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RECONNAISSANCE OF THE GROUND-WATER RESOURCES
OF VIEQUES ISLAND, PUERTO RICO

By Sigfredo Torres—-Gonzalez

ABSTRACT

A reconnaissance of the ground-water resources of the Island of
Vieques was conducted during 1982-1984. The island, located about 9
miles southeast of Puerto Rico, is formed by volcanic and intrusive rocks
overlain by thin alluvial deposits along portions of the north and south
coasts. The Esperanza valley, in the south-central part, contains the
principal alluvial aquifer. The area of the valley is about 10 square
miles and the alluvial deposits are about 60 feet thick. Trans-
missivity of the aquifer ranges from 200 to 2,000 square feet per day.
Previous to 1982, pumpage of as much as 400,000 gallons per day of water
from the aquifer resulted in saline water intrusion throughout the
coastal zone of the valley. Ground water withdrawals from the aquifer
(1982 to 1985) were nearly zero. Most of the wells sampled (1982-1984)
exhibited chloride ion concentrations of 1less than 100 milligrams per
liter. However, sodium absorption ratios ranged from 2.9 to 4.8 units,
indicating a potential salinity hazard for some crops.

Relatively important alluvial deposits also occur in Resolucidn
valley, on the northwest coast, and near Playa Grande, to the southwest.
Pumpage from the Resolucién aquifer by the U.S. Navy through 1977 was as
high as 200,000 gallons per day. In the Playa Grande area, as much as
50,000 gallons per day were pumped during 1965.

A 2-dimensional finite-difference model was developed and calibrated
for the Esperanza alluvial aquifer. Digital model tests indicate that
about 300,000 gallons per day of water can be withdrawn from the aquifer
during the wet season before a reversal of the gradient of the water
table occurs indicating potential saltwater encroachment. During the dry
season, withdrawals would be limited to about 200,000 gallons per day.

(—P% 3 ;o\\owb)



INTRODUCTION

Vieques is the largest offshore island belonging to Puerto Rico,
with a surface area of about 51 mi? (fig. 1). It is located about 7 mi
east-southeast of Puerto Rico and has a population of 7,662 (1980
census). Water resources on the Island of Vieques are limited due to its
relatively small basins which receive an average of about 45 inches per
year of precipitation and experience high evapotranspiration. There are
no perennial streams on the island, and the known aquifers common yield
is usually less than 100 gal/min (Gémez-Gémez and Heisel, 1980). Well
fields in the Esperanza and Resolucidén valleys were developed in the
early 1960's, with total withdrawals of about 600,000 gal/d (written
commun., Anderson, 1972). Ground-water withdrawals have been stopped
in Resolucidn Valley, and operation of the well field in Esperanza Valley
was discontinued in 1978 as a vresult of increasing salinity and
maintenance problems. A pipeline was constructed in 1977 between eastern
Puerto Rico and Vieques to provide water to supply the town of Isabel II
and the Esperanza valley area. Currently about 500,000 gal/d of drinking
water are pumped through the pipeline from the Rio Blanco filtration
plant to Vieques.

In 1982, ruptures in the pipeline reduced the amount of freshwater
available to Vieques to less than 250,000 gal/day. Water had to be
shipped by barge from Puerto Rico to supply the deficit. At the same
time, plans for agricultural development of Esperanza Valley were drafted
by the Puerto Rico Land Administration and the Puerto Rico Department of
Agriculture. Although the pipeline was later repaired, the reliability
of this supply system remains in question. The potential demands for
agriculture greatly exceed the pipeline capacity.

The U.S. Geological Survey began an investigation in 1982 to define
the ground-water resources of Vieques. The project was conducted in
cooperation with the Puerto Rico Land Administration (PRLA), the Puerto
Rico Department of Natural Resources (PRDNR), and the Puerto Rico
Aqueduct and Sewer Authority (PRASA).

Purpose

The principal purposes of the investigation were as follows:

1. To describe the potential optimum yield and the occurrence,
availability, and movement of water in the principal aquifers throughout
the island of Vieques.

2. To define the areal and vertical extent of the Esperanza
alluvial aquifer and the general characteristics of the Resolucidn
aquifer.

3. To define the principal chemical and physical
characteristics of ground water throughout Vieques.

4, To determine the effects of ground-water withdrawals on the
Esperanza alluvial aquifer and the potential for saline-water intrusion.



5. To design, construct, and calibrate a two-dimensional
ground-water flow model of the Esperanza alluvial aquifer.

Although the investigation included the entire island of Vieques,
most efforts were concentrated in the Esperanza and Resolucidn valleys
(fig. 2).
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Figure 1.--Location of Vieques in relation to Puerto Rico and the U.S. Virgin Islands.

Approach

A literature review of previous investigations in Vieques was
conducted, including an inventory of operational and abandoned wells. To
supplement the available information, shallow test wells were drilled in
the Esperanza Valley to define the potentiometric surface conditions,
direction of ground-water flow, hydraulic characteristics of the aquifer,
lithology, and depth to bedrock. Surface resistivity, borehole
geophysics, and seismic refraction surveys were conducted to supplement
the lithologic data and define the physical characteristics of the rocks.
Interpretation of the resistivity and seismic surveys employed methods
described by Zohdy (1973) and Scott and others (1972). Aquifer
parameters, including transmissivity, storage coefficient, and leakance,
were defined from aquifer tests conducted at pumping wells. Water
samples were collected at key wells for determinations of specific
conductance, pH, temperature, and concentrations of common ions,
including chloride. Methods described by Brown and others (1970) were
used for the collection and analyses of the samples.

The ground-water flow model for the Esperanza alluvial aquifer was
designed and constructed in accordance with methods described by McDonald
and Harbaugh (1984). The model utilizes a finite difference approach for
the solution of the ground-water flow equation. The aquifer boundaries
were defined from driller's 1logs of wells, aquifer test results,
topographic maps, and surface geophysical data.
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GENERAL FEATURES
Physiography and Land Use

The topography of Vieques is characterized by a series of low hills
and small valleys (fig. 3). The most elevated areas occur along a west
to east axis near the center of the island. The highest peak is Monte
Pirata, on the western end, with an elevation of about 987 ft above mean
sea level. Cerro Matias, with an elevation of about 450 ft is the
highest peak in the eastern area. Slopes of the central mountains
are steeper on the north coast than in the south.

Since 1943, the U.S. Navy has occupied nearly 76 percent of Vieques
(fig. 4), using the land for a training area, including a practice
bombing range. The land occupied by the civilian population is wused
mostly for cattle pastureland, minor agriculture, and urban development.
Sugarcane was produced throughout most of the island prior to the U.S.
Navy acquisitions.
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AIR TEMPERATURE, IN DEGREES FAHRENHEIT

Climate

The climate of Vieques is tropical-marine. Temperatures are nearly
constant (fig. 5), with an annual average of about 79°F. August is the
warmest month (82°F) and February the coolest (76°F). Vieques lies
directly in the path of the prevailing easterly trade winds that regulate
the climate of Puerto Rico (Calvesbert, 1974).

The easterly winds result in a rainfall pattern characterized by a
dry season from December through July and a rainy season from August to
November (fig. 6). However, localized thunderstorms can occur during
May, June and July. Heavy precipitation may be induced by tropical
storms in the Caribbean area from June to November. Showers are usually
of short duration, less than 30 minutes, except those caused by tropical
storms or low-pressure disturbances which are very common in the area.

Long-term annual precipitation data for Vieques ranges from a
minimum of 26 inches in 1967 to a maximum of 73 inches in 1901 (National
Weather Service data reports). The long-term annual average (78 years of
record, 1899-1977) is about 45 inches. The eastern part of the island
receives about 25 inches per year, while in the Resolucién valley area
the average is about 50 inches. Approximately fifty percent of the
total-annual precipitation occurs during the rainy season (fig. 7).
November is the rainiest month, with about fifteen percent of the annual
total. April is usually the driest month, averaging less than 2 inches
of rainfall.
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Geology

The geology of Vieques is characterized by volcanic rocks generally
overlain by alluvial deposits and patches of limestone (fig. 8), and
has been described in detail by Meyerhoff (1927). Volcanic andesites of
Late Cretaceous age were deposited in a marine environment. Later in the
Cretaceous a quartz-diorite plutonic complex intruded the andesites, and
are exposed over a large percentage of the island. A gradual change in
texture from coarse to fine-grained quartz-diorite has been observed from
west to east (Kaye, 1959). Limestone of Tertiary age occurs in sectors
of the north, south, and eastern parts of the island. The most extensive
areas of 1limestone are found on the south coast peninsulas. The
limestone is generally soft and yellowish, and well indurated where
exposed to the atmosphere. The sedimentary deposits are generally of
Quaternary age, consisting of a mixture of sand, silt, and clay. Most of
the Esperanza and Resolucidén aquifers are formed by these sedimentary
deposits. Seaward, the floodplains consist of beach and dune deposits
formed by calcite, quartz, volcanic rock fragments and minor magnetite.
Unconsolidated deposits of sand that are the direct result of stream
erosion along major streams and along where the deposits enter the sea
are carried along the coast. Unconsolidated deposits of sand are
typically found in the northwestern part of the island, and to the south
along Quebrada La Mina in the Esperanza valley.

Well logs and surface geophysical surveys indicate that the
thickness of the sedimentary deposits range from O to about 90 feet in
the Esperanza valley (figs. 9a and 9b). A basal clay bed, with a maximum
thickness of 15 feet, overlies a granitic quartz-diorite. The clay is
overlain by a interbedded sand and silt deposit with a maximum thickness
of 60 feet. Aquifers in Vieques are generally semiconfined because of a
series of interbedded clays. The uppermost unit is largely colluvium
consisting of sand and silt, with sand predominating coastward.

SURFACE-WATER RESOURCES

The streams in Vieques are ephemeral. Although no streamflow data
was collected during the investigation, Anderson (written commun.,1972)
estimates that the total annual runoff is about 5,000 acre-ft. Field
inspections during the rainy season showed that after a storm, streams
flow only for a few days. There is no evidence that ground water
discharges to the streams, except perhaps in response to heavy
rainstorms. In the vicinity of streams, such as Quebrada La Mina in the
Esperanza Valley, the elevation of the water table is generally lower
than that of the streambed. Since Quebrada La Mina flows over the
sedimentary deposits in the valley, it recharges the aquifer during rainy
periods. Storm runoff could be used to augment recharge to the aquifer

if retention could be optimized. Flow-retarding structures, such as
retaining walls, could be constructed along the bed of the stream
(Anderson, written commun., 1972). These impoundments would retain the

runoff for a longer time period, allowing more recharge to the aquifer.
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WATER BUDGET

Precipitation in Vieques averages about 100,000 acre-ft/yr (on the
basis of an average of 45 in/yr). There is no evapotranspiration (ET)
data for the island, but estimates from data collected under similar
climatic conditions in St. Thomas (fig. 1) suggest that about 90 percent
of the precipitation or 90,000, acre-ft/yr is lost to ET. Runoff in
Vieques was estimated at about 5,000 acre-ft/yr (Anderson, written
commun., 1972). Recharge estimates indicate that about 3 to 5 percent of
the rainfall is recharged to the aquifers (Jordan and Cosner, 1973).
Accordingly, about 3,000 acre-ft/yr recharges the aquifers, which is
equivalent to about 2.7 Mgal/d over the entire island. The maximum
ground-water withdrawal from Esperanza and Resolucidn valleys was
about 0.6 Mgal/d. The difference between the estimated recharge and
withdrawals does not imply that 2.1 Mgal/d are available in Vieques.
Most of the ground-water recharge in coastal areas is rapidly lost to the
ocean. Some of the recharge occurring after heavy storms probably
discharges to streams that flow for a few days.

GROUND-WATER RESOURCES

Esperanza Valley

The approximately 10 mi? Esperanza valley is the largest alluvial
valley in Vieques. The alluvial deposits extend from the vicinity of
Ensenada Sombe to Bahia Tapon in Camp Garcia. This area probably has the
greatest potential for ground-water development in Vieques. Until 1978,
PRASA operated a battery of 10 wells in the valley (fig. 10). The wells
were generally 10 in. in diameter, about 40 to 60 ft deep, constructed of
perforated casing and equipped with submersible pumps. Ground water
withdrawals in the valley averaged about 425,000 gal/day (fig. 11). As
pumpage increased with development of the well field, the salinity of the
water increased.

The source of ground water in Esperanza valley is rainfall recharged
to the aquifer from ephemeral streams or direct infiltration in the
basin. The elevation of the water table in the lower valley ranges from
10 to 100 ft above mean sea level (fig. 12). Significant rises in
ground-water potentiometric levels due to rainfall were monitored at
observation wells in the valley (fig. 13), however long-term changes in
potentiometric water levels were minimal and were related only to
natural recharge and discharge, since there is no pumpage from the
aquifer.
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Figure 13.--Ground-water level fluctuations In wells In the Esperanza
alluvial aquifer during 1983.
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Esperanza Valley (Continued)

Recharge to the alluvial aquifer occurs primarily throughout the
island's along the central volcanic contact. Along the south-central
shoreline, recharge through outcrops of limestone rock is limited by the
low permeability of the indurated and weathered limestone surface. The
limestone unit, however, is uncommon elsewhere in Vieques, except along
the southern shore in the deepest sections of the Esperanza alluvial
aquifer. North of the limestone outcrops, the aquifer consists of
alluvial deposits. A clay layer averaging 5 feet thick was found
consistently across the aquifer (fig. 9a) at a depth of 25 feet or less.
This clay layer hydraulically isolates the alluvial sediments, limiting
recharge to the aquifer; a common condition throughout Vieques. However,
the hydraulic relationship between the sand and silt deposits and the
clay layers within the alluvial aquifer is more complex. Far from the
shoreline, the entire aquifer sequence behaves as one aquifer under
water-table conditions. However, where the <clay layers are well
developed, near the southern shoreline, the aquifer behaves as if
semi-confined. Such conditions occur near the coast where aquifer tests
indicate that saturated sediment of the upper unit behaves as a strongly
anisotropic water-table aquifer, but the sand and silt of the lower unit
behave as an artesian aquifer (fig. 9a). Water is released from storage
in the clay layer when the aquifer is pumped. With time, the clay tends
to transmit water from the overlying alluvium as well as provide water
from storage. Definition of the true hydrologic characteristics of each
unit requires aquifer tests that would account for leakage, anisotropy,
and a wide range of specific-storage values. Aquifer tests of this
nature were beyond the scope of this investigation.

Aquifer tests in the Esperanza alluvial aquifer indicate transmis-
sivity values ranging from 200 ft2/d near Camp Garcia to as much as 2,000
ft2/d east of Ensenada Sombe. Transmissivity is affected by: (1) the
thickness of the surficial deposits, and (2) the hydraulic conductivity
of the sediments. The hydraulic conductivity of the alluvium increases
toward the coast where the amount of sand in the deposits increases.
Alluvium thickness increases toward the sea from 0 to about 90 ft (fig.
9a), decreasing toward the east where depth to the bedrock is about 30
ft. Hydraulic conductivity values for the alluvium were estimated as
less than 1 ft/d along the north-central hills in the valley to as much
as 35 ft/d near the coast. Storage coefficient values were assumed to be
about 0.1 in the water-table zone and computed at about 0.006 in the
semi-confined layer. The aquifer tests showed that the overlying clayey
deposits release water in response to pumping from the alluvium.

Additional data about the hydrogeology and the stratigraphy of the
Esperanza alluvial aquifer was obtained from surface geophysical surveys.
Electrical resistivity tests defined the bottom of the wunconsolidated
deposits at about 60 ft below the land surface where the alluvial
deposits are thickest (north of Ensenada Sombe).



Resolucion Valley

The Resolucién valley, in northwestern Vieques, is the second
largest valley on the island (fig. 2). The valley slopes from Monte
Pirata toward the Vieques passage, with an area of about 8 mi2?. The
slopes in the valley are gentle except in the upper reaches. Although
there are no perennial streams in the valley, Monte Pirata induces
orographic effects resulting in higher precipitation in this area than in
any other area of Vieques.

The Resolucidén valley water resources investigation was limited to
geophysical surveys, inventory of existing and abandoned wells,
collection of water samples for chemical analyses, and interpretation of
previous data, including well logs.

The geology of Resolucién valley is similar to the Esperanza area,
except that sedimentary deposits here overlie a saprolite derived from
the plutonic rocks; whereas in the Esperanza area, sedimentary deposits
overlie volcanic and limestone rock. The geophysical surveys and data
from abandoned wells show that the alluvial deposits average about 30 ft
thick. Seismic refraction surveys indicate the presence of a compacted
clay layer about 20 to 30 ft below the surface, similar to the conditions
in the Esperanza valley. A geologic lineament, possibly a block fault,
occurs within the Resolucién valley north of Hacienda Arcadia (fig. 2).
A rectangular regional drainage pattern is formed in the area, probably
indicative of jointing as a result of faulting. Fractured or broken
Cretaceous age igneous rocks may yield considerable quantities of water.

Most of the wells in the Resolucidén valley are abandoned or could
not be reached. Future investigations in the area will require a
comprehensive drilling program to further evaluate the aquifer
characteristics and its full water-yielding potential. Past experience
and data from previous investigators show that, with adequate management,
it may be feasible to pump as much as 200,000 gal/d from the alluvial
aquifer.

Playa Grande Area

The Playa Grande drainage area (5.5 mi?), south of Resoluciédn
valley, yielded as much as 50,000 gal/d of water through 1965 (Anderson,
written commun., 1972). Seismic refraction and electrical resistivity
tests did not reveal the existence of a confining layer above the
alluvial deposits. This suggests that water-table conditions prevail
throughout the aquifer. Additional investigations, including test
drilling, will be required to better define the aquifer characteristics
in the Playa Grande area.

19
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Camp Garcia

Camp Garcia, located east of Esperanza valley (fig. 2), includes
about 5 mi? of the U.S. Navy controlled land in Vieques. Bedrock in
the Camp Garcia area is predominantly unweathered, highly impermeable
granodiorite (U.S. Department of Defense, 1980); the porosity is very
low, and the potential for ground-water development is limited. Toward
the coast, clayey alluvium overlies the granodiorite. Samples from wells
in the Camp Garcia area show mostly saline water in the clayey alluvium.
Historical data collected by Anderson (written commun., 1972) show that
prior to the development of the well field in Esperanza valley in 1945,
ground-water levels in the Camp Garcia area were about 10 ft below land
surface. A continuous decline in the water levels has occurred. From
1961 to 1965, declines from 2 to 20 ft were recorded in three wells in
the area. Well yields also declined from about 35 to 10 gal/min. This
data suggests that ground water in Camp Garcia was originally withdrawn
from the alluvial zone, whereas now it originates from the unweathered
granodiorites. At present, six (6) storage tanks with a capacity of
42,000 gallons are used in the Camp. The tanks are filled gradually to
limit pumpage from the wells to about 25 gal/min.

Aquifer characteristics in the Camp Garcia area were estimated by
Davis and Deweist (1966). The porosity was estimated at 0.02-0.05, while
transmissivity values averaged 300 ft2/d. Current ground-water
withdrawals from Camp Garcia are about 2,000 gal/d.

SALTWATER INTRUSION

The maintenance of potable ground water in Vieques island depends
upon the quantity of water pumped and the location of wells. During the
initial development stages of the Esperanza and Resolucidn well fields,
ground-water quality was generally good, with chloride ion concentration
seldom exceeding 100 mg/L. However, as uncontrolled development and
pumpage proceeded, saline water intruded into the alluvial aquifers, with
chloride concentration exceeding 200 mg/L. As water quality
deteriorated, complaints from the residents prompted the construction of
the Vieques pipeline, which became operational in 1977.

Historical water-quality data from PRASA show the effects of saline
water intrusion in the Esperanza alluvial aquifer (figs. 1l4a - 14d).
From 1973 to 1977, the chloride concentration at six of the wells
increased from a background concentration of 100 mg/L to about 250 mg/L.
At well no. 10 (fig. 14d), chloride concentrations increased from about
100 to about 300 mg/L.

Saline water contamination usually occurs by upconing or intrusion.
In areas where wells are located too close to the saline-freshwater
interface, "upconing' of saline water can occur. The upconing occurs as
the well is pumped, with a gradual "lifting" of a '"dome'" of saline water
into the area of the well screen (Zack, 1988). When the well is idled,
the dome of saline water may slowly recede, freshwater may be produced
from the well once the pump is re-started, until the dome is again
lifted. Horizontal intrusion of saline water is a more common phenomena:
saline water advances inland into an aquifer as the head of freshwater
over the saline water interface is reduced due to pumpage.
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Figure 14a.--Chloride concentrations in water at weil 1 at Esperanza alluvial aquifer.
(Refer to fig. 10 for site location.)
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SALTWATER INTRUSION (Continued)

Water-quality data for Vieques indicate that in the Esperanza
valley, saline water intrusion occurred throughout most of the alluvial
aquifer as a result of overpumpage and reduction of the elevation of the
freshwater lens. Chloride concentrations as depicted in figures l4a to
14d, dincreased. If wupconing had occurred instead of intrusion, the
chloride concentration would have reacted to changes in pumpage and would
not show a continuosly increasing concentration. Changes in chloride-ion
concentration shown in figure 14 probably were caused by pumpage patterns
(fig. 11) as the well batteries were never pumped simultaneously.

Data collected during this investigation show that the aquifer has
nearly recovered to pre-developed conditions. Freshwater has recharged
the aquifer, replacing the intruded saline water. Physical and chemical
anlayses of samples collected at key wells show chloride concentrations
do not exceed 100 mg/L at Esperanza valley (fig. 15, table 1) and 130
mg/L at the U.S. Naval Ammunition Facility in Resolucién (table 1). At
the Camp Garcia wells, the chloride concentration does not exceed 200
mg/L. The water from all wells meets U.S. Environmental Protection
Agency Drinking Water Standards for maximum chloride concentration of 250

mg/L (1972).

In spite of the observed improvements in the quality of the ground
water in Vieques, its use may be limited for agricultural purposes. The
data in table 1 show relatively high sodium concentrations and sodium-
adsortion ratios (SAR). The SAR is an indication of the ability of the
water to exchange ions with the soils (U.S. Department of Agriculture,
1954). Under current conditions, with no pumpage since 1977, SAR ratios
for samples collected in the area approach a medium to high salinity
hazard level of 4.8 units for irrigation water.

Table 1. Chemical analysls for typical well at Ensenada Sun Bay public beach during 1982

WELL NAME
AND .
LOCATION Units /o - / SAMPLE
(field) COLLECTED

PRASA #5, ESPERANZA 7.3 663 197 32| 44 (0.7 {140| 15 { 36 | 73 | 72| 2.9 8/18/82
PRASA D1, ESPERANZA 7.8 1050 276| 41 | 100| 0.6 [ 200] 24 | 47 | 96 (140 4.6 8/17/82
PRASA D2, ESPERANZA 7.8 830 229| sa | 95/0.5 [260| 27 | 46 | 55 |110( 3.3 8/19/82
CAMP GARCIA G1 7.8 1010 277 ~ 100|033 | —= | — | —— { 42 | ~= | ~ 8/18/82
NAF, RESOLUCION 7.1 982 287 41 | 130 0.3{210| 26 | 35 { 22 | 120/ 4.0 8/18/82
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DIGITAL SIMULATION OF GROUND-WATER FLOW
IN THE ESPERANZA ALLUVIAL AQUIFER

Model Design

A digital model simulating ground-water flow in an aquifer is a
mathematical representation of the hydrogeologic characteristics of the
aquifer and can accurately simulate changes in water levels as a result
of pumpage and/or recharge. A model is designed, constructed, and
calibrated on basis of field data and aquifer para-meters, as well as
test runs against known values of water levels in wells. In the
calibration process, the model parameters are adjusted to obtain a
satisfactory match with the field values.

Ground-water flow in the Esperanza alluvial aquifer was simulated
using the modular finite-difference model of McDonald and Harbaugh
(1984). The model solves the ground water flow equation through a series
of finite-difference approximations. Although the model can be used to
simulate steady state (equilibrium) and transient conditions in the
aquifer, the calibration in Esperanza valley was limited to steady-state.
Limited data precluded transient approximations. Several assumptions
pertain to the model calibration:

1. Precision of response is related to the accuracy and appropriateness
of the input data.

2. The model does not take into account changes in the location of
the saline-freshwater interface.

3. The computation assumes that the wells fully penetrate the
simulated aquifer and are 100 percent efficient.

4. Evapotranspiration was considered negligible except near the coast,
where water levels are less that 10 ft below the land surface.

Model Construction

A finite-difference grid of the study area was constructed (fig.
16). 1t consists of rectangular cells ranging in size from 200 to 1,000
ft along each edge with the smaller cells located near the areas where
most of the wells are located. The grid covers an area of about 9 mi?
and consists of 23 rows and 42 columns.
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Model Construction (Continued)

The model utilizes no-flow and stream-cell boundaries. No-flow
boundaries represent impermeable zones (igneous rock). The stream-cell
boundaries represent areas where water flows out of the model boundaries.
The lateral boundaries of the model were chosen to coincide with volcanic
rock outcrops, where the transmissivity would be greatly reduced and
little or no flow would be introduced into the aquifer through pumping.
The headwaters of the surface-drainage area of the basin were selected as
the northern boundary. The lateral boundaries were initially considered
active (permeable) with hydraulic conductivities similar to the nearby
alluvial deposits. It was later determined that there is no flow across
the lateral boundaries. The northern area was considered a no flow
boundary because the rocks are nearly impermeable volcanic formations.
The coastal lagoons and the shoreline were selected as the southern
boundary representing the discharge point for the freshwater flow. In
this area, (stream-cell boundaries) a hydraulic conductivity of 1 ft/d
was assumed to account for the nearly impermeable Ilayer of clayey
material that overlies the sand and silt deposits.

Other parameters adjusted in the calibration of the model included
the aquifer thickness, hydraulic conductivity, conductance of riverbed
recharge, and evapotranspiration rates (ET). During the field
investigation these values were either measured or estimated. The
altitude of the base of the alluvial aquifer (fig. 17) was determined
from well logs and the geophysical tests, generalized to include the
modeled area. Aquifer tests, geologic data, and values of specific
capacity of wells were used to estimate the hydraulic conductivity (fig.
18). Recharge values (fig. 19) were estimated from precipitation data
and other studies in which recharge rates have been estimated from
surface-drainage-runoff studies (Jordan and Fisher, 1977).

Model Calibration

The calibration of a ground-water flow model is performed through
an iterative computational process. The hydrogeologic parameters of the
model (hydraulic conductivity, riverbed conductance, recharge, thickness,
ET) are adjusted within reasonable limits to match the observed and
simulated water levels. 1In the calibration of a ground-water flow model,
differences between the computed and observed levels always occur. The
observed water levels represent a point measurement, while the model
elevations represent the estimated altitude of the potentiometric surface
based on the areal hydrogeologic modeled properties for the cell.
Although head at a cell may meet the calibration limits, it may differ
several feet from the point value.
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Model Calibration (Continued)

A steady-state calibration of a ground-water flow model occurs when
the potentiometric surface remains constant with time. In an idealized
steady-state system an eventual equilibrium is attained when the amount
of water entering and leaving the system are equal with no changes in
storage. The potentiometric surface as of June 1983 was used as a base
to be matched by the model. Since no effective pumpage was occurring in
the area, outputs were equaled to ET and seepage flows into the lagoons
and ocean.

The steady-state calibration produced a good match between the
observed and simulated water levels (fig. 20). 1In the matching process,
the following steps were taken:

1. After the first run, the difference between the observed and
simulated water levels ranged from 0 to 20 ft.

2. The values of hydraulic conductivities (K) and recharge (R) were
adjusted until a better match was obtained. The K values were adjusted
by areal patterns in the valley. In the area north of Ensenada Sombe,
the K values were adjusted from 30 to 45 ft/d. West of Camp Garcia
airfield, K values were varied from 1 to 5 ft/d. The adjustments were
justified because of the low permeability of the aquifer and overlying
soils which results in lower infiltration rates. In the upper reaches of
Quebrada La Mina, a K value of 5 ft/d was used because the bed material
is more permeable than the clayey layer that predominates in most of the
area.

3. The recharge (R) distribution was estimated on the basis of the
precipitation data and recharge values for similar climatic environments
in the U.S. Virgin Islands (Jordan and Fisher, 1977).

4, The final adjustments in the values of K and R produced head
matches within five (5) ft of observed and computed water levels.
Eighteen of 28 wells and piezometers matched within two (2) ft.

5. The ET rates and ground water levels were then adjusted until a
satisfactory seepage value along the boundary was obtained.

6. Finally, the conductance of the riverbed used along the southern
boundary was adjusted to correct the heads in the aquifer next to the
sea. A close match between the observed and simulated water leve s
confirmed that the procedure was satisfactory.

A chloride-ion mass balance was applied in the Esperanza alluvial
aquifer to complement the water budget utilized in the steady-state
calibration. Initial concentrations of 100 mg/L of chloride were
observed in some Esperanza wells prior to 1973, Prior to the closure of
the wells in 1977, most of them had chloride concentrations ranging from
250 to 300 mg/L. It was assumed that the difference between the original
and final chloride concentrations was due to saline water encroachment.
This assumption can be supported by a steady-state simulation of the
existing wells pumping at between 20-30 gal/min each (approximately
360,000 gal/d) which resulted in a reversal of the hydraulic gradient of
the potentiometric surface between the well field and the sea. This
reversal would induce seawater encroachment into the alluvial aquifer.
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Sensitivity Analyses

The model is calibrated by making changes in the hydrologic
parameters within reasonable limits. The response of the model to these
changes is a measure of the sensitivity as well as possible errors in the
calibration. The sensitivity of the digital model of the Esperanza
alluvial aquifer was tested by varying the hydraulic conductivity (K)
recharge (R), and evapotransporation (ET) by +/- 50 percent. Normally,
where evapotranspiration is significant, sensitivity tests are also
conducted for this parameter, however, ground-water level changes are
negligible when testing the ET sensitivity of the digital model.

Results of the sensitivity analyses showed that the model is highly
sensitive to changes in recharge and hydraulic conductivity. The
sensitivity of the model was tested along cross section B-B' perpendicular
to the grid length and running almost parallel to Quebrada La Mina (fig.
21). This area is probably the most representative of the modeled grid.
Changes of 50 percent in recharge resulted in differences of as much as
20 ft between the steady-state calibrated (middle line in fig. 2la) and
recharge-adjusted water levels. Changes of 50 percent in hydraulic
conductivity also resulted in differences of as much as 20 ft between the
calibrated and adjusted water levels (fig. 21b). Changes of 50 percent
in maximum evapotranspiration rate resulted in differences of only 2 ft
or less between the calibrated and adjusted water levels (fig. 2lc).

Simulation of Ground-Water Withdrawals
in the Esperanza Alluvial Aquifer

The principal objective in the development and calibration of the
Esperanza alluvial aquifer model was to evaluate responses of the system
(in terms of changes in water levels) to stresses such as pumpage. A
series of simulations were performed involving different pumping
scenarios at the existing PRASA wells in the valley. The simulations
included equal pumping rates at each of the ten wells at rates ranging
from 10 gal/min to 25 gal/min (total withdrawals from the valley ranging
from 144,000 to 360,000 gal/d).

The results of steady-state simulations show that as much as 20
gal/min from each well (a total of 288,000 gal/d) result in drawdowns
that will not significantly affect well performance or induce saltwater
encroachment in the aquifer (table 2). The maximum drawdown with this
pumpage (33.66 ft at well "R") is within the observed values during
actual field tests. When the model is stressed to a rate of 25 gal/min
at each well (a total of 360,000 gal/d), drawdowns exceed the maximum
available water column at some of the wells. The simulation suggests
that no more than 200,000 gal/d should be pumped during the dry season.

Although the simulations suggest that about 360,000 gal/d could be
withdrawn from the aquifer, additional testing would be required to
ascertain that this is a '"safe'" yield value. As previously indicated,
the model was not calibrated for a transient response, where storage
changes may affect the drawdown rates. In a transient response, changes
in recharge may also affect the model response. The transient
calibration would require a long-term data collection program to develop
a better data base, including rainfall, ET rate, accurate storage
coefficient values, and water levels.
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Figure 21.--Results of sensitivity anaiyses along cross-section B-B’ for (a) recharge,
{b) hydraulic conductivity, and (c) evapotranspliration In the steady-state modei.

Tabie 2. Simulation of varied ground-water withdrawals from existing weils
In the Esperanza alluvial aquifer

PRASA* Well and/or Final simulated
well no. piezometer location drawdown, in feet
and/or in model
piezo- Withdrawal rate
meter grid matrix** gallons per minute
1D row column 10 15 20 25
4 15 14 9.56 15.57 23.05 #
5 15 15 9.45 15.40 22,88 #
6 15 16 9.16 14.92 22.14 i
7 17 11 10.89 18.03 27.69 #
8 16 12 10.08 16.50 24,68 #
9 15 17 8.95 15.60 21.76 #
P 17 10 11.55 19.21 29.84 i#
Q 16 8 11.16 18.29 27.40 it
R 17 3 12.91 21.53 33.66 i
10 18 5 11.98 19.89 30.81 i

*PRASA - Puerto Rico Acueduct and Sewer Authority.
%% - See figure 10 for well location and 16 for grid matrix.
## - Digital model does not converge to a solution.

6000 8000



SUMMARY AND CONCLUSIONS

A 2-year investigation of the principal aquifers in Vieques Island
was conducted beginning in 1982. The principal findings of the
investigation were as follows:

1. The principal aquifers in Vieques occur in alluvial deposits
within the Esperanza and Resolucidén valleys. Important unexplored
alluvial deposits also occur in the Playa Grande area, on the
southwestern part of the island. A less productive aquifer occurs within
the Camp Garcia area.

2. In the Esperanza valley, the alluvial aquifer extends over an
area of about 10 mi?. The alluvium varies in thickness from 90 ft near
the coast to 0 ft in the north near the volcanic rock contact.

3. Ground water in the Esperanza alluvial aquifer occurs under
unconfined and semi-confined conditions. Depth to the water table varies
from 10 to 100 ft above mean sea level, depending on the distance from
the sea.

4, The aquifer tests in the Esperanza alluvial deposits show
transmissivity values ranging from 200 ft?/d near Camp Garcia to 2,000
ft2/d east of Ensenada Sombe Bay.

5. Yields from wells in Esperanza valley range from 5 to 60 gallons
per minute. Pumpage from the area totaled as much as 450,000 gal/d
through 1977. At present, pumpage is nearly zero because practically all
of the water used in Vieques is pumped from eastern Puerto Rico through a
sub-marine pipeline.

6. In the Resolucidén valley, alluvial deposits average 30 ft in
thickness extending over an area of about 8 mi?. A clay layer 20 to 30
ft deep overlying the alluvium appears to induce semi-confined
conditions. Limited data from the area indicates that as much as 200,000
gal/d were withdrawn from the aquifer through 1977.

7. Ground water throughout Vieques generally contains high
concentrations of sodium and chloride ions. The sodium-absorption ratio
in samples from wells in Esperanza valley, Resolucidén area, and Camp
Garcia approach values considered hazardous for agricultural use.

8. Simulations using a 2-dimensional ground-water flow model of the
Esperanza alluvial aquifer show that withdrawals in excess of about 0.40
Mgal/d could induce saline water intrusion. During a drought, saline
water intrusion could occur at pumpages as low as 0.20 Mgal/d.
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