93 .93 .6	00000
16 119 20	.16 .16 .23 2.23	.00 .00 .01 .27	2.9 2.9 2.9 2.9	.05 .03 .01 .00	.79 .728 .878	00000 000000	4.2 4.4 .92 .71	
525351 225351 255351	7.0 15 15 2.5	2.0 68 10 .34	იი ა . იიადია იიი	01 03 14 03 03	с о о о о о о о о о о о о о о о о о о о	00000	.51 .51 .08 .03	00000
10 30 30 30 30 30 30 30 30 30 30 30 30 30	1.8 1.6 1.7	.20 .16 .18	1.7 1.3 1.3 6.8	.02 .01 .12 .34 .34		00000	07 118 112 112 112	
Total	58.1	82.3	106	10.6	31.7	0.15	68.7	3.92

Table 7.--<u>Daily mean streamflow and daily suspended-sediment discharge for West Branch Shade River near</u>

			2 ATTIAUASTITE	-0110	-concruned			
рау	Daily mean streamflow (ft ³ /s)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended- sediment discharge (tons/d)	Daily mean streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)	Mean daily streamflow (ft ³ /s)	Daily suspended sediment discharge (tons/d)
			Water	year 1985C	-Continued			
	June		July		August		September	mber
ц <i>с</i> , е 4 п	0.11 .12 .14 .20 .20	000000000000000000000000000000000000000	0.11 .16 .155 .155 .14	00000 00000 0	000000000000000000000000000000000000000	00000	0.00 0.046 0.023	000000
00870 1	.19 .255 .18	00000	114 1036 1036	00000	00000	00000	00000	00000
11 14 15 15 15		00000	00000 00000 000000	00000	00000	00000	00000	00000
16 19 20	.17 .14 .21	00000		00000	000000	00000	00000	000000
21 23 25 25	.13 .22 .022 .08	00000	1.96 .00 .000	000074	.00 .00 1.1 11		00000	00000
226 33 9 310 310		00000	0000000	000000	6.6 .41 .024 .11	. 00 000 000 000 000 000 000 000 000 000	000001	000000
Total	5.36	0.00	9.02	0.09	19.3	1.72	0.15	0.00
Year	380	111						

•