

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

Prepared in cooperation with LINCOLN COUNTY

US 89

bridge

opening

Water-Surface Profile and Flood Boundaries for the Computed 100-Year Flood, Lower Salt River, Lincoln County, Wyoming

By Kirk A. Miller and Jon P. Mason

ABSTRACT

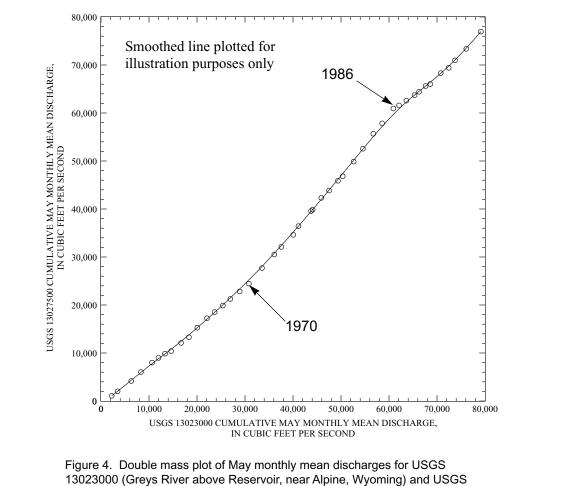
The water-surface profile and flood boundaries for the computed 100-year flood were determined for a part of the lower Salt River in Lincoln County, Wyoming. Channel cross-section data were provided by Lincoln County. Cross-section data for bridges and other structures were collected and compiled by the U.S. Geological Survey. Roughness coefficients ranged from 0.034 to 0.100. The 100-year flood was computed using standard methods, ranged from 5,170 to 4,120 cubic feet per second through the study reach, and was adjusted proportional to contributing drainage area. Water-surface elevations were determined by the standard step-backwater method. Flood boundaries were plotted on digital basemaps.

INTRODUCTION

Lincoln County officials need the 100-year flood boundaries identified for the Salt River to assist in development planning and flood-insurance purposes. As defined by the Federal Emergency Management Agency (FEMA), computation of the elevation profile and mapping of the inundation area for a 100-year flood constitutes a limited-detail study (U.S. Geological Survey, written commun., 1984). In cooperation with Lincoln County, the U.S. Geological Survey (USGS) completed a limited-detail flood study for a part of the lower Salt River.

Purpose and Scope

This report describes the 100-year flood elevations for the Salt River from a point about 1-1/2 mi north of Thayne, Wyoming, upstream through The Narrows to the State Route 238 bridge (fig. 1). Openchannel cross-section geographic coordinates and elevations and bridge cross-section geographic coordinates were provided by Lincoln County. Bridge cross-section elevations were determined by the USGS. An initial 100-year flood discharge was determined using annual peak streamflows from streamflow-gaging station USGS 13027500 for the period 1954-97. The final flood discharges were decreased upstream proportionally to drainage area. The hydraulic analyses assumed steady, graduallyvaried flow. Base-map information, specifically topographic data, are provided for general reference; flood elevations could be field surveyed to determine areas of inundation more precisely.


Acknowledgments

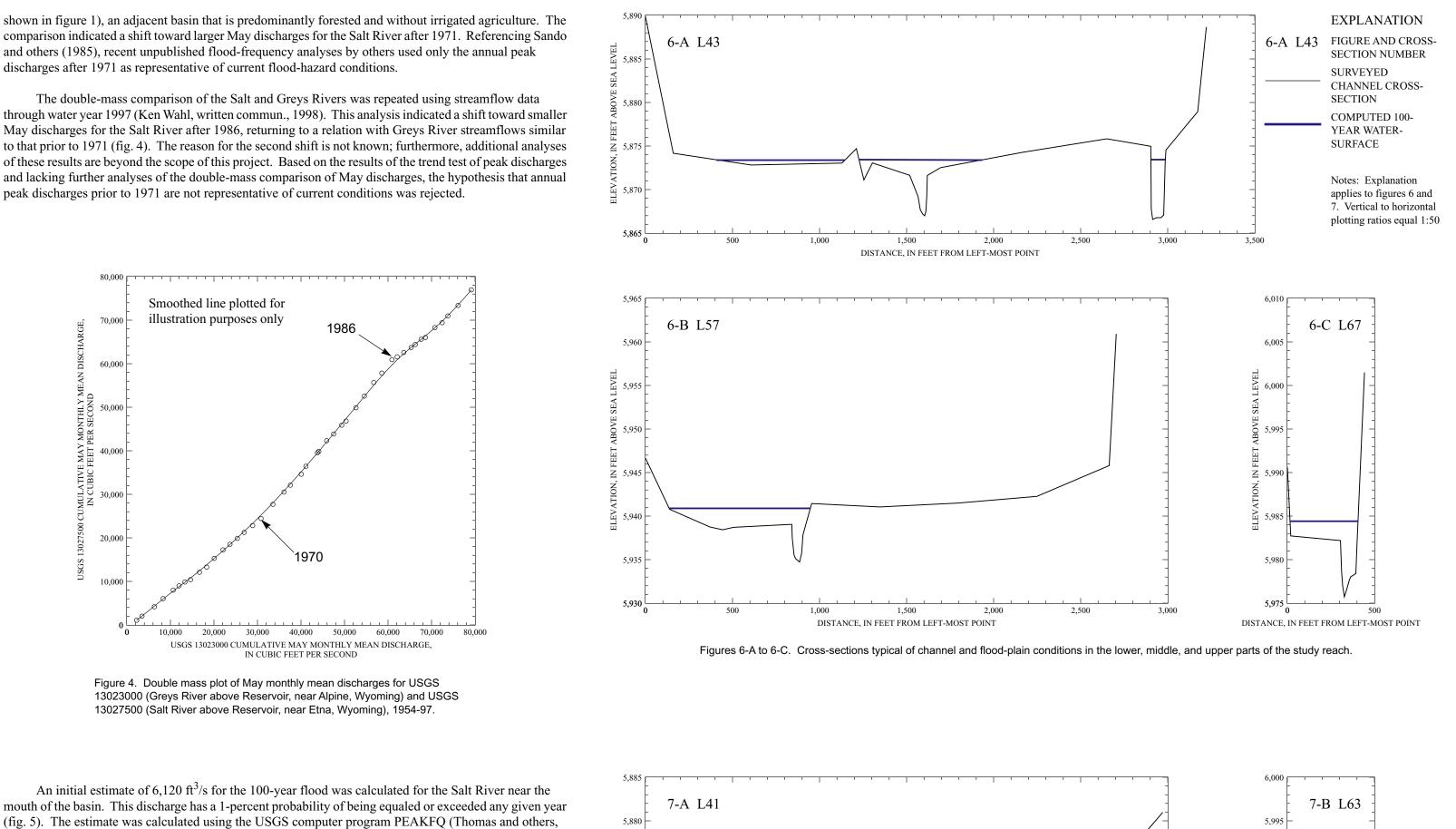
Ross Turner, Lincoln County, is acknowledged for assisting in the reduction and review of the channel surveying data. Ken Wahl, USGS, is acknowledged for his field assistance and for his hydrologic analyses.

Study Reach

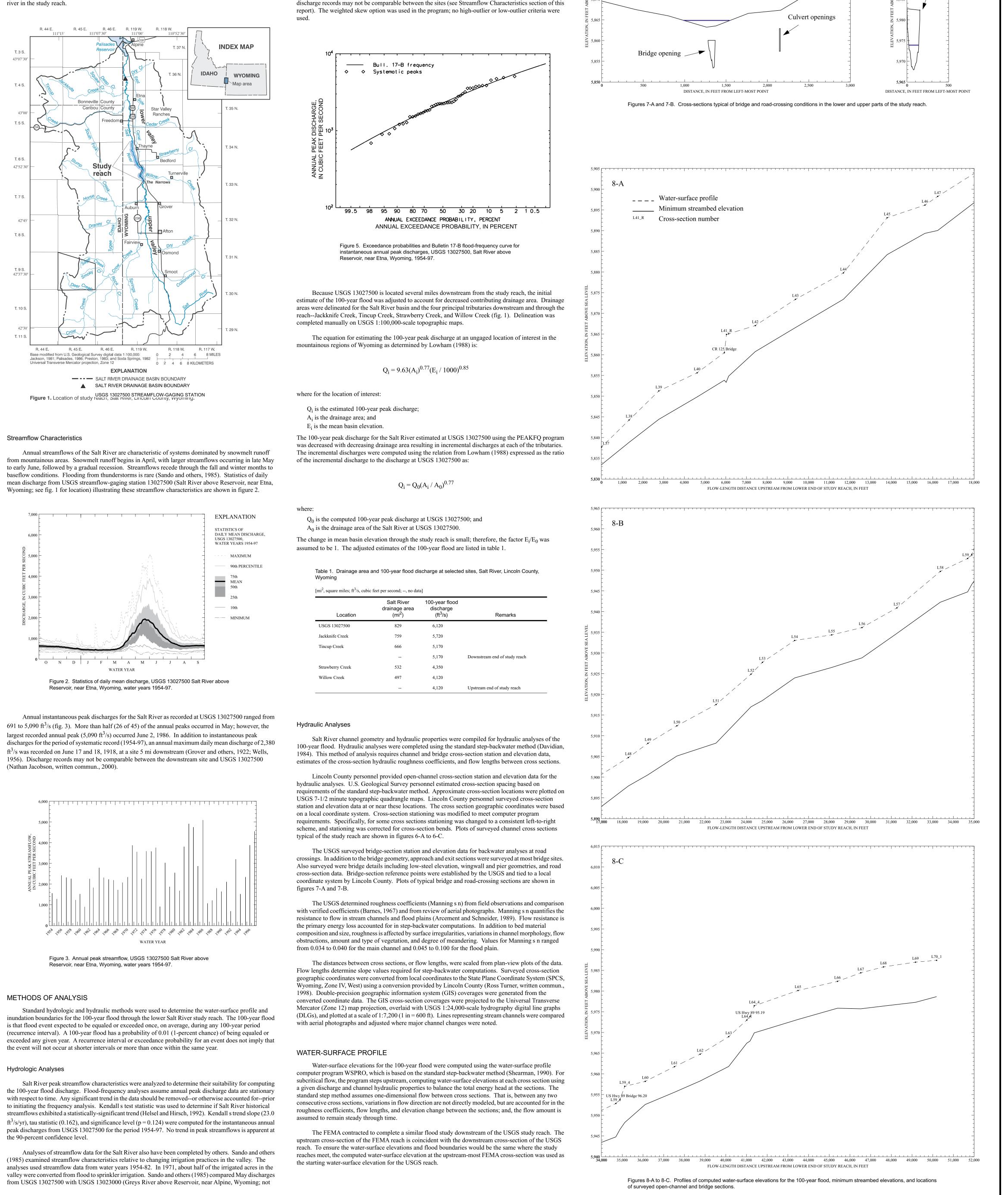
The Salt River originates in the mountains of north-central Lincoln County, Wyoming and flows north through Star Valley toward its mouth at Palisades Reservoir (fig. 1). The study reach begins at a point about 1-1/2 mi north of Thayne and continues upstream through The Narrows to the State Route 238 bridge. Through the lower valley, the Salt River is a meandering stream with a broad floodplain; through The Narrows, the river is more confined. Strawberry Creek and Willow Creek are two major tributaries to the

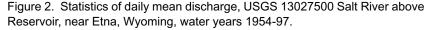
comparison indicated a shift toward larger May discharges for the Salt River after 1971. Referencing Sando and others (1985), recent unpublished flood-frequency analyses by others used only the annual peak discharges after 1971 as representative of current flood-hazard conditions. The double-mass comparison of the Salt and Greys Rivers was repeated using streamflow data through water year 1997 (Ken Wahl, written commun., 1998). This analysis indicated a shift toward smaller May discharges for the Salt River after 1986, returning to a relation with Greys River streamflows similar to that prior to 1971 (fig. 4). The reason for the second shift is not known; furthermore, additional analyses of these results are beyond the scope of this project. Based on the results of the trend test of peak discharges and lacking further analyses of the double-mass comparison of May discharges, the hypothesis that annual peak discharges prior to 1971 are not representative of current conditions was rejected.

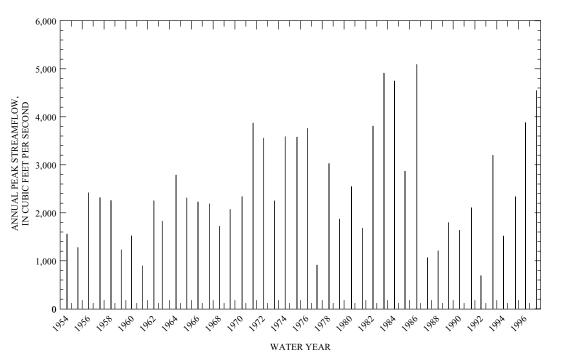
13027500 (Salt River above Reservoir, near Etna, Wyoming), 1954-97.


written commun., 1998) in accordance with accepted methods described in Bulletin 17-B of the Hydrology

Subcommittee of the Office of Water Data Coordination (Interagency Advisory Committee on Water Data,


analyses. The 1918 historic peak discharge at the site downstream was not used in the analyses because of


1982). Instantaneous peak discharges from USGS 13027500 for the period 1954-97 were used in the


the lack of ancillary data for the intervening period (1919-53) of no systematic record and because the

County Road 125 (CR125) elevation

WATER-SURFACE PROFILE AND FLOOD BOUNDARIES FOR THE COMPUTED 100-YEAR FLOOD, LOWER SALT RIVER, LINCOLN COUNTY, WYOMING

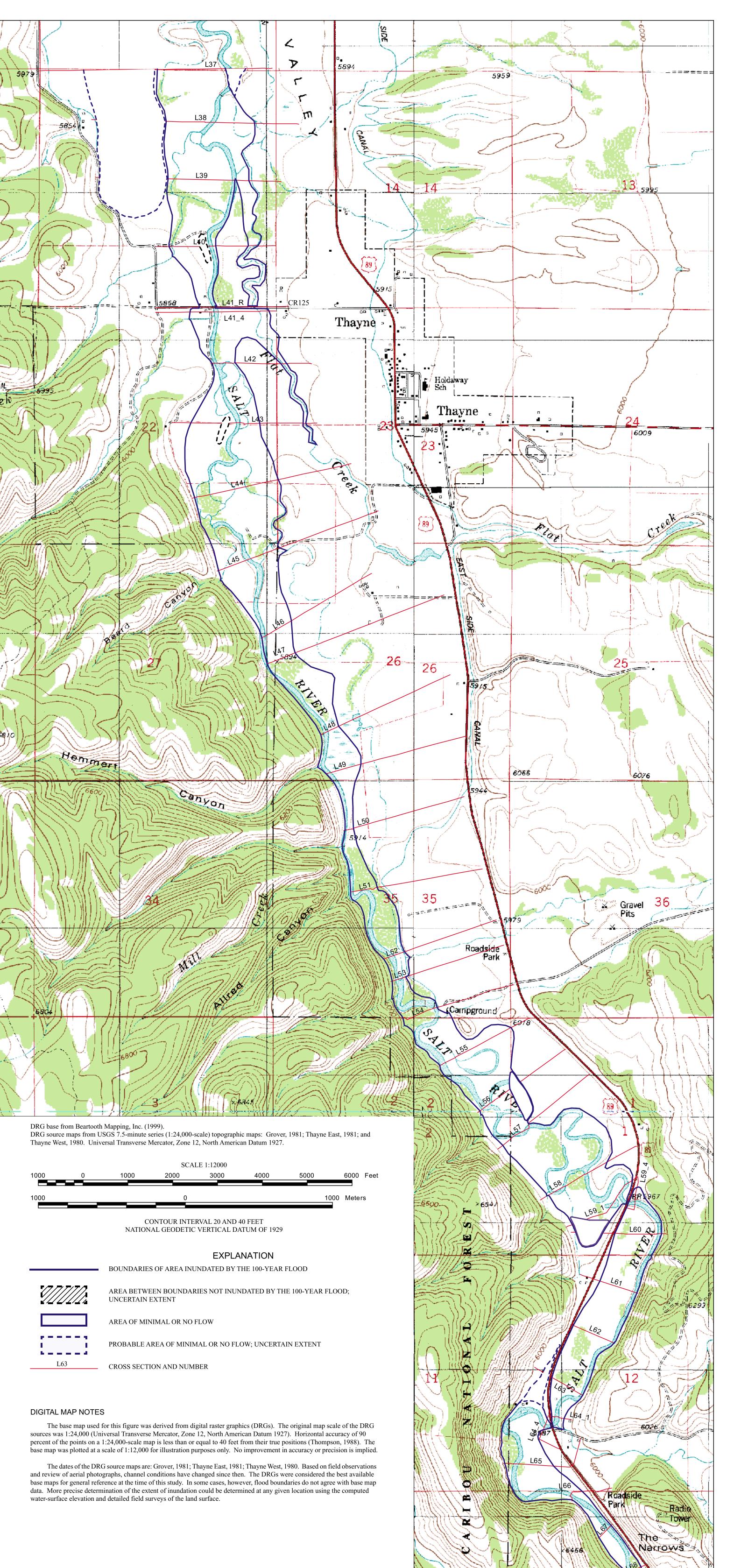
Kirk A. Miller and Jon P. Mason 2000

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

Prepared in cooperation with LINCOLN COUNTY

Template cross-sections (cross sections derived from nearby surveyed cross sections) were used between several surveyed cross-sections where WSPRO computations resulted in critical or supercritical flows without physical basis. The template cross-sections were located upstream, downstream, or both upstream and downstream of surveyed sections. Template cross-section elevations were adjusted using average channel slopes between two or more adjacent surveyed sections. Widths of some template cross-sections were adjusted for more gradual transitions between surveyed sections with different geometries. Use of template cross-sections did not resolve all conveyance problems. Template cross-sections were used only to minimize computational errors and may not be representative of actual channel conditions.

Water-surface elevations from cross-section L39 to cross-section L42 in the vicinity of County Road 125 (CR125) northwest of Thayne were determined separate from the rest of the study reach. Historical information, field observations, and preliminary


computations indicated a discharge of 5,130 ft³/s would create sufficient backwater at CR125 to flow over the bridge and through the culverts on Flat Creek. For this reason, separate WSPRO computations were completed for Flat Creek and the Salt River. The culvert capacities were estimated and the resulting discharge used to compute water-surface elevations for Flat Creek. The discharge for the Salt River for the same reach was reduced by that amount and water-surface elevations were computed. The difference in watersurface elevations for both computations at the approach section to CR125 (cross-section L41_4) were compared. The discharges were adjusted with the intent of minimizing that difference and the water-surface elevations were computed again. This iterative process was repeated until the water-surface elevations at the approach to CR125 were within 0.2 ft of each other.

Water-surface elevations near the northernmost bridge in the study reach on U.S. Highway 89 (Bridge 96.20; cross-sections L59_1 and L59_4) are of questionable accuracy because of hydraulic computation problems. Because of the relative steepness of the channel immediately downstream of the bridge, an initial unconstricted water-surface elevation could not be determined by the WSPRO model. As a result, computed watersurface elevations through the bridge opening and immediately upstream of the bridge are based on the critical water-surface elevation and may not represent actual hydraulic conditions

The continuous water-surface profile for the study reach was determined by assuming a linear change between computed cross-section water-surface elevations. Water-surface elevations at surveyed cross-sections (table 2) were plotted against the cumulative flow length for the study reach (figures 8-A to 8-C). Because template crosssections may not represent actual channel conditions, water-surface elevations at template cross-sections are not listed in table 2 or shown in figures 8-A to 8-C and template crosssection locations are not shown in figure 9.

Table 2. Computed water-surface elevations at surveyed cross sections for the 100-year flood, Salt River, Lincoln County, Wyoming

Cross-section	Water-surface elevation (feet above sea level)	Cross-section	Water-surface elevation (feet above sea level)
L37	5837.9	L56	5936.1
L38	5844.2	L57	5940.9
L39	5851.3	L58	5949.7
L40	5855.6	L59_1	5952.8
CR 125 Bridge	5864.9	US Hwy 89 Bridge 96.20	5953.8
L41_4	5865.1	L59_4	5957.0
L42	5867.0	L60	5958.2
L43	5873.4	L61	5961.7
L44	5879.8	L62	5964.8
L45	5893.1	L63	5969.0
L46	5896.2	L64_1	5973.0
L47	5898.3	US Hwy 89 Bridge 95.19	5973.9
L48	5904.7	L64_4	5976.4
L49	5908.2	L65	5980.1
L50	5912.4	L66	5982.4
L51	5917.5	L67	5984.4
L52	5924.9	L68	5985.8
L53	5927.7	L69	5987.0
L54	5933.0	L70_1	5987.4
L55	5934.4		

FLOOD BOUNDARIES

The boundaries for the area inundated by the 100-year flood were determined from the computed water-surface profiles. The GIS cross-section coverages were plotted on USGS 1:24,000-scale digital raster graphics (DRGs) (fig. 9). The intersection of the 100year flood elevation with the surveyed ground elevation was computed by the WSPRO model for each cross section. The model output those data as the distances in feet from the left-most cross-section station (determined facing downstream) to the left- and right-edges of water. These distances were measured along the cross-section traces on the DRG and marked as the computed extent of inundation at each cross section. The 100-year flood boundaries were plotted on the DRGs assuming a constant change in water-surface elevations between cross sections. That is, the flood boundaries represent the trace of the intersection of the flat, sloping plane of the water surface with the underlying irregular land surface. Topographic data, roads, and canals on the DRGs and recent aerial photographs and field observations were reviewed for assistance in plotting the flood boundaries between cross sections.

The use of USGS 7.5-minute series (1:24,000-scale) topographic maps as the base maps for the flood boundaries was determined at the inception of the study. The DRGs used were the best available representations of these maps at the time of the study. In some instances, the locations of the flood boundaries are inconsistent with topographic and hydrographic data on the DRGs. The definitive source of these inconsistencies was not determined; however, several factors might have contributed to them. The dates of the DRG source maps range from 1980 to 1981. Based on field observations and review of aerial photographs, channel conditions have changed since then. Conversion of the survey data from the local coordinate system to a map projection may be a source of error in plotting the cross sections. Also, horizontal accuracy of 90 percent of the points on a 1:24,000-scale map is less than or equal to 40 ft from their true positions (Thompson, 1988). More precise determination of the extent of inundation could be determined at any particular location using the computed water-surface elevation and detailed field surveys of the land surface.

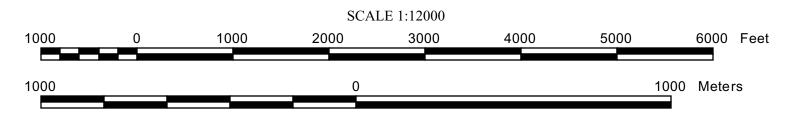
Inundated areas with minimal or no flow were identified near the bridges on U.S. Highway 89. From the available data, the elevations of these zones are low enough that they would be inundated. Because of their location relative to the main channel, there would probably be little or no velocity in these zones. Inundation is probable for the area left of the main channel and upstream of the southernmost bridge on U.S. Highway 89 (Bridge 95.19 near cross-sections L64_1 and L64_4). Land-surface elevations west of U.S. Highway 89 at cross-section L63 are lower than the computed water-surface elevations upstream of Bridge 95.19. A more accurate determination of the area of inundation would require surveyed elevations of built-up areas on the left-bank upstream of Bridge 95.19. In addition to areas with minimal or no flow identified in figure 9, other segments with little or no flow near the flood boundaries may occur near the right flood boundary near cross-

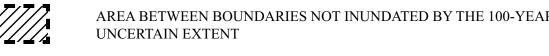
sections L55 and L58.

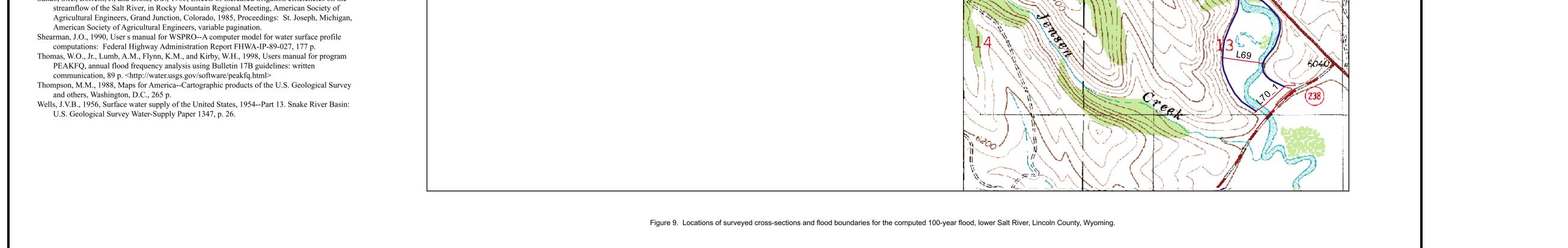
SUMMARY

Lincoln County officials need the 100-year flood boundaries identified for the Salt River to assist in development planning and flood-insurance purposes. In cooperation with Lincoln County, the U.S. Geological Survey (USGS) completed a limited-detail flood study for a part of the lower Salt River. The study reach begins at a point about 1-1/2 mi north of Thayne and continues upstream through The Narrows to the State Route 238 bridge.

Annual streamflows of the Salt River are characteristic of systems dominated by snowmelt runoff from mountainous areas. Annual instantaneous peak discharges for the Salt River as recorded at USGS 13027500 ranged from 691 to 5,090 ft³/s. Statistical tests revealed no trends through time; thus, all peak discharge data were used in the analyses. Final adjusted estimates of the 100-year flood for the study reach ranged from 5,170 to $4,120 \text{ ft}^{3}/\text{s}$ (downstream to upstream).


Salt River channel geometry and hydraulic properties were compiled for hydraulic analyses of the 100-year flood. Lincoln County personnel provided open-channel crosssection station and elevation data. The USGS surveyed bridge-section station and elevation data. Lincoln County personnel referenced all cross-section data to a local coordinate system. Manning s n determined by the USGS ranged from 0.034 to 0.040 for the main channel and 0.045 to 0.100 for the flood plain. Flow lengths were measured on scaled GIS plots.


Water-surface elevations for the 100-year flood were computed using the watersurface profile computer model WSPRO. The ending water-surface elevation from an adjacent FEMA limited-detail study was used as the starting water-surface elevation for the study reach. Template cross-sections were used between several surveyed cross-sections where WSPRO model computations resulted in critical or supercritical flows without physical basis. Water-surface elevations in the vicinity of CR125 northwest of Thayne were determined separate from the rest of the study reach using an iterative approach. Water-surface elevations through Bridge 96.20 may be uncertain because of WSPRO computational problems.


The boundaries for the area inundated by the 100-year flood were plotted on USGS 1:24,000-scale DRGs. Topographic data, roads, and canals on the DRGs and recent aerial photographs and field observations were reviewed for assistance in plotting the flood boundaries between cross sections. Locations of the flood boundaries in some segments are inconsistent with topographic and hydrographic data on the DRGs. Inundated areas with little or no flow were identified. More precise determination of the extent of inundation could be determined at any given location using the computed water-surface elevation and detailed field surveys of the land surface.

REFERENCES

- Arcement, George J., Jr., and Schneider, Verne R., 1989, Guide for selecting Manning s roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Beartooth Mapping, 1999, Wyoming DRG-E quadrangle name index (PDF version): Red Lodge, Montana, Beartooth Mapping, Inc., 48 p.
- Davidian, J., 1984, Computation of water-surface profiles in open channels: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter A15, 48 p.
- Grover, N.C., Baldwin, G.C., Parker, G.L., Purton, A.B., and Henshaw, F.F, 1922, Surface water supply of the United States, 1918--Part XII. North Pacific drainage basins, B. Snake River Basin: U.S. Geological Survey Water-Supply Paper 483, p. 56-57.
- Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: New York, Elsevier Science Publishing Co., Inc., 522 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: Bulletin 17-B of the Hydrology Subcommittee, Office of Water Data Coordination, U.S. Geological Survey, Reston, Virginia, 183 p.
- Lowham, H.W., 1988, Streamflows in Wyoming: U.S. Geological Survey Water-Resources Investigations Report 88-4045, 78 p.
- Sando, S.K., Borrelli, J., and Brosz, D.J., 1985, Effects of increased irrigation efficiencies on the

WATER-SURFACE PROFILE AND FLOOD BOUNDARIES FOR THE COMPUTED 100-YEAR FLOOD, LOWER SALT RIVER, LINCOLN COUNTY, WYOMING By

Kirk A. Miller and Jon P. Mason 2000