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Optimization of Salt Marsh Management at the
Rhode Island National Wildlife Refuge Complex Through
Use of Structured Decision Making

By Hilary A. Neckles,' James E. Lyons," Jessica L. Nagel,' Susan C. Adamowicz,' Toni Mikula,?

and Nicholas T. Ernst?

Abstract

Structured decision making is a systematic, transparent
process for improving the quality of complex decisions by
identifying measurable management objectives and feasible
management actions; predicting the potential consequences
of management actions relative to the stated objectives; and
selecting a course of action that maximizes the total benefit
achieved and balances tradeoffs among objectives. The U.S.
Geological Survey, in cooperation with the U.S. Fish and
Wildlife Service, applied an existing, regional framework for
structured decision making to develop a prototype tool for
optimizing salt marsh management decisions at the Rhode
Island National Wildlife Refuge Complex. Refuge biologists,
refuge managers, and research scientists identified multiple
potential management actions to improve the ecological integ-
rity of nine salt marsh management units within the refuge
complex and estimated the outcomes of each action in terms
of performance metrics associated with each management
objective. Value functions previously developed at the regional
level were used to transform metric scores to a common utility
scale, and utilities were summed to produce a single score rep-
resenting the total management benefit that would be accrued
from each potential management action. Constrained optimi-
zation was used to identify the set of management actions, one
per salt marsh management unit, that would maximize total
management benefits at different cost constraints at the refuge
scale. Results indicated that, for the objectives and actions
considered here, total management benefits may increase
consistently up to approximately $150,000, but that further
expenditures may yield diminishing return on investment.
Management actions in optimal portfolios at total costs less
than $150,000 included digging runnels (by hand or machine)
on the marsh surface to improve drainage in eight manage-
ment units, applying sediment to the marsh surface (thin layer
deposition) in one management unit, constructing islands for

'U.S. Geological Survey.
2U.S. Fish and Wildlife Service.

use by tidal marsh obligate birds in two management units,
and controlling Phragmites australis in one management

unit. The management benefits were derived from expected
improvements in the capacity for marsh elevation to keep pace
with sea-level rise and increases in numbers of spiders (as an
indicator of trophic health) and tidal marsh obligate birds. The
prototype presented here provides a framework for decision
making at the Rhode Island National Wildlife Refuge Com-
plex that can be updated as new data and information become
available. Insights from this process may also be useful to
inform future habitat management planning at the refuge.

Introduction

The National Wildlife Refuge System (NWRS) protects
extensive salt marsh acreage in the northeastern United States.
Much of this habitat has been degraded by a succession of
human activities since the time of European settlement (Gedan
and others, 2009), and accelerated rates of sea-level rise
exacerbate these effects (Gedan and others, 2011; Kirwan and
Megonigal, 2013). Therefore, strategies to restore and enhance
the ecological integrity of national wildlife refuge (NWR) salt
marshes are regularly considered. Management may include
such activities as reestablishing natural hydrology, augmenting
or excavating sediments to restore marsh elevation, control-
ling invasive species, planting native vegetation, minimizing
shoreline erosion, and remediating contaminant problems.
Uncertainty stemming from incomplete knowledge of system
status and imperfect understanding of ecosystem dynamics
commonly hinders management predictions and consequent
selection of the most effective management options. Conse-
quently, tools for identifying appropriate assessment variables
and evaluating tradeoffs among management objectives are
valuable to inform marsh management decisions.

Structured decision making is a systematic approach to
improving the quality of complex decisions that integrates
assessment metrics into the decision process (Gregory and
Keeney, 2002). This approach involves identifying measurable
management objectives and potential management actions,
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predicting management outcomes, and evaluating tradeoffs
to choose a preferred alternative. From 2008 to 2012, the
U.S. Geological Survey (USGS) and U.S. Fish and Wildlife
Service (FWS) used structured decision making to develop a
framework for optimizing management decisions for NWR
salt marshes in the FWS Northeast Region (that is, salt
marshes in the coastal region from Maine through Virginia).
The structured decision-making steps were applied through
successive “rapid prototyping” workshops, an iterative pro-
cess in which relatively short periods of time are invested to
continually improve the decision structure (Blomquist and
others, 2010; Garrard and others, 2017). The decision frame-
work includes regional management objectives addressing
critical components of salt marsh ecosystems, and associated
performance metrics for determining whether objectives are
achieved (Neckles and others, 2015). The regional objectives
structure served as the foundation for a consistent protocol for
monitoring salt marsh integrity at these northeastern coastal
refuges, in which the monitoring variables are linked explic-
itly to management goals (Neckles and others, 2013). From
2012 to 2016, this protocol was used to conduct a baseline
assessment of salt marsh integrity at all 17 refuges or refuge
complexes in the FWS Northeast Region with salt marsh
habitat (fig. 1).

The Rhode Island National Wildlife Refuge Complex
consists of five refuges in coastal Rhode Island, three of which
protect nearly 100 hectares of brackish and salt marsh located
along or near the Atlantic Ocean (the John H. Chafee National
Wildlife Refuge, hereafter referred to as the “Chafee” National
Wildlife Refuge, fig. 2; the Ninigret National Wildlife Refuge,
fig. 3; and the Sachuest Point National Wildlife Refuge, fig. 4).
The marsh on each refuge provides critical nesting, migratory,
and wintering habitat for birds of highest conservation priority,
including saltmarsh sparrows and American black ducks, in
the U.S. North American Bird Conservation Initiative’s bird
conservation region for the New England and mid-Atlantic
coast (FWS 2002a, b, c; Steinkamp, 2008; Association of
Fish and Wildlife Agencies, 2019). The primary threats to
this habitat are marsh submergence associated with rising sea
level, expansion of the invasive reed Phragmites australis
(hereafter referred to as Phragmites), shoreline erosion, and
habitat loss, fragmentation, and degradation associated with
increasing human activity in the land surrounding the refuge
(FWS 2002a, b, c). Salt marsh management goals for the
refuge focus on maintaining high-quality habitat for breed-
ing, migrating, and wintering birds and restoring and enhanc-
ing habitat. Therefore, in this study, the regional structured
decision-making framework was used to help prioritize salt
marsh management options for the refuge.

Purpose and Scope

This report describes the application of the regional struc-
tured decision-making framework (Neckles and others, 2015)
to the Rhode Island National Wildlife Refuge Complex. The
regional framework was parameterized to local conditions

through rapid prototyping, producing a decision model for the
refuge that can be updated as new information becomes avail-
able. Included are a suite of potential management actions to
achieve objectives in nine salt marsh management units at the
refuge complex (figs. 2—4), approximate costs for implement-
ing each potential action, predictions for the outcome of each
management action relative to individual management objec-
tives, and results of constrained optimization to maximize
management benefits subject to cost constraints. This decision
structure can be used to understand how specific actions may
contribute to achieving management objectives and identify
an optimum combination of actions, or “management port-
folio,” to maximize management benefits at the refuge scale
for a range of potential budgets. The prototype presented here
provides a framework for continually improving the quality of
complex management decisions at the Rhode Island National
Wildlife Refuge Complex.

Description of Study Area

The refuges of the Rhode Island National Wildlife
Refuge Complex are located along or near Block Island
Sound in coastal Rhode Island. The complex’s salt marsh
is divided into five management units within the Chafee
National Wildlife Refuge (Northeast Marsh, Southeast Marsh,
Southwest Marsh, Sedge Island, and North Middlebridge)
(fig. 2); two management units within the Ninigret National
Wildlife Refuge (Barrier Beach, Mainland) (fig. 3); and two
management units within the Sachuest Point National Wildlife
Refuge (North Marsh, Restored Marsh) (fig. 4). Most of the
land immediately surrounding the management units con-
sists of natural land uses classified within the 2011 National
Land Cover Database as categories other than agricultural or
developed (U.S. Geological Survey, 2014; S.C. Adamowicz
and T. Mikula, FWS, unpub. data, 2017), although two of the
units at the Chafee National Wildlife Refuge have substantial
suburban development within 1 kilometer of the marsh edge
(Southwest Marsh, North Middlebridge). The predominant
upland habitat is deciduous forest and native and non-native
shrublands (FWS 2002a, b, ¢). Many of the management units
are affected by a long history of hydrologic alterations and
subsidence, with consequent retention of upland freshwater
discharge and prolonged flooding. In addition, historical ditch-
ing is moderately dense within four management units (North-
east and Southwest Marshes at the Chafee National Wildlife
Refuge; both units at the Sachuest Point National Wildlife
Refuge). Invasive plants are in most of the management
units, and the spread of Phragmites is a management concern
particularly in the units at Ninigret National Wildlife Refuge
and Sachuest Point National Wildlife Refuge (FWS 2002b, c;
S.C. Adamowicz and T. Mikula, FWS, unpub. data, 2017).
During 2012-16, average surface-water salinities in the sum-
mer ranged from about 15 to about 38 parts per thousand
within the marshes (S.C. Adamowicz and T. Mikula, FWS,
unpub. data, 2017), making the surface water mesohaline to
euhaline (as defined by Cowardin and others, 1979).
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Regional Structured Decision-Making
Framework

A regional framework for assessing and managing salt
marsh integrity at northeastern NWRs was developed through
collaborative efforts of FWS regional and refuge managers
and biologists, salt marsh research scientists, and structured
decision-making experts. This process followed the discrete
steps outlined by Hammond and others (1999) and Gregory
and Keeney (2002):

1. Clarify the temporal and spatial scope of the manage-
ment decision.

2. Define objectives and performance measures to evaluate
whether objectives are achieved.

3. Develop alternative management actions for achieving
objectives.

4. Estimate the consequences or likely outcomes of man-
agement actions in terms of the performance measures.

5. Evaluate the tradeoffs inherent in potential alternatives
and select the optimum alternatives to maximize man-
agement benefits.

This sequence of steps was applied through successive
workshops to refine the decision structure and incorporate
newly available information. Initial development of the struc-
tured decision-making framework occurred during a week-
long workshop in 2008 to define the decision problem, specify
management objectives, and explore strategies available to
restore and enhance salt marsh integrity. During 2008 and
2009, workshop results were used to guide field tests of salt
marsh monitoring variables (Neckles and others, 2013). Sub-
sequently, in 2012, data and insights gained from these field
tests were used in a two-part workshop to refine management
objectives and develop the means for evaluating management
outcomes (Neckles and others, 2015).

From the outset, FWS goals included development of
an approach for consistent assessment of salt marsh integrity
across all northeastern NWRs (fig. 1). Within this regional
context, staff at a given refuge must periodically determine
the best approaches for managing salt marshes to maximize
habitat value while considering financial and other constraints.
The salt marsh decision problem was thus defined as apply-
ing to individual NWRs over a 5-year planning horizon. The
objectives for complex decisions can be organized into a
hierarchy to help clarify what is most important to decision
makers (Gregory and others, 2012). The hierarchy of objec-
tives for salt marsh management decisions (table 1) was based
explicitly on the conservation mission of the NWRS, which
is upheld through management to “ensure that the biological
integrity, diversity, and environmental health of the System are
maintained for the benefit of present and future generations
of Americans,” as mandated in the National Wildlife Refuge
System Improvement Act of 1997 (16 U.S.C. 668dd note).

Two fundamental objectives, or the overall goals for salt
marsh management decisions, were drawn from this policy to
maximize (1) biological integrity and diversity, and (2) envi-
ronmental health, of salt marsh ecosystems. Participants in the
prototyping workshops deconstructed these overall goals into
low-level objectives relating to salt marsh structure and func-
tion and identified performance metrics to evaluate whether
objectives are achieved (table 1). In addition, performance
metrics were weighted to reflect the relative importance of
each objective (Neckles and others, 2015).

The hierarchy of objectives for salt marsh management
(table 1) provides the foundation for identifying possible man-
agement actions at individual NWRs and predicting manage-
ment outcomes. Workshop participants developed preliminary
influence diagrams (app. 1), or conceptual models relating
management actions to responses by each performance metric
(Conroy and Peterson, 2013), to guide this process. To allow
metric responses to be aggregated into a single, overall perfor-
mance score, participants also defined value functions relating
salt marsh integrity metric scores to perceived management
benefit on a common, unitless “utility” scale (Keeney and
Raiffa, 1993). Stakeholder elicitation was used to determine
the form of each value function relating the original metric
scale to the utility scale, ranging from 0, representing the low-
est management benefit, to 1, representing the highest benefit
(app. 2). Neckles and others (2015) provided details regard-
ing development of the structured decision-making frame-
work and a case-study application to Prime Hook National
Wildlife Refuge.

Application to the Rhode Island
National Wildlife Refuge Complex

In November 2016, FWS regional biologists, biolo-
gists and managers from six northeastern NWR administra-
tive units, and USGS and University of Delaware research
scientists (table 2) participated in a 1.5-day rapid-prototyping
workshop to apply the regional structured decision-making
framework to the Chincoteague, Bombay Hook, Cape May,
Supawna Meadows, and Forsythe National Wildlife Refuges
and the Rhode Island National Wildlife Refuge Complex.
Participants worked within refuge-specific small groups to
focus on management issues at individual refuges. Plenary
discussions of common patterns of salt marsh degrada-
tion, potential management strategies, and mechanisms of
ecosystem response offered additional insights to enhance
refuge-specific discussions.

Participants identified a range of possible management
actions for achieving objectives within each salt marsh unit at
the Rhode Island National Wildlife Refuge Complex and esti-
mated the total cost of implementation over 5 years. Potential
actions to enhance salt marsh integrity ranged from focused
efforts that restore natural hydrology, control Phragmites, or
protect shorelines, to larger scale projects that alter marsh
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Table 1.

Objectives hierarchy for salt marsh management decision problems.

[Two fundamental objectives (overall goals of the decision problem) draw directly from National Wildlife Refuge System policy to maintain, restore, and
enhance biological integrity, diversity, and environmental health within the refuge. These are broken down into low-level objectives focused on specific aspects
of marsh structure and function. Values in parentheses are weights assigned to objectives, reflecting their relative importance. Weights on any branch of the
hierarchy sum to one. The weight for each metric is the product of the weights from each level of the hierarchy leading to that metric. NA, not applicable]

Objectives

Performance metrics

Unit of measurement

Maximize biological integrity and diversity' (0.5)

Maximize cover of native vegetation (0.24)

Maximize abundance and diversity of NA

native nekton (0.18):
Maximize nekton abundance (0.50) Native nekton density
Maximize nekton diversity (0.50)

Maintain sustainable populations of obligate
salt marsh breeding birds (0.20)

Maximize use by nonbreeding wetland
birds (0.20)

Maintain trophic structure (0.18)

indicator species

Cover of native vegetation

Native nekton species richness

Abundance of four species of tidal marsh
obligate birds (clapper rail, willet, salt-
marsh sparrow, seaside sparrow)

Abundance of American black duck as

Density of spiders as indicator taxon

Percent
NA

Number per square meter
Number of native species

Number per salt marsh unit from call-broadcast
surveys, summed across all sampling points
in unit

Relative abundance for refuge during wintering
waterfowl season (low, medium, high)?

Number per square meter

Maximize environmental health' (0.5)

Maintain natural hydrology (0.44): NA

Maintain natural flooding regime (0.50)

Maintain natural salinity (0.50)
reference system

Maintain the extent of the marsh

platform (0.44) to sea-level rise

Minimize use of herbicides (0.12) Rate of application

Percent of time marsh surface is flooded
relative to ideal reference system

Surface-water salinity relative to ideal

Change in marsh surface elevation relative

NA

Absolute deviation from reference in percent-
age points

Absolute deviation from reference in parts
per thousand

O=change in elevation is less than amount of
sea-level rise; 1=change in elevation greater
than or equal to amount of sea-level rise

0=no herbicide applied; 1=herbicide applied

"Fundamental objectives of salt marsh management decisions.

“Relative abundance based on local knowledge.

elevation or vegetation succession (table 3, in back of report).
Invasive species occurred at low densities in only three salt
marsh units and were predicted to have minimal influence

on marsh vegetation; therefore, invasive control strategies
were not considered in this prototype. Participants predicted
the outcomes of each management action 5 years after
implementation in terms of salt marsh integrity performance
metrics. For most metrics, baseline conditions within each unit
measured during the 2012—16 salt marsh integrity assessment
(S.C. Adamowicz and T. Mikula, FWS, unpub. data, 2017)
were used to predict the outcomes of a “no-action” alternative.
Baseline conditions were estimated by using expert judgment
for three metrics that lacked assessment data (abundance of
American black ducks, density of spiders, change in marsh
surface elevation relative to sea-level rise). Regional influ-
ence diagrams relating management strategies to outcomes
aided in predicting consequences of management actions

(app. 1). Although the influence diagrams incorporated the
potential effects of stochastic processes, including weather,

sea-level rise, herbivory, contaminant inputs, and disease, on
management outcomes, no attempt was made to quantify these
sources of uncertainty during rapid prototyping. Management
predictions also inherently included considerable uncertainty
surrounding the complex interactions among controlling fac-
tors and salt marsh ecosystem components.

Following the workshop, the potential management ben-
efit of each salt marsh integrity performance metric was calcu-
lated by converting salt marsh integrity metric scores (table 3,
workshop output) to weighted utilities (table 4, in back of
report), using regional value functions (app. 2). Weighted
utilities were summed across all salt marsh integrity metrics
for each action; this overall utility therefore represented the
total management benefit, across all objectives, expected to
accrue from a given management action (table 4). Constrained
optimization (Conroy and Peterson, 2013) was used to find
the management portfolio (the combination of actions, one
action per salt marsh unit) that maximizes the total manage-
ment benefit across all units under varying cost scenarios for



Table 2. Participants in workshop convened at the Edwin
B. Forsythe National Wildlife Refuge, New Jersey, to apply
a regional framework for optimizing salt marsh management
decisions to five national wildlife refuges in November 2016.

[FWS, U.S. Fish and Wildlife Service; NWR, National Wildlife Refuge;
USGS, U.S. Geological Survey]

Affiliation Participant

FWS NWR specialists

Bombay Hook NWR Susan Guiteras

Cape May NWR and Supawna Meadows  Brian Braudis
NWR

Cape May NWR and Supawna Meadows  Heidi Hanlon
NWR

Cape May NWR and Supawna Meadows  Victor Nage
NWR

Cape May NWR and Supawna Meadows  Jack Szczepanski
NWR

Chincoteague NWR Kevin Holcomb

Chincoteague NWR Jennifer Miller

Edwin B. Forsythe NWR Paul Castelli

Edwin B. Forsythe NWR Virginia Rettig

Rhode Island NWR Complex Nick Ernst

Rhode Island NWR Complex Charlie Vandemoer

FWS regional experts

Laura Mitchell
Susan Adamowicz
Toni Mikula

Northeast Regional Office
Rachel Carson NWR
Rachel Carson NWR

Research scientists

University of Delaware

USGS Patuxent Wildlife Research Center
USGS Patuxent Wildlife Research Center
USGS Patuxent Wildlife Research Center

W. Gregory Shriver
Glenn Guntenspergen
James Lyons

Hilary Neckles

the entire the refuge. Constrained optimization using integer
linear programming was implemented in the Solver tool in
Microsoft Excel (Kirkwood, 1997). Budget constraints were
increased in $5,000 or $10,000 increments up to $50,000; in
$50,000 increments up to $200,000; in $100,000 increments
up to $1 million; in $500,000 increments up to $2 million; and
in $1 million increments thereafter. The upper limit to poten-
tial costs was not determined in advance; rather, it reflected
the total estimated costs of the proposed management actions.
A cost-benefit plot of the portfolios identified through the
optimization analysis was used to identify the efficient frontier
for resource allocation (Keeney and Raiffa, 1993), which is
the set of portfolios that are not dominated by other portfolios
at similar costs (or the set of portfolios with maximum total
benefit for a similar cost). The cost-benefit plot also revealed

Results of Constrained Optimization 9

the cost above which further expenditures would yield dimin-
ishing returns on investment. To exemplify use of the deci-
sion-making framework to understand how a given portfolio
could affect specific management objectives, the refuge-scale
management benefits for individual performance metrics were
compared between one optimal portfolio and those predicted
with no management action taken.

Results of Constrained Optimization

Management actions identified to improve marsh integ-
rity at the Rhode Island National Wildlife Refuge Complex
included strategies to restore or enhance physical marsh fea-
tures, restore hydrology, protect shorelines from erosion, pro-
mote use by migratory birds, reduce the spread of non-native
vegetation, and manage native marsh vegetation (table 3).

For costs ranging from $0 to $6.3 million (for implementing

a combination of actions in Restored Marsh at the Sachuest
Point National Wildlife Refuge), the estimated management
benefits for individual actions across all metrics, measured

as weighted utilities, ranged from 0.304 (for controlling
Phragmites with herbicide in the Mainland management unit,
Ninigret National Wildlife Refuge) to 0.960 (for implementing
a combination of actions in the Sedge Island management unit,
Sachuest Point National Wildlife Refuge) (tables 3 and 4).
Within each unit, the action with both the lowest management
benefit and lowest cost was generally the “no-action” option.
However, implementing Phragmites control with herbicide, in
the absence of any other management action, yielded a lower
total management benefit than implementing no manage-

ment actions (for example, in Southeast Marsh at the Chafee
National Wildlife Refuge).

Constrained optimization was applied to identify the opti-
mal management portfolios over 5 years for a range of total
costs to the refuge. As total cost increased from $0 (no action
in any unit) to approximately $4 million, the total management
benefit at the refuge scale increased by 58 percent, from 4.793
to 7.576 (table 5) out of a possible maximum of 9.0 (the maxi-
mum possible management benefit of 1.0 for any manage-
ment action, summed across nine salt marsh units). Graphical
analysis showed a fairly consistent increase in management
benefit as costs increased to $150,000 (fig. 5, portfolio 7). As
expenditures increased beyond the cost of portfolio 7, total
management benefit continued to increase but at a lower rate,
yielding diminishing returns on investment.

Several patterns emerged relative to management actions
selected for yielding the best returns on investments within the
optimal set of portfolios (portfolios 2 through 7; table 5). Dig-
ging runnels (small ditches on the marsh surface) to improve
drainage, which was included within the suite of potential
management actions for all management units except Sedge
Island (table 3), was consistently included in the optimal
portfolios. Within some management units, the optimal port-
folios combined runnel construction with other management
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Table 5. Actions included in various management portfolios to maximize the total management benefits subject to increasing cost
constraints at the Rhode Island National Refuge Complex.

[Letter designations for actions refer to specific actions and are listed in tables 3 and 4. Portfolios represent the combination of actions, one per salt marsh
management unit, that maximized the total management benefit across all units subject to a refuge-wide cost constraint. The management actions constituting
individual portfolios were selected using constrained optimization. The maximum possible total management benefit for the refuge is 9, derived as the maximum
possible total management benefit of 1.0 for any management action within one management unit, summed across 9 units. NWR, National Wildlife Refuge; NA,
no action]

Salt marsh management unit

ool Chafee NWR Ninigret NWR Sachuest Point NWR Total cost Total mar:-
oruaolio agemen
oo e om0l By Resored  Nown (ol G
Marsh Marsh Marsh bridge
1 NA NA NA NA NA NA NA NA NA 0 4.783
2 D C A NA B B NA NA NA 4,660 5.884
3 D C A NA B B B NA B 12,460 6.222
4 D C A NA F B B M B 23,010 6.439
5 D C J NA F B B M B 40,110 6.453
6 D C J D A B B M B 99,438 6.461
7 D C A B F B B B B 149,349 6.723
8 D B J B F B B M B 171,351 6.743
9 D C J B F B B M E 283,999 6.783
10 D C J B F G B M B 359,801 6.866
11 D F J B F B B M B 492,947 6.923
12 D C J B D C B M B 595,688 6.992
13 D F J B F G B M B 684,199 7.046
14 D F J B A G B M E 798,977 7.087
15 D C A B D G B D B 899,490 7.145
16 D F J B F C B K B 994,392 7.21
17 D F J 1 D G B K E 1,455,833 7.393
18 D F J B D G D K C 1,933,835 7.524
19 I F J B D G D K C 2,982,093 7.552
20 H F G F D G D K C 3,851,493 7.576
8.0 ; ; . . . T T T
= 19 Py
E 20 T
3
%
‘g‘, .
% sl | Figure 5. Predicted total management benefit of various
g EXPLANATION portfolios, expressed as weighted utilities, relative to total annual
= = Frontier of most efficientresource allocation cost at the Rhode Island National Wildlife Refuge Complex.
° 5'0‘_1 # Management portiolio—Actions and salt marsh units 1 Each portfolio (dot with number) represents a combination
45 ) ) ,that cre,ate e“h,pomo“o,are I'Ste? n tablef of nine management actions, one per salt marsh unit, as
0 05 1 15 2 25 3 35 4 45 identified in table 5. The line represents the efficient frontier for

Total cost, in millions of dollars resource allocation.



actions, such as construction of islands for tidal marsh obligate
bird use (Southwest Marsh at the Chafee National Wildlife
Refuge; Restored Marsh at the Sachuest Point National Wild-
life Refuge) or Phragmites control (Southwest Marsh at the
Chafee National Wildlife Refuge). Although performing thin
layer deposition was a potential action for many management
units, it was selected by an optimal portfolio under a total
cost of $150,000 only for the Sedge Island unit at the Chafee
National Wildlife Refuge. In other management units, thin
layer deposition was either never selected (Northeast Marsh,
North Middlebridge at the Chafee National Wildlife Refuge;
North Marsh at the Sachuest Point National Wildlife Refuge)
or included only in more costly portfolios. For example, thin
layer deposition was included for Southeast Marsh, Chafee
National Wildlife Refuge, in portfolio 11; for Barrier Beach,
Ninigret National Wildlife Refuge, in portfolio 12; and in the
Restored Marsh, Sachuest Point National Wildlife Refuge, in
portfolio 15 (table 5). In contrast, some management actions
were never included in an optimal portfolio. For example,
although installation of living shorelines (shorelines that use
plants or other natural elements to stabilize estuarine coasts,
bays, or tributaries) was identified for reducing the effect of
erosion on marsh edges within many management units, this
action was never selected despite its relatively low cost.

Results of Constrained Optimization 1"

Examination of the refuge-scale metric responses to
actions included in portfolio 7, which is the turning point in
the cost-benefit plot (fig. 5), revealed how implementation
would affect specific management objectives. The actions
included in portfolio 7 generated a prediction of modest gains
in the overall management benefits derived from changes to
the numbers of tidal marsh obligate birds and spiders (as an
indicator of trophic health) and to flooding duration, and large
gains in the capacity of marsh elevation to keep pace with
sea-level rise (fig. 6). Ecologically, the combination of actions
in this portfolio may result in an average 80-percent increase
in tidal marsh obligate bird counts (averaged across all
units), 666-percent increase in spider density, and 49-percent
decrease in the deviation of surface flooding from the ideal
reference condition (derived as the average difference between
the predicted metric scores for the actions implemented in
portfolio 7 and the “no-action” alternative; table 3). Imple-
mentation of actions in this portfolio was predicted to increase
the capacity for marsh elevation to keep pace with sea-level
rise in eight of the nine salt marsh units. The management
benefits predicted for portfolios 2 through 6, at total costs con-
siderably lower than portfolio 7, were derived primarily from
expected improvements in the capacity for marsh elevation to
keep pace with sea-level rise and from presumed increases in
spider density and tidal marsh obligate birds (tables 3 and 4).

Native vegetation cover

Nekton density

Nekton species richness

Tidal marsh obligate breeding birds
American black ducks in winter
Spider density

Flooding duration

Surface-water salinity

Marsh surface elevation change

Herbicide application

EXPLANATION

No action
M Portfolio 7

Refuge-scale management benefit[dimensionless]

Figure 6. Predicted management benefit at the refuge scale for individual performance metrics,
expressed as weighted utilities, resulting from implementation of the management actions included

in portfolio 7, in comparison to the management benefit from the baseline “no-action” portfolio, at the
Rhode Island National Wildlife Refuge Complex. Baseline (“no-action”) predicted management benefit
for marsh surface elevation change is zero. The actions included in each portfolio are listed in table 5.
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Considerations for Optimizing Salt
Marsh Management

A regional structured decision-making framework for
salt marshes on NWRs in the northeastern United States
was applied by the USGS, in cooperation with the FWS, to
develop a tool for optimizing management decisions at the
Rhode Island National Wildlife Refuge Complex. Use of the
existing regional framework and a rapid-prototyping approach
permitted NWR biologists and managers, FWS regional
authorities, and research scientists to construct a decision
model for the refuge within the confines of a 1.5-day work-
shop. This preliminary prototype provides a local framework
for decision making while revealing information needs for
future iterations. Insights from this process may also be useful
to inform future habitat management planning at the refuge.

The suite of potential management actions and predicted
outcomes included in this prototype (table 3) were based on
current understanding of the Rhode Island National Wildlife
Refuge Complex salt marshes and hypothesized process-
response pathways (app. 1). Tidal flooding is the predominant
physical control on the structure and function of salt marsh
ecosystems (Pennings and Bertness, 2001), and there is
widespread scientific effort to elucidate how salt marshes may
respond to accelerating rates of sea-level rise (Kirwan and
Megonigal, 2013; Roman, 2017). In this prototype, digging
runnels by hand or machine to improve drainage of the marsh
surface was frequently projected to yield high management
benefit for relatively low cost. Evaluating the responses of
performance metrics to runnel creation is expected to help
determine the conditions under which this technique improves
marsh resilience. Future iterations of this decision model can
incorporate improved understanding of runnel implementa-
tion costs and marsh response. In addition, during construc-
tion of the regional decision model, lack of widely available
data on rates of vertical marsh growth led to the adoption of a
very coarse scale of measurement for change in marsh surface
elevation relative to sea-level rise (table 1). Surface elevation
tables (Lynch and others, 2015) were installed in North Marsh
at the Sachuest Point National Wildlife Refuge in 2004 and in
the other eight management units between 2011 and 2014 to
obtain high-resolution measurements of change in marsh sur-
face elevation (S.C. Adamowicz and T. Mikula, FWS, unpub.
data, 2017). Incorporating this information into subsequent
iterations of this structured decision-making framework would
likely improve predictions related to the potential for marsh
surface elevation to keep pace with sea-level rise.

Results of constrained optimizations (table 5) based on
the objectives, management actions, and predicted outcomes
included in this prototype identified four major areas in which
to improve the utility of the prototype for refuge decision mak-
ing. First, construction of islands as nesting habitat for tidal
marsh obligate birds was rarely selected for implementation,
suggesting that other methods focused directly on improv-
ing nest success might warrant investigation. Recent studies
identify controlling predators within existing marshes (Roberts
and others, 2017) and acquisition of adjacent parcels for marsh

migration (Wiest and others, 2014) as approaches for limiting
declines of saltmarsh sparrow populations. Second, although
erosion of marsh edges is identified as a primary concern by
refuge managers, establishing living shoreline to reduce wave
action had minimal effect on the predicted total manage-
ment benefit (Northeast, Southeast, and Southwest Marshes
at the Chafee National Wildlife Refuge, table 5). This might
lead managers to reconsider living shoreline as a manage-
ment option at this refuge. Alternatively, deconstructing the
objective of maintaining the extent of the marsh platform into
subordinate objectives and performance metrics related to
both horizontal and vertical gains and losses may help focus
decision making on shoreline erosion. Third, the transpar-
ency of the structured decision-making framework reveals the
tradeoffs associated with herbicide application for controlling
Phragmites. Spread of Phragmites is a management concern
at the Rhode Island National Wildlife Refuge Complex, and
this prototype could be adapted to allow managers to evalu-
ate the relative expected benefits and detriments of chemical
and other control methods (table 3). Finally, the constrained
optimizations analyzed in this report were based on approxi-
mations of management costs. As salt marsh management is
implemented around the region, a list of actual expenses can
be compiled, so that future iterations of the decision model can
include more accurate cost estimates.

The prototype model for the Rhode Island National
Wildlife Refuge Complex provides a useful tool for decision
making that can be updated in the future with new data and
information. The spatial and temporal variability inherent in
parameter estimates were not quantified during rapid proto-
typing. Previously, preliminary sensitivity analysis revealed
little effect of incorporating ecological variation in abundance
of marsh-obligate breeding birds on the optimal solutions
for Prime Hook National Wildlife Refuge (Neckles and
others, 2015). This lends confidence to use of this framework
for decision making; however, including probability distribu-
tions for each performance metric in the decision model could
be a high priority for future prototypes. Future monitoring
of salt marsh integrity performance metrics will be useful
to refine baseline parameter estimates, and feedback from
measured responses to management actions around the region
will help reduce uncertainties surrounding management pre-
dictions. The structured decision-making framework applied
here to the Rhode Island National Wildlife Refuge Complex is
based on a hierarchy of regional objectives and regional value
functions relating performance metrics to perceived manage-
ment benefits. It will be important to ensure that subsequent
iterations reflect evolving management objectives and desired
outcomes. Elements of the decision model could be fur-
ther adapted, for example through differential weighting of
objectives or altered value functions, to reflect specific, local
management goals and mandates. Future optimization analy-
ses that use this framework could also incorporate additional
constraints on action selection, such as ensuring that particu-
lar actions within individual salt marsh units are included in
optimal management portfolios, to further tailor the model to
refuge-specific needs.
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Appendix 1.

The influence diagrams (following the style of proto-
type diagrams in Neckles and others, 2015) in this appendix
(figs. 1.1-1.8) relate possible management strategies to perfor-
mance metrics. Shapes represent elements of decisions, as fol-
lows: rectangles for actions, rectangles with rounded corners
for deterministic factors, ovals for stochastic events, and hexa-
gons for consequences expressed as a performance metric.
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Figure 1.1.
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Reference Cited

Neckles, H.A., Lyons, J.E., Guntenspergen, G.R., Shriver,
W.G., and Adamowicz, S.C., 2015, Use of structured deci-
sion making to identify monitoring variables and man-
agement priorities for salt marsh ecosystems: Estuaries
and Coasts, v. 38, no. 4, p. 1215-1232. [Also available at
https://doi.org/10.1007/s12237-014-9822-5.]
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Figure 1.2. Influence diagram used to estimate nekton density and species richness in response to implementing certain

management actions.
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Figure 1.4. Influence diagram used to estimate abundance of American black ducks in winter, as indicator species for nonbreeding
wetland birds, in response to implementing certain management actions.
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Figure 1.5. Influence diagram used to estimate density of spiders, as indicator of trophic health, in response to implementing certain

management actions.
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Figure 1.6. Influence diagram used to estimate percent of time marsh surface is flooded and salinity of marsh surface water in
response to implementing certain management actions.
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Figure 1.7. Influence diagram used to estimate change in elevation of the marsh surface relative to sea-level rise in response to
implementing certain management actions.
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Appendix 2. Utility Functions for the Rhode Island National Wildlife

Refuge Complex

Utilities [u(x)] are derived as monotonically increasing,
monotonically decreasing, or step functions over the range of
performance metric x. In the functions in figures 2.1 through
2.10, x, Low, High, and p are expressed in performance metric
units; Low and High represent the endpoints of the given met-
ric range for the Rhode Island National Wildlife Refuge Com-
plex; and p represents a shape parameter derived by stake-
holder elicitation (Neckles and others, 2015). Break points in
step functions were also derived by stakeholder elicitation.

Reference Cited

Neckles, H.A., Lyons, J.E., Guntenspergen, G.R., Shriver,
W.G., and Adamowicz, S.C., 2015, Use of structured deci-
sion making to identify monitoring variables and man-
agement priorities for salt marsh ecosystems: Estuaries
and Coasts, v. 38, no. 4, p. 1215-1232. [Also available at
https://doi.org/10.1007/s12237-014-9822-5.]
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Figure 2.1. Native vegetation at the Rhode Island National Wildlife Refuge Complex.
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Figure 2.2.

Native nekton density at the Rhode Island National Wildlife Refuge Complex.
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Figure 2.3. Native nekton species richness at the Rhode Island National Wildlife
Refuge Complex.
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Figure 2.4. Tidal marsh obligate birds at the Rhode Island National Wildlife Refuge Complex.
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Figure 2.5. American black ducks at the Rhode Island National Wildlife Refuge Complex.

1
-1
If x < 15, then u()c):0.5><x14
18— — -1
08 If x> 15, then u(x):0.5+(0.5><x 5)
- 15
w
<
S 06— —
w
=
<4}
E
=
= 04— |
=
02— —
= |
0 15 30

Spiders, number per square meter

Figure 2.6. Marsh spiders at the Rhode Island National Wildlife Refuge Complex.
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Figure 2.7.
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Figure 2.8. Salinity of surface water at the Rhode Island National Wildlife Refuge Complex.
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Figure 2.9. Change in marsh surface elevation relative to sea-level rise at the Rhode Island National Wildlife Refuge Complex.
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Figure 2.10. Application of herbicides at the Rhode Island National Wildlife Refuge Complex.

39






For more information, contact:

U.S. Geological Survey

Director, Patuxent Wildlife Research Center
12100 Beech Forest Road

Laurel, MD 20708-4039
https://www.usgs.gov/centers/pwrc

Publishing support provided by the
Pembroke Publishing Service Center


https://www.usgs.gov/centers/pwrc

2 USGS

Neckles and others—Optimization of Salt Marsh Management at the Rhode Island National Wildlife Refuge Complex—Open-File Report 2019-1103

ISSN 2331-1258 (online)

https://doi.org/10.3133/0fr20191103


https://doi.org/10.3133/ofr20191103

	Figure 1. Map showing national wildlife refuges and national wildlife refuge complexes of the U.S. Fish and Wildlife Service where salt marsh integrity was assessed from 2012 to 2016 using the regional monitoring protocol
	Figure 2. Map showing salt marsh units at the John H. Chafee National Wildlife Refuge in Rhode Island
	Figure 3. Map showing salt marsh units at the Ninigret National Wildlife Refuge in Rhode Island
	Figure 4. Map showing salt marsh units at the Sachuest Point National Wildlife Refuge in Rhode Island
	Figure 5. Graph showing predicted total management benefit of various portfolios, expressed as weighted utilities, relative to total annual cost at the Rhode Island National Wildlife Refuge Complex
	Figure 6. Graph showing predicted management benefit at the refuge scale for individual performance metrics, expressed as weighted utilities, resulting from implementation of the management actions included in portfolio 7, in comparison to the management 
	Table 1. Objectives hierarchy for salt marsh management decision problems.
	Table 2. Participants in workshop convened at the Edwin B. Forsythe National Wildlife Refuge, New Jersey, to apply a regional framework for optimizing salt marsh management decisions to five national wildlife refuges in November 2016.
	Table 5. Actions included in various management portfolios to maximize the total management benefits subject to increasing cost constraints at the Rhode Island National Refuge Complex.
	Acknowledgments
	Abstract
	Introduction
	Purpose and Scope
	Description of Study Area

	Regional Structured Decision-Making Framework
	Application to the Rhode Island National Wildlife Refuge Complex
	Results of Constrained Optimization
	Considerations for Optimizing Salt Marsh Management
	References Cited
	Appendix 1. Regional Influence Diagrams
	Appendix 2. Utility Functions for the Rhode Island National Wildlife
Refuge Complex




