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Abstract—Due to the insufficient measurements in the 

distribution system state estimation (DSSE), full observability 

and redundant measurements are difficult to achieve without 

using the pseudo measurements. The matrix completion state 

estimation (MCSE) combines the matrix completion and power 

system model to estimate voltage by exploring the low-rank 

characteristics of the matrix. This paper proposes a robust 

matrix completion state estimation (RMCSE) to estimate the 

voltage in a distribution system under a low-observability 

condition. Tradition state estimation weighted least squares 

(WLS) method requires full observability to calculate the states 

and needs redundant measurements to proceed a bad data 

detection. The proposed method improves the robustness of the 

MCSE to bad data by minimizing the rank of the matrix and 

measurements residual with different weights. It can estimate the 

system state in a low-observability system and has robust 

estimates without the bad data detection process in the face of 

multiple bad data. The method is numerically evaluated on the 

IEEE 33-node radial distribution system. The estimation 

performance and robustness of RMCSE are compared with the 

WLS with the largest normalized residual bad data identification 

(WLS-LNR), and the MCSE. 

Index Terms—Distribution system state estimation, low 

observability, matrix completion, robustness. 

I. INTRODUCTION 

With the integration of distributed energy resources (DERs), 

aggregated demand response and electric vehicle (EV) 

charging in the distribution system, system operators need real-

time monitoring to maintain the system reliability and 

efficiency in the face of more variable loads. The system state 

estimation (SE) is an essential tool for online monitoring and 

analysis in the transmission system, where measurement 

redundancy ensures the system observability and bad data 

processing. Even though the deployment of various recent 

technologies such as advanced metering infrastructure (AMI) 

phasor measurements units (PMUs), intelligent electronic 

devices and smart inverters of DERs, have improved the 

network observability, the distribution system is generally 

underdetermined with poor observability and easily becomes 

unobservable due to the communication failure and delay [1]. 

While pseudo-measurements based on the history of the 

distribution system are generally used to improve the system 

observability, pseudo-measurement errors significantly affect 

the estimation accuracy. This is the reason why only a limited 

number of utilities have implemented the distribution system 

state estimation (DSSE) [2-3].  

Weighted least squares (WLS) is a conventional method in 

the DSSE including bus-voltage based methods and branch-

current based methods depending on the selection of the state 

variables [4]. Although the WLS-based methods are fast, 

simple and broadly used, they require the full network 

observability and are also sensitive to the bad data. Data-driven 

approaches and machine-learning techniques are employed in 

the DSSE. A matrix completion state estimation (MCSE) was 

proposed in [5], [6] which used a matrix completion algorithm 

augmented with power-flow constraints to estimate the voltage 

in a low-observability system. However, the MCSE is also 

sensitive to bad data. 

Bad data detection (BDD) is an integral function for the 

SE to detect, identify and correct measurement errors. The 

WLS combined with the largest normalized residual bad data 

identification (WLS-LNR) is widely used in power system 

control center [7]. The detectability of bad data depends 

heavily on the measurement configuration and redundancy [4]. 

Through a residual analysis, erroneous redundant 

measurements are identifiable, while inaccurate critical 

measurements that negatively affect the estimation state are 

undetectable. No critical measurements should exist in a well-

designed measurement system [8]. However, the lack of real-

time measurements in the distribution system results in low 

measurement redundancy, increased critical measurements, 

and even low network observability, which creates additional 

obstacles to the BDD. The undetectable erroneous critical 

measurement can deviate the estimated state from the actual 

value in the WLS based method.  

A robust state estimation algorithm without post-SE bad 

data processing can be used in the DSSE to reduce the 

influence of bad data. Different from the WLS, robust 

estimators use different objective functions to improve the SE 

robustness to bad data, such as Least Median of Square, Least 

Trimmed Squares and Least Absolute Value [9-10]. Robust 

estimators generally reduce the weight of the erroneous 

measurement identified by a high residual in the estimation 

process to suppress the impact of bad data on the solution. In 

[11], the machine learning and state estimation were combined 

within a closed-loop scheme, in which the nodal load estimates 

from the state estimator is used by the machine learning 

function as a feedback to improve the accuracy.  

By extending our prior work [5], [6], this paper tries to 

investigate and enhance the robustness of the MCSE. The basic 

idea is to minimize the weighted sum of matrix rank and 

measurements residual, instead of imposing a fixed threshold 
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to the measurement residual. The proposed method is 

formulated as a convex optimization problem and solved by a 

semidefinite programming (SDP) solver. Estimation mean 

absolute percentage error (MAPE) of RMCSE is compared 

with those of the WLS and the MCSE on the IEEE 33-node 

distribution system with various system observability levels. 

Also, the robustness of RMCSE is shown in contrast to the 

WLS-LNR in the case study. The rest of this paper is organized 

as follows. The formulation for the RMCSE is presented in 

Section II. The case study is conducted in Section III. The 

paper is summarized and concluded in Section IV. 

II. PROBLEM FORMULATION 

The background of matrix completion is presented and the 

formulation for RMCSE is proposed in this section. 

A. Matrix Completion 

Matrix completion takes advantage of the low-rank 

property of the matrix to estimate the missing elements using 

the known elements in the matrix.  Let 1 2*n n
M  be the 

matrix we want to recover. In the M  matrix, only a sampled 

set of entries ( ), ,ijM i j   are available, and the rest entries 

are unknown, where  is a subset of the complete set of M. A 

sampling operator 1 2 1 2* *
:

n n n n
P → is generally used to 

represent the available information via ( )P M : 

( )
( ),     ,

0,         

ij

ij

X i j
P X

otherwise



=   


                 (1) 

Assume there is a low-rank matrix 1 2*n n
X   which is 

consistent with the observed entries in M . Then, the rank 

minimization problem can be formulated to recover the 

unknown entries in M as follows: 

( )

( ) ( )

min        

. .         

rank X

s t P X P M =
                           (2) 

This problem is NP-hard and its solution algorithms are doubly 

exponential. The nuclear norm can be used in the objective 

function to formulate the problem as a convex problem 

according to the convex relaxation [5]. Furthermore, equality 

constraints are relaxed using the Frobenius norm to suppress 

the influence of bad data. The matrix completion problem is 

formulated as follows: 

( ) ( )

*
min        

. .        
F

X

s t P X P M  − 
              (3) 

where the nuclear norm ( )
( )1 2min ,

*
1

n n

i

i

X X
=

=   is the sum of the 

matrix singular value, and the Frobenius norm is defined as:   

( ) ( ) ( ) ( )
1 2 2

1 1

n n

F ij ij
i j

P X P M P X P M   

= =

− = −              (4) 

B. Robust Matrix Completion State Estimation 

A robust state estimation based on matrix completion is 

proposed to estimate the voltage in a distribution system with a 

low-observability. This approach combines the matrix 

completion and the power system knowledge by integrating all 

the system information into a system state-measurement matrix.  

The distribution system model and Ohm's Law are introduced 

and formulated as constraints to provide more insights into 

missing and observed entries.  

In a system state-measurement matrix, each row integrates 

the information of one feeder, and each column represents one 

measurement variable. In greater detail, the columns include 

the real and reactive voltage of the feeder’s two end buses, the 

voltage magnitude of the two buses, the active and reactive 

power injection of two buses, and the real and reactive part of 

line current. For each feeder ( ),i j , its corresponding row in 

the matrix is defined as: 

( ) ( ) ( ) ( )

( ) ( )

[Re , Im , , , ,Re , Im , , , ,

                                                              Re , Im ]

i i j j

i i i in in j j j in in

ij ij

V V V P Q V V V P Q

I I
(5) 

In a distribution system with n  nodes and m  feeders, 

system state-measurement matrix *12mM  is composed by 

the system states and measurements. All measurements 

obtained from the sensors are observed entries in the matrix, 

while the rest of the measurements and system states can be 

recovered by the matrix completion. The RMCSE is 

formulated as a convex optimization problem: 

( ) ( )
( )

( ) ( )

1 2 3 4*
,

min        

. .         ,      ,

                                                                (6)

             ,

              

ijF
i j

ij i j ij ij

ij

X w P X P M w w w

s t I V V Y i j

v Dx w

v Kx w
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  

 
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

 







+ − + + +

− −   

− − 
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

( )0,          ,i j   

where 
1w ,

2w ,
3w and

4w  are the weight parameters, and 
1 2w = , 

2 3 4 200w w w= = =  in our case study;   is the set of 

distribution feeders; 
ijY is the admittance of the feeder ( ),i j ; 

nv  is the bus voltage phasor vector, nv   is the bus 

voltage magnitude vector, 2nx  is a vector of the active and 

reactive power injection of all buses; 2n nD  , 2n nK   

and nw  can be calculated [12]. 

The first constraint in (6) is the Ohm’s Law of each feeder, 

which set up the relationship between the real and reactive part 

of voltage and current in the matrix. Instead of using linear 

equality constraints for the Ohm’s Law, the constraints are 

relaxed by a tolerance   due to the measurement noise. The 

second and third constraints in (6) are the linear approximation 

of voltage phasor and voltage magnitude in the distribution 

system, respectively [12]. The nodal net power injection is 

used to approximate the power-flow solution based on a fixed-

point linearization of the AC power-flow equation. Similarly, 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
2



the constraints are relaxed by tolerance because the linear 

approximation itself has estimation errors, and the power 

injections used in the linear approximation have measurement 

error. 

The proposed RMCSE (6) differs from the matrix 

completion (3) in the following two ways. First, unlike purely 

exploiting the low-rank property in (3), the RMCSE introduces 

constraints of the distribution system model and Ohm’s Law, 

leading to the better recovery of the missing entries. Secondly, 

the Frobenius norm of the measurements is formulated in the 

objective function rather than in the constraints. If the 

Frobenius norm of the measurements is imposed as hard 

constraints in (3), one needs to carefully select the tolerance 

value . An improper selection of  will deviate the estimated 

states from the actual ones in the case of one or more bad data 

in the measurements. Therefore, formulating the Frobenius 

norm in the objective function can avoid the tolerance selection 

issue and increase the algorithmic robustness to the bad data. 

III. CASE STUDY 

The proposed RMCSE is validated on the IEEE 33-node 

radial distribution system. The MatPower 6.0 is used to 

generate the measurements for the system. The measurement 

noise is the Gaussian distribution with a standard deviation of 

1% of the actual value. The proposed RMCSE is modeled by 

the CVXPY [13], and the problem is solved by the SDP solver.  

To reflect the number of measurements in the system, we 

define an indicator, namely fraction of the available data 

(FAD), as the ratio of the number of measurements used in the 

state estimation over the total number of all possible 

measurement in the system. In the 33-node system, the total 

number of measurements is 165, including 2 measurements of 

reference bus voltage phasor in rectangle coordinate, 33 

voltage magnitude, 66 active and reactive power injection 

measurements and 64 measurements of line current in 

rectangle coordinate. For a given FAD, the measurements used 

in the SE are randomly selected from the 165 measurements, 

except for the voltage phasor at the reference bus. 

A. The performance of the RMCSE 

In this section, the performance of the RMCSE is compared 

with that of the MCSE and the WLS in the following three 

systems: 1) an observable system with sufficient redundant 

measurements, 2) a low-observability system with several 

redundant measurements, and 3) an unobservable system with 

few measurements.  

 
(a) Voltage Magnitude Estimation             (b) Voltage Angle Estimation 

Fig. 1 The comparison among the RMCSE, MCSE and WLS (FAD=0.7).  

  
(a) Voltage Magnitude                                (b) Voltage Angle    

Fig. 2 The comparison of the RMCSE and MCSE (FAD=0.5). 

When the FAD is 0.7, the 117 measurements are randomly 

selected. The redundancy factor is 1.75 which ensures an 

observable system and sufficient redundant measurements. The 

comparison of the RMCSE, MCSE, and WLS is shown in Fig. 

1. All of these three methods can accurately estimate the 

voltage magnitude, but the estimated voltage angles in the 

RMSE and the MCSE has some slight offset in several buses. 

When the number of measurement reduce to 84 (0.5 FAD), the 

redundancy factor of the system becomes 1.24. The system 

becomes unobservable. The rank of the Jacobian matrix is 63 

and there are 3 unobservable states in the system. The 

estimation performances of the RMCSE and the MCSE are 

shown in Fig. 2. It is seen that the RMCSE and the MCSE both 

deviate from the true value, and the RMCSE is better than the 

MCSE in the voltage angle estimation.   

When the FAD decreases to 0.3, only 47 measurements can 

be used to estimate 66 system states. The redundancy factor is 

0.74. The rank of the Jacobian matrix is 47 and there are 19 

unobservable states in the system. The estimation results of the 

MCSE and the RMCSE are shown in Fig. 3. It is seen that the 

RMCSE outperforms the MCSE in the voltage angle 

estimation, whereas it underperforms the MCSE in the voltage 

magnitude estimation.  

  
 (a) Voltage Magnitude                                 (b) Voltage Angle    

Fig. 3 The comparison between the RMCSE and the MCSE (FAD=0.3). 

To illustrate the performance of these methods under 

different FADs, 30 cases with different measurement sets are 

generated for each FAD. In each case, measurements are 

randomly selected, and the MAPE of estimation result in each 

method is calculated. The mean MAPE of the 30 cases under 

different FADs is calculated and shown in Fig. 4. Note that the 

performance of the WLS is only shown in observable systems 

(FAD>0.5). It is seen that the MAPEs of these methods 

decrease with the increase of system observability. The 

RMCSE has the best voltage angle estimation performance, 

and its MAPE of voltage magnitude is the best among all three 
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methods when the FAD is between 0.6-0.9. While the MCSE 

performs the best in voltage magnitude estimation in the low 

FAD, its angle estimation is far from accurate.  

 

(a) Voltage Magnitude MAPE                  (b) Voltage Angle MAPE 

Fig. 4 The influence of FAD on the MAPE of voltage estimation.  

B. The robustness of the RMCSE 

To investigate the robustness of the RMCSE, the estimation 

results of the WLS and the RMCSE are compared when there 

exist bad data in the measurements. Assume that the active 

power injection of Node 18 is an erroneous measurement, and 

its value becomes two times of the actual value in a system 

with 0.7 FAD.  

In Fig. 5, the influence of bad data on the WLS is shown by 

comparing the estimated states with and without bad data. It is 

seen in Fig. 5(a) that bad data causes all estimated voltage 

magnitude larger than their actual value. This is due to Bus 18 

which is the end node of the main feeder and its active power 

injection can influence the voltage magnitude of all buses. To 

facilitate the comparison, all measurements and the bad data 

for the WLS and RMCSE are the same. The impact of bad data 

on the RMCSE is shown in Fig. 6. It is observed that most of 

the states remain unchanged except for slight changes in the 

voltage phase of Buses 16 and 17, as shown in Fig. 6(b). The 

implication of the results is twofold. First, the WLS is sensitive 

to the bad data. Therefore, the bad data ought to be identified 

and deleted before the application of the WLS. Second, the bad 

data has a very limited influence on the RMCSE. The RMCSE 

can obtain accurate system states without identification and 

removal of the bad data. The characteristics of RMCSE shows 

its robustness to the bad data.   

 
(a) Voltage Magnitude                             (b) Voltage Angle 

Fig. 5 Estimation by the WLS with and without bad data.  

Since the WLS is sensitive to the bad data, we further 

compare the RMCSE with the WLS-LNR which can identify 

and delete the bad data based on the residual analysis and is 

therefore robust to the bad data. Here, we investigate the 

impact of multiple bad data on the SE methods by creating 11 

tests with a bad data percentage (out of the total measurements) 

starting from 0% to 10% with an increment of 1%. For each 

percentage, 30 cases are generated with the same 

measurements but different bad data. The location and value of 

the bad data in these cases are randomly generated. Assume the 

noise distribution of normal measurements is Gaussian with a 

standard deviation of 1% of the actual value, and the standard 

deviation of bad measurements is 100% of the actual value, 

which is 100 times that of the normal measurements. 

 
(a) Voltage Magnitude                            (b) Voltage Angle  

Fig. 6 Estimation by the RMCSE with and without bad data.  

When the FAD is 0.7, the MAPEs of the voltage magnitude 

and angle versus the bad data percentage are compared in Fig. 

7. In Figs. 7(a) and 7(b), it shows that the MAPE of the WLS 

dramatically increases with the bad data percentage. In the 

WLS, bad data deviates the estimated state from the actual 

states seriously. The performance of WLS-LNR is much better 

than the WLS. It shows that the voltage magnitude MAPE 

slightly increases with the bad data percentage, and angle 

MAPE increases with bad data percentage. In the WLS-LNR, 

the bad data has a less negative impact on the estimation results, 

because all of the bad data are identified and removed.  

 
(a) Voltage Magnitude MAPE                   (b) Voltage Angle MAPE 

Fig. 7 The comparison of voltage MAPE with multiple bad data (FAD=0.7). 

Compared with the WLS, the RMCSE leads to better 

MAPEs of the voltage magnitude and angle. This can be 

explained by comparing their objective functions. The WLS 

solely minimizes the measurement residual, whereas the 

RMCSE minimizes the weighted sum of the matrix rank and 

measurement residual, and a small weight is usually assigned 

to the measurement residual in (6). When comparing the 

RMCSE with the WLS-LNR, the RMCSE leads to better 

MAPEs of the voltage magnitude but worse MAPEs of the 

voltage angle. It is observed in Fig. 7(b), when the FAD is 0.7 

(the system has redundant measurements), the WLS-LNR is 

the best SE method since it has enough measurements to yield 

a relatively accurate estimation after deleting the bad data. 
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 (a) Voltage magnitude MAPE                 (b) Voltage phase MAPE 

Fig. 8 The comparison of voltage MAPE with multiple bad data (FAD=0.5).  

When the FAD is 0.5, i.e., the system has a low-

observability, the performance of those approaches with the 

multiple bad data are shown in Fig. 8. The rank of the Jacobian 

matrix is 62 and there are 4 unobservable states in the system. 

It is seen in Fig. 8 that the RMCSE has a better performance in 

both voltage magnitude and phase MAPE than the MCSE.  

The comparison under 0.3 FAD is shown in Fig. 9. When 

FAD is 0.3, 51 measurements are used to estimate 66 states.  

Compared to the voltage MAPE of RMCSE and MCSE at 

FAD=0.5, voltage MAPE of RMCSE and MCSE both increase 

at FDA=0.3, because more measurements become critical 

measurements at FDA=0.3 and the bad data in critical 

measurements will have a negative impact on the estimation. 

The RMCSE has a better performance in both voltage 

magnitude and phase MAPE than the MCSE. The results 

demonstrate the robustness of MCSE in the low-observability 

system.  

 

(a) Voltage Magnitude MAPE                 (b) Voltage Angle MAPE 

Fig. 9 The comparison of voltage MAPE with multiple bad data (FAD=0.3).  

IV. CONCLUSIONS 

This paper proposes a robust matrix completion state 

estimation in distribution systems under low-observability. The 

proposed approach is formulated as a convex optimization 

problem considering the bad data influence. The case study 

compares the performances of RMCSE, MCSE, and WLS at 

the different levels of system observability. The results show 

that the RMCSE achieves more accurate estimation than the 

WLS in observable systems. When the system has multiple bad 

data, the proposed RMCSE has similar performance with 

WLS-LNR in observable system, and outperforms the MCSE 

in the estimation of voltage magnitude and angle in low-

observability systems. The proposed method yields a robust SE 

without the need for post-SE bad data processing. PMU data 

and other useful measurements can also be seamlessly 

integrated into the proposed approach. In the future work, we 

will extend the proposed RMCSE to three-phase unbalanced 

distribution systems. The performance of different SE 

approaches and their robustness to the bad data will be 

thoroughly investigated in low-observable distribution systems. 
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