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Executive Summary 
The National Renewable Energy Laboratory (NREL) conducted a cost analysis for emission 
control technologies under contract to the California Air Resources Board (CARB). CARB 
sought incremental cost analysis for emission control technologies for on-road heavy-duty (HD) 
engines used in vehicles greater than 14,000 pounds (lb) gross vehicle weight rating (GVWR) to 
achieve oxides of nitrogen (NOx) emissions rates significantly lower than those required by 
current emissions standards (CARB 2017). This low-NOx emission technology cost analysis 
comprised two main tasks:  

• Task 1: An incremental cost analysis for engine and exhaust aftertreatment systems 
• Task 2: An engine and exhaust aftertreatment life-cycle cost analysis incorporating 

incremental upfront costs and operating costs. 
The incremental cost analysis included a review of current and under-development engine and 
exhaust aftertreatment technologies that could achieve 0.02 grams per brake horsepower-hour 
(g/bhp-hr) NOx on certification test cycles, including a proposed updated certification test cycle 
that includes additional low-load operating conditions. Diesel, natural gas, and gasoline HD 
engine applications were studied. Three diesel technology package combinations of engine and 
exhaust aftertreatment options were selected based on research in progress at Southwest 
Research Institute (SwRI), also funded by CARB. The three diesel technology packages were 
intended to bracket potential cost ranges across two engine displacement levels: ~6–7 liters (L) 
and ~12–13 L. Representative technology packages for HD natural gas (12 L) and gasoline (6 L) 
engines were also defined, each with a single displacement level providing a tie point to similar 
diesel options. 

Diesel engines were the primary consideration, as they comprise the majority of HD engines. In 
addition to studying three diesel technology packages across two engine displacement levels, 
incremental cost bracketing also included model year (MY) 2023 versus 2027 introduction, U.S. 
versus California-only implementation, and current full useful life (FUL) versus extended FUL 
and warranty. Direct and indirect incremental costs were broken down to as discrete a level as 
possible while maintaining data confidentiality. The calculation of incremental costs was limited 
by a small number of respondents.  

The surveyed original equipment manufacturers (OEMs), Tier 1 suppliers, and trade 
organizations such as the Manufacturers of Emission Controls Association (MECA) responded 
with incremental cost, not validation that 0.02 g/bhp-hr emissions levels or specific technology 
packages are feasible. Engine OEM participation was crucial, as only they could provide 
estimates for indirect costs that represented a significant portion of the total cost. Incremental 
costs are largely driven by indirect costs associated with engineering research and development 
costs and warranty costs. The indirect costs are highly dependent on production volumes over 
which to amortize research and development costs. Indirect costs due to warranty are high, 
reflecting high uncertainty with new technology and the introduction timeframes. The 
incremental costs were not adjusted to reflect a retail markup due to the complexity with which 
pricing decisions are made.  

The average incremental cost for the 6–7-L diesel engines for MY 2023 with current FUL ranged 
from $3,685 to $5,344, but the absolute low and high bounds were between ~$2,000 and over 
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$9,000. Extending FUL and warranty moved the average incremental costs to a range of $15,370 
to $16,245, with tighter low and high bounds (constrained in part by the limited number of 
responses). The average incremental cost for the 12–13-L diesel engines for MY 2023 with 
current FUL ranged from $5,340 to $6,063, but the absolute low and high bounds were between 
~$3,000 and over $10,000. Extending FUL and warranty moved the average incremental costs to 
a range of $28,868 to $47,042, with much wider low and high bounds (driven in part by the 
limited number of responses). The natural gas 12-L engine application was unable to be studied 
in detail, but OEM feedback indicated the anticipated incremental cost for natural gas engines 
and aftertreatment technology is within 10% of the low-cost diesel technology package 
incremental cost for equivalent displacement, possibly due to requiring a moving average 
window method to assess emission compliance. The gasoline engine 6-L application was also 
unable to be studied in detail due to lack of OEM feedback, but comparatively low incremental 
costs were estimated. 

A life-cycle cost analysis was completed to understand the full costs to the owner of the vehicles 
with a 0.02 g/bhp-hr NOx technology package outside of the direct upfront vehicle cost increase. 
The life-cycle cost analysis sought to incorporate costs associated with the following elements: 
initial incremental purchase cost, fuel consumption changes (changes in fuel economy), diesel 
exhaust fluid (DEF) consumption changes, and the maximum FUL of the aftertreatment package 
(major overhaul intervals). Thus, the life-cycle costs depend on the vehicle type (mileage), 
region, fuel, engine displacement, maximum useful life, fuel economy change, DEF consumption 
change, and discount rate.  

Three scenarios were defined to evaluate the bounds of the life-cycle costs across all parameters 
evaluated. For the three scenarios evaluated (Low-Cost, Mid-Cost, High-Cost), the life-cycle 
costs were evaluated for each EMission FACtor (EMFAC) model vehicle type (CARB 2018b), 
aggregated to a representative average and calculated across the vehicle fleet for the MY 2027 
vehicles. The analysis showed that EMFAC vehicles can have significantly different life-cycle 
costs and that the spread depends on the scenario evaluated: approximately a $4,000 spread 
across vehicle types in the Low-Cost scenario, while the High-Cost scenario had nearly a 
$40,000 difference. This large spread was found to be due to the number of aftertreatment 
package replacements needed throughout the vehicle lifetime. The aggregated, representative 
average life-cycle costs for the Mid-Cost scenario were estimated to be $12,700 for the 6-L 
diesel engine, $13,200 for the 12-L diesel engine, $4,800 for the 12-L natural gas engine, and 
$800 for the 6-L gasoline engine. The total life-cycle costs to California vehicle owners for the 
MY 2027 vehicles were estimated to range between $92 million and $1.2 billion, depending on 
the scenario (Low-Cost or High-Cost) realized.  

The sensitivity analysis indicated that the manufacturing volume may be the most important 
parameter impacting the life-cycle cost; however, limited data were received from the external 
stakeholders surveyed. The next most important parameter was the assumption of extended FUL 
and extended warranty, as the increase in aftertreatment lifetime may not exceed the vehicle’s 
travel requirement, which results in larger replacement costs over the vehicle’s life. However, 
one may expect that the higher upfront purchase incurred by the vehicle owner should effectively 
be offset by the repair savings over the lifetime of the vehicle. Next, the aftertreatment cost 
bound (low/high error bars on the incremental cost data), fuel economy improvement, and 
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discount rate were found to have a moderate impact on the life-cycle cost. Lastly, the region and 
DEF consumption change were found to have minimal influence on the life-cycle cost. 

The results of this cost analysis reflect the specific technology and aftertreatment FUL 
assumptions on which the study was based. In particular, the incremental cost of moving from a 
0.2g/bhp-hr to 0.02 g/bhp-hr standard is expected to be non-linear due to diminishing returns on 
technology performance. Extrapolating the results beyond this specific study and outside of these 
specific assumptions is not recommended and should only be done with careful attention to the 
scope and limits of this study. 
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Abstract 
The National Renewable Energy Laboratory (NREL) conducted a cost analysis for emission 
control technologies under contract to the California Air Resources Board (CARB). CARB 
sought incremental cost analysis for emission control technologies for on-road heavy-duty (HD) 
engines used in vehicles greater than 14,000 pounds (lb) gross vehicle weight rating (GVWR) to 
achieve oxides of nitrogen (NOx) emissions rates significantly lower than those required by 
current emissions standards. Specifically, incremental costs (without any retail price markup) 
were estimated for representative diesel, natural gas, and gasoline engine and emission 
aftertreatment systems that were selected to represent potential technology packages that could 
achieve 0.02 grams per brake horsepower-hour (g/bhp-hr) NOx on certification test cycles, 
including a proposed updated certification test cycle that includes additional low-load operating 
conditions. NREL surveyed stakeholders including industry association groups, Tier 1 suppliers, 
and engine original equipment manufacturers (OEMs) to estimate incremental direct and indirect 
costs. Incremental costs were considered for current engine full useful life (FUL) definitions, as 
well as with proposed increased FUL and warranty periods. The incremental costs were 
subsequently incorporated in life-cycle cost analyses examining the incremental engine and 
aftertreatment costs along with life-cycle costs over the various engine FUL scenarios. Life-cycle 
costs analysis included the incremental upfront cost, fuel consumption changes (changes in fuel 
economy), diesel exhaust fluid (DEF) consumption changes, and the maximum FUL of the 
aftertreatment package (major overhaul intervals). 
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Project Background and Objective 
Current emission standards for heavy-duty diesel engines, established by the United States 
Environmental Protection Agency (EPA) for 2010, specify a limit of 0.20 grams per brake 
horsepower-hour (g/bhp-hr) NOx. This standard represents a 90% reduction from the previous 
benchmark of 2.0 g/bhp-hr and applies to both heavy-duty diesel engines and heavy-duty Otto-
cycle engines used in vehicles greater than 14,000-lb GVWR. 

Diesel-engine manufacturers utilize a variety of technologies in order to meet these standards, 
primarily among them being selective catalytic reduction (SCR). Natural-gas engine 
manufacturers use SCR for lean-burn engines and three-way catalysts (TWCs) for stoichiometric 
engines. Both of these methods reduce NOx emissions by removing them from the engine-out 
exhaust prior to exiting the tailpipe. These manufacturers have used lessons learned from other 
applications such as stationary-source and light-duty vehicles to meet current NOx emission 
requirements, and as these technologies mature there are opportunities to reduce emissions even 
further. 

The California Air Resources Board (CARB), together with the Southwest Research Institute 
(SwRI), is currently funding several research programs to investigate the feasibility of achieving 
NOx emissions less than the 2010 limit of 0.20 g/bhp-hr. The first (“Stage 1”) project is a $1.6 
million research contract between CARB and SwRI to evaluate improved engine emission 
control calibration, enhanced aftertreatment technologies and configurations, improved 
aftertreatment thermal management, urea dosing strategies, and engine management practices for 
two heavy-duty engines: one natural-gas engine with a TWC and one diesel engine with a diesel 
particulate filter (DPF) and SCR. The target emission rate for this project, which was finalized in 
December 2016, is 0.02 g/bhp-hr NOx. 

CARB is also contracting a $1.05 million “Stage 2” project with SwRI to further optimize the 
diesel engine aftertreatment system for low engine-load duty cycles typical of city driving. Stage 
2 objectives are to develop a supplemental low-load certification test cycle that will, along with 
the Federal Test Procedure (FTP), ensure NOx control under nearly all driving conditions and 
evaluate metrics for in-use testing under low-load operations. The “Stage 3” project, currently in 
the planning stage, will complement the Stage 1 and Stage 2 efforts with testing on an additional 
engine that is representative of likely future engine configurations. 

Alongside current emission standards, CARB and EPA both require that heavy-duty engines 
meet these standards throughout their entire useful life. The useful life period is defined 
according to a vehicle’s GVWR, and for heavy-duty engines ranges from 110,000–435,000 
miles. The useful life period for Otto-cycle and light heavy-duty diesel engines (14,001–19,500-
lb GVWR) is 110,000 miles/10 years; for medium heavy-duty diesel engines (19,501–33,000-lb 
GVWR) 185,000 miles/10 years; and for heavy heavy-duty diesel engines (greater than 33,000-
lb GVWR) 435,000 miles/10 years, or 22,000 hours. 

Well-maintained on-road diesel engines can operate significantly beyond their currently defined 
useful life periods (e.g., many heavy-duty diesel engines currently operate upwards of 800,000 
miles to over a million miles), and CARB is taking this reality into consideration as it evaluates 
the consequences of lowering its NOx emission targets. Engine durability becomes a critical 
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factor with longer useful life definitions, particularly in preventing “upstream” engine 
component failures that can damage “downstream” emission control system components and 
cause excess emissions of criteria pollutants such as particulate matter (PM) and NOx. Therefore, 
manufacturers will need to improve the durability of their engines and emission control systems 
by developing higher-quality parts and assembly methods and replacement of components and/or 
subsystems. 

CARB is expected to propose new standards to be implemented by 2024, which will set even 
lower NOx emission standards and add new certification test cycles to ensure emission control at 
low-load operations. Adding this new test cycle to the certification requirement is expected to 
drive further improvements to aftertreatment hardware and engine control and calibration. 

With these new emission standards of approximately 0.02 g/bhp-hr NOx in mind, it is important 
to examine the direct and indirect costs of implementing new technologies, both the incremental 
costs to original equipment manufacturers and the costs of using the technology packages 
throughout the engines’ useful life. These costs can be divided by category, including the 
specific technologies for achieving the NOx standard, the costs to increase durability (extended 
useful life), and the costs of the on-board diagnostics (OBD) hardware and calibration works 
impacted by the changes. This cost analysis will use specific emission control and engine 
technologies identified by SwRI in Stages 1 and 2, along with testing that is representative of 
likely future engine configurations. 
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Project Summary 
This project was defined by two tasks—Task 1: Engine Incremental Cost Analysis and Task 2: 
Engine Life-Cycle Costs. For Task 1, NREL reviewed current technologies and technology 
packages that are being examined as part of the SwRI projects, Stages 2 and 3, as provided by 
CARB. NREL identified and reviewed likely emission control and engine technologies to meet 
0.02 g/bhp-hr NOx requirements with CARB staff based on Stage 2 and 3 efforts from SwRI 
testing of potential future engine configurations. These technologies were then defined as the 
potential technologies and the starting point of developing a low-NOx technology incremental 
cost analysis from 2018 baseline costs.  

NREL then evaluated these potential technologies and technology packages for engine plus 
aftertreatment incremental cost analysis via a series of surveys sent to Tier 1 suppliers, trade 
organizations, and engine OEMs. The surveys defined the potential technologies broken into 
engine components, emission control components, subsystems, and indirect costs. The 
combination of incremental costs (over the 2018 baseline) associated with developing and 
integrating the specified lower NOx emission control technologies into the engines, the costs of 
increasing the durability of these engines and their emission control systems, and the costs of 
directly impacted OBD hardware and calibration works of these specified technology packages 
were then examined to understand the total incremental cost implications to Tier 1 suppliers and 
engine OEMs of the potential technologies. 

The evaluation of costs was dependent on cooperation from Tier 1 suppliers, trade organizations 
and engine OEMs, as well as the availability of direct and indirect cost information for engine 
and emission control technologies. NREL utilized existing relationships with industry partners in 
order to perform a thorough cost assessment but could not guarantee full cooperation or sharing 
of confidential cost information from Tier 1 suppliers, trade organizations, and engine OEMs. 

After accounting for the initial incremental cost implications to Tier 1 suppliers (both 
collectively through the Manufacturers of Emission Controls Association [MECA] and 
individually) and engine OEMs, NREL conducted a life-cycle cost analysis as Task 2 to examine 
the costs of using the specified technology packages during the engines’ certification full useful 
life (FUL). NREL utilized a range of FUL values for each heavy-duty vehicle category, Classes 
4 through 8. The current FUL mileage—for heavy-duty engines of 110,000 miles up to 435,000 
miles, depending on a vehicle's GVWR; 110,000 miles/10 years for heavy-duty Otto-cycle 
(HDO) and light heavy-duty diesel (LHDD) engines (14,001–19,500-lb GVWR); 185,000 
miles/10 years for medium heavy-duty diesel (MHDD) engines (19,501–33,000-lb GVWR); and 
435,000 miles/10 years or 22,000 hours for heavy heavy-duty diesel (HHDD) engines (greater 
than 33,000-lb GVWR)—was defined as the low-end value of the range for each specific vehicle 
class. For the high-end value of the range, NREL utilized input from CARB for proposed 
extended FUL targets as the upper-bound levels for each specific vehicle class: 250,000 miles/15 
years for HDO engines (14,001–19,500-lb GVWR), 550,000 miles/15 years for LHDD engines 
(14,001–19,500-lb GVWR) and MHDD engines (14,001–19,500-lb GVWR), and 1,000,000 
miles/15 years for HHDD engines (greater than 33,000-lb GVWR). Additionally, per CARB’s 
guidance, the high-end value with extended FUL also includes the provision that warranty 
periods will increase to 80% of the extended FUL, both in mileage and time, except for heavy-
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duty Otto-cycle, which was specified as 220,000 miles/12 years. The current FUL defining the 
lower bound and the extended FUL defining the upper bound are summarized in Table 1.  

Table 1. Current and Proposed Extended Full Useful Life and Warranty for Engine Life-Cycle Cost 
Analysis 

 LHDD MHDD HHDD Natural 
Gas – Otto 

Heavy-Duty – 
Otto 

GVWR (lb) 14,001–19,500 19,501–33,000 >33,000 >33,000 14,000 

Current full 
useful life 

110,000 
miles/10 years 

185,000 
miles/10 years 

435,000 
miles/10 
years, 

22,000 
hours 

435,000 
miles/10 
years, 

22,000 
hours 

110,000 
miles/15 years 

Proposed 
extended 
full useful 
life 

550,000 
miles/15 years 

550,000 
miles/15 years 

1,000,000 
miles/15 

years 

1,000,000 
miles/15 

years 

250,000 
miles/15 years 

Proposed 
warranty 
period with 
extended 
full useful 
life 

440,000 
miles/12 years 

440,000 
miles/12 years 

800,000 
miles/12 

years 

800,000 
miles/12 

years 

220,000 
miles/12 years 

After accounting for the initial incremental costs of the technologies, as determined in Task 1, 
the life-cycle cost assessment of Task 2 then took into account the aftertreatment technologies' 
effects on fuel consumption, DEF consumption, major overhaul intervals (full useful life 
estimates), manufacturing volume, and financial discount rates. The life-cycle cost modeled for 
each vehicle is specific to the EMission FACtor (EMFAC) model’s vehicle definition of vehicle 
miles traveled, which depends on the specific region, vocation, model year, fuel type, and age. 

For the life-cycle cost analysis in Task 2, the aftertreatment full useful life mileage was used to 
set the equipment overhaul schedule. For all scenarios in the life-cycle cost analysis, the 
incremental cost associated with the aftertreatment package was assumed to be incurred after the 
truck mileage exceeded the stated maximum FUL. This assumption is expected to be 
conservative, as not all aftertreatment packages will fail immediately after they exceed their 
stated maximum FUL and statistical analysis of failure rates combined with data on 
aftertreatment technology operating and maintenance costs were not available. To understand the 
impact of this assumption on the life-cycle cost, a sensitivity analysis was completed assuming 
the aftertreatment package would not need to be replaced over the vehicle’s lifetime, as that 
provides the lower bound on the life-cycle cost.  
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1.  Task 1: Engine Incremental Cost Analysis 
1.1 Representative Engine Platform Approach 
The engine and aftertreatment incremental cost analysis began with a review of 54 model year 
(MY) 2018 medium- and heavy-duty engine family CARB certification summaries, covering 
Class 4–8 vehicle applications. The review provided background on the fuels used, range of 
engine displacements for each service class (i.e., LHDD, MHDD, HHDD, HDO), current 
technologies utilized, and certification levels versus Federal Test Procedure (FTP) and heavy-
duty Supplemental Emissions Test with Ramped Mode Cycles (SET-RMC) standards for NOx. 
Because the majority of Class 4–8 engines are diesel fueled, incremental costs for diesel engines 
was the primary focus of the study. Natural gas and gasoline were also studied, but liquified 
petroleum gas/propane was not. A limited number of engine platforms were initially selected to 
represent the Class 4–8 vehicle population, based on engine displacement. This down-selection 
was necessary to come up with a reasonable number of representative engine platforms to use for 
the incremental cost analysis that could subsequently be used in the Task 2 life-cycle cost 
analysis over large vehicle populations, while keeping manageable the burden of calculating 
incremental cost for surveys conducted with Tier 1 suppliers, trade organizations, and engine 
OEMs. The initial engine platforms included: 6-L LHDD, 9-L MHDD, 12-L HHDD, 15-L 
HHDD, 12-L natural gas, and 6-L HDO (gasoline). Initial reviews with industry provided 
feedback that this number of engine platforms was still too large, and the diesel engine platforms 
could be consolidated and referenced to approximate horsepower levels. As a result, the diesel 
engine platforms were reduced to ~6–7 L with ~300 horsepower (hp) and ~12–13 L with ~475 
hp. This reduction would still provide incremental costs with appropriate discrete levels. The in-
between calculation for a 9-L engine was agreed to not be worth the additional burden for 
industry survey responses. The elimination of the 15-L engine was agreed to be covered by 
increased power density from ~12–13-L engines with future trends. 

Current technologies were reviewed to benchmark the baseline for the 0.02 g/bhp-hr NOx 
incremental cost. The industry surveys were designed to collect direct and indirect cost 
information for engine and aftertreatment subsystems from a 2018 baseline, with a 0.20 g/bhp-hr 
standard, as well as multiple technology packages assumed to meet a potential future 0.02 g/bhp-
hr NOx standard under a proposed new low-load certification (LLC), in addition to FTP and 
SET-RMC. The incremental costs would form the basis of Task 1. While the surveys were 
designed to allow industry respondents to start with their own 2018 baseline and did not 
explicitly define a common set of identical technologies, the CARB certification review showed 
most diesel engines in the 6–7-L and 12–13-L ranges were common in having direct diesel 
injection, cooled exhaust gas recirculation (EGR), turbocharging, a diesel oxidation catalyst 
(DOC), a diesel particulate filter (DPF), and selective catalytic reduction (SCR) using DEF. The 
technology packages supporting 0.02 g/bhp-hr NOx selected for incremental cost study are 
described in more detail below.  

A single natural-gas engine platform was selected at 12 L to align with the ~12–13-L diesel 
platform. The CARB certification review showed a number of natural-gas engines (in various 
displacements, meeting MHDD and HHDD requirements) sharing the same technologies: 
stoichiometric Otto-cycle operation, spark ignition (SI), throttle body fuel injection, 
turbocharging, cooled EGR, and a three-way catalyst (TWC).  
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A single gasoline-fueled HDO platform was selected at 6 L to align with the ~6–7-L diesel 
platform. The CARB certification review showed HDO gasoline is approaching 0.02 g/bhp-hr 
NOx on the current certification cycles using stoichiometric, SI, naturally aspirated, EGR 
technologies with a TWC technology package.  

Utilizing the results and recommendations from Stage 2 and 3 efforts from SwRI testing of 
potential future diesel-engine configurations, NREL identified three diesel technology packages 
to evaluate the total incremental cost implications for an MY 2023 release nationwide. These 
identified diesel technology packages were intended to represent potential low-, average-, and 
high-cost options to meet a 0.02 g/bhp-hr NOx standard and were meant to provide a broader 
assessment of potential incremental costs than a single option. As previously referenced, no 
natural-gas technology package was surveyed for incremental costs related to 0.02 g/bhp-hr NOx, 
and the HDO gasoline technology package only included TWC and calibration upgrades. The 
resulting engine platforms defined for the incremental cost study are summarized in Table 2. 

Table 2. Engine Platform Analysis for Incremental Cost Analysis 

  LHDD HHDD Natural Gas – 
HHDD standard 

Gasoline – HDO 

Engines ~6–7 L 

~300 hp 

~12–13 L 

~475 hp 

12 L 6 L 

Current full 
useful life 

110,000 miles/10 
years 

435,000 miles/10 
years, 

22,000 hours 

435,000 miles/10 
years, 

22,000 hours 

110,000 miles/10 
years 

Low-Cost Tech. $$$ $$$ Not applicable Not applicable 

Avg.-Cost Tech. $$$ $$$ Not applicable $$$ 

High-Cost Tech. $$$ $$$ Not applicable Not applicable 

NREL then directly surveyed heavy-duty engine OEMs, Tier 1 suppliers, emission control 
technology manufacturers, and industry trade organizations to obtain the most accurate and 
current cost information for the identified likely technology packages to meet 0.02 g/bhp-hr NOx 
requirements and the cost implications for using these specific technologies. The cost survey 
included a definition of the potential technologies as engine components, emission control 
components, subsystems and strategies, and indirect costs broken into categories of research and 
development (R&D) costs, certification costs, and warranty costs. The combination of costs 
associated with developing and integrating the specified lower NOx emission control 
technologies into the engines, the costs of increasing the durability of these engines and their 
emission control systems, and the costs of impacted OBD hardware and calibration of these 
specified technology package were then examined to understand the total incremental cost 
implications to Tier 1 suppliers and engine OEMs of the potential technologies in two different 
surveys. Any incremental costs associated with future OBD requirements unrelated to meeting 
0.02 g/bhp-hr NOx were excluded from this study. Similarly, incremental costs related to future 
greenhouse gas (GHG) or fuel efficiency requirements and not specifically to meeting 0.02 
g/bhp-hr NOx were also excluded. 
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The first survey assumed that the 0.02 g/bhp-hr NOx regulation beginning MY 2023 included 
current FTP and SET-RMC steady-state test cycles, as well as a proposed new LLC for medium- 
and heavy-duty engine system certification. While not finalized and currently the topic of 
ongoing research, the new LLC engine cycle was assumed to last approximately 90 minutes, 
including a combination of motoring, sustained low load, and high-power transients. This first 
survey considered FUL hours/miles to remain the same as the current regulation. The survey was 
designed to allow industry respondents to start with their own 2018 baseline and did not 
explicitly define a common set of identical technologies. As a reference point, NREL provided 
internally generated estimates (from research, literature review, and engineering judgement) for 
the 2018 current technology costs (Posada, Chambliss, and Blumberg 2016; Posada Sanchez, 
Bandivadekar, and German 2012; Ou et al. 2019). Direct costs for both a 2018 baseline and 0.02 
g/bhp-hr technology packages were surveyed on discrete engine and aftertreatment subsystem 
levels, along with indirect costs. The level of discrete subsystems was kept as small as possible 
to provide insight for where the costs accumulate while also being kept large enough to prevent 
identification of proprietary or confidential cost information from an individual respondent. 
Furthermore, only incremental costs are reported in this report and preliminary reviews with 
CARB to prevent identifying proprietary or confidential 2018 baseline costs. The survey 
requested future costs be calculated in 2018 dollars. The first survey asked for production 
volumes to be identified and to provide guidance on cost impacts for 0.02 g/bhp-hr incremental 
costs if regulation were to include all of the United States or California only. 

The second survey was a follow-up survey sent to those Tier 1 suppliers, trade organization, and 
engine OEMs that responded to the first survey. The technology packages remained the same as 
the first survey, but instead assumed 0.02 g/bhp-hr NOx regulation beginning MY 2027 and 
again included current FTP and SET-RMC steady-state test cycles, as well as a new LLC. This 
second survey also considered extended useful life hours/miles as proposed by CARB in Table 1. 
The second survey asked for costing information to consider 0.02 g/bhp-hr regulation if only 
California were included, representing lower production volumes than a scenario where all of the 
U.S. were included. 

NREL then aggregated all of the data from the cost survey responses and the initial estimates 
derived by NREL from research, literature review, and engineering judgement. The incremental 
costs were not adjusted to reflect a retail markup due to the complexity with which pricing 
decisions are made. In responding to NREL’s surveys, trade organizations, Tier 1 suppliers, and 
OEMs did provide feedback that they did not agree or conclude that these technologies would be 
feasible for meeting the 0.02 g/bhp-hr NOx requirements by MY 2023. Their valuable input was 
strictly a costing exercise and not a technology feasibility assessment. The diesel incremental 
cost information resulted in a range of costs due to the format of the provided data from the 
responses received. This range consisted of a low, average, and high estimate for engine 
technology costs, aftertreatment technology costs, OBD-related direct costs, and indirect costs. 
The survey results for the diesel engine and aftertreatment technology packages were then 
defined as three total incremental costs of low, average, and high estimates based on the 
identified potential technology packages to achieve 0.02 g/bhp-hr NOx requirements.  

Fewer responses were received for the natural gas (HHDD standard) engine platform, preventing 
NREL from sufficiently aggregating incremental cost information to protect proprietary 
information. Therefore, NREL reported the total integrated incremental cost as an order of 
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magnitude in comparison to the diesel engine with similar displacement results; the subsystem-
level engine, aftertreatment, and OBD system direct costs as well as the indirect costs were not 
broken out or reported. 

Similarly, few responses were received for the gasoline HDO engine platform. Some aggregation 
was possible for direct costs, but only NREL estimates were available for indirect costs. As a 
result, only total integrated incremental costs are reported. 

1.2 Identifying Potential Diesel Technologies to Achieve 0.02 g/bhp-
hr NOx 

CARB is currently funding several research programs with SwRI to investigate the feasibility of 
achieving 0.02 g/bhp-hr NOx emissions with a diesel engine and is in the Stage 3 process of 
testing specific emission control and diesel engine technologies. Based on SwRI’s research and 
results from Stages 1 and 2 (Sharp et al., “Thermal Management,” 2017; Sharp et al., 
“Comparison of Advanced,” 2017; Sharp et al., “NOx Management,” 2017), NREL identified 
different engine and emission control technologies that showed potential capabilities of 
achieving 0.02 g/bhp-hr NOx emissions during current FTP and SET-RMC steady-state test 
cycles, as well as a proposed new LLC cycle by MY 2023. These diesel engine and emission 
control technologies were grouped into three different diesel technology packages to represent a 
range of potential low-, average-, and high-costing diesel technology package solutions. 

The potential low-cost diesel technology package consisted of an EPA 2017 certification-
compliant engine with a variable-geometry turbo charger, no turbo compounding, and a 
combined engine thermal management strategy of EGR cooler bypass, charge air cooler bypass, 
and a turbine bypass. In addition to the engine system, the emission control technologies 
included two points of DEF dosing and DEF mixers, one light-off SCR (LO-SCR), one DOC, 
one DPF, two SCRs, and one ammonia slip catalyst (ASC). The aftertreatment system also 
contained a NOx sensor upstream of the first DEF dosing system and mixer, a temperature sensor 
upstream of the LO-SCR, a second temperature sensor downstream of the LO-SCR, a second 
NOx sensor downstream LO-SCR and upstream of the DOC, a third temperature sensor 
downstream of the LO-SCR and upstream of the DOC, a fourth temperature sensor downstream 
of the DOC and upstream of the DPF, a fifth temperature sensor downstream of the DPF and 
upstream of the first second DEF dosing system and mixer, an ammonia (NH3) sensor 
downstream the first SCR and upstream the second SCR, a sixth temperature sensor downstream 
of the ASC, and a third NOx sensor downstream of the ASC. An example of the aftertreatment 
technology system with sensors is illustrated in Figure 1. 
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Figure 1. Schematic of proposed low- and average-cost diesel aftertreatment technology 

Figure from SwRI 

The potential average-cost diesel technology package consisted of an EPA 2017 certification-
compliant engine with a variable-geometry turbo charger, no turbo compounding, and an engine 
thermal management strategy and technology for cylinder deactivation. In addition to the engine 
system, the emission control technologies again included the same aftertreatment system as the 
low-cost diesel technology package with two points of DEF dosing and DEF mixers, one LO-
SCR, one DOC, one DPF, two SCRs, and one ASC, as shown in Figure 1. The aftertreatment 
system also contained a NOx sensor upstream of the first DEF dosing system and mixer, a 
temperature sensor upstream of the LO-SCR, a second temperature sensor downstream of the 
LO-SCR, a second NOx sensor downstream LO-SCR and upstream of the DOC, a third 
temperature sensor downstream of the LO-SCR and upstream of the DOC, a fourth temperature 
sensor downstream of the DOC and upstream of the DPF, a fifth temperature sensor downstream 
of the DPF and upstream of the first second DEF dosing system and mixer, an NH3 sensor 
downstream of the first SCR and upstream of the second SCR, a sixth temperature sensor 
downstream of the ASC, and a third NOx sensor downstream of the ASC. 

The proposed high-cost diesel technology package consisted of an EPA 2017 certification-
compliant engine with a variable-geometry turbo charger, no turbo compounding, and a 
combined engine thermal management strategy of EGR cooler bypass, charge air cooler bypass, 
and a turbine bypass. In addition to the engine system, the emission control technologies 
included a passive NOx absorber (PNA), one DOC, one DEF doser and DEF mixer, one selective 
catalytic reduction on filter (SCRF), one SCR, and one ASC. The aftertreatment system also 
contained a NOx sensor upstream of the PNA, a second NOx sensor downstream of the PNA, an 
NH3 sensor downstream of the SCRF and upstream of the SCR, and a third NOx sensor 
downstream of the ASC. An example of the aftertreatment technology is illustrated in Figure 2. 
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Figure 2. Schematic of proposed high-cost diesel aftertreatment technology  
Figure from SwRI 

Note that the proposed technology packages that were initially designed to represent low-, 
average-, and high-cost combinations. It was assumed that the PNA, as a very new technology, 
would drive incremental costs to be higher than other packages. Likewise, cylinder deactivation 
was assumed to have a higher incremental cost than cooler bypasses for charge air, EGR, and 
turbine given the same aftertreatment package. However, once incremental cost information 
became available, the relative incremental costs did not necessarily turn out in that order. 
Nevertheless, to maintain consistency in the study, the proposed technology packages continued 
to be referred by their initial naming convention. 

1.3 Identifying Potential Gasoline and Natural Gas Technologies to 
Achieve 0.02 g/bhp-hr NOx 

The single natural-gas 12-L engine platform was selected to align with the ~12–13-L diesel 
platform. The CARB certification review showed a number of natural-gas engines (in various 
displacements, meeting MHDD and HHDD requirements) sharing the same technologies: 
stoichiometric Otto-cycle operation, SI, throttle body fuel injection, turbocharging, cooled EGR, 
and a TWC. Notably, most of the natural-gas engines already meet CARB’s optional low-NOx 
standard at 0.02 g/bhp-hr under the current certification cycles. Because the proposed LLC 
certification was assessed to be less challenging for a stoichiometric SI engine than a diesel 
engine, it was assumed that the current 2018 “baseline” technology package would already meet 
the new 0.02 g/bhp-hr NOx requirement. Incremental cost for 0.02 g/bhp-hr NOx was therefore 
not calculated, but cost increases related to extending FUL were considered. As noted later in 
this report, industry feedback identified this assumption as incorrect. 

The single gasoline-fueled HDO platform was selected at 6 L to align with the ~6–7-L diesel 
platform. The CARB certification review showed HDO gasoline is approaching 0.02 g/bhp-hr 
NOx on the current certification cycles, and similar technology (stoichiometric, SI, naturally 
aspirated, EGR technologies with a TWC) with liquified petroleum gas fuel has recently been 
certified at 0.05 g/bhp-hr and 0.02 g/bhp-hr under CARB’s optional low-NOx standards. The 
base engine was assumed to need no significant upgrades for the 0.02 g/bhp-hr standard with 
proposed LLC certification cost study, but TWC direct cost upgrades and indirect costs for 
engineering, certification, and warranty were surveyed, as well as extended FUL impacts. 
Vehicle packaging impacts were noted to also potentially be required to enable close coupling of 
the TWCs. 
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1.4 NREL Survey of Potential Technologies to Achieve 0.02 g/bhp-hr 
NOx 

NREL created a cost survey with a baseline price of an MY 2018 system representing an EPA 
2018 certification-compliant engine and aftertreatment system in 2018 dollars and asked trade 
organizations, Tier 1 suppliers, and engine OEMs to provide incremental cost estimates in 
comparison to the above-defined technologies with the potential to achieve 0.02 g/bhp-hr NOx 
requirements. The cost survey was reviewed with CARB and EPA staff and approved by CARB 
before submitting for requested responses. The survey consisted of two technology packages for 
diesel engine and aftertreatment systems, one technology package for natural-gas engines and 
aftertreatment, and one technology package for gasoline engines and aftertreatment systems. To 
simplify the survey for stakeholder input and avoid asking for input on three separate 
combinations of engine and aftertreatment technology packages, the two unique diesel engine 
technology packages (charge air, EGR, and turbine cooler bypass vs. cylinder deactivation) were 
surveyed with the two unique aftertreatment technology packages (Figure 1 and Figure 2). From 
these incremental cost inputs, NREL could construct the proposed low-, average-, and high-cost 
combined engine and aftertreatment technology packages. 

The first survey assumed that the 0.02 g/bhp-hr NOx regulation beginning MY 2023 included 
current FTP and SET-RMC steady-state test cycles, as well as a new LLC cycle. While not 
finalized and currently the topic of ongoing research, the LLC was assumed as a new engine 
certification cycle lasting approximately 90 minutes and included a combination of motoring, 
sustained low load, and high-power transients. This first survey also considered FUL hours/miles 
to remain the same as the current regulation. NREL also prefaced the likely follow-up survey 
seeking additional guidance on how increasing FUL hour/mile requirements may further affect 
the provided costs. 

The second survey was a follow-up survey sent to the same Tier 1 suppliers, trade organizations, 
and engine OEMs that responded to the first survey. The technology packages remained the 
same and instead assumed 0.02 g/bhp-hr NOx regulation beginning MY 2027 and again included 
current FTP and SET-RMC steady-state test cycles, as well as a proposed new LLC cycle. 
Again, while not finalized and currently the topic of ongoing research, the LLC was assumed as 
a new engine certification cycle lasting approximately 90 minutes and included a combination of 
motoring, sustained low load, and high-power transients. This second survey considered 
extended FUL hours/miles as proposed by CARB’s Stage 2 definitions defined in Table 1. 
Additionally, per CARB’s guidance, the extended FUL also included the assumption that 
warranty periods will increase to 80% of the extended FUL, both in mileage and time, except for 
heavy-duty Otto cycle, which was specified as 220,000 miles/12 years. 

1.4.1 Definition of Baseline Costs of Current Technologies With 2018 EPA 
Certification 

As a starting point for the incremental cost definition of potential technologies to meet 0.02 
g/bhp-hr NOx requirements, NREL estimated the direct manufacturing costs and indirect costs 
for an EPA 2018-certified engine and aftertreatment system production costs of current 
technology to meet 0.20 g/bhp-hr NOx in 2018 dollars for the U.S. market based on literature 
reviews and engineering judgement (Posada, Chambliss, and Blumberg, 2016; Posada Sanchez, 
Bandivadekar, and German 2012; Ou 2019). These estimates were defined for two diesel 
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platforms, 6–7 L and 12–13 L, based on the majority of current market offerings. NREL then 
estimated the incremental cost of MY 2023 technologies to meet a 0.02 g/bhp-hr NOx 
requirement based on literature review, engineering judgement, and feedback from SwRI to 
provide a baseline estimate of the incremental costs for the two potential diesel technology 
packages for each of the two engine platforms. The NREL estimates for EPA 2018-certified 
(0.20 g/bhp-hr NOx) engine and aftertreatment direct and indirect costs, as well as NREL 
estimates for incremental direct and indirect costs for MY 2023 0.02 g/bhp-hr NOx were 
generated as starting points for stakeholders to consider in the survey. NREL requested survey 
responses to utilize the baseline estimates, if accurate, or to correct NREL's incremental cost 
estimates as necessary. Only incremental costs are revealed in this report.  

The baseline technology packages for the diesel engine and aftertreatment technology consisted 
of an EPA 2018-certified engine, a DOC, a DPF, a DEF dosing system and mixer (with a single 
doser), am SCR with ASC, one NOx sensor, three NH3 sensors, and four temperature sensors. 
These components were the same for the two platforms of 6–7 L and 12–13 L. The baseline costs 
and resulting incremental costs were scaled accordingly. The baseline technology package for 
the gasoline HDO engine platform consisted of stoichiometric, SI, naturally aspirated, EGR 
technologies with a TWC. The baseline technology package for the natural-gas system consisted 
of stoichiometric Otto-cycle operation, SI, throttle body fuel injection, turbocharging, cooled 
EGR, and a TWC.  

1.4.2 NREL Initial Incremental Cost Estimates 
NREL’s initial estimated incremental costs of the potential diesel technology package likely to 
be the lowest incremental cost to meet 0.02 g/bhp-hr NOx for the 6–7-L platform are depicted in 
Table 3. This technology package consisted of an EPA 2017 certification-compliant engine with 
a variable-geometry turbo charger, no turbo compounding, and a combined engine thermal 
management strategy of EGR cooler bypass, charge air cooler bypass, and a turbine bypass. In 
addition to the engine system, the emission control technologies included two points of DEF 
dosing and DEF mixers, one LO-SCR, one DOC, one DPF, two SCRs, and one ASC. In the 
following tables, note that negative incremental costs mean the cost for that 
component/subsystem reduce from the 2018 baseline. 
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Table 3. NREL Estimates of Potential Low-Cost Diesel Technology Package 6–7 L 

Cost Component Incremental Cost Estimate 

EGR Cooler Bypass $330 

Charge Air Cooler Bypass $200 

Turbine Bypass $220 

Total Engine Technology Incremental Cost $750 

LO-SCR $530 

DOC ($15) 

DPF ($45) 

SCR+ASC and DEF Dosing System $751 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) ($66) 

Total Aftertreatment Technology Incremental Cost $1,155 

R&D Engineering Incremental Cost $100 

Certification Incremental Costs $0 

Warranty Incremental Costs $0 

Total Indirect Incremental Costs to Manufacturer $100 

Total Incremental Cost Comparison $2,005 

NREL’s initial estimated incremental costs of the potential diesel technology package, likely to 
be the lowest incremental cost to meet 0.02 g/bhp-hr NOx for the 12–13-L platform, are depicted 
in Table 4. 
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Table 4. NREL Estimates of Potential Low-Cost Diesel Technology Package 12–13 L 

Cost Component Incremental Cost Estimate 

EGR Cooler Bypass $330 

Charge Air Cooler Bypass $200 

Turbine Bypass $220 

Total Engine Technology 
Incremental Cost 

$750 

LO-SCR $750 

DOC $504 

DPF ($98) 

SCR+ASC and DEF Dosing 
System 

$1,277 

OBD Sensors and Controllers 
(NOx, NH3, and Temp Sensors) 

($66) 

Total Aftertreatment 
Technology Incremental Cost 

$2,367 

R&D Engineering Incremental 
Cost 

$100 

Certification Incremental Costs $0 

Warranty Incremental Costs $0 

Total Indirect Incremental 
Costs to Manufacturer 

$100 

Total Incremental Cost 
Comparison 

$3,217 

NREL’s initial estimated incremental costs of the potential diesel technology package, likely to 
be an average of incremental cost to meet 0.02 g/bhp-hr NOx for the 6–7-L platform, are depicted 
in Table 5. The potential average-cost diesel technology package consisted of an EPA 2017 
certification-compliant engine with a variable-geometry turbo charger, no turbo compounding, 
and an engine thermal management strategy and technology for cylinder deactivation. In addition 
to the engine system, the emission control technologies again included the same aftertreatment 
system as the low-cost diesel technology package with two points of DEF dosing and DEF 
mixers, one LO-SCR, one DOC, one DPF, two SCRs, and one ASC. 
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Table 5. NREL Estimate of Potential Average-Cost Diesel Technology Package 6–7 L 

Cost Component Incremental Cost Estimate 

Cylinder Deactivation $1,050 

Total Engine Technology Incremental Cost $1,050 

LO-SCR $530 

DOC ($15) 

DPF ($45) 

SCR+ASC and DEF Dosing System $751 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) ($66) 

Total Aftertreatment Technology Incremental Cost $1,155 

R&D Engineering Incremental Cost $100 

Certification Incremental Costs $0 

Warranty Incremental Costs $0 

Total Indirect Incremental Costs to Manufacturer $100 

Total Incremental Cost Comparison $2,305 

NREL’s initial estimated incremental costs of the potential diesel technology package, likely to 
be the average incremental cost to meet 0.02 g/bhp-hr NOx for the 12–13-L platform, are 
depicted in Table 6. 
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Table 6. NREL Estimates of Potential Average-Cost Diesel Technology Package 12–13 L 

Cost Component Incremental Cost Estimate 

Cylinder Deactivation $1,050 

Total Engine Technology Incremental Cost $1,050 

LO-SCR $750 

DOC $504 

DPF $98 

SCR+ASC and DEF Dosing System $1,277 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) ($66) 

Total Aftertreatment Technology Incremental Cost $2,563 

R&D Engineering Incremental Cost $100 

Certification Incremental Costs $0 

Warranty Incremental Costs $0 

Total Indirect Incremental Costs to Manufacturer $100 

Total Incremental Cost Comparison $3,713 

NREL’s initial estimated incremental costs of the potential diesel technology package, likely to 
be the highest incremental cost to meet 0.02 g/bhp-hr NOx for the 6–7-L platform, are depicted in 
Table 7. The potential high-cost diesel technology package consisted of an EPA 2017 
certification-compliant engine with a variable-geometry turbo charger, no turbo compounding, 
and a combined engine thermal management strategy of EGR cooler bypass, charge air cooler 
bypass, and a turbine bypass. In addition to the engine system, the emission control technologies 
included a PNA, one DOC, one DEF doser and DEF mixer, one SCRF, one SCR, and one ASC. 
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Table 7. NREL Estimates of Potential High-Cost Diesel Technology Package 6–7 L 

Cost Component Incremental Cost Estimate 

EGR Cooler Bypass $330 

Charge Air Cooler Bypass $200 

Turbine Bypass $220 

Total Engine Technology Incremental Cost $750 

PNA $730 

DOC ($15) 

DPF (2018 baseline system only) ($759) 

SCRF $714 

SCR+ASC and DEF Dosing System $74 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $314 

Total Aftertreatment Technology Incremental Cost $1,058 

R&D Engineering Incremental Cost $0 

Certification Incremental Costs $0 

Warranty Incremental Costs $0 

Total Indirect Incremental Costs to Manufacturer $0 

Total Incremental Cost Comparison $1,808 

NREL’s initial estimated incremental costs of the potential diesel technology package, likely to 
be the highest incremental cost to meet 0.02 g/bhp-hr NOx for the 12–13-L platform, are depicted 
in Table 8. 
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Table 8. NREL Estimates of Potential High-Cost Diesel Technology Package 12–13 L 

Cost Component Incremental Cost Estimate 

EGR Cooler Bypass $330 

Charge Air Cooler Bypass $200 

Turbine Bypass $220 

Total Engine Technology Incremental Cost $750 

PNA $1,256 

DOC $4 

DPF (2018 baseline system only) ($1,398) 

SCRF $1,300 

SCR+ASC and DEF Dosing System $227 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $314 

Total Aftertreatment Technology Incremental Cost $1,703 

R&D Engineering Incremental Cost $0 

Certification Incremental Costs $0 

Warranty Incremental Costs $0 

Total Indirect Incremental Costs to Manufacturer $0 

Total Incremental Cost Comparison $2,453 

1.4.3 First Survey Responses for Incremental Costs of Potential Diesel 
Technologies 

NREL received a total of five survey responses from a mix of advanced engine technology and 
emission control technology trade organizations, Tier 1 suppliers, and engine OEMs. As 
referenced in the Acknowledgements, MECA responded to the survey in a single, aggregated 
response (to protect confidential cost information). NREL does not know how many MECA 
member companies are included in that aggregated response.  

As a reminder, the first survey specified: 

• 0.02 g/bhp-hr NOx on FTP, RMC-SET, in addition to the new proposed LLC 
• MY 2023 introduction 
• Current FUL 
• Current warranty offered by the OEMs (whatever that may be) 
• Production volumes for all of the United States, with guidance for changes for California-

only adoption. 
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NREL received feedback for U.S. volumes, with very little information regarding impacts for 
California-only adoption. As NREL was unable to aggregate California-only adoption 
incremental costs, only incremental costs for U.S. volumes are reported. 

After receiving the responses to the first survey request, NREL aggregated the incremental cost 
data into a range of low, average, and high responses for the potential low-cost diesel technology 
package, as summarized below for 6–7 L in Table 9 and 12–13 L in Table 10. Note that these 
low, average, and high incremental cost responses are not to be confused with the proposed low-, 
average-, and high-cost technology packages. Also, note that the low, average, and high 
responses for each component/subsystem (row) were calculated so that the total low, average, 
and high incremental cost may not directly reflect any single survey response. 

Table 9. Survey Responses for Potential Low-Cost Diesel Technology Package 6–7 L 

6–7 L  Low Avg.  High 

EGR Cooler Bypass $170 $243 $330 

Charge Air Cooler Bypass $128 $167 $200 

Turbine Bypass $170 $207 $230 

Total Engine Technology Incremental Cost $468 $617 $760 

LO-SCR $401 $944 $2,200 

DOC ($15) $10 $30 

DPF ($45) ($17) $0 

SCR+ASC and DEF Dosing System $300 $621 $823 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $141 $333 $800 

Other $50 $175 $300 

Total Aftertreatment Technology Incremental Cost $832 $2,066 $4,153 

R&D Engineering Incremental Cost $70 $85 $100 

Certification Incremental Costs $0 $25 $50 

Warranty Incremental Costs $750 $1,875 $3,000 

Total Indirect Incremental Costs to Manufacturer $820 $1,985 $3,150 

Total Incremental Cost Comparison $2,120 $4,668 $8,063 
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Table 10. Survey Responses for Potential Low-Cost Diesel Technology Package 12–13 L 

12–13 L  Low Avg.  High 

EGR Cooler Bypass $170 $302 $408 

Charge Air Cooler Bypass $128 $185 $240 

Turbine Bypass $170 $215 $240 

Total Engine Technology Incremental Cost $468 $702 $888 

LO-SCR $574 $1,120 $2,450 

DOC $0 $89 $250 

DPF ($98) ($44) $0 

SCR+ASC and DEF Dosing System $500 $784 $1,100 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $158 $330 $600 

Other $50 $150 $300 

Total Aftertreatment Technology Incremental Cost $1,184 $2,429 $4,700 

R&D Engineering Incremental Cost $110 $354 $503 

Certification Incremental Costs $0 $21 $50 

Warranty Incremental Costs $1,500 $1,833 $2,500 

Total Indirect Incremental Costs to Manufacturer $1,610 $2,208 $3,053 

Total Incremental Cost Comparison $3,262 $5,339 $8,641 

After receiving the responses to the first survey request, NREL aggregated the incremental cost 
data into a range of low, average, and high estimates for the potential average-cost diesel 
technology package, as summarized for 6–7 L in Table 11 and 12–13 L in Table 12. 
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Table 11. Survey Responses for Potential Average-Cost Diesel Technology Package 6–7 L 

6–7 L  Low Avg. High 

Cylinder Deactivation $480 $790 $1,140 

Other $150 $505 $860 

Total Engine Technology Incremental Cost $630 $1,295 $2,000 

LO-SCR $401 $944 $2,200 

DOC ($15) $10 $30 

DPF ($45) ($17) $0 

SCR+ASC and DEF Dosing System $300 $621 $823 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $141 $333 $800 

Other $50 $175 $300 

Total Aftertreatment Technology Incremental Cost $832 $2,064 $4,153 

R&D Engineering Incremental Cost $70 $85 $100 

Certification Incremental Costs $0 $25 $50 

Warranty Incremental Costs $750 $1,875 $3,000 

Total Indirect Incremental Costs to Manufacturer $820 $1,985 $3,150 

Total Incremental Cost Comparison $2,282 $5,344 $9,303  



23 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table 12. Survey Responses for Potential Average-Cost Diesel Technology Package 12–13 L 

12–13 L  Low Avg. High 

Cylinder Deactivation $561 $952 $1,550 

Other $150 $625 $1,100 

Total Engine Technology Cost $711 $1,577 $2,650 

LO-SCR $574 $1,120 $2,450 

DOC $0 $89 $250 

DPF ($98) ($44) $0 

SCR+ASC and DEF Dosing System $500 $784 $1,100 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $158 $330 $600 

Other $50 $150 $300 

Total Aftertreatment Technology Incremental Cost $1,184 $2,429 $4,700 

R&D Engineering Incremental Cost $110 $354 $503 

Certification Incremental Costs $0 $21 $50 

Warranty Incremental Costs $1,500 $1,833 $2,500 

Total Indirect Incremental Costs to Manufacturer $1,610 $2,209 $3,053 

Total Incremental Cost Comparison $3,505  $6,214  $10,403  

After receiving the responses to the first survey request, NREL aggregated the incremental cost 
data into a range of low, average, and high estimates for the potential high-cost diesel technology 
package, as summarized for 6–7 L in Table 13 and 12–13 L in Table 14. 
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Table 13. Survey Responses for Potential High-Cost Diesel Technology Package 6–7 L 

6–7 L  Low Avg. High 

EGR Cooler Bypass $170 $243 $330 

Charge Air Cooler Bypass $128 $167 $200 

Turbine Bypass $170 $207 $230 

Total Engine Technology 
Incremental Cost 

$468 $617 $760 

PNA $701 $883 $1,000 

DOC ($15) ($12) ($9) 

DPF (2018 baseline system 
only) 

($759) ($549) ($377) 

SCRF $500 $559 $677 

SCR+ASC and DEF Dosing 
System 

$584 $722 $793 

OBD Sensors and Controllers 
(NOx, NH3, and Temp 
Sensors) 

$141 $214 $313 

Other $50 $50 $50 

Total Aftertreatment 
Technology Incremental 
Cost 

$1,202 $1,868 $2,447 

R&D Engineering Incremental 
Cost 

$400 $400 $400 

Certification Incremental 
Costs 

$50 $50 $50 

Warranty Incremental Costs $750 $750 $750 

Total Indirect Incremental 
Costs to Manufacturer 

$1,200 $1,200 $1,200 

Total Incremental Cost 
Comparison 

$2,870 $3,685 $4,407 
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Table 14. Survey Responses for Potential High-Cost Diesel Technology Package 12–13 L 

12–13 L  Low Avg. High 

EGR Cooler Bypass $170 $302 $408 

Charge Air Cooler Bypass $128 $185 $240 

Turbine Bypass $170 $215 $240 

Total Engine Technology Incremental Cost $468 $702 $888 

PNA $1,147 $2,270 $3,880 

DOC $0 $11 $22 

DPF (2018 baseline system only) ($881) ($673) ($560) 

SCRF $800 $930 $1,162 

SCR+ASC and DEF Dosing System ($209) $387 $723 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $158 $254 $330 

Other $50 $75 $100 

Total Aftertreatment Technology Incremental Cost $1,065 $3,253 $5,657 

R&D Engineering Incremental Cost $350 $427 $503 

Certification Incremental Costs $13 $32 $50 

Warranty Incremental Costs $1,500 $1,650 $1,800 

Total Indirect Incremental Costs to Manufacturer $1,863 $2,108 $2,353 

Total Incremental Cost Comparison $3,396 $6,063 $8,898 

1.4.4 Incremental Costs of Potential Technologies with Extended FUL and 
Warranty, and California-Only Volumes  

After receiving the responses to the first survey request, NREL aggregated the incremental cost 
data into a range of low, average, and high estimates, as summarized previously. NREL then 
followed up with an additional survey to identify incremental costs from the MY 2018 baseline, 
but also to add extended FUL and warranty per Table 1. Lower production volumes representing 
California only (instead of all of the United States) were also incorporated. The survey assumed 
implementation for MY 2027 (instead of MY 2023, as in the first survey), as additional time 
would be necessary to engineer for extended FUL and warranty. Table 15 through Table 20 
summarize these additional survey responses. 
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Table 15. Survey Responses for Potential Low-Cost Diesel Technology Package 6–7 L with 
Extended FUL, Extended Warranty, and California-Only Volumes 

6–7 L  Low Avg.  High 

EGR Cooler Bypass $289 $390 $490 

Charge Air Cooler Bypass $191 $225 $259 

Turbine Bypass $255 $296 $345 

Total Engine Technology Incremental Cost $735 $911 $1,094 

LO-SCR $513 $1135 $2,200 

DOC $0 $99 $171 

DPF $0 $95 $164 

SCR+ASC and DEF Dosing System $300 $1161 $1829 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $738 $845 $997 

Other $300 $300 $300 

Total Aftertreatment Technology Incremental Cost $1,851 $3,635 $5,661 

R&D Engineering Incremental Cost $70 $70 $70 

Certification Incremental Costs $0 $0 $0 

Warranty Incremental Costs $10,800 $10,800 $10,800 

Total Indirect Incremental Costs to Manufacturer $10,870 $10,870 $10,870 

Total Incremental Cost Comparison $13,456 $15,416 $17,625 
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Table 16. Survey Responses for Potential Low-Cost Diesel Technology Package 12–13 L with 
Extended FUL, Extended Warranty, and CA Volumes 

12–13 L  Low Avg.  High 

EGR Cooler Bypass $289 $390 $490 

Charge Air Cooler Bypass $191 $246 $288 

Turbine Bypass $255 $296 $345 

Total Engine Technology Incremental Cost $735 $932 $1,123 

LO-SCR $736 $1,330 $2,450 

DOC $0 $144 $330 

DPF $0 $83 $191 

SCR+ASC and DEF Dosing System $500 $1,240 $1,892 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $476 $765 $997 

Other $300 $950 $1,600 

Total Aftertreatment Technology Incremental Cost $2,012 $4,512 $7,460 

R&D Engineering Incremental Cost $110 $357 $603 

Certification Incremental Costs $0 $7 $13 

Warranty Incremental Costs $7,840 $23,061 $38,282 

Total Indirect Incremental Costs to Manufacturer $7,950 $23,424 $38,898 

Total Incremental Cost Comparison $10,697 $28,868 $47,481 
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Table 17. Survey Responses for Potential Average-Cost Diesel Technology Package 6–7 L with 
Extended FUL, Extended Warranty, and California-Only Volumes 

6–7 L  Low Avg. High 

Cylinder Deactivation $638 $880 $1,140 

Other $860 $860 $860 

Total Engine Technology Incremental Cost $1,498 $1,740 $2,000 

LO-SCR $513 $1,135 $2,200 

DOC $0 $99 $171 

DPF $0 $95 $164 

SCR+ASC and DEF Dosing System $300 $1,161 $1,829 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $738 $845 $997 

Other $300 $300 $300 

Total Aftertreatment Technology Incremental Cost $1,851 $3,635 $5,661 

R&D Engineering Incremental Cost $70 $70 $70 

Certification Incremental Costs $0 $0 $0 

Warranty Incremental Costs $10,800 $10,800 $10,800 

Total Indirect Incremental Costs to Manufacturer $10,870 $10,870 $10,870 

Total Incremental Cost Comparison $14,219 $16,245 $18,531  
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Table 18. Survey Responses for Potential Average-Cost Diesel Technology Package 12–13 L with 
Extended FUL, Extended Warranty, and California-Only Volumes 

12–13 L  Low Avg. High 

Cylinder Deactivation $724 $1,176 $1,860 

Other $1,100 $1,100 $1,100 

Total Engine Technology Cost $1,824 $2,276 $2,960 

LO-SCR $736 $1,330 $2,450 

DOC $0 $144 $330 

DPF $0 $83 $191 

SCR+ASC and DEF Dosing System $500 $1,240 $1,892 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $476 $765 $997 

Other $300 $950 $1,600 

Total Aftertreatment Technology Incremental Cost $2,012 $4,512 $7,460 

R&D Engineering Incremental Cost $110 $357 $603 

Certification Incremental Costs $0 $7 $13 

Warranty Incremental Costs $7,840 $23,061 $38,282 

Total Indirect Incremental Costs to Manufacturer $7,950 $23,424 $38,898 

Total Incremental Cost Comparison $11,786  $30,212  $49,318  
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Table 19. Survey Responses for Potential High-Cost Diesel Technology Package 6–7 L with 
Extended FUL, Extended Warranty, and California-Only Volumes 

6–7 L  Low Avg. High 

EGR Cooler Bypass $289 $340 $391 

Charge Air Cooler Bypass $191 $225 $259 

Turbine Bypass $255 $296 $345 

Total Engine Technology 
Incremental Cost 

$735 $865 $995 

PNA $924 $1,097 $1,250 

DOC $101 $119 $136 

DPF (2018 baseline system only) ($511) ($444) ($377) 

SCRF $679 $799 $919 

SCR+ASC and DEF Dosing System $1,374 $1,616 $1,858 

OBD Sensors and Controllers (NOx, 
NH3, and Temp Sensors) 

$738 $868 $997 

Other $0 $0 $0 

Total Aftertreatment Technology 
Incremental Cost 

$3,305 $4,044 $4,783 

R&D Engineering Incremental Cost $xx $xx $xx 

Certification Incremental Costs $xx $xx $xx 

Warranty Incremental Costs $xx $xx $xx 

Total Indirect Incremental Costs to 
Manufacturer 

$xx $xx $xx 

Total Incremental Cost Comparison $xx $xx $xx 

Note for Table 19 that insufficient responses were received for this technology package with 
respect to indirect costs to allow sufficient aggregation. Therefore, indirect and total incremental 
costs were not calculated. 
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Table 20. Survey Responses for Potential High-Cost Diesel Technology Package 12–13 L with 
Extended FUL, Extended Warranty, and California-Only Volumes 

12–13 L  Low Avg. High 

EGR Cooler Bypass $289 $390 $490 

Charge Air Cooler Bypass $191 $246 $288 

Turbine Bypass $255 $296 $345 

Total Engine Technology Incremental Cost $735 $932 $1,123 

PNA $1,592 $2,801 $4,656 

DOC $0 $153 $263 

DPF (2018 baseline system only) ($881) ($698) ($560) 

SCRF $960 $1,220 $1,553 

SCR+ASC and DEF Dosing System ($209) $1,077 $1,977 

OBD Sensors and Controllers (NOx, NH3, and Temp Sensors) $426 $720 $997 

Other $1,600 $1,600 $1,600 

Total Aftertreatment Technology Incremental Cost $3,488 $6,873 $10,486 

R&D Engineering Incremental Cost $603 $603 $603 

Certification Incremental Costs $13 $13 $13 

Warranty Incremental Costs $38,621 $38,621 $38,621 

Total Indirect Incremental Costs to Manufacturer $39,237 $39,237 $39,273 

Total Incremental Cost Comparison $43,460 $47,042 $50,846 

It should be noted that the total indirect incremental cost estimates by manufacturers, and the 
total incremental costs in Table 15 to Table 20, are dominated by the warranty incremental costs. 
In some cases, the high estimate of incremental warranty costs is over $38,000. As discussed in 
Section 1.4.5, the warranty incremental costs were based on a very small sample size, and may 
be biased high due to the OEMs’ uncertainty regarding covering warranty for unfamiliar 
technology needed to meet a 0.02 g/bhp-hr NOx standard at the same time with much longer 
FULs than current FULs.     

1.4.5 Incremental Cost Survey Response Observations 
The following general observations can be made regarding the incremental costs reported in 
Table 3 through Table 20.  

• The initial NREL estimates for total incremental costs were fairly close to the lower end 
of survey responses for the first survey (MY 2023, U.S. volume, current FUL). 

• Indirect costs are a significant portion of the total cost.  
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• Total costs are not necessarily tied to engine displacement/power but are heavily 
dependent on indirect costs. Production volumes of various engine displacements have 
more of an impact than engine “size” on indirect cost, and therefore total incremental 
cost.  

• High engineering, certification, and warranty costs spread over relatively small volumes 
are the drivers of indirect costs. Survey respondents did not share amortization strategies 
or exact volumes, so those effects are unknown. 

• Only OEMs responded with indirect costs, as Tier 1 and MECA responses included only 
direct costs. Due to the limited number of OEM responses, the indirect costs may have a 
high level of variation and may not necessarily represent indirect costs for all OEMs. 

• The second survey (MY 2027, California-only volume, extended FUL and warranty) was 
intended to present “worst case” in many parameters, and the survey results reflect that. 

• The second survey results report very high incremental indirect costs, especially for 
warranty. The OEMs did not break that warranty down into how much was attributed to 
extended FUL versus the extension of the warranty period. Feedback from OEMs 
indicated high levels of uncertainty in projected warranty costs for this scenario.  

• The second survey results assumed CA-only volumes, but OEMs were free to interpret 
that assumption on their own. OEMs did not report how these CA-only volumes differed 
from U.S. volumes in the first survey. They did not explicitly state different assumptions 
regarding market share or changes in CA-only volume due to potential increased pre-
purchases ahead of new emissions regulations or potential reduced purchases due to new 
emissions regulations. 

• Some apparent anomalies in the survey responses may be attributed to the limited number 
of responses. As noted above, not all respondents reported incremental cost estimates for 
all proposed technology combinations. The aggregated data reported is the best NREL 
has available that still protects individual confidential costing information.  

1.4.6 Incremental Costs for Natural Gas and Gasoline Technology Packages 
As previously referenced, few responses were received for the natural gas (HHDD standard) 
engine platform, preventing NREL from sufficiently aggregating incremental cost information to 
protect proprietary information. The study assumption that natural-gas engine technology 
meeting CARB’s current optional low-NOx certification at 0.02 g/bhp-hr would require no 
significant upgrades to meet a proposed 0.02 g/bhp-hr standard with a new LLC was flawed, 
based on industry feedback. The feedback focused on changes needed to meet the new LLC 
cycle and the potential that a moving average window method for emission compliance may be 
necessary. Based on NREL’s analysis and research from literature review, trade organization 
feedback, and OEM feedback, the anticipated incremental cost of both indirect and direct 
incremental costs for natural-gas engines and aftertreatment technology to meet an MY 2023 
target of 0.02 g/bhp-hr utilizing the moving average window method to assess emission 
compliance is within 10% of the low-cost diesel technology package for equivalent 



33 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

displacement. A round number estimate total of $3,000 incremental cost was subsequently used 
for the Task 2: Engine Life-Cycle Costs study. 

Similarly, few responses were received for the gasoline HDO engine platform. Some aggregation 
was possible for direct costs, but only NREL estimates were available for indirect costs. As a 
result, only total integrated (including direct and indirect) incremental costs ranging from $353 to 
$468 for MY 2023 were calculated with current FUL. 

1.5 Low-, Average-, and High-Cost Estimates 
Because NREL received a range of values in response to both surveys, the diesel incremental 
cost analysis results in nine different points of costs, with low-, average-, and high-cost 
responses to each of the potential low-, average-, and high-cost diesel technology packages.  

1.5.1 Low-, Average-, and High-Cost Estimates for MY 2023 with Current FUL and 
Warranty 

These different points of cost defining the range of data received in response to the first survey 
for MY 2023 and current full useful life as defined in Table 1 are depicted by error bars within 
the summary graphs in Figure 3 and Figure 4. The incremental cost variance within any one 
package is larger than the differences between the engine and aftertreatment packages. In 
addition, the range of costs seem to have a greater impact on the larger displacement platforms, 
resulting in a large variance within the individual technology packages.  
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Figure 3. Summary of 6–7-L potential technology packages for MY 2023 with current FUL 
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Figure 4. Summary of 12–13-L potential technology packages for MY 2023 with current FUL 
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summary graphs in Figure 5 and Figure 6. NREL did not receive enough responses for the third 
technology package of the potential high-cost diesel technology to aggregate and therefore did 
not include the estimates received in order to protect the source of the data.  
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Figure 5. Summary of 6–7-L potential technology packages for MY 2027 with extended FUL and 
warranty 

 

Figure 6. Summary of 12–13-L potential technology packages for MY 2027 with extended FUL and 
warranty 
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1.6 Summary of Incremental Cost Analysis 
NREL received a total of five survey responses from a mix of advanced engine technology and 
emission control technology trade organizations, Tier 1 suppliers, and engine OEMs. Data were 
aggregated with the incremental cost estimates NREL derived from literature review and 
engineering judgments. The survey responses included incremental cost estimates in a range of 
values, creating variance for each potential low-, average-, and high-cost technology package. 
The wide variance in the SCR+ASC and DEF dosing system costs drive most of the variance 
within the total aftertreatment costs. The cost variance is also much greater in larger 
displacements due to the high costs of the aftertreatment components and the variance within 
each of those. Indirect costs are a significant portion of the combined hardware costs of the 
engine and aftertreatment. Lastly, the incremental costs were not adjusted to reflect a retail 
markup due to the complexity with which pricing decisions are made. 
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2 Task 2: Engine Life-Cycle Costs 
This section details a life-cycle cost analysis completed to understand the true costs to the owner 
of a vehicle with a 0.02 g/bhp-hr NOx aftertreatment package outside of the direct upfront 
vehicle cost increase. The life-cycle cost analysis sought to incorporate costs associated with the 
following elements:  

• Initial purchase cost 
• Fuel consumption changes (changes in fuel economy) 
• DEF consumption 
• Maximum useful life of the aftertreatment package (major overhaul intervals) 
• Other operating and maintenance costs. 

To complete the life-cycle cost analysis, two main tasks were completed: assessing the maximum 
useful life for the aftertreatment packages and computing the life-cycle costs. Section 2.1 
reviews the maximum useful life analysis in detail, Section 2.2 reviews the life-cycle cost 
approach, Section 2.3 outlines the scenarios evaluated in this study, and Section 2.4 summarizes 
the results of the life-cycle cost analysis. 

2.1 Maximum Full Useful Life Analysis 
The maximum useful life for the aftertreatment system determines the mileage at which costs to 
the owner may be incurred if the system begins to fail. For all scenarios in the life-cycle cost 
analysis, the incremental cost associated with the aftertreatment package was assumed to be 
incurred after the truck mileage exceeded the stated maximum useful life. This assumption is 
expected to be conservative as not all aftertreatment packages will fail immediately after they 
exceed their stated maximum useful life. Statistical analysis of failure rates combined with data 
on aftertreatment technology operating and maintenance costs could give a more accurate 
depiction of life-cycle costs. However, such data are not currently available. 

The extended maximum useful life option was evaluated by considering the tradeoff between 
increased upfront costs due to improved durability needed for the extended maximum useful life1 
and the decrease in owner-related replacement costs at the end of the maximum useful life.  

The maximum useful life depends on both the displacement of the vehicle and the fuel type. The 
extended maximum useful life values were defined based on the CARB proposal in January 2019 
and previously shown in Table 1.  

2.2 Approach 
This analysis leverages the high-fidelity vehicle stock model within NREL’s Scenario Evaluation 
and Regionalization Analysis (SERA) model. The SERA stock model tracks vehicle miles 
traveled, fuel consumption, and ownership costs throughout each vehicle’s lifetime and is 
resolved temporally and spatially with high fidelity. The SERA model was complemented by 

 
1 It is important to note that the data received from the cost survey (Section 1.3) combined both an extended useful 
life and an extended warranty. Thus, the cost data used for the extended useful life scenarios couples both the 
extended useful life and extended warranty information together. 
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additional data sets to effectively map the vehicles to the aftertreatment packages evaluated in 
this study.  

The following sections provide a brief overview of the SERA stock model, the data sources used 
in this study, model validation, scenario design, and the life-cycle cost results.  

2.2.1 Scenario Evaluation and Regionalization Analysis (SERA) Model 
The SERA model’s stock module capability provides a flexible framework for tracking vehicles 
over their life. The SERA’s stock model has been used for a variety of U.S. Department of 
Energy and California Energy Commission projects and, in particular, is described in detail in 
Bush et al. (2019). The general data flow for the SERA stock model is shown in Figure 7, which 
shows how data for regional sales (total vehicles sold), market shares (disaggregation of vehicle 
sales by vehicle type), vehicle survival (salvage rate data), annual travel (vehicle-miles traveled), 
fuel consumption data (fuel economy and fuel types), and emission rate data are combined to 
track vehicle population, travel, and resulting energy consumption and emissions.  

For this analysis, the SERA model was expanded to track vehicle life-cycle costs over the 
vehicle’s lifetime. The model was updated to account for vehicle costs that could be incurred 
when purchasing a vehicle or driving the vehicle, as the model already has those data within it.  

 

Figure 7. The general SERA stock model data flow 
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2.2.2 Data Sources 
The SERA model provides the analytic framework for a detailed stock model but is 
complemented by additional data sets to complete the life-cycle analysis required in this study. 
The data sources used in this analysis are summarized in Table 21. 
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Table 21. Data Sources Used in Life-Cycle Cost Analysis 

Data Source Description How it was used 

EMFAC/CA 
Vision 2.1 

The EMFAC emissions model is 
used by CARB to assess 
emissions from on-road vehicles 
(cars, trucks, and buses).  

The CA Vision 2.1 model (2017) 
is a scenario-planning model 
and provides the detailed stock 
data required for the SERA 
model. It should be noted that 
the CA Vision model is based on 
the EMFAC 2014 results.  

The CA Vision 2.1 model data was used as the 
base stock model to create within SERA (e.g., 
vehicle sales, survival, vehicle miles traveled, and 
fuel economy were matched between SERA and 
the CA Vision 2.1 model).  

Thus, the SERA stock model vehicles, population, 
total mileage, and fuel consumption match the 
EMFAC and CA Vision 2.1 models.  

IHS Markit 
(Polk) 
Department 
of Motor 
Vehicles 
Registration 
Data 

The IHS Markit (formerly known 
as Polk) Department of Motor 
Vehicles registration database 
(2013) provides data across the 
United States on the quantity 
and types of trucks registered in 
each zip code.  

The IHS Markit data were used to disaggregate 
EMFAC vehicles by their engine displacement to 
compute fleet-wide costs.  

For example, the T6 Instate Small truck comprises 
GVWR classes 4–7, which correspond to multiple 
engine displacements. The IHS Markit data were 
used to determine the fraction of T6 Instate Small 
trucks within each engine displacement class.  

Task 1 Cost 
Data 

The Task 1 survey cost data 
includes the incremental cost for 
three different aftertreatment 
packages, two engine 
displacements, three different 
fuel types, different maximum 
useful life estimates, different 
manufacturing volumes, and 
different model years. 

The Task 1 data were incorporated into the SERA 
model as upfront costs to the vehicle owner 
mapped to the appropriate vehicle (model year, 
engine displacement, fuel type).  

The incremental upfront cost was also assumed to 
be incurred after the maximum useful life of the 
aftertreatment package was surpassed in most 
scenarios.  

California 
Energy 
Commission 
Fuel Prices 

California Energy Commission’s 
forecast of fuel prices (2017) 

Scenario analysis was used to evaluate a 1.25% 
improvement in fuel economy. The marginal 
improvement in fuel economy results in fuel cost 
savings during the vehicle’s life. 

Preliminary data from SwRI indicates an 
improvement of 0%–4%, depending on the engine 
cycle, with 1.25% as a good central estimate per 
SwRI feedback. No reductions in fuel economy 
were evaluated as the vehicles must still meet the 
existing GHG standards regulated by CARB.  

Diesel 
Exhaust Fluid 
Price 

A constant $6/gal DEF cost was 
assumed based on NREL’s Co-
Optima analysis 

Scenario analysis as completed to determine the 
life-cycle cost of increased DEF consumption.  

As seen in Table 21, there are several data sources that combine within the SERA model to 
evaluate the life-cycle cost of the low-NOx fuel standard. Visually, these data sources are 
combined as seen in Figure 8. 
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Figure 8. Data flow and analysis using the SERA model for life-cycle cost analysis 

Due to the EMFAC and CA Vision 2.1 model spatial and temporal fidelity, each vehicle is 
defined by a specific region, vocation, model year, fuel type, and age. These vehicles are then 
further disaggregated by engine displacement using the IHS Markit (formerly Polk) Department 
of Motor Vehicles registration data. Thus, the life-cycle costs for each vehicle are a function of 
all of these parameters, and there is a distribution of life-cycle costs across the California fleet 
due to different vehicle types and travel profiles. For example, the life-cycle costs for a Class 8 
long haul tractor will be very different than a Class 6 parcel delivery truck due to the different 
aftertreatment package costs (which vary by displacement), in addition to the different marginal 
fuel cost reductions, because they have very different travel requirements profiles and fuel 
economies.  

The distribution in life-cycle costs will be analyzed across the California fleet vehicle types, 
engine technologies, displacements, and regions using multiple analytic methods, including 
scenario analysis and sensitivity analysis.  

2.2.3 SERA Model Validation 
The SERA model was validated against the CA Vision 2.1 model to ensure the starting point for 
the life-cycle cost analysis was accurate. Figure 9 summarizes the results of the model validation, 
which show very close agreement between the SERA model and the CA Vision model for 
predicting stock through 2050. Additionally, validating the model by region, Figure 9 shows 
there is a less than 1.2% error in predicting the California vehicle population through 2050 for 
each region.  
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This model validation indicates that the SERA model matches the CA Vision 2.1 model closely 
through 2050. For this analysis, the life-cycle cost analysis is focused on model years 2023 and 
2027, so this validation signifies that those vehicle sales and survival (lifetimes) will be 
accurately accounted for in the life-cycle analysis. Additionally, the vehicle travel and fuel 
consumption data influence the life-cycle costs for each vehicle, and this validation indicates that 
those costs will be accurately accounted for. 

 

Figure 9. SERA model validation against the CA Vision 2.1 model 

2.2.4 Manufacturing Volume Analysis 
Manufacturing volume influences the upfront cost of aftertreatment systems, as large 
manufacturing volumes allow the firm to spread capital and fixed operating costs over more units 
sold, reducing the per-unit cost. As discussed in the Task 1 section of this report, most data 
collected from OEMs are for a national manufacturing volume. One OEM provided cost 
estimates for the 12–13-L diesel engine for a California-only manufacturing volume basis. These 
data were included in the sensitivity analysis to show its potential importance but not in the 
scenario analysis given the limited data set. 

2.3 Parameters Investigated 
The realized life-cycle cost to the vehicle owner depends on a variety of parameters that need to 
be evaluated. Some of the key parameters assessed in this study include:  

• Aftertreatment design cost basis (Task 1) 
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• Extended maximum useful life 
• Manufacturing volume 
• Engine displacement 
• Vehicle type, region, model year 
• Fuel economy impact 
• DEF consumption impact. 

These parameters and their analysis bounds are summarized in Table 22. Each parameter was 
varied independently of others to understand the life-cycle cost sensitivity to that parameter.  

Table 22. Life-Cycle Cost Parameters Investigated in this Study 

Parameter Description 

Adoption Rate 
1) 100% compliance by 2023 (Current useful life, only) 
2) 100% by 2027 (Extended full useful life, only) 

Max Useful Life 
1) (Min) Current useful life  
2) (Max) Extended useful life 
3–5) 25%/50%/75% of min/max spread  

Cost Basis 1–3) Low/Avg/High cost basis from Task 1 

Other 

Will be needed to investigate life-cycle costs differences due to:  
1) Varying aftertreatment packages (displacement) 
2) Vehicle types (EMFAC definition) 
3) Region (Seven CA Vision 2.1 Model Regions) 
4) Model year (2023, 2027) 
5) Fuel economy impacts (e.g., no change, 1.25% improvement) 
6) DEF consumption changes (e.g., 0%, 2.5%, 5% change) 
7) Discount rates (3%, 7%) 
8) Manufacturing volume (U.S. vs. California-only) 

Due to the large number of parameters, each with its own uncertainty around it, the results look 
at a scenario analysis (varying multiple parameters at one time) and a sensitivity analysis 
(varying one parameter at a time). 

Adoption rate was originally intended to be a parameter of investigation. However, data were 
only available for current useful life with 100% compliance by 2023 and extended useful life 
with 100% compliance by 2027. No data were available to determine learning curves or how 
costs might change depending on the adoption deadline. For this reason, it was assumed that the 
current full useful life costs for 2023 adoption would hold for 2027 adoption as well. This allows 
side-by-side comparison of current and extended full useful life life-cycle costs. 

2.3.1 Scenario Analysis 
Due to the large number of parameters that could influence the life-cycle cost of each vehicle, a 
scenario analysis approach was taken. Three scenarios were defined to understand the bounds on 
the life-cycle costs: low-cost scenario, mid-cost scenario, and high-cost scenario. These scenarios 
were defined to bound the life-cycle cost as well as provide a scenario evaluating a mid-cost life-
cycle analysis; however, they do not represent the most likely scenarios that could be realized.  
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The three scenarios are defined in Table 23 and outline the parameter assumptions used for each 
scenario. The scenarios were defined to look at the bounds of the life-cycle cost analysis, while 
the sensitivity analysis was completed to understand the critical parameters driving the life-cycle 
cost of the aftertreatment system. Because California manufacturing volume data were available 
from only one OEM for only one engine displacement, all scenarios consider U.S. manufacturing 
volumes.  

Additionally, the upfront cost (Task 1 data) was based only on the average-cost technology 
package and used the low/average/high error bar bounds. This technology package was selected 
because the error bar bounds of the average-cost technology package effectively span the full 
spectrum of potential costs (as seen in Section 1.4). Additionally, the low-cost technology 
package and high-cost technology package may not actually represent the lowest-cost or highest-
cost packages, as found from the survey data in Task 1. 

Table 23. Scenario Definitions for Bounding Analysis 

Parameter Low-Cost Scenario Mid-Cost Scenario High-Cost Scenario 
Upfront Cost Low Mid High 
Manufacturing Scale U.S. U.S. U.S. 

Useful Life 
Current  

Full Useful Life 
Current  

Full Useful Life 
Extended  

Full Useful Life 
Fuel Economy Change 1.25% improvement No change No change 
DEF Consumption 
Impact No change 2.5% increase 5% increase 

Discount Rate 7% 7% 3% 

In addition to the above parameters, the life-cycle cost also depends on the model year of the 
vehicle (compliance rate), the engine displacement, the fuel type (diesel, gasoline, natural gas), 
the vehicle’s vocation (defined by EMFAC, which affects the vehicle miles traveled over its 
lifetime), as well as the region the vehicle is operating in (vehicle miles traveled varies slightly 
by region within the EMFAC model). Thus, to explore the life-cycle costs across this parameter 
space, three primary metrics were evaluated for each scenario:  

1. Life-cycle costs for each vehicle/displacement/fuel/vocation/region combination 

2. A vehicle sales weighted-average life-cycle cost across all 
vehicle/displacement/fuel/vocation/region combinations 

3. A life-cycle cost across the full California fleet. 

First, the life-cycle cost was calculated for each vehicle, engine displacement, fuel technology, 
EMFAC vocation, and region within each of low-cost, mid-cost, and high-cost scenarios. This 
provides vehicle-specific data and can be used to demonstrate the potential life-cycle costs that 
could be realized for each vehicle owner.  

Second, a sales-weighted average life-cycle cost was determined based on the CA Vision 2.1 
predicted sales for the model year 2027. This average metric weights the regions and vocations 
more heavily if there are more vehicles sold in that aftertreatment definition. For example, 
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assume there are only two vehicles in California and each has a different life-cycle cost and are 
sold in different proportions, as seen in Table 24.  

Table 24. Example Vehicle Sales Weighted Average 

Vehicle/Vocation 
Example  

Life-Cycle Cost 
Example 

Sales (vehicles) 

T7 Tractor $1,000 100 

T7 Single $2,000 50 

One estimate of representative life-cycle costs for vehicles in California may be a simple average 
of the two life-cycle costs ($1,500). However, a more accurate and representative life-cycle cost 
would be a vehicle sales weighted average that accounts for the relative proportion of vehicles 
within each vocation ($1,333).2 This approach was used to estimate a single life-cycle cost 
across all vehicles in California, which would represent an approximate cost for all vehicle 
owners in the state.  

To complete the sales-weighted average, the EMFAC vehicles must be disaggregated into 
specific vocation, fuel, and engine displacement categories. IHS Markit (formerly Polk) 
Department of Motor Vehicles registration data were used to disaggregate the EMFAC vehicles 
into the appropriate vocation, fuel, and engine displacement categories. A summary of the 
breakdown can be found in Appendix B, while the full data file is provided as an attachment to 
the report. 

In addition to the vehicle-specific life-cycle costs discussed previously, the life-cycle costs of all 
vehicles sold across California in 2027 were assessed for each scenario. This metric accounts for 
the relative proportion of vehicle types sold in California and the total cost California fleet 
owners would be expected to bear for each scenario. This calculation also accounts for the fact 
that not all vehicles survive the full expected lifetime (e.g., some Class 8 tractors will last only 
three years while others will last seven). These survival data are important, as vehicles may be 
retired before they travel more than the aftertreatment package’s maximum useful life and thus 
would not incur those future replacement costs.  

2.3.2 Sensitivity Analysis 
To better understand the relative importance of each parameter affecting the life-cycle cost of the 
aftertreatment package, a sensitivity analysis was completed. A sensitivity analysis varies one 
single parameter and then shows the impact of that parameter on the life-cycle cost of the 
vehicle. For this analysis, the mid-cost scenario was used as the starting point for the sensitivity 
analysis, and the variation in each parameter either increases or decreases the life-cycle cost. By 
varying each parameter independently, one can determine which parameters are the key cost 
drivers for the life-cycle cost.  

 
2 Calculated as: $1,000 * (100/(100 + 50)) + $2,000 * (50/(100 + 50)) = $1,333/vehicle 
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2.4 Results 
The results are presented in three sections: a case study to demonstrate life-cycle cost 
methodologies, scenario analysis results, and a sensitivity analysis.  

The case study section illustrates the calculation methodologies that are described above and 
ultimately used in both the scenario and sensitivity analyses. The case study looks at the 
calculation methods and assumptions through the lens of two specific vehicles of interest to 
CARB: the T7 Tractor (heavy heavy-duty tractor truck) and the T6 OOS small (medium heavy-
duty out-of-state truck with GVWR ≤ 26,000 lb) (CARB 2018b). The case-study graphics aim to 
systematically depict some of the key calculation assumptions, limitations, and findings in an 
easier-to-understand format than when aggregated across all the California vehicles, vocations, 
displacements, regions, and scenario descriptions. Additional, single-vehicle results for EMFAC 
vehicles of specific interest to CARB can be found in Appendix A. 

The Scenario Analysis and Sensitivity Analysis sections then summarize the core findings of the 
study, as discussed in Section 2.3.  

2.4.1 Case Study: T7 Tractor and T6 OOS Small Vehicle Life-Cycle Costs 
The life-cycle cost analysis methodologies are most easily understood through a specific 
example. Figure 10 shows the present value annual costs3 for a T7 Tractor (Class 8 line-haul) 
equipped with a 12–13-L diesel engine for two aftertreatment scenarios: (1) current FUL and (2) 
extended FUL. Life-cycle costs include the incremental replacement costs after full useful life is 
achieved (vehicle costs) and potential fuel economy improvements associated with the 
aftertreatment technology discounted back to present value (fuel costs). For the T7 Tractor 12–
13-L engine, the current full useful life is 435,000 miles. If designed for this lifespan, the 
aftertreatment technology would require two replacements. Extending the aftertreatment’s full 
useful life to 1,000,000 miles significantly increases the upfront cost of the aftertreatment 
technology but eliminates the need for replacements through 2050, as seen in Figure 10. 

 
3 The present value annual costs for future years are determined using the discount rate (7% for Figure 10). All 
values are reported in 2018 dollars, consistent with the Task 1 data, and the first year for discounting is assumed to 
be in 2027. Using this convention, the incremental vehicle costs (i.e., those due directly to the aftertreatment 
package) incurred in year 2027 exactly match the Task 1 incremental cost data, while future years are lower due to 
discounting.  
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Figure 10. Annual present value cost for a T7 Tractor 12-L diesel engine designed for current full 
useful life (435,000 miles; top) and extended full useful life (1,000,000 miles; bottom) for MY 2027 

in the South Coast Air Basin with a 2.5% increase in DEF consumption, a discount rate of 7%, and 
national manufacturing volumes 

Figure 11 shows annual costs for a T6 OOS small truck with a 6–7-L diesel engine. For the 
current full useful life design scenario of 110,000 miles, the aftertreatment technology must be 
replaced three times through 2050. Designing the aftertreatment technology for an extended full 
useful life of 550,000 miles results in no aftertreatment replacements through 2050. 

 
Figure 11. Annual present value cost for a T6 OOS small 6–7-L diesel engine designed for current 

full useful life (110,000 miles; top) and extended full useful life (550,000 miles; bottom) for MY 2027 
in the South Coast Air Basin with a 2.5% increase in DEF consumption, a discount rate of 7%, and 

national manufacturing volumes 
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The previous two plots assume that replacement costs are incurred to the owner immediately 
upon termination of full useful life. In practice, full useful life might be extended by routine 
maintenance.4 As a result, Figure 10 and Figure 11 likely represent the upper bound on actual 
life-cycle costs. Statistical analysis of failure rates combined with data on aftertreatment 
technology operating and maintenance costs could give a more accurate depiction of life-cycle 
costs. However, such data were not available for these potential future systems.  

To explore the full useful life replacement assumption, the life-cycle costs of a vehicle can be 
compared assuming either no replacements are completed after vehicle mileage exceeds the 
aftertreatment’s maximum useful life or that replacements are completed. The lower bound on 
life-cycle costs is set by the condition in which no replacements or maintenance are performed 
on the aftertreatment package regardless of vehicle mileage. This is unlikely for the current full 
useful life design but could be realistic for an extended full useful life scenario in which the full 
useful life of the aftertreatment technology is met near the end of life of the entire truck.  

Figure 12 shows total present value cost for the T7 Tractor and T6 OOS small diesel engines as a 
function of the aftertreatment package’s maximum useful life. The orange markers represent the 
upper-cost bound that assumes the aftertreatment package will be replaced after the vehicle 
mileage exceeds the maximum useful life. The blue markers reflect the lower-cost bound of no 
aftertreatment package replacements over the vehicle lifetime. This analysis assumes linear 
increments in aftertreatment cost as the designed full useful life increases from current to 
extended. The actual total present value cost lies somewhere between these two bounds, which 
are typically less than ~$5,000–$7,000 but depend on the vehicle being evaluated. As the 
aftertreatment package maximum useful life increases, the spread between the two conditions 
(orange and blue markers) typically decreases as the number of replacements decreases to zero 
over the lifetime of the vehicle.  

Interestingly, for the T7 Tractor, designing for 75% of extended FUL is slightly more expensive 
than designing for 100% of extended FUL, as the one replacement that would be necessary in 
2047 costs more than the incremental step in upfront cost associated with a 25% longer FUL. 
However, it is unlikely that the truck owner will replace the entire aftertreatment system that 
close to the end of life, indicating that the true cost is likely lower than the value estimated here. 

 
4 It should be noted that rather than incurring the replacement cost at the end of the full useful life, one could 
amortize those costs throughout each year of the vehicle’s operation. This would effectively add incremental routine 
maintenance for each year and the cost would be mathematically equivalent to the end-of-full-useful-life assumption 
calculated here. The true incremental lifetime repair cost depends on the expected failure rates for these new 
aftertreatment packages which were not obtained within this study. 
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Figure 12. Total present value cost for the T7 Tractor and T6 OOS small vehicles with diesel 

engine aftertreatment technology as a function of incremental steps between current FUL and 
extended FUL for two scenarios: replacements at end of FUL (orange) and no replacements (blue) 

Because aftertreatment package repair costs are either paid by the vehicle owner or the vehicle 
manufacturer through the warranty (if applicable), one may expect the higher upfront cost 
incurred to the vehicle owner for an aftertreatment package with extended full useful life and 
extended warranty to be offset by the aftertreatment repair cost savings over the life of the 
vehicle. CARB staff made this assumption when estimating costs for CARB’s 2018 Step 1 
warranty rulemaking, and CARB’s Initial Statement of Reasons (staff report) for this rulemaking 
(CARB 2018a) assumes that the cost of the warranty packages is equivalent to the lifetime repair 
savings that the vehicle owner would realize.  

The incremental upfront purchase cost that one could estimate based on the survey responses for 
extended FUL and warranty, and CA-only volumes, as described in Section 1.4.4, would be 
significantly higher than the repair cost savings that vehicle owners would realize. However, as 
described more fully in Section 1.4.5, the total incremental costs are dominated by the warranty 
incremental costs which were based on an extremely small sample size, which may be biased 
high because of the OEMs’ uncertainty regarding covering warranty for unfamiliar technology 
and much longer useful lives than today’s useful lives. These warranty costs may be interpreted 
to represent “worst case” due to these uncertainties.  

While NREL does not know the method used by each OEM to determine their incremental 
warranty cost estimates and it is beyond the scope of this study to evaluate them in detail, a few 
additional potential reasons for the vehicle owner upfront costs (driven by the high warranty 
costs) being higher than the lifetime marginal repair savings could include: 

• Failure uncertainty – Because the OEMs will not perfectly estimate the probability of 
failure for their aftertreatment packages, they may charge more than needed initially to 
ensure they have enough capital to cover any future liabilities. This would be an amount 
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in excess of what the vehicle owners would actually incur but would be expected to 
decrease over time as the failure rates on new technologies become known with more 
certainty. 

• Cost of capital – The OEMs have higher costs of capital than individual vehicle owners. 
Thus, their cost to reserve funding to cover future warranty liabilities would be more than 
what a vehicle owner would realize in lifetime repair costs on average. 

• Soft costs – The OEMs may have embedded additional “soft” costs into the cost estimate 
for the extended full useful life and extended warranty to account for costs associated 
with warranty administration (tracking warranty data, contacting vehicle owners, 
processing payments), legal liability (increased legal staffing in the event of fraud), and 
potentially others. 

• Customer relationships – Some manufacturers may reduce the price of the 
aftertreatment package with extended warranty for some customers with long-standing 
relationships or high volumes of purchases. These discounts may need to be offset with 
the “typical” aftertreatment cost, which may be reflected in the values reported from 
NREL's survey 

The previous plots assumed medium-cost aftertreatment technologies, U.S. manufacturing 
volumes, up to a 1.25% improvement in fuel economy, a 2.5% increase in DEF consumption, 
and vehicle sales/operation in the South Coast Air Basin region. The next series of plots 
illustrates some sensitivity of present value cost to some of these assumptions. 

Figure 13 shows present value cost of the T7 Tractor and T6 OOS small diesel trucks for the 
three aftertreatment cost scenarios presented in Task 1 for current full useful life. This graphic 
suggests that for a T7 Tractor with a 12–13-L diesel engine with current FUL, the present value 
cost could be ~42% lower or ~65% higher than the average, depending on which aftertreatment 
technology cost is realized. For the T6 OOS small truck with a 6–7-L diesel engine, the cost 
could potentially be 57% lower or 74% higher. 

 
Figure 13. Present value cost for different Class 6 and Class 8 diesel engine aftertreatment 

technologies with current full useful life 
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Figure 14 shows present value cost for different aftertreatment technologies with extended full 
useful life. For this condition, the T6 OOS small truck with a 6–7-L diesel engine could have a 
life-cycle cost 12% lower or higher. For the T7 Tractor with a 12–13-L diesel engine, the range 
in present value cost spans 60% lower or 63% higher, about the average aftertreatment cost 
technology present value.  

 
Figure 14. Present value cost for different Class 6 and Class 8 diesel engine aftertreatment 

technologies with extended full useful life 

Figure 15 shows the present value cost for the T7 Tractor with a 12–13-L diesel engine 
aftertreatment technology manufactured at California and national volumes for current full useful 
life. No OEM data were available for California manufacturing volumes for extended full useful 
life. However, this figure suggests that reducing manufacturing volumes to California scales 
could increase the present value cost by a factor of approximately four to five.  
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Figure 15. Present value cost for the T7 Tractor and T6 OOS small trucks with diesel engines 

designed for current full useful life at both California and national manufacturing volumes 

Figure 16 and Figure 17 show present value cost for the T7 Tractor and T6 OOS small trucks 
with diesel engine aftertreatment technologies as a function of the CA Vision model-defined 
region for current and extended full useful life, respectively. In both cases, regional life-cycle 
differences are very small—generally less than ~$100. While vehicle miles traveled is dependent 
on the region the truck operates in, these differences are small across regions. This leads to the 
conclusion that regional differences in life-cycle costs are not an important factor in the life-
cycle cost assessment.  
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Figure 16. Present value cost for the T7 Tractor and T7 OOS small trucks with diesel engine 

aftertreatment technologies designed for current FUL as a function of region 

 
Figure 17. Present value cost for the T7 Tractor and T7 OOS small trucks with diesel engine 
aftertreatment technologies designed for extended FUL and warranty as a function of region 

2.4.2 Scenario Analysis Results 
This section presents results from a cost analysis of the three different cost scenarios depicted in 
Table 23. The scenario analysis results are summarized for the three different metrics discussed 
in Section 2.3.1:  

1. Life-cycle costs for each vehicle/displacement/fuel/vocation/region combination 
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2. A vehicle sales weighted-average life-cycle cost across all 
vehicle/displacement/fuel/vocation/region combinations 

3. A life-cycle cost across the full California fleet. 

2.4.2.1 Vehicle-Specific Life-Cycle Costs 
The life-cycle cost was calculated for each EMFAC vehicle, engine displacement, fuel 
technology, EMFAC vocation, and region within each of the low-, mid-, and high-cost scenarios. 
This provides vehicle-specific data and can be used to demonstrate the potential life-cycle costs 
that could be realized for each vehicle owner.  

For the low-cost scenario (defined in section 2.3.1), the resulting distribution of vehicle life-cycle 
costs are shown in Figure 18 for each fuel and engine displacement evaluated in this study. Each 
EMFAC vehicle is plotted within a density plot that shows the relative proportion of vehicle 
types that have the associated life-cycle cost. It should be noted that this plot does not account 
for the projected vehicle sales and how those may differ across vehicle types (e.g., the density 
shown does not reflect the number of vehicles in California that will have that cost, but rather the 
number of EMFAC vehicle types that have that cost).  

 
Figure 18. Present value life-cycle cost for all EMFAC vehicles in the low-cost scenario, 

segmented by fuel type and engine displacement (DSL = diesel, GAS = gasoline) 

As seen in Figure 18, some life-cycle costs in the low-cost scenario are negative, indicating the 
fuel economy benefit outweighs the marginal cost of the aftertreatment package. Additionally, 
the spread in life-cycle costs is around ~$4,000 for both diesel engine displacements and is 
primarily due to the different vehicle-miles-traveled profiles across the EMFAC vehicle types. 
Life-cycle costs for natural gas are not shown, as there was only a single-point estimate of 
$3,000 for the incremental aftertreatment cost rather than low/high bounds, so natural gas was 
only evaluated for the mid-cost scenario.  

Figure 19 shows the present value life-cycle costs for the mid-cost scenario for all three fuel 
types. As seen in Figure 19, there could be a significant potential spread in life-cycle costs within 
a single fuel type and engine displacement category. This is primarily due to the different 
mileage requirements for certain vehicles combined with the aftertreatment maximum useful life 
assumption. For the diesel engines, the potential spread in life-cycle costs could be ~$12,000 
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depending on which EMFAC vehicle type is evaluated. The spread is significantly lower for 
gasoline and natural-gas engines because there are very few vehicle types defined in EMFAC 
that use these fuels. 

 
Figure 19. Present value life-cycle cost for all EMFAC vehicles in the mid-cost scenario, 
segmented by fuel type and engine displacement (DSL = diesel, GAS = gasoline, CNG = 

compressed natural gas) 

The present value life-cycle costs for the high-cost scenario for diesel are shown in Figure 20. 
Only diesel is shown because this scenario uses the extended useful life cost data, which are not 
available for gasoline or natural gas. As seen in Figure 20, the life-cycle costs for a vehicle with 
a 6-L diesel engine in this scenario ranges from ~$18,000 to nearly $30,000. The life-cycle cost 
for a vehicle with a 12-L diesel engine ranges from ~$50,000 to $88,000 under this high-cost 
scenario. As seen previously, these higher costs are due to the high incremental cost of the 
aftertreatment package with both an extended maximum useful life and warranty combined with 
the assumption that they are replaced after the vehicle mileage exceeds the maximum useful life. 
The clear definition of two groups of costs in both the 6-L and 12-L engine displacements seen 
in Figure 20 shows that if the aftertreatment package does not need to be replaced, the life-cycle 
cost will be on the lower end of each range. However, if the aftertreatment package is replaced 
(for vehicles that travel more than the extended useful life), the life-cycle cost increases 
significantly to the upper end of the range.  
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Figure 20. Present value life-cycle cost for all EMFAC vehicles in the high-cost scenario, 
segmented by fuel type and engine displacement (DSL = diesel) 

2.4.2.2 Vehicle Sales Weighted Average Costs 
As seen in Section 2.4.2.1, each EMFAC vehicle has a unique life-cycle cost. To combine these 
into a single, typical life-cycle cost to evaluate, a vehicle sales weighted average can be 
completed. Figure 21 shows the vehicle sales weighted-average results for the 6–7-L and 12–13-
L engine aftertreatment technologies. The analysis shows a significant spread in potential cost 
between the three 12–13-L engine cases, ranging from roughly $1,500 all the way up to 
$71,400.5 Most of this spread is associated with the difference between current and extended full 
useful life as discussed in Section 2.4.2.1. These sensitivities are discussed in the following 
section. 

 
Figure 21. EMFAC vehicle sales-weighted average present value cost for 6-L and 12-L diesel 

engine technologies under the three cost scenarios described in Table 23 

Figure 22 shows the scenario analysis for a 12-L compressed natural-gas engine and a 6-L 
gasoline engine. The compressed natural-gas costs are based on NREL estimates and do not 
reflect actual OEM data (only a single-point incremental cost of $3,000 for the aftertreatment 

 
5 These vehicle sales weighted averages are different than the average values shown in the figures in Section 2.4.2.1 
because those averages are simple averages across EMFAC vehicle types without regard to how many of those 
vehicle types are actually sold in California.  
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package). The gasoline engine data are based on a small number of OEM estimates with limited 
spread in upfront cost. As a result, the differences between cases are small. Interestingly, for the 
low-cost scenario of the gasoline engine, the fuel economy benefits effectively cancel out the 
incremental aftertreatment package costs, resulting in a near-zero life-cycle cost.  

 
Figure 22. Scenario analysis for a 12-liter compressed natural-gas and 6-liter gasoline engine 

2.4.2.3 California Fleet Life-Cycle Costs 
The life-cycle cost across the full California fleet was evaluated to better understand what the 
total cost to all vehicle owners in California would be. As described in Section 2.3.1, this fleet 
calculation accounts for vehicle attrition over time because not all vehicles in the fleet will last 
through 2050.  

Figure 23 shows the total California fleet costs for MY 2027 for each scenario evaluated in this 
study. The fleet costs aggregate all fuel types and engine displacements into a single cost metric. 
As seen in Figure 23, the total fleet life-cycle cost for the MY 2027 vehicles could range from 
$92 million to $1.2 billion depending on the scenario. As seen before, the large spread in costs 
across scenarios is primarily due to the higher incremental costs for the aftertreatment extended 
useful life and extended warranty, which are used in the high-cost scenario.  

 
Figure 23. Total California fleet life-cycle cost for the MY 2027 vehicles for each scenario analyzed 
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2.4.3 Sensitivity Analysis Results 
To better understand how each particular parameter assessed in this study impacts the vehicle’s 
incremental life-cycle cost, a sensitivity analysis was completed. The vehicle sales weighted 
average for the mid-cost scenario (see Section 2.4.2.2 for details) was used as the starting 
(central) point for the sensitivity analysis.  

Figure 24 shows the sensitivity analysis results for the diesel 6–7-L and 12–13-L engines. The 
sensitivity results are relative to the vehicle sales weighted-average costs of $12,700 and $13,200 
for the 6–7-L and 12–13-L engines, respectively. For the 12-L engine, the most influential 
parameter is manufacturing volume, but this is based on a very limited feedback in the cost 
survey (Section 1.3.2) and thus was not used outside of this sensitivity analysis. Extended full 
useful life is the next most significant parameter, which also includes the cost associated with the 
extended warranty. Figure 24 shows the impact of the extended useful life along with 25% 
increments between the current useful life and extended useful life (linear interpolation of costs 
from the two data points). Each step helps illustrate how the cost increases as the full useful life 
increases up to the extended full useful life mileage.  

 
Figure 24. Sensitivity diagram for the diesel 6–7-L and 12–13-L engines relative to the mid-cost 

scenario 

The influence of the incremental aftertreatment technology cost (Task 1 data) is relatively small 
compared to the aforementioned factors and has the potential to be nearly offset by fuel economy 
improvements. Discount rate and DEF consumption have minimal influences on the life-cycle 
cost. For the 6–7-L diesel engine, the aftertreatment cost (incremental cost data from Task 1) was 
the most influential sensitivity parameter for which data were available. Manufacturing volume 
may be more significant, as seen in the 12–13-L engine case, but no data were available for 
California-only manufacturing volume costs for the 6–7 L. 

Because no cost data were available for the effect of manufacturing volume or extended useful 
life, the sensitivity plots for gasoline and natural gas engines have fewer parameters. Figure 25 
shows the sensitivity analysis results for gasoline engines. As seen in Figure 25, the gasoline 
engine life-cycle cost is impacted most by the fuel economy change and incremental 
aftertreatment cost parameters. This indicates that if the fuel economy benefit is realized, it will 
likely fully offset the incremental aftertreatment costs.  



60 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 25. Sensitivity diagram for the gasoline 6-L engine relative to the mid-cost scenario 

Figure 26 shows the sensitivity analysis results for the natural-gas engine. Fuel economy impacts 
and discount rate are approximately equal in magnitude but opposite in the direction of their 
influence. 

 
Figure 26. Sensitivity diagram for the natural-gas 12-L engine relative to the mid-cost scenario 

2.5 Life-Cycle Cost Analysis Summary and Conclusions 
The life-cycle cost analysis seeks to incorporate all direct and indirect incremental costs 
associated with the different engine aftertreatment technologies over the life of the vehicle. Three 
scenarios were defined and evaluated to estimate the life-cycle cost across vehicles in California 
under different conditions.  

The scenario results suggest that the life-cycle cost incurred to each vehicle owner depends 
significantly on the vehicle type and scenario evaluated. Within a given scenario, the spread in 
life-cycle costs incurred ranges from $4,000 in the low-cost scenario up to nearly $40,000 in the 
high-cost scenario. Drilling down to the specific EMFAC vehicle definitions (e.g., T7 Tractor), 
the incremental replacement costs and potential cost savings associated with improved engine 
fuel economy are two dominant parameters. Because each vehicle has a different mileage profile 
over its lifetime, the replacement costs and fuel economy savings can vary substantially between 
vehicles. For example, extending the aftertreatment package’s full useful life from current 
mileages to proposed mileages has the potential to significantly reduce, if not eliminate, the need 
for aftertreatment technology replacements through 2050 for some vehicles, but not others. 
Additionally, this extension results in little, if any, reduction in present value cost for the 6–7-L 
diesel engines and increases present value cost substantially for the 12–13-L diesel engines.  

The scenario results also showed that the total California fleet life-cycle costs for the MY 2027 
vehicles could be between $92 million and $1.2 billion depending on the scenario realized. 
Again, the largest factor differentiating scenarios was whether the current or extended full useful 
life costs were used.  
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Next, the vehicle sales weighted-average costs provide an approximate, representative per-
vehicle life-cycle cost for each scenario. For the mid-cost scenario, the life-cycle cost could be 
$12,700 and $13,200 for the diesel 6–7-L and 12–13-L engines, respectively. For the mid-cost 
scenario, the natural gas life-cycle cost is estimated to be $4,800 while the gasoline engine life-
cycle cost is $800.  

Lastly, the life-cycle cost results suggest that regional impacts across California are minimal, 
while manufacturing volume could have a significant impact on present value cost. Very little 
data were available for California-only manufacturing volumes, but the data available suggest 
the costs could be 4–5 times more than if a national manufacturing volume was realized.  
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3 Conclusions 
The incremental cost analysis was constructed to bracket a range of potential incremental costs 
associated with achieving 0.02 g/bhp-hr NOx emissions over certification cycles, including a new 
proposed LLC. Diesel engines were the primary consideration, as they comprise the majority of 
HD engines. Incremental cost bracketing included three diesel engine and aftertreatment 
technology packages, two diesel engine displacements, MY 2023 versus 2027 introduction, U.S. 
versus California-only implementation, and current FUL versus extended FUL and warranty. 
Direct and indirect incremental costs were broken down to as discrete a level as possible while 
maintaining data confidentiality. The calculation of incremental costs was limited by the small 
number of respondents. Engine OEM participation was crucial, as only they could provide 
estimates for indirect costs, which represented a significant portion of the total cost. 

The average incremental cost for the 6–7-L diesel engines for MY 2023 with current FUL ranged 
from $3,685 to $5,344, but the absolute low and high bounds were between ~$2,000 and over 
$9,000. Extending FUL and warranty moved the average incremental costs to a range of $15,370 
to $16,245, with tighter low and high bounds (constrained in part by the limited number of 
responses). The average incremental cost for the 12–13-L diesel engines for MY 2023 with 
current FUL ranged from $5,340 to $6,063, but the absolute low and high bounds were between 
~$3,000 and over $10,000. Extending FUL and warranty moved the average incremental costs to 
a range of $28,868 to $47,042, with much wider low and high bounds (driven in part by the 
limited number of responses). The natural gas 12-L engine application was unable to be studied 
in detail, but OEM feedback anticipated that the incremental cost for natural-gas engines and 
aftertreatment technology is within 10% of the low-cost diesel technology package for equivalent 
displacement, specifically due to possibly requiring a moving average window method to assess 
emission compliance. The gasoline engine 6-L application was also unable to be studied in 
detail, but comparatively low incremental costs were estimated. 

Incremental costs are largely driven by indirect costs associated with engineering research and 
development costs, plus warranty. Those indirect costs, in turn, are driven by production 
volumes and amortization. 

The life-cycle cost analysis incorporates all direct and indirect incremental costs associated with 
the different engine aftertreatment technologies over the life of the vehicle. The life-cycle costs 
depend on the vehicle type (mileage), region, fuel, engine displacement, maximum useful life, 
fuel economy change, diesel exhaust fluid consumption change, and discount rate. The primary 
drivers of life-cycle cost were the incremental aftertreatment replacement costs and fuel 
economy benefits.  

For the three scenarios evaluated (low-cost, mid-cost, high-cost), the life-cycle costs were 
evaluated for each EMFAC vehicle type, aggregated to a representative average, and also 
calculated across the vehicle fleet for the model year 2027 vehicles. The analysis showed that 
EMFAC vehicles can have significantly different life-cycle costs, and that spread depends on the 
scenario evaluated: approximately a $4,000 spread across vehicle types in the low-cost scenario, 
while the high-cost scenario had nearly a $40,000 difference. This large spread was found to be 
due to the number of aftertreatment package replacements needed throughout the vehicle 
lifetime. The aggregated, representative average life-cycle costs for the mid-cost scenario were 
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estimated to be $12,700 for the 6–7-L diesel engine, $13,200 for the 12–13-L diesel engine, 
$4,800 for the 12-L natural-gas engine, and $800 for the 6-L gasoline engine. The total life-cycle 
cost to California vehicle owners for the model year 2027 vehicles was estimated to range 
between $92 million and $1.2 billion depending on the scenario (low-cost or high-cost) realized.  

The sensitivity analysis indicated that the manufacturing volume may be the most important 
parameter impacting the life-cycle cost; however, limited data were received from the external 
stakeholders surveyed. The next most important parameter was the assumption of extended 
useful life and extended warranty, as the increase in aftertreatment lifetime may not exceed the 
vehicle’s travel requirement, which results in larger replacement costs over the vehicle’s life. 
The aftertreatment cost bound (low/high error bars on the incremental cost data), fuel economy 
improvement, and discount rate were found to have a moderate impact on the life-cycle cost. 
Lastly, the region and DEF consumption change were found to have minimal influence on the 
life-cycle cost.   
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Appendix A. Selected Results for Specific EMFAC 
Vehicles of Interest to CARB 
In addition to the life-cycle costs presented in this report, the California Air Resources Board 
(CARB) indicated a specific interest in the following EMission FACtor (EMFAC) vehicles 
(CARB 2018b):  

Table A1. EMFAC Vehicles of Interest to CARB 

EMFAC Vehicle EMFAC Description (GVWR = Gross Vehicle Weight Rating) 

T7 Tractor Heavy Heavy-Duty Diesel Tractor Truck 

T7 Single Heavy Heavy-Duty Diesel Single Unit Truck 

T7 POLA Heavy Heavy-Duty Diesel Drayage Truck near South Coast 

T6 OOS Heavy Medium Heavy-Duty Diesel Out-of-State (OOS) Truck with GVWR > 26,000 lb 

T6 OOS Small Medium Heavy-Duty Diesel Out-of-State Truck with GVWR ≤ 26,000 lb 

Per the CA Vision 2.1 model, the vehicle-miles-traveled profiles for these vehicles with a model 
year (MY) of 2027 in the South Coast Air Basin (SCAB) region are shown in Figure A1.  

 
Figure A1. Selected EMFAC vehicle miles traveled for MY 2027 in the SCAB region 

For these vehicles, the life-cycle costs for each scenario evaluated (low-cost, mid-cost, and high-
cost) are shown in the following figures. Figure A2 shows the life-cycle costs for the low-cost 
scenario, Figure A3 shows the results for the mid-cost scenario, and Figure A4 shows the results 
for the high-cost scenario. These results are aggregated for each vehicle, which accounts for the 
costs incurred from the aftertreatment package as well as any potential fuel economy benefit 
associated with the scenario.  
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Of note, the individual vehicle life-cycle cost results are very close to the representative life-
cycle costs estimated using the vehicle sales weighted average shown in Figure 21 in Section 
2.4.2.2.  

 
Figure A2. Present value life-cycle cost for selected EMFAC vehicles (MY 2027 in the SCAB 

region) for the low-cost scenario 

 
Figure A3. Present value life-cycle cost for selected EMFAC vehicles (MY 2027 in the SCAB 

region) for the mid-cost scenario 

 
Figure A4. Present value life-cycle cost for selected EMFAC vehicles (MY 2027 in the SCAB 

region) for the high-cost scenario 
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Appendix B. EMFAC Vehicle Disaggregation 
The EMFAC vehicles needed to be broken down into the appropriate fuel and engine 
displacement categories. The IHS Markit (formerly Polk) Department of Motor Vehicles 
registration database was used to disaggregate the EMFAC vehicles. The same disaggregation 
was used for each CA Vision region and the first few results are summarized in Table B1, while 
the full table is provided in a separate file. 

Table B1. EMFAC Vehicle Disaggregation Results 

EMFAC 2011 Vehicle Displacement 
(L) 

GVWR Class Fraction (veh/veh) 

MH 12 7 0.6008 

MH 15 7 0.3992 

T6 Ag 6 4 0.3302 

T6 Ag 9 4 0.0063 

T6 Ag 6 5 0.1554 

T6 Ag 9 5 0.0095 

T6 Ag 6 6 0.1936 

T6 Ag 9 6 0.0995 

T6 Ag 6 7 0.0975 

T6 Ag 9 7 0.1081 

T6 CAIRP heavy 6 7 0.4743 

T6 CAIRP heavy 9 7 0.5257 

T6 CAIRP small 6 4 0.4156 

T6 CAIRP small 9 4 0.0079 

T6 CAIRP small 6 5 0.1956 

T6 CAIRP small 9 5 0.0119 

T6 CAIRP small 6 6 0.2437 

T6 CAIRP small 9 6 0.1253 

T6 instate construction heavy 6 7 0.4743 

T6 instate construction heavy 9 7 0.5257 

T6 instate construction small 6 4 0.4156 

T6 instate construction small 9 4 0.0079 

T6 instate construction small 6 5 0.1956 
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EMFAC 2011 Vehicle Displacement 
(L) 

GVWR Class Fraction (veh/veh) 

T6 instate construction small 9 5 0.0119 

T6 instate construction small 6 6 0.2437 

T6 instate construction small 9 6 0.1253 

T6 instate heavy 6 7 0.4743 

T6 instate heavy 9 7 0.5257 

T6 instate small 6 4 0.4156 

T6 instate small 9 4 0.0079 

T6 instate small 6 5 0.1956 

T6 instate small 9 5 0.0119 

T6 instate small 6 6 0.2437 

T6 instate small 9 6 0.1253 
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