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ABSTPACT

Bifarcation theory is used to asnalyze the nonlinear dynamic stabilicy
characteristics of un aircraft subject to single-degree-of-frecdem, a.3.,
pitching-or rolling-moricn perturbations about its trirmed steady flight,

Tre requisite meoent of the aerodynamic forces in the equations of motion

is shown to be representible in a form equivalent to the respense te finite—
amplitude oscillations, It is shown how this information can bz dedused

from the case of infinitesimal-amplitude cscillaticns. The bifurcatien theoxy
analysis reveals that when the bifurcation parameter, e¢.z., the angle of
attack, is increased bevend a critical value ar which the serodynanic damping
vanishes, new solutions representing finite~acplitude pericdic noticn
bifurcate frea the previously stable stecay wmotion. The sign of 4 cimple

eritericn, cast in terus of aerodynazic proepertiec, determines whether the

subscritieal, implying either that exclhizages of stabilicty between steady nd
periodic rotien are accompanied by hysteresis phenomera, or thar puterrialiv
large aperiodic departures from steady moticn may develop. On the other hand,

for the rolling wotion of 4 slender delta wing ra subsonic flighr (wing cocl)

the bifurcation is tound to be supercritical. This and the predicted amplitude

of the blfurcation periodic motion are in good agreeuent with experimerts.
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$1. TINTRODUCTION

Problems of aerodynamic stability of aircraft flying at swall angles
of attack have been studied extensively., With incrzesing ingles of attack the
problens become more cosplicated und typically inveolve nonlinear phenoacna such
as coupling betwcen modes, amplitude and frequency effects, and hysteres.s.

The need for investigating stability characteristics at high engles of attach
was cicarly desonstrated by Orlik-Ruckemann {1} in his gurvey paper whach

largely deals with experiments,

On the thcoretical side, the greater part of zn extensive body of
work is based on tune linearized theory, in uvhich the unsteady flov is regarded
as a small perturbation of scme known steady flow (pessibly nonlincezr in, e.z.,
the angle of attack) that prevails undar cerrain flight conditions, The question
of the validity and limitations of such a lincerized perturtation theory is of
{undeoantal importance and yet Pags been investigeted oaly rarely. Cne may erges
that in principle, it should be peossible to sivance to hirher ord hich v awng
of zztack a by a series of liucar perturbations, tince che solution wuf eac’s
step should include a sveady=-state part which, when added te the previcss
steady~state solution, would provide the starting point £ v
the naat perturbotion, Tric may well be true provided that at eich ated the
stozdy xotion is stable both stacically ana dyncoically, and that the actual
disturbances, e.g., the amplicude of oscrllaricn, ramain small., Hewever, when
the zagle of attack exceeds a certain critical value a_. at whi

~
-

clt tne sreclv
motion is no longer stable, the linear theory predicts an exponential giowth of
the perturbation with time and, therafore, must :t:clf cecsia to be vaisd atier

finite time. The meticn of the aircraft under those cond-tione ~on only ba

studied using a nonlinear theory.
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In this paper we investigate the stability characteristics of an
aircraft trimacd to a wa2sn angle of attack a near a,. ot vhich the steady
notion beccmes unstable. Padfield (2] studied a similar problem, uaing the
method of multiple scales, which is valid only for weakly non-lincsr oscilla-
tions. We shall study the problem by meanc of bifurcation theory. This will
allow us to draw on recent machematical developaents (e.g., [31) that are
particularly well suited co investipating fundimental quastions in linecar and
nonlinear stability theory. A numerical scheme baced on bifurcation theery
was proposed carlier [4] for analyzing aircraft dynamic stability in a rather
general framework. More recent work by Guichetenu [5) demonstrates the cou=
siderable potential of bifurcation theory in flight dynamice stuldies, particu-
lariy toward sstablishing a nethed for the design of f£light contvol systems to
ensurc gprotection against loss of control. On the cther hand, while 2ckmowlcdg-
irg the importence of the acredynamic wmodel in determining the aircraft stadilivy
characteristics, neither of these vorks coataing an zdeguate assessmeni ol tha
podel requirements. The treatment of unsteady flew effects, in particular,

receives no attention, In contrast, we shail focus on just this aspecct of the

problea at the cxpense of narrowing the scope of the motion analysis.

We shall restrict ocurselves to the simpler case of singie-~degree~of
freadom motions, e.g., pitching or relling, of an aivcraft about its tvimmed
flight condition, This will enable us to analyze motions for which roxpliete
aerodynanic informatior is available, for certain shapes, in the form of ewact
analytical or murericai solutions {6-12] of tho uvnsteady inviscid flow equationms,
or cupirically from exreriments [13]. Ia this way it witl b2 possible to
establish a form vevealing a precise analytical relationship between the basis

aerodynanic coefficients and the characteristics of the potion,
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Specifically we shall consider the followirg three Lypes of oscillatory

3

moticns:
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A. Pitching supersonic/hypersonic aerofoils in rectilinear flight (Fig. 1);

H

B. Flap oscillations in transonic flight (Fig. 2);

C. Wing rock of slender delta wings in subsunic f{light (Fig. 3).
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5.

§2. HATHEMATICAL FOPMULATION

Let the aircraft be in level, steady fiight up until time t=0

when it is pertirbed from its trim position., During the subsequent wotion

the center of gravity continues to follow z veetilinear path at constant

velocity V_ . For a single~degree-of-freedom oscillatory motion, the

equation of motion is

2
195 = 6(e52) (1)

de

where the angular displacement £(t) is the instantaneous pitch zngle in

example A , flap deflection angle in erample B and roll angle in example

C, @ 1is che respective poment of inercia, while G(z} is the correspending

instantaneous menent of the zercdynamic forces.

v £g. ’ i eney sents e parometers d=2f£iniag
In Eg. (1), 1 1in general represents a set of parameters é=fining

the steady Zlight at the tram condition, e.g., £light Mach number o, ratio
33

of specific heats y , angle of attack a , ete. In this paper we shall

consider XA ro be the angle of attaeck o inp exarples & and C , and the

mean flap daflecticen angle 5m in example 3 . In ocher worde, all the other

defining parameters will be held fixod when considering the consequence of

varying X on the aircrafrt motion characterictics. Wz assume that tne mcement

required to tria the zircraft at % has been accounted for, so chat G(rj;i}

is a measure of the perturbation moment only.

It is clear thit the instantcnesus motion state, &£(t) and E(2) ,

and the instantaneous moment G(t) at time &  are a result of the interaction

of aircraft motion and the ua:+cady acrodynamic forces frod time zere to time t .
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1

Consequently, the instantaneous moment G{t) depands not only on the
instantanceus motion state, £{t) and £(t) , but also on the past motion
history froem time zero to t . This is to say rthat G(t) is a functional

cf E(tl) » (0st.st) as chcwn by Tobak et. al. [L4] . Thus

1

t
G(t) = G £(t1) (2)

t1°0

Such a functional, which includzs 2ll time-history effects, is however rarely

known.

1

equivalent te a functicn of an infinice get of varizbles, i.c.

Now for wotions for which £(t.) i analytic, the functioual is

e
Git) = G r’,’(tl);
:l-e_l
. . di‘! (t)
= G(E(D), £(6), (e, ..., LRI (3)

(439

Foir most vroblems encountered ia the study of the dynamic stability of aa
aircraft, the motion iz slow although its amplitude may Le finite or large.

Under these condirions £{&) , &(¢), ... in Eq. (3) mnay be neglected and,

as a first approximation, we get

G(2) = G(E(r),E(e)) (4)
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We further assuae thar G is an analytic function of § and £ .

Expanding (4) aa Taylor series and neglecting terms O(EZ) and Pighar for

slow motions we get, after re~introducing the porameter XA,

E(e)e
G(e31) = GulE(E)31) + —— Gy (£(E)50) (s)

o

where { 1is a characteristic length and
GO(O;A) ~ 0 (e)

as required at the trim conditicn., We note that the form of the instantaneous
moment G(r;)) in Eq. (5) is coasiatent with the exact analytic solutioa for
the pitching moment in example A [Ref, 10], the numerical solution for the
hinge momenr in exzmple B [Ref, 12] and the experimentally derived expirvical

formula for the rolling newent in example C [Ref. 13].

Sumaing up, the single~degree-cf-freedom motions congidered in tla.

paper will be based on the following mathematical problem

ae £2 .

1-—'2- o GO(C;)\) + TGI(E;X) 2 G(E;EsA) (7a)
de ©

£(0) = £, (76
80 =g, (7¢)

The functions Go(s;k) and Gl(E;A) are generally nenlinear in ¢ and have to

be deteramined from the study of unsteady aerodynamics, eitber theoretically
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or experimentally. Evidently G0 is relatad to the restoring moment and

G, to the danping wmomeat.

1

In many situations, it is known that whea the parameter )X reachcs
some critical value xcr + the gerodynamic damping G1 vanighes and the
steady flight at the trim condition th loses ite stability. The main
purpose of this paper is to use Hopf bifurcation theory to determine the motion

characteristics of the aircraft whese trim condition iz near or beyond kcr .
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§3. BIIURCATION THEORY

We introduce the dimensicaless time T “ thli , where £ 1ic a
characteristic length, equal to the cliord length of the aerofcil in example
A, the chord length of the ilap in example B and the chord length of the ving

in example C. Hereafter we usc (') to denote d/dr . We furtner let

F(E,850) = G(E, 80 /(1 v, 210D
= Fol§;2) + éPl(C;:\) (8)
then £q. (7a) may be written
Y (9a)
& o pee i [e8

An expansion of F(E,E;1) in a Taylor series in £ and Foand

a change of notation U o= g, u, = £ vield for Eq. (9)

n

Gy w . +C,,  (Mu,un
by A Mup o+ By Duguy o+ € (Muguuy

+o(|glt) , (G =1,2) (10)
where
0 1
A= (11a)
~s(2x) -D(X)
S(\) = -Fo'(o;x) , D) = -Fl(o;x) (11%)
2
3., =0 , B, &o -t (11c)

o
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(Although Eq. (9) has been derived on the assumption of slow oscillations,
our subgsequent bifurcation analysis of (9) will hold for gemeral F(E,E;k) .

i.e., 25 if no restriction had becn placed on the magnitude of £ .)

In Eq. (il1) the tensors B and C represernt the effects of finite
amplitude to the second and third order. Ve note that the following syumetyy

properties hold:

szk = Bij (122}
Coske ™ Cziox ™ Caxey ™ Cagje © Couns (12b)

On the tasis of Eq. (10), we shall study ncow the linear and nonlipear

stability of the motion.

3.1 LINEAR STABTLITY THEORY.

The stability of the steady motion at the trim condition A to
infinitesimal disturbances is determined by the nature of the cigenvalucs of

thz matrix A. They are

n () = Lo A20) - 4500 ) (13)

Case I: S(A) < 0 . In this case n 2 G, n, < 0 . The steoady

motion at this gondition X 1is =zlways unstable.

——— e e I - — - - -
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Case II: S5()) > 0,
IIa: D(A) < 0. In this case Re(nl) > 0 and the steady
wotion at ). 1is unstable.
IIb: C(x) > 0 . 1In this casc Re(nl) < 0 and zhe steady

e
-

motion at X is stable.

Thus, only in Case IIb, when both stiffnesc derivative S(X) and
damping derivative D()) are positive, is the steady mction at the trim
cadition A stable to infinitesimal disturbances., In fact, stability theory
[3] can be used to show that stability of the steady motion in this case is

assured if and only if the disturbance ig sufficiently cmall,

In all ceses in which the linear theory preai:ts growth of the
disturbance amplitude, the grovth predicted is of exponesatial Lera and
hence the linear theory muct caase te be wvalid after coze finite tine ohesn
the amplitude is no lenger small. Thus, what eventually happens o 2 mot’on
for which lincar stability theory predicts a growth of disturbances cannot
be deternmined from the linesr theory itself. 1Instead, the full nonlinear
inertial equations of motion, or a suiiable zpproximation of them, such as
(10), must be adopted to deternine tne ultimate state of the motion, OF
particzular interest is the dynamic stability boundary A-:Acr , where

S(\Cr\ >0 and, D(kcr) = 0 . The stability characteristics near this

boundary will be studiesd presently.

3.2 HOPF BIFURCATION THEORY

At the dynamic stability boundary A=} __ , w. have S()Lr) >0

L
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hence

= i = i I
ni(kcr) _1/S(Acri xiog (1

The existence of purely imaginary eigenvalues of the matrix A at A‘lkcr

is the charactevistic sign of a Hopf bifurcation [3,15), signaling a changeover
from stable steady motion to periodic metion. On crossing Axr*cr » the cteady
motion that had been stable for A < Xcr will become unstable to distirbances,
resuiting (after a trancient motion has died zway) in the existence ¢f a new
motion, whicn (if it is stable) will be periodic. In the vininitv of )= Acr’
the circular frequency of the periovdic motion will be rearly equal to Wy

We coll the ncir solution of the equations of motion a pifurcation sviutinrn,

In this section we shall determine its character and a cryirerica for its

gtabilicy.

For X slightly larger tnan Acr , the eigenvuiuves of the ratriz A&

are
1 (3 -«
n=-3 D(A) ¢ 12(2) (i3
where
a0 = S0 - DA /4 (16)
We shall assume that
1] A - -
D (}\cr" <0 (i7)
vhich is tle usual case in applications. (The case D'(lcr) ~ 0 con be
-
created in cxacrly the same way.) The normalized etgenvector z(R)
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asgociated with the eigenvalue n(}) is
Cl(X) 1
g, () 2/ (N tn(x)
whereas the adjoint eipenvector T*(A) with cigenvalue n(x) , which is
the coxplex conjugate of n(d\) , is
g3 n(x) + D(N)
i
Tr() = S .t (19)
£3(%) 2720 1
A. Mopf Bifurcation., The bifurcation sclutica u(z,\) wmay be
wviitten as
U e a(g + (0T (o)
Yollowing Isoss and Joseph ([3), p. 125), we get
R
am ebl(s) + cz‘oz(s) + 63b3(s) - 0{c™)
2 by, i .
s = [uo e, + 0(e)js (21)
2 4
k-kcr+ck2+0(c) ;

where, for brevity, we cmit the lengthy solution forms Jor -, bn’ Uy s

and kz (cf. [11]). The solution is pericdic in T wi h airculor frequency

equal to wq + C2u2 + O(CA).
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B, Stability of the Bifurcation Periodic Solution. Aczcording to
Floquet thevry [3], the stability of the bifurcation periedic soluticn (21)

is determined by the sign of an index u . To 0(56), u has the form
W D' el + 0(ch (22)
er’ 2

and the bdifurcation periodic goluticn ie steble if u < 0 , unstable if

uw >0, Sinec we have assumed D'(kcr) < 0, stability thus depends ecn the
sign of \2 , Wwith \2 ~ 0 denoting stability and Xz < 0 instabilicy. It
remains to cast 12 in more recognizable terms. After censiderable

manipulation, we get

. .
L. Rk, 2 a%r] alr 2 [ 2% 2 3%) -
¥ o8 e — Uy +uw Ty, —— (222
4@3 au2 o 3u2 aulauz 0 s 0 3u3 -
) 1 2 1°%2 2) _{Gn0
A=)
er

in terms of F(ul.uzgk) . Trom (8) we see that the function 7 1is directly
related to the moment C'E,E;A) acting on the aircraft which is perforuing
a finize-amplitude oscillation € around the trim condition X ., Equation
(23) demonstrates that the stability of the periodic wction near the dynanic
stability boundaxy Acr is detzrorinad by the behavior ¢f the nerodynamic

responso G(E,é;k) in that vicinity.

With the asswnption of slow oscillations undcr which the form of

R .2 . .
(5) was derived (terms of O(£,£) neglected), we may substitute (5) with

(8) into (23) to get

2
€ rorp ot 2. e
o= 7—3 (.0 ; + wy Ty " ewp (26)
-«LJO \‘\‘
crT
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Since from (14) and (11b)

by ® /sucr) a /—ro'(o;\cr) (25)

Eq. (24) becomes, after using (8)

2 ] .
cug [‘d Fy ' (e )
Uues - — —e (26&)
A 19 L E ren )
0 *"'lex’) _{&=0
01‘.
2 ter. Y7
€ “0 d cl (c’)cr) -
T I e Bl (z61)
0 “'er’) _jE=0
Using (10) we got
e w .
0 2112 cx (26")

U= o
p3 S(Acr)

We have this established the following criterion: the bifurcation pericdic

motion is stable or unstable according to

u<0 or u>0 (273)

or alternatively, since S(kcr) > 0 , according to

() <0 or Czllz(xcr) >0 (27b)

c2112 cr)

The two possibilities are well illuctrated in the form of bifuzcation

diagrams as shown in Figs. 4a and 4b.
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In a bifurcation diagram, tha abscissa is the bifurcation parameter

A , while the ordinate is a parameter characteristic of the bifurcatien solution

alone., In our case it is ¢ , a neasure of the amplitude of the bifurcation
periodic solution. Stable solutions are indicated by solid lines, unstable
solutions by dashed lines. Thus over the range of the bifurcation parameter

A< xcr where the steady-state motion is stable, € is zero, and the stadle

steady motion irc represented along the abscigsa by a solid line. The steady

motion becomes unstable for all vaiues of X > Xcr as the dashed line slong the

abscissa indicates. Periodic solutions bifurcate from 7 = either super-

cT

crr._ically or suberitically.

When c2112(xcr) <0 heace u < 0 {iwplying Ao > 0) , the

bifurcation is called supercritical and itc characteristic form is chown in
Fig. 4a. In this case, stable pericdic solution. {colid curves in Uig. 4a)
exist for values of A > Acr « The axmplitude of the periodic solutiva at »

given value af A=-12 is proportional to ¢ , hence is vanichingly omall waen

cr

A-Xcr is small, varying essentially as (& - Xc_)i .

When C Y >0 hence u >0 (implying XA, < 0V, the

a1 er

"2
bifurcation is called subcritical and 1ts characteristic {oma is showa in

Fig. 4o. In this case, periodic solutions exast for values of X< xct v

but they are unscable (dashed curve in Fig. {b), FKhether stuble periodic
solutions do or de nof exist for X > Xcr dapends predeomirauntly on the

behavior of the dampirg Gl(z;k) for X\ > lcr « IZ po suca stable periodic

soluticns exist for A > lcr » then when \ is increased beyond Acr the

aircraft way vadergo an apericdic coticn vioese departurs frem the steady
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wotion at 1-Acr is potentially large.

S vands e,

o

In the pore likely event that stable neriodic soluticns do exist for

e
B,
)

A > X _, their amplitudes must be finite, and not infinitesimally small, even

5 r

:% for small positive values of A=d o It is likely that this brauch of stable

gg periudic solutions will join that of the unstable branch in the way illustrated

:i in Fig, 4b, In this cvent, the form of the bifurcation curve for values of

ég A< \cr helps explain the situation where the stcady~state motion could be stable

ig to sufficiently small Jdisturbances but become unstable to larger disturbances,

ﬁ% Thus, Fig. 4b suggests that for X < Acr s 80 long as disturbarces are of umall

;% enovgh amplitude to lie well below those of the unstable branch of periosdic solutions

]

=

{curve 05 in Fip. 4b), they will die out with time and the steady motion wi
’ ¥ )/

remain stebie, However, disturbances with amplitudes sefficienzly lerger tacno

:) those of the unstzble branch may zctually grow up to the ultimate sotion ue
. T > o , which will be that of tha stabic branch of pericdic solutivns (cu.ve
A

- B4 in Tig. 4b), Fina'ly, we note that if the motion does attain the suzbl.

branch of pericdic solutions {say, for ) < lcr) then hysterasis effacts will

’

o Wy
.

i anifest themselves withi further chenges in A, When » 1is increased
F"'
beyond kcr . the motien will continue to be periodic with finite amplitude
:
:‘ (point A in Fig. &4b). If X is now deccrcased below Ac » the periodic
L

i
LI
o motion will persist, even ac values of A where praeviously there had baen
-
1*‘ » I3 * - . . 3 »
i steady motion when A was being increased. Not until X Is diminizhed
- beyend a certain point {powint B in Fig. 1lb) wiil the motion return to the
b’
*
i steady-=state conditicn (point C in Fig., lb) that had bdeen 2xperienced when
H
k-, A was increasing.
3
1
)
b
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18.

§4. APPLICATIONS TO AIRCRAFT HOTIONS

In thic gection we shall apply the theory developed in §§5 2 and 3

to three different sinple-derrco-of-freedom motions of the aircraft.

4.1, PiTCHING MOTION OF SUPERSONIC/HYPERSONIC AIRFOILS

In the case of pitching oscillation (Tig. 1) of a supersonic/
hypersonic aerofoil in rectilinear flight, £(t) in Eq. (1) is the instantaneocus
pitch angle 8(t) measured from its trim conditicn, X is the mean angle of

attack a , and G 1is the pitching moment about the center of gravity. Thus
G(t;)) = qS% Cm(:; e, M, v, h) (=8)

where q ic the dynamic precsure, and § and £ are the reference avex
and length. The instantaneous pitching moment coefficient Cm is in qenersl
also a function of the angle of attzck, the flight Mach number M, . the

ratio of spz2cific heats ¥ , and the pivec axis position h .

For large amplitude slow oscillations exact anilytic colutions of
Cm exist for simple sghapes {10,11] and they arc in the form consiitent with

Eq. (%), i.e.

Cm(r;u) e CBO(O(T);u} + & Cm](e(f);a) - CmO(O;a) (29)

Moreover, it is shown that [10,11]

C_ (83;a) = c, (¢+a) , (ir0,1) (20)
By n
Accordingly
chi Cmi . 1
5 " The (0, 1) o
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19.
and Eq. (26b) reduces to
2
ew
. 0 |d D'(a)
u - Ela S e o, (32)

where the stiffners derivative S(a) and the damping-in-pitch derivative

D(a) &t anpgle of attack a are related to the pitching moment cocfficient

Cm by
S(u) = - C'm (z) , D(a) =~ C, {a) (33)
0 1
and
D(“cr) =0 (34)

A typical example of the dauping derivetive D(a) versus angle of attack o

is shown 1n Fig. 5 [16].

We thereforve conclude that when the angle of attack o is increased
beyond a critical valie @, at wvhich the aerodynamic dampiry vanishes, i.c.,
D(ucr) = J , the steady flight at 3o loses its stability and, after a
transition, results in a {inite zmplitude periodic morion, Furthermore; the
stability of this bifurcation pericdic wotion depends on vhather D'(u)/S(a)

increases or decrraces on crossing the stability boundary a. -

By utilising an approximate relation [17]

D(a) = B[S ) - S@] , b>¢

in (32}, we get ' ) -

u A S{o)
4 2
do o =0
er
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20.

For the case cf & flat plate aerofoil in supersenic/hypersonic flow

the stiffness and damping-in-pitch derivative, S{e) and D(a) , arc known

exactly in analytical form [7] for the angle of attack up te the shock detachment

angle. It is shown in Table 1 that u > 0 for all :zombinations of M and h,
oo the bifurcation is subcritical and the bifurcation periodic notion is unstable,

implying that exchange of stabilaty between steady and periodic moticn are

.
’~
[~

accompanied by hysteresis phenomena, or that potentially large aperiod

departures from steady flight wmay develop.
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4,2 FLAP OSCILLATION IN TRANSONIC FLOW

The case of a flap oscillating about the hirge is cenceptually similax
to that of an aerotoil pitching about a pivot axis. Thus, the oscillating flap -
may be rcgarded as an aerofoil pitching in & non-uniform incoming stream that

results from a2 uniform free stream passing the fore-body fixed aercfoil. (Fig. 2)

In the present cagse E(t) in Eq. (1) is the instantanecus fliap
deflection angle 6(t) , A is the mean deflection angle ém , ard G i3 the

hinge moment. Thus
G(t;)) = q 52 Ch(c;sm,Mm,Y) (25)

where Ch 1s the instantanecus hiuge moment coefficient, In the mither zzical
modeling of [12], the Ch used is of the form
. « R -~ , . - . Ay
Ch(\.Gm) ¢, (6(1),om) + 8 C \6(r),6m) <, (0,5m) (36
0 1 0
Eq. (36) is consistent with (5) and was validated im [12] by comparvisens with
results of large scelc numerical integraticn of the coupled inertial/fleuficld

equations,

It should be pointed out that the form (5) e¢r (36) for the moment
coefficient enable. ome to czlculate Ch](d(r);ém) by linearising, for small
anplitude arnd frequency, the flowficld cquaticns about the steady flow
corresponding to ém and 6(t) . Such calculations of Chl(ﬁ(T);ém) from
the lincarised equations require negligible amount of computing tize compared

with the nonlinear method used in [12], yet, they arc consistent with the level .

of approximation leading to (36) or (5). With this ismprovement on the metbod
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22,

cf calculating Ch (5(T);6r) » the main conclusion of {12} is further

1 A
strengthened in that it costs very little, in all cases, to calculate the motion
of the flap using the rathematical modelling approach of Tobak et,a, [14] than

to solve the coupled inertial/flowfield eaquationms,

Tt was {urther established {11} that

chi(c;sm) - chi(6+ 5m) (i=0,1) (37

which in turn reduces Eq. (26b) to

*
u....ewo g P70 (38)
I - :
47 A8 ST | o .
m o cr
where
. 5o~ v (8 ) [E— 3 Y =
S(eg) = =Gyl (B3 4 DY) =, G, Do) = 0 (39>

We therefore reach a similar conclusion regarding the wmotion characteristics
of the flap oscillation in the neighborhood of 5cr as t’at in  %4.1 regaraig
the mntion characteristics of the acrofoil pitching amoctioa in the neighborhood

cf a .
cr

Numerical results of Ref, 12 fer S(6m) and D(Gm) are repreoduced,
using spline fitting, in Fig. 6 for NACA 64A010 uerofoil at zevo mean angie of
attack in a transonic stream with M_ = 0.2 and vy = l.a, It is5 found ttat

_d_.? (¢y)
d&_ 506 )

= =590,20 eond hence the bifurcation .s subcritical and the
6mcécr

bifurcation periodic solution is therefcve uonstable, Th's implies that, sinilar
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?gﬁ to the flat plate at supersoric/hypersonic flow, exhange of stability between
(ff steady and periodic motion of the flap of the transonic aerofoil are accompanied
r ol
1 %f by hysteresis phenomena, or that potentiaily large apeviodic departures frosm the
SR
T
?I%; stcady potion may develop.
k{? g
LT
\f' 4,2, WING ROCK OF SLENDER DELTA WINGS IN SUBSOWIC FLIGHT
3.

5

The phenozenon kaown as "wing rock" of a slender delta wing in

%)
.

H]
.
f

subsonic flight has been a subject for intensive investigatioas by many cesearchers

¥
-

3
ng-i
o {13, 18-21) and is now well documented. 1t is known that the steady flow past
L
[ o . - - . .
5] i a slender delta wing at small enough angle of attack o 1is symmetric and
el
NS
. ¥ . . -
cE texrains steady. However, as the angle of attack a is increarced w»ast 2 critical
Lol
LI +
g»i ‘ value G - the aympetric configuration of the leuding edze vortices becomer
N

g
S

asymmairic, causing a loss of roll damping at small angles of roll [21].

v

N

" Consequently, at o = @ small disturbances introduced into thz floufield cavse

L.

P the rolling motion of th: wing to develop, resulting ic wing rock.

f;} For rolling motion of the wing, E(t) in Eq. (1) is the instantaueous
"a roll angle &(t) , A the steady angle of attack & , and G the rolling mouent.
A

e
El Thus
31
BN G(L;\) = qS2 C,(tia,h) (49)

~;

N where, for incompressible filow, the instantaneous rolling momeut coefficient
“

ti Cl depcnds on the angle of attack o« and the sweep back angle A of the

P delta wing. It is .ound from experiments [13,18} and numerical calculaticns
Ly
\ . » . 3 -

g - “f [19] that for a given A a good approximation to tie instantancous rolling
wr
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24,

moment Cﬂ is of the form

c, = C%(‘t‘(?);a) + ¢ Ca.l(‘b('r);“) (£1)

which is consistent with Eq. (5).

An an example, for the case of an 80° sweep~back flat delta wing

used in Ref, 18, Cg is well approsimated by a power geries {19) which leads

to the following equation of the rolling motion.

¢ = F(¢,03a)
e (b (@6 + bo(@63] + 3lbg + by(a) + b, (@)87]
1 3 0 2 T4
, = Fo(é;u) + ¢ F1(¢;a) (62}
where, with different scalings in [19] accounted foz,
b, () = <Fe, ag(a) (i=1,3) (432)
(i=2,42 {430)

bj(u) = g Cl aj(a)

In (43), « 1is a factor arising from the different ccalings used for the time

variable in Ref. 19 and in the present paper. Thue, from {19]

k = 2¢/L = 2% 0.429/0.107 # 8 , C; = 0.C38 and ai(u) are tabulated in

Table 5 of Ref. 19 which yield the foilowing table for bi(a)
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in sting ’n the experiments of [18].

R . T, I . T

25.
o 10° 15° 20° 25°
b1 -0.0265 -0.0721 -0.1%77 -0.3320
b2 -0,0101 0.0090 0.0596 0.095%
b3 -(.1222 -0.2714 -0,0501 0.2894
b4 0.1491 0.1159 -0.1799 ~0.9%77
From Eq. (11lb), the linear damping in roll is
D(a) = ~F;(0;0) = ~by ~ t, (a) (48)

~b., > G i5 proportional to the damping cocfficient for the bearings

0

In order Lo compare our theoxetical

prediction with the erperiments of {18] we choosa the valuc of ~b0 cuch

that Eq. {(44) yields zero demping in roll at the sawe angle

as that in [18].

fitting.

The function D(a)

u % 18,6°

cT

is then plotted in figure 7 using spiinc

From Eq. (26c) the indcx for stability of the bifurcation pericdic

rolling motion is

also find from the spline-fit curve for ba(u) (Fig. 8) that bé(acr) « - 0,05473 < 0

hence

cT

H ==

= 18.6° , we know from th:z above table that bl(u\r) =~ 0.1591 < 0 ,

2
€ Y bh(acr)

2 bIZac;Y

u < 0, and the bifurcation is supevcritical, jwplying that the

(45)

Wt

3
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26.

bifurcation periodic rolling motion is stable, in agreement with [18].

We now further compare the supercritical bifurcation diagram

predicted by the present theory with experimental results of Ret, 18. Combining

(21c) with (22) to elimirate A, and then use Lq. (45) tc get

£ (46)

The last equation was cbtained by using Eg. (25) and (42), From Fig., 7 «ud

noting that 1° = w/180 , we get D'(acr) = ~0,6131. Hence Cq. (45) re” -~cu

to

il
c-a _ = 0.11.20 €~ (47)
er

where € 1is the amplirade of the bifurcation periodic selution [11].
Eq. (47) is plotted in Fig. 9 for the 80° sweep back delta wing and compared

with experimental results of Levin and FKatz [18]}. The agrcement is seen to

be excellent in the neighborhood of L where the bifuication theory applies.

It should be noted that although u < 0 and hence the bifuvrcation
is supercritical, the salue of |u| is small in the example. This imelies
that the bifurcation is close to the boundary between subcritical and super-
critical., Consequentiy, on -ncreasing thz angle of attack S by 2 small

amount the amplitude o the vesulting periodic mntzon will be quite large,
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§5, CONCLUSIONS AND D1SCUSS1ONS

We have shoun how bifurcation theory can be used to study the
norlinesr dyramic stability characteristics of an aircraft subject to single-~
degree-of frecedom wotion about its trimmed mteady flight near the stability
boundary. In wost cases of slow motion, the required woment of the aerodynamic
forces i3 in the form of Eq. (5). The theory shows that when the bifurcution
parameter X , e.g., the angle of attack, is increased past the stability
boundary Acr where the aercdynamic damping vanishes, the scteady flight loces
its stability, resulting(after the transient motion has died out) in a finite-
amplitude periodic motion. We have also established a simple criterion (Eq. (27)),
for the stability of the bifurcation periodic wotion in terms of the aercdynsmic
ceefficients. The theory predicts that the bifurcation solutionsg ara unstable
{suberitical) in examples A and B and stable (supercritical) in examale G, che

lacter prediction being also in good agreemenz with available experimental date,

ln the case the theory predicts subrritical bifurcation, the shrugt
change resulting from increasing A past Acr couid cause an avrupt structural
change of the flow fie'd which may in turn reder {ovalid the form of che
moaent of the aecrodynamic forces, Eq. (5). Under trese conditions cercdynaaic
information in a different form may be needed. However, the theory os developed
in this paper is valid up to Acr and can be used io predict the onset of

subcritical bifurcation.

In the case che theory predicts superc “itical bilurcation, the
bifurcation periodic solution is stable to small enoughl disturboncas for
in the neighborhood o2 Acr . However, with further inercase in X , the

periodic motion might lose its stability, causing enother bifurcation at



A= xz > kcr » 88y, which can be eitlier subcritical or supercritical., The

resulting bifurcation solution may alse be alweost perisdic and this sequence

of bifurcation wzay continue.

e - 1ot e,

Finally, the theory in principle may he generalized to the moticns

of the aircraft involving more than one~degrec-of-freedon by the method of

projection [2]. In that case onc should be aware of the posyibility of chaotic

motion (strange attracter) occuring after a finite number of successive

bifurcations.
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Table 1 Values of stabllicy criterion u(H,, k) for flat-plate airfoil:

suparcritical

€ =1, ym1l,4; u>0 suberitical bifurcation, ¢ < 0
bifurcation
\1 b
0 0.1 0.2 0.3} 0.4 0 0.1 0.2 0.3 0.4
u_ o
1.5 36.3 19.¢ =~ - - 2 39.5 25.8 17.2 13.0 14.7
1.6 39.6 23.4 13.6 8.8 11.0.7 3 57.2 38.6 26.8 20.9 23.3
1.7 40.0 24.8 15.5 11.0 12.8 & 84.7 58.4 41.4 32.8 35.4
1.8 3%.7 25.3 16.3 12.0 13.7 5 107.3 74.8 53.7 42.9 41,5
1.9 39.4 25.5 16.8 12.6 14.3 6 123.6 86.7 62.6 50.3 55.6
2.0 39.5 25.8 17.2 13.0 14.7
h
y 0.25 0.26 0.z27 0.2 0.29 0,30 0.3r ©.32 0.33 0.34 0.35
1.6 18.6 0.1 9.7 9.3 9.0 8.8 8.6 8.5 8.4 8.4 8.3
1.7 12.6 12.2 11.8 11i.5 1.2 1.6 10.8 10.7 10.6 10.6° 10,7
1.8 13.6 13.2 12.8 12.5 12.2 12.0 1i.§8 11.7 1.6 11.7 1.7
1.9 14,1 .13.7 13.4 13.0 12.8 12.5 12.4 2.3 12.2 12.2 1.3
2.0 14.5 4.1 13.8 13.5 13.2 13.0 12,3 12.7 12.6 12.7 12.7
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FIGURE CAPTIONS
Fig. 1, Pitching aerofoil in supersonic/hypersonic flight
Fig. 2, Flap orcillatien in transonic flight
: Fig. 3. Ving rock of slender delta wing in subsonic flight,
&
3}' Fig. 4. Typical forms of bifurcation diagrams near the dynamic stability
. F
i boundary X where D(A ) =0
i cr cr
X
¥§ (a) supercritical, un <O0.
iz (b) suberitical, u>0.
!
§§ Fig. 5. Damping~in=-pitch derivative D versus angle of attack o for a
l‘.,
v I
ol bi-convex circular arc aerofoil. (Ref. 18) h = 0.5, vy = 1.4,
$f
~ !
7 T = 0.075 .
>
G Tig. 6a. Stiffnesc derivative S versus aean deflection angle §, of a
3,
—:) transoaic flap on MASA 644010 aerofcil (Ref. 12). M _=0.8 . y=1.4 ,
-7 : a=0 , -
'j‘ Fip. 6b. Dawping derivative D versus mean deflection angle dﬂ of a
A 0
. transonic £lap on NASA 64A010 arrofoil (Ref., 12). M =0.8 , y=l.4 ,
2 a=0 , § =2 7°,
A Cr
ﬁ Fig. 7. Damping in roll D of a 80° sweep back flat delta wing versus
- angle of attack a in incowpressible flov {Refs. 18,19), Eq. (44).
“re
L a__w18.67.
v er
{
[ Fig. 8. Rolling aerodynamic coetficient ba(a) of a 80° gweep back flat
E delta wing versus angle of artack a in incompressiole flow
A
: (Refs. 18,19). Obsexrve b,(a_ ) = -0.05473 < O .
: her
L | Fig. 9. Amplitude . of btifurcation periodic motion of a 828° sweep bacl
e
s - delta wing versnus ingle of attack a . —Tq. (47); ©
Ty expeviments (Ref, 18). o _w13.6°
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