

Prepared in cooperation with the MONTANA DEPARTMENT OF HIGHWAYS and the U.S. BUREAU OF LAND MANAGEMENT

Front cover: Upper photograph shows channel-width measurement site on Canyon Creek near Birney, Montana (station 06307520). Lower photograph shows channel-width measurement site on Big Sheep Creek below Muddy Creek, near Dell, Montana (station 06013500).

(200) WRi

REVISED TECHNIQUES FOR ESTIMATING PEAK

DISCHARGES FROM CHANNEL WIDTH IN MONTANA

By Charles Parrett, J.A. Hull, and R.J. Omang

U.S GEOLOGICAL SURVEY

Water-Resources Investigations Report 87-4121

Prepared in cooperation with the MONTANA DEPARTMENT OF HIGHWAYS and the U.S. BUREAU OF LAND MANAGEMENT

Helena, Montana October 1987 DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 428 Federal Building 301 South Park, Drawer 10076 Helena, MT 59626-0076 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center, Building 41 Box 25425 Denver, CO 80225-0425

CONTENTS

Page

Abstract	L
Introduction	2
Data used	2
Channel geometry	3
Regression analysis	3
Discussion	5
Regression results	5
Comparison with previous studies	3
Limitations and reliability	3
Summary	5
Selected references	7

ILLUSTRATIONS

Figure l.	Map showing location of selected streamflow-gaging stations	
	and regional boundaries	4
2-4.	Graphs showing relations between:	
	2. 5-year flood and channel width	15
	3. 25-year flood and channel width	16
	4. 100-year flood and channel width	17
5-7.	Graphs showing comparison between old and new prediction equations in the:	
	5. West and Northwest Regions	21
	6. North-Central and Southeast Regions	22
	7. Southwest Region	23

TABLES

Table l.	Results of regression analysis	7
2.	Comparison between old and new regression equations	19
3.	Range of active-channel and bankfull widths used in regression	
	analysis	24
4.	Peak discharges and channel widths at selected gaging stations	28

CONVERSION FACTORS

For those readers who may prefer to use metric (International System) units rather than inch-pound units, the conversion factors for the terms used in this report are listed below.

Multiply inch-pound unit	By	To obtain metric unit		
cubic foot per second	0.02832	cubic meter per second		
foot	0.3048	meter		
mile	1.609	kilometer		

REVISED TECHNIQUES FOR ESTIMATING PEAK DISCHARGES

FROM CHANNEL WIDTH IN MONTANA

by

Charles Parrett, J.A. Hull, and R.J. Omang

ABSTRACT

This study was conducted to develop new estimating equations based on channel width and the updated flood-frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10, 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimate for the equations that use active-channel width as the independent variable ranged from 30 to 87 percent. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34 to 92 percent. The smallest standard errors generally occurred in the prediction equations for the 2-year flood, 5-year flood, and 10-year flood, and the largest standard errors occurred in the prediction equations for the 100-year flood. The equations that use active-channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on activechannel width, whereas in the East-Central Region the equations that use active-channel width were slightly more reliable than those based on Compared with similar equations previously developed, bankfull width. the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions.

Limitations on the use of the estimating equations include the following:

1. The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge.

2. The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement error.

3. Reliability of results from the equations for channel widths beyond the range of definition is unknown.

In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances and averaged. The weighted average estimate will have a variance less than either individual estimate.

INTRODUCTION

Reliable estimates of flood magnitudes for various recurrence intervals are essential for the economic design of bridges, culverts, and other structures located adjacent to streams. In addition, sound planning and land-use decisions for areas bordering streams require information about the flood potential of streams. Previous studies in Montana (Omang and others, 1983; Parrett and others, 1983) determined that measurements of channel width could be used to estimate peak discharges of various recurrence intervals with reasonably good accuracy. These studies were based on streamflow data through 1978 at 281 streamflow-gaging stations throughout Montana. By 1983, almost 100 additional stations had accumulated 10 or more years of record and all stations previously used had accumulated 5 more years of record. Accordingly, Omang and others (1986) updated the flood-frequency curves using data through 1983 at all stations having at least 10 years of record.

The purpose of this study was to develop new estimating equations based on channel width and the updated flood-frequency curves of Omang and others (1986). This report presents the revised equations, compares them with the previously developed equations, and describes their limitations and reliability. Measurements of channel width were made at all gaging-station sites in Montana where 10 years of record became available in 1983 and where channel-geometry features were discernible, and at 43 sites outside of Montana but near the State border. These data, together with channel-geometry data collected prior to 1983 and the revised flood-frequency information through 1983, were used to develop new estimating equations that relate channel width to peak discharges of various recurrence intervals.

This report was prepared in cooperation with the Montana Department of Highways and the U.S. Bureau of Land Management. The streamflow-gaging stations used in this study were funded by the U.S. Geological Survey and various other Federal, State, and local agencies.

DATA USED

Peak discharges for recurrence intervals of 2, 5, 10, 25, 50, and 100 years were computed by Omang and others (1986) using data from 361 streamflow-gaging stations having at least 10 years of record through 1983. Of these stations, 4 are in Canada, 7 are in Wyoming, 22 are in Idaho, 9 are in North Dakota, and 1 is in South Dakota. The peak discharges were computed using procedures recommended by the U.S. Water Resources Council (1981).

Channel-geometry features were measured by U.S. Geological Survey personnel at or near each gaging station used in the analysis. At stations used in the previous studies, measurements were made from 1978 through 1980. At all new sites, measurements were made in 1985. The locations of all streamflow-gaging stations where flood-peak characteristics were computed and channel geometry was measured for this analysis are shown in figure 1. The relevant information at the sites is listed in table 4 at the end of the report.

2

CHANNEL GEOMETRY

The channel-geometry features measured at all new sites in 1985 were activechannel width and bankfull width. At sites previously measured from 1978 through 1980, active-channel depth and bankfull depth were also measured, and the material comprising the channel bed and banks was described. Previous analyses of channel geometry indicated insignificant correlation between peak flow and channel depth or between peak flow and bed or bank material; therefore these features were not measured or included in the present analysis.

The active channel has been described by Osterkamp and Hedman (1977, p. 256) as "***a short-term geomorphic feature subject to change by prevailing discharges. The upper limit is defined by a break in the relatively steep bank slope of the active channel to a more gently sloping surface beyond the channel edge. The break in slope normally coincides with the lower limit of permanent vegeta-tion***."

The bankfull-channel width was described by Riggs (1974) as the horizontal distance between the tops of the banks of the main channel. The top of the bank is defined as the place where the flood plain and the channel intersect and is usually distinguished by an abrupt change in slope from near-vertical to horizontal. This reference level is virtually the same as the bankfull stage for perennial streams described by Wolman (1955) as the stage at which overbank flooding occurs.

At most sites used in the analysis, suitable channel reaches for measuring both active-channel width and bankfull width were found at or near the gaging stations. Each width was measured twice, and usually three times at locations separated by at least one channel width, and the separate measurements were averaged to yield a single value for each width feature. At some locations the stream channels were deeply incised, and the bankfull channel could not be readily identified. Only active-channel width was determined at these sites.

REGRESSION ANALYSIS

Equations for the estimation of peak discharge for various recurrence intervals were developed from a simple regression analysis that relates the peak discharges to active-channel width and to bankfull width. As in previous studies, all data were converted to logarithms so that the regression equations were of the following form:

$$Log Q_m = log a + b log W,$$
(1)

where

- Q_m (dependent variable) is the peak discharge, in cubic feet per second, with a recurrence interval of *m* years;
- a is the regression constant;
- b is the regression coefficient; and
- W is either the active-channel width or the bankfull width, in feet.

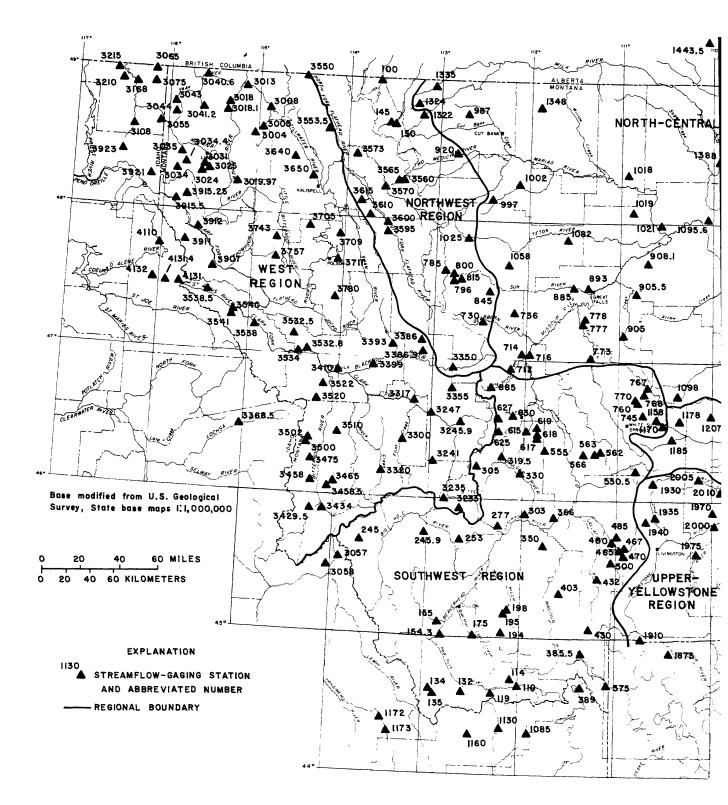
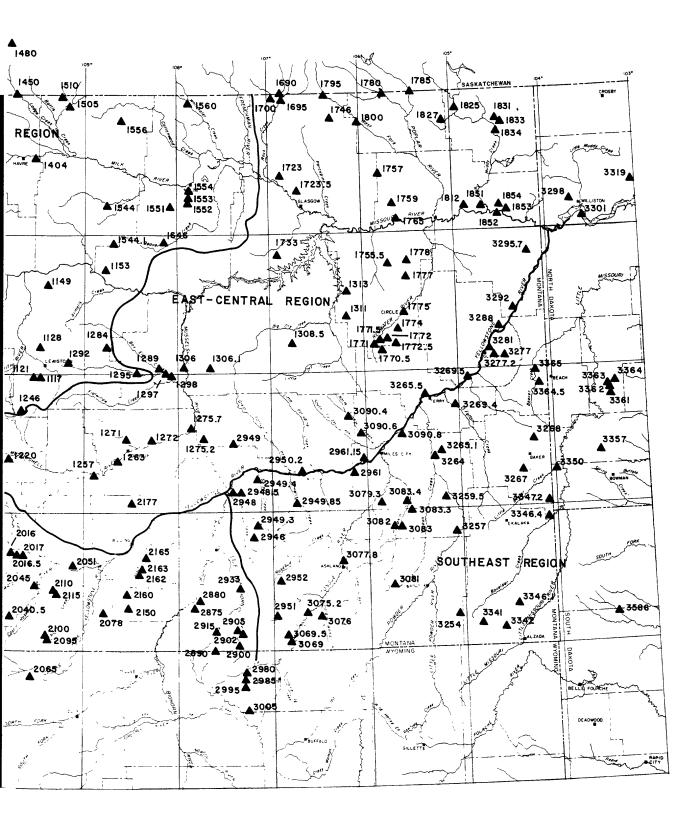



Figure 1.--Location of selected streamflow-gaging

stations and regional boundaries.

Taking antilogarithms of all values yields the following power-function form of the equation:

$$Q_m = a W^b \tag{2}$$

Separate equations that relate peak discharges with recurrence intervals of 2, 5, 10, 25, 50, and 100 years to active-channel width and to bankfull width were developed. The initial computations with each discharge were made with all sites in the study area included. The regression residuals (difference between actual peak discharges and computed peak discharges) from the initial computations were examined and used as a basis for separating the study area into the seven regions shown in figure 1. Separate regression equations for each discharge were then developed for each region.

The boundaries for the regions were located on topographic divides or prominent geographic features where possible. In addition, an attempt was made to locate the regional boundaries as close as possible to the regional boundaries used in the previous reports relating discharge to channel geometry. Complete agreement was not possible, although the boundaries within Montana for the West, Northwest, North-Central, and Southwest Regions are virtually identical with regional boundaries shown in the report by Parrett and others (1983). Likewise, the boundaries within Montana for the Southeast Region are virtually identical with the boundaries shown in the report by Omang and others (1983). The regional boundaries used in this study are also reasonably close to the regional boundaries used in the report by Omang and others (1986) relating peak discharges to basin and climatic characteristics. The physiographic and climatic descriptions of the regions as reported by Omang and others (1986) are considered to be applicable to the regions identified in this report.

DISCUSSION

Regression Results

The results of the regression analysis for each region are given in table 1. The standard error of estimate is the standard deviation of the residuals and is a measure of how well the regression equation fits the data. In general, the smaller the standard error, the closer the fit to the data and the more reliable the prediction equation. The coefficient of determination (r^2) is a measure of the degree of linear association between the dependent variable (peak discharge) and the independent variable (channel width). A coefficient of determination of 1.00 indicates a perfect linear correlation between the dependent and independent variables.

As indicated in table 1, the prediction equations for the 2-year flood peak, 5-year flood peak, and 10-year flood peak generally have the largest coefficients of determination and the smallest standard errors. Conversely, the prediction equations for the 100-year flood peak generally have the smallest coefficients of determination and the smallest standard errors. Notable exceptions occur in the non-mountainous regions (North-Central, East-Central, and Southeast), where prediction equations for the 2-year flood peak generally have the smallest coefficients of determination and the largest standard errors.

			Coefficient of determination	of est	andard error imate
Region	Regression	equation	(r ²)	Log units	Percent
	Acti	ve-channel	width (W _{AC}). No.	• of sites = 78	
West	$Q_2 = 1.07$	W _{AC} ^{1.82}	0.93	0.199	49
	Q ₅ = 2.76	W _{AC} ^{1.66}	•92	•192	46
	$Q_{10} = 4.49$	W _{AC} ^{1.57}	•91	•201	49
	$Q_{25} = 7.50$	W _{AC} ^{1.49}	•88	•219	54
	$Q_{50} = 10.4$	W _{AC} ^{1.43}	•85	•235	59
	$Q_{100} = 14.0$	W _{AC} ^{1.38}	•82	•253	63
	В	ankfull wid	lth (W _{BF}). No. of	E sites = 73	
	$Q_2 = 0.265$	W _{BF} 2.06	•94	.187	46
	$Q_5 = 0.743$	W _{BF} ^{1.89}	•94	•168	41
	$Q_{10} = 1.26$	W _{BF} ^{1.81}	•93	•172	41
	$Q_{25} = 2.21$	W _{BF} ^{1.71}	•91	•188	43
	$Q_{50} = 3.16$	W _{BF} 1.65	•89	•203	49
	$Q_{100} = 4.34$	$W_{\rm BF}^{1.60}$	•86	•222	54

Table 1.--Results of regression analysis

[Q, peak discharge, in cubic feet per second, for a given recurrence interval, in years]

2

.

			Coefficient of determination	Average sta of esti	andard error imate
Region	Regression e	equation	(r ²)	Log units	Percent
					
	Activ	ve-channel	width (W _{AC}). No.	of sites = 21	
North-	$Q_2 = 2.31$	$W_{AC}^{1.57}$	•90	.187	45
west	$Q_5 = 6.40$	$W_{AC}^{1.43}$	• 88	.185	45
	$Q_{10} = 11.3$	$W_{AC}^{1.35}$	•86	.198	48
	$Q_{25} = 21.4$	$W_{AC}^{1.28}$	•83	.210	51
	$Q_{50} = 36.2$	$W_{AC}^{1.24}$	•82	•206	50
	Q ₁₀₀ = 66.0	W _{AC} ^{1.19}	.77	•234	58
	Ba	nkfull wid	dth (W _{BF}). No. of s	sites = 20	
	$Q_2 = 0.712$	W _{BF} ^{1.76}	•90	.185	45
	$Q_5 = 2.11$	$W_{BF}^{1.61}$	•90	.175	42
	$Q_{10} = 3.87$	$W_{\rm BF}^{1.53}$	•88	.185	45
	$Q_{25} = 7.57$	$W_{BF}^{1.45}$	•85	.195	47
	$Q_{50} = 13.1$	$W_{\rm BF}^{1.41}$.85	.189	46
	$Q_{100} = 24.4$	W _{BF} ^{1.37}	.80	•218	54

			Coefficient of determination	Average sta of est	andard error Imate
Region	Regression	equation	(r ²)	Log units	Percent
					······
	Acti	ve-channel	width (W _{AC}). No. o	f sites = 50	
North-	$Q_2 = 5.38$	W _{AC} ^{1.23}	•70	•318	85
Central	$Q_5 = 17.3$	W _{AC} ^{1.19}	•80	•238	60
	$Q_{10} = 32.8$	$W_{AC}^{1.15}$	•80	•225	57
	$Q_{25} = 66.1$	W _{AC} ^{1.10}	•78	•234	57
	Q ₅₀ =106	W _{AC} ^{1.06}	•73	•255	63
	Q ₁₀₀ =165	W _{AC} ^{1.01}	•66	.286	75
	Ba	ankfull wid	ith ($W_{ m BF}$). No. of s	ites = 49	
	$Q_2 = 1.40$	W _{BF} 1.40	•65	•343	92
	$Q_5 = 4.28$	W _{BF} ^{1.49}	•78	.249	63
	$Q_{10} = 8.19$	W _{BF} ^{1.46}	.80	.227	57
	$Q_{25} = 16.9$	W _{BF} ^{1.41}	.79	.227	57
	$Q_{50} = 28.1$.75	.246	63
	Q ₁₀₀ = 45.3	W _{BF} ^{1.31}	.69	•276	71

			Coefficient of determination	Average sta of est:	andard error imate
Region	Regression	equation	(r ²)	Log units	Percent
	Acti	.ve-channel	width (W _{AC}). No. o	of sites = 65	
East-	$Q_2 = 11.6$	W _{AC} ^{1.10}	•61	• 325	87
Central	$Q_5 = 35.3$	W _{AC} ^{1.10}	•70	•267	68
	$Q_{10} = 62.1$	W _{AC} ^{1.09}	•70	•261	66
	Q ₂₅ =111	W _{AC} ^{1.07}	•68	•271	69
	Q ₅₀ =160	W _{AC} ^{1.06}	•65	•285	73
	Q ₁₀₀ =221	W _{AC} ^{1.04}	•62	•300	78
	E	Sankfull wid	Ith (W _{BF}). No. of s	sites = 63	
	$Q_2 = 4.11$	W _{BF} ^{1.20}	•58	•337	91
	$Q_5 = 12.1$	W _{BF} ^{1.22}	•68	•276	71
	$Q_{10} = 21.4$	W _{BF} ^{1.21}	•69	•269	68
	$Q_{25} = 39.1$	W _{BF} ^{1.19}	•66	.279	71
	$Q_{50} = 57.4$	W _{BF} ^{1.17}	•63	.292	76
	Q ₁₀₀ = 81.7	W _{BF} ^{1.14}	•59	•310	82

Table 1.--Results of regression analysis--Continued

- •

			Coefficient of determination	Average standard error of estimate	
Region	Regression	equation	(r ²)	Log units	Percent
<u> </u>					
	Acti	ve-channel	width (W _{AC}). No. o	of sites = 46	
South-	$Q_2 = 7.07$	W _{AC} ^{1.27}	•70	•311	82
east	$Q_5 = 20.3$	W _{AC} ^{1.25}	•79	•245	60
	$Q_{10} = 33.5$	W _{AC} ^{1.25}	•81	•227	57
	$Q_{25} = 56.8$	W _{AC} ^{1.25}	•80	•238	60
	$Q_{50} = 78.5$	W _{AC} ^{1.25}	•77	•257	66
	Q ₁₀₀ =105	W _{AC} ^{1.25}	•73	•283	72
	В	ankfull wic	lth (W _{BF}). No. of s	sites = 46	
	$Q_2 = 1.87$		•75	•283	72
	$Q_5 = 5.85$		•81	•228	57
		W _{BF} ¹ •37	•82	•222	54
	$Q_{25} = 17.8$		•78	•247	63
	$Q_{50} = 25.5$		•74	•274	69
		W _{BF} ^{1.32}	•69	• 306	82

Table 1.--Results of regression analysis--Continued

			Coefficient of determination	Average standard error of estimate	
Region	Regression e	equation	(r ²)	Log units	Percent
	Activ	ve-channel	width (W _{AC}). No. c	of sites = 39	
Upper	$Q_2 = 2.86$	W _{AC} ^{1.48}	•93	•157	37
Yellow- stone	$Q_5 = 14.6$	W _{AC} ^{1.18}	•92	.128	30
	$Q_{10} = 35.6$	$W_{AC}^{1.01}$	•89	.139	33
	$Q_{25} = 94.5$	W _{AC} 0.83	•78	•169	40
	Q ₅₀ =180	$W_{AC}^{0.71}$	•66	•196	48
	Q ₁₀₀ =326	W _{AC} 0.60	•51	•224	55
	Ва	inkfull wid	lth (W _{BF}). No. of s	ites = 37	
	$Q_2 = 0.726$	W _{BF} ^{1.73}	•88	•201	49
	$Q_5 = 4.67$	W _{BF} ^{1.39}	.9 0	•149	36
	$Q_{10} = 12.7$	W _{BF} ^{1.21}	•88	•142	34
	$Q_{25} = 37.6$	W _{BF} ^{1.01}	•81	•158	38
	$Q_{50} = 76.3$	W _{BF} 0.89	•71	•180	43
	Q ₁₀₀ =145	$W_{\rm BF}^{\rm 0.77}$	•59	•205	50

Table 1.--Results of regression analysis--Continued

			Coefficient of determination	Average standard error of estimate	
Region	Regression	equation	(r ²)	Log units	Percent
	Acti	ve-channel	width (W _{AC}). No. c	of sites = 61	
South-	$Q_2 = 0.915$	W _{AC} ^{1.76}	.89	•234	57
west	$Q_5 = 2.89$	W _{AC} ^{1.55}	•90	.198	49
	$Q_{10} = 5.21$	$W_{AC}^{1.45}$	•89	•195	49
	Q ₂₅ = 9.90	W _{AC} ^{1.33}	•86	•206	51
	$Q_{50} = 14.9$	W _{AC} ^{1.26}	•83	•220	54
	$Q_{100} = 21.6$	$W_{AC}^{1.20}$	•78	•239	60
	В	ankfull wid	lth (W _{BF}). No. of s	sites = 59	
	$Q_2 = 0.189$	W _{BF} ^{2.07}	•89	•235	60
	$Q_5 = 0.722$	W _{BF} ^{1.82}	•90	•199	49
,	$Q_{10} = 1.42$	W _{BF} 1.70	•89	.194	46
	$Q_{25} = 2.94$	W _{BF} ^{1.57}	•87	•200	49
	$Q_{50} = 4.64$	W _{BF} ^{1.49}	•84	•212	51
	$Q_{100} = 7.02$	W _{BF} ^{1.42}	•80	•228	57

.

·

In most regions, the equations based on active-channel width and the equations based on bankfull width have about the same standard errors. In the West Region, the equations based on bankfull width have standard errors that are slightly less than those based on active-channel width. In the East-Central Region the equations based on active-channel width have standard errors that are slightly smaller than those based on bankfull width.

Among regions, the equations appear to be more reliable in the mountainous western and southern parts of the State (West, Northwest, Southwest, and Upper Yellowstone Regions) than in the plains areas of the eastern and northern parts of the study area (North-Central, East-Central, and Southeast Regions). Peak flows in the plains regions commonly are the result of sporadic, intense thunderstorms and thus exhibit much larger variability than in the mountainous regions where peak flows are more commonly the result of snowmelt and large-scale frontal rainfall.

The differences in peak discharge estimation from region to region are illustrated in figures 2 through 4. The relationships between predicted peak discharge with a 5-year recurrence interval and widths, both active-channel and bankfull, are shown in figure 2. The slopes of these regression lines are about the same in all regions except the West and Southwest. The regression lines for these two regions have the steepest slopes, and the equations yield the smallest estimates of the 5-year flood for widths less than about 30 feet. The trend is similar for the 25-year flood (fig. 3), where the West and Southwest Regions have regression lines with the steepest slopes that yield substantially smaller estimates of 25-year peak discharge than the other regions for widths less than about 50 feet. In addition, figure 3 shows that the Upper Yellowstone Region has the regression line with the flattest slope. In figure 4, the regression lines for all regions except the Upper Yellowstone have about the same slope, but the West and Southwest Regions have lines that yield markedly smaller estimates of the 100-year flood for widths less than about 50 feet. The regression line for the Upper Yellowstone Region is significantly flatter than the regression line for any other region and yields the smallest estimates of the 100-year flood for widths larger than about 50 feet.

These figures indicate that, except for the Northwest Region and for small streams in the Upper Yellowstone Region, the channel width equations for the mountainous areas of Montana yield estimates of peak discharge for given channel widths and for recurrence intervals larger than 25 years that are consistently smaller than those for non-mountainous areas. The streams in the Northwest Region probably respond differently than other mountainous streams because the Northwest Region is susceptible to torrential rains originating in the Gulf of Mexico. As described by Parrett and Omang (1981), flood-frequency curves in the Northwest Region thus are particularly steep for recurrence intervals larger than about 50 years. In the Upper Yellowstone Region, many of the smaller streams drain foothills and plains areas that are more like the Southeast or East-Central Plains than the more mountainous areas where the larger streams in the region originate. Flood-frequency curves for the larger streams thus are flatter than for many of the smaller streams where intense thunderstorms may result in very large flood peaks.

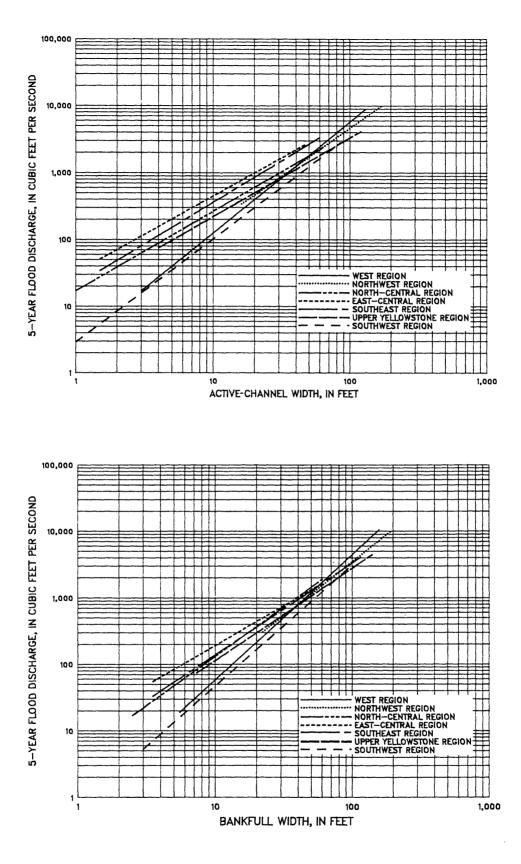


Figure 2.--Relations between 5-year flood and channel width.

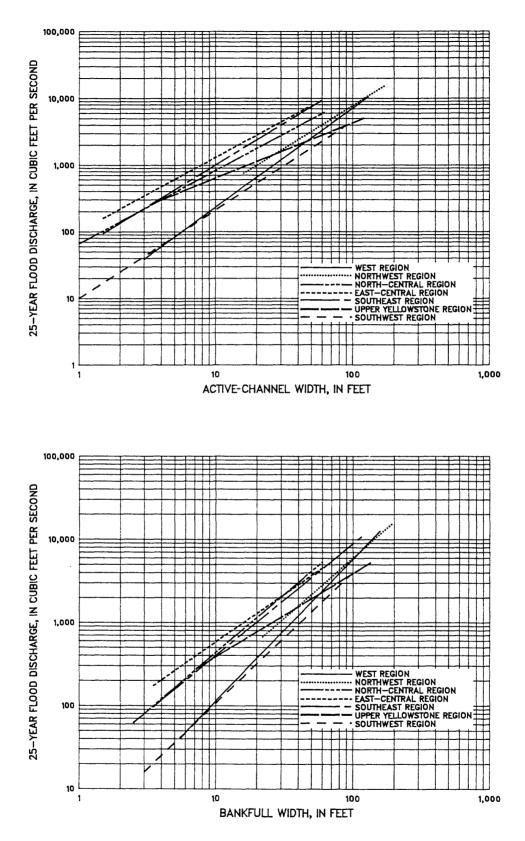


Figure 3.--Relations between 25-year flood and channel width.



Figure 4.--Relations between 100-year flood and channel width.

Comparison With Previous Studies

Because of changes in regional boundaries, the equations developed for the Upper Yellowstone and East-Central Regions are not comparable to channel-geometry equations previously developed. The other regions are virtually the same as those used by Omang and others (1983) and by Parrett and others (1983); the newly developed equations for those regions together with the equations previously developed are given in table 2. The standard errors for the new equations are generally larger than the standard errors for the old equations in the Northwest Region. Conversely, the standard errors of the new equations are generally smaller than the standard errors of the old equations in the other regions. In the West Region, the standard errors of the new equations are about the same as those of the old equations. Although the new equations do not fit the data as well as the old equations in the Northwest Region, the new equations are believed to be more reliable because several different, more representative, gage sites were used in the In the other regions listed in table 2, the new equations are present study. considered to be substantially more reliable than the old equations because of the generally smaller standard errors as well as the larger data base and longer period of record.

The percentage differences in predicted discharge between the old and new equations are illustrated in figures 5 through 7. In the West Region, the new equations yield larger estimates of peak discharge for all widths and for all recurrence intervals (fig. 5). In the Northwest Region, the new equations yield larger estimates of peak discharge for all recurrence intervals for active-channel widths less than about 55 feet and for bankfull widths less than about 85 feet. For widths larger than these, the new equations for predicting peak discharges of 5- and 25-year recurrence intervals yield smaller values than the old equations. For the 100-year peak discharge, the equation using bankfull width gives larger results than the old equation for all widths, and the equation using active-channel width gives larger results for widths less than about 115 feet.

In the North-Central and Southeast Regions, the new equations provide larger predicted values of discharge for some recurrence intervals and widths and smaller predicted values of discharge for other recurrence intervals and widths (fig. 6). Overall, the new equations tend to predict larger values of discharge than the old equations in the North-Central Region and smaller values of discharge in the Southeast Region.

In the Southwest Region, the new equations yield slightly larger estimates of discharge for most recurrence intervals and widths (fig. 7). However, the percentage differences between the new and old equations are substantially smaller in this region than in any of the others.

Limitations and Reliability

Because regression analyses do not define actual physical relationships among variables, regression equations may not provide reliable results when the channel widths are outside the range of values used to develop the equations. For this study, the range of active-channel widths and bankfull widths used in each region is given in table 3. In particular, the reader is cautioned that using widths smaller than the minimum limits shown for the Northwest Region may lead to erroneous results. Smaller streams in the Northwest Region may not be affected so much Table 2.--Comparison between old and new regression equations

[Q, peak discharge, in cubic feet per second, for a given recurrence interval, in years; W_{AC} , active-channel width; W_{BF} , bankfull width]

	Previous st	udies ¹			This stu	ıdy	
Equatio	n	of	Standard error (percent)	Equation		Number of	Standard error (percent)
			West Re	gion			
$Q_5 = 2.45$	W _{AC} ^{1.639}	54	48	$Q_5 = 2.76$	W _{AC} ^{1.66}	78	46
$Q_5 = 0.677$	W _{BF} ^{1.857}	52	48	$Q_5 = 0.743$	W _{BF} ^{1.89}	73	41
$Q_{25} = 5.38$	W _{AC} ^{1.538}	54	50	$Q_{25} = 7.50$	W _{AC} ^{1.49}	78	54
$Q_{25} = 1.61$	W _{BF} ^{1.742}	52	48	$Q_{25} = 2.21$	W _{BF} ^{1.71}	73	43
Q ₁₀₀ = 8.75	W _{AC} ^{1.474}	54	55	$Q_{100} = 14.0$	W _{AC} ^{1.38}	78	63
Q ₁₀₀ = 2.74	W _{BF} ^{1.670}	52	52	Q ₁₀₀ = 4.34			54
			Northwest	Region			
$Q_5 = 1.68$	W _{AC} ^{1.763}	22	39	$Q_5 = 6.40$	W _{AC} ^{1.43}	21	45
$Q_5 = 0.449$	W _{BF} 1.958	21	36	$Q_5 = 2.11$	W _{BF} ^{1.61}	20	42
$Q_{25} = 5.46$		22	35	$Q_{25} = 21.4$	W _{AC} ^{1.28}	21	51
$Q_{25} = 1.63$	W _{BF} ^{1.784}	21	39	$Q_{25} = 7.57$	W _{BF} ^{1.45}	20	47
$Q_{100} = 16.9$		22	43	Q ₁₀₀ = 66.0	W _{AC} ^{1.19}	21	58
Q ₁₀₀ = 5.48	W _{BF} ^{1.636}	21	50	$Q_{100} = 24.4$	$W_{BF}^{1.37}$	20	54
		N	orth-Centra	al Region			
$Q_5 = 17.5$	W _{AC} ^{1.238}	40	72	$Q_5 = 17.3$	W _{AC} ^{1.19}	50	60
Q ₅ = 3.99	W _{BF} ^{1.504}	33	77	$Q_5 = 4.28$	W _{BF} ^{1.49}	49	63
$Q_{25} = 84.0$	W _{AC} ^{1.045}	40	68	$Q_{25} = 66.1$	W _{AC} ^{1.10}	50	57

	Previous st	udies ¹		······································	This st	udy	
Equation		of	Standard error (percent)	Equation		of	Standard error (percent)
		North-(Central Reg	ionContinued			
$Q_{25} = 22.6$	W _{BF} ^{1.277}	33	72	$Q_{25} = 16.9$	W _{BF} ^{1.41}	49	57
Q ₁₀₀ =226	W _{AC} 0.919	40	77	Q ₁₀₀ =165	W _{AC} ^{1.01}	50	75
Q ₁₀₀ = 68.6	W _{BF} ^{1.125}	33	79	Q ₁₀₀ = 45.3	W _{BF} ^{1.31}	49	72
			Southeast	Region			
$Q_5 = 12.2$	$W_{AC}^{1.48}$	28	76	$Q_5 = 20.3$	W _{AC} ^{1.2}	5 46	60
$Q_5 = 5.95$	W _{BF} ^{1.46}	28	56	$Q_5 = 5.85$	W _{BF} ^{1.3}	8 46	57
Q ₂₅ = 39.9	W _{AC} ^{1.36}	28	98	$Q_{25} = 56.8$	W _{AC} ^{1.2}	5 46	60
$Q_{25} = 24.5$	W _{BF} ^{1.30}	28	70	$Q_{25} = 17.8$	W _{BF} ^{1.3}	5 46	63
Q ₁₀₀ = 85.9	W _{AC} ^{1.29}	28	115	Q ₁₀₀ =105	W _{AC} ^{1.2}	⁵ 46	72
$Q_{100} = 60.1$	W _{BF} ^{1.20}	28	78	Q ₁₀₀ = 35.2	W _{BF} ^{1.33}	2 46	82
			Southwest	Region			
$Q_5 = 2.74$	$W_{AC}^{1.555}$	47	48	Q ₅ = 2.89	$W_{AC}^{1.5}$	⁵ 61	49
$Q_5 = 0.768$	W _{BF} ^{1.778}	40	55	$Q_5 = 0.722$	W _{BF} ^{1.8}	2 ₅₉	49
Q ₂₅ = 9.59	W _{AC} ^{1.334}	47	63	Q ₂₅ = 9.90	W _{AC} ^{1.33}	³ 61	51
$Q_{25} = 3.30$	W _{BF} ^{1.519}	40	70	$Q_{25} = 2.94$	W _{BF} ^{1.5}	7 ₅₉	49
Q ₁₀₀ = 21.2	W _{AC} ^{1.193}	47	79	Q ₁₀₀ = 21.6	W _{AC} ^{1.20}	0 61	60
Q ₁₀₀ = 8.36	W _{BF} ^{1.353}	40	85	Q ₁₀₀ = 7.02			57

Table 2.--Comparison between old and new regression equations--Continued

 1 Omang and others (1983) and Parrett and others (1983).

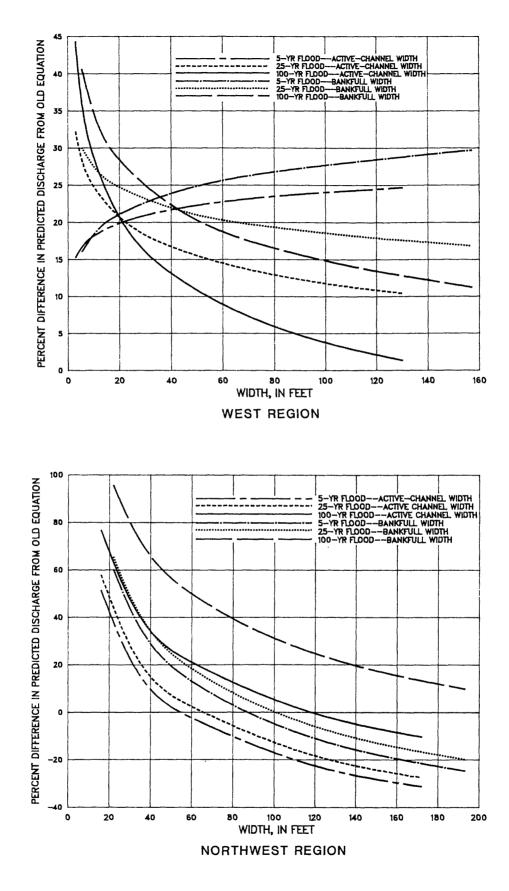


Figure 5.--Comparison between old and new prediction equations in the West and Northwest Regions.

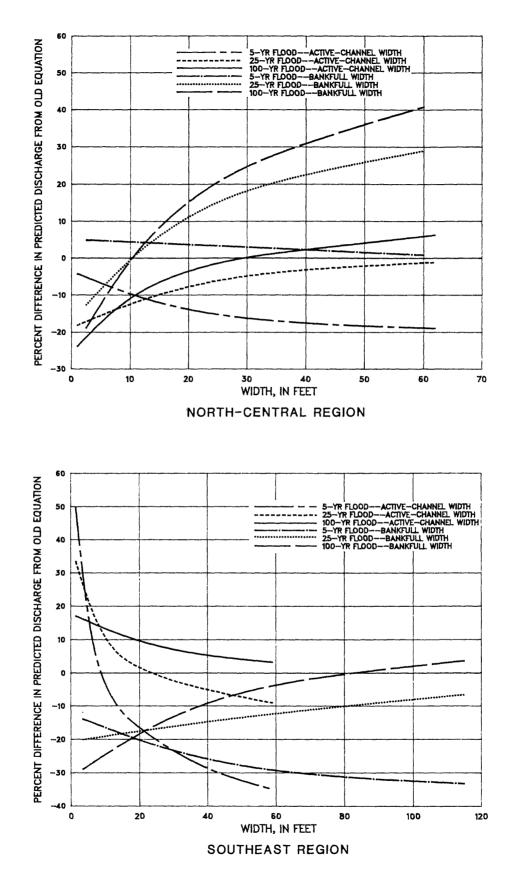


Figure 6.--Comparison between old and new prediction equations in the North-Central and Southeast Regions.

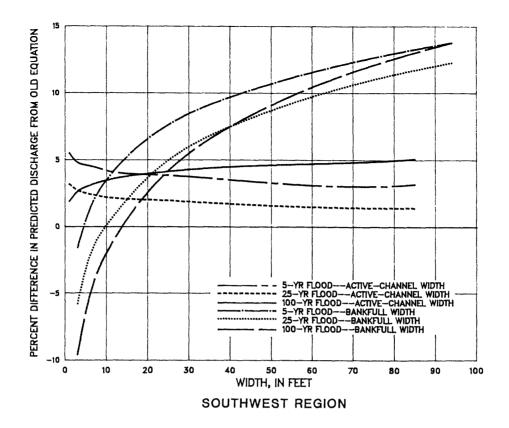


Figure 7.--Comparison between old and new prediction equations in the Southwest Region.

by the large-scale frontal rainstorms as are the larger streams. Thus, floodfrequency curves for smaller streams in this region may be much flatter than for the larger streams, and the equations developed for the West Region may be more applicable in these instances than equations for the Northwest Region.

Similarly, the equations developed for the Upper Yellowstone Region may yield erroneous results for small streams (active-channel widths less than about 15 feet) located in the mountainous areas near the Wyoming border and south and north of Livingston, Montana. None of the small-stream gaging sites used in the analysis were located in the more rugged, mountainous parts of this region, and the equations for the Southwest Region probably provide more accurate results for the smaller streams in these areas than equations for the Upper Yellowstone Region.

Meaningful relationships between channel width and discharge require stable conditions so that the channel is fully adjusted to the prevailing conditions of water and sediment discharge. The equations developed in this study thus may not be applicable to stream reaches having the following conditions:

- 1. Braided channels or channels with unstable banks.
- Small streams that are entirely vegetated and have poorly defined channels.
- 3. Channels having exposed bedrock in the bed or banks.
- 4. Reaches having long pools or steep inclines.
- 5. Channels that have been widened by recent floods or otherwise altered by human activities.
- 6. Streams that have recently undergone changes in the streamflow regimen, such as the construction of upstream diversion or regulation structures.

Region	Range of active-channel widths, in feet	Range of bankful widths, in fee		
West	3.0 - 130	5.5 - 157		
Northwest	16.0 - 172	22.0 - 193		
North-Central	1.0 - 62.0	2.5 - 60.0		
East-Central	1.5 - 47.0	3.5 - 59.0		
Southeast	1.5 - 59.0	3.5 - 115		
Upper Yellowstone	4.0 - 120	7.3 - 140		
Southwest	1.0 - 85.0	3.0 - 94.0		

An additional constraint on the use of channel-geometry equations to estimate discharge is the requirement that the site be visited and the channel width measured. Properly identifying active-channel width or bankfull width requires training and experience. Even among individuals experienced in making channel-geometry measurements, the variability in measured widths can be large. Based on a test in Wyoming, Wahl (1977) reported that the standard error in computed discharge that could be attributed solely to measurement error could be as large as 30 percent. A comparison between independent measurements of active-channel width made by the authors and by Hammer (1981) of the U.S. Forest Service at 11 sites in the West Region indicates a similar measurement variability. In this instance, the standard error of computed 100-year discharge resulting from measurement error alone was 32 percent (0.137 log unit). As discussed by Wahl (1984), a truer indication of the total standard error, in log units, of estimated discharge at a specific site is the square root of the sums of the squares of the errors due to calibration (regression) and measurement. Using the standard error for the West Region for Q_{100} and active-channel width (table 2), the

true standard error =
$$\sqrt{(0.253)^2 + (0.137)^2}$$
 (3)
= 0.288

This corresponds to 74 percent compared to the regression error alone of 63 percent. The standard error due to measurement variability is expected to be somewhat larger in the regions in eastern Montana where streamflows are more erratic and channel features consequently are not so well defined as in the West Region.

Despite the limitations associated with the channel-geometry equations, the equations described in this report are considered to be as reliable as the equations recently developed by Omang and others (1986) using basin and climatic variables. Although the error of measurement may be larger for channel width than for mapped basin or climatic variables, the site visits needed to measure channel width commonly indicate hydrologic or geologic anomalies of the stream that would invalidate the application of basin equations. In this respect, the requirement for a site visit is a positive feature of the channel-geometry equations.

An additional advantage to having estimating equations based on channel geometry as well as estimating equations based on basin and climatic variables is that each technique is presumed to be independent from the other. Each technique thus can be used to check results from the other, and results from each technique can be weighted inversely proportional to their variances and averaged to yield a single estimate that should be more reliable than either individual estimate. According to the U.S. Water Resources Council (1981), a weighted average of two independent estimates can be obtained from the following:

$$z = \frac{x \cdot (SE_y)^2 + y \cdot (SE_x)^2}{(SE_x)^2 + (SE_y)^2}$$
(4)

where z is the weighted average estimate, x and y are the estimates made from two independent techniques, and SE_x and SE_y are the standard errors of the two independent techniques expressed in log units. The standard error of the weighted average estimate (SE_z) can be determined as follows:

$$SE_{z} = \sqrt{\frac{(SE_{x})^{2} \cdot (SE_{y})^{2}}{(SE_{x})^{2} + (SE_{y})^{2}}}$$
(5)

SUMMARY

Because of a substantially expanded data base, additional period of record at data sites used in previous analyses, and revised flood-frequency curves, new regression equations that relate channel width to flood peaks were developed for seven regions in Montana. Five of the regions are virtually identical with regions used in the previous studies. The new regression equations that use active-channel width as the independent variable have standard errors of estimate ranging from 30 to 87 percent. The new equations that use bankfull width as the independent variable have standard errors of estimate ranging from 34 to 92 percent. The prediction equations for the 2-year flood, 5-year flood, and the 10-year flood generally had the smallest standard errors, whereas the prediction equations for the 100-year flood had the largest standard errors. Equations for those regions composed of the mountainous areas of the State (West, Northwest, Upper Yellowstone, and Southwest) generally had smaller standard errors than equations for the flatter, plains areas of the State (North-Central, East-Central, and Southeast Regions). For any given recurrence interval and channel width, the equations for the West and Southwest Regions yielded smaller peak discharges than equations for any other region.

Compared with equations previously developed, the new equations had substantially smaller standard errors in three regions and substantially larger standard errors in one region. In one region, the standard errors for the new equations are about the same as for the old equations. Comparisons could not be made in the two regions where boundaries were different from those used in previous studies. In the two regions where the standard errors of the new equations are the same or larger (West and Northwest Regions), the new equations yield substantially larger peak discharges for most recurrence intervals and widths. In the other regions, the new equations yield larger discharges for some recurrence intervals and widths and smaller discharges for other recurrence intervals and widths, compared to the old equations. In all regions, the new equations are considered to be more reliable than the old equations, largely because of the larger data base and longer period of record. The standard error of prediction at a specific site is greater than the standard error of the estimating equation because of uncertainty in defining channel width at the site. The standard error of width measurements has been shown to be about 32 percent for streams in the West region. Combining this with a typical standard error of the estimating equation of 63 percent gives a total standard error of prediction of 74 percent.

The equations for predicting peak discharge using channel width are considered to be as reliable as the equations using basin and climatic variables because the site visits needed for the channel-geometry method commonly indicate hydrologic or geologic anomalies that may significantly affect discharge. Because the estimates from equations based on channel width are presumed to be independent from those based on basin and climatic variables, the two can be weighted inversely proportional to their variances and averaged to yield a weighted estimate that should be more reliable than either individual estimate.

SELECTED REFERENCES

- Hammer, R.G., 1981, Streamflow estimates using channel width: Soil, Air, and Water Notes 81-3, U.S. Forest Service, Northern Region, Missoula, 6 p.
- Omang, R.J., Parrett, Charles, and Hull, J.A., 1983, Mean annual runoff and peak flow estimates based on channel geometry of streams in s' itheastern Montana: U.S. Geological Survey Water-Resources Investigations 82-4092, 33 p.
- 1986, Methods for estimating magnitude and frequency of floods in Montana based on data through 1983: U.S. Geological Survey Water-Resources Investigations Report 86-4027, 85 p.
- Osterkamp, W.R., and Hedman, E.R., 1977, Variation of width and discharge for natural high-gradient stream channels: Water Resources Research, v. 13, no. 2, p. 256-258.
- Parrett, Charles, and Omang, R.J., 1981, Revised techniques for estimating magnitude and frequency of floods in Montana: U.S. Geological Survey Open-File Report 81-917, 66 p.
- Parrett, Charles, Omang, R.J., and Hull, J.A., 1983, Mean annual runoff and peak flow estimates based on channel geometry of streams in northeastern and western Montana: U.S. Geological Survey Water-Resources Investigations Report 83-4046, 53 p.
- Riggs, H.C., 1974, Flash flood potential from channel measurements, in Flash floods symposium, Paris, 1974: International Association of Hydrological Sciences Proceedings, no. 112, p. 52-56.
- U.S. Water Resources Council, 1981, Guidelines for determining flood flow frequency: Bulletin 17B, 27 p.
- Wahl, K.L., 1977, Accuracy of channel measurements and the implications in estimating streamflow characteristics: U.S. Geological Survey Journal of Research, v. 5, no. 6, p. 811-814.

1984, Evolution of the use of channel cross-section properties for estimating streamflow characteristics, *in* Selected papers in the hydrologic sciences 1984: U.S. Geological Survey Water-Supply Paper 2262, p. 53-66.

Wolman, M.G., 1955, The natural channel of Brandywine Creek, Pennsylvania: U.S. Geological Survey Professional Paper 271, 56 p.

Table 4.--Peak discharges and channel widths at selected gaging stations

1

[Stations are in Montana unless identified otherwise. Abbreviations: Ab, above; bdy, boundary; b1, below; Cr, creek; int, international; nr, near; R, river; res, reservoir; trib, tributary; BC, British Columbia; N Dak, North Dakota; S Dak, South Dakota; Sask, Saskatchewan; Wyo, Wyoming]

			Peak discharge, in cubic feet per second, for selected recurrence intervals, in years						Bankful
Station number	Station name	2	5	10	25	50	100		width, in feet
		WE	EST REGION	1					
12300400 12300500 12300800 12301300 12301800	Cayuse Cr nr Trego Fortine Cr nr Trego Deep Cr nr Fortine Tobacco R nr Eureka Gold Cr nr Rexford	53.5 775 135 1560 65.3	95.0 1100 182 2050 112	126 1330 211 2350 148	169 1610 247 2720 200	202 1830 272 2980 244	237 2040 297 3230 291	11 22 16 48 9.0	29 18 58 14
12301810 12301997 12302400 12302500 12303100	Big Cr nr Rexford Richards Cr nr Libby Shaughnessy Cr nr Libby Granite Cr nr Libby Flower Cr nr Libby	1330 24.2 11.5 603 228	2360 51.7 30.3 878 320	3090 74.2 50.4 1080 383	4040 106 87.1 1370 465	4750 132 124 1610 528	5440 159 171 1870 592	44 6.8 7.5 32 17	55 11 12 24
12303400 12303440 12303500 12304060 12304120	Ross Cr nr Troy Camp Cr nr Troy Lake Cr nr Troy Blacktail Cr nr Yaak Zulu Cr nr Yaak	900 249 2540 74.0 40.7	1600 388 3180 131 69.5	2100 489 3610 174 92.9	2900 628 4160 233 128	3400 737 4580 281 158	4000 853 5000 331 191	37 19 65 12 8.5	47 79 16 13
$12304300 \\12304400 \\12305500 \\12306500 \\12307500$	Cyclone Cr nr Yaak Fourth of July Cr nr Yaak Boulder Cr nr Leonia, Idaho Moyie R at Eastport, Idaho Moyie R at Eileen, Idaho	135 174 1250 5410 6530	184 245 1680 7010 8130	218 288 1950 7900 9080	261 338 2450 8870 10200	294 372 3000 9500 11000	328 404 4100 10100 11700	10 13 36 112 98	22 21 45 138 132
12310800 12316800 12321000 12321500 12323300	Trail Cr at Naples, Idaho Mission Cr nr Copeland, Idaho Smith Cr nr Porthill, Idaho Boundary Cr nr Porthill, Idaho Smith Cr nr Silver Bow	160 340 1910 1930 18.0	252 420 2500 2480 41.7	328 471 2880 2840 63.6	443 532 3370 3270 98.4	544 577 3720 3600 130	660 620 4080 3920 165	12 25 58 53 3.0	20 32 79 63 5.5
12323500 12324100	German Gulch nr Ramsay Racetrack Cr bl Granite Cr,	186 367	285 485	357 554	454 632	531 685	612 733	22 26	27 28
12324590 12324700 12330000	nr Anaconda Little Blackfoot R nr Garrison Clark Fork trib nr Drummond Boulder Cr at Maxville	1370 45.0 395	2920 89.8 596	4260 127 741	6320 183 938	8100 230 1090	10100 282 1250	60 4.0 28	77 10 32
12331700 12332000	Edwards Gulch at Drummond Middle Fork Rock Cr nr	10.1 948	35.9 1250	70.4 1420	145 1600	233 1720	357 1820	3.0 56	7.0 71
12335500 12338600	Philipsburg Nevada Cr ab res nr Finn Monture Cr at Forest Service bdy, nr Ovando	528 1390	968 1710	1320 1910	1830 2160	2250 2340	2710 2520	21 36	33
12338690	Monture Cr nr Ovando	1540	1920	2140	2400	2570	2730	52	68
12339300 12339900 12341000 12342950 12343400	Deer Cr nr Seeley Lake West Twin Cr nr Bonner Rattlesnake Cr at Missoula Trapper Cr nr Conner East Fork Bitterroot R nr Conner	272 95.4 1300 495 1930	353 160 1720 734 2820	403 208 1980 896 3380	463 273 2290 1100 4050	506 324 2510 1250 4530	547 378 2720 1410 5000	23 15 39 22 75	30 21 48 31 90
12345800 12345850 12346500 12347500 12350000	Camas Cr nr Hamilton Sleeping Child Cr nr Hamilton Skalkho Cr nr Hamilton Blodgett Cr nr Corvallis Bear Cr nr Victor	149 581 667 636 694	209 846 857 773 893	246 1020 962 854 1020	290 1250 1080 948 1160	320 1410 1150 1010 1270	348 1570 1220 1070 1370	15 33 34 34 41	20 37 44 38 47
12350200 12351000	Gash Cr nr Victor Burnt Fork Bitterroot R nr	110 341	159 507	189 617	225 754	251 853	274 951	11 20	16 28
12352000 12352200 12353250	Stevensville Lolo Cr ab Sleemen Cr, nr Lolo Hayes Cr nr Missoula Ninemile Cr nr Alberton	1490 11.1 530	1810 26.3 783	2000 39.8 958	2250 60.2 1190	2420 77.5 1360	2590 96.4 1540	51 4.0 40	60 8.0
12353280 12353400 12353800 12353850 12354000	Ninemile Cr nr Huson Negro Gulch nr Alberton Thompson Cr nr Superior East Fork Timber Cr nr Haugan St Regis R nr St Regis	1120 30.2 67.8 39.6 4200	1450 68.7 118 60.0 6690	1640 102 153 73.2 8620	1850 152 200 89.2 11400	1990 195 234 101 13700	2120 241 269 112 16200	48 8.0 9.0 8.0 130	60 13 14 12 136

		Peak discharge, in cubic feet per second, for selected recurrence intervals, in years						Active- channel	
Station number	Station name	2	5	10	25	50	100		width, in feet
		WEST R	EGIONCo	ntinued				_	
12354100	North Fork Little Joe Cr nr	184	239	268	299	319	335	16	21
12355000 12355350	St Regis Flathead R at Flathead, BC Big Cr at Forest Service bdy,	7400 1200	10100 1530	11800 1750	13800 2030	15300 2240	16800 2460	120 43	145 50
12364000	nr Columbia Falls Logan Cr at Tally Lake, nr	468	879	1190	1620	1960	2310	47	67
12365000	Whitefish Stillwater R nr Whitefish	1570	2450	3000	3650	4100	4520	70	85
12370500 12370900 12371100 12374300 12375700	Mill Cr nr Niarada	39.4 9.80 30.1 93.0 26.0	69.5 20.7 61.8 167 48.9	91.9 31.3 88.2 219 66.5	122 49.5 127 287 90.8	146 67.3 159 338 110	170 89.3 194 388 130	$11 \\ 6.0 \\ 10 \\ 13 \\ 8.0$	14 10 14 21 12
12378000 12390700 12391100 12391200 12391525	Mission Cr nr St Ignatius Prospect Cr at Thompson Falls White Pine Cr nr Trout Creek Canyon Cr nr Trout Creek Snake Cr nr Noxon	455 1760 222 160 46.9	714 2470 356 216 87.7	909 2950 453 248 118	1180 3550 584 284 159	1400 4000 687 308 191	1640 4460 794 330 223	22 49 23 17 11	24 67 30 22 15
12391550 12392100 12392300	Bull R nr Noxon Trapper Cr nr Clark Fork, Idaho Pack R nr Colborn, Idaho	2130 44.7 2470	2910 125 3290	3410 231 3860	4020 470 4610	4460 769 5190	4890 1220 5790	63 5.0 67	68 10 77
12411000 12413100	Coeur d'Alene R ab Shoshone Cr, nr Príchard, Idaho Boulder Cr at Mullen, Idaho	7030 99.8	10100 143	12300 173	15300 215	17600 247	20100 281	117 11	157 17
12413140 12413200 13336850	Placer Cr at Wallace, Idaho Montgomery Cr nr Kellogg, Idaho Wier Cr nr Powell Ranger Station, Idaho	394 71.8 264	733 121 415	1030 160 526	1490 218 677	1900 268 796	2380 324 922	21 12 22	27 16 29
		NOR	THWEST RE	GION					
05010000 05014500	Belly R at int bdy Swiftcurrent Cr at Many Glacier, Glacier National Park	1950 1010	2680 1310	3210 1510	4800 1900	9200 3300	16700 6700	133 45	158 62
05015000	Canyon Cr nr Many Glacier, Glacier National Park	195	310	400	620	1000	1800	22	27
06073000 06078500	Dearborn R nr Clemons North Fork Sun R nr Augusta	1140 3100	2000 4000	2750 4650	4300 6200	6200 10500	10500 17500	54 86	84 93
06079600	Beaver Cr at Gibson Dam, nr	119	276	450	800	1350	2500	17	24
06080000 06081500 06084500	Augusta Sun R nr Augusta Willow Cr nr Augusta Elk Cr at Augusta	6400 150 868	9600 350 2080	12000 540 3240	17100 890 5180	24500 1250 6980	38000 1470 9100 29000	160 20 43	193 35 57
06092000 06102500 06132200 12335000 12356000 12356500	Two Medicine R nr Browning Teton R nr Farmington South Fork Milk R nr Browning Blackfoot R nr Helmville Skyland Cr nr Essex Bear Cr nr Essex	3600 1400 380 2100 160 410	5200 2650 790 3670 225 620	6700 3900 1200 4900 275 800	9900 6400 2100 6640 380 1040	15500 10000 3400 8080 620 1560	17500 6200 9620 1100 2350	164 41 22 100 18 25	155 70 27 120 26 36
12357000 12357300 12359500 12360000 12361000	Middle Fork Flathead R at Essex Moccasin Cr nr West Glacier Spotted Bear R nr Hungry Horse Twin Cr nr Hungry Horse Sullivan Cr nr Hungry Horse	9800 130 3700 1400 1860	14000 235 4450 1950 2430	17000 335 4900 2310 2800	22000 515 5500 2890 3210	27000 820 6000 3050 3600	34500 1400 6900 4100 4100	172 16 105 41 63	192 22 59 78
12361500	Graves Cr nr Hungry Horse	1230	1840	2340	3120	3800	4590	40	60
		NORTH	-CENTRAL	REGION					
06071200 06071400 06071600 06073600 06077300	Black Rock Cr nr Augusta	93.0 58.0 114 183 45.5	228 205 292 322 129	381 428 504 445 239	677 989 940 641 493	1000 1750 1440 821 815	1440 2990 2140 1030 1310	$11 \\ 11 \\ 18 \\ 3.8 \\ 6.0$	17 16 18 7.2 9.0

Table 4.--Peak discharges and channel widths at selected gaging stations--Continued

					cubic fee nce inter				Bankfull
Station number	Station name	2	5	10	['] 25	50	100		width, in feet
	NOR	TH-CENTR.	AL REGION	Continu	ed				
06077700 06077800 06088500 06089300 06090500	Smith R trib nr Eden Goodman Coulee nr Eden Muddy Cr at Vaughn Sun R trib nr Great Falls Belt Cr nr Monarch	2.8 86.1 648 74.0 1610	10.8 219 1300 274 3020	24.6 379 2010 542 4370	64.0 714 3370 1120 6710	124 1110 4870 1780 9000	233 1670 6930 2710 11900	1.0 5.5 43 10 62	2.5 11 60 18
06090550 06090810 06098700 06099700	Little Otter Cr nr Raynesford Ninemile Coulee nr Fort Benton Powell Coulee nr Browning Middle Fork Dry Fork of Marias R nr Dupuyer	42.0 150 19.5 71.9	113 540 96.1 261	194 1100 234 552	356 2300 633 1300	532 3400 1230 2340	771 5100 2290 4050	7.0 9.2 5.5 7.5	9.3 18 11 24
06100200		6.2	23.4	51.5	129	244	446	1.0	4.0
06101800 06101900 06102100 06105800 06108200	Dry Fork Coulee trib nr Loma Bruce Coulee trib nr Choteau	18.1 6.7 18.6 56.9 66.0	95.3 61.6 63.7 138 170	211 180 118 228 340	468 533 225 400 700	760 1040 338 584 1500	1150 1850 483 830 3000	4.0 4.8 3.5 3.4 4.3	7.0 8.5 6.5 14 8.0
06109560 06109800 06111700 06112100 06112800	Alkali Creek trib nr Big Sandy South Fork Judith R nr Utica Mill Cr nr Lewistown Cottonwood Cr nr Moore Bull Cr trib nr Hilger	9.2 268 13.6 370 20.5	25.5 634 35.9 868 43.3	43.8 1030 57.8 1340 62.8	78.6 1790 94.1 2100 91.9	115 2600 127 2800 117	162 3680 166 3610 144	3.5 20 2.8 29 2.7	6.2 22 5.0 30 3.5
06114900 06115300 06124600	Taffy Cr trib nr Winifred Duval Cr nr Landusky East Fork Roberts Cr trib nr	58.1 58.2 27.3	129 157 60.8	192 259 91.6	285 434 141	365 600 185	453 800 236	4.7 8.0 3.0	10 14 6.0
06128400 06129200	Judith Gap South Fork Bear Cr nr Grassrange Alkali Cr nr Heath	252 25.5	672 103	1110 208	1900 433	2670 690	3630 1040	14 5.0	21 9.0
06129500 06132400 06133500	McDonald Cr at Winnett Dry Fork Milk R nr Babb North Fork Milk R ab St Mary Canal, nr Browning	343 185 267	726 600 695	1040 1160 1180	1470 2200 2120	1820 3200 3140	2190 4700 4500	26 10 23	43 12 31
06134800 06138800	Van Cleeve Coulee nr Sunburst Spring Coulee nr Havre	33.8 30.2	84.1 178	134 394	217 838	295 1300	388 1870	3.0 12	5.5 21
06140400 06144350 06145000 06148000	Bullhook Cr nr Havre Middle Cr nr Alberta bdy, Alberta McRae Coulee nr int bdy, Alberta Battle Cr ab Cypress Lake inflow	102 257 274 557	295 842 646 1110	483 1420 933 1550	783 2310 1310 2160	1040 3060 1580 2650	1330 3850 1840 3170	12 17 5.3 20	18 25 13 28
06150500	canal, nr West Plains, Sask East Fork Battle Cr nr int bdy	322	853	1330	2040	2630	3250	17	30
06151000 06154400 06154410 06155100 06155200	Lyons Cr at int bdy Peoples Cr nr Hays Little Peoples Cr nr Hays Black Coulee nr Malta Alkali Cr nr Malta	203 316 51.7 74.2 148	533 1200 163 144 561	813 2310 287 199 1030	1200 4490 515 277 1830	1500 6780 742 340 2580	1800 9700 1020 405 3420	16 28 15 4.7 26	23 53 19 9.0 36
06155300 06155400 06155600 06156000 06164600	Whitewater Cr nr int bdy	28.9 8.4 56.9 177 86.8	71.9 52.5 173 947 195	118 119 300 2030 287	201 255 526 4210 422	287 397 748 6460 534	396 571 1020 9240 654	4.0 4.0 7.3 22 3.3	9.0 10 13 28 6.2
			EAST-CEN	TRAL REGIO	ON				
06117800	Big Coulee trib nr Martinsdale	58.0	160	290	500	720	1050	2.0	6.0
06118500		746	1340	1900	2830	3720	4830	47	58
06120700	Antelope Cr trib nr mouth, nr Harlowton	36.0	128	240	462	696	1000	2.5	5.0
06122000	American Fork bl Lebo Cr, nr Harlowton	344	690	991	1460	1870	2330	24	32
06125700		109	382	743	1520	2430	3700	16	26

Table 4.--Peak discharges and channel widths at selected gaging stations--Continued

.	Station name		Peak discharge, in cubic feet per second, for selected recurrence intervals, in years						Bankful
Station number		2	5	10	25	50	100		width, in feet
	EA	ST-CENTRA	L REGION-	-Contin	ued				
06126300 06127100 06127200	Currant Cr nr Roundup South Willow Cr trib nr Roundup Musselshell R trib nr Musselshell	136 69.7 47.8	436 185 137	796 307 228	1510 522 379	2270 733 518	3280 992 677		27 6.8 7.0
06127520 06127570	Home Cr nr Sumatra Butts Coulee nr Melstone	53.9 89.3	95.3 195	126 288	167 429	198 550	231 684	2.7 4.3	5.5 8.7
06128900 06129700 06129800 06130600 06130610	Box Elder Cr trib nr Winnett Gorman Coulee nr Cat Creek Gorman Coulee trib nr Cat Creek Cat Cr nr Cat Creek Bair Coulee nr Mosby	127 88.8 35.9 95.8 53.3	281 275 114 217 162	417 467 206 324 287	625 790 384 489 525	805 1080 570 631 771	1010 1420 810 788 1090	2.8 6.7	14 8.3 5.0 12 9.3
06130850 06131100 06131300 06169000 06169500	Second Cr trib 2 nr Jordan Terry Cr trib nr Van Norman McGuire Cr trib nr Van Norman Horse Cr at int bdy Rock Cr bl Horse Cr, nr int bdy	31.0 32.0 76.3 299 1100	100 82.6 161 731 2360	182 129 227 1090 3310	337 201 316 1610 4580	498 262 385 2020 5520	704 328 454 2440 6440	3.0 3.0 7.0	$8.0 \\ 6.3 \\ 4.2 \\ 11 \\ 41$
06170000 06172300 06172350 06173300 06174600	McEachern Cr nr int bdy Uuger Coulee nr Vandalia Mooney Coulee nr Tampico Willow Cr trib nr Glasgow Snow Coulee nr Opheim	695 82.0 38.3 62.2 30.9	1970 428 180 241 120	3050 950 355 453 224	4520 2120 669 840 414	5620 3470 962 1220 596	6680 5320 1300 1670 812	6.3 4.0 2.3	36 10 7.8 7.0
06175550 06175700 06175900 06176500 06177050	East Fork Sand Cr nr Vida East Fork Wolf Cr nr Lustre Wolf Cr trib 2 nr Wolf Point Wolf Cr nr Wolf Point East Fork Duck Cr nr Brockway	185 50.4 88.6 423 98.6	460 247 395 1990 271	727 503 784 4190 428	1170 981 1520 8850 663	1580 1440 2240 14000 857	2060 1990 3110 20700 1060	4.0 4.5 32	17 8.0 9.0 50 17
06177100 06177150 06177200 06177250 06177400	Duck Cr nr Brockway Redwater R at Brockway Tusler Cr nr Brockway Tusler Cr trib nr Brockway McCune Cr nr Circle	164 520 139 6.3 75.0	596 1340 340 62.9 308	1060 2050 505 179 603	1830 3070 731 491 1180	2520 3870 905 888 1770	3270 4690 1080 1460 2510	14 12 5.0	34 54 35 12 22
06177500 06177700 06177800 06178000 06178500	Redwater R at Circle Cow Cr trib nr Vida Wolf Cr trib nr Vida Poplar R at int bdy East Poplar R at int bdy	850 68.8 42.0 759 557	2500 242 205 2180 1800	4070 436 490 3780 2980	6520 781 1150 6770 4720	8590 1110 1950 9850 6110	10800 1500 3100 13800 7530	2.5 3.0 19	27 11 7.0 32 59
06179500 06180000 06181200 06182500 06182700	West Fork Poplar R nr Opheim West Fork Poplar R nr Richland Missouri R trib 2 nr Brockton Big Muddy Cr nr Daleview Middle Fork Big Muddy Cr nr Flaxville	218 589 52.7 1060 36.0	959 1490 117 2590 111	1950 2320 173 3920 186	3950 3610 260 5880 308	6070 4710 335 7490 416	8790 5930 418 9190 537	$21 \\ 3.0 \\ 16$	31 5.8 33 3.5
06183100 06183300 06183400	Box Elder Cr nr Plentywood Spring Cr nr Plentywood Spring Cr at Highway 16, nr Plentywood	93.1 30.4 83.3	191 84.5 365	266 140 740	369 236 1500	447 326 2300	527 434 3320	4.0	11 10
06185100 06185200	Big Muddy Cr trib nr Culbertson Missouri R trib 3 nr Culbertson	45.9 13.6	171 89.3	328 231	637 623	964 1170	1380 2030		10 8.2
06185300 06185400 06217700 06294900	Missouri R trib 4 nr Bainville Missouri R trib 5 nr Culbertson Crooked Cr trib nr Shepherd Middle Fork Froze to Death Cr trib nr Ingomar	324 43.5 100 72.6	633 188 410 143	874 376 870 206	1210 750 1850 304	1470 1140 2800 392	1740 1630 4500 493	$4.0 \\ 8.0$	8.0 8.0 13 8.0
06295020	Short Cr nr Forsyth	138	399	679	1170	1660	2240	7.3	15
06296115 06309040 06309060 06326550 06326950	Reservation Cr nr Miles City Dry House Cr nr Angela North Fork Sunday Cr nr Angela Cherry Cr trib nr Terry Yellowstone R trib 5 nr Marsh	224 137 53.3 104 22.2	607 462 108 188 84.9	971 833 156 253 160	1550 1510 227 346 297	2050 2170 289 422 431	2610 2980 359 503 593	19 3.3 3.5	12 25 8.3 8.0 9.0

Table 4.--Peak discharges and channel widths at selected gaging stations -- Continued

Station		Peak discharge, in cubic feet per second, for selected recurrence intervals, in years						Bankful	
number	Station name	2	5	10	25	50	100	in feet	width, in feet
	EA:	ST-CENTRA	L REGION-	-Continu	ed				
06328800 06329200 06329570 06329800	Indian Cr at Intake Burns Cr nr Savage First Hay Cr nr Sidney Painted Woods Cr nr Williston, N Dak	12.5 301 45.4 94.0	40.6 1030 196 253	74.0 1810 405 405	139 3140 852 648	207 4370 1350 863	296 5770 2030 1100	1.8 19 12 7.3	3.5 51 24 14
6330100	Sand Cr at Williston, N Dak	134	455	814	1450	2070	2800	5.5	
6331900	White Earth R trib nr Tioga, N Dak	71.0	192	309	497	662	848	4.0	6.5
		SOUT	HEAST REG	ION					
06294600 06294800 06294850 06294930 06294940	East Cabin Cr trib nr Hardin Unknown Cr nr Bighorn Buckingham Coulee nr Myers Sarpy Cr trib nr Colstrip Sarpy Cr nr Hysham	14.5 149 27.8 17.3 93.8	68.1 533 84.9 67.0 282	148 992 149 138 487	330 1860 269 304 855	548 2750 391 511 1220	855 3860 545 818 1660	3.5 8.3 4.3 3.0 13	6.5 14 7.0 6.0 22
06294985	East Fork Armells Cr trib nr Colstrip	13.2	41.3	74.3	138	205	292	3.8	6.5
06295100 06295200 06296100 06306900	Rosebud Cr nr Kirby Whitedirt Cr nr Lame Deer Snell Cr nr Hathaway Spring Cr nr Decker	86.4 8.5 106 83.0	203 24.7 222 313	314 42.2 323 621	495 73.0 475 1280	662 103 606 2040	857 139 750 3100	6.7 2.7 6.0 15	11 4.5 15 21
06306950 06307520 06307600 06307780 06307930	Leaf Rock Cr nr Kirby Canyon Cr nr Birney Hanging Woman Cr nr Birney Stebbins Cr at mouth, nr Ashland Jack Cr nr Volborg	19.6 48.0 148 98.1 195	105 170 705 294 309	236 460 1550 495 381	526 1200 3540 831 467	859 2200 5960 1140 527	1310 3900 9460 1490 583	4.3 20 16 13 7.3	11 30 26 17 14
D6308100 D6308200 D6308300 D6308330 D6308330 D6308340	Sixmile Cr trib nr Epsie Basin Cr trib nr Volborg Basin Cr nr Volborg Deer Cr trib nr Volborg Lagrange Cr nr Volborg	55.0 10.8 170 32.7 43.6	160 37.4 524 150 117	250 70.1 913 324 194	430 135 1610 723 325	560 205 2290 1200 452	800 297 3130 1890 604	2.8 1.8 7.0 5.5 3.8	5.5 4.0 13 10 7.0
06309080 06325400	Deep Cr nr Kinsey East Fork Little Powder R	422 46.7	1110 82.7	1740 111	2720 153	3550 188	4460 227	13 3.0	23 6.0
)6325700)6325950)6326400	trib nr Hammond Deep Cr nr Powderville Cut Coulee nr Mizpah Meyers Cr nr Locate	49.8 94.8 271	129 175 588	208 233 882	340 309 1360	463 366 1800	607 423 2320	4.0 7.0 9.0	7.5 13 22
D6326510 D6326700 D6326800 D6326940 D6327700	Locate Cr trib nr Locate Deep Cr nr Baker Pennel Cr nr Baker Spring Cr trib nr Fallon Griffith Cr nr Glendive	14.3 116 44.4 32.1 117	61.6 169 86.4 85.0 368	122 205 123 138 682	241 250 181 225 1330	362 284 232 306 2070	512 318 291 401 3100	2.0 4.5 2.5 2.3 11	5.5 11 5.5 5.0 19
)6327720)6328100	Griffith Cr trib nr Glendive Yellowstone R trib 6 nr	33.9 32.2	173 139	385 271	863 520	1420 763	2200 1060	2.3 4.0	6.0 9.5
06334100 06334200 06334610	Glendive Wolf Cr nr Hammond Willow Cr nr Alzada Hawksnest Cr trib nr Albion	233 640 29.9	536 1170 57.8	784 1570 79.2	1130 2120 108	1400 2560 131	1670 3010 154	13 14 2.8	31 66 6.5
06334640	North Fork Coal Bank Cr nr Mill Iron	155	381	569	831	1030	1240	8.0	16
)6334720)6335000	Soda Cr trib nr Webster Little Beaver Cr nr Marmarth,	8.6 3310	28.6 5860	52.0 7630	96.3 9870	142 11500	199 13100	1.8 59	5.5 115
)6335700)6336100	N Dak Deep Cr nr Bowman, N Dak Sheep Cr trib 1 nr Medora, N Dak	12.0 25.0	27.0 47.0	41.0 64.0	62.0 99.0	80.0 124	100 154	1.5 1.5	3.5 4.0
06336200	Sheep Cr trib 2 nr Medora,	41.0	101	156	239	310	387	2.0	5.0
06336300	N Dak Little Missouri R trib nr Modora N Dak	3.2	17.0	39.0	86.0	141	215	1.5	4.5
)6336400)6336450)6336500	Medora, N Dak Jules Cr nr Medora, N Dak Spring Cr nr Wibaux Beaver Cr at Wibaux	175 66.9 745	401 156 2660	596 235 4780	885 353 8450	1120 454 11800	1380 563 15800	4.5 4.0 36	10 15 55
06358600	South Fork Moreau R trib nr Redig, S Dak	53.6	124	192	302	405	526	4.7	11

Table 4.- Peak discharges and channel widths at selected gaging stations--Continued

0 • • • •			Peak discharge, in cubic feet per second, for selected recurrence intervals, in years						Bankfull
Station number	Station name	2	5	10	25	50	100		, width, in feet
		UPPER Y	ELLOWSTON	E REGION					
06187500	Tower Cr at Tower Falls,	320	470	565	680	761	839	23	31
06191000	Yellowstone National Park, Wyo Gardner R nr Mammoth, Yallowstone National Park, Wyo	1120	1510	1760	2060	2270	2480	44	55
06193000 06193500 06194000	Yellowstone National Park, Wyo Shields R nr Wilsall Shields R at Clyde Park Brackett Cr nr Clyde Park	545 1060 205	847 1750 386	1090 2320 556	1440 3190 840	1730 3950 1110	2060 4810 1440	38 68 23	46 75 31
06197000 06197500 06200000 06200500 06201000	Big Timber Cr nr Big Timber Boulder R nr Contact Boulder R at Big Timber Sweet Grass Cr ab Melville Sweet Grass Cr bl Melville	670 3720 5860 933 937	1210 4560 7240 1360 1540	1700 5110 8140 1680 2030	2510 5820 9270 2150 2770	3260 6360 10100 2540 3410	4180 6900 11000 2960 4150	42 80 120 52 50	65 95 140 57
06201600 06201650 06201700 06204050 06204500	Bridger Cr nr Greycliff Work Cr nr Reedpoint Hump Cr nr Reedpoint West Rosebud Cr nr Roscoe Rosebud Cr nr Absarokee	131 95.8 35.4 789 2300	496 369 116 1170 3240	1030 752 221 1440 3910	2270 1620 448 1810 4810	3830 2670 716 2100 5520	6200 4190 1100 2410 6260	24 17 5.5 46 105	32 8.0 60 130
06205100 06206500 06207800 06209500 06210000	Allen Cr nr Park City Sunlight Cr nr Painter, Wyo Bluewater Cr nr Belfry Rock Cr nr Red Lodge West Fork Rock Cr bl Basin Cr, nr Red Lodge	64.1 1180 98.1 1230 528	220 1480 259 1710 798	425 1680 454 2020 995	866 1920 860 2420 1260	1380 2100 1330 2710 1480	2110 2280 2000 3000 1700	6.5 50 10 64 40	28 56 23 77 54
06211000	Red Lodge Cr ab Cooney Res, nr Boyd	579	1180	1720	2580	3360	4260	30	46
06211500 06215000 06216000 06216200	Willow Cr nr Boyd Pryor Cr nr Pryor Pryor Cr at Pryor West Wets Cr nr Billings	252 123 161 91.8	562 243 297 209	883 357 423 323	1470 546 629 515	2070 727 823 697	2850 947 1060 917	26 10 18 7.0	38 15 27 12
06216300 06216500 06287500 06288000 06289000	West Buckeye Cr nr Billings Pryor Cr nr Billings Soap Cr nr St Xavier Rotten Grass Cr nr St Xavier Little Bighorn R at State line, nr Wyola	78.8 654 406 409 1050	196 1290 931 762 1480	324 1890 1500 1080 1780	567 2930 2600 1590 2190	823 3920 3780 2070 2500	1160 5160 5360 2630 2840	8.0 41 19 21 45	16 58 23 24 48
06290000 06290200 06290500	Pass Cr nr Wyola Little Bighorn R trib nr Wyola Little Bighorn R bl Pass Cr, nr Wyola	306 12.1 1280	591 56.3 2050	869 · 129 2700	1350 321 3690	1830 583 4580	2440 1010 5600	29 4.0 75	37 7.3 64
06291500 06293300	Lodgegrass Cr nr Wyola Long Otter Cr nr Lodgegrass	435 39.5	624 95.3	760 154	945 263	1090 375	1250 519	31 5.0	39 8.8
06298000 06298500 06299500 06300500	Tongue R nr Dayton, Wyo Little Tongue R nr Dayton, Wyo Wolf Cr at Wolf, Wyo East Fork Goose Cr nr Bighorn, Wyo	1670 123 302 511	2260 228 486 692	2630 316 637 825	3080 448 865 1010	3390 564 1060 1160	3690 693 1290 1320	62 14 24 34	72 18 30 40
			SOUTHW	EST REGIO	N				
06011000	Red Rock R at Kennedy Ranch,	723	934	1050	1180	1260	1330	62	87
06011400 06011900 06013200 06013400	nr Lakeview Long Cr nr Lakeview Red Rock R trib nr Monida Traux Cr nr Lima Muddy Cr nr Dell	132 4.4 4.5 61.8	256 9.2 24.1 109	379 13.2 51.7 142	597 19.2 108 184	816 24.0 166 214	1100 29. 238 244	17 3 1.0 3.8 5.5	22 3.0 6.0 10
06013500	Big Sheep Cr bl Muddy Cr, nr Dell	369	543	656	797	900	1000	27	33
06015430 06015500 06017500 06019400	Clark Canyon nr Dillon Grasshopper Cr nr Dillon Blacktail Deer Cr nr Dillon Sweetwater Cr nr Alder	73.1 399 192 96.4	143 682 303 200	198 878 395 284	276 1130 535 403	338 1310 658 500	403 1490 799 601	9.0 31 23 9.0	14 40 37 13

Table 4.--Peak discharges and channel widths at selected gaging stations--Continued

Station number	Station name	Peak discharge, in cubic feet per second, for selected recurrence intervals, in years							Bankful
		2	5	10	25	50	100		width, in feet
	S	OUTHWEST	REGIONC	Continued					
06019500 06019800 06024500 06024590 06025300	Ruby R ab res nr Alder Idaho Cr nr Alder Trail Cr nr Wisdom Wise R nr Wise River Moose Cr nr Divide	980 25.0 867 1790 103	1100 43.7 1030 2180 143	1400 57.4 1110 2400 168	1800 75.9 1210 2630 195	2500 90.2 1270 2780 214	3200 105 1330 2920 232	44 5.5 35 52 13	53 9.0 48 68 19
06027700 06030300 06030500 06031950 06033000	Fish Cr nr Silver Star Jefferson R trib 2 nr Whitehall Boulder R ab Rock Cr, nr Basin Cataract Cr nr Basin Boulder R nr Boulder	136 8.2 180 280 1130	186 34.1 337 510 1890	218 70.5 468 700 2490	255 151 666 1000 3370	282 244 838 1200 4130	307 376 1030 1450 4960	17 7.0 15 29 55	22 11 19 37 70
06035000 06036600 06037500 06038550 06040300	Willow Cr nr Harrison Jefferson R trib 4 nr Sappington Madison R nr West Yellowstone Cabin Cr nr West Yellowstone Jack Cr nr Ennis	229 2.4 1340 455 327	352 8.4 1620 694 422	441 16.7 1790 854 480	560 36.1 1960 1060 547	654 60.3 2080 1210 595	752 96.6 2190 1350 641	23 3.8 85 34 26	28 7.7 94 46 32
06046500	Taylor Cr nr Grayling Squaw Cr nr Gallatin Gateway Rocky Cr nr Bozeman Pitcher Cr nr Bozeman Bear Canyon nr Bozeman	784 265 417 15.6 153	928 396 637 33.9 250	1010 492 803 52.4 324	1090 621 1040 85.5 428	1150 723 1230 119 513	1200 830 1430 162 604	40 25 28 4.5 13	46 31 37 10 18
06048500	East Gallatin R at Bozeman Bridger Cr nr Bozeman Hyalite Cr at Hyalite Ranger	553 303 368	876 505 528	1130 667 644	1500 908 803	1800 1110 931	2140 1340 1070	35 22 33	46 28 42
	Station, nr Bozeman Lost Cr nr Ringling Crow Cr nr Radersburg	51.9 537	160 848	298 1110	594 1500	941 1850	1440 2260	9.3 30	38
06056200 06056300 06056600	Castle Cr trib nr Ringling Cabin Cr nr Townsend Deep Cr bl North Fork Deep Cr,	20.1 15.1 222	31.1 33.2 347	39.7 51.1 445	52.1 82.1 588	62.5 112 708	74.1 150 841	4.8 5.0 21	7.0 9.0 29
06061500 06061700	nr Townsend Prickly Pear Cr nr Clancy Jackson Cr nr East Helena	266 12.7	480 24.5	715 35.8	1070 55.0	1400 73.5	1800 96.4	26 7.0	31 11
06061800 06061900		11.4 154	27.3 319	44.6 486	77.3 786	112 1090	158 1480	6.5 20	9.5 28
06062500 06062700 06063000	dam, nr East Helena Tenmile Cr nr Rimini Little Porcupine Cr nr Helena Tenmile Cr nr Helena	210 2.3 255	420 5.5 520	610 8.9 835	1000 15.2 1360	1360 21.8 1820	1860 30.4 2440	18 2.3 24	26 3.5 33
06068500	Little Prickly Pear Cr nr Marysville	141	255	354	510	650	813	14	24
06074500	North Fork Smith R nr White Sulphur Springs	115	260	416	712	1030	1450	16	20
	Newland Cr nr White Sulphur Springs	12.0	26.0	39.0	64.0	88.0	120	8.0	12
06076700 06076800	Sheep Cr nr Neihart Nugget Cr nr Neihart	59.6 8.4	93.8 15.3	120 21.5	158 31.7	189 41.2	224 52.7	12 3.7	9.0
06077000	Sheep Cr nr White Sulphur	208	304	378	484	571	667	27	36
06115500	Springs North Fork Musselshell R nr Delpine	85.0	158	221	319	406	506	15	20
06117000 13038900 13108500	Delpine Checkerboard Cr nr Delpine Targee Cr nr Macks Inn, Idaho Camas Cr at Eightmile Shearing Corral, Idaho	46.8 273 870	$102 \\ 341 \\ 1330$	157 379 1640	256 423 2020	355 452 2310	480 479 2590	16 16 50	20 20 62
13113000 13116000	Beaver Cr at Spencer, Idaho Medicine Lodge Cr at Ellis Ranch,	321 105	468 155	570 192	702 241	803 279	906 320	27 20	34 26
13117200 13117300 13305700	Sawmill Cr nr Goldburg, Idaho	134 364 98.1	197 538 164	238 650 211	288 788 272	324 888 319	358 985 366	18 28 16	24 35 22
13305800	Hughes Cr nr North Fork, Idaho	138	208	256	320	368	417	14	20

Table 4.--Peak discharges and channel widths at selected gaging stations--Continued