RESULTS OF THE U.S. GEOLOGICAL SURVEY'S SECOND INTERNATIONAL INTERLABORATORY ANALYTICAL COMPARISON STUDY--STANDARD REFERENCE WATER SAMPLES M-86 (MAJOR CONSTITUENTS), T-87 (TRACE CONSTITUENTS), AND P-5 (PRECIPITATION SNOWMELT)

By Victor J. Janzer

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 85-4049

UNITED STATES DEPARTMENT OF THE INTERIOR
DONALD PAUL HODEL, Secretary
GEOLOGICAL SURVEY
Dallas Peck, Director

For additional information write to:
Victor J. Janzer
U.S. Geological Survey Water Resources Division Mail Stop 407, Box 25046
Denver Federal Center
Denver, Colorado 80225
Telephone: (303)236-1924
FTS: 776-1924

Copies of this report can be purchased from:
Open-File Services Section
Western Distribution Branch
U.S. Geological Survey

Box 25425, Federal Center
Denver, Colorado 80225
Telephone: (303)236-7476
FTS: 776-7476

Table 11
Footnote 1/ should read: Except specific conductance (microsiemens or micromhos per centimeter at $25^{\circ} \mathrm{C}$); pH (units); boron, bromide, iodide, strontium, and vanadium (micrograms per liter).

Table 12
Mean Concentration heading should show footnote 1/ Except acidity (milligrams per liter).

CONTENTS

Page
Abstract 1
Introduction 2
Purpose and plan 2
Preparation of samples 2
Determinations 4
Standard Reference Water Sample M-86 (major constituents) 4
Standard Reference Water Sample T-87 (trace constituents) 4
Standard Reference Water Sample P-5 (precipitation snowmelt) 4
Laboratory performance and reported values 5
Statistical evaluation 6
Participating laboratories 7
References 9
TABLES
Table 1. Explanation of abbreviations, symbols, and terms used in computer-printout parts of subsequent tables. 10
2. Overall laboratory performance; SRWS M-86 (major constituents) 11
3. Overall laboratory performance; SRWS T-87 (trace constituents) 15
4. Overall laboratory performance; SRWS P-5 (precipitation snowmelt) 18
5. Analytical data; SRWS M-86 (major constituents) 20
6. Statistics by method for SRWS M-86 (major constituents) 40
7. Analytical data; SRWS T-87 (trace constituents) 44
8. Statistics by method for SRWS T-87 (trace constituents) 66
9. Analytical data; SRWS P-5 (precipitation snowmelt) 70
10. Statistics by method for SRWS P-5 (precipitation snowmelt) 81
11. Comparison of domestic and international laboratory analyses for SRWS M-86 (major constitutents) 83
12. Comparison of domestic and international laboratory analyses for SRWS T-87 (trace constituents) 84
13. Comparison of domestic and international laboratory analyses for SRWS P-5 (precipitation snowmelt) 85

RESULTS OF THE U.S. GEOLOGICAL SURVEY'S SECOND INTERNATIONAL
 INTERLABORATORY ANALYTICAL COMPARISON STUDY--STANDARD REFERENCE

WATER SAMPLES M-86 (MAJOR CONSTITUENTS), T-87 (TRACE
CONSTITUENTS), AND P-5 (PRECIPITATION SNOWMELT)

By Victor J. Janzer

Abstract

The U.S. Geological Survey began an interlaboratory testing program of Standard Reference Water Samples in 1962. Program objectives have been to provide a means for participating analytical laboratories to: (1) Identify analytical problems, (2) ascertain the accuracy and precision of common water analyses and analytical methods, and (3) obtain reference samples for continuing quality-assurance testing. Participation in this continuing quality-assurance program is mandatory for all domestic laboratories providing water-analysis data for Survey use and storage in the WATSTORE data storage system, if appropriate Standard Reference Water Samples are available.

The program was expanded in October 1982 to include international laboratories. This report presents analytical data submitted by the 53 laboratories in other countries that analyzed the reference samples distributed in October 1983. Statistical evaluation of the data and performance ratings achieved by the laboratories for each determination are given in nine tables. Comparisons of the most probable values for the constituents determined by both international and domestic laboratories are also presented.

INTRODUCTION

The U.S. Geological Survey began an interlaboratory testing program of standard reference water samples in 1962. Principal purposes of the program have been to provide a means for participating domestic analytical laboratories to: (1) Identify analytical problems, (2) ascertain the accuracy and precision of the analytical methods for determining the various constituents and physical properties of water and (3) obtain reference samples for continuing quality-assurance testing. Twenty-three Geological Survey laboratories participated in the 1962 effort to determine six constituents in a single standard reference water sample (SRWS) containing major constituents. Now, more than 120 domestic laboratories participate in the program that uses as many as 8 SRWS types; major constituents, trace constituents, nutrients, herbicides, insecticides, watersediment mixture for trace metals, precipitation snowmelt, and priority pollutants.

Participation in this continuing quality-assurance program is mandatory for all domestic laboratories providing water-analysis data for Survey use and storage in the WATSTORE data-storage system, if appropriate SRWS are available. Major constituent, trace constituent, and nutrient SRWS are prepared and distributed to domestic laboratories twice each year. One or more of the other SRWS types may also be included.

The program was expanded in October 1982 to include a number of international laboratories. Samples have been distributed to the laboratories in other countries only once a year, during October of 1982 and 1983. This report summarizes analytical data submitted by the 53 international laboratories that analyzed the reference samples distributed in October 1983. Statistical evaluation of the data and performance ratings achieved by the laboratories for each determination are given in nine tables. Comparison of the most probable values for constituents determined by both international and domestic laboratories are also presented in three additional tables. The domestic data were reported previously (Janzer and Latal, 1984).

PURPOSE AND PLAN

As a means of providing an independent, objective evaluation of the water-quality data published by the U.S. Geological Survey, SRWS are prepared and distributed for analysis at regular intervals. SRWS M-86 (major constituents), T-87 (trace constituents), and P-5 (precipitation snowmelt) were distributed to 100 domestic laboratories in October 1983. In addition, SRWS were sent to 68 international laboratories that indicated their willingness to analyze these reference samples. All samples are not analyzed by all laboratories nor do all laboratories participate in each round of analyses.

Each laboratory was requested to indicate the analytical methods used and to perform at least those determinations that it makes routinely. Laboratories participating in this study are identified only by confidential code numbers.

PREPARATION OF SAMPLES

SRWS M-86 (major constituents), and T-87 (trace constituents) were each prepared from a surface water collected from the same source. Samples were filtered through a 5$\mu \mathrm{m}$ (micrometer) nominal size prefilter and a $0.45-\mu \mathrm{m}$ membrane filter into a $1325-\mathrm{L}$ (liter) polyethylene drum. Thymol, about $1.25 \mathrm{mg} / \mathrm{L}$ (milligrams per liter), was added to SRWS M-86 and T-87, to reduce growth of fungus.

Some trace constituents (vanadium and fluoride) were added to SRWS M-86. No constituent additions were made to SRWS T-87 but it was acidified to a pH of about 1.5 with nitric acid. Each sample was mixed overnight with a motor-driven, Teflon $1 /$-coated stirrer, filtered through a $0.45-\mu \mathrm{m}$ membrane filter, and passed through a flow-through $254-\mathrm{nm}$ ultraviolet sterilizer and bottled, under ultraviolet radiation, in 1-L autoclaved polypropylene bottles or dry-heat sterilized Teflon bottles.

SRWS P-5 (precipitation snowmelt) was prepared by melting snow collected in several 200-L polyethylene drums. After melting, the sample was filtered through a 0.45 $\mu \mathrm{m}$ membrane filter. No additions of any kind were made to this sample. After mixing overnight, the sample was again filtered through a $0.45-\mu \mathrm{m}$ filter, sterilized by passage through the flow-through ultraviolet sterilizer and bottled in 1-L autoclaved polypropylene bottles or dry-heat sterilized Teflon bottles under ultraviolet radiation.

1/ The use of the trade name in this report is for identification purposes only and does
not constitute endorsement by the U.S. Geological Survey. not constitute endorsement by the U.S. Geological Survey.

DETERMINATIONS

Determinations for each of the SRWS and their abbreviations are listed below.
SRWS M-86 (major constituents)
(results in milligrams per liter- ${ }^{1 /}$)

ALK(CACO3)	$=$ Alkalinity (as CaCO_{3})	NA	= Sodium
B	= Boron	NO2-N	= Nitrite as nitrogen
BR	= Bromide	NO3-N	= Nitrate as nitrogen
CA	= Calcium	P, TOTAL	= Phosphorus, total as phosphorus
CL	= Chloride	PH	$=\mathrm{pH}$
DSRD 180	= Dissolved solids	SIO 2	- Silica
F	= Fluoride	SO4	= Sulfate
I	= Iodide	SP. COND.	= Specific conductance
K	= Potassium	SR	= Strontium
MG	= Magnesium	V	= Vanadium

SRWS T-87 (trace constituents)
(results in micrograms per liter ${ }^{2 /}$)

ACID@CACO3	$=$ Acidity (as CaCO_{3})	HG	= Mercury
AG	= Silver	LI	= Lithium
AL	= Aluminum	MN	= Manganese
AS	= Arsenic	MO	= Molybdenum
BA	= Barium	NI	= Nickel
$B E$	= Beryllium	PB	= Lead
CD	= Cadmium	SB	= Antimony
CO	= Cobalt	SE	= Selenium
CR, TOTAL	= Chromium, total	SR	= Strontium
CU	= Copper	TL	= Thallium
FE	= Iron	ZN	$=\mathrm{Zinc}$

SRWS P-5 (precipitation snowmelt) (results in milligrams per liter $3 /$)

CA	Calcium	NH3-N	$=$ Ammonia as nitrogen
CL	$=$ Chloride	NO3-N	$=$ Nitrate as nitrogen
F	$=$ Fluoride	PH	$=$ pH
K	$=$ Potassium	SO4	$=$ Sulfate
MG	$=$ Magnesium	SP. COND.	Specific conductance
NA	$=$ Sodium		

1/ Except specific conductance (microsiemens or micromhos per centimeter at $25^{\circ} \mathrm{C}$); pH (units); boron, bromide, iodide, strontium, and vanadium (micrograms per liter).
2/ Except acidity (milligrams per liter).
3/ Except pH (units) and specific conductance (microsiemens or micromhos per centimeter at $25^{\circ} \mathrm{C}$).

LABORATORY PERFORMANCE AND REPORTED VALUES

To facilitate interlaboratory performance comparisons, ratings based on the analyses of each SRWS are included in this report as tables 2-4 (all tables are at back of report; the abbreviations and symbols used in the tables are defined in table 1). Laboratory performance for each constituent is rated on an arbitrary scale of 0 to 4 based on the number of "standard deviations" from the mean determined for each constituent as indicated below:

4 (Excellent)	0.00 to 0.50 standard deviations
3 (Good)	0.51 to 1.00 standard deviations
2 (Satisfactory)	1.01 to 1.50 standard deviations
1 (Questionable)	1.51 to 2.00 standard deviations
0 (Poor)	Greater than 2.00 standard deviations

When the analyses for a constituent are extremely precise, these ratings may be overly severe and should be considered only as indicators of relative performance. Averages of the constituent ratings for each SRWS are given for each laboratory in tables 2-4 of overall laboratory performance.

The values reported for all constituents determined in each SRWS are listed in tables 5, 7, and 9. Each value has been rounded off, when necessary, to conform to U.S. Geological Survey policy on reporting analytical data. Laboratories were requested to indicate the general method used for each determination. When this information was provided, method identifications have been included with the analytical data. Statistical information by method for each determination are listed in tables 6, 8, and 10. Summary comparisons of other-country and domestic laboratory analyses of SRWS M-86, T-87, and P-5 are presented in tables 11-13. Mean concentrations for most constituents determined by both laboratory groups show good agreement.

Participants are encouraged to submit comments or suggestions concerning this program to:

Victor J. Janzer
U.S. Geological Survey
5293 Ward Road
Arvada, Colorado 80002
U.S.A.

STATISTICAL EVALUATION

A statistical evaluation of the data was made to estimate the most probable value (MPV) for each of the constituents. Values reported as "less than" were considered "not determined", and were not used in the computation of the means, standard deviations, and so forth. These data are indicated as "ignored" in the computer listings.

The mean, standard deviation, and confidence limits about the mean are usually reported to one more significant figure than the reported value. Statistical information is tabulated for each method used by three or more laboratories to determine a specific constituent. Tables giving the mean and standard deviation determined by that method, and the number of laboratories which used it, follow the analytical data tables for each SRWS.

Outliers in each data set are identified and rejected based on the T values (Grubbs' test) described and tabulated in the American Society for Testing and Materials (1981) Recommended Practice E-178 (1980). If the computed T value is greater than the tabulated value for the number of samples and the significance level selected, the outlier is rejected. T is computed by:

$$
T=\frac{x_{n}-\bar{x}}{S}
$$

where $T=T$ value for probable outlier,
$\mathrm{X}_{\mathrm{n}}=$ concentration of probable outlier, $\bar{X}=$ arithmetic mean (average) of all values, and
$\mathrm{S}=$ standard deviation of all values.

After rejection of the outliers, the data remaining for each constituent were used to calculate the means, standard deviations and percent deviation from the mean. Values identified as outliers were omitted when calculating the means and standard deviations for each determination listed by "method". The total range for each constituent included the outliers. Confidence intervals about the mean were also calculated. These define the range within which the true value is expected to occur with a confidence level of 95 percent.

PARTICIPATING LABORATORIES

AUSTRALIA, Brisbane: Government Chemical Laboratory
AUSTRALIA (South), Eastwood: The Australian Mineral Development Laboratory
AUSTRALIA (Western), Perth: Government Chemical Laboratories

AUSTRIA, Vienna: Isotope Hydrology, International Atomic Energy Agency
BRAZIL, Minas Gerais: Fundacao Centro Technologico de Minas Gerais
BRAZIL, Minas Gerais: Companhia de Pesquisa de Recursos Minerais
CANADA, Calgary, Alberta: Inland Water Directorate, Western Region Water Quality Branch CANADA, West Vancouver, BC: EPS-DOE Laboratory Services
CANADA, Winnipeg, Manitoba: Technical Services Laboratory
CANADA, Ottawa, Ontario: Energy, Mines \& Resources Canada, Geological Survey of Canada CANADA, Rexdale, Ontario: Acid Precipitation Studies, Ontario Ministry of Environment CANADA, Rexdale, Ontario: Rivers \& Lakes Laboratory, Ontario Ministry of Environment CANADA, Toronto, Ontario: Analytical Services Section, Ontario Hydrology

COLOMBIA, Bogota: Instituto Colombiano de Hidrologia, Ministry of Agriculture
CZECHOSLOVAKIA, Bratislava: Institute of Geology, Department of Hydrogeochemistry CZECHOSLOVAKIA, Praha: Geological Survey Prague, Chemical Laboratory CZECHOSLOVAKIA, Zilina: IGHP, Hydrochemical Laboratory

ENGLAND, London: Water \& Wastewater Subdivision, Laboratory of the Government Chemist ENGLAND, Wallingford, Oxfordshire: Institute of Geological Sciences, Hydrogeological Department

FEDERAL REPUBLIC OF WEST GERMANY, Koblenz: Bundesanstalt fur Gewasserkunde FEDERAL REPUBLIC OF WEST GERMANY, Neuhof: Chemische und Biologische Laboratorien Gmbh

FINLAND, Helsinki: National Board of Waters, Research Laboratory
GREECE, Athens: Soil \& Water Laboratory, Hellenic Republic Ministry of Agriculture
HUNGARY, Budapest: Hungarian Geological Survey
HUNGARY, Budapest: VITUKI, Research Centre for Water Resources Development
INDIA, Lucknow (UP): Central Ground Water Board, Northern Region
ISRAEL, Jerusalem: Emission Spectrometric Laboratory, Geological Survey of Israel ISRAEL, Jerusalem: Hydrological Service Water Commission, Ministry of Agriculture ISRAEL, Tel-Aviv: Tahal Consulting Engineers, Ltd.

ITALY, Venezia: Universita Degli Studi Di Venezia, Istito di Chimica Generale Ed Inorganica
JORDAN, Amman: Natural Resources Authority, Water \& Isotope Laboratory
NEW ZEALAND, Lower Hutt, Petone: Department Scientific and Industrial Research
NORWAY, Oslo: Norwegian Institute for Water Research
PORTUGAL, Lisbon: Universidade Nova De Lisboa, Department Environmental Engineering
REPUBLIC OF CHINA, Taipei, Taiwan: Water Resource Planning Commission, Ministry ofEconomic Affairs
SAUDI ARABIA, Abqaiq: ARAMCO, Abqaiq Laboratory
SOUTH AFRICA, Bellville: National Institute for Water Research, CSIR, Cape RegionalLaboratory
SOUTH AFRICA, Cape Town: City of Cape Town, City Engineer's Department
SOUTH AFRICA, Germiston: Johannesburg Consolidated Investment Co., Ltd, MineralsProcessing Research Laboratory
SOUTH AFRICA, Johannesburg: McLachlan \& Lazar (PTY) Ltd.
SOUTH AFRICA, Natal: National Institute for Water Research, CSIR, Natal Regional Office
SOUTH AFRICA, Pretoria: National Institute for Water Research, CSIR
SOUTH AFRICA, Pretoria: Hydrological Research Institute, Department of EnvironmentAffairs
SULTANATE OF OMAN, Ruwi: Public Authority Water Resources
SWEDEN, Norrkoping: Sveriges meteorologiska och hydrologiska institut
SWEDEN, Solna: National Swedish Environment Protection Board, Research LaboratorySWEDEN, Uppsala: Water Quality Laboratory, Statens Naturvardsverk, The National SwedishEnvironmental Protection Board
SWITZERLAND, Dubendorf: EAWAG
TANZANIA, Dar es Salaam: Project Preparation Division
THE NETHERLANDS, Lelystad: Governmental Institute for Sewage \& Wastewater Treatment(RIZA)
THE NETHERLANDS, Oosterzee: Limnologische Institute, Tjeukemeer Laboratory
USSR, Leningrad: VSEGEI
ZIMBABWE, Harare: City of Harare, Department of Works

REFERENCES

American Society for Testing and Materials, 1981, Annual Book of ASTM Standards, Part 41: Philadelphia, 1390 p.

1982, Annual book of ASTM standards, Part 31: Philadelphia, 1554 p.
Janzer, V. J., and Latal, K. A., 1984, Report of the U.S. Geological Survey's analytical evaluation program--standard reference water samples M-86 (major constituents), T-87 (trace constituents), N-10 and N-11 (nutrients), P-5 (precipitation snowmelt) and POL-1 (priority pollutants): U.S. Geological Survey Open-File Report 84-128, 140 p.

Table 1.--Explanation of abbreviations and symbols used in computer-printout parts of subsequent tables

APDC/MIBK - ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone AUTO - automated
BLK - block
DEV - deviation
DIG - digestion
EDTA - ethylenediaminetetraacetic acid
H2SO4 - sulfuric acid
IGNORED - values reported as less than detection level and not used in statistical analyses
INTRVL - interval
K \& HG SO4 - potassium \& mercuric sulfate
PCT - percent
PDCA/CHCl3 - pyrrolidine dithiocarbamic acid/chloroform
REJECT - values identified as an outlier and not used in statistical analyses
SRWS - standard reference water sample
STD - standard
TABLE 2.-- OVEHALL LAGURATOKY PE WF UKAANCE

TABLE 2.-- OVERALL LABUNATOMY PEHF UKHANCE
 N = NUMOEK OF CUNSIIIUENIS LABORAIUKY DETEHMINEU
AVG E AVERAGE LABOKAIURY PERF ORMANCE KAIING

2 불

ATURY
NOT

$\underset{2}{2}$
 Onnno 00N

TABLE 3．－－OVERALL LABURAIORY PEHFUKMANCE
RATED
NM $=$ NO
ND $=$ NOT DEIERHINED
LI $=$ LESS－IHAN YALUE REPORTED，NOT RATED
$N=$ NUMBER UF CUNSIIIUENTS LABORAIORY OETERMINEU
likace cunstif
DEV．
UEV．
之
からござき
品

hating

TABLE G. - OVERALL LABURATOHY PERF OKHANCE LABURATONTIENE

$$
\begin{aligned}
& \text { WR }=\text { HOT RATED } \\
& \text { NU } \mathcal{I} \text { NUT DETERMIWEO } \\
& \text { LI }=\text { LESS-THAN VALUE REPORTED, NOT RATED }
\end{aligned}
$$

OEV.
UEV.
DEV.
DEV.
OEV.
AVE = AVEHAGE LABOHATOHY PERFORMANCE RAIING

$$
\begin{aligned}
& \text { N }=\text { NUHBER OF CUNSIITUENTS LABORATONY UETERMINEU } \\
& \text { AVB } \mathrm{z} \text { AYERAGE LABOHATOHY PERFORMANRE RATING }
\end{aligned}
$$

 ${ }^{2}$
 응을응

CODE
003
004
006
012
013
015
017
025
027
036
037
042
045
053
058
MEIHUDS
MLASMA.
PLASMA, INOUCTIVELY CUUPLEU
HLASMA, INOUCIIVELY CUUPLEU

CULOKIHE IHIC
PLASMA, UIKECT CURKENT
PLASMA, INUUCTIVELY COUPLEU

PLASMA, INUUCIIVELY COUPLEO
SPECTKOPHUTUMEIKIC

137dnos AT3A1IJnONI 'VWSV7d
CULORIMEIRIC

95 MEAN\& 223.9

$95 \times$ CUNFIDENCE INTRVL OF MEAN
TUTAL KANGE O
STANDARU UEVIATIUN

TABLE 5.--Standard reference sample m-8b hepurt for i
$\stackrel{\circ}{\circ}$
$\stackrel{\text { N }}{\substack{5 \\ ~}}$

PLASMA，INUUCTIVELY COUPLEU

3HV ロコI HOAJM INA

П71 MOAJH ITN
IJJMIO＇NOILAMOSAV JIWOIV

1JЭHIO＇NOILDHOSAY JIWOIV
IJJHIO NOIIdHOSAV JIWOIV

$\underset{\sim}{3}$
$\underset{\sim}{w}$
$\underset{x}{3}$
KEJEC

HEPUKIED

PLASMA，IHOUCTIVELY COUPLEU

PLASMA，INUUCTIVELY CUUPLED

 AIIOMIC ABSORPIIIUN，UIRECT
PLASMA，INDUCTIVELY COUPLED PLASMA，INDUCTIVELY COUPLED
NOI REPURIED ATUMIC ABSONPIIUN，DIRECI AIOMIC ABSURPIION，DIRECI
AIOMIC ABSORPIION，DIRECT

NTUMIC ABSUKPIION，UIRECT
AIUMIC ABSURPIION，DIRECT
 NUT KEPDKTED
THKATION
IIIKAIIUN

$\begin{array}{ll}- \\ \underset{\sim}{3} & \underset{\sim}{3} \\ \underset{x}{u} & \underset{\sim}{3} \\ \underset{x}{4}\end{array}$

HEPURIED
VALUE

31.2 29.0

 0.52 24.04 H .0 28.3
22.0
28.0 28.1
28.1 シ 웅 へ ㄱ为
 $0 \cdot 018$ 3 i $\underset{\sim}{\sim} \dot{\sim}$ 9.12
9.92 ： ？ ～～ 춫 $0:$
0
i
0 ñ另 0.95
$0 \cdot 85$
$0 \cdot 95$ 0.95
0.95
0.85 $0 \cdot 12$ 9.92
0.52 0.025
$0 \cdot 111$
0.92 $0 \cdot 6$ ？ \sim
0
\vdots
i TOIAL KANGE 22．0

$\underset{\text { 플 }}{\underset{\sim}{u}}$

 REJECIJWYTH ©NOISEIWZ
EMISSIUN, FLABE

 0
00
0 74.0 $0^{\circ} 28$
0.08 $\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1\end{array}$ $0^{\circ} 52$
$0^{\circ} 08$
$0^{\circ} 02$ 71.0 74.4

$$
\begin{aligned}
& \text { ATOMIC ABSOKPIION, DIRECT } \\
& \text { AIUMIC ABSURPIION, DIRECT } \\
& \text { ATOMIC ABSURPIION, DIRECT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AIUMIC ABSURPIIUN, DIRECT } \\
& \text { AIOMIC ABSURPIION, DIKECT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EMISSION, FLAME } \\
& \text { EMISSIUN, FLAME } \\
& \text { PLASMA, INDUCIIVELY COUPLEU }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EMISSIUN, FLAME } \\
& \text { PLASMA, INDUCIIVELY COUPLEU } \\
& \text { MUT WEOUQIGO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NUT REPORIED } \\
& \text { EMISSIUN, FLAN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EMISSIUN, FLAME } \\
& \text { EMISSIUN, FLAME }
\end{aligned}
$$

AIOMIC ABSURPIION, DIKECI

$$
\begin{aligned}
& \text { IVUT HEPOKIED } \\
& \text { EMISSIUN. FLA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WUT KEPOKTED } \\
& \text { WIOMIC ABSURP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EMISSIUN, FLAME } \\
& \text { AIOMIC ABSORPIION, DIRECT } \\
& \text { NUT FEPOKTEO }
\end{aligned}
$$ NUT KEPUKIEO

EMISSIUN, FLAME
AIUMIC AUSURHTION, DIKECI

 1J3AIO 'NOILAHOSRY JIWOIV 1כ3HIO 'NOIIdHOSAV JIWOIV 3WV7S 'NOISSIW?
OIIdHOSAY JIWOIV
3WV7t 'NOISSIWG

- NOIIANOSAV JIWOIV
- NOIIdAOSAY JIWNIV
-nOIIAHOSAV JIWRIV -NOIIdynsay JIWRIV
-NOILdAOSAY JIWחIY NOIIdHOSAY JIWOIV
ZNYTA CNOISSIWB NOIIdHOSAY JIWOIV ATOMIC ABSUKPIION, DIRECT
AIUMIC AESURPIIUN, DIRECT
EMISSIUN, FLAME
AIUMIC ABSUKPIIUN, DIRECT
PLASMA, INDUCTIVELY COUPLEU ATOMIC ABSUKPIION, DIRECT
AIUMIC AESURPIIUN, DIRECT
EMISSIUN, FLAME
AIUMIC ABSUKPIIUN, DIRECT
PLASMA, INDUCTIVELY COUPLEU
AIOMIC ABSURFTIUN, DIRECT
ATUMIC ABSUKPTIUN, OIRECT

CULOKIMETHIC
CULORIMETHIC
IUN CHEOMATOGR
IUN CHMUMATOGRAPHY
CULURIMETHIC
u
CULUKIMETHIC

electrude

CULORIMEIKIC
IUN ChRUMAIO

二
CUN SUKIMETKIC
COLUKIMEIKIC
IUN SFECIFIC

CULUKIMEIKIC

REJECI
REJEC
HEJECI

REJECI
KEJECI
\propto

10
mel huos
COLOKIMETHIC
COLOKIME TKIC
PLASMA, INDUCTIVELY COUPLEU
PLASMA, INOUCTIVELY CUUPLED

LASMA, INDUC
CULUAIMEIKIC
CULORIMEIKIC
CULORIMEIKIC
COLURIMEIRIC
CULUKIMETHIC
CULUKIMETHIC
COLURIMETKIC
COLURINEIKIC
PLASMA, DIKE
CULUKIMEIRIC
CULOHIMETKIC
CULOHIMETKIC
CULORIMETRIC
COLORIMEIRIC
COLOKIMEIHIC

CULUKIMETHIC
PLASNiA, INDUC
NUT KEPUKTEU
CULOKIMEIRIC

plasma, inuuct
CULURIMEIHIC
PLASMA, INOUCTIVELY COUPLEO
AIUMIC ABSUKPTION, DIRECI
PLASMA, INUUCTIVELY COUPLE
COLURIMEIHIC
PLASMA, INOUCTIVELY COUPLE
AIUMIC AGSUKPIION, DIKECI
CULORIMEIRIC
COLOKIMEIRIC
CULOKIMETKIC
COLORIAEIRIC
WG GEPUKIED
CULURIMEIKIC
PLASMA, INUUCTIVELY COUPLE
COLURIMEIHIC
PLASMA, INOUCTIVELY COUPLE
AIUMIC AGSUKPIION, DIKECI
CULORIMEIRIC
COLOKIMEIRIC
CULOKIMETKIC
COLORIAEIRIC
WG GEPUKIED
CULURIMEIKIC
PLASMA, INUUCTIVELY COUPLE
COLURIMEIHIC
PLASMA, INOUCTIVELY COUPLE
AIUMIC AGSUKPIION, DIKECI
CULORIMEIRIC
COLOKIMEIRIC
CULOKIMETKIC
COLORIAEIRIC
WG GEPUKIED
CULURIMEIKIC
PLASMA, INUUCTIVELY COUPLE
COLURIMEIHIC
PLASMA, INOUCTIVELY COUPLE
AIUMIC AGSUKPIION, DIKECI
CULORIMEIRIC
COLOKIMEIRIC
CULOKIMETKIC
COLORIAEIRIC
WG GEPUKIED
CULURIMEIKIC
$\underset{\underset{x}{3}}{\substack{4 \\ \hline}}$
, OIRECT CUKRENT

 \qquad | 1 |
| :--- |
| 7 |

9.1
48.0
1.0

19.2

10
3.27
3 In
031 HOd 3 A
 TOIAL RANGE O.S
SIANUAKU UEVIATIUN

TABLE 5.--STANDAKO REFERENCE BAMPLE M-86
KEPORI FOR SP. CONI.
E M-86
METHODS

und
0
0

[^0]REFERENCES

INUUCIIVELY CUUPLED
$10.8+O R$
KEPOKT FOK V
table 5.--sianuard reference sample M-86
meithous

COUE
003
004
006
010
012
013
014
025
026
027
032
042
045
053 TOTAL KANGE
SIANUARD DEVIATIUN

29	$\stackrel{\infty}{*}$	20ヶむ	2 n	zon＝	J	2000
$\begin{aligned} & \text { 岂 ! } \\ & \text { O } \\ & \text { en } \end{aligned}$:				$\stackrel{\ddot{\sigma}}{\dot{m}}$	
$\begin{aligned} & 2 n \\ & \sum_{2}! \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{n} \end{aligned}$				n	

table 6．－－STATISTICS BY METHOD FOR SAMPLE：M－86
UEIERAINAIIUIN：ALK（CACOS）
METHOD
TITRAIIUN
＊＊＊＊＊（IVヒK
déterminalion：
METHOU
COLOKINEIKIC ＊＊＊＊＊＊UVEK ALL＊＊＊＊＊＊

DETERMINAIIUN：BK
AEIIHUU
＊＊＊＊＊引VEK ALL＊＊＊＊＊
UEIEKMINAIIUN：CA
methuo
atumic
Plasma，inn
rifKation
AIUMIC ABSURPIIUN，DIRECT
＊＊＊＊＊＊OVEK ALL＊＊＊＊＊＊
UETERMINAIIUN：CL
MEI HOU
COLORIAETRIC
IUN CHRIMMATUI
IUN CHKUMATUGRAPHY
IITRATION
IITRATION
＊＊＊＊＊＊UVEん ALL＊＊＊＊＊＊

MEAN	sto uev	N
598.0	18.3	9
589.6	34.0	10
586.0	33.2	24
MEAN	Sto dev	N
2.23	0.21	3
1.91	0.22	18
1.94	0.23	25
MEAN	STD UEV	N
MEAN	STD DEV	N
4.61	0.35	23
4.47	0.40	13
4.59	0.37	44
MEAN	Sto dev	N
27.19	1.11	23
29.37	1.68	6
27.81	2.15	9
21.65	1.60	43
MEAN	STO DEV	N
75.96	2.94	18
77.94	3.59	14
81.12	2.55	6
71.05	3.73	44

UETERMINATION: OSRD 180

GRAVIMETRIC RESIDUE ON EVAPORATION ****** OVER ALL ******

UETERMINATION: F

METHUD
IUN CHRUMATOGRAPHY
IUN SPECIFIC ELECTRODE
****** OVER ALL ******
OETERMINATION: I
METHOD
*********** INSUFFICIENT DATA
determination: k
METHOD ABSORPIION, UIKECT
EIAISSION, FLAME
****** UVER ALL ******
UETERMINATIUN: MR
METHOD
ATOMIC ABSORPTION, OIRECT
PLASMA, INUUCTIVELY CUUPLED titration
***** UVER ALL *****
UETERMINATION: NA
METHUO
ATUMIC ABSORPTION, DIRECT
EMISSIUN, FLAME
PLASMA, INDUCTIVELY COUPLEU
****** OVER ALL * * * * * *

		$z \underset{\sim}{o}$	$2 n$	\circ	200	zーonの
			$$	$\begin{aligned} & \text { M } \\ & \mathbf{C} \\ & 0 \end{aligned}$		
		$\begin{aligned} & 200 \\ & \dot{N}=0 \\ & i=0 \end{aligned}$		$\stackrel{0}{0}$		

table 6．－－statistics by method for sample：m－86

DEIERMINAIIIIN：NO？－N
MEIHUU
CULOKIMEIHIC

OETERMINAIIOIA：NOB－N
METHOU
CULONIMEIKIC
CULOKIMEIKIC
IUN CHROMATOSKAPIHY
＊＊＊＊＊UVEN ALL
UETEKMINAIIUN：P，TOIAL
MEIHUU
CULONIHEINIC
＊＊＊＊＊UVEN ALL＊＊＊＊＊＊
UEIENMINATION：PH
METHOU
METAOO
ELECFNOME IMIC
＊＊＊＊＊OVEN ALL＊＊＊＊＊＊
UEE ENHINATIUN：SIOE
METHOD
COLORIMETHIC

DETERMINAIIOIN：SOA

[^1]

$\geq \underset{\sim}{n}$	$\underset{\boldsymbol{N}}{\mathbf{N}}$	$z=0$	2 no
$\begin{aligned} & > \\ & \stackrel{\rightharpoonup}{2} \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \vec{m} \because n \\ & 0 \\ & \text { ommo } \\ & -\infty \end{aligned}$	$\begin{aligned} & 3 \\ & \stackrel{3}{0} \div \dot{O} \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 20 \\ & \frac{4}{2} \stackrel{0}{2} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \text { n } \\ & 0 \end{aligned}$		$\begin{aligned} & z=0 \\ & \frac{\omega}{2} 0 \\ & \hline 0 \end{aligned}$

table 6.--Statistics by method for sample: m-86

$$
\begin{aligned}
& 10 \\
& 16.0
\end{aligned}
$$

[^2]kepuri for ag
1-87
SAMPLE
REFERENCF

STAINIAKD UEVIATIUN

FEJECT

 REPORTEO$$
\begin{aligned}
& \text { PCT. DEV. } \\
& \text { FROM MEAN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IGUURED } \\
& \text { REJECT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ATOMIC } \\
& \text { AIOMIC } \\
& \text { NOI }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PLASMA, } \\
& \text { NUT RER }
\end{aligned}
$$

$$
990 \text { MEAN: } 30.5
$$

$$
\begin{aligned}
& \text { PLASMA INOUO } \\
& \text { NUT REPUKIEO } \\
& \text { NUT OEPAETED }
\end{aligned}
$$

USURECT CURHENT
UIUECTIVELY COUPLEU
INUUCTIVLI
DUSURPTION
ABSURPTION, OIRECT

IGNOHED ignoted IGNOHEO NOT K

$$
\begin{aligned}
& \text { INDUC } \\
& \text { POKTEE } \\
& \text { POKTEU }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ON } \\
& \text { ED }
\end{aligned}
$$

LED

$$
\begin{aligned}
& \text { ABSOKPTION, OIRECT } \\
& \text { ABSORPIION, OIRECT } \\
& \text { INOUCTIVELY COUPLED }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ABSURPIIONG OIRECT } \\
& \text { INOUCTIVELY COUPLED } \\
& \text { PURIEU }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PURIEU } \\
& \text { INDUCTIVELY COUPLED } \\
& \text { POKIEU }
\end{aligned}
$$

$$
95 \times \text { CUNFIOENCE INTKVL. OF MEAN }
$$

UPLED

$$
30.5+O R=
$$

$$
21.7
$$

$$
\begin{aligned}
& \text { BWSV7d } \\
& \text { JIWOIV } \\
& \text { JInOIV }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OGHONOI } \\
& \text { OЭHONSI }
\end{aligned}
$$

$$
\begin{aligned}
& \text { code }
\end{aligned}
$$

70
$\begin{array}{r}0 \\ 510 \\ 150\end{array}$
$\begin{array}{r}150 \\ 50\end{array}$
$\begin{aligned} & 50 \\ & 70\end{aligned}$

TABLE 7.--STANOARD REFERENCE SAMPLE T-87 REPORT FOR BE

METHODS		
IGNORED	Alumic	ABSORPTION, FLAMELESS
IGNORED	PLASMA,	INDUCTIVELY COUPLED
IGNURED	PLASMA,	INDUCTIVELY COUPLED
	ATOMIC	ABSORPTION, FLAMELESS
REJECt	Alomic	ABSORPTION, DIRECT
	ATOMIC	ABSDRPTION, DIRECT
	ATUMIC	ABSORPTION, DIRECT
	ATOMIC	AUSORPTION, DIRECT
	ATOMIC	ABSORPTION, DIRECT
IGNORED	NOT REPO	ORTED
	plasma,	inductively coupled
	atomic	ABSORPTION, DIRECT
	ATOMIC	AGSURPTION, FLAMELESS
	ATOMIC	ABSORPTION, FLAMELESS
	NOT REPOR	ORTED
	atomic	ABSORPIION, DIRECT
	ATOMIC	ABSORPTION, FLAMELESS
	NOT REPO	ORTED
	ATOMIC	ABSORPTION, DIRECT
	ATOMIC	ABSORPTIDN, DIRECT
	AIOMIC	ABSORPTION, FLAMELESS
	NOT REPO	ORTED
	ATOMIC	ABSORPTION, CHELATION
	Plasma,	INDUCTIVELY COUPLED
	ATOMIC	ABSURPTION, FLAMELESS
	ATOMIC	A SSORPTION, DIRECT
	ATOMIC	ABSORPTION, DIRECT
	atomic	ABSORPTION, DIRECT
IGNORED	atumic	ABSORPTION, DIRECT
	atomic	ABSORPTION, DIRECT
	atomic	ABSURPTION, FLAMELESS
IGNORED	Plasma.	inductively coupled
	ATOMIC	ABSURPTION, DIRECT
	Plasma,	INUUCTIVELY COUPLEU
	NOT REPO	ORTED
	Atomic	AGSURPTION, DIAECT
	atomic	ABSURPTION, FLAMELESS
	atomic	ABSURPTION, DIRECT
	atumic	ABSURPTION, FLAMELESS
	ATOMIC	ABSORPTION, FLAMELESS
	andoulc	SIKIPPING VULTAMMETRY

[^3]TOTAL RANGE
LE T-81 REPORT FUR FE
NHETHOOS
PLASMA, INOUCIIVELY COUPLED

ABSURPTION: OIRECI
ABSURPTION, UIRECT
ABSURPTION, UIRECT
PORIED
AIOMIC ABSORP
COLORIMETRIC
NUT KEPURTED
PLASMA, INOUCTIVELY COUPLED
AIOMIC ABSORPTION, DIRECT
COLOKIMETRIC
NUI FEPORTED
AIOMIC ABSORPTION, DIRECT
AIOMIC ABSORPTION, DIRECT
AIOMIC ABSURPTION, DIKECT
AIUMIC ABSURP
NOT KEPURTEO
IUMIC AESURF
ATOMIC AESURVTION, DIRECT
PLASMA, INDUCTIVELY COUPLED
PLASMA, INUUCTIVELY COUPLEO
NOT KEPONIEO
AIOMIC ABSORPTION, FLANELESS

ABSUKPIIION, DIRECT
ABSOKPIIIN, DIRECT
INDUCTIIELY COUPLED
INDUCIIVELY COUPLEO
AESUKPTION, DIRECT
INDUCTIVELY COUPLED
EIRIC
INIC
ABSOCTIVELY COUPLEU
ABSURPIION, DIRECT
ABSUKPTION, DIRECT
INDUCTIVELY COUPLED
IRIC
INOUCTIVELY COUPLEU
ABSORPIION, DIRECT
ABSURPTION, FLAMELESS
ABSUKPTION, DIRECT
INDUCTIVELY COUPLED
IRIC
INOUCTIVELY COUPLEU
ABSORPIION, DIRECT
ABSURPTION, FLAMELESS
CIELESS
28.8
JINOIV
JIWOIV
-ywsyld
A IGMIC
NOT KEP

IGNORED
REJECI
AESORFIION, OIRECT
INUUCIIVELY COUPLED
PLASMA, INUUCTIVELY COUPLEO
NVIW
28.8
SAMPLE $\mathrm{T}-\mathrm{Bl}$
LASNA
LASMA
IUMIC
AIUMIC ABSURPTION, DIKECT
NOT KEPURIED
A
A
PLA

Al
colutime

alomic
alomic
MEAN:
$\xrightarrow[\text { IWTKVL. }]{28.8}$
HEPUKTED
VALUE
PCT DEV
FKOM MEAN

400
10
30.0
TABLE 7.-- STANDARD REFERENCE SAMPLE T-87 REPORT FOR HG

$\underset{0}{\circ}$
$\square$$+$

TABLE 7.-- STANDARO REFERENCE SAMFLE 1-87 KEPORT FOR NI
 $\stackrel{+}{\circ}$

$z \cong$	0	zNo	$z=m$	$\underset{\sim}{\sim}$	zmio	ZMNM	z
$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { son } \\ & \text { o } \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \text { w m = } \\ & 0 \\ & o m n \\ & o m \\ & \infty \end{aligned}$	$\begin{aligned} & n \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \pi 0=0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} \cdots & 0 & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ \infty & \end{array}$	¢ 0 0 0
$\begin{aligned} & z \infty \\ & \ll 0 \\ & \sum \underset{i}{4} 0 \end{aligned}$	0 -0 -0 $=0$	$\sum_{\sum}^{2} \underbrace{0}_{i}$	$\begin{aligned} & z \infty 0 \\ & \sum_{i}^{\infty} \cdots i \end{aligned}$	$\dot{0}$			$\underset{\sum}{2}$

TABLE 8.--STATISTICS BY METHOD FOR SAMPLE: T-87

DETERMINATION: ACIDOCACOS

METHOD

**** OVER ALL * * * * *
determination: ag
METHUD ABSORPTION, OIRECT
****** OVER ALL ******

DETERMINATION: AL

METHOU
ATOMIC ABSORPTION, UIRECT
PLASMA, INOUCTIVELY COUPLEO
****** OVER ALL ******
DETERMINATION: AS
ATOMIC ABSORPTION, DIRECT 3OI HOAH NOIIdAOSAV JIWOIV ****** OVER ALL ******

UETERMINATION: BA
METHUD
ATOHIC ABSORPTIDN, DIRECT
PLASMA, INDUCTIVELY COUPLEO
****** OVER ALL ******
determination: be
METHOD

DETERMINAIION: CD

oEtERMINATION: CO

200

$\stackrel{\infty}{\infty}$

> METHOD AUSURPTION, DIRECT ATOMIC ABSSORPTION, FLAMELESS ATOMIC AUSORP PLASNA, INDUCTIVELY COUPLED ***** OVER ALL $* * * * *$
determinations cr tot
 ****** OVER ALL ******

DETERMINATION: CU
ATOMIC ABSORPTION, DIRECT
ATOMIC ABSURPTION, FLAMELESS plasma, inuuctively coupled ****** OVER ALL ******

UETERMINATION: FE

[^4] ****** DVEK ALL *****

2Mn	2∞	~	20 mv	\pm	20のコ	2onn
		$\stackrel{\bullet}{n}$		\dot{m}		
	$\begin{aligned} & 2 \pi \\ & \sum_{i} n_{0}^{0} \end{aligned}$	$\begin{aligned} & n \\ & \vdots \\ & 0 \end{aligned}$		$\stackrel{\square}{\text { m }}$		

dETERMINAIION: HG
 ATOMIC AESSRPTION,

UETERMINATION: LI

method

AIUMIC ABSURPTION. DIRECT
****** OVER ALL ******
OETERMINATION: MN
ifethod
ATOMIC ABSURPTION, DIRECT
ATOMIC ABSORPTION, FLAMELESS
PLASMA, INUUCIIVELY CUUPLED
****** UVER ALL ******
JETERMINATION: MU
METHOD
ATOMIC ABSURPTION, DIRECT
PLASMA, INUUCIIVELY COUPLEU
****** UVER ALL ******
UETERMINAIION: NI
METHUD ABSORPIION, ATOMIC AHSURPIION, FLAMELESS PLASMA, INUUCTIVELY COUPLED

20ヶう	2 mm	2 mu	～～～	z	200
	$\begin{aligned} & \vec{~} 00 \\ & 000 \\ & 0_{\infty} \end{aligned}$			$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { a } \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \vec{u}=\infty \\ & 0 \\ & 0 \\ & \stackrel{\circ}{\sigma}=0 \end{aligned}$
	$\begin{aligned} & 200 \\ & \frac{2}{2} 00 \\ & \frac{w}{2} \end{aligned}$			$\underset{\text { 2 }}{\substack{\mathbf{U}}}$	

table 8．－－sTatistics by method for sample：t－87

DETERMINATION：PH

號云
르르웅 ＊＊＊＊＊＊OVER ALL＊＊＊＊＊＊

UETERMINATION：SB

UETERMINATION：SE ATOMIC ABSORPTION，HYDRIDE
$* * * * *$ OVER ALL＊＊＊＊＊＊
determination：sR
ATOMIC ABSORPTION，DIRECT PLASMA，INDUCTIVELY COUPLED ＊＊＊＊＊＊OVER ALL＊＊＊＊＊＊

DETERMINATION：TL

 UETERMINATION：$Z N$MTOMIC ABSORPTION，DIRECT
methoo
＊＊＊＊＊＊＊＊＊＊＊INSUFFICIENT DATA＊＊＊＊＊＊＊＊＊＊＊ PLASMA，INDUCTIVELY COUPLEO ＊＊＊＊＊＊OVER ALL＊＊＊＊＊＊

95 MEAN: $\begin{gathered}0.248 \\ \text { M CUNFIDENCE INTHVL OF MEAN }\end{gathered}$

NOIIVAIII
NOD3H IN

3.40

$0.248+0 R$
$\begin{array}{ll}\text { TOTAL RANGE } & 0.00 \\ \text { STANUARU DEVIATION } & 0.283\end{array}$
$\begin{array}{lc}\text { CUDE } & \begin{array}{c}\text { REPORTED } \\ \text { VALUE }\end{array} \\ 001 & \\ 002 & 0.08 \\ 003 & 0.10 \\ 004 & 0.10 \\ 006 & 0.30 \\ 007 & 0.08 \\ 0018 & 3.40 \\ 000 & 0.45 \\ 010 & 0.79 \\ 011 & 0.10 \\ 012 & 0.85 \\ 013 & 0.26 \\ 014 & 0.00 \\ 015 & 5.00 \\ 017 & 0.11 \\ 018 & 0.01 \\ 019 & 0.00 \\ 020 & 2.20 \\ 022 & 0.09\end{array}$
CODE

001
002
003
004
006
007
008
010
011
012
013
014
015
017
018
019
020
022
REJECT

EMISSION, FLAME
AIUMIC AUSURPTIUN, DIRECT
1כ3AIO 'NOIIdYOSAV JIWNIV
AMISSION, FLAME
PLASMA, INGUC

$$
\begin{aligned}
& \text { OIIdHOS日V JIWOIV } \\
& \text { 3WV7J ANOISSIWY }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EMISSIUN, FLAME } \\
& \text { AIOMIC ABSORPIION, DIRECI }
\end{aligned}
$$

REPORIED
VALUE

NUT REPUNTED
TUMIC ABSORPTION, DINECY
ATOMIC ABSURPIION, DIHECI
GHOKED

IGNURED
ignoreo
MEAN:
table 9.-- standaru keference sample r-s

TABLE 9.-- STANDARU KEFERENCE SAMPLE P-S KEPOKT FOR NH3-N

037 dnn 5

MEAN
E.

methuos
 1.98
table 9.--Stamoakd reference sample p-s

ME THUDS ELECIRUMEIKIC ELECTKOMETHIC NUT REPORTEU ELECIROMETHIC ELECTKUAETRIC ELECINUMETKIC ELECTKUMETRIC NUT HEPORTED ELECTROMETKIC WOT KEPOHIEU ELECTRUMEIRIC ELECTROMEIRIC ELECTRUMETKIC ELECTHUMETRIC ELECTHOMEIRIC ELECTRUMETRIC NUT REPUKTEO ELECTRONEIRIC ELECIROMEIRIC

METHUDS

H313w

mean	8TD DEV	N
0.272	0.025	8
0.275	0.028	13
MEAN	Sto dev	N
0.087	$0.01\}$	3
0.342	0.333	5
0.248	0.283	13
MEAN	STD DEV	N
0.188	0.253	5
0.221	0.274	7
MEAN	STO DEV	N
0.052	0.038	5
0.015	0.024	4
0.040	0.034	11
MEAN	STD DEV	N
0.021	0.004	8
0.027	0.012	12
MEAN	Sto dev	N
0.161	0.085	7
0.147	0.112	4
0.159	0.080	14

determinalion: ca
을

determinatiun: cl
METHOU
ION CHRIINAIUGRAPHY
IITRAIION
***** OVEH ALL ****
determination: f
method
IUN SPECIFIC ELECTRODE
$* * * * *$ OVER ALL

UETERMINAIION: K
METHOD
AIOMIC AUSURPIIION, OIRECT
EMISSION, FLARIE
$* * * * *$ OVER ALI ****** OVER ALL
determinalion: mg
METHOD AHSORPIION, DIRECT ****** OVEK ALL ******
determination: na
ATUMIC ABSOKPIION, DIRECT EMISSION, FLAME ****** OVER ALL ******

2 mm	z 0	2 m	-	2mmo	$\underline{\sim}$
$\begin{aligned} & \text { u. } 08 \\ & 0.8 \\ & 0.0 \\ & 0_{0} 0 \end{aligned}$			$\begin{aligned} & \text { n } \\ & \text { M } \\ & ! \end{aligned}$		
$\begin{array}{r} 200 \\ \frac{\omega}{2}=0 \\ \frac{0}{2} 0 \\ 00 \end{array}$			N		

DETEHMINAIION: NH3-N

 METHODCOLORIME

COLORIMETKIC
$* * * *$ OVER ALL ******
OETERHINATION: NOS-N

determination: PH
EThuo
ELECTROMETRIC
****** OVER ALL ******
determination: soa
ION CHRUMATOGRAPHY
IUN CHRUMA TOGRAPHY
PLASMA, INDUCTIVELY CUUPLED
$* * * * *$ OVER ALL $\# * * * * *$ ****** OVER ALL ******

OETERMINATION: SP. COND.

[^5]****** OVEH ALL ******

Table 11.-Comparison of domestic and international laboratory analyses obtained on
Standard Reference Water Sample M-86 (Major) Standard Reference Water Sample M-86 (Major)

Constituent	Mean Concentration (mg/L)		Standard Deviation		Based on Analysis by Laboratories	
	Domestic	Int'!	Domestic	Int'l	Domestic	Int!
Alk (CaCO_{3})	151	152	5.4	8.5	69	38
B	. 240	. 224	. 075	. 052	27	14
Br	. 291	. 544	. 298	. 285	11	5
Ca	70.6	70.5	6.8	4.0	70	44
Cl	44.8	44.4	1.7	3.1	69	43
DSRD $180^{\circ} \mathrm{C}$	581	586	17	33	59	24
F	2.0	1.9	. 21	. 24	62	25
K	4.72	4.59	. 59	. 37	66	44
Mg	28.0	27.6	1.5	1.8	66	43
Na	77.0	77.0	3.3	3.8	69	44
$\mathrm{NO}_{2}-\mathrm{N}$. 01	. 04	. 004	. 053	42	24
NO_{3}^{2-N}	3.98	3.86	. 39	. 38	68	34
P, Total	. 50	. 48	. 066	. 070	59	34
pH , units	8.13	7.86	. 20	. 18	84	46
SiO_{2}	12.6	11.9	2.37	4.00	52	39
SO_{4}	222	220	12.7	15.9	68	45
Sp. ${ }^{4}$ Cond.	859	860	48	53	71	42
Sr	753	765	97	98	20	16
V	18.1	10.8	12.1	1.1	19	9

Table 12.-Comparison of domestic and international laboratory analyses obtained on Standard Reference Water Sample T-87 (Trace)

Constituent	Mean Concentration ($\mu \mathrm{g} / \mathrm{L}$)		Standard Deviation		Based on Analysis by Laboratories	
	Domestic	Int'1	Domestic	Inty	Domestic	Int! 1
Acid (CaCO ${ }_{3}$)	404	395	17	16	15	16
Ag ${ }^{\text {a }}$	2.5	1.9	3.1	1.8	14	10
AI	78.8	30.5	114	34.1	12	12
As	4.7	2.0	4.6	. 5	37	10
Ba	80.3	65.8	51.3	17.5	35	13
Be	0.5	1.0	0.16	0	4	2
Cd	. 96	. 4	1.1	. 8	25	18
Co	5.0	5.4	5.1	5.0	7	13
Cr Tot	6.5	2.9	6.8	2.5	31	16
Cu	8.9	7.6	4.7	5.6	45	34
Fe	21.7	28.8	20.3	30.0	30	20
Hg	. 28	. 51	. 12	. 65	27	7
Li	25.8	16.5	7.6	5.6	19	12
Mn	5.4	3.7	5.4	3.1	24	18
Mo	7.5	11.6	1.4	9.8	11	11
Ni	8.9	8.5	8.3	8.3	24	24
Pb	4.3	6.9	3.9	8.9	28	14
Se	3.7	1.2	3.5	. 8	29	5
Sr	753	743	120	108	23	21
Zn	11.5	9.4	6.1	4.9	44	29

Table 13.-Comparison of domestic and international laboratory analyses obtained on Standard Reference Water Sample P-5 (Precipitation-snowmelt)

Constituent	Mean Concentration (mg/L)		Standard Deviation		Based on Analysis by Laboratories	
	Domestic	Int']	Domestic	Int'1	Domestic	Int!
Ca	0.290	0.275	0.079	0.028	44	13
Cl	. 324	. 248	. 324	. 283	31	13
F	. 027	. 221	. 025	. 274	23	7
K	. 053	. 040	. 051	. 034	35	11
Mg	. 032	. 027	. 034	. 012	37	12
Na	. 145	. 159	. 060	. 080	41	14
$\mathrm{NH}_{3}-\mathrm{N}$. 022	. 010	. 023	. 0	28	3
$\mathrm{NO}_{3}-\mathrm{N}$. 084	. 110	. 017	. 092	42	8
pH units	5.83	5.87	. 63	. 35	50	18
SO_{4}	. 556	. 406	. 430	. 099	27	9
Sp. ${ }^{4}$ Cond. $\mu \mathrm{S} / \mathrm{cm}$	- 4.28	4.50	1.40	1.80	45	17

[^0]: 065 Tofal rainge
 tainuaro de

[^1]: METHUD
 COLORIMEINIC
 OHAVIMETMIC
 IUN CHRURAIUGKAFIIY
 TITRATIUN
 TURAIDIMEIMIC

[^2]: \& 1 TOIAL RAINIE
 STANIIARO NEVIATION

[^3]:

[^4]: ATOMIC ABSURPTION, DIRECT PLASMA, iNOIJCTIVELY COUPLED

[^5]: UIRECT REAUING INSTRUMENT

