AN ASSESSMENT OF PERFORMANCE

OF WET ATMOSPHERIC DEPOSITION SAMPLERS

By Richard C. Graham and John K. Robertson Science Research Laboratory U.S. Military Academy West Point, New York 10996-5000

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 90-4042

Prepared in cooperation with the U.S. Military Academy West Point, New York

Reston, Virginia 1990 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to: Richard C. Graham Science Research Laboratory U.S. Military Academy West Point, New York 10996-5000 Copies of this report can be purchased from: U.S. Geological Survey Books and Open-File Reports Section Federal Center, Building 810 Box 24525 Denver, Colorado 80225

CONTENTS

Abstract	1
Introduction	2
History	2
Objectives of study	2
Purpose and scope of report	2
Description of the study site	4
Data collection and sample preparation procedures	4
Data collection results	7
Discussion of results	8
Overall statistical evaluations	8
Evaluation of the results of the split analyses	8
Data editing and estimation	8
Appropriateness of analysis of variance model	10
The Friedman test	13
Test of sampler performance	14
Pairwise comparisons	15
Variability of rainfall amount rain gages	15
	17
Variability of wet atmospheric deposition	17
Chemistry differences	26
Deposition differences	20
Performance of non-standard (National Atmospheric Deposition	
Program/National Trends Network) wet atmospheric deposition	07
samplers	27
Length of time of opening	27
Cycle Time	36
Spatial Variability	36
Compliance with Siting Criteria	38
Summary and conclusions	45
General	45
Sampler performance	46
Spatial variability \ldots	46
Violation of siting criteria	46
References cited	47

ILLUSTRATIONS

Figure	1	Schematic of sampling site and spatial relation of samplers	5
	2	Normalized residuals of the predicted sample weights as	
		a function of predicted sample weights	11
	3	Error terms (residuals) as a function of normalized	
		residuals for the determination of normality of	
		residuals	12
	4	Percentile comparison of the pH, determined by the U.S.	
		Military Academy	19
	5	Percentile comparison of pH, determined by U.S.	
		Geological Survey	19
	6	Percentile comparison of conductance determined by U.S.	
		Military Academy	20

Figure	7	Percentile comparison of conductance determined by U.S.	
		Geological Survey.	20
	8	reserves a second	21
	9	Percentile comparison of the concentration of magnesium ion	21
	10	Percentile comparison of the concentration of sodium ion.	22
		Percentile comparison of the concentration of potassium ion	22
	12	Percentile comparison of the concentration of ammonium ion	23
	13	Percentile comparison of the concentration of chloride ion	23
	14	Percentile comparison of the concentration of nitrate	23
		ion	24
	15	Percentile comparison of the concentration of sulfate	
		ion	24
	16	Percentile comparison of the concentration of sample weight	25
	17	Relation of the ninetieth percentile of length of opening	20
		to sensor sensitivities (resistances)	35
	18	Cumulative frequency distributions of the length of time	
		that samplers were open	37
	19	Winter 1986 volume weighted average concentrations	
		(milligrams/liter) of chloride, nitrate and sulfate ions	
		as a function of distance from the road	40
	20	Spring 1986 volume weighted average concentrations	
		(milligram/liter) of chloride, nitrate and sulfate ions	
		as a function of distance from the highway	41
	21	Summer 1986 volume weighted average concentrations	
		(milligrams per liter) of chloride, nitrate and sulfate	
		ions as a function of distance from the highway	42
	22	Fall 1986 volume weighted average concentrations	
		(milligrams per liter) of chloride, nitrate and sulfate	
		ions as a function of distance from the highway	43
	23	1986 volume weighted average concentrations (milligrams	
		per liter) of chloride, nitrate and sulfate ions as a	
		function of distance from the highway	-44

TABLES

Table	1	Location of samplers and related study objectives	- 4
	2	Measurements of surface temperatures and resistances of	
		the sensors	9
	3	Evaluation of results of paired t-test on laboratory	
		analysis of split sample from sampler A-2	9
	4	Number of data values missing from data base	10
	5	Summary of results for the sum of rank differences	
		indicated by the Friedman test for sample weight \ldots	16
	6	Summary of results for the sum of rank differences	
		indicated by the Friedman test for rain gage comparison	16

Table 7	Summary results of statistical analysis using the Friedman test for concentration (and sample weight) chemical	
	analytical results	18
8	Volume weighted average concentrations of selected	
	analytes	25
9		
	test for deposition data	28
10	Summary of sum of rank differences as indicated by	
	Friedman test calcium deposition	29
11	Summary of sum of rank differences as indicated by	
	Friedman test chloride deposition	29
12	Summary of sum of rank differences as indicated by	
	Friedman test field H^+ deposition \ldots \ldots \ldots \ldots	30
13	Summary of sum of rank differences as indicated by	
	Friedman test potassium deposition	30
14	Summary of sum of rank differences as indicated by	
	Friedman test lab H^+ deposition	31
15	Summary of sum of rank differences as indicated by	
	Friedman test magnesium deposition	31
16	Summary of sum of rank differences as indicated by	20
1 -	Friedman test sodium deposition	32
1/	Summary of sum of rank differences as indicated by	32
10	Friedman test ammonium deposition	52
10	Friedman test nitrate deposition	33
19	Summary of sum of rank differences as indicated by	55
17	Friedman test sulfate deposition	33
20	Summary of sampler performance based on length of time	55
20.	(minutes) that the sampler is open	34
21	Distance from the road for each sampler	39

APPENDIX

Appendix A:	Criteria used to establish National Atmospheric
	Deposition Program/National Trends Network collection
	sites
Appendix B:	Tables of chemical data for precipitation collected in
	wet only atmospheric deposition samplers
Table B-1	Chemical data for sampler A-1
B-2	Chemical data for sampler A-2
B-3	Chemical data for sampler A-3
B-4	Chemical data for sampler G-4
B-5	Chemical data for sampler A-5
B-6	Chemical data for sampler A-6
B-7	Chemical data for sampler V-7
B-8	Chemical data for duplicate samples from sampler A-2 68
B-9	Summary of amounts of precipitation collected by each
	rain gage during the period 14 January 1986 to 30
	December 1986
Appendix C:	(1) Percentile summaries of concentrations of selected
	analytes, to include sample weight for samplers a-1 to
	A-3, G-4, A-5 to A-6 and V-7. (Tables C-1 to C-13)

	(2) Relation between the collection week and sampling perio	d.
	(Table C-14)	
	(3) Differences in volume-weighted-average concentrations o	f
		71
Table C-1	j 1 0	72
C-2,	J J	72
C-3		72
C-4	j j	72
C-5	J I	73
C-6	5	73
C-7		73
C-8		73 74
C-9	Percentile summary of sulfate data	/4
0-10		74
C-11	Percentile summary of U.S. Military Academy	/ 4
0-11	• • •	74
C-12	Percentile summary of U.S. Geological Survey determined	•••
• 101		74
C-13	Percentile summary of U.S. Military Academy determined	
	• • •	75
C-14	-	75
C-15	Difference in the volume weighted concentrations of	
		75
C-16	Difference in the volume weighted concentrations of	
		76
C-17	Difference in the volume weighted concentrations of	
	Free sector sect	76
C-18	Difference in the volume weighted concentrations of	
C 10		76
6-19	Difference in the volume weighted concentrations of	76
C-20	chloride	/0
0-20		77
C-21	Difference in the volume weighted concentrations of	//
0 21.		77
G-22	Difference in the volume weighted concentrations of	••
	· · · · · · · · · · · · · · · · · · ·	77
C-23	Difference in the volume weighted concentrations of	
		77
C-24	Difference in the volume weighted concentrations of lab	
		78
Appendix D:	Graphs of normalized residuals as a function of	
	predicted concentrations of analytes; shows the	
	constancy of variance of residuals for samplers A-1 to	
		79
Figure D-1	Normalized residuals as a function of predicted	
	concentration of calcium, magnesium, sodium and	••
		80
D-2	Normalized residuals as a function of predicted	
	concentration of ammonium, sulfate, nitrate and chloride; January to December 1986	01
	chioride, January to December 1200	οT

Figure D-3	Normalized residuals as a function of predicted values of field pH, field conductance, laboratory pH, and laboratory conductance; January to December 1986	82
Appendix E:	Graphs of residuals as a function of normalized residuals for samplers A-1 to A-6; January 1986 to	
Figure E-1	December 1986	83 0
0	December 1986; calcium, magnesium, sodium and potassium.	84
E-2	Residuals as a function of normalized residuals;	
	January to December 1986; ammonium, sulfate, nitrate and chloride.	85
E-3	Residuals as a function of normalized residuals;	0.5
	January to December 1986; field pH, field conductance,	
	laboratory pH, laboratory conductance	86
Appendix F:	Pairwise differences of sum of ranks from Friedman test	
	for detecting differences in the performance of	
	samplers; concentration of analytes used in the	87
Table F-1	statistical analysis, January 1986 to December 1986 Summary of sum of rank differences indicated by	07
Table 1-1	Friedman test for calcium concentration	88
F-2	Summary of sum of rank differences indicated by	
	Friedman test for chloride concentration	88
F-3	Summary of sum of rank differences indicated by	
	Friedman test for conductance	88
F-4	Summary of sum of rank differences indicated by	• •
	Friedman test for pH	89
F-5	Summary of sum of rank differences indicated by Friedman test for potassium concentration	89
F-6	Summary of sum of rank differences indicated by	09
1 0,	Friedman test for conductance	89
F-7	Summary of sum of rank differences indicated by	
	Friedman test for pH concentration	90
F-8	Summary of sum of rank differences indicated by	
- •	Friedman test for magnesium concentration	90
F-9	Summary of sum of rank differences indicated by	~~
F.10	Friedman test for sodium concentration	90
F-10	Friedman test for ammonium concentration	91
F-11	Summary of sum of rank differences indicated by	~ 1
	Friedman test for nitrate concentration	91
F-12	Summary of sum of rank differences indicated by	
	Friedman test for sulfate concentration	91
Appendix G:	Pairwise differences of sum of ranks from Friedman test	
	for detecting differences in the performance of	
	samplers; deposition of analytes used in the	~~
Table G-1	statistical analysis, January 1986 to November 1986 Summary of sum of rank differences indicated by	92
1ab1e 6-1	Friedman test for calcium ion deposition	93
G-2	Summary of sum of rank differences indicated by	
	Friedman test for chloride ion deposition	93
G-3	Summary of sum of rank differences indicated by	
	Friedman test for hydrogen ion deposition	93

Table G-4	Summary of sum of rank differences indicated by	
	Friedman test for potassium ion deposition	94
G-5	Summary of sum of rank differences indicated by	
	Friedman test for hydrogen ion deposition	94
G-6	Summary of sum of rank differences indicated by	
	Friedman test for sodium ion deposition	94
G-7		
~ ^	Friedman test for ammonium ion deposition	95
G-8	Summary of sum of rank differences indicated by	05
0.0	Friedman test for nitrate ion deposition	95
G-9	Summary of sum of rank differences indicated by	95
Appendix U:	Friedman test for sulfate ion deposition	95
Appendix H:	is open	96
Figure H-1	Frequency distribution for length of time that sampler	20
iiguite in 1.	is open: sampler A-1; sampler A-2; sampler A-3	97
Н-2	Frequency distribution for length of time that sampler	
	is open: sampler G-4; sampler A-5; sampler V-7	98
Appendix I:	Cumulative frequency distribution for length of time	
••	that sampler is open	99
Figure I-1	Percent cumulative frequency distribution for length of	
	time that sampler is open: sampler A-1; sampler A-2;	
	sampler A-3	100
I-2	Percent cumulative frequency distribution for length of	
	time that sampler is open: sampler G-4; sampler A-5;	1 . 1
	sampler V-7	101

CONVERSION FACTORS

For the reader who may prefer to use inch-pound units rather than the SI metric units in this report, the following conversion factors may be used:

Multiply metric units	Ву	To obtain inch-pound units
kilometer (km)	0.6214	mile
liter (L)	1.057	quart
milliliter (mL)	0.0338	ounce, fluid
microliter (µL)	0.0000338	ounce, fluid
micrometer (µm)	0.00003957	inch
millimeter (mm)	0.03957	inch
meter (m)	39.37	inch
Water-quality terms and	abbreviations used in	n this report:
Microsiemens per centime kilo-ohms (KΩ)		

AN ASSESSMENT OF PERFORMANCE

OF WET ATMOSPHERIC DEPOSITION SAMPLERS

by Richard C. Graham and John K. Robertson Science Research Laboratory US Military Academy West Point, New York 10996-5000

ABSTRACT

The variability in performance of seven wet/dry atmospheric deposition samplers was compared for 1 year. Samples were collected weekly, weighed, and analyzed for pH, specific conductance, and common ionic chemical constituents. Data on the duration of each sampler opening were recorded using a microdatalogger. Differences in the results between samplers were assessed based on the manufacturer of the sampler, spatial variability, and sampler siting criteria violations.

The cumulative frequency distributions of the duration of opening of the Viking¹ and Geotech 650 samplers were significantly different than the cumulative frequency distributions for Aerochem Metrics 301 samplers. The deposition² of analytes was also significantly different ($\alpha = 0.05$) for these two samplers because of the difference in collection efficiency. An Aerochem Metrics 301 sampler, located approximately 4 km southwest of the primary sampling site, exhibited the same deposition of analytes and sample volume as the sampler at the primary sampling site. Several of the criteria used in siting samplers for the National Atmospheric Deposition Program/National Trends Network were purposely compromised to determine the validity of such siting criteria. This study showed that objects should be excluded within a 45° cone of the sampler and also that objects of sufficient bulk to disturb wind patterns should be excluded within 5 meters of the sampler.

SPONSORSHIP AND ACKNOWLEDGMENTS

This research has been funded as part of the National Acid Precipitation Assessment Program by the U.S. Geological Survey under interagency agreement number WRD-4000-4352-84. The performing agency was the Science Research Laboratory of the U.S. Military Academy at West Point, New York. Principal Investigators were Richard C. Graham, PhD. and John K. Robertson, PhD.

 2 . Deposition is the product of the concentration of the analyte times the volume of the sample.

¹. The use of brand, trade, and company names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey nor by the U.S. Army.

INTRODUCTION

<u>History</u>

One of the earliest uses of automatic precipitation samplers was the design by Volchock and Graveson(1976). Since that time other designs have been promulgated. The Aerochem Metrics 301 (Aerochem Metrics Co. Bushnell, Florida) and the Geotech 650 (Leonard Mold and Die Co. Denver, Colorado) are fashioned after the Volchock sampler. The Aerochem Metrics 301 was chosen by the National Atmospheric Deposition Program (NADP), organized in 1977 to determine spatial and temporal trends in atmospheric precipitation, to be the sampler to be used in the network (Bigelow 1982, Cowling 1978). In 1982, the National Trends Network (NTN) adopted the same sampler. Several studies (Bogen and others, 1980; DePena and others, 1980; Galloway and Likens, 1976; Goodison, 1980; Schroder and others, 1985) have been designed to determine the collection efficiency of various samplers. Graham and others (Graham and others, 1987; Graham and others, 1988; Graham and Obal, 1988) have shown that the sensor design affects the successful operation of samplers. They also showed that a small but statistically significant difference exists between samplers that are located as much as 35 meters apart.

Many siting criteria have been applied when locations are selected for precipitation samplers. One set is that which was applied when the National Trends Network was established (Robertson and Wilson 1985). The checklist for compliance of sites with siting criteria that was used during site visits by Robertson and others (1982) and is described in appendix A.

Objectives of Study

The specific objectives of the study were:

1. To study the performance of non-standard NADP/NTN atmospheric deposition samplers. Performance of the Viking and Geotech 650 samplers were compared to the Aerochem Metrics 301 atmospheric deposition sampler (the standard sampler for the NADP/NTN).

2. To study the small distance spatial variability of sample weight and chemistry of wet atmospheric deposition. Two samplers were located approximately 4 km apart. It was hypothesized that small-scale differences in amount of precipitation and precipitation chemistry might be observed over the study area.

3. To study the validity of the criteria used in siting precipitation samplers. Several of the criteria were specifically compromised so as to be able to ascertain if the criteria were valid in the establishment of monitoring sites.

Purpose and Scope of Report

The purpose of the report is to describe the results of a one year effort of wet only atmospheric deposition amount and precipitation chemistry. The data were analyzed to determine causes in the differences in the performance of the samplers used in the study. Three specific data analyses will be presented:

a. The performance of non-standard NADP/NTN atmospheric deposition samplers, (a Viking and a Geotech 650) was compared with the standard NADP/NTN (Aerochem Metrics 301) atmospheric deposition sampler.

b. The comparison of precipitation amount and precipitation chemistry of two Aerochem Metrics 301 atmospheric deposition samplers located about 4 km apart.

c. Three of the samplers were located in such a manner that several of the siting criteria of the NADP/NTN were not met (appendix A). Specific criteria that were not met were:

1. "Objects with sufficient mass to deflect the wind (with the exception of Alter windshields) over 1 meter high will not be located within 5 meters of the sampler." (Number 5 in appendix A)

2. "No object or structure shall project onto the sampler or rain gauge with an angle greater than 45 degrees from the horizontal (30 degrees is considered optimal, but 45 degrees is the highest angle acceptable). Therefore the distance from the sampler to the object must be at least equal to the height of the object (preferably twice the height of the object). Pay particular attention to the anemometer towers and overhead wires." (Number 9 in appendix A)

3. "Frequent moving sources of pollution, such as air, ground or water traffic or the medium on which they traverse (e.g. runway, taxiway, road, tracks, or navigable river) within 100 meters of the sampler. The local road net around the site is of particular concern." (Number 12 in appendix A)

The data analyses include the application of the 2-way analysis of variance (ANOVA) of a randomized block design and the subsequent use of the nonparametric Friedman test to ascertain differences existing between different types of atmospheric deposition samplers. The data analysis includes all samplers used in the study; any differences which are noted in the data analyses will be discussed in light of the objectives previously stated.

Additionally, the analysis of data from the recorded times of opening and closing of the sampler will be included. Effect upon monitoring programs which use atmospheric deposition samplers also will be discussed.

Description of the Study Site

The monitoring site where six of the samplers were sited is located at the US Military Academy at West Point, New York (fig. 1). The site is also a part of the NADP/NTN network and is identified as site number 335141, WEST POINT (NY99). The site is partially surrounded by a swamp (fig. 1). The soil at the site is gravel fill. The topographic relief in the vicinity of the site is relatively low. The site is located next to a flowing stream that is the outflow of a moderate sized watershed. The seventh sampler was located near a lake located approximately 4 km southwest of the primary sampling site. The latitudes, longitudes, and elevations of each sampler are given in table 1. Details of the sampling site are given in previous communication (Graham and others, 1987).

Table 1.-- Location of samplers and related study objectives [Study objectives: (a) sampler manufacturer; (b) spatial variability; (c) siting criteria. Samplers A-1, A-2, A-3, G-4, A-5 and V-7 were colocated at National Atmospheric Deposition Program/National Trends Network site NY99; sampler A-6 was located 4 kilometers southwest of site NY 99.]

Sampler	Latitude	Longitude	Elevation (Meters)	Objective Tested
A-1	41°21′04"	74°2′57"	203	с
A-2	41 ⁰ 21′04″	74 ⁰ 2′58"	203	с
A-3	41°21′04"	74 ⁰ 2′59"	203	Control
G-4	41 ⁰ 21′04"	74 ⁰ 3′01"	203	а
A-5	41 ⁰ 21′04"	74 ⁰ 2′56"	203	b,c
A-6	41°19′31"	74 ⁰ 5′31"	296	b
V-7	41 ⁰ 21′04"	74 ⁰ 3'00"	203	а

DATA COLLECTION AND SAMPLE PREPARATION PROCEDURES

Seven wet atmospheric deposition samplers were used in the study. The samplers were dispersed in an approximately linear fashion (fig. 1) except for the sampler (A-6) located near the inflow to a lake approximately 4 km southwest of the primary sampling site (NY 99). Five of the samplers were Aerochem Metrics model 301 precipitation samplers (samplers marked A-1, A-2, A-3, A-5 on figure 1 and A-6 4 km southwest of the primary sampling site); a sixth sampler was an unmodified Leonard Mold and Die GeoTech 650 sampler (marked G-4 on figure 1) and the seventh sampler was manufactured by the Viking Company (Salem, Virginia) (marked V-7 on figure 1.) The sensitivity of each precipitation sensor was measured by changing the setting of a decade resistance box shunted across the sensor grid until the sampler was monitored by checking the voltage at the event pen output terminal strip on each sampler. The voltage was measured each minute by a Campbell (Campbell Scientific Inc. Logan, Utah) model CR-7 microdatalogger.

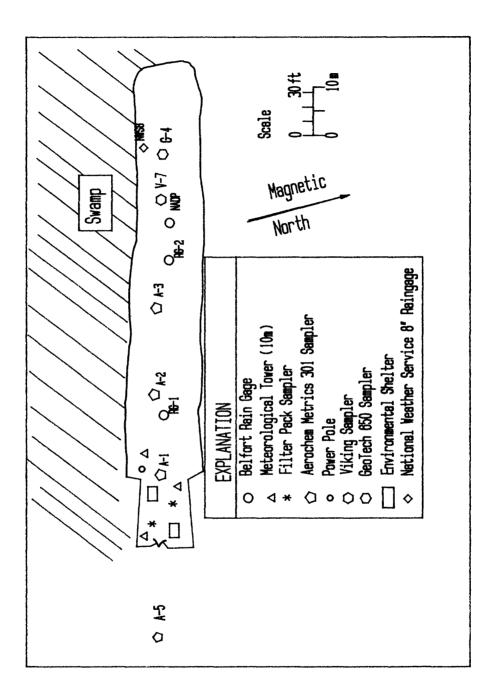


Figure 1.-- Schematic of sampling site and spatial relation of samplers.

A set of voltage values was recorded only if the voltage of any one of the samplers indicated a change of lid position, that is, the lid went from covering the dry bucket to covering the wet bucket or vice versa. A threshold of 8 volts was used to indicate that a change of lid position had occurred. The voltage when the lid is covering the wet bucket (indicating that it is not raining) was near zero. A small offset of 0.2 volts was added to the value read by the microdatalogger because some of the voltages were occasionally slightly negative. The value of the voltage when the lid was covering the dry bucket was in the range from 11 to 13 volts for the Aerochem Metric 301 samplers and from 17 to 18 volts for the V-7 sampler. The opening and closing record of the sampler located 4 km southwest of the primary sampling site was not recorded because of the distance from the microdatalogger.

Sample buckets were changed each Tuesday at approximately 0900 hours local time (Eastern Standard Time or Eastern Daylight as appropriate to the time of year). The sample collection vessels were white high-density polyethylene (HDPE) buckets of approximately 10-liter volume. Lids were placed on buckets prior to removal from the sampler. After removal of the bucket from the sampler, the bucket and lid were placed in a plastic bag for transport to the laboratory. The under-side of the foam-lined and plastic-sealed sampler lid and the lip of the dry bucket were washed weekly with a laboratory tissue soaked in deionized water and dried with a laboratory tissue. The technician wore surgeon's gloves during the changing of all sample buckets. All buckets and lids had been previously scrubbed with a plastic bristle brush and deionized water, then rinsed three times with deionized water and allowed to air dry. Buckets and lids were weighed empty then placed in individual plastic bags for storage and transport to the field site. The sample collection vessels and contents were weighed upon return to the laboratory.

The mass of precipitation in each collection vessel was recorded and converted to equivalent mm of precipitation for comparison to the amount recorded by the NADP rain gage readings at the site. Three Belfort model 5-780 weighing/recording rain gages and one Weathermeasure model P511-E tipping bucket rain gage measured and recorded the amount of precipitation which fell. The amount of precipitation collected in the rain gage marked NADP on figure 1 was used as the standard to which the amount of precipitation collected in each sampler was compared. The signal from the tipping bucket rain gage was also recorded by the Campbell CR-7 data logger. Also, the amount of precipitation in a National Weather Service standard 8-inch rain gage, located at the site, was measured and recorded daily.

After the buckets were weighed, a sample aliquot was removed and the pH and conductance of the precipitation in each bucket were determined on the unfiltered aliquot. pH was determined by placing 4 mL of sample in a 4-mL plastic cup. An Orion 701 pH meter with a Beckman 13013 pH probe, calibrated by the NADP/NTN protocol (Bigelow 1982), was used for the analysis. A Barnstead model PM70CB specific conductance meter with a Yellow Springs Instrument 5301 specific conductance probe, calibrated according to the NADP/NTN protocol (Bigelow 1982), was used in the inverted mode to determine the specific conductance of each sample. Treatment of the samples in the laboratory consisted of withdrawing three 50-mL aliquots of sample and filtering each aliquot through a $0.45-\mu m$ ACRODISK filter into a 125-mL high density polyethylene plastic bottle. The filter was prerinsed with a 5-mL aliquot of deionized water followed by a 20-mL aliquot of the Two aliquots were left untreated, and the third was preserved with sample. 20 μ L of American Chemical Society reagent grade nitric acid. The three bottles were then sealed and placed in a small, labeled plastic bag. Split samples of sampler A-2 were submitted each week to the laboratory as blind samples. In addition to these quality-control samples, aliquots of deionized water, which had been placed in clean buckets and allowed to set for 24 hours also were submitted on a routine basis to ensure cleanliness of buckets. All small plastic bags were then placed in a large plastic bagin an insulated mailer. Ice was added to maintain temperature at 4°C during shipment.

Samples were mailed to the U.S. Geological Survey analytical laboratory in Arvada, Colorado for analysis. The laboratory determined calcium, magnesium, potassium, and sodium by atomic absorption spectrophotometry. Colorimetric methods were used to determine chloride, nitrate plus nitrite, ammonium, sulfate, and ortho-phosphate. The laboratory determined pH and specific conductance potentiometrically (Fishman and Friedman 1985). This same reference also establishes the expected analytical precision for each of the analytes.

DATA COLLECTION RESULTS

Tables B-1 through B-8 in appendix B represent the results of the chemical analyses conducted on each sample by the U.S. Geological Survey. Missing values in the tables are indicated by -----; whereas table entries that are blank indicate that no precipitation or insufficient precipitation was available for analysis that week. These tables include concentrations of sulfate, ammonium (as ammonium), nitrate plus nitrite (as nitrate), chloride, sodium, potassium, calcium, magnesium, field (determined at U.S. Military Academy) and laboratory (determined at U.S. Geological Survey) pH, and field and laboratory determined specific conductance. Also included in these tables are the weight of each sample and the collection efficiency of sampler collection for the sample period. The efficiency of collection, expressed as a percentage, was calculated by dividing the equivalent mm of precipitation (sample weight x .014732) collected in the sampler by the depth of precipitation, in mm, determined from rain gage data and expressed as a percentage. The rain gage (a Belfort model 5-780 weighing rain gage) that was used for calculation is labelled NADP in figure 1. Table B-9 in appendix B gives the amount of precipitation for each rain gage in equivalent mm of water. Also included in this table are the precipitation amounts as determined from a National Weather Service 8-inch standard rain gage (fig. 1). Tables C-1 through C-13 in appendix C show percentile summaries of the ion concentrations and sample weights.

Measurements of precipitation weight by sampler were taken over a period of 50 weeks from January 1986 through December 1986. The relation of collection week (x-axis of all plots) to the date of collection is shown in table C-14 in appendix C.

The maximum resistances required to open the sampler and the surface temperatures¹ of the sensors used in the study are shown in table 2. The surface temperatures were measured at the top, middle and bottom of the sensor grid. Temperature measurements were made after the temperature stabilized.

DISCUSSION OF RESULTS

Overall Statistical Evaluations

Evaluation of the Results of the Split Analyses

As described earlier, a split of the sample collected in sampler A-2 was submitted to the U.S. Geological Survey laboratory for quality control purposes for evaluation of the degree of variance that might be expected in analytical results. The results of paired t-tests to evaluate whether a difference existed between the original sample and the split are given in table 3. The hypothesis tested was that the mean of the difference [(A-2)-(split A-2)] was zero. The hypothesis could not be rejected for any of the analytes for a confidence interval of 99 percent; however, for potassium, the paired t-test indicated a difference at the 95 percent confidence interval. Additionally, a paired t-test was also conducted to detect differences between the pH determined at the U.S. Geological Survey laboratory and the pH determined at the U.S. Military Academy laboratory. The test was conducted both on the pH and on the hydrogen ion concentration values. No differences were detected for the 99 percent or 95 percent confidence interval.

Data Editing and Estimation

Before the aptness of a statistical model could be investigated, the recorded data had to be edited. There were 6 measurement periods where no precipitation was recorded. Within the remaining 44 weekly periods, there were occasions where data values were missing. This occurred during the weeks when specific samplers were inoperative because of mechanical malfunction or a sample was inadvertently spilled. Weeks that had values missing for one or more parameters were not eliminated because the remainder of the information contained in the data was useful. The missing values were estimated using a weighted average procedure (Hicks, 1973). The weighting procedure is a minimization of the sum of squares and takes into account both the relation to other samplers and the relation of the sampler to itself. The number of missing data values for each of the variables is shown in table 4. The number of missing data values is for the block (that is 7 samplers and 44 weeks) not for an individual sampler. No more than 3 data values were estimated for any given sampler.

¹. The sensors upon activation by precipitation are heated to decrease the amount of time which must pass before the sensor detects an end of storm.

		cure	Temperat		
sistance	Resista	Bottom	Middle	Тор	Sampler
70	70	40.6	65.0	40.6	A-1
70	70	43.9	71.1	55.0	A-2
70 (Jan-Mar)	70	52.2	51.7	35.0	A-3
96 (Apr-Dec)	96	40.6	57.8	48.3	A-3
	>999	57.8	51.7	50.6	G-4
60	60	42.8	49.4	39.4	A-5
71	71	50.6	70.0	51.1	A-6
240	240	64.4	72.2	67.8	V-7

Table 2.-- Measurements of surface temperatures and resistances of the sensors [Temperature in degrees Celsius; Resistance in ohms $x \ 10^3$]

Table 3.-- Evaluation of results of paired t-test on laboratory analysis of split sample from Sampler A-2 [t_{test} = test t-statistic; t_{table} = t-value from the tabulated t-distribution; conf = confidence; Yes = significant difference at α significance level]

Analyte	Number of samples	ttest	^t table (α=0.05)	table (α=0.01)	95% Conf interval	99% Conf Interval
Calcium	40	1.55	2.021	2.704	No	No
Chloride	39	-0.018	-2.022	-2.706	No	No
Laboratory	r					
Conductanc	e 41	-1.764	-2.020	-2.703	No	No
Potassium	39	-2.527	-2.022	-2.706	Yes	No
Laboratory	,					
рН	41	1.865	2.020	2.703	No	No
Laboratory	,					
[H ⁺]	41	-1.971	-2.020	-2.703	No	No
Magnesium	40	0.003	2.021	2.704	No	No
Sodium	41	-1.013	-2.020	-2.703	No	No
Ammonium	41	-0.006	-2.020	-2.703	No	No
Nitrate	41	-0.072	-2.020	-2.703	No	No
Sulfate	40	1.306	2.021	2.704	No	No

Analyte or variable	Number of missing data values	Analyte or variable	Number of missing data values
Calcium	11	Chloride	15
Collection		Field	
Efficiency	3	Conductance	13
Field pH	12	Laboratory	
Laboratory p	oH 15	Conductance	11
Magnesium	13	Sodium	11
Ammonium	14	Nitrate	14
Sulfate	19	Sample Weigh	at 3

Table 4.-- Number of data values missing from data base [Values were estimated for each of the missing data values.]

It should be noted that the estimation procedure will tend to make rejection of the null hypothesis slightly more favored than if the missing values were not included. The reason for this is that as the number of observations increases, the corresponding F-Statistic to which test statistics are compared decreases. As the F-statistic decreases, a smaller test statistic could lead to an easier rejection of the null hypothesis.

Appropriateness of Analysis of Variance Model

Use of the parametric analysis of variance (ANOVA) to statistically determine if the samplers performed identically was shown to be improper as the validity of the assumptions of the two-way ANOVA using randomized complete block design were not valid. One such assumption is that the computed random error terms must be normally distributed, with a mean of zero and a constant variance. Examination of the plot of normalized residuals as a function of predicted sample weight (fig. 2) indicated a marked heteroscedasticity at predicted sample weights beyond 1,500 grams. Plots for the remainder of the analytes are shown in appendix D. A plot of the error terms (residuals) as a function of the normalized error terms (fig. 3) indicated a significant departure from the normality assumption for sample weight. For the normality assumption to be valid, the plot in Figure 3 should be described by a straight line rather than the sigmoidal curve that is seen. Plots of the residuals and the normalized residuals for the other analytes are shown in appendix E. The plots of residuals as a function of normalized residuals and plots of the normalized residuals as a function of predicted sample weights for the remainder of the analytes show the marked deviation from the assumptions for the two-way Analysis of Variance.

For these reasons, use of the parametric two-way Analysis of Variance randomized complete block as the model for analysis was deemed inappropriate and a nonparametric approach, the Friedman Test, was chosen.

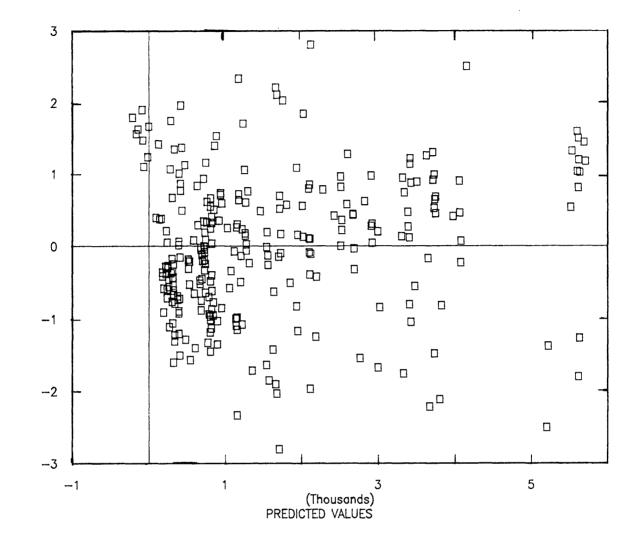


Figure 2.-- Normalized residuals of the predicted sample weights as a function of predicted sample weights [Used to test for constancy of variance. Data collected January - December 1986.]

NORMALIZED RESIDUALS

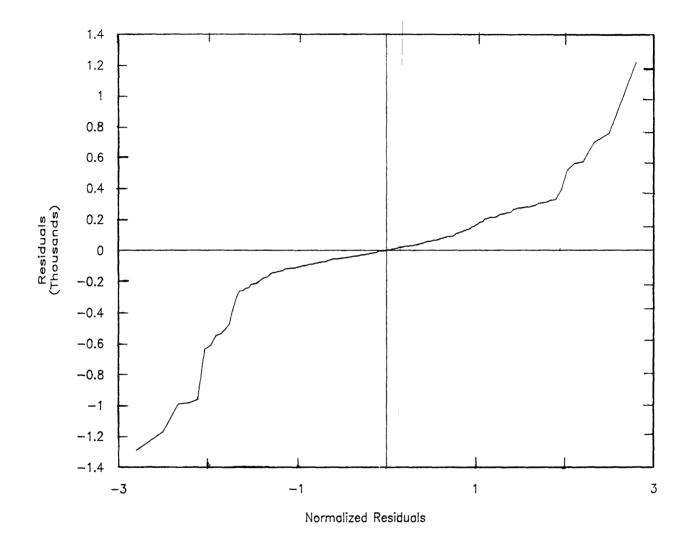


Figure 3.-- Error terms (residuals) as a function of normalized residuals for the determination of normality of residuals.

The Friedman Test (Conover, 1980) is a nonparametric test that can be used with block designs in which the underlying assumptions are not as restrictive as an ANOVA procedure. The technique is based on the ranks of the observations within each block (week). The assumptions pertaining to this test are:

1. The results within one block (week) do not influence the results within the other blocks (weeks).

2. Within each block (week), the observations may be ranked according to some criteria of interest.

The hypotheses to be tested are:

sampler.

 H_0 :The samplers (treatments) have identical effects H_1 :At least one of the samplers (treatments) tends to yield larger observed values than at least one other sampler (treatment).

To conduct the test, the observations (X_{ij}) for each variable (sample weight, [C1-], $[SO_4^{=}]$, etc) for each sampler within each week were assigned a rank (R_{ij}) ; with the smallest sample weight given a rank of 1, the second smallest a rank of 2, and so forth. The quantities necessary to test the hypothesis are:

$$R_{j} = \sum_{i} R(X_{ij}), \qquad (2)$$

$$A_{2} = \sum_{i j} \sum_{i j} R_{i j}^{2}, \qquad (3)$$

$$B_2 = -\sum_{k,j}^{l} R_j^2, \qquad (4)$$

where:

i=l,2,...b the number of degrees of freedom in the weeks; j=l,2,...k the number of degrees of freedom in the samplers; R(X_{ij}) is the rank of the sampler according to the sample weight for the jth week; R_{ij} is the rank of the *j*th sampler in the *i*th week; R_j is the sum of the ranks over the weeks for the *j*th The test statistic, T_2 , is defined as:

$$T_{2} = \frac{(b-1) \left[B_{2} - \frac{b \times k \times (k+1)^{2}}{4} \right]}{A_{2} - B_{2}} , \qquad (5)$$

where A_2 is defined in equation (3), B_2 is defined in equation (4), and b and k are as described above.

The decision rule is to reject the null hypothesis if:

 $T_2 > F_{\alpha}$ with (k-1), (b-1)x(k-1) degrees of freedom.

Test of Sampler Performance

All seven samplers were considered in the initial hypothesis test. The results of the ranking procedure of the Friedman test as applied to sample weight are:

$$A_2 = 5319$$
 (6)

 $B_2 = 4747.3$
 (7)

 $T_2 = 31.77$
 (8)

In general, the table F-values in this report will be reported to worst case the acceptance or rejection of hypotheses. Thus, if the number of degrees of freedom for the numerator and the denominator are (b-1) and [(b-1)x(k-1)] and the degrees of freedom for the denominator, [(b-1)x(k-1)], is greater than the largest table value (usually 200), the F-value will be reported for (b-1) and 200 degrees of freedom. It is recognized that the actual F-value will be smaller than this value and should lie in the range of degrees of freedom from 200 to infinity.

The corresponding F-values against which T_2 must be compared are 3.137 (α =0.01) and 2.310 (α =0.05). The hypothesis of equal sample weights of all samplers must be rejected. It can be concluded that there is a tendency for some samplers to record larger values than others. It should be noted that the data in the tables in Appendix B for the percent collection efficiency of each sampler seem to indicate that a small overall negative bias (that is, the amount of precipitation collected by the sampler is less than the amount of precipitation collected by the rain gage) is exhibited by each sampler, regardless of the manufacturer. However, the tables also show that all of the samplers have an average collection efficiency of over 90 percent. This is in contrast to the efficiencies reported in a similar study (Graham and others, 1987) in which the average collection efficiencies were approximately 86 percent. The main difference between the two studies being the sensors. Unfortunately, little more can be said about the comparison between the two studies since they were performed in different years under very different meteorological conditions.

Pairwise Comparisons

The Friedman Test also allows pairwise comparison when the null hypothesis is rejected. A significant pairwise difference between samplers i and j is indicated if:

$$| R_{i} - R_{j} | > t_{\alpha/2} \left[\frac{2 b (A_{2} - B_{2})}{(b-1)(k-1)} \right]^{\frac{1}{2}}$$
 (9)

where:

 $t_{\alpha/2}$ is Student's t value for a significance level of $\alpha/2$ with (b-1)x(k-1) degrees of freedom,

 ${\bf R}_{\rm i}$ and ${\bf R}_{\rm j}$ are the sampler ranks summed over the weeks as noted previously, and

 A_2 and B_2 as defined in equations 3 and 4.

In the examination of all seven samplers, the comparison value for pairwise differences in sample weight is 28.55. A value in the rank difference greater than the comparison value indicates a significant difference in the two samplers. The rank differences for all pairs of samplers for sample weight comparisons are listed at table 5.

Variability of Rainfall Amount -- Rain gages

The amount of precipitation collected in each rain gage each week for the study period was also subjected to the Friedman test. Five rain gages were included in the data analysis. The amounts of precipitation collected by each rain gage are given in table B-9 of appendix B. The results of the Friedman test for the precipitation amounts are given in table 6. It is significant that no difference in general is seen for the rain gages across the study area including the rain gage (RG-6) 4 km southwest. This implies that the amount and distribution of precipitation is statistically the same across the study area. The one rain gage that is statistically different is RG-1 which had an Alter windshield installed. The sum of ranks for the rain gages indicate that RG-1 ranked the highest which is indicative that it generally collected more precipitation. Any differences which are noted in the amounts of precipitation collected in the samplers are because of differences of behavior of the samplers and not due to variations in the amount of precipitation. This must be tempered, of course, with the realization that on individual weeks, the amount of precipitation collected by the different rain gages may be very different; note, for example, the weeks of 21-28 January: 15-22 April; 22-29 April; 22-29 July where as much as 6.3 mm differences in the amount were obtained.

Table 5.-- Summary of results for the sum of rank differences indicated by the Friedman test for --- sample weight [Data collected from 14 January 1986 - 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 31.772; F-value (α = 0.01) 3.344; F-value (α = 0.05) 2.364. Significant difference value= 28.55. * indicates significant difference.]

	Samplers							
Samplers	A-2	A-3	G-4	A-5	A-6	V-7		
A-1	55.00*	85.50*	51.50*	95.50*	100.50*	47.50*		
A-2		30.50*	106.50*	40.50*	45.50*	7.50		
A-3			137.00*	10.00	15.00	38.00*		
G-4				147.00*	152.00*	99.00*		
A-5					5.00	48.00*		
A-6						53.00*		

The next logical question to ask is whether the amount of precipitation collected by the rain gages and the samplers is different. The Friedman analysis for this question indicates that no statistical difference exists between samplers A-3, A-5, A-6 and the NADP rain gage. The NADP rain gage was chosen as the comparison rain gage because all of the rain gages were shown to be equivalent. It, also, is situated about the center of the study site located at West Point. The sample weight data that was used in this analysis was for those samplers that compared favorably with each other as shown in table 6.

Table 6.-- Summary of results for the sum of rank differences indicated by the Friedman test for --- Rain gage comparison [Data collected from 14 January 1986-30 December 1986. All rain gages included in comparison. Number of rows = 46; number of columns = 5. $T_2 = 5.478$; F-statistic (α = 0.01) 3.428; F-statistic (α = 0.05) 2.428. Significant difference value= 28.72. * indicates significant difference.]

	Ra	in gage		
-	RG-1	RG-2	RG-6	NWS8
NADP	30.50*	22.00	12.50	28.50
RG-1		52.50*	43.00*	59.00*
RG - 2			9.50	6.50
RG-6				16.00

Variability of Wet Atmospheric Deposition

Chemistry Differences

Each of the sets of concentrations of analytes that were determined by the U.S. Geological Survey laboratory in Arvada were subjected to the Friedman test as described above. The Friedman test variables calculated for each of the analytes are shown in table 7. This table also indicates whether all of the samplers performed equivalently. As indicated in table 7, the Friedman test showed a significant difference in concentration for all but two analytes (field pH and potassium concentration) at the α =0.01 level of significance and showed a difference for all analytes at the α =0.05 level of significance. The pairwise differences from the Friedman test applied to the analyte concentration are given in tables J-1 to J-12 of appendix F. No table is shown for the Friedman test applied to collection efficiency since collection efficiency is but a linear transformation of the sample weight.

One of the weaknesses of the Friedman test is the inability to assign a magnitude for the difference in performance between samplers. Two attempts to quantify that magnitude were made. The set of data for an analyte and for a sampler (for example $[Ca^{++}]$ and sampler A-2) was sorted to be able to determine the percentile (10, 25, 50, 75, 90) values. The values corresponding to the percentile were then plotted as a function of the percentile for each sampler as shown in figures 4-16. These figures show generally that the V-7 and the Geotech 650 have lower pH's at the higher percentiles, but lower concentrations for most of the analytes. The agreement between all of the samplers is good at lower percentiles, but at the higher percentiles a significant amount of variation is seen.

The second attempt to quantify the magnitude of the statistically significant differences between the performance of samplers was the following. The variance in performance between samplers can be explained on the basis of several factors such as siting differences, spatial variability, analytical differences in laboratory analyses, differences in operational characteristics of the sampler, or functional differences between the samplers. As an estimate of the error expected from the laboratory analysis, the magnitude of the difference between the concentration of the analyte as determined for sampler A-2 and the concentration of the analyte as determined for the duplicate analysis of A-2 will be used. The remainder of the variance between samplers should be explained as operational or functional or siting differences between the samplers. The volume weighted average concentrations as given in table 8 were calculated using the following formula:

$$\overline{[A]} = \frac{\sum_{i} [A]_{i} \times Volume_{i}}{\sum_{i} Volume_{i}}$$
(10)

Analyte or property	A2 ⁽¹⁾	_{B2} (1)	τ ₂ (1)	$f_{\alpha=0.01}^{f_{table}(2)}$	Reject equal, Performance(3) at $\alpha = 0.01$	Ftable ⁽²⁾ α=0.05 F	Reject Equa Performance ⁽³⁾ at α=0.05
[Ca++]	4901	4228.5	•		λ	2.311	٨
[c1-]	4891	4142.3	5.15	3.141	۲	2.312	Y
Field Specif	ic						
conductance 5	5256	4380.6		3.137	7	2.310	7
Field pH	4798	4290.3	2.50	3.137	Z	2.310	۲
[K+]	5053	4376.3	6.58	3.137	7	2.310	~
Lab Specific							
Conductance	5408	4517.6	6.38	3.135	۲	2.310	7
Lab pH	4931	4330.2	4.56	3.137	7	2.310	۲
[++]	4691	4223.9	6.15	3.139	٢	2.311	7
[NH4+]	5222	4344.1	3.71	3.137	۲	2.310	7
[Na+]	5176	4324.1	2.95	3.137	×	2.310	····· ¥ · · ·····
[N03-]	5222	4351.4	4.05	3.137	٢	2.310	۲
[S04=]	5076	4357.4	10.68	3.139	۲	2.311	Y
Sample							
Weight	5319	4747.3	31.77	3.137	٢	2.310	۲
Collection							
Efficiency	5319	4755.3	32.75	3.137	۲	2.310	۲

Table 7.-- Summary results of statistical analysis using the Friedman test for concentration (and sample weight) chemical analytical results [Results are for the statistical analysis of all samplers except the duplicate analysis of A-2.]

2. Ftable is the F-value to which T₂ is compared.
3. Equal performance is rejected when hypothesis HO is rejected. Alternatively, at least one sampler pair has a significant pairwise difference.

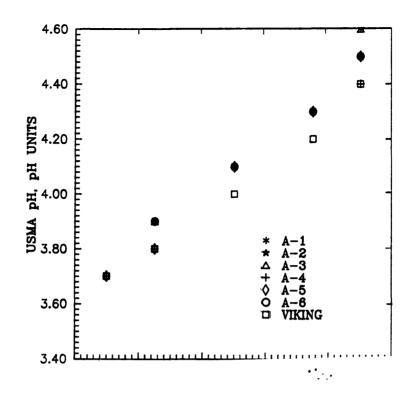


Figure 4.-- Percentile comparison of the pH, determined by the U.S. Military Academy. [Samples collected 14 January 1986 - 11 November 1986.]

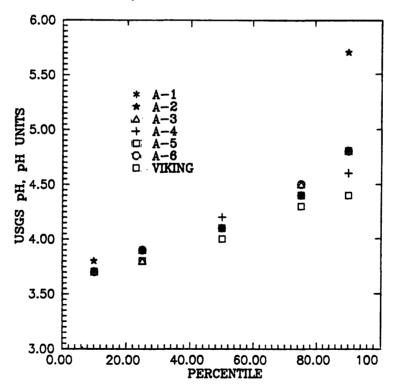


Figure 5.-- Percentile comparison of pH, determined by U.S. Geological Survey. [Samples collected 14 January 1986 - 11 November 1986.]

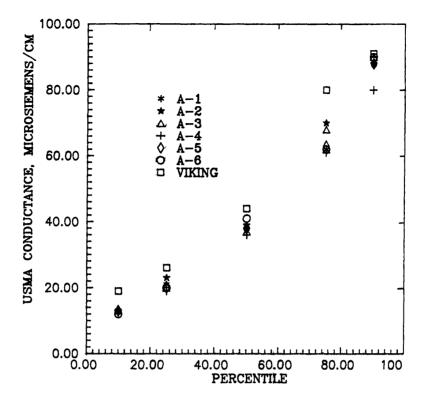


Figure 6.-- Percentile comparison of Conductance determined by U.S. Military Academy [Samples collected 14 January 1986 - 11 November 1986.]

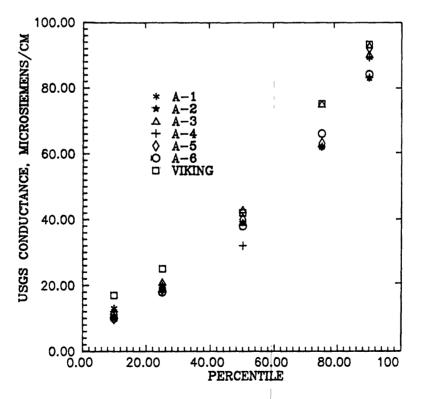


Figure 7.-- Percentile comparison of Conductance determined by U.S. Geological Survey. [Samples collected 14 January 1986 - 11 November 1986.]

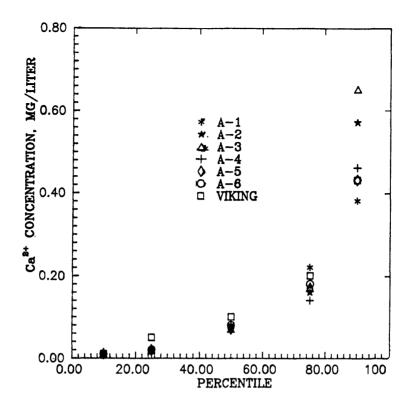


Figure 8.-- Percentile comparison of the concentration of calcium ion. [Samples collected 14 January 1986 - 11 November 1986.]

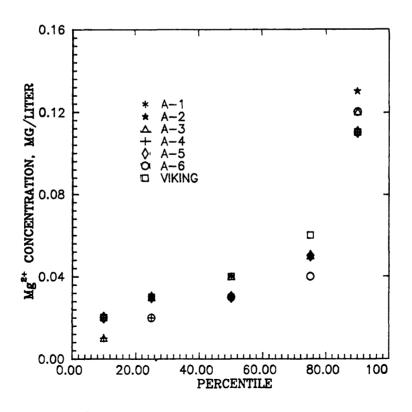


Figure 9.-- Percentile comparison of the concentration of magnesium ion. [Samples collected 14 January 1986 - 11 November 1986.]

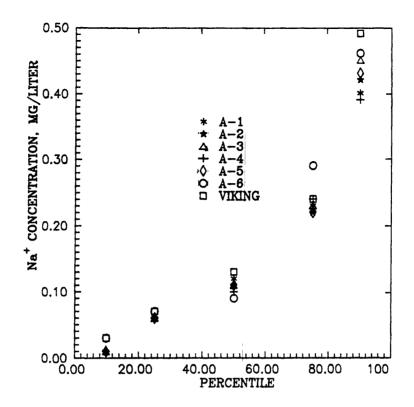


Figure 10.-- Percentile comparison of the concentration of sodium ion. [Samples collected 14 January 1986 - 11 November 1986.]

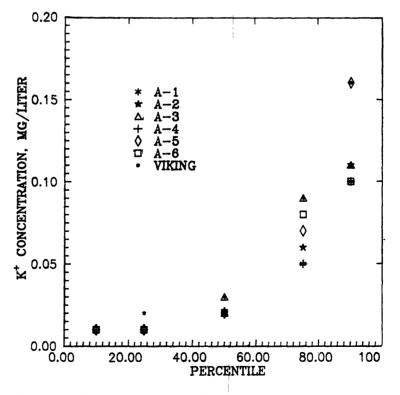


Figure 11.-- Percentile comparison of the concentration of potassium ion. [Samples collected 14 January 1986 - 11 November 1986.]

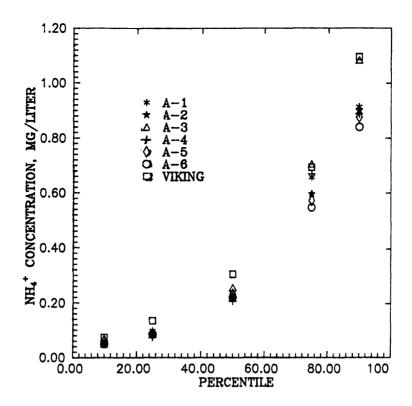


Figure 12.-- Percentile comparison of the concentration of ammonium ion [Samples collected 14 January 1986 - 11 November 1986.]

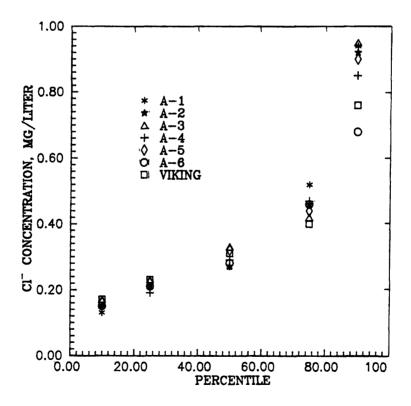


Figure 13.-- Percentile comparison of the concentration of chloride ion [Samples collected 14 January 1986 - 11 November 1986.]

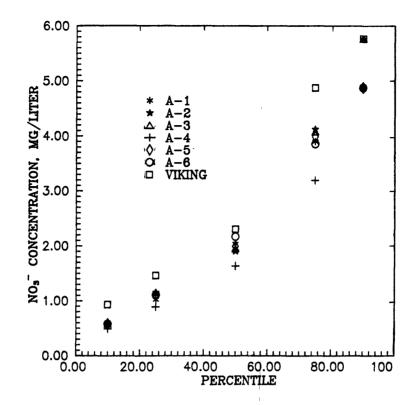


Figure 14.-- Percentile comparison of the concentration of nitrate ion. [Samples collected 14 January 1986 - 11 November 1986.]

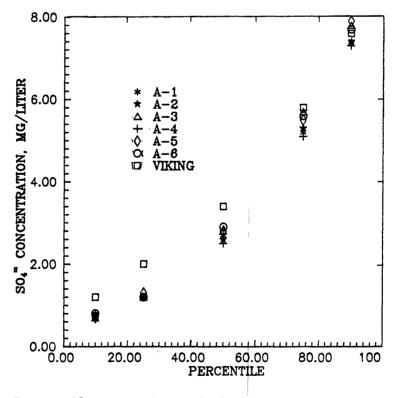


Figure 15.-- Percentile comparison of the concentration of sulfate ion. [Samples collected 14 January 1986 - 11 November 1986.]

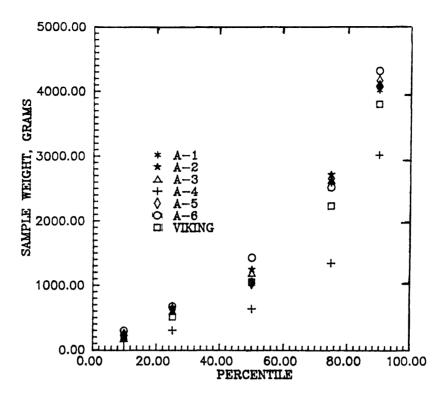


Figure 16.-- Percentile comparison of the concentration of sample weight. [Samples collected 14 January 1986 - 11 November 1986.]

Table 8.-- Volume weighted average concentrations of selected analytes [Units are milligram per liter, except H⁺ which is equivalent/liter. Values calculated using equation 10. FH^+ -[H⁺] determined at U.S. Military Academy; LH⁺ =[H⁺] determined at U.S. Geological Survey.]

Sampler	[Ca ⁺⁺]	[Mg ⁺⁺] [1	Na ⁺] []	X+] []	NH4 ⁺]	[C1 ⁻] [NO3 ⁻]		тн+ .0 ⁵	LH ⁺ *10 ⁵
A-1	0.092	0.037	0.152	0.030	0.262	0.289	1.978	2.97	8.1	 7.7
A-2	. 093	.037	.148	.030	. 260	. 308	2.017	2.99	7.7	7.8
A-3	.088	.039	.143	.046	.317	. 317	2.091	3.12	6.8	7.8
G-4	.081	033	.138	.027	.252	. 287	1.748	2.75	6.9	6.7
A-5	.107	.044	.128	.037	.264	. 295	1.999	3.00	7.1	7.6
A-6	. 090	.033	.152	.030	.251	.282	1.969	2.78	7.2	7.0
V-7	.135	.044	.166	.065	. 399	.314	2.157	3.19	7.7	7.8
A2DUP	.078	.034	.154	.035	. 259		2.024		7.7	7.7

Where $[A]_i$ is the concentration of the analyte in the *i*th week, Volume_i is the volume of the sample in the *i*th week, and

[A] is the volume weighted concentration for the sampling period.

A deviation in performance between samplers is inferred if the magnitude of the difference of volume-weighted average concentrations between samplers exceeds the difference of volume-weighted average concentrations between sampler A-2 and the volume-weighted average concentration of the duplicate of sampler A-2. Although this difference will give a qualitative indication of any difference in performance beyond analytical precision, a problem does exist with this procedure. The problem with just using the difference of the volume weighted means between A-2 and A-2 duplicate is that the confidence interval about the two means is not known. In general, paired t-tests for the difference between the concentration of the analyte in A-2 and the concentration of the analyte in the duplicate of A-2 indicated that there was no difference between the two samples. However, the statistical test was for the concentration and not for the volume-weighted average concentration. Summaries of the samplers which had a difference greater than or equal to the difference between the concentration of A-2 and the duplicate of A-2 are given in tables C-15 to C-24 in appendix C.

Deposition Differences

In addition to the calculation of Friedman variables for the differences in concentration, the Friedman variables have been calculated for the deposition load of the various ions. The deposition was calculated as the product of the concentration of the ion times the sample volume (density of the precipitation was assumed to be unity). The units of the deposition would then be mg/week. The area over which the deposition occurred was the area of the cross section of the bucket at the rim (627 $\rm cm^2$).

The number of pairwise differences for the Friedman test applied to deposition is very striking and reflects the interdependence of total deposition on both chemistry and amount of the precipitation. Significant differences exist for all analytes using deposition as the analysis variable.

The hypotheses that are tested are as before:

- H_0 : The samplers (treatments) have identical depositions (effects), and
- H₁ : At least one of the samplers (treatments) tends to yield larger observed deposition values than at least one other sampler (treatment).

The summary of results of the Friedman test for deposition load of each of the analytes is given in table 9. The results for pairwise comparisons for each of the analytes are given in tables 10-19. Many of these differences are even more striking than when sample weight or concentration data are taken individually. The Friedman test was applied both to deposition calculated as the product of concentration of analyte times the volume collected in the sampler and calculated as the product of the concentration of analyte times the equivalent volume collected in the NADP rain gage. The Friedman results in tables 10-19 are for the former method and the tables in appendix G are shown for the latter method. The numbers change slightly but the overall pattern of differences is the same.

The reasons for the differences in performance will be examined in light of the objectives of the study:

1. To study the performance of non-standard NADP/NTN atmospheric deposition samplers. Performance of the Viking and Geotech 650 sampler were compared to the Aerochem Metrics 301 atmospheric deposition sampler (the sampler standard for the NADP/NTN).

2. To study the small distance spatial variability of sample weight and chemistry of wet atmospheric deposition. Two samplers were located approximately 4 km apart. It was hypothesized that that small-scale differences in amount of precipitation and precipitation chemistry might occur between these sites.

3. To study the validity of the criteria used in siting precipitation samplers. Several of the criteria were specifically compromised so as to be able to ascertain if the criteria were valid in the establishment of monitoring sites.

Performance of Non-standard (NADP/NTN) Wet Atmospheric Deposition Samplers

Length of Time of Opening

In addition to the chemical and sample weight data, additional data on sampler performance was also collected. As indicated in the experimental section, the voltage on the event strip of each sampler was monitored. The resulting tables of opening and closing times collected and recorded by the microdatalogger were evaluated by calculating the length of time that each sampler was open throughout the duration of the study. Unfortunately, each sampler did not open or close at the same time as each of the other samplers, nor did each stay open the same amount of time. The length of time was calculated using the program reported by Graham and others (1987).

The computer program determines if the lid position of the sampler changes from one recorded value to the next. If the lid position changes, a decision is made whether the lid position changed to the opposite position from open or closed. If the change was from wet bucket closed to open, a variable to record the time at which the sampler opened was initialized. If the change was from open to closed, the beginning time is subtracted from the ending time and the difference recorded. The frequency distribution diagrams¹ and percent cumulative frequency plots²

 $^{^{1}}$. The frequency distribution diagrams represent the number of times that a collector was open for a given length of time.

 $^{^2}$. The percent cumulative frequency plots represent the cumulative sum of number of times a collector was open for less than a given time normalized to a percent of the total number of openings.

Table 9 depositio duplicate	- Summary n data [F analysis	/ results Results a s of A-2.	: of sta ire for]	tistical ana the statisti	lysis using cal analysis	the Friedman of all sampl	Table 9 Summary results of statistical analysis using the Friedman test for deposition data [Results are for the statistical analysis of all samplers except the duplicate analysis of A-2.]
Analyte	A ₂ (1)	_{B2} (1)	τ ₂ (1)	Analyte $A_2(1)$ $B_2(1)$ $T_2(1)$ $F_{table}(2)$ Significant $\alpha=0.01$ at $\alpha=0.01$	ignificant at α=0.01	Ftable ⁽²⁾ Significant $\alpha=0.05$ at $\alpha=0.05$	ignificant at α=0.05
Calcium Chloride		5179.5 4479.6 17.26 5039.5 4420.4 21.95	17.26 21.95	3.174 3.192	~~	2.274 2.282	**
					•		:

	the	
able 9 Summary results of statistical analysis using the Friedman test for	except	
test	ers	
edman	sampl	
Fri	all	
the	of	
sing	alysis	
i s i	ani	
analys	stical	
ical	stati	
tist	the	
sta	for	
s of	are	
sult	ts	A-2
res	esu	of
mary	a R	ysis
Sum	dat	anal
(:ion	te :
ble 9	posit	uplicate analysis of A-2.]
S	Ð	J

Calcium 5179.5 4479.6 17.26 3.174 Y 2.274 Y Chloride 5039.5 4479.6 17.26 3.174 Y 2.282 Y Chloride 5039.5 4472.0 23.77 3.156 Y 2.266 Y Chloride 5039.5 4672.0 23.77 3.156 Y 2.266 Y Potassium 5320.0 4585.3 16.58 3.156 Y 2.266 Y Magnesium 5291.5 4606.4 18.92 3.156 Y 2.266 Y Nagnesium 5291.5 4606.4 18.92 3.156 Y 2.266 Y Sodium 5319.5 4584.5 16.53 3.156 Y 2.266 Y Nitrate 5319.0 4584.1 16.50 3.156 Y 2.266 Y Sulfate 5179.0 4587.6 27.00 3.174 Y 2.2266 Y Sulfate 5179.0 4587.6 27.00 3.174 Y 2.266 Y Sulfate 5179.0 4587.6 27.00 3.174 Y 2.266 Y Sulfate 5179.0 4587.6 27.00 3.174 Y 2.274 Y											y, at
5179.5 4479.6 17.26 3 5039.5 4420.4 21.95 3 5319.5 4672.0 23.77 3 5319.5 4672.0 23.77 3 5319.5 4674.3 23.99 3 5291.5 4606.4 18.92 3 5291.5 4674.3 23.09 3 5179.0 4585.3 16.58 3 5179.0 4587.6 27.00 3 5170.0 4587.6 27.00 3 5170.0 4587.6 27.00 3 5170.0 4587.6 27.00 4587.6 27.00 3 5170.0 4587.6 27.00 4587.6 2	>	~	>	~	~	~	~	7	~	~	tivel
5179.5 4479.6 17.26 3 5039.5 4420.4 21.95 3 5319.5 4672.0 23.77 3 5319.5 4672.0 23.77 3 5319.5 4674.3 23.99 3 5291.5 4606.4 18.92 3 5291.5 4674.3 23.09 3 5179.0 4585.3 16.58 3 5179.0 4587.6 27.00 3 5170.0 4587.6 27.00 3 5170.0 4587.6 27.00 3 5170.0 4587.6 27.00 4587.6 27.00 3 5170.0 4587.6 27.00 4587.6 2	2.274	2.282	2.266	2.266	2.266	2.266	2.266	2.266	2.266	2.274	lman test. ejected. Alterna ence.
5179.5 4479.6 17.26 3 5039.5 4420.4 21.95 3 5319.5 4672.0 23.77 3 5319.5 4672.0 23.77 3 5319.5 4674.3 23.99 3 5291.5 4606.4 18.92 3 5291.5 4674.3 23.09 3 5179.0 4585.3 16.58 3 5179.0 4587.6 27.00 3 5170.0 4587.6 27.00 3 5170.0 4587.6 27.00 3 5170.0 4587.6 27.00 4587.6 27.00 3 5170.0 4587.6 27.00 4587.6 2	7	7	۲	7	7	7	7	۲	~	۲	or the Fried red. sis HO is re wise differe
Calcium 5179.5 4479.6 17.26 Chloride 5039.5 4420.4 21.95 Field H ⁺ 5319.5 4672.0 23.77 Potassium 5320.0 4585.3 16.58 Lab H ⁺ 5319.5 4674.3 23.99 Magnesium 5291.5 4606.4 18.92 Sodium 5319.5 4584.5 16.53 Ammonium 5320.0 4584.1 16.50 Sulfate 5179.0 4584.1 16.50 Sulfate 5179.0 4587.6 27.00 I. A2, B2 and T2 are the numbers c 2. Ftable is the F-value to which 3. Equal performance is rejected w least one sampler pair has a signi	3.174	3.192	3.156	3.156	3.156	3.156	3.156	3.156	3.156	3.174	
Calcium 5179.5 4479.6 Chloride 5039.5 4479.6 Field H ⁺ 5319.5 4472.0 Potassium 5320.0 4585.3 Lab H ⁺ 5319.5 4674.3 Magnesium 5291.5 4606.4 Sodium 5319.5 4584.5 Ammonium 5319.5 4584.1 Sulfate 5179.0 4585.3 Nitrate 5179.0 4587.6 I. A2, B2 and T2 are the nu 2. Ftab]e is the F-value to 3. Equal performance is rej least one sampler pair has	17.26	21.95	23.77	16.58	23.99	18.92	16.53	16-58	16.50	27.00	umbers c which jected w a signi
Calcium 5179.5 Chloride 5039.5 Field H ⁺ 5319.5 Potassium 5320.0 Lab H ⁺ 5319.5 Magnesium 5291.5 Sodium 5291.5 Sodium 5319.5 Ammonium 5320.0 Nitrate 5320.0 Sulfate 5179.0 Sulfate 5179.0 Sulfate 5179.0 Sulfate is the F 3. Equal performan least one sampler	4479.6	4420.4	4672.0	4585.3	4674.3	4606.4	4584.5	4585.3	4584.1	4587.6	re the nu -value to ce is rej pair has
Calcium Chloride Field H ⁺ Potassium Lab H ⁺ Magnesium Sodium Nitrate Sulfate Sulfate 3. Equal p least one	5179.5	5039.5	5319.5	5320.0	5319.5	5291.5	5319.5	5320.0	5320.0	5179.0	and T2 a is the F erforman sampler
	Calcium	Chloride	Field H ⁺	Potassium	Lab H ⁺	Magnesium	Sodium	Ammonium	Nitrate	Sulfate	

Table 10.-- Summary of sum of rank differences as indicated by Friedman test --- calcium deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows = 37; number of columns = 7. T2 = 17.27; F-value (α = 0.01) 3.174; F-value (α = 0.05) 2.274. Significant difference value = 31.59. * indicates significant difference.]

			:	Samplers		
Samplers	A-2	A-3	G-4	A-5	A-6	V-7
	44.00*	69.50*	38.50*	68.50*	65.50*	88.50*
A-2		25.50	82.50*	24,50	21.50	44.50*
A-3			108.00*	1.00	4.00	19.00
G-4				107.00*	104.00*	127.00*
A-5					3.00	20.00
A-6						23.00

Table 11.-- Summary of sum of rank differences as indicated by Friedman test --- chloride deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 36; number of columns = 7. T2= 21.96; F-value (α = 0.01) 3.192; F-value (α = 0.05) 2.282. Significant difference value= 29.72. * indicates significant difference.]

			:	Samplers		
Samplers	A-2	A-3	G-4	A-5	A-6	V- 7
A-1	43.00*	75.50*	49.50*	79.50*	63.50*	71.50*
A-2		32.50*	92.50*	36.50*	20.50	28.50
A-3			125.00*	4.00	12.00	4.00
G-4				129.00*	113.00*	121.00*
A-5					16.00	8.00
A-6						8.00

Table 12.-- Summary of sum of rank differences as indicated by Friedman test --- field H⁺ deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 23.78; F-value (α = 0.01) 3.156; F-value (α = 0.05) 2.282. Significant difference value= 30.37. * indicates significant difference.]

	Samplers									
Samplers	A-2	A-3	G-4	A-5	A-6	V-7				
A-1	53.00*	64.50*	56.50*	76.50*	92.50*	46.50*				
A-2		11.50	109.50*	23.50	39.50*	6.50				
A-3			121.00*	12.00	28.00	18.00				
G-4				133.00*	149.00*	103.00*				
A-5					16.00	30.00				
A-6						46.00*				

Table 13.-- Summary of sum of rank differences as indicated by Friedman test --- potassium deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 16.59; F-value (α = 0.01) 3.156; F-value (α = 0.05) 2.266. Significant difference value= 32.35. * indicates significant difference.]

			S	amplers		
Samplers	A-2	A-3	G-4	A-5	A-6	V-7
A-1	25.00	84.00*	33.00*	63.00*	70.00*	85.00*
A-2		59.00*	58.00*	38.00*	45.00*	60.00*
A-3			117.00*	21.00	14.00	1.00
G-4				96.00*	103.00*	118.00*
A-5					7.00	22.00
A-6						15.00

Table 14.-- Summary of sum of rank differences as indicated by Friedman test --- lab H^+ deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 24.00; F-value (α = 0.01) 3.156; F-value (α = 0.05) 2.266. Significant difference value= 30.32. * indicates significant difference.]

	Samplers									
Samplers	A-2	A-3	G-4	A-5	A-6	V-7				
A-1	51.00*	84.50*	53.50*	82.50*	78.50*	54.50*				
A-2		33.50 *	104.50*	31.50*	27.50	3.50				
A-3			138.00*	2.00	6.00	30.00				
G-4				136.00*	132.00*	108.00*				
A-5					4.00	28.00				
A-6						24.00				

Table 15.-- Summary of sum of rank differences as indicated by Friedman test --- magnesium deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 18.93; F-value (α = 0.01) 3.156; F-value (α = 0.05) 2.266. Significant difference value= 31.59. * indicates significant difference.]

			5	Samplers		
Samplers	A-2	A-3	G-4	A-5	A-6	V-7
A-1	32.00*	78.50*	53.50*	68.50*	48.50*	67.50*
A-2		46.50*	85.50*	36.50*	16.50	35.50*
A-3			132.00*	10.00	30.00	11.00
G-4				122.00*	102.00*	121.00*
A-5					20.00	1.00
A-6						19.00

Table 16.-- Summary of sum of rank differences as indicated by Friedman test --- sodium deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 16.54 F-value (α = 0.01) 3.156; F-value (α = 0.05) 2.372. Significant difference value= 32.36. * indicates significant difference.]

	Samplers									
Samplers	A-2	A-3	G-4	A-5	A-6	V- 7				
A-1	28.00	49.50*	70.50*	46.50*	30.50	66.50*				
A-2		21.50	98.50*	18.50	2.50	38.50*				
A-3			120.00*	3.00	19.00	17.00				
G-4				117.00*	101.00*	137.00*				
A-5					16.00	20.00				
A-6						36.00*				

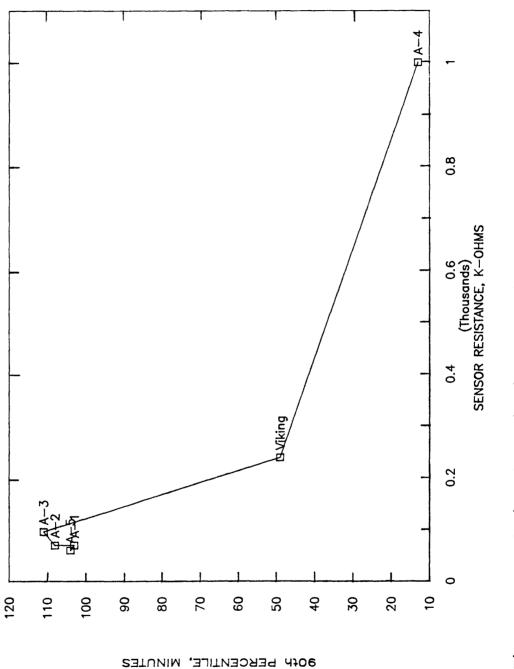
Table 17.-- Summary of sum of rank differences as indicated by Friedman test --- ammonium deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 16.58; F-value (α = 0.01) 3.156; F-value (α = 0.05) 2.266. Significant difference value= 32.35 * indicates significant difference.]

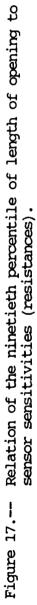
	Samplers									
Samplers	A-2	A-3	G-4	A-5	A-6	V-7				
A-1	29.00	59.00*	63.00*	49.00*	45.00*	70.00*				
A-2		30.00	92.00*	20.00	16.00	41.00*				
A-3			122.00*	10.00	14.00	11.00				
G-4				112.00*	108.00*	133.00*				
A-5					4.00	21.00				
A-6						25.00				

Table 18.-- Summary of sum of rank differences as indicated by Friedman test --- nitrate deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 16.50 F-value (α = 0.01) 3.156; F-value (α = 0.05) 2.266. Significant difference value= 32.38. * indicates significant difference.]

	Samplers									
Samplers	A-2	A-3	G-4	A-5	A-6	V-7				
A-1	28.00	61.00*	63.00*	49.00*	47.00*	67.00*				
A-2		33.00*	91.00*	21.00	19.00	39.00*				
A-3			124.00*	12.00	14.00	6.00				
G-4				112.00*	110.00*	130.00*				
A-5					2.00	18.00				
A-6						20.00				

Table 19.-- Summary of sum of rank differences as indicated by Friedman test --- sulfate deposition [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 37; number of columns = 7. T2= 27.01; F-value (α = 0.01) 3.192; F-value (α = 0.05) 2.266. Significant difference value= 29.04. * indicates significant difference.]


	Samplers								
Samplers	A-2	A-3	G-4	A- 5	A-6	V-7			
A-1	38.00*	91.00*	51.50*	72.00*	57.50*	90.50*			
A-2		53.00*	89.50*	34.00*	19.50	52.50*			
A-3			142.50*	19.00	33.50*	0.50			
G-4				123.50*	109.00*	142.00*			
A-5					14.50	18.50			
A-6						33.00*			


(in appendices H and I) reveal some striking differences in the performance of the samplers. The data is summarized in table 20. The percentiles of the distributions reveal very striking differences between the samplers and the amount of time that a sampler was open. The Viking (V-7) and the Geotech 650 (G-4) are obviously skewed towards lower lengths of opening than are the other samplers.

Percentile										
Samplers	Number of Openings	10	25	50	75	90	Maximum			
				М	inute	s				
A-1	535	2	6	14	37	103	3 573			
A-2	566	4	7	13	35	108	3 547			
A-3	722	2	4	10	24	111	800			
G-4	1751	1	1	3	7	13	366			
A-5	573	2	5	11	33	104	÷ 561			
V-7	1288	1	1	1	5	49	725			

Table 20.-- Summary of sampler performance based on length of time (minutes) that the sampler is open [Minimum for all samplers is 1 minute.]

Four of the samplers (A-1, A-2, A-3, and A-5), exhibit similar cumulative distribution functions. All of these samplers had nearly the same sensor sensitivity. The two that are markedly different are V-7 and G-4. Upon examination of the cumulative frequency distribution for length of opening, one sees that the number of openings is highly skewed to short times for both of these samplers. It is also noted from table 2, that the sensitivity of each of these sensors is considerably higher than for the Aerochem samplers. This is in accord with work previously reported (Graham and others 1987). In that study the data seemed to indicate that the cumulative frequency was slightly affected by the sensitivity, but that the differences were slight for sensitivity settings of 55 and 70 KO. The study reported in this report has a much more marked range of sensor sensitivities. The length of time that a sampler is open seems to be correlated with the sensitivity of the sensor. The cumulative frequency plots show that as the resistance of the sensor increases the length of time the sampler is open decreases. Figure 17 shows the relation between the ninetieth percentile of time that the sampler is open and the resistance of the sampler. As with previously reported work (Graham and others, 1987; Graham and others, 1988), the reason may lie in the design of the sensor and the sensor circuit for the Viking sampler. The Viking sampler cycled a great deal more than the Aerochem samplers as seen by the much higher number of openings as seen in table 20. The temperature of the Viking sensor was also much greater than the Aerochem samplers (table 2), which leads to faster evaporation of the precipitation from the sensor and more frequent cycling. The Aerochem samplers, when activated, would execute an entire cycle. The lid position is initially over the wet bucket, then the lid moves to cover the dry bucket and finally returns to cover the wet bucket. Generally, it pauses for some time over the dry bucket before returning to the closed position. However, the Viking did not operate in a similar manner. The cycle would begin with the lid over the wet bucket, but if the precipitation on the sensor dried before the lid moved completely

over the dry bucket, the cycle would be interrupted and the lid would return immediately to cover the wet bucket. Each time that this occurred, the counter that recorded the number of openings on the Viking would increment by one. The microdatalogger would generally also record this as an opening of the sampler.

This cycling of the sampler is evidenced by the large number of openings (at least 50 percent of the total) which were only one minute. 75 percent of the openings were 5 minutes or less in duration. The most striking of the samplers, however, was G-4 which evidenced 90 percent or more of the openings being only 13 minutes or less. Table 2 indicates that the resistances of the sensors for the Geotech 650 and the Viking samplers are much higher than for the Aerochem Metrics 301 samplers. The sensitivity of the sensor is thus very important in governing the length of time that a sampler is exposed to precipitation. Part way through the study the motor box (control unit) on A-3 had to be changed with a resultant change in the resistance of the sensor from 70K Ω to 96K Ω . The cumulative frequency distribution of the samplers (fig. 18) qualitatively indicates that the higher the resistance, the more the distribution is skewed towards lower lengths of openings. It is seen that the cumulative frequency distribution of A-3 is skewed slightly more towards the lower lengths of opening than are the other Aerochem Metrics 301 samplers. The same effect was noted from the data presented by Graham and others (1988).

The graphs of cumulative frequency and the relative frequency diagrams from which they were derived (appendices H and I) indicate that there are substantial differences in the sampler performance between the Aerochem Metrics 301, the Viking and the Geotech 650 samplers.

Cycle Time

The cycle time of each sampler has been measured, and although, the average cycle time of collection differs for each type of sampler (58 seconds for Viking sampler, 42 seconds for the GeoTech 650, and 22 seconds for Aerochem Metrics samplers), the fact that each type of sampler cycles a different number of times during an event is felt to be the more predominant factor in defining sampler performance, although the cycle time may affect the catch efficiency particularly during intense periods in a storm. This would be especially noted for those samplers which cycle a large number of times in a precipitation event.

Spatial Variability

The effect of separation of samplers by some distance is also examined in this study. Sampler A-3 is taken as the control and sampler A-6, located approximately 4 km away, is the comparison. Table 4 indicates that the two samplers compare quite favorably for the amount of precipitation caught in the sampler in terms of sample weight. The concentrations of analytes are significantly different for all analytes except sodium and pH determined at U.S. Military Academy (tables F-1 to F-12; appendix F). However, deposition for all analytes is not significantly different over the distance except for sulfate (tables 10-19), even though the terrain is quite varied over

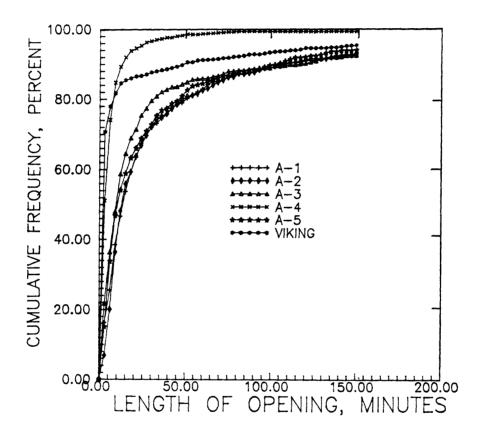


Figure 18.-- Cumulative frequency distributions of the length of time that samplers were open.

that distance with a slight difference of elevation (204 m at A-3 and 296 m at A-6). The reliability of selecting a site that may be representative for a given radius may be enhanced by these results. Further investigation is necessary to determine how large that radius may be.

Compliance with Siting Criteria

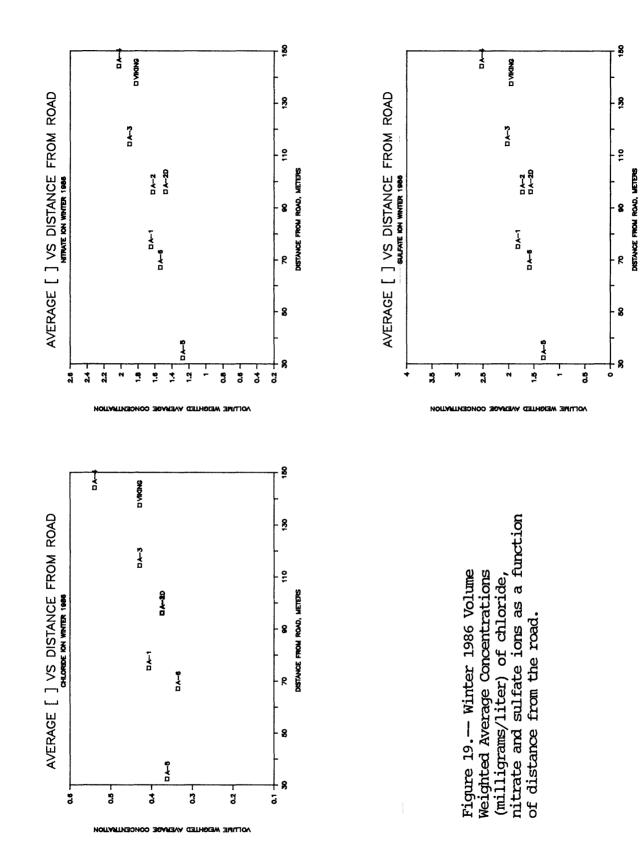
The implications of the statistically significant differences that are evident from the Friedman test are more important when examined in light of compliance with the accepted siting criteria of the NADP/NTN. In this study three siting criteria of the National Trends Network/National Atmospheric Deposition Program were purposely compromised:

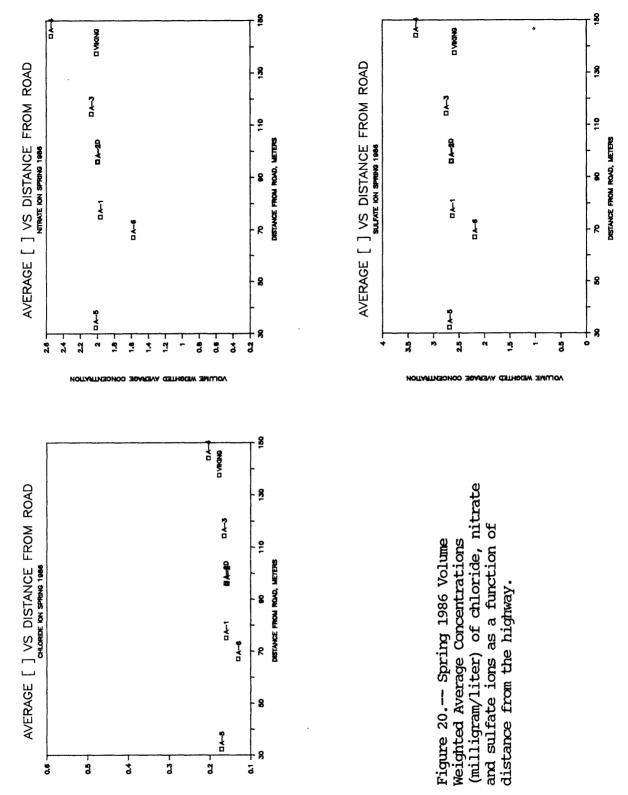
1. "Objects with sufficient mass to deflect the wind (with the exception of Alter windshields) over 1 meter high will not be located within 5 meters of the sampler." (Number 5 in appendix A)

2. "No object or structure shall project onto the sampler or rain gauge with an angle greater than 45 degrees from the horizontal (30 degrees is considered optimal, but 45 degrees is the highest angle acceptable). Therefore the distance from the sampler to the object must be at least equal to the height of the object (preferably twice the height of the object). Pay particular attention to the anemometer towers and overhead wires." (Number 9 in appendix A)

3. "Frequent moving sources of pollution, such as air, ground or water traffic or the medium on which they traverse (e.g. runway, taxiway, road, tracks, or navigable river) within 100 meters of the sampler. The local road net around the site is of particular concern." (Number 12 in appendix A)

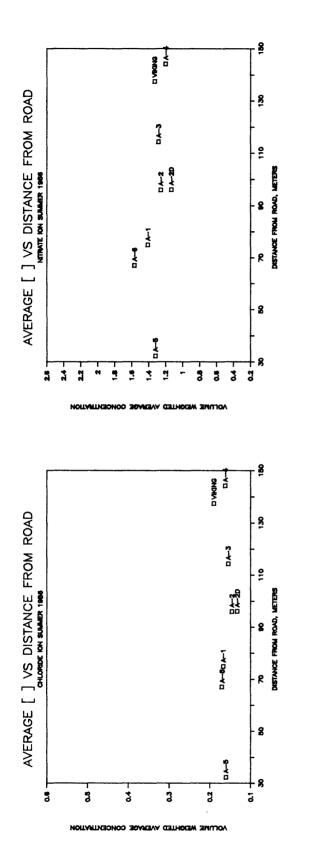
These three criteria were compromised by placing sampler A-5 about 30 m from a state highway; Sampler A-1 was placed within 1.5 m of a large shelter (2.44 m x 2.44 m x 3.05 m) (compromises criteria 1 and 2 above) and sampler A-2 had an Alter windshield placed about the sampler in the same manner as would be placed about a rain gage. In this study, inclusion of an Alter windshield around sampler A-2 violates the spirit of the criterion. The criterion as stated previously did not anticipate the erection of an Alter windshield around other than a rain gage. Sampler A-1 was also placed such that a telephone pole was in the 45° cone (violates criteria 2). Sampler A-3 is the control sampler for all comparisons and is placed in such a manner as to agree with all the siting criteria. Sampler G-4 was a Geotech 650 sampler. Sampler A-6 (an Aerochem Metrics 301 sampler) was located approximately 4 km from the cluster and approximately 67 m from a state highway.

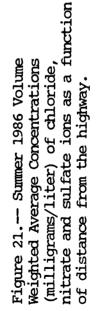

The results of the Friedman test for sample weight and collection efficiency show dramatically different collection characteristics for each of the samplers. The Friedman test indicates that the only two samplers which are not significantly different from the control (A-3) are A-5 and A-6. This is especially interesting since these three samplers are the only standard samplers that do not compromise siting criteria 1 or 2 above. The fact that the catch efficiency/sample volume is significantly different for compromise of criteria 1 and 2 indicates that the criteria need to be strictly adhered to in siting of samplers for similar studies of atmospheric deposition. Of less importance in siting criteria for catch efficiency is the criteria of closeness to the road. Although the criteria state that Alter windshields may be located within 5 m of the sampler, this should be avoided unless the rain gage is similarly shielded. Table 6 showed that the only rain gage that had a different catch was the one which had an Alter windshield.

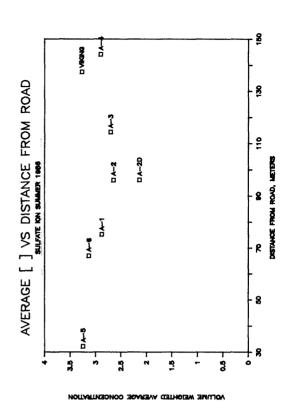

To examine the effects of siting close to a road/highway, the dependence of concentration on distance from the highway needs to be examined. Figures 19-23 give plots of the volume weighted average concentrations of each of three analytes (chloride, nitrate and sulfate) for each sampler and for each season of the year. Table 21 gives the distance from the road to the sampler. As can be seen during the winter months (Jan-Mar) of 1986, a general upward trend is noted for the sequence $A-5 \ge A-1 \ge A-3$ for nitrate and sulfate. The same trend may or may not be evident for the chloride. It is difficult to separate the effect of the distance from the road¹ from the type of sampler. Since G-4 and V-7 both are nonstandard (in the sense of NADP/NTN standard) atmospheric deposition samplers, the higher volume weighted concentrations noted may be because of the difference in performance of the samplers rather than the distance from the road. The higher concentrations could partially be explained on the basis of the frequent cycling and more sensitive nature of these samplers. The effect of increasing concentration is still evident, however, for the other Aerochem Metrics 301 samplers during the winter 1986 sampling periodfor sulfate and nitrate. Trends for the other seasons are not as evident especially if G-4 and V-7 are excluded from the interpretation. It is rather disturbing that the concentration of nitrate and sulfate increase with distance from the road since one would expect that the concentration would decrease with increasing distance from the road. Examination of windroses for the period of time does not lend a possible explanation. No point sources are located near the samplers that would account for such a disparity.

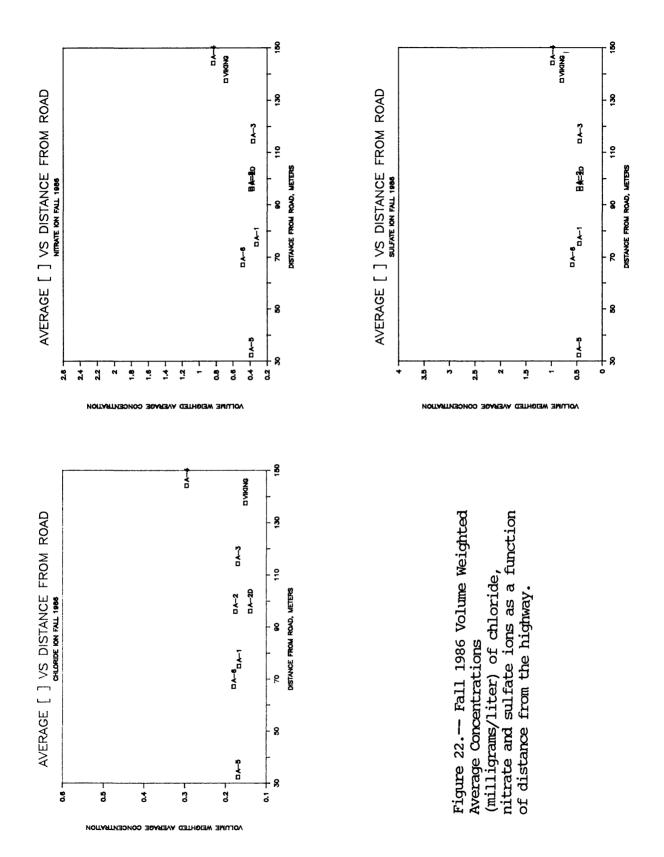
Distance from road (meters)	Sampler				
32.3	A-5				
67.1	A-6				
75.0	A-1				
96.0	A-2				
114.3	A-3				
137.5	V-7				
144.2	G-4				

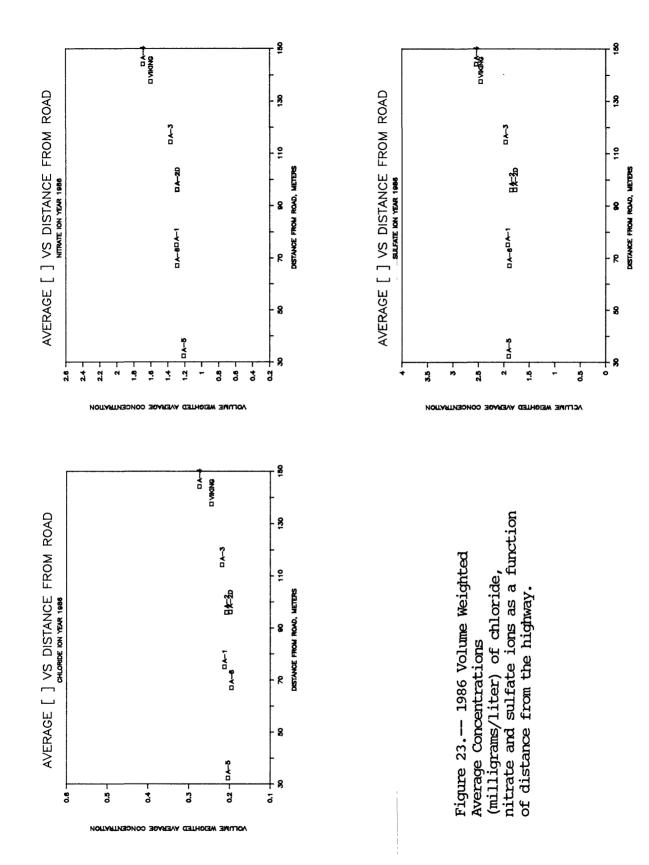
Table 21.-- Distance from the road for each sampler [Sampler A-6 is not on the same perpendicular as the other samplers.]


¹ The road is a state maintained two-lane highway of moderate traffic density (about 100 cars/hour).






NOUTINE MEIGHTED AVERAGE CONCENTION


41

4 ,

SUMMARY AND CONCLUSIONS

<u>General</u>

This report discussed the aspects of data analysis by parametric and nonparametric statistical tests; the small-scale spatial variability of precipitation quantity and chemistry; the causes for differences in performance of Aerochem Metrics 301, GeoTech 650 and Viking atmospheric deposition samplers, and the effects of not meeting the siting criteria.

A nonparametric approach in the analysis of sampler performance is advantageous because it is not as restrictive in its assumptions as the traditional ANOVA approach. The procedures of the nonparametric Friedman test are simple to apply and pairwise comparisons of samplers are possible. Although the magnitudes of differences are not possible to calculate, it is possible to decern general trends in the performance between samplers. Two indicators of magnitude of differences were developed. One of the indicators is the trend in the percentile distributions of each analyte, and the second was related to magnitude of the precision of the analytical method. Volume weighted average concentrations were calculated for each analyte and each sampler. A disparity in performance between the two samplers was assumed if the difference between the volume weighted average concentrations of two samplers exceeded the difference between the volume weighted average concentrations of duplicate analyses that were performed on samples from Sampler A-2. This procedure assumed that the difference between duplicate analyses could be explained by laboratory precision.

Results indicate that the difference in duplicate determinations of all analytes is not significant at the $\alpha = 0.05$ significance level. This implies that the laboratory precision is quite high. Additionally, this study has shown that there is no significant difference between the pH and specific conductance of the precipitation samples as measured at the U.S. Military Academy and at the U.S. Geological laboratories.

Deposition calculated as the product of concentration times the volume in the sampler and deposition calculated as the product of concentration times the equivalent volume collected in a rain gage are not significantly different.

The major factor controlling differences in deposition appears to be the collection efficiency of the sampler.

Sampler Performance

The Aerochem Metrics 301 samplers have been shown to remain open for significantly longer periods of time than the GeoTech 650 or Viking atmospheric deposition samplers. The common conception that the sampler remains open until the termination of the precipitation event is invalid. All samplers were seen to cycle (sometimes frequently) during a precipitation event, depending upon the design of the sensor. The GeoTech 650 and Viking samplers cycled more frequently during a precipitation event than did the Aerochem Metrics 301 samplers.

Spatial Variability

The two samplers which were used to test spatial variability of wet atmospheric deposition across 4 km indicated no difference in collection efficiency, sample weight, or deposition of analytes (except sulfate). Statistically significant differences ($\alpha = 0.05$) were detected for the concentration of all analytes, except for pH values determined at the U.S. Military Academy and sodium ion.

Violation of Siting Criteria

The effects of distance from a road is not significant for catch efficiency nor for catch volume, but a difference is detected in concentrations and deposition during the winter months (January to March 1986). A smaller effect is noted for spring and fall, but virtually no difference is noted for the summer months for concentrations or depositions of analytes. The observation that the concentration is directly proportional to the distance from the road indicates that the differences are probably not caused by moving sources, such as automobiles.

The compromise of siting criteria leads to a difference in the performance of samplers. Specifically, the violation of siting criteria that call for exclusion of objects with sufficient bulk to disturb local wind fields leads to a difference in catch efficiency and difference of sample weight. This study has the benefit of increased collection efficiency by having an Alter windshield around the sampler.

REFERENCES CITED

- Bailey, R.G., 1980, Description of the Ecoregions of the United States: U.S. Department of Agriculture, Miscellaneous Publication No. 1391.
- Bigelow, D.S., 1982, National Atmospheric Deposition Program, NADP Instruction Manual Site Operation., NADP Program Coordinators's office, Natural Resource Ecology Laboratory, Colorado State Univ., Fort Collins, Colorado, 30 p.
- Bogen, D.C., Stuart, J.J, and Torquato, C., 1980, Evaluation of the Hasl Wet-Dry Deposition Sampler, Water, Air, and Soil Pollution, v. 13, p. 453-458.
- Conover, W.J., 1980, Practical Nonparametric Statistics: Wiley, New York, 493 p.
- Cowling, E.B., 1978, Specifications for Purchase of Precipitation Sampler, letter to National Atmospheric Deposition Program participants, Available from NADP Coordinator's Office, Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO.
- DePena, R.G., Pena, J.A., and Bowersox, V.C., 1980, Precipitation Study Intercomparison Report, Dept. of Meteorology, Penn State Univ., University Park, PA, 57 p.
- Fishman, J.J. and Friedman, L.C., 1985, Methods for Determination of Inorganic Substances in Water and Fluvial Sediments, U.S. Geological Survey, Techniques of Water Resource Investigations: Book 5, chapter A1, p. 709.
- Galloway, J.N. and Likens, G.E. 1976, Calibration of Collection Procedures for the Determination of Precipitation Chemistry, Water, Air, and Soil Pollution, v. 6, p. 241-258
- Goodison, B.E., 1978, Accuracy of Canadian Snow Gage Measurements, J. Applied Meteorology., v. 17, p. 1542-1548.
- Graham, R.C., Robertson, J.K., and Obal, J., 1987, An Assessment of the Variability in Performance of Wet Atmospheric Deposition Samplers, U.S. Geological Survey, Water-Resources Investigation Report 87-4125, 152 p.
- Graham, R.C., Robertson, J.K., Obal, J., and LaFemina, J.P., 1988, "Atmospheric Deposition Sampler Intercomparison", Water, Air and Soil Pollution, v. 37, p. 139-147.
- Graham, R.C., and Obal, J., 1989, "The Non-Parametric Statistical Evaluation of Precipitation Chemistry Sampler Intercomparison Data", Atmospheric Environment, v. 23, p. 1117-1130.

- Hammond, E.H., 1965, Physical Subdivision, Scale 1:17,000,000, Map 65, U.S. National Atlas, U.S. Geological Survey.
- Hesson, J. and Robertson, J.K., 1982, Application of Water Quality Models to a Small Forested Watershed: I. The Nondesignated 208 Area Screening Model, EPA Report 600/3-82-029; NTIS PB82-24520, 96 p.
- Hicks, Charles R., 1973, Fundamental Concepts in the Design of Experiments: Holt, Rinehart, and Winston, 349 p.
- Neter, John, Wasserman, William, and Kutner, Michael H., 1985, Applied Linear Statistical Models: Irwin, Homewood, Illinois 1127 p.
- Robertson, John R., and Wojchiekowski, Dorothea, 1987, Directory of Precipitation Monitoring Sites: Government Printing Office, 986 p.
- Robertson, John K., and Wilson, Jerry W., 1985, Design of the National Trends Network for Monitoring the Chemistry of Atmospheric Precipitation, U.S. Geological Survey Circular 964, 46 p.
- Robertson, John K., Graham, Richard C., and Wilson, Jerry W., 1982, Site Visitation Checklist, NADP/NTN Site Certification: U.S. Military Academy, 23 p.
- Schroder, L.J., Linthurst, R.A., Ellson, J.E. and Vozzo, S.F., 1985, Comparison of Daily and Weekly Precipitation Sampling Efficiencies Using Automatic Samplers, Water, Air, and Soil Pollution, v. 24, p. 177-187.
- Volchock, H.L. and Graveson, R.T., 1976, Wet/Dry Fallout Collection in Proceedings of the Second Federal Conference of the Great Lakes, Great Lakes Basin Commission, p. 256-264.

APPENDIX A:Criteria used to establish National Atmospheric Deposition Program/National Trends Network collection sites (Robertson and others, 1982)

٠

Site Evaluation Criteria

GOAL: To locate sites such that they are outside the noticeable influence of any one emission source and represent an average of atmospheric deposition derived from sources from outside the region plus contribution, after dispersion and mixing, from sources within the region.

Instrument Installation:

1. Recommended installation of the sampler is on the standard 3 foot high aluminum base over undisturbed ground. In areas having an accumulation of over 2 feet of snow per year, the sampler may be raised off the ground on a platform. This platform will be no higher than the maximum anticipated snowpack. In general, platforms are discouraged.

2. The sampler should be oriented with the wetside bucket to the west and the sensor pointing north.

3. Naturally vegetated level areas are preferred, but grassed areas and slopes up to \pm 15 percent will be tolerated. If possible, such ground cover should surround the sampler for a distance of approximately 20 meters. The slope should be within the prescribed value in the ground cover area. In farm areas a vegetated buffer strip must surround the sampler for at least 20 meters.

4. The base of the sampler will not be enclosed.

5. Objects with sufficient mass to deflect the wind (with the exception of Alter windshields) over 1 meter high will not be located within 5 meters of the sampler.

6. The rain gauge should not be located within 30 meters of the sampler, but no closer than 5 meters. Its orifice should be located within 1 foot of the same level as the orifice of the sampler.

7. Samplers located in areas which normally receive snow will only have a snow roof installed on the moving lid of the sampler when problems with opening and closing are encountered. Such a lid should be left on year round.

8. Annual vegetation will be maintained at less than 2 feet.

Local Surroundings

9. No object or structure shall project onto the sampler or rain gauge with an angle greater than 45 degrees from the horizontal (30 degrees is considered optimal, but 45 degrees is the highest angle acceptable). Therefore the distance from the sampler to the object must be at least equal to the height of the object (preferably twice the height of the object). Pay particular attention to the anemometer towers and overhead wires. 10. No surface storage of agricultural products, fuels, vehicles, or other foreign materials within 100 meters of the sampler will be allowed. Parking lots and maintenance yards with frequent use are a particular problem.

11. Grazing animals will not be closer than 20 meters of the sampler. Feedlots, dairy barns, etc. in which large concentrations of animals will be housed will be no closer than 500 meters to the sampler.

12. Frequent moving sources of pollution, such as air, ground or water traffic or the medium on which they traverse (e.g. runway, taxiway, road, tracks, or navigable river) within 100 meters of the sampler. The local road net around the site is of particular concern.

13. Residential-type buildings should not be within a 30 degree cone.

Long Range Conditions

14. Continuous industrial-type operations such as factories, chemical plants, power plants, etc. will not be within 10 km of the sampler. Additionally, if the emissions sources are located in the general upwind direction (i.e. the mean annual west-to-east flow in most cases) of the sampler, then they should be not closer than 20 km to the sampler.

15. The sampler should not be located within 10 km of moderate-sized suburban or urban areas. A general definition of this classification is one having 10,000 or more people. This distance is increased to 20 km if the urban area is in the general upwind direction of the sampler. For the larger cities (i.e. populations greater than 75,000) the sampler should no closer than 20 km if it is in the upwind direction, and 40 km it is in the downwind direction.

Page left blank

APPENDIX B: Tables of Chemical Data for Precipitation Collected in Wet only Atmospheric Deposition Samplers Table B-1.-- Chemical data for Sampler A-1

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent; ---- indicates missing data.]

Date On	Time On	Date Off	Time Off	Sample Weight	[Ca++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1 ⁻]
360114	853	860121	905	717.9	0.010	0.020	0.260	0.010	0.061	1.200
60121	905	860128	935	5575.1	.010	.030	.240	.010	.036	. 440
60128	935	860204	900	752.8	.000	.000	.350	.050	.401	.540
60204	900	860211	930	1035.3	.100	.050	.170	.010	.061	.240
60211	930	860218	905	1114.8	.100	.040	.180	.010	. 231	.360
860218	905	860225	845	2036.3	.080	.030	.150	.010	.134	. 160
360225	845	860304	715							
360304	715	860311	827	187.4	.310	.100	.600	.100	. 923	.930
60311	827	860318	818	2854.1	.030	.020	.160	.020	. 121	. 270
60318	818	860325	835	243.7	.700	.190	1.100	.100	.862	1.300
60325	835	860401	920	138.4	. 540	. 170	. 230	.060	.716	. 520
360401	920	860408	845	915.0	.290	,110	.400	.040	. 534	1.000
360408	845	860415	850	010.0	. 200					2.000
360415	850	860413	843	4025.4	.020	.040	.400	.030	. 389	. 320
360413	843	860422	857	4025.4	. 100	.040	. 120	.030	. 522	. 320
360429	857	860506	850	681.2	.380	.070	.080	.070	.838	.360
60506	850	860513	843	492.9	.360	.060	.100	.090	.838	.390
60513	843	860520	850							
60520	850	860527	855	2077.5	.070	.060	.390	.020	.170	
360527	850	860603	825	392.0	.910	.180	.010	.080	1.166	
60603	850	860610	855	5763.9	. 240	.050	. 120	.020	. 267	. 210
60610	916	860617	920	2896.7	.140	.020	.040	.010	. 182	.130
60617	920	860624	943	255.6	. 280	.030	.010	.030	. 583	.260
60624	943	860701	930	1002.1	. 220	.050	.070	.020	.729	. 300
60701	930	860708	932	2658.3	.010	.020	.120	.020	.097	. 170
60708	932	860715	925	3320.8	.020	.030	.040	.040	. 194	.240
360715	925	860722	911							
60722	911	860729	905	3631.7	.020	.030	.060	.010	. 219	.190
60729	905	860805	913	3855.1	.070	.030	.060	.050	.376	.250
60805	913	860812	851	178.4	.180	.050	.210	.040	.656	.000
60812	851	860819	931	673.7	.010	.040	.010	.140	. 109	24.0
60819	931									.240
60826		860826 860902	919	1518.5	.010	.020	.010	.160	.049	. 130
	919		937	205.4	.100	.060	.010	.240	.316	.180
60902 60909	937 918	860909 860916	918 921	755.6 253.4	.050 .180	.030 .040	.100 .090	.120 .050	.704 .911	.400 .260
60916	920	860923	940	533.6	. 170	.050	.190	.010	1.190	.600
60923	940	860930	927	596.8	. 170	.040	.080	.010	.364	.360
60930	927	861007	925	1424.5	.100	.030	.150	.010	.364	.270
61007 61014	925 925	861014 861021	925 918	722.6	.070	.030	.070	.010	.085	. 120
61021 61028	918 705	861028 861104	705	1037.6	.050	.030	.080	.010	.170	.250
		861104	604	2475 1	040	020	000	010	070	
61104	604 830		830	2475.1	.040	.030	.090	.010	.073	. 530
61111 61118	830 910	861118 861125	910 913	1261.2 5197.4	.040	.030	. 120	.010	.097	.210
61125	913	861202	902	1635.9	.000	.000	.050		.061	.140
61202	921	861209		3303.7	.020	.040	.350	.010	.049	. 580
61209	910	861216	909	799.6	.050	.020	.030		.073	.400
61216 61223	909	861223	927	2590.4	.020	.050	.430		.073	.940
	927	861230	925	2304.6	.070	.050	. 230	.010	.146	. 400

Table B-1		Chemical	data	for	Sampler	A-1	(continued)
-----------	--	----------	------	-----	---------	-----	-------------

Date On	Time On	Date Off	Time Off	[NO3_]	[S0 ₄ =]	Lab pH	Field pH	Lab Conduct	Field Conduct	Collect Effic
860114	853	860121	905	1.063	1.200	4.10	4.20	31.0	31.0	74.35
860121	905	860128	935	.399	. 800	4.60	4.60	13.0	12.0	94.27
860128	935	860204	900	4.871	3.000	3.90	4.00	54.0	55.0	101.54
860204	900	860211	930	1.727	1.000	4.30	4.30	22.0	23.0	50.03
860211	930	860218	905	2.170	2.700	4.00	4.10	44.0	38.0	89.80
860218	905	860225	845	1.240	2.200	4.20	4.20	26.0	23.0	91.55
860225	845	860304	715	1.040	2.200	4.00	4.20	20.0	2010	01.00
860304	715	860311	827	3.587	3.800	4.10	4.20	44.0	46,0	67.93
860311	827	860318	818	.841	1.600	4.40	4.30	20.0	21.0	76.63
860318	818	860325	835	3.853	5.000	4.20	4.10	49.0	48.0	88.34
860325	835	860401	920	4.429	5.400	3.90	3.90	62.0	58.0	114.67
860401	920	860408	845	5.314	5.200	3.90	3.80	77.0	81.0	102.05
860408	845	860415	850							
860415	850	860422	843	1.461	3.800	4.10	4.10	39.0	42.0	98.51
860422	843	860429	857	2.923	3.800	4.00	4.00	47.0	47.0	88.99
860429	857	860506	850	5.757	6.200	3.80	3.80	89.0	84.0	101.30
860506	850	860513	843	4.871	7.400	3.70	3.80	88.0	87.0	95.29
860513	843	860513	850	4.071	7.400	0.70	0.00	00.0	07.0	00.20
				1 300	1 600	1 10	4.40	22.0	22.0	97.96
860520	850	860527	855	1.329	1.600	4.40		23.0	22.0	
860527	850	860603	825	4.163	7.200	4.00	4.00	62.0	50.0	94.73
860603	850	860610	855	2.347	3.300	4.10	4.10	39.0	65.0	95.51
860610	916	860617	920	1.506	2.300	4.20	4.20	29.0	38.0	98.25
860617	920	860624	943	5.314	4.900	3.90	3.90	70.0	70.0	78.02
860624	943	860701	930	4.871	7.700	3.70	3.70	90.0	90.0	96.86
860701	930	860708	932	.841	1.100	4.80	4.50	15.0	17.0	96.96
860708	932	860715	925	2.214	3.700	4.00	4.00	46.0	43.0	95.34
860715	925	860722	911							
860722	911	860729	905	2.037	2.600	4.20	4.10	36.0	36.0	89.63
860729	905	860805	913	3.897	5.700	3.80	3.80	74.0	78.0	99.81
860805	913	860812	851	.000	.000	3.70	3.70	88.0	92.0	94.06
860812	851	860819	931	2.170	2.500	4.20	4.10	35.0	36.0	95.30
860819	931									
		860826	919	1.151	1.300	4.40	4.30	20.0	20.0	97.85
860826	919	860902	937	2.746	5.400	3.90	3.90	58.0	62.0	91.64
860902	937	860909	918	.000	10.000	3.60	3.60	113.0	117.0	97.38
860909	918	860916	921	5.314	7.300	3.80	3.70	82.0	88.0	97.98
860916	920	860923	940	.000	8.300	3.60	3.60	108.0	0.0	77.37
860923	940	860930	927	3.011	4.200	3,90	3.90	54.0	53.0	96.15
860930	927	861007	925	4.251	4.300	3.90	3.90	60.0	61.0	75.79
861007		861014	925	4.231	4.300					
861014	925 925	861014	925 918	.000	1.200	4.50	4.40	16.0	17.0	71.03
861021	918	861028	705	1.639	1.700	4.40	4.20	21.0	28.0	89.82
861028	705	861104	604							
861104	604	861111	830	1.063	1.200	4.80	4.30	14.0	25.0	90.28
861111	830	861118	910							101.59
861118	910	861125	913	1.019	.700		4.50	9.0	14.0	98.51
861125	913	861202	902	. 177	. 400	6.30	4.80	3.0	7.0	97.81
861202	921	861202		. 576			4.60			
					.800	7.30		17.0	13.0	100.32
861209	910	861216	909	.000	1.300	5,80	6.50	13.0	19.0	87.50
861216	909	861223	927	.974	1.300	4.60	4.30	20.0	24.0	88.37
°61223	927	861230	925	.576	1.000	6.60	4.60	8.0	14.0	98.28

.

Table B-2.-- Chemical data for Sampler A-2

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent indicates missing data.]

Date On	Time On	Date Off	Time Off	e Sample Weight	[Ca++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1]]
860114	900	860121	909	867.2	0.010	0.020	0.240	0.010	0.061	1.300
360121	909	860128	938	5882.2	.010	.030	.240	.020	.049	.460
360128	938	860204	905	755.9	.000	.000	.370	.050	.401	. 570
360204	905	860211	934	1253.6	.160	.030	.360	.010	.061	. 270
60211	934	860218	910	1246.1	.120	.040	.420	.010	. 255	.390
360218	910	860225	849	3340.5	.080	.030	.130	. 020	.134	. 250
360225	849	860304	719	0						
360304	719	860311	831	273.1	.580	.130	.650	. 110	1.336	1.100
360311	831	860318	822	3313.6	.040	.030	.210	.030	. 121	.350
860318	822	860325	838	254.6	.700	.190	1.100	.110	.814	1.300
860325	838	860401	923	138.3	.570	.160	. 220	.040	.716	. 510
360401	923	860408	849	865.8	.320	.110	. 420	.040	. 571	1,000
360408	849	860415	853	0						
860415	853	860422	847	4087.6	.020	.030	.180	.010	.413	. 320
360422	847	860429	900	1965.7	.100	.060	.110	.030	. 522	.260
360429	900	860506	853	694.8	.380	.070	. 120	.060	.850	. 37
360506	853	860513	846	481.4	.380	.060	.100	.080	.777	.380
360513	846	860520	853	0						
360520	853	860527	905	2121.3	.070	.060	.410	.020	.158	
360527	905	860603	853	389.5	.880	.180	.010	.090	1.190	
860603	853	860610	912	5796.7	.170	.050	.100	.020	.267	. 210
360610	912	860617	914	2952.1	.240	.020	.040	.030	.182	. 130
360617	914	860624	932	256.3	. 320	.040	.010	.010	. 595	. 27
860624	932	860701	925	1032.4	.240	.050	.070	.030	.765	.30
860701	925	860708	925	2684.7	.010	.020	. 120	.020	.073	. 170
860708	925	860715	923	3320.8	.020	.030	.040	.060	. 206	. 240
860715	923	860722	910	0						
860722	910	860729	908	3839.3	.020	.030	.060	.010	.219	.190
860729	908	860805	912	3886.8	.070	.030	.050	.030	.364	. 260
860805	912	860812	850	164.5	.140	.040	.110	.070	.595	
860812	850	860819	929	679.9	.010	.040	.010	.130	.134	. 190
360819	929	860826	916	1531.5	.010	.020	.010	.160	.036	. 130
860826	916	860902	934	208.8	.100	.070	.010	.150	.316	. 180
860902	934	860909	916	762.7	.050	.030	.090	.110	.680	. 40
860909	916	860916	918	259.5	.160	.030	.060	.030	.899	.23
860916	918	860923	942	652.2	.140	.050	.150	.010	1.032	. 50
860923	942	860930	925	593.5	.140	.040	.080	.010	. 328	.24
360930	925	861007	921	1716.1	.100	.030	.130	.010	. 279	. 24
861007	921	861014	920	733.2	.070	.020	.080	.010	.085	. 12
361014	920	861021	913	0						
861021	913	861028	703	1040.5	.070	.030	.090	.010	.170	. 25
361028	703	861104	610	0						
361104	610	861111	833	2554.1	.040	.030	.100	.010	.073	. 51
361111	833	861118	912	1275.7	.040	.010	.070	.010	.061	. 41
361118	912	861125	916	5452.8	.060	.030	.130	.010	.097	.21
861125	916	861202	904	1675.9	.010	.000	.050		.049	. 15
361202	904	861209	1025	3356.5	.050	.040	.360	.010	.036	. 60
861209	1025	861216	912	854.0	.020	. 020	.040	.050	.109	. 30
861216	912	861223	929	2721.2	.020	.050	.400		.085	. 92
861223	929	861230	927	2356.1	.020	.030	. 220	.010	. 170	. 41

Table	B-2	Chemical	data	for	Sampler	A-2	(continued)
10010	~ .	0					(

Date On	Time On	Date Off	Time Off	[NO3_]	[S0 ₄]	Lab pH	Field pH	Lab Conduct	Field Collect Conduct Effic
860114	900	860121	909	1,329	1.200	4.200	4.100	35.000	35.000 89.81
360121	909	860128	938	. 443	1.000	4.500	4.500	15.000	13.000 99.46
60128	938	860204	905	4.871	3.100	4.000	4.000	54.000	54.000 101.95
60204	905	860211	934	1.904	1.100	4.300	4.300	25.000	25,000 60,59
60211	934	860218	910	2.569	2.800	4.000	4.000	46.000	39.000 100.38
60218	910	860225	849	1.417	2.300	4.200	4.200	32.000	30,000 150.19
60225	849	860304	719	1.41/	2.000	4.200	4.200	02.000	00.000 100.10
60304	719	860311	831	5.757	5.800	3.900	3.900	73.000	70.000 98.99
60311	831	860318	822	1.151	2.000	4.300	4.300	25.000	27.000 88.97
60318	822	860325	838	3.853	5.000	4.200	4.200	50.000	47.000 92.29
60325	838	860401	923	4.871	5.800	3.900	3.900	62.000	58.000 114.59
60401	923	860408	849	5.757	5.300	3.800	3.800	78.000	84.000 96.57
60408	849	860415	853	5.757	5.500	5.000	3.800	/0.000	04.000 30.57
60415	853	860413	847	1.461	3.800	4.100	4.100	39,000	41.000 100.03
360413	847	860422	900	3.100	4.100	4.100	4.100	47.000	47.000 97.44
00422	04/	000429	900	3.100	4.100	4.100	4.000	47.000	-7.000 87.44
860429	900	860506	853	5.757	6.500	3.800	3.800	80.000	85.000 103.32
60506	853	860513	846	4.871	7.400	3.800	3.800	83.000	85.000 93.07
60513	846	860520	853						
60520	853	860527	905	1.373	1.700	4.400	4.500	24.000	23.000 100.02
60527	905	860603	853	4.119	7.400	4.000	3.900	62.000	57.000 94.12
60603	853	860610	912	2.524	3.200	4.100	4.100	40.000	74.000 96.05
60610	912	860617	914	1.506	2.400	4.200	4.200	29.000	38.000 100.12
60617	914	860624	932	5.757	5.100	3.800	3.800	74.000	74.000 78.23
60624	932	860701	925	4.871	7.700	3.700	3.700	90.000	92.000 99.79
60701	925	860708	925	.886	1.100	4.500	4.500	15.000	17.000 97.93
60708	925	860715	923	2,214	3.700	4.000	4.000	46.000	44.000 95.34
60715	923	860722	910						
60722	910	860729	908	2.037	2.600	4.200	4.100	35.000	37.000 94.75
60729	908	860805	912	3.897	5.600	3.800	3.800	74.000	78.000 100.64
60805	912	860812	850			3.800	3.800	82.000	85.000 86.73
60812	850	860819	929	1.771	2.200	4.200	4.100	30.000	32.000 96.18
60819	929	860826	916	1.151	1.300	4.300	4.300	20.000	20.000 98.69
60826	916	860902	934	2.657	5.500	3.900	3.900	57.000	61.000 93.15
60902	934	860909	916	2.05/		3.600			
60909	916	860916	918	4.871	10.000 7.000	3.800	3.600 3.700	112.000 81.000	116.000 98.30 88.000 100.34
60016	019	860000	042		7 600	3 600	2 700	100 000	100 000 01 55
60916	918	860923	942 925		7.600	3.600	3.700	100.000	103.000 94.56
60923	942	860930		2.746	3.800	4.000	4.000	48.000	48.000 95.61
60930	925	861007	921	3.321	3.400	4.000	4.000	47.000	49.000 91.31
61007 61014	921 920	861014 861021	920 913	.886	1.200	4.400	4.400	17.000	18.000 72.07
61001									
61021 61028	913 703	861028 861104	703 610	1.639	1.700	4.400	4.200	22.000	29.000 90.07
61104	610	861111	833	1.063	1.300	4.500	4.300	19.000	25,000 93.16
61111	833	861118	912	. 531	.700	5.000	4.500	10.000	13.000 102.76
61118	912	861125	916	1.107	. 700	4.800	4.500	11.000	14.000 102.78
61105	016	061000	004					,	
61125	916	861202	904	.221	.400	5.900	4.800	4.000	6.000 100.20
61202	904	861209	1025	. 576	. 800	5.700	4.600	8.000	13.000 101.92
61209	1025	861216	912	1.151	1.300	5.800	4.300	17.000	20.000 93.45
61216	912	861223	929	.974	1.300	4.800	4.300	17.000	24.000 92.84
61223	929	861230	927	. 576	1.000	5.800	4.600	8.000	14.000 100.48

Table B-3.-- Chemical data for Sampler A-3

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent indicates missing data.]

Date On	Time On	Date Off	Time Off	Sample Weight	[Ca++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1]
860114	910	860121	914	892.1	0.020	0.020	0.250	0.010	0.073	1.400
860121	914	860128	941	5771.9	.010	.030	.230	.030	.049	.430
860128	941	860204	914	756.3	.000	.000	.360	.050	.401	. 550
860204	914	860211	942	1187.9	.080	.040	.180	.030	.061	.280
860211	942	860218	914	1190	.120	.040	.200	.020	.255	.400
860218	914	860225	856	2228.3	.080	.030	.110	.020	.146	. 280
860225	856	860304	722	0						
860304	722	860311	840	284.8	.650	.140	.650	.110	1.336	1.100
860311	840	860318	827	3628.1	.040	.030	.150	.030	.146	.380
860318	827	860325	845	267.3	.730	.210	.650	.110	.886	1.500
860325	845	860401	927	136.4	.810	.210	.390	.070	1.081	.710
860401	927	860408	855	1031	.350	.120	.430	.040	. 583	1.100
860408	855	860415	857	0						
860415	857	860422	855	4121.3	.020	.030	. 200	.020	. 425	.330
860422	855	860429	910	1842	.120	.060	.120	.030	.510	.270
860429	910	860506	904	691.4	.410	.070	.080	.080	. 923	.370
860506	904	860513	854	485.9	.460	.070	.110	.100	.862	.410
860513	854	860520	902	0						
860520	902	860527	909	2108.5	.100	.080	. 500	.100	. 498	
860527	909	860603	904	394.9	.930	.190	.010	.090	1.178	
860603	904	860610	908	5827.3	.170	.050	. 130	.120	.704	.230
860610	908	860617	909	2932.8	.070	.020	.030	.020	.170	.130
860617	909	860624	928	302.9	.300	.040	.010	.010	. 571	. 280
860624	928	860701	920	1025.0	. 240	.050	.040	.030	.753	. 300
860701	920	860708	920	2726.5	.010	.020	.140	.020	.097	.170
860708	920	860715	915	3420.4	.020	.030	.040	.030	.194	.240
860715	915	860722	908	0						
860722	908	860729	912	3819.3	.020	.030	.060	.010	.206	.190
860729	912	860805	910	3849.9	.090	.040	.070	.100	.449	.260
860805	910	860812	848	184.7	.180	.050	.150	.100	.631	
860812	848	860819	926	693.8	.020	.060	.060		.036	.350
860819	926	860826	914	1568.6	.010	.020	.010	.150	.036	. 130
860826	914	860902	932	219.0	.010	.010	.010	.210	. 243	.190
860902	932	860909	912	771.4	.070	.040	.110	.120	.704	.400
860909	912	860916	915	267.3	.140	.030	.050	.040	.838	.230
860916	915	860923	944	680.2	.140	.050	.150	.020	1.044	.400
860923	944	860930	923	620.8	.170	.040	.100			.400
860930	923	861007	918	1774.0	.070	.030	.130	.010	. 279	. 230
861007	918	861014	916	596.2	.040	.020	.110	.020	.061	.120
861014	916	861021	909	0						
861021	909	861028	657	1113.1						
861028	657	861104	612	0						
861104	612	861111	836	2631.2	.040	.030	. 100	.010	.085	. 520
861111	836	861118	915	1277.5	.040	.010	.070	.010	.061	. 420
861118	915	861125	918	5204.2	.060	.030	. 110	.010	.097	.240
861125	918	861202	905	1655.3	. 000		.090		.073	. 180
861202	905	861209	910	3414.3	.050	.050	.370	.010	.036	. 620
	910	861216	918	437.2	. 020	.000	.040		.073	.170
861209										
861209 861216	918	861223	930	2596.4	.020	.050	.450		.085	.950

..

Date On	Time On	Date Off	Time Off	[NO3_]	[S04]]	Lab pH	Field pH	Lab Conduct	Field Conduct	Collect Effic
860114	910	860121	914	1.506	1.300	4.100	4.100	38.000	36.000	92.39
860121	914	860128	941	. 487	1.000	4.500	4.600	15.000	13,000	97.60
380128	941	860204	914	4.871	3,000	3,900	4.000	53.000	55.000	102.01
360204	914	860211	942	1.949	1.100	4.300	4.300	24.000	25.000	57,41
80211	942	860218	914	2.657	2.800	4.000	4.000	44.000	42.000	95.86
360218	914	860225	856	1.461	2.500	4.100	4.200	48.000	31.000	100.18
360225	856	880304	722							
360304	722	860311	840	6.200	6.200	3.900	3.900	75.000	68.000	103.24
860311	840	860318	827	1.240	2.100	4.300	4.300	27.000	28.000	97.42
860318	827	860325	845	4.074	5.400	4.100	4.100	52.000	52.000	96.89
60325	845	860401	927	6.643	7.800	3.800	3.900	86.000		113.01
360401	927	860408	855	5.757	5.700	3.800	3.800	82.000	87.000	114.99
60408	855	860415	857							
360415	857	860422	855	1.594	4.000	4.100	4.100	41.000		100.85
380422	855	860429	910	3.100	4.000	4.000	4.100	49.000	48.000	91.31
360429	910	86050 6	904	6.200	6.900	3.800	3.800	86.000		102.82
860506	904	860513	854	4.871	7.900	3.700	3.800	90.000	89.000	93.94
360513	854	860520	902							
360520	902	860527	909	1.461	2.000	4.600	4.600	21.000	21.000	99.42
860527	909	860603	904	4.207	7.300	4.000	4.000	64.000	51.000	95.43
60603	904	860610	908	2.613	3.600	4.200	4.200	33.000	66.000	96.5 6
60610	908	860617	909	1.594	2.500	4.200	4.200	31.000	35.000	99.47
60617	909	860624	928	6,200	5.300	3,800	3.900	75.000	71.000	92.46
60624	928	860701	920	5.314	7.900	3.700	3.700	90.000	89.000	99.08
60701	920	860708	920	.930	1.200	4.500	4.400	16.000	18.000	99.45
860708	920	860715	915	2.303	3.800	4.000	4.000	47.000	46.000	98.20
360715	915	860722	908							
360722	908	860729	912	2.081	2.700	4.100	4.100	35.000	37.000	94.26
360729	912	860805	910	3.986	5.800	3.800	9.990	68.000	.000	99.68
60805	910	860812	848			3.700	3.700	95.000	98.000	97.38
60812	848	860819	926	1,949	2.500	4.200	4.100	32.000	31,000	98.14
60819	926	860826	914	1.151	1.300	4.400	4.300	21.000	20.000	101.08
60826	914	860902	932	2.834	5.600	3.900	3.900	60.000	63.000	97.70
60902	932	860909	912		10.000	3.600	3.600	120.000	121.000	99.42
60909	912	86091 6	915	4.871	6.700	3.800	3.800	79.000	84.000	103.35
60916	915	860923	944		7.800	3.600	3.700	102.000	107.000	98.62
60923	944	860930	923	3.056	5.000	9,990	4.900	43.000	27.000	100.01
60930	923	861007	918	3.277	3.300	4.000	4.000	47.000	48.000	94.39
61007	918	861014	916	. 797	1.200	4.500	4.400	15.000	16.000	58,60
61014	916	861021	909							
61021	909	861028	657							96.35
61028	657	861104	612							
61104	612	861111	836	1.151	1.400	4.400	4.200	21.000	27.000	95.98
61111	836	861118	915	. 576	. 700	4.800	4.400	12.000	14.000	
61118	915	861125	918	1.063	.700	4.700	4.500	12.000	15.000	98.64
61125	918	861202	905	.354	. 700	5.400	4.800	6.000	9.000	98.97
61202	905	861209	910	. 620	.780	5.400	4.500	8.000	13.000	
61209	910	861216	918	1.639	1.800	4.900	4.200	15.000	28.000	47.84
61216	918	861223	930	.974	1.200	4.500	4.300	18.000	24.000	88.58
01010										

Table B-4.-- Chemical data for Sampler G-4

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent indicates missing data.]

Date On	Time On	Date Off	Time Off	Sample Weight	[Ca++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1 ⁻]
860114	918	860121	923	534.4	0.010	0.020	0.240	0.010	0.061	0.950
860121	923	860128	950	4030.1	.010	. 03 0	.320	.020	.049	. 570
860128	950	860204	923	63.8						
860204	923	860211	950	797.3	. 120	.040	.460	.030	.073	.260
860211	950	860218	922	0		1				
860218	9 2 2	860225	910	424.5	.120	. 030	.360	.030	.316	.540
860225	910	860304	728	0						
860304	728	860311	847	235	. 550	.120	.650	.100	1.214	1,000
860311	847	860318	835	2929.5	.020	.020	.100	.020	.134	. 330
860318	835	860325	853	130.9	.730	.170	1.200	.090	.862	.850
860325	853	860401	938	94.3	. 510	.140	. 250	.050	.741	.480
860401	938	860408	902	300.1	. 320	.110	. 560	.040	. 546	1.100
860408	902	860415	905	0						
860415	905	860422	903	2687.9	.010	.030	.290	.010	.352	.300
860422	903	860429	917	1274.7	.070	.050	.100	.030	. 522	. 250
860429	917	860506	913	561.5	.240	.050	.070	.050	.704	. 330
860506	913	860513	902	387.7	.460	.060	.100	.080	.886	. 360
860513	902	860520	910	007.17	. 400					
860520	910	860527	915	1685.1	.010	.050	.340	.020	.158	
860527	915	860603	910	286.3	.880	.170	.010	.100	1.214	
860603	910	860610	900	5039.2	. 140	.040	.080	.010	.255	.190
860610	900	860617	905	2509.7	.140	.020	.030	.010	. 194	. 130
860617	905	860624	918	200.2	. 140	.020	.010	.020	.619	. 130
860624	918	860701	910	200.2 959.8	. 220	.040	.010	.020	.729	. 290
860701	910 910	860708	911	2385.7	.010	.010	.100	.010	.073	. 150
									10/	
860708	911	860715	910	3021.7	.020	.030	.030	.050	.194	.240
860715 860722	910 904	860722	904 905	0 3432.4	.040	.030	.050		.206	. 200
860729	904	860729 860805	855	3432.4 0	.040	.030	.050	.010	.200	. 200
860805	855	860812	845	107.3	.160	.050	.180	.150	.680	
				676 I						
860812	845	860819	921	576.4	.010	.040	.010	.140	.097	.170
860819	921	860826	910	1179.5	.010	.020	.010	.130	.036	.120
860826	910	86090 2	930	138.4						
860902 860909	930 921	860909 860916	921 910	678.2 189.3	.090 .110	.040 .030	.090 .060	.120	.668 .971	.400 .230
	021	000010	010	100.0				.050		. 200
860916	910	860923	947	593.6	. 120	.040	.140	.020	1.056	. 400
860923	947	860930	918	461.3	.140	.040	.060	.010	.340	. 160
860930	918	861007	912	1291.0	. 120	.030	.100	.010	. 279	.210
861007	912	861014	914	807.5	.040	.020	.100	.010	.085	.150
861014	914	861021	907	0						
861021	907	861028	650	1343.8	.100	.030	.070	.020	.304	.240
861028	650	861104	618	0						/ 0
861104	618	861111	840	1505.5	.040	.030	.090	.010	.061	. 490
861111	840	861118	920	1107.6	.040	.010	.080	.010	.073	. 470
861118	920	861125	925	637.6	.080	.040	. 120	.050	. 182	. 190
861125	925	861202	908	845.4	.040	.010	.120		073	
861202	908	861202	910	045.4	.040	.010	. 120		.073	. 230
861202	908 910	861209	910	427.4	050	.020	.060		101	
861216	910 920	861223	920	427.4 2329.5	.050	.020	. 390		.121	. 400
861223	932	861223	932	2329.5	.000	.030		.010	.073	.850
001220	332	001230	332	2010.4	.000	.020	.200	.010	.158	.330

60

Date On	Time On	Date Off	Time Off	[NO3]]	[S0 ₄ ⁼]	Lab pH	Field pH	Lab Conduct	Field Conduct	Collect Effic
860114	918	860121	923	1.063	1.200	4.200	4.200	32.000	29.000	55.34
860121	923	860128	950	.487	. 800	4.600	4.800	14.000	12.000	68.14
860128	950	860204	923							
860204	923	860211	950	1.639	1.200	4.400	4.300	22.000	23.000	38.53
860211	950	860218	922							
860218	922	860225	910	2.126	3.700	4.000	4.000	26.000	48.000	19.08
860225	910	860304	728							
860304	728	860311	847	4.871	5.400	4.000	4.000	62.000	65.000	85.18
860311	847	860318	835	1.019	1.900	4.400	4.300	24.000	25.000	78.66
860318	835	860325	853	3.233	3.900	4.400	4.300	34.000	38.000	47.45
000010	005	000025	0.0	0.200	0.000	4,400	4.000	04.000		47.10
860325	853	860401	938	4.296	5.300	4.000	4.000	56.000	61.000	78.13
860401	938	860408	902	6.200	5.400	3.800	3.800	83.000	85.000	33.47
860408	902	860415	905							
860415	905	860422	903	1.329	3.600	4.200	4.100	35.000	38.000	65.77
860422	903	860429	917	3.189	4.200	4.000	4.000	48.000	50.000	63.19
860429	917	860506	913	6.200	5.800	3.800	3,800	72.000	76.000	83.50
860506	913	860513	902	4.429	7,300	3.700	3.800	86.000	80.000	74.95
860513	902	860520	910							
860520	910	860527	915	1.151	1,500	4.600	4.400	21.000	21.000	79.46
860527	915	860603	910	4.030	7.500	3.900	3.800	70.000	59.000	69.18
	010	000010		0 001	2 100	/ 100			77 000	00 60
860603	910	860610	900	2.391	3.100	4.100	4.100	37.000	77.000	83.50
860610	900	860617	905	1.329	2.200	4.300	4.300	26.000	35.000	85.12
860617	905	860624	918	5.314	5.100	3.900	3.900	70.000	71.000	61.11
860624	918	860701	910	4.871	7.500	3.800	.000	85.000	.000	92.78
860701	910	860708	911	.753	1.000	4.500	4.500	14.000	15.000	87.02
860708	911	860715	910	2.303	3.800	4.000	4.000	48.000	44.000	86.76
860715	910	860722	904							
860722	904	860729	905	1.949	2.500	4.200	4.100	34.000	36.000	84.71
860729	905	860805	855							
860805	855	860812	845			3.800	3.800	73.000	77.000	56.57
860812	845	860819	921	1.373	1.900	4.300	4.200	24.000	26.000	81.53
860819	921	860826	910	. 886	1.200	4.500			17.000	
860826	921 910	860902	930	. 000	1.200	4.300	4.400	20.000		76.01
860902	930	860902	930 921				3.600			61.74
860902	930	860916	921 910	4.429	10.000 6.500	3.600 3.800	3.800	106.000 74.000	107.000 81.000	87.41 73.19
860916	910	860923	947		7.300	3.700	3.700	96.000	103.000	86.07
860923	947	860930	918	2.214	3.500	4.100	4.100	41.000	40.000	74.32
860930	918	861007	912	2.967	3.000	4.000	4.000	43.000	43.000	68.69
861007	912	861014	914	.974	1.400	4.500	4.400	18.000	19.000	79.38
861014	914	861021	907							
861021	907	861028	650	1.949	2.500	4.300	4.200	27.000	36.000	116 32
861028	650	861104	618	2.070	2.500	4.500	7.200	27.000	30.000	110.34
861104	618	861111	840	.797	1.100	4.500	4.300	18.000	22.000	54.91
861111	840	861118	920	.576	.700	4.800	4.300	12.000	14.000	54.91 89.22
861118	920	861125	925	2.214	1,200	4.800	4.400	22.000	24.000	89.22 12.08
861125	925	861202	908	. 531	1.200	5.000	4.500	10.000	15.000	50.54
861202	908	861209	910							
861209	910	861216	920	.886	.970	4.800	4.400	13.000	16.000	46.77
861216	920	861223	932	.974	1.100	4.400	4.400	18.000	23.000	79.47
861223	932	861230	932	. 531	.900	5.200	4.600	9.000	13.000	98.87

Table B-5.-- Chemical data for Sampler A-5

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent indicates missing data.]

Date On	Time On	Date Off	Time Off	Sample Weight	[Ca++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1]
860114	925	860121	930	699.9	0.010	0.020	0.250	0.010	0.061	1.400
860121	930	860128	930	5872	.010	. 020	. 220	.010	.049	.440
860128	930	860204	930	855.2	.000	.000	. 340	.040	. 328	. 510
860204	930	860211	1005	166.2	.100	.030	. 360	.040	.061	.250
860211	1005	860218	930	1153.6	.100	.040	.340	.020	.231	. 320
860218	930	860225	920	2099.0	.060	.030	.160	. 020	. 121	.160
860225	920	860304	738	0						
860304	738	860311	855	224.9	.410	.110	.580	.090	1.020	.900
860311	855	860318	848	3619.7						
860318	848	860325	902	292.3	. 700	.200	.660	.100	.838	1,500
860325	902	860401	945	139.7						
860401	945	860408	912	1028.4	. 320	. 120	.470	.040	. 559	1.100
860408	912	860415	915	0						
860415	915	860422	915	4196.9	.020	.030	.190	.020	.413	.340
860422	915	860429	925	2119.5	. 120	.060	.120	.030	. 546	.270
860429	925	860506	930	715.1	. 570	.080	.160	.150	.935	. 500
860506	930	860513	915	497.8	.430	.060	.110	.070	.741	.400
860513	915	860520	925	0						
860520	925	860527	921	2205.2	.040	.070	.430	.020	.170	
860527	921	860603	925	398.6	. 960	.190	.010	.160	1.154	
86060 3	925	860610	925	5105.9	.170	.050	.090	.030	. 267	.210
860610	925	860617	930	3055.0	. 170	.020	.030	.020	.170	.130
860617	930	880624	947	304.4	. 390	.040	.010	.020	. 571	.280
860624	947	860701	940	1032.5	.240		.050	. 300	.741	. 300
860701	940	860708	927	2724.0	.010	.020	.090	.010	.073	.170
860708	927	860715	930	3446.6	.020	.030	.030	.070	.219	. 320
870715	930	860722	913	0						
860722	913	860729	911	3518.2	. 400	. 190	.060	.010	. 304	. 220
860729	911	860805	915	3945.7	.070	.030	.060	.060	. 364	.260
860805	915	860812	853	190.2	.180	.050	. 120	.160	.607	
860812	853	860819	914	704.3	.010	.040	.010	.190	.158	. 220
860819	914	860826	921	1541.6	.010	. 020	.010	.120	.024	.120
860826	921	860902	941	212.7	. 160		.040	.260	. 279	. 220
860902	941	860909	921	786.9	.070	.040	. 120	. 120	.741	. 500
86090 9	921	860916	930	273.6	.160	.030	.090	.040	. 674	. 240
860 916	930	860923	951	679.0	. 170	.050	.160	.010	1.081	.400
860923	951	860930	915	623.4	. 140	.040	.090	.020	.401	. 400
860930	915	861007	910	1799.5	.100	.030	. 120	.010	. 304	. 230
861007	910	861014	910	834.6	.040	.030	. 100	.010	.085	.140
861014	910	861021	903	0						• - • •
861021	903	861028	646	2230.0	.070	.030	.060	. 020	.194	. 250
861028	646	861104	600	0						
861104	600	861111	845	2662.4	. 020	. 030	.110	.010	.085	. 510
861111	845	861118	905	1276.2	.040	.010	.090	.010	.061	.410
861118	905	861125	910	5623.9	.040	.030	.150	.020	.097	.230
861125	910	861202	900	1710.0	.010	.010	.080		.097	.170
861202	900	861209	1020	3469.7	.020	.040	. 400	.040	.049	.630
861209	1020	861216	858	928.6	.020	. 020	. 070		. 121	. 320
661216	858	861223	925	2800.5	.020	.050	. 440	.010	.073	.960
661223	925	861230	923	2380.4	.020	.030	. 220	.010	. 170	. 410

Date On	Time On	Date Off	Time Off	[N0 ₃]	[S04]]	Lab pH	Field pH	L a b Conduct	Field Collect Conduct Effic
860114	925	860121	930	1.151	1.100	4.100	4.100	34.000	34.000 72.48
860121	930	860128	930	. 443	.900	4.600	4.700	14.000	13.000 99.29
860128	930	860204	930	4.429	2.800	4.000	4.000	53.000	51.000 115.35
860204	930	860211	1005	1.683	1.000	4.300	4.300	21.000	22.000 8.03
860211	1005	860218	930	2,170	2.700	4.100	4.100	40.000	38.000 92.92
860218	930	860225	920	1.151	1.600	4.200	4.300	35.000	24.000 94.37
860225	920 738	860304 860311	738	4 207	4 400	4 100	4.100	54.000	52.000 81.52
360304 860311	855	860318	855 848	4.207	4.400	4.100	4.100	54.000	97.19
360318	848	860325	902	4.030	5.400	4.200	4.100	52.000	51.000 105.95
360325	902	860401	945						115.75
360401	945	860408	912	5.314	5.600	3.800	3.800	78.000	84.000 114.70
360408	912	860415	915						
360415	915	860422	915	1.550	4.000	4.100	4.100	40.000	43.000 102.70
860422	915	860429	925	3.144	4.100	4.100	4.000	48.000	47.000 105.06
360429	925	860506	930	6,200	6,600	3.800	3.800	80.000	84,000 106.34
860506	930	860513	915	4.871	7.600	3.800	3.800	82.000	88.000 95.24
360513	915	860520	925						
360520	925	860527	921	1.373	1.700	4.400	4.400	24.000	24.000 103.98
60527	921	860603	925	4.119	7.200	4.000	4.000	63.000	51.000 96.32
60603	925	860610	925	2.524	3.300	4.100	4.100	40.000	67.000 84.61
60610	925	860617	930	1.550	2.400	4.200	4.200	30.000	39.000 103.61
60617	930	860624	947	5.757	5.100	3.800	3.800	74.000	72.000 92.92
60624	947	860701	940	5,314	7.900	3.700	9,990	92.000	.000 99.80
60701	940	860708	927	.886	1.100	4.500	4.400	16.000	18.000 99.36
860708	927	860715	930	2.303	3.800	4.000	4.000	49.000	47.000 98.96
370715	930	860722	913						
360722	913	860729	911	2.657	3.600	4.100	4.100	47.000	37.000 86.83
360729	911	860805	915	3,986	5.700	3.800	3.800	74.000	82.000 102.16
860805	915	860812	853			3.700	3.700	93.000	96.000 100.28
360812	853	860819	914	1.993	2.300	4.200	4.100	32.000	34.000 99.63
360819	914	860826	921	1.107	1.300	4.400	4.400	18,000	20.000 99.34
60826	921	860902	941	2.879	5.500	4.000	3.900	60.000	63.000 94.89
60902	941	860909	921		11.000	3.600	3.600	120.000	119.000 101.42
360909	921	860916	930	4.871	6.800	3.700	3.700	83.000	86.000 105.79
860916	930	860923	951		7.900	3.600	3.700	102.000	108.000 98.45
360923	951	860930	915	3.011	4.100	4.000	3.900	52.000	51.000 100.43
360930	915	861007	910	3.321	3.300	4.000	.000	49.000	49.000 95.75
361007	910	861014	910	.930	1.300	4.400	4.400	17.000	18.000 82.04
861014	910	861021	903						
861021	903	861028	646	1.860	1.900	4.400	4.200	23.000	31.000 193.04
361028	646	861104	600						
361104	600	861111	845	1.107	1.300	4.400	4.300	22.000	26.000 97.11
361111	845	861118	905	. 531	.700	4.800	4.500	11.000	13.000 102.80
861118	905	861125	910	1.107	.700	4.700	4.500	13.000	14.000 106.59
361125	910	861202	900	.354	. 600	5.200	4.700	6.000	9.000 102.24
361202	900	861209	1020	. 576	. 800	5.200	4.500	9.000	13.000 105.36
361209	1020	861216	858	1.240	1.400	4.600	4.300	19.000	22.000 101.62
	858	861223	925	1.019	1.300	4.400	4.300	19.000	24.000 95.54
361216	0.20								

Table B-6.-- Chemical data for Sampler A-6

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent indicates missing data.]

Date On	Time On	Date Off	Time Off	Sample Weight	[Ca++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1]]
860114	955	860121	1020	722.3	0.010	0.020	0.270	0.010	0.073	1.400
860121	1020	860128	1045	5951.6	.010	. 020	.190	.030	.049	.380
860128	1045	860204	1000	760.6	.000	.000	.310	.050	.389	.490
860204	1000	860211	1030	1428.9	.080	.040	.490	.010	.061	.280
860211	1030	860218	958	1389.4	.120	.040	.380	.020	.267	. 480
860218	958	860225	940	2152.7	.080	.030	.150	.010	.146	.370
860225	940	860304	755	0						
860304	755	860311	920	293.9	.650	.120	.620	.100	1.579	1.000
860311	920	860318	915	3633.9						
860318	915	860325	930	514.1	.380	.130	1.300	.080	.789	.780
860325	930	860401	1005	149.7	. 590	.130	.280	.060	. 826	. 520
860401	1005	860408	930	1057.5	. 290	. 110	.460	.040	. 546	.980
860408	930	860415	940	0						
860415	940	860422	947	4912.7	.020	.030	. 440	.010	.376	.320
860422	947	860429	945	2342.6	.050	.020	.090	.020	.461	. 220
860429	945	860506	955	1156.4	.380	.080	.080	.080	. 753	.330
860506	955	860513	940	419.4	. 430	.060	.110	.080	.838	.350
860513	940	860520	948	0						
860520	948	860527	930	2043.5	.010	.050	.350	.010	.158	
860527	930	860603	945	334.6	.930	. 190	.050	.130	1.202	
860603	945	860610	938	5916.0	. 220	.040	.080	.020	. 194	.210
860610	938	860617	935	2691.1	.190	.020	.040	.020	. 182	.130
860617	935	860624	1026	672.4	.260	.020	.010	.040	.486	. 230
860624	1026	860701	1005	1535.4	.140	.040	.050	.020	.546	.230
860701	1005	860708	945	2522.2	.010	.020	.080	.030	.061	.120
860708	945	860715	1000	3426.5	.020	.030	.030	.080	.219	.240
860715	1000	860722	1025	0						
860722	1025	860729	1035	3739.4	.040	.030	.050	.020	.194	,190
860729	1035	860805	1104	2843.1	.090	.030	.050	.040	.461	.340
860805	1104	860812	1045	197.0	. 180	.040	.100	.100	.668	. 400
860812	1045	860819	1004	699.9	.010	.060	.010	.120	.194	. 200
860819	1004	860826	1010	1575.0	.010	. 020	.010	.100	.036	.160
860826	1010	860902	1030	178.7	.080	.040	.080	.240	.267	. 270
860902 860909	1030 1036	860909 860916	1036 1015	958.4 327.9	.070 .140	.040 .030	.100 .070	.100	.474 .935	.370 .220
000903	1000	200310	1013	527.5	. 140	.000	.070	.040	. 500	. 220
860916	1015	860923	1035	601.2	. 140	.040	.140	.020	.935	. 400
860923	1035	860930	1015	840.5	.140	.040	.070	.020	.486	. 230
860930	1015	861007	1030	1870.5	.100	.030	.080	.010	. 219	. 220
861007	1030	861014	946	784.9	.040	.020	.070	.010	.049	. 120
861014	946	861021	939	0						
861021	939	861028	740	2266.8	.020	.030	. 090	. 020	.134	.600
861028	740	861104	655	0						
861104	655	861111	1045	2834.0	.040	.030	. 100	.010	.085	.210
861111	1045	861118	945	972.2	.040	.010	.080	.010	.049	.150
861118	945	861125	950	4322.3	.040	.030	.070	.010	. 134	.170
861125	950	861202	1015	1766.3	.010	.000	.080		.049	.160
861202	1015	861209	1150	2166.0	.050	.050	. 430	.020	.049	.680
861209	1150	861216	930	302.1	.170	.040	.290		.158	.460
861216	930	861223	950	2728.3	.020	.040	.370		.073	.680
861223	950	861230	943	2285.8	.000	.030	.250	.010	.206	. 440

Date On	Time On	Date Off	Time Off	[NO3_]	[so ₄ =]	Lab pH	Field pH	Lab Conduct	Field Conduct	Collect Effic
860114	955	860121	1020	1.329	1.300	4.100	4.200	36,000	36.000	74.80
860121	1020	860128	1045	. 443	.900	4.600	4.600	14.000	13.000	100.63
860128	1045	860204	1000	4.871	2.900	4.000	4.000	53,000	54.000	102.59
860204	1000	860211	1030	1.727	1.000	4.300	4.300	23.000	23.000	69.06
860211	1030	860218	958	2.746	2.900	4.000	4.100	45.000	43.000	111.92
860218	958	860225	940	1.417	2.400	4.100	4.200	31.000	32.000	96.78
860225	940	860304	755							
860304	755	860311	920	6.200	6.600	3.900	3.900	80.000	77.000	106.53
860311	920	860318	915							97.57
860318	915	860325	930	2.524	3.700	4.400	4.300	33.000	34.000	186.36
860325	930	860401	1005	4.871	5.400	9.990	4.000	63.000	54.000	124.03
860401	1005	860408	930	5.314	5,600	3.800	3.800	76.000	80,000	117.95
860408	930	860415	940							
860415	940	860422	947	1.417	3.600	4.200	4.100	38.000	40.000	120.22
860422	947	860429	945	2.790	3.500	4.100	4.100	42.000	41.000	116.12
860429	945	860506	955	4.871	4.600	4.000	4.000	60.000	61.000	171.97
860506	955	860513	940	5.314	7.900	3.700	3.800	93.000	90.000	81.08
860513	940	860520	948							
860520	948	860527	930	1.151	1.500	4.500	4.500	20.000	20.000	96.36
860527	930	860603	945	4.384	7.900	3.900	4.100	66.000	36.000	80.86
860603	945	860610	938	2.170	2.600	4.100	4.100	35.000	47.000	98.03
860610	938	860617	935	1.594	2.500	4.200	4.100	31.000	33.000	91.27
860617	935	860624	1026	3.853	4.800	3.900	3.900	62.000	62.000	
860624	1026	860701	1005	3.543	6.100	3.900	3.900	68,000	69.000	
860701	1005	860708	945	. 797	1.000	4.600	4.500	14.000	15.000	92.00
860708	945	860715	1000	2.303	3.700	4.000	4.000	47.000	47.000	98.38
860715	1000	860722	1025							
860722	1025	860729	1035	2.081	2.700	4.200	9.990	37.000	37.000	92.29
860729	1035	860805	1104	4.429	6.200	3.800	3.700	82.000	90.000	73.61
860805	1104	860812	1045		10.000	3.700	3.700	100.000	103.000	103.87
860812	1045	860819	1004	2.303	3.300	4.100	4.000	41.000	43.000	99.01
860819	1004	860826	1010	1.063	1.100	4.400	4.300	18,000	18.000	101.5
860826	1010	860902	1030	3.809	5.900	3.800	3.800	73.000	76.000	79.72
860902	1030	860909	1036	4.207	7.000	3.700	3.700	84.000	85.000	123.52
860909	1036	860916	1015	4.340	6.400	3.800	3.800	72.000	77.000	
860916	1015	860923	1035		7.700	3.700	3.700	98.000	104.000	87.17
860923	1035	860930	1015	2.790	4.200	4.000	4.000	48.000	48.000	135.41
860930	1015	861007	1030	2.923	2.800	4.100	4.000	42.000	43.000	99.53
361007	1030	861014	946	.753	1,100	4.500	4.400	16,000	16,000	77.15
361014	946	861021	939							
361021	939	861028	740	1.461	1.500	4.400	4.200	23.000	31.000	196.23
361028	740	861104	655							
361104	655	861111	1045	1.151	1.400	4.500	4.300	18.000	22.000	103.37
361111	1045	861118	945	.266	.700	5,000	4.600	8.000	9.000	78.31
861118	945	861125	950	1.107	.700	4.800	4.500	11.000	12.000	81.92
861125	950	861202	1015	.310	.600	5,200	4.700	5.000	5.000	105.81
861202	1015	861209	1150	. 576	.800	5.100	4.500	9.000	13.000	65.77
861209	1150	861216	930	2.701	2.900	4.300	4.000	36,000	41.000	33.06
861216	930	861223	950	. 930	1.200	4.500	4.400	15,000	20.000	93.08

Table B-7.-- Chemical data for Sampler V-7

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent indicates missing data.]

Date On	Time On	Date Off	Time Off	Sample Weight	[Ca++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1 ⁻]
860114	915	860121	918	855.8	0.010	0.020	0.240	0.020	0.073	1.300
860121	918	860128	945	5720.6	.010	.030	.240	. 020	.049	.440
860128	945	860204	919	728.5	. 000	.000	.310	.050	.376	. 510
860204	919	860211	945	1868.4	. 160	. 030	. 230	.010	.036	.210
860211	945	860218	918	1101	.100	.040	. 230	.010	.255	. 380
860218	918	860225	905	2108.2	.060	.040	. 110	.010	. 134	.230
860225	905	860304	733	0						
660304	733	860311	844	263.7	.600	.130	. 620	. 110	1.336	1.100
860311	844	860318	631	3558.3	.040	.030	.140	.030	.134	.370
860318	831	860325	850	199.9	.980	. 260	1.100	.140	1.105	1.800
860325	850	860401	935	94.5	1.000		. 490	.090	1.457	.760
860401	935	860408	858	1026.1	. 320	. 120	. 4 9 0	.050	. 571	1.100
860408	858	860415	902	0						
860415	902	860422	858	4054	.050	.040	.270	.040	. 425	. 330
860422	858	860429	914	1813.1	. 120	.070	.130	.040	. 559	.290
860429	914	860506	909	672	.410	.070	.090	.090	. 984	. 400
860506	808	860513	858	510	.430	.060	.110	.080	. 862	. 400
860513	858	860520	906	0						
860520	906	860527	912	2069	.070	.080	. 500	.020	. 194	
860527	912	860603	905	188.7				•		
860603	905	860610	904	5484.6	. 580		. 250	.340	1.821	. 310
860610	904	860617	900	2922.5	.140		.040	.010	. 194	.160
860617	900	860624	923	297.5	.330	.030	.010	.040	. 546	.260
860624	923	860701	915	1050.1	.240	.050	.050	.030	.692	. 300
860701	915	860708	914	2652	.100	.020	.100	. 020	.097	.170
860708	914	860715	912	3418.8	. 020	.030	.030	. 080	.219	.240
860715	912	860722	906	0						
860722	906	860729	910	3804.7	.090	.030	.060	.030	. 206	.200
860729	910	860805	900	3792.9	.090	.030	.070	.050	.376	. 260
860805	900	860812	847	182.3	.180	.040	.130	.180	.680	.400
860812	847	860819	923	715.9	.010		.010	.160	. 134	.210
860819	923	860826	912	1545.5	.010	.020	.020	. 160	.049	.120
860826	912	860902	931	216.1	.160	.070	.670	. 320	.376	. 400
860902	931	860909	914	742.7	. 190	.060		.160	.753	.600
860909	914	860916	912	254.5	. 200	.040	.190	.100	.971	. 320
860916	912	860923	949	684.6	. 190	.050	. 190	. 030	1.093	. 400
860923	949	860930	921	610.8	.170	.050	. 120	.020	.389	.310
860930	921	861007	915	1746.7	.100	.030	.140	. 020	. 304	. 230
861007	915	861014	918	827.9	.070	.030	. 120	.010	.085	. 150
861014	918	861021	911	0				_		
861021	911	861028	620	2236	. 050	.030	.100	. 020	. 194	.250
861028	620	861104	620	0						
861104	620	861111	838	2565	.060	.030	. 110	.010	.097	.210
861111	838	861118	918	1267.4	.040	.010	.070	.010	.073	. 440

Table	B-7	Chemical	data	for	Sampler	V-7	(continued)
10010		onomrour	aava	***	Dampror	• •	(oomozmuou)

Date On	Time On	Date Off	Time Off	[NO3]	[S04]]	Lab pH	Field pH	Lab Conduct	Field Conduct	Collect Effic
360114	915	860121	918	1.461	1.300	4.100	4.100	37.000	36.000	88.63
60121	918	860128	945	. 531	1.000	4.600	4.600	15.000	13.000	96.73
60128	945	860204	919	4.871	3.000	4.000	4.000	53.000	54.000	98.26
60204	919	860211	945	1.771	. 800	4,400	4.300	20.000	21.000	90.30
60211	945	860218	918	2.569	3.000	4.000	4.000	42.000	42.000	88.69
60218	918	860225	905	1.329	2.300	4.200	4.200	31.000	28,000	94.78
60225	905	860304	733							
60304	733	860311	844	5.757	5.800	3.900	3.900	74.000	67.000	95.59
860311	844	860318	831	1.196	2.000	4.300	4.200	26.000	27.000	95.54
60318	831	860325	850	5.757	7.500	4.000	4.000	72.000	66.000	72.46
60325	850	860401	935	4.871	5,600	3.800	3.800	114.000	89.000	78.30
60401	935	860408	858	5.757	6.200	3.800	3.800	85,000	90.000	114.44
60408	858	860415	902				-		-	
60415	902	860422	858	1.639	4.100	4.100	4.100	42.000	44.000	99,21
60422	858	860429	914	3.499	4.700	4.000	4.000	52.000	55.000	89.88
60429	914	860506	909	6,643	7.300	3,800 .	3.800	90.000	93.000	99,93
60506	909	860513	858	4.871	7.600	3.700	3.800	93.000	86.000	98,60
60513	858	860520	906							
60520	906	860527	912	1.683	2.200	4.300	4.300	29.000	29.000	97,56
60527	912	860603	905							45.60
60603	905	860610	904	2.967	4.100	4.200	4.700	24.000	2 1.000	90.88
60610	904	860617	900	1.771	2.700	4,100	4.200	34.000	26.000	99.12
60617	900	860624	923	6.200	5.200	3.800	3.800	75.000	74.000	90.81
60624	923	860701	915	5.314	7.900	3.700	3.700	91.000	91.000	101.50
60701	915	860708	914	. 930	1.200	4.500	4.400	17.000	18.000	96.73
60708	914	880715	912	2.303	3.700	4.000	4.000	47.000	47.000	98.16
60715	912	860722	906							
60722	906	860729	910	2.081	2.700	4.200	4.100	36,000	37.000	93.90
60729	910	860805	900	4.030	5.800	3.800	3.800	75.000	80.000	98.20
60805	900	860812	847		9.900	3.700	3.700	100.000	105.000	96.12
60812	847	860819	923	2.037	2.500	4.200	4.100	34.000	35.000	101.27
80819	923	880826	912	1.107	1.300	4.400	4.400	20.000	19.000	99.59
60826	912	860902	931	2.967	5.800	4.000	4.000	54.000	57.000	96.41
60902	931	860909	914		11.000	3.600	3.800	120.000	125.000	95.72
60909	914	860916	912	5.314	7.300	3.800	3.700	82.000	86.000	98.40
60916	912	860923	949		8.000	3.600	3.700	104.000	109.000	99,26
60923	949	860930	921	2.923	4.100	3,900	3.900	50,000	49.000	98.40
60930	921	861007	915	3.410	3.400	4.000	4.000	49.000	49.000	92.94
61007	915	861014	918	.974	1.400	4.400	4.400	19.000	19.000	81.38
61014	918	861021	911						0	
61021	911	861028	620	1.993	2.000	4.300	4.200	25.000	32.000	193.56
61028	620	861104	620							
61104	620	861111	838	1.151	1.400	4.500	4.300	17.000	22.000	93.56
61111	838	861118	918	. 576	.700		4.400	17.000		00.00

•

Table B-8.-- Chemical data for Duplicate Samples from Sampler A-2

[Units for concentration for all ionic analytes, milligrams per liter; conduct, specific conductance, microsiemens per centimeter; pH, pH units; Field, determined at U.S. Military Academy; Lab, determined at U.S. Geological Survey; Collect Effic, Collection Efficiency, percent indicates missing data.]

Date On	Time On	Date Off	Time Off	Sample Weight	[C a++]	[Mg++]	[Na+]	[K+]	[NH ₄ +]	[C1]]
860114	900	860121	909	867.2	0.010	0.020	0.440	0.020	0.061	1.300
860121	909	860128	938	5882.2	.000	.000	.250	.030	.049	.450
860128	938	860204	905	755.9	.000	.000	.380	.060	.376	.560
860204	905	860211	934	1253.6	.100	.030	.450	.010	.061	. 260
860211	934	860218	910	1246.1	.100	.040	.240	.030	. 243	.390
860218	910	860225	849	3340.5	.080	.030	.080	.010	.134	.250
860225	849	860304	719	0						
860304	719	860311	831	273.1	. 580	. 130	.630	. 120	1.214	1.100
860311	831	860318	822	3313.6	.020	.030	.190	.040	.134	.360
860318	822	860325	838	254.6	.700	.190		.110	. 886	1.300
860325	838	860401	923	138.3	. 570	.160	. 220	.060	.716	. 510
860401	923	860408	849	865.8	. 290	.110	.430	.040	. 571	1.100
860408	849	860415	853	0						
860415	853	860422	847	4087.6	.020	.030	.370	.020	.401	. 320
860422	847	860429	900	1965.7	. 100	.060	. 110	.030	. 510	.260
860429	900	860506	853	694.8	.360	.070	. 100	.060	. 862	.360
860506	852	860513	846	481.4	. 430	.060	. 100	.080	.777	. 380
860513	846	860520	853	0	• • • • •	••••			••••	
860520	853	860527	905	2121.3	.040	. 060	.410	.050	.170	
860527	830	860603	853	389.5	. 930	.190	.030	.160	1.154	
860603	853	860610	912	5796.7	. 170	.050	. 120	.010	.267	. 210
860610	912	860617	912 914	2952.1	. 070	.030	.050	.010	. 182	.130
860617	914	860624	932	256.3	. 290	.040	.020	.030	. 607	. 270
860624	932	860701	925	1032.4	.010	.050	.020	.060	.729	. 300
860701	925	860708	925	2684.7	.010	. 020	.070	.010	.085	. 170
860708	925	860715	923	3320.8	. 020	.030	.050	. 120	. 206	. 240
860715	923	860722	910	0020.0	. 020	.000	.050	. 120	. 200	. 240
860722	910	860729	908	3839.3	.040	.030	.050	.040	.219	.190
860729	908	860805	912	3886.8	.070	.030	.050	.030	. 389	. 270
860805	912	860812	850	164.5	. 070	.050	.050	.030		.270
860812	850	860819	929	679.9	.020	.040	.010	110	.146	200
860812	929	860826	929 916					. 110	.049	.200
860826	929 916	860902	910	1531.5 208.8	.010	.020	.010	. 120	.049	.120
860902	934	860902	916	762.7	.050	.030	.090		.704	
860909	916	860916	918	259.5	.160	.030	.090	.130	. 874	.400
500909	910	000910	910	239.3	.100	.030	.050	.030	. 074	.230
860916	918	860923	942	652.2	.170	.050	.150	.010	1.044	.400
860923	942	860930	925	593.5	.140	.040	.070	.010	.316	. 240
860930	925	861007	921	1716.1	.100	.030	.140	.010	. 279	. 230
861007	921	861014	920	733.2	. 070	.020	.100	.010	.085	.120
861014	920	861021	913	0						
861021	913	861028	703	1040.5	.050	.030	.090	.010	. 182	. 250
861028	703	861104	610	0						
861104	610	861111	833	2554.1	.040	.030	.090	.010	.073	. 500
861111	833	861118	912	1275.7	.040	.010	.070	.010	.061	.410
861118	912	861125	916	5452.8	.040	.030	.110		.097	.210
861125	916	861202	904	1675.9	.010	.000	.080		.049	.150
861202	904	861209	1025	3356.5	. 020	.040	.360	.010	.049	.610
	-									

Table B-8 Chemical data for duplicate samples from Sampler A	-2	(continued)
--	----	-------------

Date On	Time On	Date Off	Time Off	[NO ₃ _]	[S04 ⁼]	Lab pH	Field pH	Lab Conduct	Field Conduc	Collec t Effic
860114	900	860121	909	1.329	1.300	4.100	4.100	36.000	35.000	89.81
860121	909	860128	938	.487	.900	4.600	4.500	15.000	13.000	99.46
860128	938	860204	905	4.871	3.000	4.000	4.000	54.000		101.95
B60204	905	860211	934	1.904	1.100	4.300	4.300	24.000	25,000	60.59
860211	934	860218	910	2.569	2.900	4.000	4.000	43.000		100.38
860218	910	860225	849	1.417	2.300	4.200	4.200	33.000	30.000	150.19
360225	849	860304	719							
860304	719	860311	831	5.757	5.800	3.900	3.900	74.000	70.000	98.99
860311	831	860318	822	1.151	2.000	4.300	4.300	25.000	27.000	
60318	822	860325	838	3.853	4.900	4.200	4.200	48.000	47.000	
360325	838	860401	923	2.214	3.000	4.000	3.900	72.000	58 000	114.59
360401	923	860408	849	5.757	5.600	3.800	3.800	79.000	84.000	
				5.757	5.000	3.800	3.800	/9.000	84.000	30.37
60408	849	860415	853							100 00
360415	853	860422	847	1.461	3.800	4.100	4.100	39.000		100.03
360422	847	860429	900	3.100	4.100	4.100	4.000	47.000	47.000	97.44
860429	900	860506	853	5.757	6.300	3.800	3.800	81.000	85.000	103.32
360506	852	860513	846	4.871	7.300	3.800	3.800	88.000	85.000	93.07
360513	846	860520	853							
860520	853	860527	905	1.373	1.700	4.400	4.500	23.000	23.000	100.02
60527	830	860603	853	4.163	7.300	4.000	4.000	64.000	57.000	
60603	853	860610	912	2.613	3.300	4.100	4.100	40,000	74.000	96,05
60610	912	860617	914	1.506	2.400	4.200	4.200	29.000		100.12
60617	912 914	860624	932	5.757	5.200	3.800			74.000	
							3.800	74.000		
360624 360701	932 925	860701 860708	925 925	4.871 .886	7.900 1.100	3.700 4.500	4.500	90.000 16.000	92.000 17.000	
					1.100	11000		10.000	17.000	07.00
60708	925	860715	923	2.303	3.800	4.000	4.000	47.000	44.000	95.34
360715	923	860722	910							
360722	910	860729	908	2.037	2.600	4.200	4.100	36.000	37.000	94.75
860729	908	860805	912	3.941	5.700	3.800	3.800	74.000	78.000	100.64
360805	912	860812	850							86.73
60812	850	860819	929	1.771	2.200	4.200	4.100	30.000	32.000	96.18
60819	929	860826	916	1.107	1.300	4.400	4.300	20.000	20.000	98.69
60826	916	860902	934							93.15
60902	934	860909	916		5.100	3.600	3.600	115.000	116.000	
60909	916	860916	918	4.871	6.900	3.700	3.700	77.000		100.34
60916	918	860923	942		7.400	3,600	3.700	101.000	103.000	94.56
60923	942	860930	925	2.746	3.900	4.000	4.000	47.000	48.000	
60930	942	861007	925							
61007				3.366	3.400	4.000	4.000	49.000	49.000	91.31
61014	921 920	861014 861021	920 913	.886	1.200	4.400	4.400	17.000	18.000	72.07
					.					
61021	913	861028	703	1.683	1.700	4.400	4.200	22.000	29.000	90.07
361028	703	861104	610	1	1			•• •••		
361104	610	861111	833	1.063	1.300	4.400	4.300	20.000	25.000	
61111	833	861118	912	. 531	.700	4.700	4.500	12.000		102.76
861118	912	861125	916	1.107	.700	4.700	4.500	12.000	14.000	103.35
61125	916	861202	904	. 177	.400	5.400	4.800	4.000	6.000	100.20
61202	904	861209	1025	. 576	.750	5.100	4.600	9.000		101.92

Table B-9.-- Summary of amounts of precipitation collected by each rain gage during the period 14 January 1986 to 30 December 1986 [Amounts are given in equivalent millimeters of water.]

Date on	Date off	NADP	RG-1	RG - 2	RG-6	NWS8
Jan 14	Jan 21	14.2	14.5	15.0	12.293.213.235.821.8	13.5
Jan 21	Jan 28	87.1	87.9	87.4		93.2
Jan 28	Feb 4	10.9	11.9	12.7		15.5
Feb 4	Feb 11	30.5	32.5	30.5		33.0
Feb 11	Feb 18	18.3	18.5	19.6		19.8
Feb 18	Feb 25	32.8	29.2	32.3	$31.2 \\ 0.0 \\ 4.3 \\ 55.4 \\ 9.1$	34.0
Feb 25	Mar 4	0.0	0.0	0.0		0.0
Mar 4	Mar 11	4.1	3.0	4.6		3.3
Mar 11	Mar 18	54.9	55.9	55.9		56.9
Mar 18	Mar 25	4.1	3.3	4.6		2.5
Mar 25 Apr 1 Apr 8 Apr 15 Apr 22	Apr 1 Apr 8 Apr 15 Apr 22 Apr 29	1.8 13.2 0.0 60.2 29.7	$1.8 \\ 14.2 \\ 0.0 \\ 59.9 \\ 30.2$	2.0 16.5 0.0 61.0 24.9	$1.8 \\ 15.7 \\ 0.0 \\ 72.4 \\ 34.5$	1.015.50.064.333.5
Apr 29 May 6 May 13 May 20 May 27	May 6 May 13 May 20 May 27 Jun 3	9.9 7.6 0.3 31.2 6.1	$10.2 \\ 6.9 \\ 0.0 \\ 32.3 \\ 6.1$	$10.2 \\ 7.9 \\ 0.3 \\ 32.5 \\ 5.6$	17.0 6.4 0.0 30.2 5.8	10.4 6.4 0.3 32.3 0.5
Jun 3	Jun 10	88.9	87.1	88.4	75.7	90.4
Jun 10	Jun 17	43.4	41.7	44.2	39.1	45.2
Jun 17	Jun 24	4.8	4.3	3.8	10.2	4.6
Jun 24	Jul 1	15.2	15.2	15.2	21.8	16.3
Jul 1	Jul 8	40.4	39.9	40.4	37.8	43.9
Jul 8	Jul 15	51.3	49.8	51.6	51.8	53.1
Jul 15	Jul 22	1.0	0.8	1.0	1.0	0.8
Jul 22	Jul 29	59.7	55.4	58.2	53.1	58.7
Jul 29	Aug 5	56.9	55.9	57.7	44.2	59.4
Aug 5	Aug 12	2.8	2.0	2.0	2.0	2.8
Aug 12 Aug 19 Aug 26 Sep 2 Sep 9	Aug 19 Aug 26 Sep 2 Sep 9 Sep 16	$10.4 \\ 22.9 \\ 3.3 \\ 11.4 \\ 3.8$	9.4 22.1 2.3 11.2 3.6	$10.4 \\ 24.4 \\ 3.3 \\ 11.4 \\ 3.6$	9.7 22.4 2.5 14.5 5.6	11.423.63.311.73.6
Sep 16	Sep 25	10.2	9.7	9.9	8.9	10.910.224.612.70.0
Sep 23	Sep 30	9.1	7.4	8.4	11.4	
Sep 30	Oct 7	27.7	25.7	25.4	27.9	
Oct 7	Oct 14	15.0	12.2	13.7	11.9	
Oct 14	Oct 21	0.0	0.0	0.0	0.0	
Oct 21	Oct 28	17.0	16.3	17.8	16.5	17.3
Oct 28	Nov 4	0.5	0.5	0.5	1.0	1.0
Nov 4	Nov 11	40.4	40.4	41.1	42.4	40.6
Nov 11	Nov 18	18.3	18.3	17.8	15.2	19.3
Nov 18	Nov 25	77.7	78.2	79.0	87.4	77.2
Nov 25	Dec 2	24.6	25.4	25.4	25.951.113.241.432.3	24.4
Dec 2	Dec 9	48.3	51.8	50.8		50.3
Dec 9	Dec 16	13.5	13.0	13.5		13.5
Dec 16	Dec 23	43.2	41.4	43.9		42.4
Dec 23	Dec 30	34.5	34.5	35.6		35.1

APPENDIX C: (1) Percentile Summaries of Concentrations of Selected Analytes, to Include Sample Weight for Samplers A-1 to A-3, G-4, A-5 to A-6 and V-7. (Tables C-1 to C-13)

(2) Relation between the collection week and sampling period. (Table C-14)

(3) Differences in volume-weighted-average concentrations of selected analytes between samplers. (Table C-15 to C-24)

······		Percentiles							
Sampler	Number of Samples	10	25	50	75	90			
A-1 A-2 A-3 G-4 A-5 A-6 V-7	44 44 41 44 44 44 38	205.4 254.6 267.3 130.9 212.7 293.9 199.9	596.8 652.2 596.2 300.1 623.4 672.4 510.0	1037.6 1246.1 1187.9 637.6 1032.5 1428.9 1050.1	2590.4 2721.2 2631.2 1343.8 2662.4 2522.2 2236.0	4025.4 4087.6 4121.3 3021.7 4169.9 4322.3 3804.7			

Table C-1.-- Percentile Summary of Sample Weight Data [units, grams]

Table C-2.-- Percentile Summary of Calcium Data [units, mg/liter]

		Percentiles							
Sampler	Number of Samples	10	25	50	75	90			
A-1 A-2 A-3 G-4 A-5 A-6 V-7	43 44 43 40 43 43 37	0.010 .010 .010 .010 .010 .010 .010	0.020 .020 .010 .020 .020 .020 .020 .050	0.080 .070 .070 .080 .070 .080 .100	0.220 .160 .170 .140 .170 .180 .200	0.380 .570 .650 .460 .430 .430 .430			

Table C-3.-- Percentile Summary of Magnesium Data [units, mg/liter]

			Percentiles						
Sampler	Number of Samples	10	25	50	75	90			
A-1 A-2 A-3 G-4 A-5 A-6 V-7	43 44 42 40 42 43 37	0.020 .020 .010 .010 .020 .020 .020	0.030 .030 .020 .030 .020 .030 .020 .030	0.040 .030 .040 .030 .030 .030 .030 .040	0.050 .050 .050 .050 .050 .050 .040 .060	0.110 .130 .120 .110 .110 .120 .110			

Table C-4.-- Percentile Summary of Sodium Data [units, mg/liter]

		Percentiles						
Sampler	Number of Samples	10	25	50	75	90		
A-1 A-2 A-3 G-4 A-5 A-6 V-7	43 44 43 40 42 43 37	0.010 .010 .010 .010 .010 .010 .030 .030	0.060 .060 .060 .060 .060 .070 .070	0.120 .110 .100 .100 .110 .090 .130	0.230 .220 .230 .240 .220 .290 .240	0.400 .420 .450 .390 .430 .460 .490		

	2,412 4		Percentiles						
Sampler	Number of Samples	10	25	50	75	90			
A-1 A-2 A-3 G-4 A-5 A-6 V-7	40 42 38 38 40 40 37	$\begin{array}{c} 0.010\\ .010\\ .010\\ .010\\ .010\\ .010\\ .010\\ .010\\ .010\\ \end{array}$	0.010 .010 .010 .010 .010 .010 .020	0.020 .020 .030 .020 .020 .020 .020 .030	0.050 .060 .090 .050 .070 .080 .090	0.100 .110 .100 .100 .160 .100 .160			

Table C-5.-- Percentile Summary of Potassium Data [units, mg/liter]

Table C-6.-- Percentile Summary of Ammonium Data [units, mg/liter]

		Percentiles						
Sampler	Number of Samples	10	25	50	75	90		
A-1 A-2 A-3 G-4 A-5 A-6 V-7	43 44 43 40 42 43 37	0.061 .049 .049 .061 .061 .049 .073	0.097 .085 .085 .073 .085 .085 .085 .134	0.231 .219 .255 .206 .231 .219 .304	0.656 .595 .704 .668 .571 .546 .692	0.911 .899 1.081 .886 .874 .838 1.093		

Table C-7.-- Percentile Summary of Chloride Data [units, mg/liter]

		Percentiles						
Sampler	Number of Samples	10	25	50	75	90		
A-1 A-2 A-3 G-4 A-5 A-6 V-7	42 41 40 37 39 41 36	0.130 .150 .170 .150 .160 .150 .170	0.210 .210 .230 .190 .220 .210 .230	0.270 .270 .330 .290 .320 .280 .310	0.520 .460 .420 .470 .440 .460 .400	0.940 .920 .950 .850 .900 .680 .760		

Table C-8.-- Percentile Summary of Nitrate Data [units, mg/liter]

			Percentiles						
Sampler	Number of Samples	10	25	50	75	90			
A-1 A-2 A-3 G-4 A-5 A-6 V-7	40 41 40 39 39 41 34	0.576 .576 .487 .576 .576 .576 .930	1.019 1.151 1.151 .886 1.107 1.107 1.461	2.037 1.904 1.949 1.639 1.993 2.170 2.303	3.897 4.119 4.074 3.189 3.986 3.853 4.871	4.871 5.757 5.757 4.871 4.871 4.871 5.757			

		Percentiles					
Sampler	Number of Samples	10	25	50	75	90	
A-1 A-2 A-3 G-4 A-5 A-6 V-7	43 44 43 40 43 43 37	0.800 .700 .800 .700 .800 .800 1.200	1.200 1.200 1.200 1.200 1.300 1.300 1.200 2.000	2.700 2.600 2.800 2.500 2.800 2.900 3.400	5.200 5.300 5.700 5.100 5.500 5.600 5.800	7.400 7.400 7.800 7.300 7.900 7.700 7.600	

Table C-9.-- Percentile Summary of Sulfate Data [units, mg/liter]

Table C-10.-- Percentile Summary of U.S. Geological Survey determined pH Data [units, pH Units]

		Percentiles					
Sampler	Number of Samples	10	25	50	75	90	
A-1 A-2 A-3 G-4 A-5 A-6 V-7	42 44 42 40 43 42 37	3.700 3.800 3.700 3.700 3.700 3.700 3.700 3.700 3.700	3.900 3.900 3.800 3.900 3.800 3.800 3.900 3.800	$\begin{array}{r} 4.100 \\ 4.100 \\ 4.100 \\ 4.200 \\ 4.100 \\ 4.100 \\ 4.000 \end{array}$	4.400 4.400 4.500 4.400 4.400 4.500 4.300	4.800 5.700 4.800 4.600 4.800 4.800 4.800	

Table C-11.--Percentile Summary of U.S. Military Academy
determined pH Data [units, pH Units]

		Percentiles					
Sampler	Number of Samples	10	25	50	75	90	
A-1 A-2 A-3 G-4 A-5 A-6 V-7	43 44 42 40 42 42 42 37	3.700 3.700 3.700 3.700 3.700 3.700 3.700 3.700	3.900 3.900 3.900 3.800 3.800 3.800 3.900 3.800	$\begin{array}{r} 4.100 \\ 4.100 \\ 4.100 \\ 4.100 \\ 4.100 \\ 4.100 \\ 4.000 \end{array}$	4.300 4.300 4.300 4.300 4.300 4.300 4.300 4.200	4.600 4.500 4.600 4.400 4.500 4.500 4.500 4.400	

Table C-12.-- Percentile Summary of U.S. Geological Survey Determined Specific Conductance Values by Percentiles [units, μ S/cm]

		Percentiles					
Sampler	Number of Samples	10	25	50	75	90	
A-1 A-2 A-3 G-4 A-5 A-6 V-7	43 44 43 40 43 43 37	$\begin{array}{c} 13.000\\ 10.000\\ 12.000\\ 12.000\\ 10.000\\ 10.000\\ 10.000\\ 17.000\end{array}$	$\begin{array}{c} 20.000\\ 19.000\\ 21.000\\ 18.000\\ 19.000\\ 18.000\\ 25.000\end{array}$	39.000 39.000 43.000 32.000 40.000 38.000 42.000	$\begin{array}{c} 62.000\\ 62.000\\ 75.000\\ 62.000\\ 63.000\\ 66.000\\ 75.000\\ \end{array}$	89.000 83.000 90.000 83.000 92.000 84.000 93.000	

Percentiles 10 25 50 75 90 Sampler Number of Samples $\begin{array}{c} 62.000\\ 70.000\\ 68.000\\ 61.000\\ 63.000\\ 62.000\\ 80.000 \end{array}$ 88.000 88.000 90.000 80.000 88.000 90.000 91.000 $\begin{array}{c} 13.000\\ 13.000\\ 13.000\\ 13.000\\ 13.000\\ 13.000\\ 12.000\\ 19.000\end{array}$ 21.000 23.000 21.000 19.000 20.000 20.000 26.000 $\begin{array}{r} 38.000\\ 39.000\\ 37.000\\ 36.000\\ 38.000\\ 41.000\\ 44.000\end{array}$ A-1 A-2 A-3 G-4 A-5 A-6 V-7 43 44 43 40 43 43 37

Table C-13.-- Percentile Summary of U.S. Military Academy Determined Specific Conductance Values by Percentiles [units, µS/cm]

Table C-14.-- Relation between collection week and sampling period [860114, January 14, 1986]

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Collection Week	Date On	Date Off	 	Collection Week	Date On	Date Off
22 860610 860617 47 861202 861209 23 860617 860624 48 861209 861216	· <u></u>	860114 860121 860204 860211 860218 860225 860304 860311 860318 860401 860408 8604015 860408 860405 860422 860513 860520 860527 860603 860610	860121 860128 860204 860211 860218 860225 860304 860311 860318 860325 860401 860408 860408 860415 860422 860429 860506 860513 860520 860527 860603 860610 860617		26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 445 445 445 445	860708 860715 860729 860805 860812 860819 860826 860902 860909 860909 860923 860923 860923 860923 860923 860923 861007 861014 861021 861028 861104 8611118 8611125 861202	860715 860722 860802 860805 860819 860819 860902 860909 860909 860909 860923 860923 860923 860923 861007 861014 861021 861028 861201 861125 861202 861209

Table C-15.-- Difference in the volume weighted concentrations of Calcium [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4 A-5 A-6 V-7 A-2 DUP	-0.001 0.004 0.011 -0.015* 0.002 -0.043* 0.014	0.005 0.012 -0.014 0.003 -0.042* 0.015	0.007 -0.019* -0.002 -0.047* 0.010	-0.026* -0.009 -0.054* 0.003	0.017* -0.028* 0.029*	-0.045* 0.012	0.057*

Table C-16.-- Difference in the volume weighted concentrations of Magnesium [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4 A-5 A-6 V-7 A-2 DUP	0 -0.002 0.004* -0.007* 0.004* -0.007* 0.003*	-0.002 0.004* -0.007* 0.004* -0.007* 0.003*	0.006* -0.005* 0.006* -0.005* 0.005*	-0.011* 0 -0.011* -0.001	0.011* 0 0.010*	-0.011* -0.001	0.01

Table C-17.-- Difference in the volume weighted concentrations of Potassium [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4 A-5 A-6 V-7 A-2 DUP	0 -0.016* 0.003 -0.007* 0 -0.035* -0.005*	-0.016* 0.003 -0.007* 0 -0.035* -0.005*	0.019* 0.009* 0.016* -0.019* 0.011*	-0.010* -0.003 -0.038* -0.008*	0.007* -0.028* 0.002	-0.035* -0.005*	0.030*

Table C-18.-- Difference in the volume weighted concentrations of Ammonium [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V- 7
A-2 A-3	0.002*	-0.057*		<u>,</u>			
G-4 A-5 A-6	0.010* -0.002* 0.011*	0.008* -0.004* 0.009*	0.065* 0.053* 0.066*	-0.012* 0.001	0.013*		
Ŭ-7 A-2 DUP	-0.137* 0.003*	-0.139* 0.001*	-0.082* 0.058*	-0.147* -0.007*	-0.135* 0.005*	-0.148* -0.008*	0.140

Table C-19.-- Difference in the volume weighted concentrations of Chloride [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4 A-5 A-6 V-7 A-2 DUP	-0.019* -0.028* 0.002* -0.006* 0.007* -0.025* -0.018*	-0.009* 0.021* 0.013* 0.026* -0.006* 0.001	0.030* 0.022* 0.035* 0.003* 0.010*	-0.008* 0.005* -0.027* -0.020*	0.013* -0.019* -0.012*	-0.032* -0.025*	0.007*

Table C-20.-- Difference in the volume weighted concentrations of Sodium [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

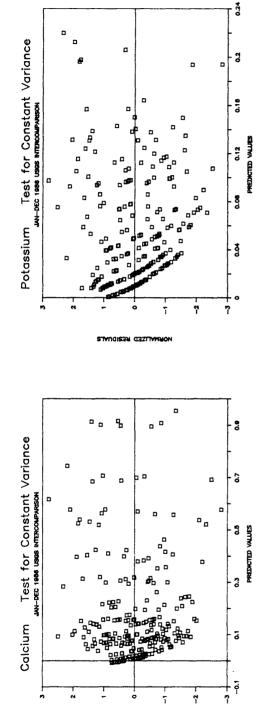
	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4 A-5 A-6 V-7 A-2 DUP	0.004 0.009* 0.014* 0.024* 0 -0.014* -0.002	0.005 0.010* 0.020* -0.004 -0.018* -0.006	0.005 0.015* -0.009* -0.023* -0.011*	0.010* -0.014* -0.028* -0.016*	-0.024* -0.038* -0.026*	-0.014* -0.002	0.012*

Table C-21.-- Difference in the volume weighted concentrations of Nitrate [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

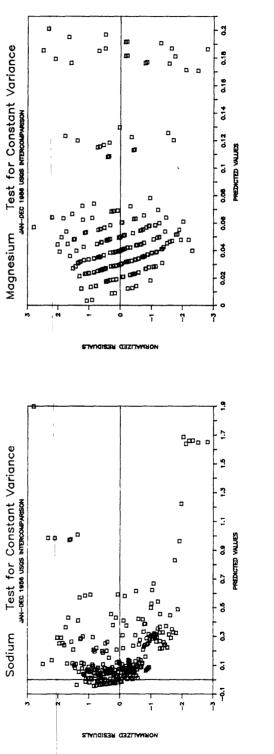
	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4	-0.039* -0.113* 0.230*	-0.074* 0.269*	0.343*	- <u> </u>			
A-5 A-6 V-7 A-2 DUP	-0.021* 0.009* -0.179* -0.046*	0.018* 0.048* -0.140* -0.007*	0.092* 0.122* -0.066* 0.067*	-0.251* -0.221* -0.409* -0.276*	0.030* -0.158* -0.025*	-0. 188 * -0.055*	0.133*

Table C-22.-- Difference in the volume weighted concentrations of Sulfate [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2	-0.02	0.101					
A-3 G-4	-0.15* 0.22*	-0.13* 0.24*	0.37*				
Ă-5	-0.03	-0.01	0.12*	-0.25*			
A-6	0.19*	0.21*	0.34*	-0.03	0.22*		
	-0.22*	-0.20*	-0.07	-0.44*	-0.19*	-0.41*	<u> </u>
A-2 DUP	0.05	0.07	0.20*	-0.17*	0.08*	-0.14*	0.2

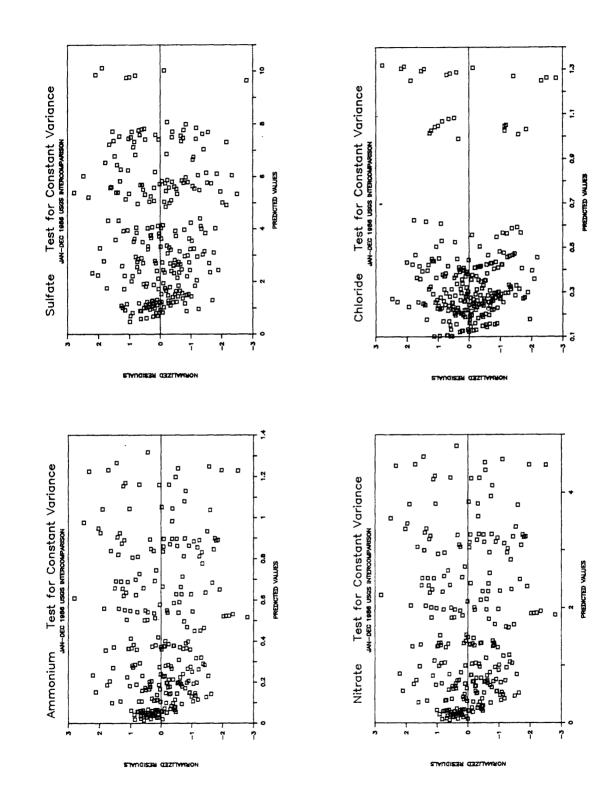

Table C-23.-- Difference in the volume weighted concentrations of Field Hydrogen Ion [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4 A-5 A-6 V-7	0.4* 1.3*	0.9*					
G-4 A-5	1.2* 1.0*	0.8* 0.6* 0.5*	-0.1* -0.3*	-0.2*			
A-6 V-7	0.9* 0.4*	0.5*	-0.4* -0.9*	-0.3* -0.8*	-0.1* -0.6*	-0.5*	
A-2 DUP	0.4*	ŏ	-0.9*	-0.8*	-0.6*	-0.5*	(

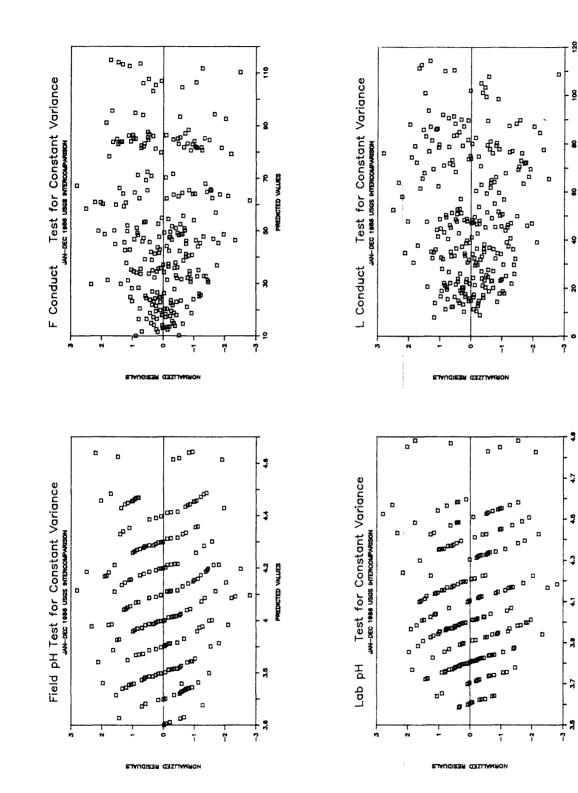

Table C-24.-- Difference in the volume weighted concentrations of Lab Hydrogen Ion [* Denotes a difference greater than or equal to the difference between A-2 and the duplicate analysis of A-2.]

	A-1	A-2	A-3	G-4	A-5	A-6	V-7
A-2 A-3 G-4 A-5 A-6 V-7 A-2 DUP	-0.1 -0.1 0.1 0.7* -0.1 0	0 1.1* 0.2* 0.8* 0 0.1	1.1* 0.2* 0.8* 0 0.1	-0.9* -0.3* -1.1* -1.0*	0.6* -0.2* -0.1	-0.8* -0.7*	0.1

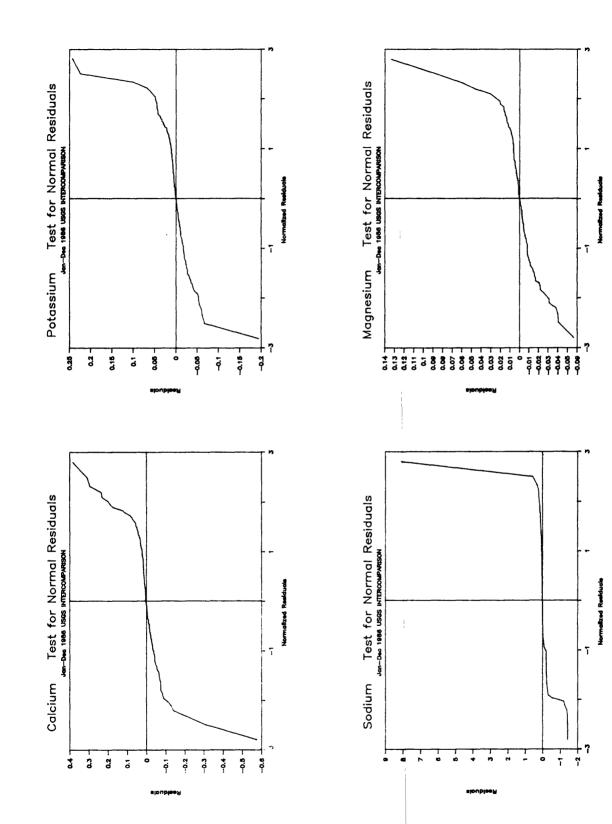
APPENDIX D: Graphs of normalized residuals as a function of predicted concentrations of analytes; shows the constancy of variance of residuals for samplers A-1 to A-6; January 1986 to December 1986.

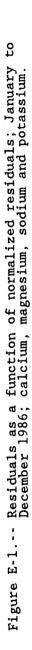


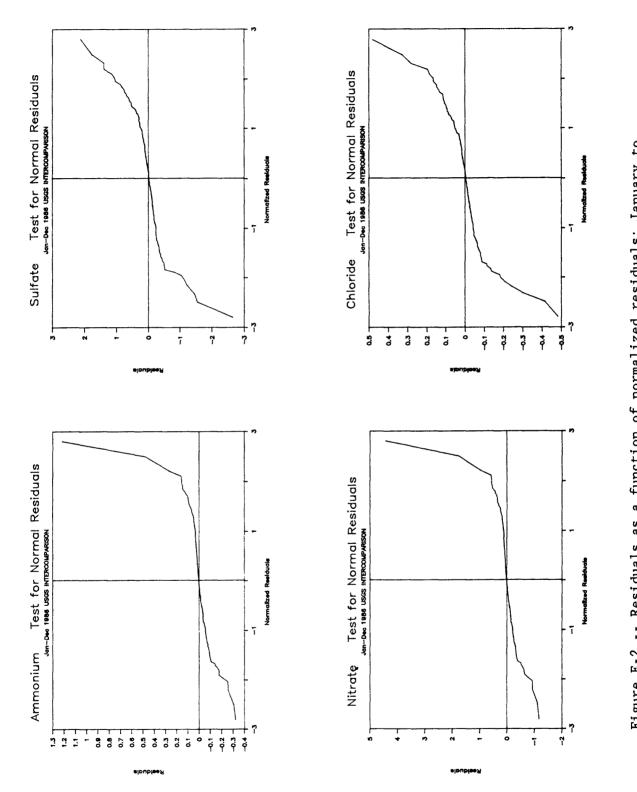

NORMALIZED RESIDUALS



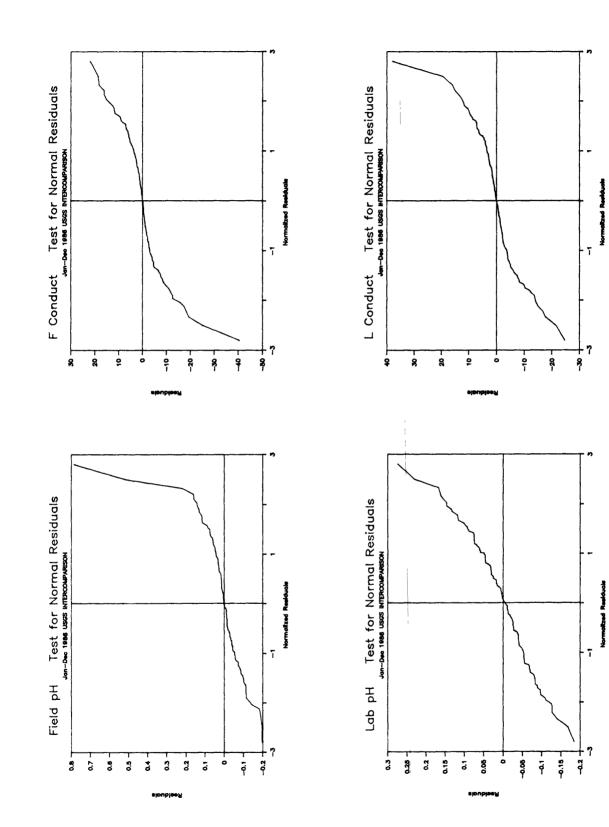
80

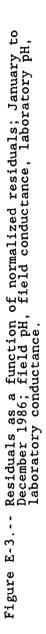



PREDICTED VALUES


PREDICTED VALUES

82


APPENDIX E: Graphs of residuals as a function of normalized residuals; shows the constancy of variance of residuals for samplers A-1 to A-6; January 1986 to December 1986.



APPENDIX F: Pairwise differences of sum of ranks from Friedman test for detecting differences in the performance of samplers; concentration of analytes used in the statistical analysis, January 1986 to December 1986

٠

**

.

Table F-1.-- Summary of sum of rank differences indicated by Friedman test for calcium concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 37; number of columns= 7. T2= 4.526; F-value $(\alpha = 0.01)$ 3.362; F-value $(\alpha = 0.05)$ 2.372. Significant difference value= 30.96. * indicates significant difference.]

			S	amplers		
-	A-2	A-3	G-4	A-5	A-6	V-7
A-1 A-2 A-3 G-4 A-5 A-6	11.50	35.50* 24.00	4.00 15.50 39.50*	21.00 9.50 14.50 25.00	2.50 9.00 33.00* 6.50 18.50	59.50* 48.00* 24.00 63.50* 38.50* 57.00*

Table F-2.-- Summary of sum of rank differences indicated by Friedman test for chloride concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 36; number of columns= 7. T2= 5.155; F-value $(\alpha = 0.01)$ 3.380; F-value $(\alpha = 0.05)$ 2.380. Significant difference value= 31.05. * indicates significant difference.]

		Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7				
A-1 A-2 A-3 G-4 A-5 A-6	13.00	47.50* 34.50*	9.00 22.00 56.50*	31.50 18.50 16.00 40.50*	17.50 30.50 65.00* 8.50 49.00*	43.00* 30.00 4.50 52.00* 11.50 60.50*				

Table F-3.-- Summary of sum of rank differences indicated by Friedman test for conductance [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 5.267; F-value (α = 0.01) 3.344; F-value (α = 0.05) 2.364. Significant difference value= 35.315. * indicates significant difference.]

- <u></u>			S	amplers	· · · · · · · · · · · · · · · · · · ·	
	A-2	A-3	G-4	A-5	A-6	V-7
A-1 A-2 A-3 G-4 A-5 A-6	25.50	51.00* 25.50	9.00 34.50 60.00*	36.00* 10.50 15.00 45.00*	2.00 27.50 53.00* 7.00 38.00*	63.00* 37.50* 12.00 72.00* 27.00 65.00*

Table F-4.-- Summary of sum of rank differences indicated by Friedman test for pH [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 2.503; F-value (α = 0.01) 3.344; F-value (α = 0.05) 2.364. Significant difference value= 26.91. * indicates significant difference.]

<u></u>			S	amplers		
-	A-2	A-3	G-4	A-5	A-6	V- 7
A-1 A-2 G-4 A-5 A-6	3.00	4.00 7.00	26.50 29.50* 22.50	8.00 11.00 4.00 18.50	24.50 27.50* 20.50 2.00 16.50	14.50 11.50 18.50 41.00* 22.50 39.00*

Table F-5.-- Summary of sum of rank differences indicated by Friedman test for potassium concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 6.584; F-value $(\alpha = 0.01)$ 3.344; F-value $(\alpha = 0.05)$ 2.364. Significant difference value= 31.05. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V- 7			
A-1 A-2 A-3 G-4 A-5 A-6	4.00	43.50* 47.50*	11.00 15.00 32.50*	27.50 31.50* 16.00 16.50	9.50 13.50 34.00* 1.50 18.00	73.50* 77.50* 30.00 62.50* 46.00* 64.00*			

Table F-6.-- Summary of sum of rank differences indicated by Friedman test for conductance [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 39; number of columns= 7. T2= 6.386; F-value (α = 0.01) 3.344; F-value (α = 0.05) 2.364. Significant difference value= 35.60. * indicates significant difference.]

	Samplers								
-	A-2	A-3	G-4	A-5	A-6	V- 7			
A-1 A-2 A-3 G-4 A-5 A-6	13.50	53.00* 39.50*	14.00 27.50 67.00*	39.00* 25.50 14.00 53.00*	0.00 13.50 53.00* 14.00 39.00*	69.50* 56.00* 16.50 83.50* 30.50 69.50*			

Table F-7.-- Summary of sum of rank differences indicated by Friedman test for pH concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns=7. T2= 4.568; F-value (α =0.01) 3.344; F-value (α = 0.05) 2.311. Significant difference value= 29.27. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	6.00	31.00* 25.00	25.00 31.00* 56.00*	9.50 3.50 21.50 34.50*	19.50 25.50 50.50* 5.50 29.00	29.50* 23.50 1.50 54.50* 20.00 49.00*			

Table F-8.-- Summary of sum of rank differences indicated by Friedman test for magnesium concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 37; number of columns= 7. T2= 6.156; F-value $(\alpha = 0.01)$ 3.344; F-value $(\alpha = 0.05)$ 2.364. Significant difference value= 25.82. * indicates significant difference.]

	Samplers								
-	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	7.50	23.50 31.00*	26.00* 18.50 49.50*	8.00 15.50 15.50 34.00*	25.50 18.00 49.00* 0.50 33.50*	31.00* 38.50* 7.50 57.00* 23.00 56.50*			

Table F-9.-- Summary of sum of rank differences indicated by Friedman test for sodium concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 2.956; F-value $(\alpha = 0.01)$ 3.344; F-value $(\alpha = 0.05)$ 2.364. Significant difference value= 34.85. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	8.00	2.00 10.00	33.50 25.50 35.50*	0.50 8.50 1.50 34.00	19.00 11.00 21.00 14.50 19.50	33.50 41.50* 31.50 67.00* 33.00 52.50*			

Table F-10.-- Summary of sum of rank differences indicated by Friedman test for ammonium concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 3.714; F-value $(\alpha = 0.01)$ 3.344; F-value $(\alpha = 0.05)$ 2.364. Significant difference value= 35.37. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	1.50	27.00 28.50	15.50 17.00 11.50	0.00 1.50 27.00 15.50	9.00 7.50 36.00* 24.50 9.00	59.00* 60.50* 32.00 43.50* 59.00* 68.00*			

Table F-11.-- Summary of sum of rank differences indicated by Friedman test for nitrate concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 4.054; F-value $(\alpha = 0.01)$ 3.344; F-value $(\alpha = 0.05)$ 2.364. Significant difference value= 35.23. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	1.00	31.50 32.50	21.00 22.00 10.50	6.00 7.00 25.50 15.00	5.50 4.50 37.00* 26.50 11.50	63.50* 64.50* 32.00 42.50* 57.50* 69.00*			

Table F-12.-- Summary of sum of rank differences indicated by Friedman test for sulfate concentration [Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 37; number of columns= 7. T2= 10.685; F-value $(\alpha = 0.01)$ 3.362; F-value $(\alpha = 0.05)$ 2.372. Significant difference value= 32.02. * indicates significant difference.]

	Samplers								
-	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	22.50	77.50* 55.00*	1.00 23.50 78.50*	28.50 6.00 49.00* 29.50	11.50 11.00 66.00* 12.50 17.00	88.50* 66.00* 11.00 89.50* 60.00* 77.00*			

APPENDIX G: Pairwise differences of sum of ranks from Friedman test for detecting differences in the performance of samplers; deposition of analytes used in the statistical analysis, January 1986 to November 1986.

~

.

.

• .

.

Table G-1.-- Summary of sum of rank differences indicated by Friedman test for calcium ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 37; number of columns= 7. T2= 4.796; F-value (α = 0.01) 2.870; F-value α = 0.05) 2.130. Significant difference value= 30.86. * indicates significant

<u> </u>	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	11.50	35.50* 24.00	7.50 19.00 43.00*	21.00 9.50 14.50 28.50	2.50 9.00 33.00* 10.00 18.50	59.50* 48.00* 24.00 67.00* 38.50* 57.00*			

Table G-2.-- Summary of sum of rank differences indicated by Friedman test for chloride ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 37; number of columns= 7. T2= 5.080 F-value (α = 0.01) 2.870; F-value (α = 0.05) 2.130. Significant difference value= 32.52. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	9.50	44.00* 34.50*	12.50 22.00 56.50*	28.00 18.50 16.00 40.50*	21.00 30.50 65.00* 8.50 49.00*	39.50* 30.00 4.50 52.00* 11.50 60.50*			

Table G-3.-- Summary of sum of rank differences indicated by Friedman test for hydrogen ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 2.357 F-value (α = 0.01) 2.870; F-value (α = 0.05) 2.130. Significant difference value= 30.86. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	2.50	4.50 7.00	28.50* 31.00* 24.00	8.00 10.50 3.50 20.50	21.00 23.50 16.50 7.50 13.00	14.00 11.50 18.50 42.50* 22.00 35.00*			

Table G-4.-- Summary of sum of rank differences indicated by Friedman test for potassium ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 39; number of columns= 7. T2= 6.480; F-value (α = 0.01) 2.870; F+value (α = 0.05) 2.130. Significant difference value= 31.29. * indicates significant difference.]

	Samplers								
	A-2	A-3	G-4	A-5	A-6	V-7			
A-1 A-2 A-3 G-4 A-5 A-6	3.00	44.00* 47.00*	13.50 16.50 30.50	34.00* 37.00* 10.00 20.50	9.50 12.50 34.50* 4.00 24.50	73.50* 76.50* 29.50 60.00* 39.50* 64.00*			

Table G-5.-- Summary of sum of rank differences indicated by Friedman test for hydrogen ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 4.568; F-value (α = 0.01) 2.870; F-value (α = 0.05) 2.130. Significant difference value= 30.86. * indicates significant difference.]

	Samplers						
	A-2	A-3	G-4	A-5	A-6	V-7	
A-1 A-2 A-3 G-4 A-5 A-6	6.00	31.00* 25.00	25.00 31.00* 56.00*	9.50 3.50 21.50 34.50*	29.50* 23.50 1.50 54.50* 20.00	19.50 25.50 50.50* 5.50 29.00 49.00*	

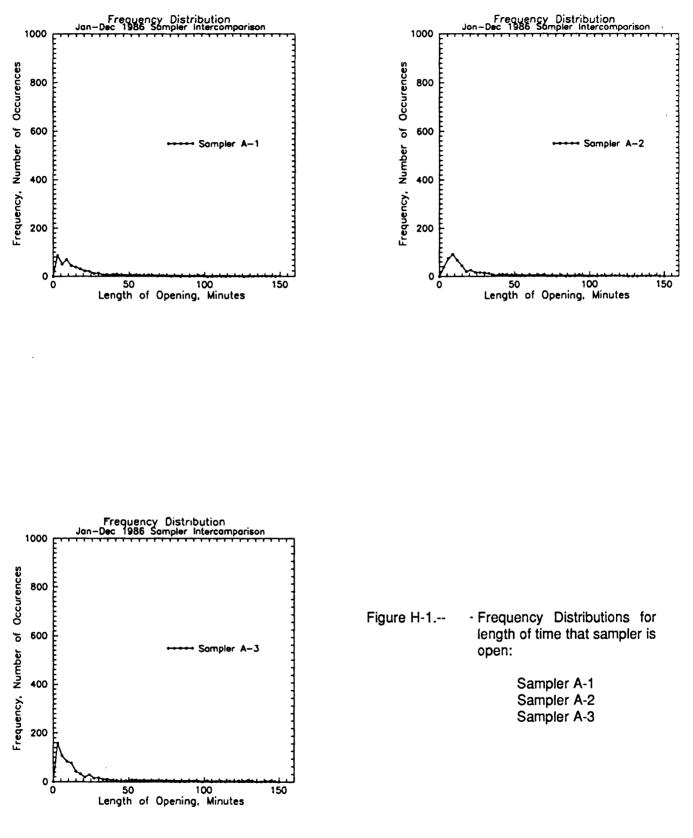
Table G-6.-- Summary of sum of rank differences indicated by Friedman test for sodium ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns = 7. T2= 2.879; F-value (α = 0.01) 2.870; F-value (α = 0.05) 2.130. Significant difference value= 34.88. * indicates significant difference.]

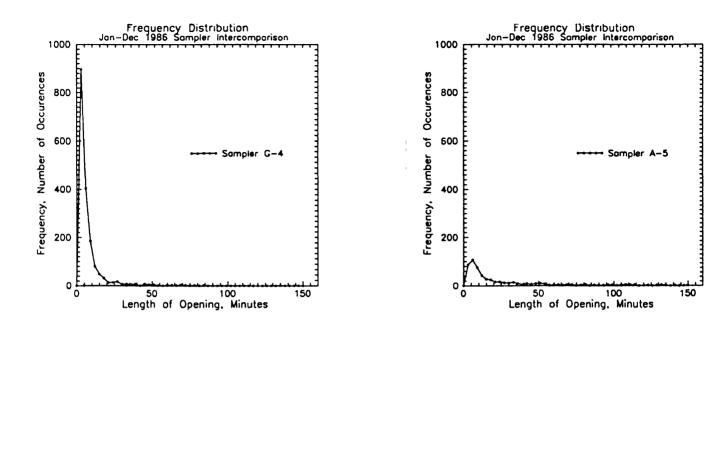
	Samplers						
	A-2	A-3	G-4	A-5	A-6	V-7	
A-1 A-2 A-3 G-4 A-5 A-6	8.00	1.00 9.00	33.50 25.50 34.50	2.50 10.50 1.50 36.00*	19.0011.0020.0014.5021.50	32.50 40.50 31.50 66.00 30.00 51.50	

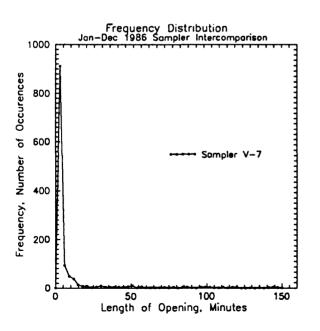
Table G-7.-- Summary of sum of rank differences indicated by Friedman test for ammonium ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 3.714; F-value (α = 0.01) 2.870; F-value (α = 0.05) 2.130. Significant difference value= 35.37. * indicates significant difference.]

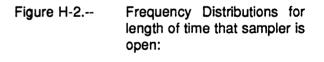
	Samplers						
	A-2	A-3	G-4	A-5	A-6	V- 7	
A-1 A-2 A-3 G-4 A-5 A-6	1.50	27.00 28.50	15.50 17.00 11.50	0.00 1.50 27.00 15.50	59.00* 60.50* 32.00 43.50* 59.00*	9.00 7.50 36.00* 24.50 9.00 68.00*	

Table G-8.-- Summary of sum of rank differences indicated by Friedman test for nitrate ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows= 38; number of columns= 7. T2= 4.054; F-value (α = 0.01) 2.870; F-value (α = 0.05) 2.130. Significant difference value= 35.23. * indicates significant difference.]

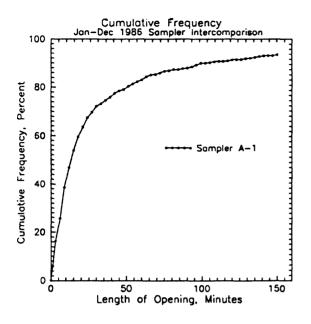

	Samplers						
	A-2	A-3	G-4	A-5	A-6	V-7	
A-1 A-2 A-3 G-4 A-5 A-6	1.00	31.50 32.50	21.00 22.00 10.50	6.00 7.00 25.50 15.00	5.50 4.50 37.00* 26.50 11.50	63.50* 64.50* 32.00 42.50* 57.50* 69.00*	

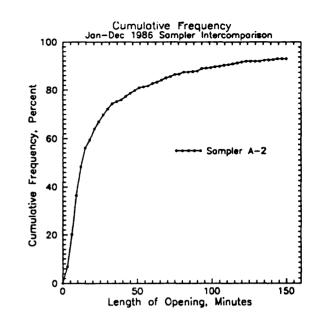

Table G-9.-- Summary of sum of rank differences indicated by Friedman test for sulfate ion deposition [Deposition calculated as the product of concentration and amount of precipitation in rain gage. Data collected from 14 January 1986 to 11 November 1986. All samplers included in analysis. Number of rows 37; number of columns= 7. T2= 11.17; F-value $(\alpha = 0.01)$ 2.870; F-value $(\alpha = 0.05)$ 2.130. Significant difference value= 31.88. * indicates significant difference.]

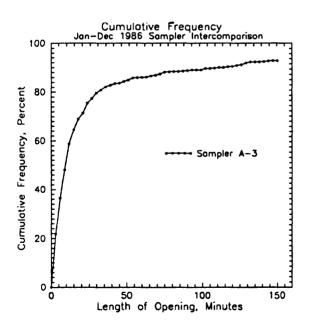

	Samplers						
	A-2	A-3	G-4	A-5	A-6	V -7	
A-1 A-2 A-3 G-4 A-5 A-6	22.00	77.50* 55.50*	2.00 24.00 79.50*	28.50 6.50 49.00* 30.50	11.50 10.50 66.00* 13.50 17.00	90.00* 68.00* 12.50 92.00* 61.50* 78.50*	

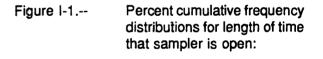

APPENDIX H: Frequency Distribution of lengths of time that sampler is open

J

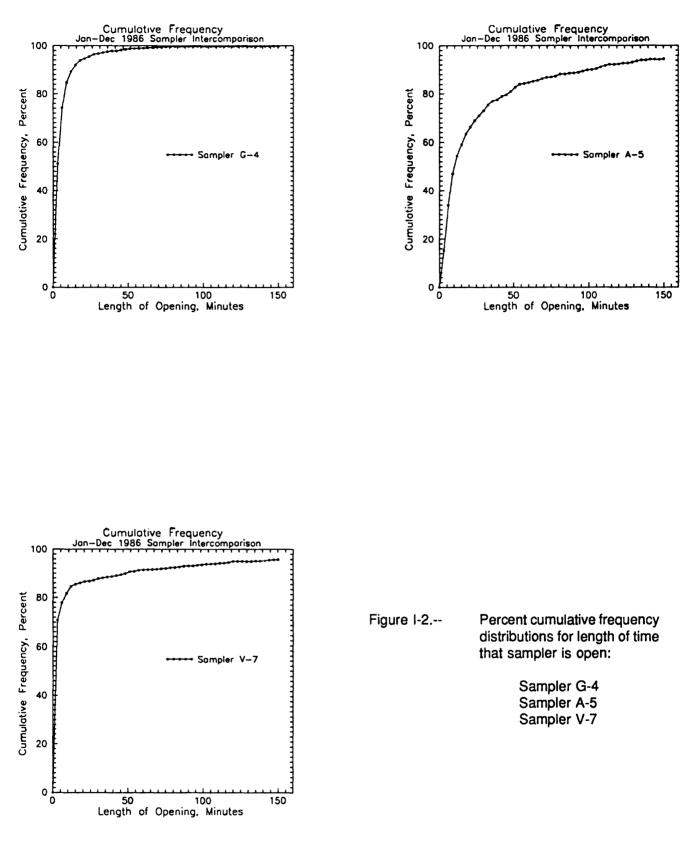







Sampler G-4 Sampler A-5 Sampler V-7

APPENDIX I: Cumulative frequency distribution for length of time that sampler is open.



Sampler A-1 Sampler A-2 Sampler A-3

