

TECHNICAL NOTES

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

No. 245

REPORT ON TESTS OF METAL MODEL PROPELLERS IN COMBINATION WITH A MODEL VE-7 AIRPLANE By E. P. Lesley Stanford University

FILE COPY

lo bo returned to the files of the Langley Memorial Aeronautical

Laboratory

Washington
August, 1926

Surmany

This report, prepered at the request of the National Advisory Committee for Aeronawtics, describes tests of three metal model propellers, in a free air stream and in front of a model of a VE-7 aimplane.

The effect of introducing the model airplane is shown to be an increase in thrust and power coefficients and efficiency at small Elip , and a decrease in the same at large slip.

In one of the models, a presscod stecl design, the sections near the hub are shown to be relatively unimportant. The thrust and power coefficients of this model are show to vary widely With constant $V / n D$ but with V ard n varying in the same proportion. A wood model of conventional form is shown to have practically constant coefficients under these conditions.

Model Propellers

The three model propellers, which were sent to the Stanford University Laboratory from the Bureau of Aeronautios, U. S. Navy, are shown in Figs. 1, 2, and 3. Fig. 1 shows the
modol designated as Charlos Mard Hall two' blade, Fig. 2 the one designated as Charles Ward Hall three blade, and Fig. 3 the model known as the pressed steel design.

As may be seen, the Hall models are made with a cylincrical hub into mhich loose blades are fastened. Only three blades, numbered 1, 2, and 3, were supplied, numbers 1 and 2 being used for both models and No. 3 for the three blade model only.

The blades of these models are made of aluminum or an aluminum alloy. The blade sections are unusual in that the driving face has a practically constant negative camber of consideraible amount.

The pressed steel nodel has a central steel hub and sheet steel blades fastencd thereto with clamps similar to hose clamps. As.originally furnished, the blades were entirely covered with fabric, presonting an appearance similar to the portion near the lulb, Fig. 3. When entirely covered with fabric they were thus without camber on the driving face. After the fabric was renoved, they had about the same negative camber on the driving face as positive camber on the back, the sheet stecl of which they were made being approximately uniform in thickness, about I/I6". AII models were 3 feet in diameter.

Free Air Stiream Tests

The three models were subjected to the usual tests in a free or unobstructed air stream. With a wind speed of about

55 feet por socond, the propellers were driven at various angular velocities as required to develop a series of thrusts from zero to about 35 pounds. For greater slip than obtainable under these conditions the wind velocity was reduced.

The pressed steel model was tested under three con?itions: first, with the blades completely covered with a cloth fairing; second, with a partial fairing as shown in Fig. 3; and third, with all fairing removed.

The observed and computed data for the free air stream tests are shown in Table I, in which

$$
\begin{aligned}
& \frac{\rho V^{2}}{2}= \text { dynamic pressure of wind stream }- \\
& \text { pounds per square foot. } \\
& \rho= \text { mass density of air }- \text { pound, foot, } \\
& V= \text { velocity - feet per second. } \\
& \mathrm{V}= \text { revolutions per second. } \\
& T= \text { thrust - pounds. } \\
& Q=\text { torque moment }- \text { pound-feet. } \\
& D= \text { diameter - feet. } \\
& C_{T}= \text { thrust cocificient }=\frac{T}{\rho I^{2} D^{4}} \\
& C_{P}= \text { power coefficient }=\frac{P}{\rho n^{3} I^{5}} \text { where } P \quad \text { is } \\
& \text { porer in foot pounds per second. } \\
& \eta= \text { officicncy }=\frac{T V}{P}=\frac{C_{T}}{O P} \frac{7}{n D} \cdot
\end{aligned}
$$

The coefficients G_{T}, C_{P}, and η, as derived in thesc tests, are shown in Figs. 4 to 8 inclusive. A set of consistent

$$
\begin{aligned}
& \text { HE COP: } \\
& \text { na raturfied :u } \\
& \text { sa tion of ihe Laneley } \\
& \text { wiemoral Aeronalitical } 4 \\
& \text { foratary }
\end{aligned}
$$ curves, representing what appear to be the laws of variation of these coefficients with $V / n D$ under the conditions of the tests, is dram for each propeller.

In the tests on the pressed steel model, it appeared that with moderate variations in angular velooity and corresponding variations in wind speed there was considerable variation in the power and thmust coefficients derived. There were mun, therefore, three tests, each at approximately constant angular velocity, the observed and computed data for which are given in Table II. The derived coefficients for the three angular velocities are shown in Fig. 9.

For comparison, similar tests were made on a U. S. Navy standard plan form wood model. The results are given in Table III and are shown graphically in Fig. 10.

In addition to being tried in a free air stream, each model was tested in front of a model VE-7 airolane. The model airplane was that used in the tests described in N.A.C.A. Report No. 220 (Reference I). It was hung from the ceiling of the experiment chanoer by fine wires, a drag wire being led forward to a balance outside the tunnel where measurements of drag were made. The model aimplane was thus supported independently of tho propeller dyamometer.

With the model airplane in the gravity position and the model propeller thrust balance in the null position, the space relation of model airplane and propeller corresponded to that of were made, as in the frec air stream tests, of dynamic pressure ($\rho V^{2} / Z$), density (ρ), thrust (T), turning moment (Q), and angular velocity (η). In addition, the drag of the model airplane was observed.

Provious to the tests of the model propellers in front of the model airplane, the resistance of the model airplane alone had been neasured for various values of dynamic pressure. The results of these measurements were as follows; each figure given being the average of a number of obscrvations:

$\frac{\frac{1}{2} p V^{2}}{1.72}$	Resistance - pounds
2.96	1.57
4.68	2.66
5.79	4.12
	5.04

The procoding data are plotted in Fig. 12. From the curve drawn the resistance of the model alone, at any dynamic pressure, may be determined.

The tests of model propellers in front of the model VE-7 were made at about the same velocities, both angular and translational, as were employed in the free air stream testa. The
observed and reduced data for these tests are given in Table IV. Additional notation to that for the free air stream tests is employed as follows:
$R_{a}=$ augmented resistance of the model aimplane as measured during the propeller test - pounds.
$R_{0}=$ resistance of model aimplane alone in a wind stream of equal ${ }^{2} \rho V^{2}$. This is determined from Fig. 12.
$A=R_{a}-R_{0}=$ augmentation of model resistance.
T as before, is the shaft thrust, but for the determination of the thrust coefficient C_{T}, and the efficiency η, the thrust that is oredited to the propeller is $T-A$. The coerficients G_{T}, O_{P}, and \uparrow as derived are show in Figs. 13 to 1%.

$R \in m a r k s$

The performance of the Charles Ward Hall propellers does not seem remarkable. The efficiency realized from the two blade model is about what would be expected of a well designed wood model of the same dynamic pitch. That of the three blade model is considerably lower. The power coefficient for the three blade model is about 47% more than that for the two blade. The thrust coefficient of the three blade is only about 38% more than for the two blade.

By comparison of Fig. 4 with Fig. 13, and Fig. 5 with Fig. 14, it may be seen that the effect of operation in front of the
model airplane is as follows:
a. The thrust coefficient is increased at small slip (large $V / n D$) and decreased at làrge slip (small $V / n D$).
b. The power coefficient is increased at small slip and slightly decreased at large slip.
c. The efficiency is decreased over the usual morking range (from $V / n D$ for maximum officiency tovard smaller values) but is increased at the larger values of V / nD.

The pressed steel model with complete fairing shows lower thrust and power coefficients and efficiency than when fairing is partially or wholly removed. This difference is at least partly due to the greater dynamic pitch of the model with partial or with no fairing. The lower maximum efficiency of the completely faired model may also be due in part to roughness, tho cloth boing considerably rougher than the steel.

Comparisons of Figs. 7 and 8 and of 16 and 17 show that the sections near the hub are of little importance, or at least that the difference between blades faired at hub only or not faired at all is small.

Comparisons of Fig. 6 with Fig. 15, Fig. 7 with Fig. 16, and Fig. 8 with Fig. 17, show the same general differences between operation in front of the model airplane and in a froc air stream as do comparisons for the Hall propollers. The differencos in efficiency, however, appear to be generally less, the propeller when in front of the model airplane attaining

1. Durand, W. F. Comparison of Tests on Air Propellers in and : Flight with Wind Tunnel Model Tests of Lesley, E. P. Similar Forms. N.A.C.A. Tochnical Report NO. 220 - 1926.

Table I.
C. T. Hall Model Propeller

2-Blade
Free Wind Stream
Observed Data

$p V^{2} / 2$	ρ	V	n	T	Q	V / nD	O_{T}	Cp	η
				y 27,	1926.				
3.312	. 002378	52.78	20.43	. 00	.932	. 861	. 0000	. 0243	000
3.285	. 002378	52.56	21.88	1.32	1.372	. 801	. 0143	. 0312	. 367
3.330	. 002378	52.92	25.76	2.98	1.370	. 743	.0274	. 0360	. 556
3.366	. 002378	53.21	25.89	5.29	2.537	. 685	. 0410	. 0411	. 683
3.456	. 002378	53.91	28.60	8.27	3.340	. 628	. 0525	. 0444	. 742
3.528	. 002378	54.47	31.31	11.91	4.371	. 530	. 0631	. 0485	754
3.654	. 002378	55.44	34.49	16.21	5.560	. 536	. 0707	. 0508	46
3.726	. 002378	55.98	37.50	21.17	6.858	. 498	. 0782	. 0530	. 734
3.726	. 002378	55.98	40.64	26.79	8.265	. 459	. 0842	. 0544	711
3.780	. 002377	56.36	43.87	33.08	9.838	. 428	. 0893	. 0558	68 ?
2.556	. 002378	46.37	41.82	33.08	9.134	. 370	. 0982	. 0568	. 640
1. 04.4	. 002380	29.62	39.10	33.08	7.978	. 253	. 1122	. 0567	501
. 378	.002381	17.82	37.56	33.08	7.095	158	1216	0546	352

```
N.h.C.A. Technical Note No. 245

Table I.
O. W. Hall kodel Propeller

3-Blade
Free Wind Stream
Observed Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}^{2}\) & \(\rho\) & V & n & T & Q & \(\mathrm{V} / \mathrm{nD}\) & \(\mathrm{C}_{T}\) & \({ }^{\circ} \mathrm{P}\) & \(n\) \\
\hline \multicolumn{10}{|c|}{January 27, 1926.} \\
\hline 3.240 & . 002390 & 52.07 & 20.03 & . 00 & 1.323 & . 867 & . 0000 & . 0357 & . 000 \\
\hline 3.258 & . 002390 & 52.21 & 21.25 & 1.32 & 1.785 & . 819 & . 0151 & . 0427 & 289 \\
\hline 3.276 & . 002389 & 52.37 & 22.64 & 2.98 & 2.327 & . 771 & . 0300 & . 0491 & 472 \\
\hline 3.303 & . 002388 & 52.58 & 24.38 & 5.29 & 3.070 & . 719 & . 0460 & . 0559 & 591 \\
\hline 3.420 & . 002389 & 53.51 & 26.58 & 8.27 & 3.987 & . 673 & . 0607 & . 0613 & 667 \\
\hline 3.456 & . 002385 & 53.83 & 28.81 & 11.91 & 5.050 & . 623 & . 0743 & . 0659 & . 702 \\
\hline 3.654 & . 002383 & 55.38 & 31.53 & 16.21 & 6.361 & . 586 & . 0845 & . 0694 & .713 \\
\hline 3.726 & . 002383 & 55.92 & 34.06 & 21.17 & 7.818 & . 547 & . 0945 & . 0731 & . 707 \\
\hline 3.744 & . 002383 & 56.06 & 36.56 & 26.79 & 9.304 & . 511 & . 1038 & . 0755 & 703 \\
\hline 3.798 & . 002384 & 56.45 & 39.17 & 33.08 & 11.033 & . 480 & . 1116 & . 0780 & 687 \\
\hline 3.249 & . 002384 & 52.21 & 42.43 & 44.10 & 13.567 & . 410 & . 1268 & . 0817 & 636 \\
\hline 2.682 & . 002384 & 47.44 & 41.51 & 44.10 & 13.164 & . 381 & . 1325 & . 0828 & 610 \\
\hline 1.251 & . 002383 & 32.40 & 38.89 & 44.10 & 11.859 & . 278 & . 1510 & . 0850 & 494 \\
\hline . 522 & . 002383 & 20.93 & 37.19 & 44.10 & 10.828 & . 188 & . 1651 & . 0848 & . 366 \\
\hline
\end{tabular}

\section*{Table I.}

\author{
Model Pressed Steel Propeller \\ Complete Fairing \\ Free Wind Stream \\ Observed Data
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rho V^{2} / 2\) & \(\rho\) & V & n & I & Q & \(\mathrm{V} / \mathrm{nD}\) & \(\mathrm{C}_{\mathrm{T}}\) & \({ }^{\circ} \mathrm{p}\) & \(\eta\) \\
\hline & & \multicolumn{8}{|c|}{September 26, 1925.} \\
\hline 3.249 & . 002346 & 52.63 & 20.05 & . 00 & . 340 & . 875 & . 0000 & . 0093 & . 000 \\
\hline 3.320 & . 002346 & 53.20 & 21.83 & 1.40 & . 861 & . 812 & . 0155 & . 0199 & 631 \\
\hline 3.356 & . 002341 & 53.55 & 24.15 & 3.14 & 1.512 & . 739 & . 0284 & . 0286 & 734 \\
\hline 3.447 & . 002341 & 54.27 & 26.62 & 5.58 & 2.351 & . 680 & . 0415 & . 0366 & 778 \\
\hline 3.546 & . 002341 & 55.04 & 29.55 & 8.72 & 3.385 & . 621 & . 0527 & . 0428 & 64 \\
\hline 3.509 & .002336 & 54.81 & 32.36 & 12.56 & 4.607 & : 565 & . 0634 & . 0487 & 35 \\
\hline 3.555 & . 002333 & 55.21 & 35.71 & 17.10 & 5.938 & . 516 & . 0710 & . 0516 & . 710 \\
\hline 3.644 & . 002332 & 55.91 & 38.95 & 22.33 & 7.494 & . 479 & . 0779 & . 0547 & . 682 \\
\hline 3.815 & . 002332 & 57.20 & 42.53 & 28.27 & 9.192 & . 448 & . 0827 & . 0563 & 658 \\
\hline 3.838 & . 002331 & 57.39 & 46.14 & 34.90 & 11.140 & . 415 & . 0868 & . 0580 & 621 \\
\hline 3:307 & . 002327 & 53.31 & 45.70 & 34.90 & 11.040 & . 389 & . 0887 & . 0587 & 588 \\
\hline 2.218 & . 002328 & 43.65 & 44.48 & 34.90 & 10.830 & . 326 & . 0935 & . 0608 & 501 \\
\hline 1.498 & .002330 & 35.86 & 43.85 & 34.90 & 10.950 & . 273 & .0961 & . 0631 & 416 \\
\hline . 364 & . 002330 & 17.68 & 42.80 & 34.90 & 12.130 & . 138 & . 1009 & . 0734 & 90 \\
\hline
\end{tabular}

\section*{Table I}

Model Pressed Steel Propeller
Partial Fairing
Free Wind Stream Observed Data


Table I.
Model Pressed Steel Propeller
No Fairing
Free Wind Stream
Observed Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rho V^{2} / 2\) & \(\rho\) & V & n & T & Q & \(V / n D\) & \(\mathrm{Cl}_{T}\) & \(\mathrm{OP}^{\text {P }}\) & \(\eta\) \\
\hline \multicolumn{10}{|c|}{November 10, 1325.} \\
\hline 3.442 & . 002360 & 54.01 & 20.17 & . 00 & . 463 & . 893 & . 0000 & . 0125 & . 000 \\
\hline 3.384 & . 002353 & 53.63 & 20.78 & . 70 & . 687 & . 860 & . 0085 & . 0175 & . 418 \\
\hline 3.388 & . 002353 & 53.66 & 21.52 & 1.40 & . 926 & . 831 & . 0159 & . 0220 & . 599 \\
\hline 3.420 & . 002353 & 53.91 & 22.35 & 2.21 & 1.215 & . 804 & . 0232 & . 026' & . 699 \\
\hline 3.438 & . 002353 & 54.06 & 23.16 & 3.15 & 1.512 & . 778 & . 0308 & . 0310 & . 773 \\
\hline 3.460 & . 002353 & 54.23 & 24.29 & 4.30 & 1.960 & . 744 & . 0382 & . 0365 & . 779 \\
\hline 3.478 & . 002353 & 54.37 & 25.42 & 5.58 & 2.409 & . 713 & . 0453 & . 0410 & . 788 \\
\hline 3.510 & . 002354 & 54.61 & 26.64 & 6.98 & 2.886 & . 683 & . 0516 & . 0447 & . 788 \\
\hline 3.546 & . 002354 & 54.88 & 28.03 & 8.72 & 3.457 & . 653 & . 0582 & . 0483 & . 787 \\
\hline . 591 & . 002354 & 55.23 & 29.39 & 10.47 & 4.072 & . 627 & . 0636 & . 0518 & . 769 \\
\hline . 627 & . 002354 & 55.51 & 30.85 & 12.56 & 4.745 & . 600 & . 0692 & . 0548 & . 758 \\
\hline .627 & . 002354 & 55.51 & 33.72 & 17:10 & 6.068 & . 549 & . 0789 & . 0586 & . 739 \\
\hline . 703 & . 002354 & 56.09 & 35.77 & 22.33 & 7.539 & . 509 & . 0866 & . 0616 & .716 \\
\hline . 843 & . 002354 & 57.14 & 40.01 & 28.27 & 9.397 & . 4776 & . 0926 & . 0645 & . 683 \\
\hline 3.861 & . 002354 & 57.27 & 43:08 & 34.90 & 11.260 & . 443 & . 0986 & 0666 & 656 \\
\hline 2.610 & . 002357 & 47.06 & 42.12 & 34.90 & 10.990 & . 372 & . 1030 & 0679 & 564 \\
\hline 1.138 & . 002359 & 31.06 & 40.74 & 34.90 & 11.280 & . 254 & . 11100 & 0745 & .375 \\
\hline . 391 & . 002364 & 18.19 & 39.79 & 34.90 & 11.93 & . 152 & . 11 & 08 & 12 \\
\hline
\end{tabular}

Table II.
Model Pressed Steel Propeller
Complete Fairing
Free Wind Stream Observed Data
September 22, 1925.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\rho V^{2} / 2\) & Hig & Speed & - (appr & \[
\begin{aligned}
& \mathrm{T} \\
& \mathrm{ox} .
\end{aligned} 43 .
\] & \[
.0^{Q} r=p .
\] & \[
V / n D
\] & \(\begin{array}{r}\text { CT } \\ \hline 1019\end{array}\) & \(0 P\)
0740 \\
\hline . 405 & . 002304 & 18.75 & 42.83 & 34.89 & \[
12.093
\] & . 146 & . 10979 & . 0636 \\
\hline 1.296 & . 002300 & 33.57 & 42.70 & 33.26 & 10.314 & . 300 & . 0953 & . 0609 \\
\hline 1.710 & . 0022295 & 38.60 & 42.95 & 32.78 & 9.482 & . 329 & . 0943 & . 0591 \\
\hline 2.016 & . 00.3294 & 41.92 & 42.53
42.86 & 31.72
31.72 & 9.576 & . 350 & . 0930 & . 0588 \\
\hline 2.322 & . 002293 & 45.00 & 42.86
43.25 & 31.19 & 9.554 & . 385 & . 0900 & . \(057 \%\) \\
\hline 2.853 & . 002288 & 49.94
55.50 & 43.42 & 29.77 & 9.450 & . 427 & .0852 & 0567 \\
\hline 3.537
4.104 & .002288 & 59.98 & 43.19 & 28.26 & 9.242 & . 463 & . 0820 & . 0562 \\
\hline 4.797 & . 002279 & 64.88 & 43.62 & 27.1 & 9.206 & . 496 & . 0706 & . 0526 \\
\hline 5.436 & . 002279 & 68.07 & 42.67 & 23.73 & 8. & . 566 & . 0674 & . 0512 \\
\hline 6.066 & . 002275 & 73.03 & 43.06 & & 8.289 & . 589 & . 0634 & .0497 \\
\hline 6.732 & . 002274 & 76.95 & 43.55 & 22.14 & 7.869 & . 627 & . 0569 & . 0469 \\
\hline 7.668 & . 002273 & 82.15 & 43.68 & 16.74 & 6.871 & . 673 & . 0494 & . 0424 \\
\hline 8.532 & .002271 & diate & Speed & - (appr & - 35.5 & r.p. & & \\
\hline .261 & . 002304 & 15.05 & 35.04 & 23.26 & 7.429 & \[
\begin{array}{r}
143 \\
.794
\end{array}
\] & \[
.1015
\] & \[
\begin{array}{r}
.0579 \\
.0576
\end{array}
\] \\
\hline 1.143 & . 002300 & 31.50 & 35.67 & 22.35 & 6.336 & . 344 & . 0906 & . 0560 \\
\hline 1.557 & . 002295 & 36.83 & 35.71 & 21.49 & 6.155 & . 377 & . 0878 & . 0550 \\
\hline 1.854 & . 002294 & 40.20 & 35.52 & 20.05 & 6.155 & . 406 & . 0852 & . 0548 \\
\hline 2.151 & . 002333 & 43.31 & 35.59 & 20.05 & 5.837 & . 459 & .0791 & . 0533 \\
\hline 2.691 & . 002288 & 48 & & 18.18 & 5.866 & . 505 & . 0730 & . 0513 \\
\hline 3.393 & . 002288 & 54.46 & 35.94
35.74 & 15.72 & 5.627 & . 547 & . 0666 & . 0499 \\
\hline 3.924 & . 002281 & 58.65 & 35.14 & 13.84 & 5.251 & . 592 & . 0594 & . 0472 \\
\hline 4.527 & . 002279 & 63.03 & 35.54 & 12.09 & 4.832 & . 634 & . 0527 & . 0841 \\
\hline 5.121 & . 002275 & 67.10 & 35.30 & 10.24 & 4.362 & . 678 & . 0415 & . 0401 \\
\hline 5.805 & .002275 & 71 & & 9.61 & 4.217 & . 702 & . 0412 & . 0379 \\
\hline 6.390 & . 002274 & 74.97 & & 7.33 & 3.559 & . 759 & . 0312 & . 0317 \\
\hline 7.515 & .002273 & 81.32 & 35 & 7.35 & 3.009 & . 797 & .0247 & . 0273 \\
\hline 8.145 & .002271 & \[
\begin{gathered}
84.69 \\
\text { Low Spee }
\end{gathered}
\] & \[
e d-(a p
\] & rox. & 5.1 7 .p. & . & & 0613 \\
\hline 144 & . 002304 & 11.18 & 25.10 & 11.63 & 3.443 & . 148 & . 0873 & . 0507 \\
\hline 1.008 & . 002296 & 29.63 & 24.35 & 9.72 & 2.893 & . 469 & . 0726 & . 0478 \\
\hline 1.431 & . 002295 & 35.31 & 25.08 & 8.49 & 2.539 & . 517 & . 0656 & . 0455 \\
\hline 1.746 & . 002294 & 39.02 & 25.14 & 6.93 & 2.459 & . 560 & . 0596 & . 0443 \\
\hline 2.025 & . 002293 & 42.03 & 25.02 & 6.93 & 2.126 & . 633 & . 0478 & . 0388 \\
\hline 2.556 & . 002288 & 47.27 & 24.90 & 5.49
4.26 & 1.815 & . 699 & . 0365 & . 0325 \\
\hline 3.168 & . 002288 & 52.62 & 25.11 & 4. 26 & 1.490 & . 760 & . 0260 & . 0268 \\
\hline 3.735 & . 002281 & 57.23 & 25.09 & 3.02 & 1.360 & . 797 & . 0192 & . 0231 \\
\hline 4.347 & . 002279 & 61.76 & 4 & . 79 & 1.825 & . 860 & . 0066 & . 0144 \\
\hline
\end{tabular}

Table III.
Model Propeller I - 178
Free Tind Stream
Observed Data
November 1, 1925.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\rho \nabla^{2} / 2\) & \(\rho\) & V & n & T & & \(\mathrm{V} / \mathrm{nD}\) & m & \({ }^{\text {c }}\) \\
\hline \multicolumn{9}{|c|}{High Speed - (approx. 45:8 r.p.s.)} \\
\hline & . 0023 & & & 6. & 10.097 & . 152 & . 118 & 0537 \\
\hline 1.800 & . 002316 & 39.4 & 45.7 & 40. & 10.33 & . 287 & . 1044 & 0552 \\
\hline 2.079 & . 002312 & 42.41 & 45.83 & 40.05 & 10.416 & . 308 & .1018 & 0554 \\
\hline 2.493 & . 002310 & 46.46 & 45.75 & 38.61 & 10.394 & . 339 & . 0986 & 55 \\
\hline 3.717 & . 002309 & 56.74 & 45.87 & 35.12 & 10.314 & . 412 & . 0892 & 0549 \\
\hline 5.040 & . 002303 & 66.16 & 46.24 & 32.03 & 10. 192 & . 477 & . 0803 & 0535 \\
\hline 44 & . 002300 & 74.8 & 45.89 & 27.98 & 9.612 & . 544 & .0713 & 513 \\
\hline 127 & . 002298 & 84.10 & 45.86 & 23.80 & 9.034 & .611 & . 0608 & 183 \\
\hline 9.216 & . 002293 & 89.65 & 45.69 & 21.09 & 8.521 & . 654 & . 054 & 046 \\
\hline \multicolumn{9}{|c|}{Intermediate Speed - (approx. 39.5 r.p.s.)} \\
\hline . 369 & . 0023 & 17.83 & 35.58 & 34.89 & . 617 & . 150 & . 1 & 0541 \\
\hline 1.683 & . 0023317 & 38.11 & 39.35 & 29.07 & 7.689 & . 323 & .1000 & 554 \\
\hline 1.971 & . 002312 & 41.29 & 39:51 & 28.52 & 7.754 & . 348 & . 0979 & 555 \\
\hline 367 & . 002310 & 45.27 & 39.74 & 2?. 56 & 7.820 & . 380 & . 0933 & 554 \\
\hline 645 & . 002309 & 56. 1.9 & 39.47 & 23.61 & 7.502 & . 475 & . 0810 & 539 \\
\hline 4.986 & . 002303 & 65.80 & 39.61 & 20.23 & 7.175 & . 554 & . 0691 & 513 \\
\hline 6.309 & . 002300 & 74.07 & 38.20 & 16.82 & 6.466 & .630 & . 0588 & 473 \\
\hline 7.992 & . 002294 & 83.47 & 39.38 & 13.26 & 5.808 & .707 & . 0460 & . 0422 \\
\hline 9.072 & . 002293 & 88.84 & 39.57 & 11.07 & 5.309 & . 749 & . 0381 & . 0382 \\
\hline
\end{tabular}

Low Speed - (approx. 32.6 r.p.s.)
\begin{tabular}{lllllllll}
.270 & .002321 & 15.25 & 32.50 & 23.26 & 5.013 & .156 & .1171 & .0529 \\
1.557 & .002317 & 36.66 & 32.64 & 18.82 & 5.266 & .374 & .0941 & .0551 \\
1.845 & .002311 & 39.96 & 32.85 & 18.25 & 5.316 & .406 & .0904 & .0551 \\
2.259 & .002310 & 44.22 & 32.91 & 17.21 & 5.237 & .448 & .0849 & .0541 \\
3.573 & .002309 & 55.63 & 32.59 & 13.47 & 4.832 & .569 & .0678 & .0509 \\
4.824 & .002303 & 64.72 & 32.57 & 10.51 & 4.267 & .662 & .0531 & .0452 \\
6.138 & .002300 & 73.05 & 32.36 & 7.60 & 3.646 & .753 & .0390 & .0391 \\
7.839 & .002294 & 82.67 & 32.55 & 4.37 & 2.835 & .847 & .0222 & .0302 \\
8.937 & .002293 & 88.29 & 32.58 & 2.05 & 2.228 & .904 & .0104 & .0237
\end{tabular}

Table IV.
C. W. Hall Model Propeller

2-Blade
Kodel VE-7
Observed Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rho V^{2} / 2\) & \(\rho\) & \(\nabla\) & n & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{0}\) & A & T & T-A & Q & \(\mathrm{V} / \mathrm{nD}\) & \(\mathrm{G}_{\mathrm{T}}\) & \({ }^{C} p\) & \(\eta\) \\
\hline & & & & & & ober & , 1925 & & & & & & \\
\hline 3.138 & .002322 & 51.99 & 18.41 & 2.89 & 2.82 & . 07 & . 00 & -. 07 & . 672 & . 941 & -.0011 & . 0221 & -. 047 \\
\hline 3.181 & .002322 & 52.34 & 20.45 & 3.07 & 2.85 & . 22 & 1.40 & 1.18 & 1.164 & . 853 & . 0151 & . 03310 & . 414 \\
\hline 3.199 & .002317 & 52.55 & 22.38 & 3.30 & 2.87 & . 43 & 3.14 & 2.71 & 1.750 & . 783 & . 0288 & . 0390 & . 579 \\
\hline 3.225 & .002317 & 52.76 & 22.43 & 3.37 & 2.89 & . 48 & 3.14 & 2.66 & 1.743 & . 784 & . 0283 & . 0387 & . 573 \\
\hline 3.243 & . 002317 & 52.90 & 24.91 & 3.56 & 2.91 & . 65 & 5.58 & 4.93 & 2.459 & . 708 & . 0424 & .0442 & . 679 \\
\hline 3.269 & -002313 & 53.16 & 27.75 & 3.92 & 2.93 & . 99 & 8.72 & 7.73 & 3.298 & . 639 & . 0536 & . 0479 & . 715 \\
\hline 3.321 & . 002313 & 53.59 & 30,90 & 4.36 & 2.98 & 1.38 & 12.56 & 11.18 & 4.332 & . 578 & . 0625 & . 0507 & . 712 \\
\hline 3.339 & . 002312 & 53.74 & 33.89 & 4.81 & 2.99 & 1.82 & 17.10 & 15.28 & 5.511 & . 523 & . 0710 & . 0536 & . 700 \\
\hline 3.400 & .002312 & 54.23 & 37.36 & 5.37 & 3.04 & 2.33 & 22.33 & 20.00 & 6.837 & . 484 & . 0764 & . 0547 & . 676 \\
\hline 3.549 & . 002307 & 55.46 & 41.08 & 6.07 & 3.17 & 2.90 & 28.27 & 25.37 & 8.356 & . 450 & . 0804 & . 0555 & . 653 \\
\hline 3.618 & . 002303 & 56.05 & 44.35 & 6.73 & 3.23 & 3.50 & 34:90 & 31.40 & 9.910 & . 421 & . 0855 & . 0565 & :637 \\
\hline 2.482 & . 002303 & 46.42 & 42.72 & 5.67 & 2.25 & 3.42 & 34.90 & 31.48 & 9.300 & . 362 & . 0924 & . 0572 & . 585 \\
\hline 1.329 & . 002310 & 33.92 & 40.93 & 4.61 & 1.32 & 3.38 & 34.90 & 31.51 & 8.440 & . 276 & . 1004 & . 0564 & . 492 \\
\hline . 218 & .002311 & 13.73 & 38.81 & 3.57 & . 20 & 3.37 & 34.90 & 31.53 & 6.986 & . 118 & . 1118 & . 0519 & . 254 \\
\hline
\end{tabular}

Table IV
O. W. Hiall Model Propeller

3-Blade
Model VE-ry
Observed Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rho \mathrm{V}^{2} / 2\) & \(\rho\) & V & n & \(\mathrm{F}_{0}\) & \(\mathrm{F}_{0}\) & A & \(T\) & T-A & \(Q\) & \(V / n D\) & Cr & 0 P & \(\eta\) \\
\hline & & & & & & & 130 & & & & & & \\
\hline 3.234 & . 002363 & 52.99 & 18.84 & 2.98 & 2.90 & . 08 & . 00 & -0.08 & 1.099 & . 938 & -. 0012 & . 0348 & . 032 \\
\hline 3.24? & .002723 & 5\%.07 & 20,13 & 3.16 & 2.91 & . 25 & 1.40 & 1.15 & 1. 569 & . 878 & . 0152 & . 0435 & . 307 \\
\hline 3.243 & .002305 & 53,0: & 21.65 & 3. 35 & 2.91 & . 45 & 3.14 & 2.69 & 2.119 & . 81.7 & . 0308 & . 0507 & . 496 \\
\hline 3.269 & . 0023303 & 53.28 & 23.59 & 3.64 & 2.93 & . 71 & 5.58 & 4.87 & 2.900 & . 753 & . 0469 & . 0585 & . 604 \\
\hline 3.269 & . 002303 & 53.38 & 25.71 & 3.97 & 2.93 & 1.04 & 8.72 & 7.68 & 3.833 & . 691 & . 0633 & . 0651 & . 661 \\
\hline 3.330 & . 002503 & 53.78 & 28.03 & 4.37 & 3.03 & 1.34 & 12.56 & 11.22 & 4.925 & . 640 & . 0765 & . 0704 & . 696 \\
\hline 3.374 & . 002303 & 54.13 & 30.78 & 4.85 & 3.02 & 1.83 & 17.10 & 15.27 & 6.227 & . 586 & . 0864 & . 0738 & . 686 \\
\hline 3.437 & . 002303 & 54.55 & 33.47 & 5.36 & 3.07 & 2.35 & 22. 33 & 20.08 & 7.644 & . 543 & . 0961 & . 0766 & .681 \\
\hline 3.435 & . 002303 & 54.61 & 36.38 & 5.85 & 3.07 & 2.78 & 28.27 & 25.49 & 9.301 & . 502 & . 1058 & . 0793 & .657 \\
\hline 3.627 & . 002303 & 56.12 & 39.19 & 6.69 & 3.24 & 3,45 & 34.90 & 31.45 & 11. 220 & . 474 & . 1081 & . 0808 & . 634 \\
\hline 3.750 & . 00¢̇'303 & 57.06 & 43.81 & 7.87 & 3.34 & 4.53 & 46.53 & 42.00 & 14.120 & . 434 & . 1173 & . 0825 & . 816 \\
\hline 2,596 & . 002303 & 47.48 & 42.16 & 6.74 & 2.34 & 4.40 & 46.53 & 42.23 & 13, 340 & . 375 & . 1271 & . 0848 & . 566 \\
\hline 1. 311 & . 002306 & 33.72 & 40.04 & 5.50 & 1.30 & 4.30 & 46.53 & 42.23 & 12. 160 & . 281 & . 1410 & .0850 & . 456 \\
\hline . 306 & .002306 & 16.29 & 37.91 & 4.41 & . 28 & 4.13 & 46.53 & 42.40 & 10.570 & . 143 & .1579 & . 0824 & . 274 \\
\hline
\end{tabular}

Table IV.
Model Pressed Steel Propeller
Complec̈é Fairing
Model VE-ry
October 2, 1925.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rho \nabla^{3} / 2\) & \(\rho\) & V & n & \(\mathrm{Ra}_{\mathrm{a}}\) & Ro & A & T & T-A & \(Q\) & \(\mathrm{V} / \mathrm{nD}\) & \({ }^{6}\) T & \(\mathrm{C}_{3}\) & \(\eta\) \\
\hline 3.042 & . 002309 & 51.33 & 18.64 & 2.80 & 2.73 & . 07 & . 00 & -. 07 & . 217 & . 918 & -. 0011 & . 0071 & -. 139 \\
\hline 3.059 & . 002308 & 51.48 & 20.44 & 2.92 & 2.75 & . 17 & 1.40 & 1.23 & . 731 & . 838 & . 0157 & . 0196 & . 674 \\
\hline 3.094 & . 002306 & 51.79 & 22.53 & 3.15 & 2.78 & . 37 & 3.14 & 2.77 & 1.324 & . 768 & . 0292 & . 0292 & . 766 \\
\hline 3,151 & . 002306 & 52.27 & 25.27 & 3.44 & 2.83 & . 61 & 5.58 & 4.9 .7 & 2.134 & . 690 & . 0417 & . 0375 & . 767 \\
\hline 3.215 & . 002305 & 52.82 & 38.31 & 3.80 & 2.89 & . 81 & 8.72 & 7.91 & 3.139 & . 623 & . 0528 & . 0439 & . 748 \\
\hline 3.243 & . 002300 & 53.10 & 31.53 & 4.09 & 2.91 & 1.18 & 12.56 & 11.38 & 4.340 & . 561 & . 0614 & . 0491 & . 702 \\
\hline 3.299 & . 002300 & 53.56 & 34.70 & 4.56 & 2.96 & 1.50 & 17.10 & 15.60 & 5.598 & . 514 & . 0695 & . 0523 & . 683 \\
\hline 3.452 & . 002300 & 54.79 & 38.35 & 5.17 & 3.09 & 2.08 & 23.33 & 20.25 & 7.096 & . 476 & . 0739 & . 0542 & . 649 \\
\hline 3.478 & . 002300 & 54.99 & 41.59 & 5.74 & 3.11 & 2.63 & 28.27 & 25.64 & 8.688 & . 441 & . 0796 & . 0565 & . 621 \\
\hline 3.531 & .002299 & 55.42 & 45.36 & 6.42 & 3.16 & 3. 26 & 34.90 & 31.64 & 10.680 & 407 & . 0826 & . 0584 & . 576 \\
\hline 2.390 & . 002300 & 45.59 & 44.28 & 5.40 & 2.17 & 3.23 & 34.90 & 31.67 & 10.630 & . 343 & . 0867 & . 0609 & . 488 \\
\hline . 328 & . 002300 & 16.89 & 42.25 & 3.67 & . 30 & 3.37 & 34.90 & 31.53 & 12.150 & . 133 & . 094 & . 0765 & . 165 \\
\hline
\end{tabular}

Table IV.
Model Pressed Steel Propeller Complete Fairing Model VE-7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rho \nabla^{2} / 2\) & \(\rho\) & \(\nabla\) & n & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{0}\) & A & I & T-A & Q & \(\nabla / \mathrm{nD}\) & \(\mathrm{C}_{T}\) & \(\mathrm{C}_{p}\) & \(\eta\) \\
\hline & & & & & \multicolumn{4}{|c|}{October 13, 1925.} & & & & & \\
\hline 2. 989 & . 002323 & 50.73 & 18.34 & 2,71 & 2.69 & . 02 & . 00 & -. 02 & . 210 & - 922 & . 0003 & . 0069 & . 042 \\
\hline 3.007 & - 0023233 & 50.88 & 20.20 & 2.85 & 2.70 & . 15 & 1.40 & 1.25 & . 760 & . 840 & . 0163 & . 0207 & . 661 \\
\hline 3.015 & . 0.23313 & 50.99 & 22,29 & 3.06 & 2.71 & . 35 & 3.14 & 2.79 & 1.367 & . 763 & . 0299 & . 0307 & 743 \\
\hline 3,094 & ,002317 & 51.67 & 24.38 & 3.34 & 2.78 & . 56 & 5.58 & 5.02 & 2.134 & . 690 & . 0429 & . 0382 & \({ }^{717} 4\) \\
\hline 3.1 .38 & . 002317 & 52.04 & 28.06 & 3.69 & 2.81 & . 88 & 8.72 & 7.84 & 3.132 & . 618 & . 0530 & . 0444 & 738 \\
\hline 3.208 & . 002313 & 52.66 & 31.23 & 4.13 & 2.88 & 1.25 & 12.56 & 11.31 & 4.311 & . 562 & . 0619 & . 0494 & 704 \\
\hline 3.321 & .002313 & 53.59 & 34.70 & 4.63 & 2.98 & 1.65 & 17.10 & 15.45 & 5.613 & . 515 & . 0685 & . 0521 & . 677 \\
\hline 3,347 & . 002313 & 53.79 & 38.03 & 5.15 & 3.00 & 2.15 & 22.33 & 20.18 & 6.972 & . 172 & . 0745 & . 0539 & . 653 \\
\hline 3. 2.17 & . 002312 & 54.36 & 41.45 & 5.70 & 3.06 & 2.64 & 28.27 & 25.63 & 8.622 & . 437 & . 0796 & . 0561 & 621 \\
\hline 3.461 & . 002311 & 54.73 & 45.11 & 6.37 & & 3.28 & 34.90
20,19 & \[
31.62
\] & 10.540 & . 404 & . 0830 & . 0579 & . 579 \\
\hline 3.103 & . 002292 & 52.03 & \(\cdot 18.85\) & 2.90 & 2.79 & . 11 & . 00 & -. 11 & 231 & . 920 & . 0017 & . 0073 & . 210 \\
\hline 3.764 & -002287 & 52. 60 & 20.76 & 3.03 & 2.84 & - 19 & 1.40 & 1. 21 & - 760 & . 845 & . 0152 & . 0199 & - 644 \\
\hline 3.208 & - 003287 & 52.96 & 22.92 & 3.21 & 2.87 & . 34 & 3.14 & 2.80 & 1.360 & . 770 & . 0288 & . 0293 & . 756 \\
\hline 3.557 & -002286 & 55.78 & 45.55 & 6.53 & 3.17 & 3.36 & 34.90 & 31.54 & 10.630 & . 408 & . 0881 & . 0579 & . 578 \\
\hline 2. 335 & - CO2a86 & 45.77 & 14.42 & 5.50 & 2.17 & 3.33 & 34.90 & 31.57 & 10.550 & . 344 & . 0864 & . 0605 & . 491 \\
\hline 1. 119 & .002287 & 31. 28 & 43.16 & 4.43 & 1.03 & 3.40 & 34.90 & 31.50 & 11.050 & . 242 & . 0913 & . 0668 & . 331 \\
\hline . 315 & . .002287 & 16.60 & 42.09 & 3.73 & . 29 & 3.44 & 34.90 & 31.46 & 11.930 & . 131 & . 0959 & . 0761 & . 165 \\
\hline
\end{tabular}

Table IV.
Pressed Steel Propeller
Partial Fairing
Model VE-7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(1 / 20 v^{2}\) & \(\rho\) & V & n & \(\mathrm{R}_{\mathrm{a}}\) & \(\mathrm{R}_{0}\) & A & T & T-A & Q & \(\nabla / \mathrm{nD}\) & \(\mathrm{C}_{T}\) & \({ }^{\circ} \mathrm{P}\) & \(\eta\) \\
\hline & & & & & \multicolumn{4}{|l|}{November 5, 1925.} & & & & & \\
\hline 2.727 & -002394 & 47.73 & 16.74 & 2.42 & 2.46 & -. 04 & . 00 & . 04 & . 282 & . 950 & . 0007 & 0109 & . 064 \\
\hline 2.735 & .002394 & 47.81 & 17.69 & 2.17 & 2.47 & . 00 & . 70 & .70 & . 506 & . 901 & . 0115 & . 0175 & . 594 \\
\hline 2.753 & -002390 & 48.00 & 18.67 & 2.57 & 2.48 & . 09 & 1.40 & 1.31 & . 731 & . 857 & . 0194 & .0227 & . 732 \\
\hline 2.762 & .002390 & 48.08 & 19.65 & 2.69 & 2.49 & . 20 & 2.21 & 2.01 & 1.087 & . 81.6 & . 0369 & . 0288 & . 761 \\
\hline 2.806 & .002390 & 48.46 & 20.67 & 2.80 & 2.53 & . 27 & 3.14 & 2.87 & 1.360 & . 782 & . 0347 & . 0344 & . 788 \\
\hline 2.849 & . 002385 & 48.88 & 21.82 & 2.96 & 2.57 & . 39 & 4.30 & 3.91 & 1.722 & . 747 & . 0425 & . 0392 & . 810 \\
\hline 2.867 & . 002385 & 49.03 & 23.10 & 3.07 & 2.58 & . 49 & 5.58 & 5.09 & 2.120 & . 708 & . 0494 & . 0431 & . 811 \\
\hline 2.876 & . 002380 & 49.16 & 24.63 & 3.26 & 2.59 & . 67 & 7.21 & 6.54 & 2.655 & . 665 & . 0559 & . 0475 & . 783 \\
\hline 2.884 & . 002378 & 49,25 & 25.93 & 3.39 & 2.60 & . 79 & 8.72 & 7.93 & 3.104 & . 633 & . 0612 & . 0502 & . 772 \\
\hline 2.911 & .002378 & 49.48 & 27.53 & 3.60 & 2.62 & . 98 & 10.70 & 9.72 & 3.733 & . 593 & . 0666 & . 0536 & . 745 \\
\hline 3.050 & .002374 & 50.69 & 29.08 & 3.89 & 2.74 & 1.15 & 12.56 & 11.41 & 4.291 & . 581 & . 0702 & . 0553 & . 731 \\
\hline 3.251 & -002374 & 52.33 & 32.39 & 4.44 & 2.93 & 1.52 & 17.10 & 15.58 & 5.665 & . 539 & . 0772 & . 0588 & . 708 \\
\hline 3.295 & .002373 & 52.69 & 35.70 & 4.94 & 2.95 & 1.99 & 22.33 & 20.34 & 7.083 & . 492 & . 0330 & . 0605 & . 675 \\
\hline 3.321 & .002373 & 52.90 & 38.91 & 5.50 & 2.98 & 2.52 & 28,27 & 25.75 & 8.782 & . 453 & . 0885 & . 0632 & ,634 \\
\hline 3.374 & -002373 & 53.31 & 42.11 & 6.10 & 3.02 & 3.08 & 34.90 & 31.82 & 10.650 & . 422 & .093: & . 0654 & . 603 \\
\hline \multirow[t]{2}{*}{2.272} & .002374 & 43.75 & 41.28 & 5.15 & 2.04 & 3.11 & 34.90 & 31.79 & 10.670 & . 353 & . 0970 & . 0682 & . 502 \\
\hline & & & & & \multicolumn{4}{|l|}{November 3, 1925.} & & & & & \\
\hline . 961 & .002351 & 28.59 & 40.45 & 4.19 & . 88 & 3.31 & 34.90 & 31.59 & 11.180 & . 236 & . 1014 & . 0751 & . 319 \\
\hline . 332 & .002352 & 16.80 & 39.49 & 3.63 & . 31 & 3.32 & 34.90 & 31.58 & 11.860 & 142 & . 1063 & . 0836 & . 181 \\
\hline
\end{tabular}

Tabie IV.
Pressed Steel Propeller
No Fairing
Hodel VE-7
November 12, 1925.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rho \mathrm{V}^{2} / 2\) & \(\rho\) & \(\nabla\) & n & \(\mathrm{R}_{\mathrm{a}}\) & \(\mathrm{R}_{0}\) & A & T & T-A & Q & \(\mathrm{V} / \mathrm{nD}\) & \(\mathrm{C}_{\text {T }}\) & \(\mathrm{CP}_{\mathrm{p}}\) & \(\eta\) \\
\hline 3.217 & . 002352 & 52.30 & 18.12 & 2.89 & 2.89 & . 00 & .00 & . 00 & . 362 & . 962 & . 0000 & . 0121 & . 000 \\
\hline 3.281 & . 002352 & 52.33 & 19.00 & 2.95 & 2.89 & . 06 & 70 & . 64 & . 600 & . 918 & . 0093 & . 0183 & . 467 \\
\hline 3.217 & .003351 & 52.31 & 19.78 & 3.03 & 2.89 & . 14 & 1.40 & 1.26 & . 825 & . 882 & . 0169 & . 0232 & . 643 \\
\hline 3.212 & ,002351 & 52.27 & 20.78 & 3.12 & 2.88 & . 24 & 2.21 & 1.97 & 1.085 & . 839 & . 0240 & .037 & -728 \\
\hline 3.225 & . 0023 3:8 & 52.41 & 21.62 & 3.21 & 2.89 & . 32 & 3:14 & 2.82 & 1.403 & . 808 & . 0317 & . 0331 & . 774 \\
\hline 3.221 & . 002346 & 52.40 & 22.85 & 3.30 & 2.89 & . 41 & 4.30 & 3.89 & 1.794 & . 764 & . 0392 & . 0379 & . 790 \\
\hline 3.247 & . 002346 & 52.61 & 23.98 & 3.46 & 2.91 & . 56 & 5.58 & 5.03 & 2.198 & . 731 & . 0460 & . 0421 & . 799 \\
\hline 3.288 & . 002346 & 52.93 & 25,27 & 3.63 & 2.94 & . 69 & 6.98 & 6.29 & 2.669 & . 698 & . 0518 & . 046 & . 785 \\
\hline 3.381 & . 002346 & 53.21 & 26.78 & 3.84 & 2.98 & . 86 & 8.72 & 7.86 & 3.211 & . 662 & . 0577 & . 0494 & . 773 \\
\hline 3.334 & . 002346 & 53.33 & 28.00 & 3.98 & 2.99 & . 99 & 10.47 & 9.48 & 3.725 & . 635 & . 0636 & . 0524 & .771 \\
\hline 3.321 & . 002316 & 53.21 & 29.47 & 4.20 & 2.98 & 1.22 & 12.56 & 11.34 & 4.362 & . 602 & . 0687 & . 0554 & . 747 \\
\hline 3.431 & . 002345 & 54.09 & 32.70 & 4.75 & 3.07 & 1.68 & 17.10 & 15.42 & 5.685 & . 551 & . 0759 & . 0586 & . 714 \\
\hline 3.496 & . 002346 & 54.60 & 35.87 & 5.25 & 3.13 & 2.12 & 22.33 & 20.21 & 7.110 & . 507 & .0827 & . 0609 & . 688 \\
\hline 3.493 & . 002346 & 54.60 & 39.07 & 5.85 & 3.13 & 2.72 & 28.27 & 25.55 & 8.810 & . 466 & . 0881 & . 0636 & . 645 \\
\hline 3.527 & . 002351 & 54.78 & 42.29 & 6.44 & 3.15 & 3.29 & 34.90 & 31.61 & 10.730 & . 432 & . 0928 & . 0660 & . 607 \\
\hline 2.434 & . 002352 & 45.49 & 41.43 & 5.53 & 2.20 & 3.33 & 34.90 & 31.57 & 10.640 & . 366 & . 0965 & . 0681 & . 519 \\
\hline 1.036 & . 002353 & 29.67 & 40.36 & 4.54 & . 95 & 3.59 & 34.90 & 31.31 & 11.100 & . 245 & . 1008 & . 0749 & . 330 \\
\hline
\end{tabular}
N.A.C.A. Technical Note No. 245


Fig. 4 C.W.Hall model propeller. Two blade. Free wind stream.
N.A.C.A. Technical Note No. 245

Fig. 5



Fig. 6 Model pressed steel propeller. Complete fairing. Free wind atream.


Fig. 7 Model pressed steel propeller. Partial fairing. Free wind stream.


Fig. \(8 \cdot\) inodel pressed steel Jropeller.
No fairing. Free wind stream.


Fig. 9 Model pressed steel propeller. Complete fairing. Free wind stream.
\[
\begin{aligned}
& \odot \circ=n \text { about } 45.8 \\
& \square a=n \text { about } 39.5 \\
& \Delta \Delta=n \text { about } 32.6
\end{aligned}
\]


Fig. 10 Model propeller I-178.



Fig. 12 Resistance of model V.E.7.


Fig. 13 G.W.Hall model propeller, Two blade. With model V.E.7.


Fig. 14 C.W.Hali model propeller. Three blade. With model


Fig. 15 Model pressed steel propeller. Complete fairing. With model V.E.7.


Fig. 16 Model pressed steel propeller. Partial fairing.
\(\begin{aligned} & \text { With model } V \text {.E. }\end{aligned}\).


Fig. 17 Model pressed steel propeller. No fairing. With mojel V.E.7.```

