
H2@Scale: Economic Potential of Hydrogen as an Energy Intermediate

Mark F. Ruth, Paige N. Jadun, Amgad Elgowainy, Bryan Pivovar

2019 Fuel Cell Seminar & Energy Exposition – Long Beach, California

November 7, 2019

H2@Scale Concept

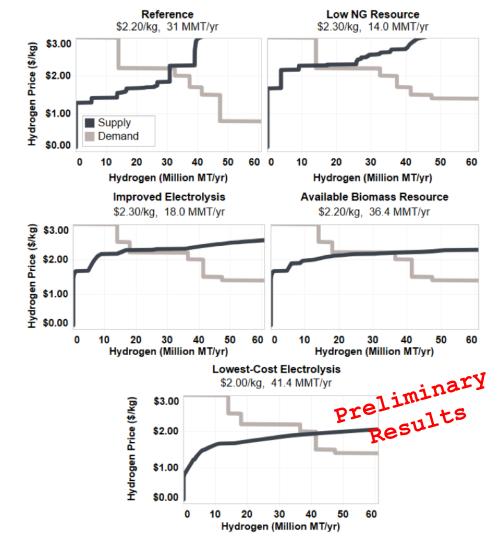
NREL | 2

Economic Potential: Five National Scenarios

Scenario Name	Reference	Low NG Resource	Improved Electrolysis	Available Biomass Resource	Lowest-Cost Electrolysis						
Natural gas price assumption	Reference		Higher								
LTE capital costs LDE market assumption	Current Tr	ajectory	Improv	vements	Aggressive Assumptions						
Biomass		Not available	Not Available								
Metals demand	Competitiv	ve Market									

Key differences in scenarios: 1) natural gas price assumption, 2) electrolyzer cost assumption, 3) electrolyzers' access to grid service markets, 4) increased threshold price in metals industry, & 5) competition for biomass resource

Economic Potential Results


The economic potential of hydrogen demand in the U.S. is 1.4-4X current annual consumption.

				-	-						ファ							
Scenario	Insights	Reference				Dema	nd			F	re	le	;u]	the second	y			
Reference	Low-cost natural gas drives growth in H ₂ markets with some nuclear participation*	Low NG Resource																
Low NG Resources	Higher cost natural gas results in minimal growth in H ₂ applications	Improved Electrolysis Available Biomass Resource																
Improved Electrolysis	Drivers for metals applications increase market. Some LTE penetration at \$200/kW capital cost with grid value.	Lowest-Cost Electrolysis		10	15	20	25	30	35	40	0 5	10	15	20	25	30	35	40
Available Biomass Resources	If the biomass is not used for higher value purposes, it could be a key resource		Refiner Metals Ammor Biofuel	ies nia	Hydrog		Methar Light-D	nol Juty FCE	√s Duty FCE	EVs		rom LDE ar HTE ass Gasit		en (Mil	lion MT	/yr)		
Lowest-Cost Electrolysis	\$100/kW electrolyzers with high grid value can enable additional H2 applications																	

*~20% of U.S. nuclear generation is used for hydrogen production

Economic Potential Methodology

The intersection of the supply and demand curves indicate the market size and price at equilibrium.

Potential Hydrogen Markets: Light-Duty Fuel Cell Vehicles (FCEVs)

- Potential Demand:
 - 40% of LDV fleet in 2050
 - 65 million of 162 million cars:
 - 9.7 MMT_{H2}/yr
 - 61 million of 153 million light-duty trucks:
 - 11.2 MMT_{H2}/yr

Source: NREL Photo Library #49729

Source: Elgowainy (2019)

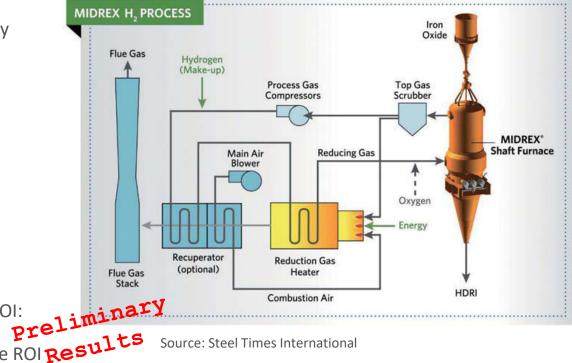
- Economic Potential:
 - Calculation
 - MA3T vehicle choice model
 - "Ultimate" H₂ price at pump: \$5.0/kg pump (\$2.20/kg at terminal) \$5.0/kg is based on the FCTO target of \$4/kg in 2007\$, inflated to 2015\$, with \$0.5/kg in taxes added.
 - Hydrogen consumption at market equilibrium (18% of cars and 26% of light-duty trucks), 11.7 MMT H₂/yr

Potential Hydrogen Markets: Medium- & Heavy-Duty FCEVs

- Potential Demand:
 - 35% of both HDV and MDV fleet by 2050
 - 4.2 million of 12 million Medium Duty:
 - 2.2 MMT_{H2}/yr
 - 2.0 million of 5.7 million Heavy Duty:
 - 8.6 MMT_{H2}/yr
- Threshold Price:
 - Based on a 22% market penetration the weighted average of the LDV penetration at equilibrium
 - H₂ price at pump: \$5.0/kg pump (\$2.20/kg at terminal) -\$5.0/kg is based on the FCTO target of \$4/kg in 2007\$, inflated to 2015\$, with \$0.5/kg in taxes added.
 - 6.8 MMT_{H2}/yr

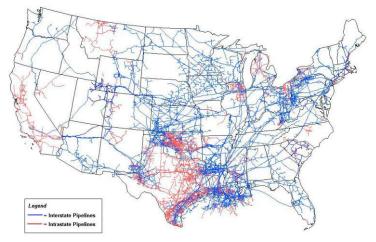
Source: Nikola Motor Company

Potential Hydrogen Markets: Biofuels


- Opportunity:
 - Renewable Fuel Standard 2 (RFS2) mandates 16 billion gal/yr cellulosic fuels
 - Blendstocks (diesel & naphtha) could require 0.5 kg_{H2} / gal blendstock
- Demand Potential:
 - 4 MMT_{H2}/yr assuming 50% of the biofuel requirement is blendstock
- Threshold Price: High because of nonhydrogen price drivers \rightarrow \$3.00/kg_{H2}

Source: http://yelloblu.com/blog/biofuels-part-three-biomass-future-fuels

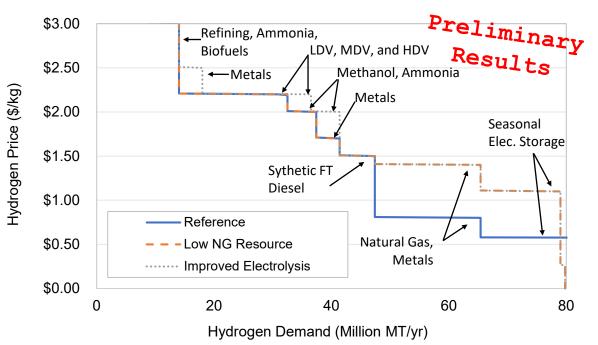
Example of Potential Demand: Metals Refining (Steel)


- Status:
 - $81 \text{ MMT}_{\text{steel}}/\text{yr}$ produced in the U.S. project to grow to $120 \text{ MMT}_{\text{steel}}/\text{yr}$ by 2050
 - Blast furnaces: 430 kg_{coke} / MT_{iron}
 - Direct reduced iron optimally uses hydrogen/CO blends, with 30 kg_{H2}/MT_{hot iron}
 - Can use up to 100% hydrogen $(100 \text{ kg}_{\text{H2}}/\text{MT}_{\text{hot iron}})$
- Demand Potential:
 - 12 MMT/yr_{H2}
- Threshold Price for Economic Potential:
 - 4 MMT_{H2}/yr for market at positive ROI: \$1.70/kg_{H2}
 - 12 MMT_{H2}/yr: \$0.80/kg_{H2} for positive ROI **Results** competing with natural gas heat

Potential Hydrogen Markets: Natural Gas Supplementation

- **Demand Potential:**
 - 20% (volume) assumed to not have significant impact on technologies that utilize natural gas Preliminary Results
 - $-10 \text{ MMT}_{H_2}/\text{yr}$
- Threshold Price:
 - Energy value on a higher heating value (HHV) basis
 - \$0.80/kg_{H2} for AEO reference case (\$5.88/MMBtu)
 - \$1.40/kg_{H2} for AEO Low Oil & Gas Resource case (\$10.23/MMBtu)

Source: M. W. Melaina, O. Antonia, M. Penev. 2013. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. NREL/TP-5600-51995. https://www.nrel.gov/docs/fy13osti/51995.pdf

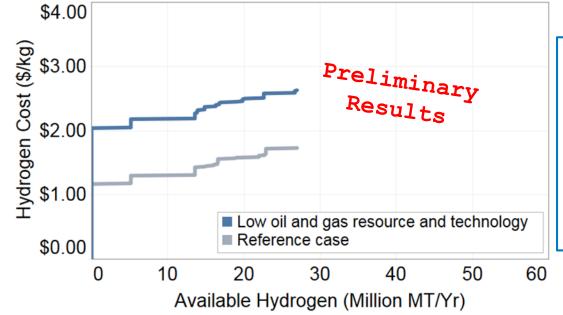

Potential Hydrogen Markets: Seasonal Electricity Storage

- Opportunity
 - Hydrogen can decouple storage power (W) from energy (Wh) making it a key candidate for seasonal storage
- Demand potential & threshold price:
 - Based on natural gas loads in ReEDS high penetration scenarios
 - 15 MMT/yr demand potential
 - Prices to produce electricity competitively with natural gas source

	Annual Electricity Generation to Serve Load (TWh)	Hydrogen Price (\$/kg)	Annual Hydrogen Demand (MMT)
NGCC generation	252	1.10	14
NGCT generation	14	0.26	0.8
Cumulative	266	N/A	15
			15 Preliminary Results

Aggregated Demand Curves

Demand curves represent aggregated threshold prices (at the terminal) for the potential hydrogen applications

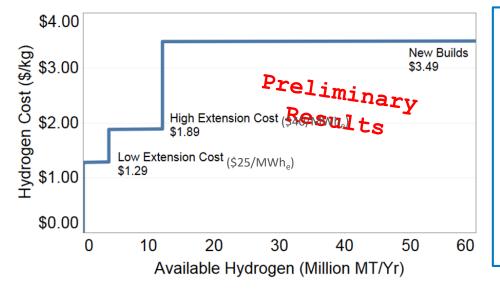


Reported prices for industrial demands / city edge terminals – Thus, pump prices minus delivery & dispensing costs for vehicles

The Available Biomass Resource and Lowest-Cost Electrolysis scenarios assume the same demand curve as the Improved Electrolysis scenario

Supply Curve Data: Steam Methane Reforming of NG

Prices of natural gas-produced hydrogen vary by region and are limited by total resource

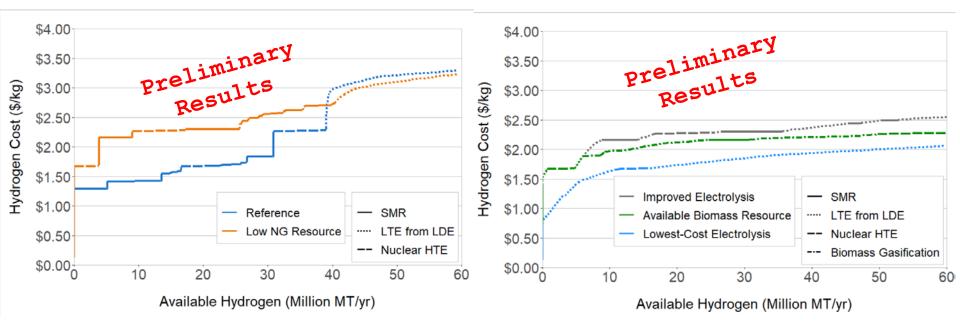


Natural gas reforming to hydrogen:

- Prices based on H2A Future Central
 Production without CCS and AEO scenarios
 for 8 census divisions
- Existing sites do not include capital costs; new builds do
- We limit SMR future supply to 3 times current production levels
- Storage and delivery adder of \$0.12/kg

Supply Curve Data: High Temperature Electrolysis

Current nuclear fleet may provide a good opportunity for hydrogen production if delivery infrastructure cost is not too high



High Temperature Electrolysis Using Nuclear-Generated Heat:

- Capital and operating parameters: H2A SOEC future case study
- Assume 20% of the current U.S. nuclear fleet would convert to hydrogen production if the HTE paid \$25/MWh_e for electricity and equivalent for heat
- 40% would convert at \$40/MWh $_{e}$
- New builds would need to sell heat and electricity at \$80/Mwh_e
- Storage and delivery adder of \sim \$0.40/kg_{H2}

Aggregated Supply Curves

We created aggregated supply curves by aggregating supplies across sources. Supplies are combined from the lowest cost to the highest.

Economic Potential Results

The economic potential of hydrogen demand in the U.S. is 1.4-4X current annual consumption.

					-	_				_	~ a]	L71						
Scenario	Insights	Reference				Demano				P.	ce] R	es	u 1	2°	y			
Reference	Low-cost natural gas drives growth in H ₂ markets with some nuclear participation*	Low NG Resource																
Low NG Resources	Higher cost natural gas results in minimal growth in H ₂ applications	Improved Electrolysis Available Biomass Resource																
Improved Electrolysis	Drivers for metals applications increase market. Some LTE penetration at \$200/kW capital cost with grid value.	Lowest-Cost Electrolysis		10	15	20 2	25	30	35 40	0	5	10	15	20	25	30	35	40
Available Biomass Resources	If the biomass is not used for higher value purposes, it could be a key resource		Refine Metals Ammo Biofue	eries Sonia	Hydroge	M	lethano ight-Du	I ty FCEV	s uty FCEVs	5	SMR LTE fro Nuclear Biomas	m LDE r HTE	Hydrog cation	en (Mil	lion MT	/yr)		
Lowest-Cost Electrolysis	\$100/kW electrolyzers with high grid value can enable additional H2 applications																	

*~20% of U.S. nuclear generation is used for hydrogen production

Key Conclusions

- The demand potential of hydrogen demand in the U.S. is >9X current annual consumption.
- The economic potential of hydrogen demand in the U.S. is 1.4-4X current annual consumption.
 - Range across 5 scenarios developed using a variety of economic and R&D success assumptions
- Total U.S. fossil fuel use could decline by up to 11% below a scenario with a high renewable penetration on the grid
- Up to 20% of current nuclear power plants could improve their profitability by producing hydrogen.

Future Work

- Opportunities beyond economic potential limits
- Regional and transition analysis
- Improved analysis of synthetic fuels and chemicals markets
- Improved analysis of potential for seasonal electricity storage
- Improved analysis of potential rebound effects

Thank You Mark.Ruth@nrel.gov

www.nrel.gov NREL/PR-6A20-75374

Additional information on H2@Scale can be found at:

https://www.hydrogen.energy.gov/pdfs/review18/h2000 pivovar 2018 o.pdf https://www.hydrogen.energy.gov/pdfs/review19/sa171 ruth 2019 o.pdf http://energy.gov/eere/fuelcells/downloads/h2-scale-potential-opportunity-webinar

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

