FLOW CHARACTERISTICS OF THE CLEARWATER RIVER AND TRIBUTARIES FROM CLEARBROOK TO PLUMMER, NORTHWESTERN MINNESOTA

Gregory A. Payne

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 89-4045

St. Paul, Minnesota

1989

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information write to:

District Chief U.S. Geological Survey 702 Post Office Building St. Paul, Minnesota 55101 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center, Box 25425 Denver, Colorado 80225

CONTENTS

Page

Abstract	1
Introduction	
Purpose and scope	3
Approach	3
Flow in the Clearwater River	
Daily streamflow, adjacent to the Red Lake Indian Reservation	4
Daily streamflow at Plummer, Minnesota 1	3
Results of periodic measurements	4
Water supply 10	6
Summary	4

ILLUSTRATIONS

Figure	1.	Map showing location of the Clearwater River and tributaries near the Red Lake Indian Reservation	2
	2.	Map showing location of gaging stations and discharge-measure- ment sites in the Clearwater River basin near the Red Lake	-
		Indian Reservation	6
	3.	Hydrographs of daily mean flows in the Clearwater River and	
		Ruffy Brook, March through October 1986	7
	4.	Flow-duration curves for Ruffy Brook near Gonvick, March	
		through October	18
	5.	Flow-duration curves for Lost River at Oklee, March through	
		October	20
	6.	Flow-duration curve for Clearwater River near Clearbrook,	
		March through October 1986	21

TABLES

Table l.	Discharge-measurement sites	5
	Total monthly flow for Clearwater River and Ruffy Brook,	
	stream-gaging stations, 1986	8
3-6.	Daily mean discharges:	
	3. Station no. 05077600, Clearwater River near Clearbrook,	
	Minnesota, 1986	9
	4. Station no. 05077700, Ruffy Brook near Gonvick,	
	Minnesota, 1986	10
	5. Station no. 05077850, Clearwater River near Trail,	
	Minnesota, 1986	11
	6. Station no. 05078000, Clearwater River near Plummer,	
	Minnesota, 1986	12
7.	Discharge measurements made in 1986	15
8.	Ranked monthly mean discharges for water years 1960-78, 1986-	
	87, Ruffy Brook near Gonvick	22
9.	Ranked monthly mean discharges for water years 1960-87, Lost	
	River at Oklee	23

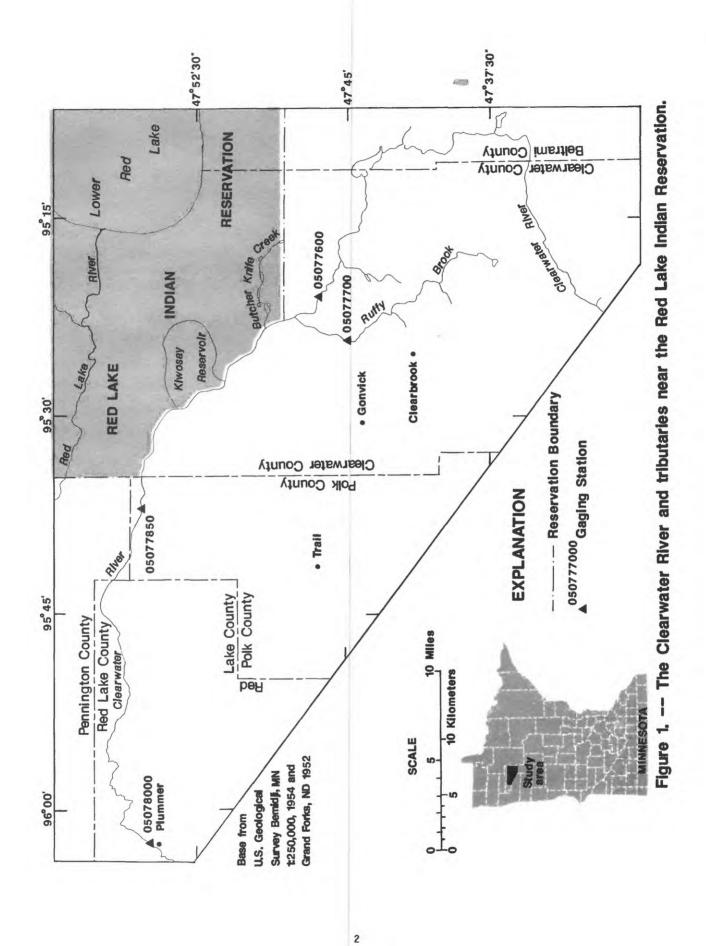
CONVERSION FACTORS AND ABBREVIATIONS

Readers who prefer to use metric (International System) units rather than the inch-pound units in this report can make conversions using the following factors:

Multiply Inch-Pound Unit	<u> </u>	<u>To obtain Metric Unit</u>
mile (mi)	1.609	kilometer (km)
acre-foot (acre-ft)	1,233	cubic meter (m ³)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)

FLOW CHARACTERISTICS OF THE CLEARWATER RIVER AND TRIBUTARIES FROM CLEARBROOK TO PLUMMER, NORTHWESTERN MINNESOTA

By G. A. Payne


ABSTRACT

During March through October 1986, 52,560 acre-feet of water passed the continuous-record stream gaging station on the Clearwater River near Clearbrook, Minnesota, 4.8 river miles upstream from the Red Lake Indian Reservation. Flow at the downstream boundary of the Reservation totaled 93,770 acre-feet. The increase in Clearwater River flow in the reach bordering the Reservation equaled 32,950 acre-feet; 60 percent of the increase occurred during March, April, and May. During those months, flow in the Clearwater River was augmented by flow from Kiwosay Reservoir and Butcher Knife Creek, which are located on the Reservation. Daily streamflow records showed that flow in the river increased in the Reservation reach throughout the study except for 13 days during October when losses occurred. At the downstream Reservation boundary, all daily mean flows exceeded the 36 cubic feet per second minimum flow required by the Minnesota Department of Natural Resources for the gaging station at Plummer, Minnesota located 29.9 miles downstream from the Reservation boundary. Monthly flows generally followed expected seasonal trends, with the highest monthly totals occurring in April and May and the lowest monthly totals occurring during August, September, and October. Seasonal trends were modified by reservoir releases, withdrawals for irrigation, and return flows that resulted from drainage of adjacent wild-rice fields. A series of flow measurements showed that localized withdrawals and return flows at times exceeded 20 percent of total streamflow. Discharge measurements made during low flow indicated higher rates of groundwater discharge in the vicinity of the Kiwosay Reservoir than in other parts of the Measurements made during August indicated that groundwater study reach. discharge in the reach of the river bordering the Reservation resulted in a flow gain of about 20 percent. Analysis of long-term streamflow records showed that near-average hydrologic conditions prevailed during the study period.

INTRODUCTION

The Clearwater River flows along the southwestern boundary of the Red Lake Indian Reservation (fig. 1). Water is diverted from the river for irrigation of commercial wild-rice fields. Rice-growing activities are most intensive on riparian lands along the reach of river from immediately upstream from the south Reservation boundary and extending downstream to the city of Plummer, Minnesota, a distance of about 47 river miles (fig. 1).

Rice growing creates heavy demands for water from the Clearwater River. Growers start refilling rice fields during September, shortly after harvesting is completed, in preparation for the growing season that will commence the following spring. Once the fields are flooded, additional water is needed to compensate for evapotranspiration and leakage. Leakage losses are significant

because of the organic soils of the area, which complicate dike construction, and excavation for dike construction, which may expose highly permeable sand and gravel underlying the beds of the fields.

Large withdrawals and the concern of interests downstream of the ricegrowing area led to a decision that gave the Minnesota Department of Natural Resources (DNR) authority to curtail withdrawals when flow at the Plummer, Minnesota gaging station decreases to a daily mean flow of 36 ft³/s (cubic feet per second) or less.

There is interest in further expansion of rice-growing operations, particularly on Reservation lands. Because flows at the U.S. Geological Survey continuous-record streamflow-gaging station at Plummer, Minnesota, have dropped below 36 ft³/s historically, and because withdrawals are frequently necessary during seasonal low-flow periods, it is essential that the flow of the Clearwater River in the vicinity of the Red Lake Indian Reservation be investigated.

Purpose and Scope

This report presents the results of an investigation to gather information to (1) determine the natural flow characteristics of the Clearwater River, (2) determine the effect of withdrawals for irrigation on flow in the Clearwater River under present conditions, and (3) provide data to help assess the availability of water to maintain a minimum flow of 36 ft^3/s in the Clearwater River at Plummer, in light of present use of water from the river.

Specifically, the report (1) describes the measured flow of the Clearwater River in the vicinity of the Red Lake Indian Reservation from March through October 1986, (2) discusses the impact of irrigation withdrawals and diversions during this period, and (3) briefly discusses the availability of water in the Clearwater River to maintain the minimum flow of 36 ft^3/s at Plummer based on the 8 months of data collected in 1986.

Approach

The continuous-record streamflow-gaging station at Plummer, Minnesota, (fig. 1, gaging station no. 05078000) has been operated since 1939. Most of the record is continuous, but only annual maximums were recorded from October 1979 to February 1982. Virtually all withdrawals occur upstream of the gaging station at Plummer, invalidating some of the normal analyses that can be performed on continuous streamflow records. Because of these upstream withdrawals, three additional gaging stations were established upstream of Plummer.

A gaging station was established on the Clearwater River near Clearbrook, Minnesota, (fig. 1, station no. 05077600). This station is located upstream of the rice-growing area and represents natural flow conditions. Another gaging station on Ruffy Brook near Gonvick (fig. 1, station no. 0507700), a tributary to the Clearwater River, was reactivated. The Ruffy Brook station is also located upstream of the rice-growing area and was operated as a continuous record station from 1960 through 1978. The Ruffy Brook station was reactivated to provide additional information on flow entering the area and to provide a basis for comparing flow during the study period with historical flows. The third gaging station was established on the Clearwater River near Trail, Minnesota, (fig. 1, station no. 05077850) to measure flow where the river leaves the Reservation area.

The gaging-station network (fig. 1) provided a means of determining the amount of unaltered natural flow entering the study area (the gaging station near Clearbrook), a historical perspective (the Ruffy Brook gaging station), a means of determining the altered flow leaving the study area (the gaging station near Trail), and a means of determining the relation of flow in the upper watershed to flow at the gaging station at Plummer where the threshold flow of 36 ft³/s is officially monitored.

The distance between the gaging stations on the Clearwater River between Clearbrook and Trail is 21.2 river miles. Within this reach there are numerous irrigation pumps and several return flow ditches, Butcher Knife Creek, (a natural stream draining Reservation lands) and a major flow-diversion structure that directs flow into the Kiwosay reservoir, a fish-rearing pond. Because the gaging stations would only serve to document net gains and losses in the study reach, it was necessary to make periodic discharge measurements at selected points within the study reach. The purpose of these measurements was to identify areas of substantial gains and losses and to measure ground-water contribution during periods of no diversion or return flow activity. A listing of the additional measurement sites and a brief description of their specific purpose is given in table 1. The locations of the sites are shown in figure 2.

The continuous-record gaging stations were put into operation during February 1986. The series of discharge measurements commenced in late May 1986 and were continued at approximately 1-month intervals until late October, 1986.

STREAMFLOW

Daily Streamflow, adjacent to the Red Lake Indian Reservation

Records of daily mean flow were computed for the gaging stations on the Clearwater River near Clearwater, near Trail, at Plummer, and on Ruffy Brook near Gonvick. Hydrographs for these gaging stations are shown in figure 3. Table 2 is a summary of monthly flows expressed in acre-feet and tables 3-6 are listings of daily mean flows.

Site	Purpose of Site
Ruffy Brook at Mouth (Site 1)	Determine the gain in flow in Ruffy Brook between the gaging station near Gonvik, and the mouth and determine if the discharge at the gaging station is representative of the total contribution of Ruffy Brook to the Clearwater River.
Clearwater River at the Southern Reservation Boundary (Site 2)	Determine the total flow of the Clearwater River at the upstream (southern) boundary of the Reservation.
Butcher Knife Creek at Mouth (Site 3)	Determine the amount of Clearwater River flow contributed by Butcher Knife Creek.
Clearwater River Diversion Channel (Site 4)	Determine the amount of flow diverted from the Clearwater River to the Kiwosay Reservoir.
Clearwater River at Highway 5 Bridge (Site 5)	Determine the effects of pumping, diversions, and return flows on the flow in the Clearwater River downstream from the Kiwosay diversion channel.
Clearwater River above Kiwosay Reservoir Outlet (Site 6)	Determine pumping, diversions, and return flows upstream from the Kiwosay return flow channel.
Xiwosay Dam Spillway (Site 7)	Determine the flow released from Kiwosay Reservoir to the Clearwater River.
Clearwater River at The Western Reservation Boundary Site 8)	Determine flow in the Clearwater River at the downstream (western) boundary of the Reservation.

Table 1.--Discharge-Measurement Sites

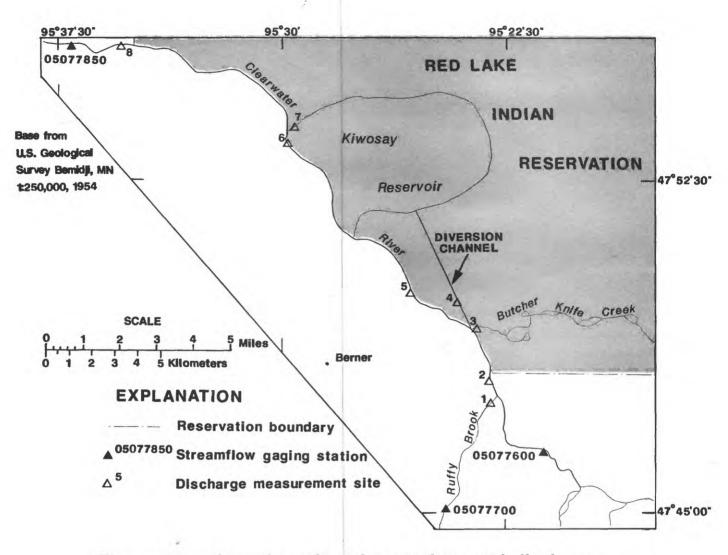


Figure 2. -- Location of gaging stations and discharge measurement sites in the Clearwater River basin near the Red Lake Indian Reservation.

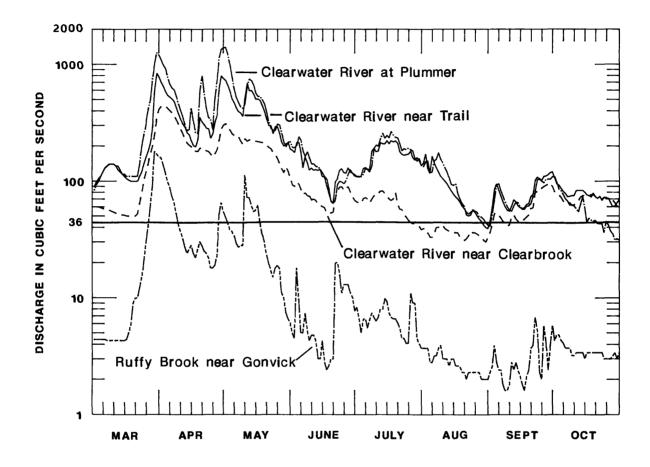


Figure 3. -- Hydrographs of daily mean flow in the Clearwater River and Ruffy Brook, March through October, 1986.

Table 2.--Total monthly flows for Clearwater River and Ruffy Brook, stream-gaging stations, 1986

					<u></u>				
	March	April	May	June	July	August	September	October	Total
Clearwater River near Clearbrook, Minn.	5,990	15,640	12,600	4,440	3,860	2,190	3,540	4,300	52,560
Ruffy Brook near Gonvick, Minn.	1,770	2,900	2,150	470	407	16 8	178	216	8,260
Clearwater River near Trail, Minn.	11,630	23,790	25,580	7,620	10,510	5,230	4,710	4,700	93,770
Clearwater River at Plummer, Minn.	16,790	35,680	31,640	7,900	11,230	5,760	4,510	3,430	116,900
Flow increase, Clearwater River from south Reservation boundary to west Reservation ¹	3,870 (50)	5,250 (28)	10,830 (73)	2,710 (55)	6,240 (146)	2,870 (122)	992 (27)	184 (4.1)	32, 950 (54)
Flow increase, Clearwater River from gaging station near Trail, Minn.	5,160	11,890	6,060	280	720	530	-200	-1,270	23,170
to gaging station at Plummer, Minn.	(44)	(50)	(24)	(3.7)	(6.9)	(10)	(-4.2)	(-27)	(25)
Flow in excess of 36 cubic feet per second Clearwater River near Clearbrook, Minn.	3,780	13,500	10,390	2,300	1,650	0.00	1,400	2,090	35,110
Flow in excess of 36 cubic feet per second Clearwater River near Trail, Minn.	9,420	21,650	23,370	5,480	8,300	3,020	2,570	2,490	76,300
Flow in excess of 36 cubic feet per second Clearwater River at Plummer, Minn.	14,580	33,540	29,430	5,760	9,020	3,550	2,370	1,220	99,470

[Values are in acre-feet except for those in parenthesis, which are percent increase or decrease]

NOTE: Totals may not be exact because of rounding.

¹ Calculated by adding the flow at Ruffy Brook near Gonvick to flow at Clearwater River near Clearbrook and subtracting the result from flow at Clearwater River near Trail.

Table 3.--Daily mean discharge, station no. 05077600, Clearwater River near Clearbrook, Minnesota, 1986

[Values are discharges in cubic feet per second except where noted. In the monthly summary below the daily table, the line beginning with "Total" gives the sum of the daily figures. The line beginning with "Mean" gives the average flow in cubic feet per second during the month. The lines beginning with "Max" and "Min" give the maximum and minimum daily discharges, respectively, for the month. The line beginning with "Acre-ft." gives the discharge for the month in acre-feet.]

.

•

Day	March	April	Мау	June	July	August	September	October
1	61	434	311	93	66	39	36	81
2	60	440	296	90	65	39	42	77
3	60	439	274	98	64	36	52	76
4	59	423	254	94	71	33	53	72
5	58	405	247	85	72	33	51	67
6	58	387	250	77	70	35	48	64
7	57	366	240	79	65	40	45	64
8	56	339	220	75	70	40	43	65
9	55	308	206	74	75	41	41	62
10	54	280	231	69	74	42	42	62
11	53	254	220	70	78	39	49	65
12	52	234	226	68	82	38	51	67
13	52	212	228	63	82	37	46	73
14	51	204	226	62	78	36	45	75
15	51	198	220	60	74	36	44	75
16	50	182	219	59	70	36	45	74
17	50	181	217	53	68	36	47	74
18	50	179	214	53	70	33	49	77
19	50	191	210	53	79	32	51	76
20	50	193	204	54	63	31	58	74
21	52	185	195	70	57	32	59	72
22	65	182	190	82	57	34	80	70
23	80	179	177	89	51	37	81	70
24	100	171	170	89	49	36	81	72
25	120	161	157	83	46	36	87	72
26	140	171	142	88	44	35	90	70
27	170	185	129	89	43	34	92	68
28	200	224	118	80	43	33	94	68
29	251	278	133	73	42	31	96	65
30	344	302	122	68	41	30	89	61
31	412		107		38	33		60
Total	3,021	7,887	6,353	2,240	1,947	1,103	1,787	2,168
Mean	97.5	263	205	74.7	62.8	35.6	, 59.6	69.9
Max.	412	440	311	98	82	42	96	81
Min.	50	161	107	53	38	30	36	60
Acre-ft.	5,990	15,640	12,600	4,440	3,860	2,190	3,540	4,300

Table 4.-- Daily mean discharge, station no. 05077700, Ruffy Brook near Gonvick, Minnesota, 1986

[Values are discharges in cubic feet per second except where noted. In the monthly summary below the daily table, the line beginning with "Total" gives the sum of the daily figures. The line beginning with "Mean" gives the average flow in cubic feet per second during the month. The lines beginning with "Max" and "Min" give the maximum and minimum daily discharges, respectively, for the month. The line beginning with "Acre-ft." gives the discharge for the month in acre-feet.]

Day	March	April	Мау	June	July	August	September	October
1	4.4	159	49	5.0	8.3	3.7	2.3	4.8
2	4.4	138	44	4.5	6.6	3.7	2.6	4.8
3	4.4	119	38	18	5.0	3.7	3.9	4.8
4	4.4	99	37	9.6	6.6	2.8	2.8	4.3
5	4.4	89	34	5.0	6.6	2.8	2.4	4.1
6	4.4	74	29	5.0	5.5	3.2	2.4	3.7
7	4.3	66	27	7.4	6.6	3.2	1.3	3.7
8	4.3	53	28	5.3	7.4	3.7	1.6	3.7
9	4.3	43	28	4.3	6.8	3.9	1.6	3.2
10	4.3	37	113	4.8	6.3	3.0	1.8	3.2
11	4.3	32	72	4.8	6.8	3.0	2.8	3.4
12	4.3	27	72	4.3	8.0	3.0	2.4	3.4
13	4.3	24	62	3.0	8,0	2,6	2.8	3.4
14	4.3	26	55	3.0	9.9	3.0	2.4	3.4
15	4.3	28	56	4.3	9.3	3.0	2.1	3.0
16	4.4	24	62	2.8	7.4	2.6	1.8	3.4
17	5.0	22	44	2.4	6.8	2.6	1.6	3.4
18	6.0	26	35	2.6	6.6	2.6	2.1	3.4
19	9.0	30	30	3.0	6.6	2.3	2.4	3.4
20	10	28	23	3.0	6.1	2.3	3.7	3.4
21	10	25	20	2 0	5.5	2.0	3.9	3.4
22	12	24	17	20	4.5	2.3	6.8	3.4
23	15	22	15	16	4.5	2.3	5.3	3.4
24	20	18	18	11	4.1	2.3	2.3	3.0
25	30	18	19	13	4.1	2.3	2.0	3.0
26	40	19	18	13	11	2.3	5.8	3.0
27	60	23	11	13	9.0	2.3	4.3	3.0
28	93	51	9.9	11	9.0	2.0	2.4	3.2
29	180	65	7.4	10	4.5	2.0	3.9	3.4
30	171	55	6.6	7.7	4.1	2.0	5.8	3.0
31	161		6.1		3.7	2.0		3.4
Total	891.5	1,464	1,086.0	236.8	205.2	84.5	89.8	109.1
Mean	28.8	48.8	35.0	7.89	6.62	2.73	2.99	3.52
Max.	180	159	113	2 0	11	3.9	6.8	4.8
Min.	4.3	18	6.1	2.4	3.7	2.0	1.6	3.0
Acre-ft	. 1,770	2,900	2,150	470	407	168	178	216

Table 5.-- Daily mean discharge, station no. 05077850, Clearwater River near Trail, Minnesota, 1986

[Values are discharges in cubic feet per second except where noted. In the monthly summary below the daily table, the line beginning with "Total" gives the sum of the daily figures. The line beginning with "Mean" gives the average flow in cubic feet per second during the month. The lines beginning with "Max" and "Min" give the maximum and minimum daily discharges, respectively, for the month. The line beginning with "Acre-ft." gives the discharge for the month in acre-feet.]

Day	March	April	Мау	June	July	August	September	October
1	90	701	730	184	109	143	45	106
2	100	648	662	175	109	172	59	94
3	105	585	591	214	110	128	85	92
4	110	544	507	215	129	117	95	86
5	120	526	470	177	131	165	83	81
6	130	509	425	132	127	143	74	78
7	135	484	395	160	126	130	66	73
8	140	431	385	145	182	120	60	74
9	140	383	357	124	192	110	56	75
10	140	344	514	130	178	105	55	75
11	135	309	68 9	124	181	100	61	83
12	135	292	594	126	214	95	69	83
13	125	259	597	124	209	88	66	83
14	115	252	559	126	209	82	61	83
15	110	223	506	109	222	77	59	80
16	105	202	507	108	209	73	58	76
17	102	196	494	90	222	70	59	75
18	100	225	446	78	217	66	63	73
19	100	353	401	67	221	61	64	79
20	100	322	345	65	211	58	74	73
21	100	305	300	99	177	54	77	71
22	110	284	298	105	170	52	102	74
23	120	283	255	124	167	54	109	68
24	140	233	293	128	169	56	103	73
25	160	253	293	118	171	54	102	70
26	180	321	258	117	181	50	110	71
27	210	356	215	130	159	47	111	65
28	290	623	200	120	152	45	113	60
29	600	796	209	117	159	42	118	61
30	840	754	214	111	150	40	120	65
31	778		188		136	39		69
Total	5,865	11,996	12,897	3,842	5,299	2,636	2,377	2,369
Mean	189	400	416	128	171	85.0	, 79.2	76.4
Max.	840	796	730	215	222	172	120	106
Min.	90	196	188	65	109	39	45	60
Acre-ft.	11,630	23,790	25,580	7,620	10,510	5,230	4,710	4,700

Table 6.-- Daily mean discharge, station no. 05078000, Clearwater River near Plummer, Minnesota, 1986

[Values are discharges in cubic feet per second except where noted. In the monthly summary below the daily table, the line beginning with "Total" gives the sum of the daily figures. The line beginning with "Mean" gives the average flow in cubic feet per second during the month. The lines beginning with "Max" and "Min" give the maximum and minimum daily discharges, respectively, for the month. The line beginning with "Acre-ft." gives the discharge for the month in acre-feet.]

Day	March	April	May	June	July	August	September	October
1	84	1100	1400	195	110	133	41	109
2	94	980	1230	193	110	146	51	97
3	100	920	988	201	109	149	68	85
4	110	781	767	241	114	118	92	81
5	120	677	610	225	129	120	95	76
6	130	628	519	181	126	149	82	70
7	135	607	472	163	120	154	74	68
8	140	537	433	179	134	175	66	62
9	140	467	421	158	192	154	60	61
10	140	407	455	141	204	144	56	61
11	135	361	650	141	199	131	55	59
12	125	302	747	134	231	121	61	55
13	120	271	724	133	2 57	107	66	62
14	115	275	666	126	233	93	65	74
15	115	426	570	118	247	92	60	59
16	110	326	534	110	235	95	57	44
17	110	261	532	104	267	78	57	49
18	110	255	499	85	247	70	61	47
19	110	594	462	66	237	64	61	45
20	110	799	398	64	235	61	64	45
21	110	562	328	68	208	51	74	44
22	140	421	284	94	182	50	82	42
23	200	352	273	100	190	51	103	43
24	250	341	271	98	186	57	106	36
25	310	275	309	95	192	55	100	47
26	410	509	304	101	186	54	97	42
27	490	724	259	114	182	49	104	38
28	750	1110	216	126	158	49	104	36
29	1000	1340	197	117	149	47	104	31
30	1250	1380	216	114	156	44	109	32
31	1200		218		139	42		31
Total	8,463	17988	15952	3985	5664	2903	2275	1731
Mean	273	600	515	133	183	93.6	75.8	55.8
Max.	1,250	1,380	1,400	241	267	175	109	109
Min.	84	255	197	64	109	42	41	31
Acre-ft.	16,790	35,680	31,640	7,900	11,230	5,760	4,510	3,430

Comparison of total flow in the Clearwater River entering the study reach at the station near Clearbrook (table 2) with flow leaving the area at the station near Trail shows an increase of 41,210 acre-feet within the reach for the period March through October, and at least 8,260 acre-feet of the increase entered from Ruffy Brook. The remaining increase, 32,950 acre-feet, occurred in the reach adjacent to the reservation. The monthly data show that flow was consistently increasing through the study reach throughout the period of data collection. An inspection of the daily records, however, reveals that net decreases in flow occurred during 13 days in October. The percent increase in flow through the reach is shown in table 2. The large range in monthly percentages (4.1 to 146 percent) reflect periods of heavy withdrawals (October) as well as periods of flow releases (July and August).

The largest monthly increase through the study reach was observed during May (10,830 acre-feet). Much of this increase can be attributed to release of water from the Kiwosay Reservoir. Daily flow record was not obtained at the Kiwosay Reservoir outlet, but a discharge measurement made May 21 indicated that $69.0 \, \text{ft}^3/\text{s}$, or 22 percent, of the total flow at the gaging station near Trail was from the Kiwosay Reservoir. Comparison of the hydrographs of flow at the gaging stations (fig 3) near Clearbrook and Trail gives further evidence of the contribution of the Kiwosay Reservoir to flow in the Clearwater River, particularly for the periods April 18-24, May 10-20, and May 23-28. During these periods, peaks occurred in the discharge hydrograph for the gaging station near Clearbrook shows steady or declining flow.

The data show that withdrawals and return flows alter the natural flow of the Clearwater River. For example, the natural flow at the gaging station near Clearbrook decreased 13 percent for July compared to June, while flow at the gaging station near Trail increased 38 percent as a result of return flows. Similarly, comparing August and September flow at the gaging station near Clearbrook, flow increased 62 percent, while flow at the gaging station near Trail decreased 10 percent as a result of withdrawals. These variable flows were also observed for the periods April-May and September-October (table 2).

Daily Streamflow at Plummer, Minnesota

The effects of withdrawals were more pronounced in the reach of the Clearwater between the gaging station near Trail and the gaging station at Plummer than they were in the reach of the Clearwater adjacent to the Reservation. As shown by the monthly values in table 2, the gain between the gaging stations near Trail and at Plummer was less than the gain between the gaging stations near Clearbrook and Trail during May through October and totaled only 23,170 acre-feet during the study period compared to a gain of 32,950 acre-feet in the Reservation area. The reach from the gaging station near Trail to the gaging station at Plummer was a losing reach during the months of September and October. The loss of flow became more acute after October 15 as shown in figure 3 and the discharge declined below 36 ft^3/s during October 29, 30, and 31.

During the period, October 15-31, flow at the gaging station near Trail remained at 60 ft³/s or greater, indicating that more than enough flow was leaving the Reservation area to maintain the required 36 ft³/s threshold flow at Plummer.

The river reach from the gaging station near Trail to the gaging station at Plummer is 29.9 miles in length, whereas the reach from the gaging station near Clearbrook to the gaging station near Trail is 21.2 miles in length. Despite the fact that the reach from Trail to Plummer is longer and has a larger drainage area, the relative lack of flow gain compared to the upper reach suggests that the reach from Trail to Plummer may have lower rates of runoff and groundwater discharge in addition to being affected by withdrawals.

Results of Periodic Measurements

The series of periodic discharge measurements in the primary study area provided much additional information about flow conditions in and near the Reservation boundary. All sites were measured on the same day during each run of measurements, providing an overview of conditions throughout the reach on that day. The results of the measurements are shown in table 7.

When the study was initiated, it was expected that flow in the Clearwater River at the gaging station near Clearbrook would be representative of the flow in the river at the upstream boundary of the Reservation. It was not practical to locate a gaging station at the Reservation boundary, but it was expected that daily discharge at the boundary could be closely estimated by correlating the periodic measurements at the boundary with the continuous flow record at the gaging station near Clearbrook. The periodic measurements indicated, however, that a satisfactory correlation could not be developed between the two sites. Withdrawals in this part of the reach probably are responsible for the lack of a close correlation. On May 21, for example, a quantity of water equal to the entire flow (53.2 ft^3/s) of Ruffy Brook at the mouth (site 1) was apparently withdrawn before it reached the Reservation's southern boundary. Α similar situation was apparent when attempts were made to correlate flow at the gaging station on Ruffy Brook with discharge measurements at the mouth of Ruffy Brook.

The periodic measurements indicated that Butcher Knife Creek contributed substantial flow to the Clearwater River during spring $(33.2 \text{ ft}^3/\text{s} \text{ on May 21})$, but by June 23 flow decreased to only 3.46 ft³/s and continued in a gradual recession throughout the summer, reaching zero flow by August 27. Flow resumed following fall rains but the measurements suggest that the flow during fall may not have exceeded 1.0 ft³/s. It was expected that daily flow record in Butcher Knife Creek could be estimated by correlation with daily record from Ruffy Brook or the Clearwater River near Clearbrook, but a satisfactory correlation could not be established. The lack of correlation may be caused by the fact that virtually all of Butcher Knife Creek's drainage area is a bog which would have response characteristics unlike those of the more upland drainage basins of Ruffy Brook and the Clearwater River.

Table 7.--Discharge measurements made in 1986

[Values are discharge in cubic feet per second. e, estimated discharge]

	May 21	June 23	July 22	August 27	September 30	October 14	October 28
Clearwater River near Clearbrook	202	90.0	57.4	33.2	, 89.9	73.9	67.8
Ruffy Brook near Gonvick	20.6	16.6	4.98	2.23	5.54	3.36	2.93
Ruffy Brook at mouth (site 1)	53.2	14.8	20.9	3.91	8.57	5.66	4.53
Clearwater River at south Reservation boundary (site 2)	201	85.4	83.8	38.6	103	78.2	69.8
Butcher Knife at mouth (site 3)	33.2	° 3.46	2.03	.00	.50e	.90e	.80
Kiwosay Reservoir diversion channel (site 4)	.00	. 5e	.05e	. 00	.02e	. 00	.10e
Clearwater River at Highway 5 bridge (site 5)	270	98. 9	102	39.0	107	73.7	67.7
Clearwater River above Kiwosay Reservoir outlet (site 6)	234	108	102	44.2	104	77.3	73.2
Kiwosay Dam spillway (site 7)	69.0	1.0e	.00	. 50	.10e	.00	. 50
Clearwater River at west Reservation boundary (site 8)	317	121	138	46.8	98.0	80.2	64.2
Clearwater River near Trail	316	128	177	47.0	108	84.9	58.6
Clearwater River near Plummer	398	107	180	53.0	112	78.5	30.5

No flow was diverted from the Clearwater River to the Kiwosay Reservoir (site 4) during the period of study (Floyd W. Jorgensen, Natural Resources Specialist, Red Lake Tribal Council, oral commun., 1988). The flows indicated in table 7 for the diversion channel are the result of leakage from the diversion channel into the Clearwater River.

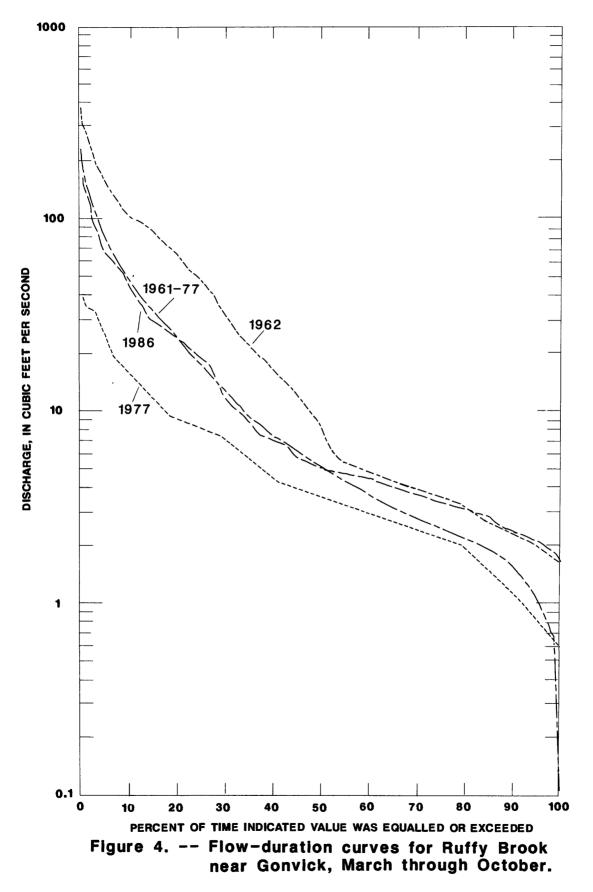
Discharge at the Kiwosay Reservoir outlet (site 7) was substantial during spring as indicated by a discharge of 69.0 ft^3/s measured on May 21. Releases from the Kiwosay Reservoir were reduced during June and remained at low levels through October as indicated by the measurements shown in table 7.

The periodic measurement site (site 8) on the Clearwater River at the western Reservation boundary is located 2.2 river miles upstream from the gaging station near Trail. Comparison of flow measurements indicates that the amount of flow recorded at the gaging station near Trail reasonably approximates the flow at the western Reservation boundary. A notable exception was observed on July 22 when there was a $39.0 \text{ ft}^3/\text{s}$ (28 percent) increase in flow between the two sites. That increase demonstrates the effect that irrigation return flows can have over relatively short reaches of the river.

One set of measurements, made on August 27, provided flow information representative of conditions not influenced by withdrawals or return flows. The personnel making the measurements reported that all the rice fields were dewatered and that no pumps were operating. In addition to the lack of activity related to rice growing, this run of measurements coincided with the minimum flows for the study period. The results, therefore, provide an opportunity to examine conditions at a time when virtually all changes in flow between the gaging stations near Clearbrook and near Trail can be attributed to ground-water discharge except for 3.91 ft³/s contributed by Ruffy Brook. In the reach encompassing the Reservation boundary, streamflow increased about 20 percent. The average increase in flow (after subtracting out Ruffy Brook's flow) was $0.47 (ft^3/s)/mi$ (cubic feet per second per mile). The rate of increase rose markedly from 0.20 (ft^3/s)/mi to 1.04 (ft^3/s)/mi, in the portion of the reach between the Highway 5 bridge and the Kiwosay outlet. This subreach flows past the dike that forms the Kiwosay Reservoir. The impounded water adjacent to the stream may be inducing additional ground-water discharge to the Clearwater River.

WATER SUPPLY

The total amount of water available during the study period is shown by the values expressed in acre-feet in table 2. Table 2 shows that 52,560 acrefeet entered the Reservation area at the gaging station near Clearbrook and 93,770 acre-feet left the Reservation at the gaging station near Trail. The monthly values shown for the gaging station near Trail represent water that potentially is available for expansion of rice irrigation. As mentioned in the introduction, however, the Minnesota Department of Natural Resources has authority to curtail withdrawals when the flow in the Clearwater River at Plummer drops to 36 ft³/s. Because of this restriction, only the amount in excess of 36 ft³/s (2,142 acre-feet in a 30-day period) can reasonably be considered available for additional rice production. These values are shown in table 2 for the gaging stations near Clearbrook and Trail. Full utilization of these amounts of water would necessarily mean that virtually no water would be available to rice growers downstream from the gaging station near Trail because of the observed lack of recharge and runoff in the downstream reach and the $36-ft^3/s$ threshold level for permitted irrigation.

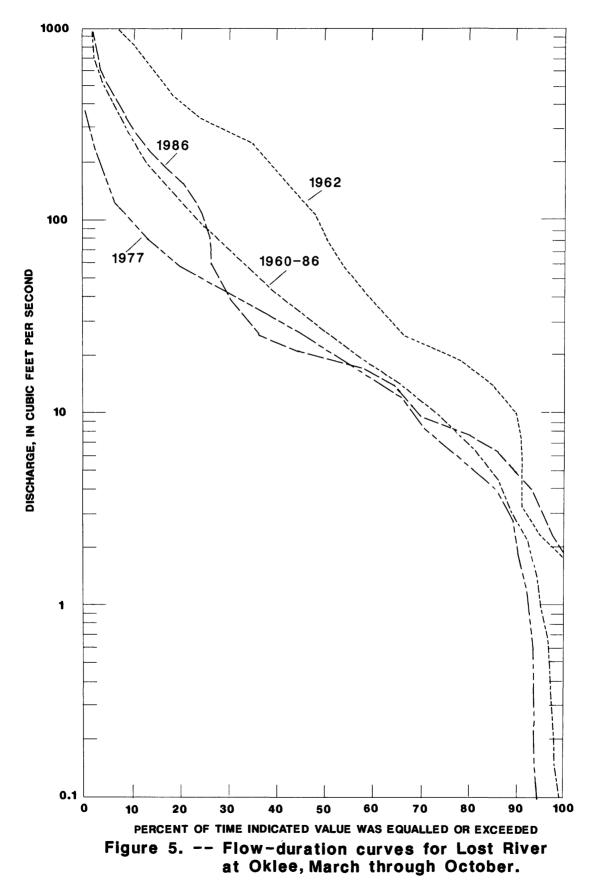

Examining the data for the study period (table 2), 35,110 acre-feet was available for additional use at the gaging station near Clearbrook and 76,300 acre-feet were available at the gaging station near Trail. The monthly distribution of these amounts was very uneven, however. Note that during June, when the need for irrigation water can be critical, only 2,300 acre-feet was available at the gaging station near Clearbrook and only 5,480 acre-feet was available at the gaging station near Trail. Similarly, even less water was available in September and October to refill the fields after harvest. Relatively larger quantities of water were available during April and May, but much of this flow (at the gaging station near Trail) was derived from stored water released from the Kiwosay Reservoir.

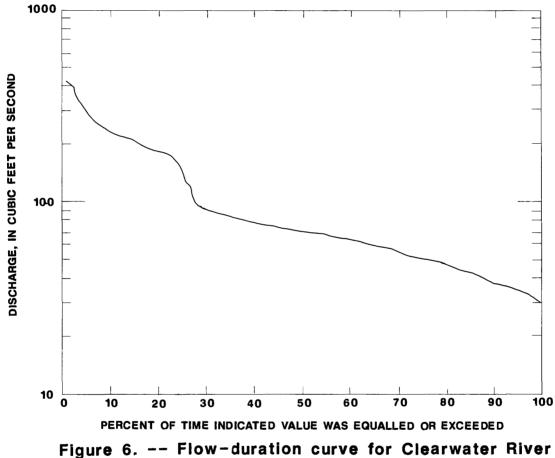
The preceding discussion is based entirely on conditions observed during March through October 1986 encompassing only a single growing season. Although the data provide an adequate accounting of water supply during 1986, there remains the question of whether conditions observed during 1986 are an adequate representation of normal flow--that is, can one expect the average water supply to be different from that measured during 1986.

Conditions observed during 1986 can be put in perspective by comparing them with longer-term flow records. Two of the gaging-stations in the study area, Clearwater River at Plummer and Ruffy Brook near Gonvick, have longerterm records. A third gaging station, Lost River at Oklee, is located in a drainage basin adjacent to the Clearwater basin. The record from the gaging station at Plummer was not analyzed because it is affected by irrigation withdrawals and therefore not representative of natural conditions. Flow at the Ruffy Brook gaging station is not affected by withdrawals but analysis requires the assumption that, as a tributary, it responds to climatic variables in a manner similar to the Clearwater main stem. The drainage area of the Lost River at Oklee is 266 mi^2 and is similar in size to the drainage area of the Clearwater River near Clearbrook.

Figure 4 shows flow-duration curves for Ruffy Brook, for the 8-month period ending October 31. The duration curve for the longer-term period of record, 1961-77, is shown along with curves for the study year (1986), a dry year (1977) and a wet year (1962). A comparison of the curves shows that flow duration in 1986 closely follows the duration curve from the longer-term record except at low flow (less than 5.0 ft^3/s). One can conclude that flow in Ruffy Brook during 1986 was near normal with above-normal low flow. The total amount of water available during a similar 8-month period, therefore, cannot be expected on the average to exceed the amount available in 1986.

The flow-duration curves for the Lost River for the 8-month period ending October 31 are shown in figure 5. Flow duration for March through October 1986 did not follow the long-term duration curve as closely as it did at Ruffy Brook. High flow and low flow were both slightly greater than the long-term average, but flows in the interquartile range (exceeded 25-75 percent of the time) were nearly all below the long-term average.


The flow duration curve for the Clearwater River near Clearbrook is shown in figure 6. Long-term records have not been obtained at this gaging station so a direct comparison with average flow duration cannot be made. The curve shows an abrupt change in slope at higher flows that is similar to the change in slope shown in figure 5 for Lost River at Oklee, indicating that the Clearwater River may also have had above-average high flow during the study period. The curve for the Clearwater River lacks the break in slope that occurs at low flow in the long-term curves for both Ruffy Brook and Lost River, indicating that low flows were above average in the Clearwater River near Clearbrook during the study period.


The flow-duration curves described above indicate that total flows at gaging stations in and adjacent to the study area were near normal to above normal during March-October 1986. The dip in the flow duration curve for Lost River, however, suggests that a part of the study period was dryer than normal.

Long-term monthly flow records were examined to determine which part of the study period may have experienced below-normal flow. Table 8 shows ranked monthly mean discharges for Ruffy Brook. During the study period monthly discharges exceeded the 50th percentile except during April, June, and October. The April, June, and October discharges exceeded the 25th percentile, however, placing them in the normal range. Only one monthly discharge (March) exceeded the 75th percentile, placing it in the above-normal range.

Table 9 shows ranked monthly mean discharges for Lost River at Oklee. March 1986 discharges were above normal as they were at Ruffy Brook. Discharges were below the 50th percentile during June, July, August, September, and October 1986, but remained in the normal range except during June when the mean discharge was below the normal range.

The analysis of monthly mean flows in Ruffy Brook and the adjacent Lost River basin indicates that, during the 1986 study period, flow in and adjacent to the Clearwater River basin was within the normal range except for March which was above normal and June which was below normal.

near Clearbrook, March through October 1986.

Table 8.--Ranked monthly mean discharges for water years 1960-78, 1986-87, Ruffy Brook near Gonvick

[Values are in cubic feet per second.--, no monthly mean discharge; **, monthly mean discharge for 1986. Note: A water year is October 1 through September 30, for example, October 1, 1986 is in Water Year 1987.]

March	April		Мау		June		July		August	Ļ	September	ber	October	ب
Discharge Year	ar Discharge year	year	Discharge	Year	Discharge Year	Year	Discharge Year	Year	Discharge Year	Year	Discharge Year	Year	Discharge Year	Year
196	:	1060	:	1960	:	1060	:	1987	:	1087	:	1987		1060
198	:	1987	:	1987	;	1987	2,10	1961	1.09	1976	62	1967		1986
	71 6.91	1977	4.61	1977	2.29	1961	2.14	1976	1.17	1961	69	1976	1.15	1968
2.32 1964		1973	5.42	1976	2.52	1973	2.87	1974	1.41	1970	1.56	1970	•	1977
		1968	8.74	1973	2.60	1976	3.22	1973	1.58	1964	2.15	1974	1.60	1961
		1961	10.60	1968	3.39	1977	3.55	1969	1.82	1968	2.17	1963	•	1964
	59 31.90	1963	10.90	1978	5.61	1978	3.88	1977	1.89	1977	2.25	1960		1975
		1976	16.80	1971	6.83	1966	3.96	1970	1.94	1967	2.53	1969	3.22	1962
		1986**	22.40	1964	7.71	1971		1966	2.14	1971	2.54	1972		1987*1
		1964	26.80	1961	7.89	1986**		1964	2.45	1965	2.62	1968		1963
		1971	27.20	1975	9.50	1972		1960	2.70	1978		1966		1971
5.81 197		1962	28.70	1967	12.30	1974		1971	2.73	1986**		1986**		1967
		1967	29.90	1972	12.70	1964	5.23	1978	2.93	1975	3.18	1971	5.09	1969
		1972	33.60	1966	13.80	1975		1965	3.12	1973		1978		1976
		1969		1969	16.10	1969		1967	3.20	1974	4.10	1961	5.54	1973
		1974		1986**	23.90	1968		1986**	3.28	1960	4.75	1965		1965
•		1970		1963	25.70	1970	7.62	1968	3.38	1962	5.67	1964		1966
•	*	1975		1970	29.40	1967	7.98	1963	5.04	1969	6.44	1975		1970
30.30 1967	57 91.70	1978		1974	49.20	1965	11.80	1972	6.89	1963	7.28	1962	13.10	1978
•		1965	51.60	1965	53.20	1963	38.20	1975	8.38	1972	13.90	1977		1964
•	•	1966	105.00	1962	54.40	1962	57.30	1962	18.69	1966	59.30	1973		1972
			Percentile	i values	rcentile values for the monthly mean discharge, water years 1960-87	nthly I	mean disch	arge, wa	iter years	1960-87				
						74 h 70	25th mercentile							
					-		ו כבורו וב							
3.10	31.90	6	10.90	0	5.61	_	3.63	M	1.84	4	2.19	6	3.19	
						0th pe	50th percentile							
5.81	60.90	6	28.70	ō	12.30	~	4.79	•	2.71	.	2.96	Q	5.08	
					1-	75th pe	75th percentile							
18.50	85.80	80	38.20	õ	25.70	~	7.37	2	3.35	2	5.44	4	10.20	-

Oklee
at
River
Lost
1960-87,
years
r water
for
discharges
mean
monthly
9 <i>Ranked</i>
Table

[Values are in cubic feet per second.--, no monthly mean discharge; **, monthly mean discharge for 1986. Note: A water year is October 1 through September 30, for example, October 1, 1986 is in Water Year 1987.]

March	April	i (May		June		July		August	ĭ	September	nber	October	Ŀ
Discharge Year	Discharge	e year	Discharge	r Year	Discharge Year	Year	Discharge Year	ear Year	Discharge	e Year	Discharge	e Year	Discharge	Year
1960		1960	;	1960	:	1960	1.99	1961	1.17	1961	.83	1976	:	1982
10 106/	04 00	1081	10 50	1080	0C 8	1080	2 / 0	1080	1 85	1060	70.1	1047		1077
- •		1071		22401	00				C	0061		1041	22.2	1161
		177	10.09	116	7.85	512		C/61	00.2	1984	20.1	1960		202
		1973	16.89	1981	10.60	1961		1974	2.99	1967	1.74	1984		1964
•		1983	21.90	1976	17.00	1977		1970	3.14	1970	3.16	1982		1961
•	•	1984	22.00	1984	19.60	1976		1966	77.7	1963	5.22	1975		1979
12.40 1980		1961	42.50	1973	22.50	1986**	-	1984	4.48	1964	7.08	1963	7.71	1976
•		1968	57.50	1968	23.30	1981		1986**	6.92	1968	7.46	1970		1967
•		1963	62.00	1971	25.30	1978		1976	6.93	1977		1980		1987**
.	148.00	1985	64.70	1978	25.40	1971		1964	7.10	1986**		1979		1981
•	186.00	1976	68.30	1961	36.80	1982		1971	7.34	1980		1966		1962
21.90 1978	214.00	1980	71.60	1983	39.90	1966	22.90	1978	8.42	1976	•	1968	16.80	1980
•		1964	87.20	1963	45.70	1972		1967	8.43	1965	14.60	1986**		1963
•		1962	128.00	1964	66.30	1974		1969	10.30	1982	15.40	1978		1973
•		1971	133.00	1979	66.80	1969		1972	10.90	1978	16.60	1961	21.19	1971
•		1967	153.00	1969	80.20	1975		1965	14.10	1975	17.39	1974	22.10	1969
`		1986**		1967	91.80	1968		1963	21.19	1971	18.19	1965	24.50	1975
77.30 1976		1972		1986**	94.00	1979		1981	28.90	1983	18.69	1972	30.10	1965
78.20 1984		1982	210.00	1966	94.20	1964		1983	30.40	1972	19.00	1969	51.10	1984
•		1965		1972	98.70	1967		1977	31.20	1973	19.19	1983	65.80	1966
•		1970	218.00	1975	113.00	1984		1960	31.30	1966	39.70	1964	73.70	1978
•		1969	235.00	1970	114.00	1983		1982	36.00	1969	45.40	1962	77.20	1970
164.00 1983	677.00	1975	237.00	1965	131.00	1985	125.00	1968	39.30	1962	57.10	1971	82.90	1983
		1974	239.00	1985	134.00	1970		1979	72.50	1979	61.90	1985	86.40	1985
165.00 1985	678.00	1979	271.00	1974	141.00	1963		1985	72.90	1981	83.50	1977	101.00	1986
-	726.00	1978	272.00	1982	250.00	1965	275.00	1975	281.00	1974	171.00	1981	146.00	1974
242.00 1986*	*	1966	622.00	1962	657.00	1962	442.00	1962	351.00	1985	330.00	1973	470.00	1972
			Percentil	e values	centile values for the mean-monthly discharge, water years 1960-87	san-mon	thly disch	large, Wé	ater years	1960-87	ŗ			
						25th pe	25th percentile							
14.70	118	118.00	53.70	20	23.10	0	14.60	05	4.48	48	7.08	08	9.29	6
						50th pe	50th percentile							
30.00	304	304.00	131.00	00	66.50	0	26.30	05	10.30	30	15.40	40	20.80	0

73.70

39.70

31.30

79.20

113.00

222.00

576.00

136.00

75th percentile

SUMMARY

During March through October 1986, 52,560 acre-feet of water passed the gaging station on the Clearwater River near Clearbrook located 4.8 miles upstream from the Red Lake Indian Reservation boundary. Tributary inflow, groundwater discharge, and release of water from the Kiwosay Reservoir contributed to a total discharge of 93,770 acre-feet at the downstream boundary. The total gain was 41,210 acre-feet, of which 32,950 acre-feet occurred along the boundary of the Reservation.

Daily streamflow records showed that the reach of the Clearwater River along the Reservation gained flow throughout the study period except for 13 days in October when there were small net losses. Flow at the downstream boundary of the Reservation remained above the $36 \cdot ft^3/s$ minimum required at the City of Plummer 29.9 miles downstream from the Reservation. The amount of flow leaving the Reservation area in excess of the $36 \cdot ft^3/s$ minimum totaled 76,300 acre-feet. The monthly distribution of flow was uneven, generally following seasonal trends with the highest monthly discharge totals occurring in April and May and the lowest monthly discharge totals occurring during August, September, and October. Seasonal trends were modified by withdrawals, reservoir releases, and rice-field drawdowns. These activities affected flows at the downstream Reservation boundary and caused wide fluctuations in percent net-flow gains on a month-to-month basis that, at times, ran counter to natural seasonal trends observed upstream from the Reservation.

Downstream from the Reservation, in the reach between the gaging station near Trail and the gaging station at Plummer, the effect of withdrawals was more severe than in the reach flowing past the Reservation. Despite its greater length, flow gains in the downstream reach fell short of gains in the upstream reach from May through August and there was a net loss of flow in the downstream reach during September and October. The loss caused flows at Plummer to decline below the $36-ft^3/s$ regulatory level on October 29, 30, and 31.

Periodic discharge measurements at various locations along the Reservation boundary showed that flow in Butcher Knife Creek and releases from the Kiwosay Reservoir made significant contributions to the total flow of the Clearwater River during spring, but declined in significance during summer and fall. The discharge measurements also verified effects of localized withdrawals and return flows that were inferred from the record obtained at the more widelyspaced continuous-record gaging stations. Some of the localized effects involved significant amounts of flow such as the wichdrawal of 53 ft^3/s within a short reach of the Clearwater immediately upstream from the Reservation during May and the return of 39 ft^3/s within a 2-mile reach immediately downstream from the Reservation during July. Discharge measurements made during August in the absence of withdrawals and releases indicated that ground-water discharge increased flow in the Clearwater by about 20 percent within the reach flowing past the Reservation. The August measurements also showed that ground-water discharge increased along the reach that is adjacent to the Kiwosay Reservoir, suggesting that the reservoir may induce ground-water discharge to the Clearwater River.

Analysis of longer-term records for Ruffy Brook and an adjacent-basin gaging station, Lost River at Oklee, indicate that discharge during the 8-month study period was within the normal range except during March when it was above normal and during June when it was below normal. On this basis, the flow and water supply characteristics of the Clearwater River that were observed during 1986 appear to be representative of those that can be expected over the long term.

1

ł