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CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply By

inch (in.) 25.4

foot (ft) 0.3048
mile (mi) 1.609
square mile (mi%) . 2.590
foot per mile (ft/mi) 0.1894
mile per square mile (mi/mi2) 0.621
cubic foot per second (ft%/s) 0.02832

To obtain

millimeter

meter

kilometer

square kilometer

meter per kilometer

kilometer per square
kilometer

cubic meter per second

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929--

a geodetic datum derived from a general adjustment of the first-order level nets of the United States

and Canada, formerly called Sea Level Datum of 1929.
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ESTIMATING DESIGN-FLOOD DISCHARGES FOR STREAMS IN IOWA
USING DRAINAGE-BASIN AND CHANNEL-GEOMETRY
CHARACTERISTICS

By David A. Eash

ABSTRACT

Drainage-basin and channel-geometry
muitiple-regression equations are presented for
estimating design-flood discharges having
recurrence intervals of 2, 5, 10, 25, 50, and 100
years at stream sites on rural, unregulated
streams in lowa. Design-flood discharge estimates
determined by Pearson Type-Iil analyses using
data collected through the 1990 water year are
reported for the 188 streamflow-gaging stations
used in either the drainage-basin or
channel-geometry regression analyses. Ordinary
least-squares  multiple-regression  techniques
were used to identify selected drainage-basin and
channel-geometry characteristics and to delineate
two channel-geometry regions. Weighted least-
squares multiple-regression techniques, which
account for differences in the variance of flows at
different gaging stations and for variable lengths in
station records, were used to estimate the
regression parameters.

Statewide drainage-basin equations were
developed from analyses of 164 streamflow-
gaging stations. Drainage-basin characteristics
were quantified using a geographic-information-
system procedure to process topographic maps
and digital cartographic data. The significant
characteristics identified for the drainage-basin
“equations included contributing drainage area,
relative relief, drainage frequency, and 2-year,
24-hour precipitation intensity. The average
standard errors of prediction for the drainage-
basin equations ranged from 38.6 to 50.2 percent.
The geographic-information-system procedure
expanded the capability to quantitatively relate
drainage-basin characteristics to the magnitude
and frequency of floods for stream sites in lowa
and provides a flood-estimation method that is
independent of hydrologic regionalization.

Statewide and regional channel-geometry
regression equations were developed from
analyses of 157 streamflow-gaging stations.
Channel-geometry characteristics were measured

onsite and on topographic maps. Statewide and
regional channel-geometry regression equations
that are dependent on whether a stream has been
channelized were developed on the basis of
bankfull and active-channel characteristics. The
significant  channel-geometry  characteristics
identified for the statewide and regional regression
equations included bankfull width and bankfull
depth for natural channels unaffected by channel-
ization, and active-channel width for stabilized
channels affected by channelization. The average
standard errors of prediction ranged from 41.0 to
68.4 percent for the statewide channel-geometry
equations and from 30.3 to 70.0 percent for the
regional channel-geometry equations.

Procedures provided for applying the
drainage-basin and channel-geometry regression
equations depend on whether the design-flood
discharge estimate is for a site on an ungaged
stream, an ungaged site on a gaged stream, or a
gaged site. When both a drainage-basin and a
channel-geometry regression-equation estimate
are available for a stream site, a procedure is
presented for determining a weighted average of
the two flood estimates. The drainage-basin
regression equations are applicable to unregu-
lated rural drainage areas less than 1,060 square
miles, and the channel-geometry regression
equations are applicable to unregulated rural
streams in lowa with stabilized channels.

INTRODUCTION

Knowledge of the magnitude and frequency
of floods is essential for the effective manage-
ment of flood plains and for the economical
planning and safe design of bridges, culverts,
levees, and other structures located along
streams. Long-term flood data collected from a
network of streamflow-gaging stations operated
in Iowa are available for hydrologic analysis to
compute design-flood discharge estimates for
the gaged sites as well as for ungaged sites on
the gaged streams. Techniques are needed to
estimate design-flood discharges for sites on all

INTRODUCTION 1



ungaged streams in Iowa because most such
stream sites in the State have no flood data
available, particularly sites on smaller streams.

Flood runoff is a function of many
interrelated factors that include, but are not
limited to climate, soils, land use, and the
physiography of drainage basins. Previous
investigations for Iowa (Schwob, 1953, 1966;
Lara, 1973, 1987) have been limited to the types
of basin characteristics that can be investigated
as potential explanatory variables for the
development of multiple-regression flood-
estimation equations because many of the
flood-runoff factors are difficult to measure.
Previous investigations defined hydrologic
regions to account for factors affecting flood
runoff that were difficult to measure directly.
The hydrologic regions were delineated on the
basis of physiographic differences of broad
geographic landform regions. However, two
major limitations are encountered when using
the hydrologic-region method to estimate flood
discharges for ungaged sites. First, it is difficult
to weight flood estimates for drainage basins
located in more than one hydrologic region or
located near the boundaries of hydrologic
regions because the boundaries are not well
defined. Regional boundaries are transitional
zones where the physiographic characteristics of
one hydrologic region gradually merge into
another. Second, because large hydrologic
regions may contain drainage basins with
physiographies that are anomalous to the region
in which they are located, it is difficult to
correlate their physiographic differences to
another hydrologic region, or to weight their
flood estimates. Quantitative measurements of
basin morphology to determine appropriate
regional equations for drainage basins are not
applicable for resolving these regional
limitations. As a result, flood estimates for some
ungaged sites become very subjective.

To address the need to minimize the
subjectivity encountered in applying regional
flood-estimation methods, a study using two
different flood-estimation methods was made by
the U.S. Geological Survey in cooperation with
the Iowa Highway Research Board and the
Highway Division of the Iowa Department of
Transportation. Two new flood-estimation
methods for Iowa, which are presumed to be
independent from each other, were used in this

study. An advantage in developing flood-
frequency equations using two independent
flood-estimation methods is that each method
can be used to verify the results of the other, and
the estimates obtained from each method can be
used to calculate a weighted average.

Methods are now available to more easily
quantify selected morphologic and climatic
characteristics for a large number of drainage
basins. A geographic-information-system (GIS)
procedure developed by the U.S. Geological
Survey uses topographic maps and digital
cartographic data to quantify several basin
characteristics that typically were not
quantified previously. This GIS procedure
expands the capability to relate drainage-basin
characteristics to the magnitude and frequency
of floods for stream sites in Iowa and provides a
flood-estimation method that is independent of
hydrologic regionalization.

Measurements of channel-geometry
characteristics have been used to estimate the
magnitude and frequency of floods in
investigations conducted by Fields (1975),
Webber and Roberts (1981), Parrett and others
(1987), Hedman and Kastner (1977), and
Osterkamp and Hedman (1982). These
investigations have shown that measurements
of specific channel-geometry -characteristics
provide a reliable method for estimating flood
discharges because channel cross-sectional
characteristics are assumed to be a function of
flow volume and sediment-load transport
(Pickup and Rieger, 1979, p. 41; Osterkamp,
1979, p. 2).

Purpose and Scope

—-——

The purpose of this report is to: (1) define
equations for Iowa that relate measurable
drainage-basin characteristics to design-flood
discharges having recurrence intervals of 2, 5,
10, 25, 50, and 100 years that are independent
of hydrologic regionalization; (2) define
corroborative equations for Iowa that relate
channel-geometry characteristics to the same
design-flood recurrence intervals; and (3) define
application and reliability of drainage-basin and
channel-geometry flood-estimation methods.

Both the drainage-basin and channel-
geometry flood-estimation methods described in

2 ESTIMATING DESIGN-FLOOD DISCHARGES FOR STREAMS IN IOWA



this report are applicable to unregulated rural
streams located within the State. The
drainage-basin flood-estimation method is
limited to streams with drainage areas less than
1,060 mi%. The channel-geometry flood-
estimation method is applicable to stabilized
stream channels in Iowa.
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FLOOD-FREQUENCY ANALYSES
OF STREAMFLOW-GAGING
STATIONS IN IOWA

Flood-frequency curves were developed for
188 streamflow-gaging stations operated in
Iowa by the U.S. Geological Survey. They were
developed according to procedures outlined in
Bulletin 17B of the Interagency Advisory
Committee on Water Data (IACWD, 1982, p.
1-28). These flood-frequency curves include data
collected through the 1990 water year for both
active and discontinued continuous-record and
crest-stage gaging stations having at least 10
years of gaged annual-peak discharges. A water
year is the 12-month period from October 1
through September 30 and is designated by the
calendar year in which it ends. The locations of
the 164 gaging stations studied using the
drainage-basin flood-estimation method are
shown in figure 1, and the locations of the 157
gaging stations studied using the channel-
geometry flood-estimation method are shown in
figure 2. Map numbers for the gaging stations
shown in figures 1 and 2 are referenced to
gaging-station numbers and names in tables 8
and 9 (at end of this report). The observed
annual-peak discharge record at each site
includes water years during which the gaging
station was operated, which is termed the
systematic period of record. The observed
annual-peak discharge record also may include
historic-peak discharges that occurred during

water years outside the systematic period of
record.

A flood-frequency curve relates observed
annual-peak discharges to annual exceedance
probability or recurrence interval. Annual
exceedance probability is expressed as the
chance that a given flood magnitude will be
exceeded in any 1 year. Recurrence interval,
which is the reciprocal of the annual exceedance
probability, is the average number of years
between exceedances of a given flood
magnitude. For example, a flood with a
magnitude that is expected to be exceeded once
on the average during any 100-year period
(recurrence interval) has a 1-percent chance
(annual exceedance probability = 0.01) of being
exceeded during any 1 year. This flood,
commonly termed the 100-year flood, is
generally used as a standard against which
flood peaks are measured. Although the
recurrence interval represents the long-term
average period between floods of a specific
magnitude, rare floods could occur at shorter
intervals or even within the same year.

Flood-frequency curves were developed by
fitting the logarithms (base 10) of the observed
annual-peak discharges to a Pearson Type-III
distribution using U.S. Geological Survey
WATSTORE flood-frequency analysis programs
(Kirby, 1981, p. C1-C57). Extremely small
discharge. values (low outliers) were censored,
adjustments were made for extremely large
discharge values (high outliers), and the
coefficient of skew was weighted for each gaging
station with skew values obtained from a
generalized skew-coefficient map (IACWD,
1982). Whenever possible, historically adjusted
flood-frequency curves were developed to extend
the flood record for gaging stations with historic
peak-flood information.

The recommended equation (IACWD, 1982,
p. 9) for fitting a Pearson Type-III distribution
to the logarithms of observed annual-peak
discharges of a gaging station is

log (Q () = x+ks, (1)

is the design-flood discharge for a
gage, in cubic feet per second, for
a selected T-year recurrence

where Qg

FLOOD-FREQUENCY ANALYSES OF STREAMFLOW-GAGING STATIONS IN IOWA 3
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interval;

R

is the mean of the logarithms
(base 10) of the observed
annual-peak discharges;

k is the standardized Pearson
Type-I1II deviate for a selected
T-year recurrence interval and
weighted skew coefficient; and

s is the standard deviation of the
logarithms (base 10) of the
observed  annual-peak  dis-
charges.

Results of the Pearson Type-III flood-
frequency analyses are presented in table 8
(listed as method B17B, at end of this report) for
the 188 streamflow-gaging stations analyzed
using either the drainage-basin or channel-
geometry flood-estimation techniques. Included
in table 8 is information about the type of gage
operated, the effective record length of the gage,
whether a systematic or historical analysis was
performed, the observed annual-peak discharge
record (listed as flood period), and the maximum
known flood-peak discharge and its recurrence
interval. An example flood-frequency curve is
shown in figure 3.

DEVELOPMENT OF
MULTIPLE-REGRESSION
EQUATIONS

Multiple linear-regression techniques were
used to independently relate selected drainage-
basin and channel-geometry characteristics to
design-flood discharges having recurrence
intervals of 2, 5, 10, 25, 50, and 100 years. A
general overview of the ordinary least-squares
and weighted least-squares multiple linear-
regression techniques used to develop the
equations is presented in the following two
sections. Specific information on the multiple-
regression analyses for either flood-estimation
method is presented in later sections entitled
“Drainage-Basin Characteristic Equations” and
“Channel-Geometry Characteristic Equations.”

Ordinary Least-Squares Regression

Ordinary least-squares (OLS) multiple
linear-regression techniques were used to

develop the initial multiple-regression
equations, or models, for both the drainage-
basin and channel-geometry flood-estimation
methods. In OLS regression, a design-flood
discharge (termed the response variable) is
estimated on the basis of one or more significant
drainage-basin or channel-geometry character-
istics (termed the explanatory variables) in
which each observation is given an equal
weight. The response variable is assumed to be
a linear function of one or more of the
explanatory variables. Logarithmic transforma-
tions (base 10) were performed for both the
response and explanatory variables used in all
of the OLS regression analyses. Data
transformations were used to obtain a more
constant variance of the residuals about the
regression line and to linearize the relation
between the response variable and explanatory
variables. The general form of the OLS regres-
sion equations developed in these analyses is

IOElo(QT) = 10310 () +bll°g10 (xl) + (2)
bolog 4 (Xg) + ... +bplog 10 (Xp) ,

is the response variable, the
estimated design-flood discharge,
in cubic feet per second, for a
selected T-year  recurrence
interval;

where Qr

o is a constant;

b; is the regression coefficient for
the ith explanatory variable (i =
1,..,p)

X; is the value of the ith explanatory
variable, a drainage-basin or
channel-geometry characteristic
i=1,..,p);and

P is the total number of
explanatory variables in the
equation.

Equation 2, when untransformed, is

algebraically equivalent to

Qp = CX)P1(Xpb2...(X,)0p. 3)

8 ESTIMATING DESIGN-FLOOD DISCHARGES FOR STREAMS IN IOWA
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OLS regression analyses were performed
using the Statit! statistical procedures
ALLREG and SREGRES (Statware, Inc., 1990,
p. 6-10 - 6-27). Initial selections of significant
explanatory variables for the OLS regression
models were performed by using the ALLREG
procedure. The ALLREG procedure uses an
all-possible subsets regression to identify the
best-possible combinations of explanatory
variables on the basis of the Mallows’ C,
statistic (Mallows, 1973). The SREGRES
procedure, based ~on stepwise-regression
algorithms, then was used to perform an OLS
regression analysis on each best-possible
combination of explanatory variables. The final
selection of explanatory variables was based on
the following criteria as described by Koltun and
Roberts (1990, p. 11):

1. The selection of explanatory variables, as
well as the signs and magnitudes of their
respective regression coefficients, need to be
hydrologically valid in the context of flood
runoff. This criterion takes precedence over all
other criteria.

2. All explanatory variables should be
statistically significant at the 95-percent
confidence level.

3. The selection of explanatory variables,
within the constraints of criteria 1 and 2, should
minimize the prediction error sum of squares
[the PRESS statistic, an index of the prediction
error associated with the regression equation
(Allen, 1971; Montgomery and Peck, 1982)],
maximize the coefficient of determination (R?, a
measure of the proportion of the variation in the
" response variable accounted for by the
regression equation), and minimize the
standard error of estimate. Correlation between
explanatory variables and the variance inflation
factor (VIF) (Marquardt, 1970; Montgomery and
Peck, 1982) was used to assess multicollinearity
in the regression models.

Weighted Least-Squares Regression

A weighted least-squares (WLS) regression
technique described by Tasker (1980 p. 1107-
1109) was wused to develop the final

! Use of brand names in this report is for identification
purposes only and does not constitute endorsement by
the U.S. Geological Survey.

multiple-regression equations for both the
drainage-basin and channel-geometry flood-
estimation methods. WLS regression analyses
improved R? values and standard errors of
estimate obtained in the majority of the OLS
regression analyses. Tasker (1980, p. 1107)
reports that OLS regression assumes that the
time-sampling variance in the response-
variable estimates (design-flood discharges) are
the same for each gaging station used in the
analysis (assumption of homoscedasticity). In
hydrologic regression, this assumption usually
is violated because the reliability of response-
variable estimates depends primarily on the
length of the observed annual-peak discharge
records. The error  associated with
response-variable estimates is inversely
proportional to record length (Choquette, 1988,
p. 16-17). WLS regression adjusts for the
variation in the reliability of the response-
variable estimates by using a weighting
function to account for differences in the lengths
of observed annual-peak discharge records at
gaging stations. The weighting function
(Tasker, 1980, p. 1107) is based on theory and on
analysis of residuals from the initial OLS
regression equation. The weighting function
assumes that the response variable (the
design-flood discharge) is determined by fitting
the logarithms (base 10) of the observed
annual-peak discharges to a Pearson Type-III
distribution.

The variance of the response variable, @, is
estimated to determine the appropriate weight
factors for the WLS regression analysis. To be
effective, the weight factors should be inversely
proportional to the variance of @p. The variance
of Qr, for a selected T-year recurrence interval,
can be partitioned into two components--the
variance due to OLS regression-model error, ¢,
and the variance due to time-sampling error, t;,
which is related to the standard deviation and
weighted skew coefficient of the logarithms of
the observed annual-peak discharges and to the
number of years of effective record length
(Tasker, 1980, p, 1107-1109; Choquette, 1988, p.
16-17). The weight function has the form

w. = 1
d (60+tt),

(4)

is the weight factor for the ith
gaging station used in the

where w;
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analysis.

The model error (cg) is estimated by

¢y = maximum [0; (SE)2—CI(£II R (5)
ERL
where SE is the standard error of the
estimate from the OLS equation;
cq is a constant; and
ERL is the mean effective record

length, in years, for all gaging
stations used in each respective
regression-model data set.

The time-sampling error (¢;) is estimated by

1
to=ec = |, 6)
k 1 [ERL @ )
where ERL; is the effective record length, in
years, for the ith gaging station
used in each  respective
regression-model data set.

The constant, cj, is related to the recurrence
interval of the response variable and to the
weighted skew coefficient (g) of the observed
annual-peak discharges. It is determined by

-2
¢, = maximum [0;52(1+% (1+§§2) +%)jl, N

is the mean standard deviation of
the logarithms (base 10) of the
observed annual-peak  dis-
charges;

where s

is the mean standardized
Pearson Type-III deviate for
selected  T-year  recurrence
interval and mean weighted
skew coefficient g IACWD, 1982,
p- 3-1-3-27); and

a4

g is the mean weighted skew
coefficient of the logarithms (base
10) of the observed annual-peak
discharges (IACWD, 1982, p.
12-15).

The values s and g are statewide estimates
determined by the averages of the 188

streamflow-gaging stations analyzed using
either the drainage-basin or channel-geometry
flood-estimation techniques. These estimation
methods are based on the assumption that s and
g are approximately constant for all the gaging
stations in the State.

The effective record length (ERL) of a gaging
station is based on an empirical analysis made
by Gary D. Tasker (U.S. Geological Survey,
written commun., March 1992) of results
reported in Tasker and Thomas (1978) and
Stedinger and Cohn (1986). It is determined by

ERL = LS+ (HST-LS)a, €)]

where LS is the systematic record length of
a gaging station, in years, the
number of water years during
which the gaging station was

operated;

HST is the historic record length of a
gaging station, in years, as used
in a Pearson Type-III historical
flood-frequency analysis; if a
systematic flood-frequency
analysis was performed, HST =
LS; if (HST—LS) > 200, set
(HST— LS)=200; and

h
a= 0.55-0.1[10ge((—1—-f—-;7l—))]. (9)

In the last equation, ph = 1.0 — (np / HST), and
np is the number of historic and extremely large
discharge (high-outlier) peaks.

The ERL used in the weighted least-squares
regression analyses for each gaging station is
listed in table 8 (at end of this report).

ESTIMATING DESIGN-FLOOD
DISCHARGES USING
DRAINAGE-BASIN
CHARACTERISTICS

The drainage-basin flood-estimation method
uses selected drainage-basin characteristics to
estimate the magnitude and frequency of floods
for stream sites in Iowa. Multiple-regression
equations were developed by relating significant
drainage-basin characteristics to Pearson
Type-III, design-flood discharges for 164
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streamflow-gaging stations in Iowa (fig. 1).
Drainage-basin characteristics were quantified
using a GIS procedure to process topographic
maps and digital cartographic data. An
overview of the GIS procedure is provided in the
following section.

Geographic-Information-System
Procedure

The GIS procedure developed by the U.S.
Geological Survey (USGS) quantifies for each
drainage basin the 26 basin characteristics
listed in Appendix A (at end of this report).
These characteristics were selected for the GIS
procedure on the basis of their hypothesized
applicability in flood-estimation analysis and
their general acceptability as measurements of
drainage-basin morphology and climate.
Techniques for making manual measurements
of selected drainage-basin characteristics from
topographic maps are outlined in Appendix B (at
end of this report). The GIS procedure uses
ARC/INFO computer software and other
software developed specifically to integrate with
ARC/INFO (Majure and Soenksen, 1991; Eash,
1993).

The GIS procedure entails four main steps:
(1) creation of four GIS digital maps (ARC/INFO
coverages) from three cartographic data
sources, (2) assignment of attribute information
to three of the four GIS digital maps, (3)
quantification of 24 morphologic basin
characteristics from the four GIS digital maps,
and (4) quantification of two climatic basin
characteristics from two precipitation data
sources.

The first step creates four GIS digital maps
representing selected aspects of a drainage
basin. Examples of these maps are shown in
figure 4. The drainage-divide digital map (fig.
4A) is created by delineating the surface-water
drainage-divide boundary for a streamflow-
gaging station on 1:250,000-scale U.S. Defense
Mapping Agency (DMA) topographic maps. This
drainage-divide delineation is manually
digitized into a polygon digital map using GIS
software. If noncontributing drainage areas are
identified within the drainage-divide boundary,
then each noncontributing drainage area also is
delineated and digitized.

The drainage-network digital map (fig. 4B)
is created by extracting the drainage network
for the basin from 1:100,000-scale USGS digital
line graph (DLG) data. The extraction process
uses GIS software to select and append together
the DLG data contained within the
drainage-divide polygon.

The elevation-contour digital map (fig. 4C)
is created from 1:250,000-scale DMA digital
elevation model (DEM) data that are referenced
to sea level (in meters). GIS software is used to
convert the DEM data to a lattice file of point
elevations for an area slightly larger than the
drainage-divide polygon. This lattice file of point
elevations is contoured with a 12-meter
(39.372-ft) or smaller contour interval using
ARC/INFO software. The contour interval is
chosen to provide at least five contours for each
drainage basin. GIS software selects the
contours contained within the drainage-divide
polygon to create the elevation-contour digital
map. Elevation contours then are converted to
units of feet.

The basin-length digital map (fig. 4D) is
created by delineating and digitizing the basin
length from 1:250,000-scale DMA topographic
maps. The basin length characteristic is
delineated by first identifying the main channel
for the drainage basin on 1:100,000-scale
topographic maps. The main channel is
identified by starting at the basin outlet and
proceeding upstream, repetitively selecting the
channel that drains the greater area at each
stream junction. The most upstream channel is
extended to the drainage-divide boundary
defined for the drainage-divide digital map. This
main channel identified on 1:100,000-scale
topographic maps is used to define the main
channel on 1:250,000-scale topographic maps.
The basin length is centered along the
main-channel, flood-plain valley from basin
outlet to basin divide and digitized with as
straight a line as possible from the
1:250,000-scale maps. When comparing the
basin length shown in figure 4D to those stream
segments corresponding to the main channel in
figure 4B, it can be seen that the basin length
does not include all the sinuosity of the stream
segments.

The second step assigns attributes to
specific polygon, line-segment, and point
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A. Drainage-divide digital map digitized
from Waterloo topographic map.

Base from U.S. Defense Mapping Agency,
1:250,000, 1976

Universal Transverse Mercator projection,
Zone 15

C. Elevation-contour digital map created from
Waterloo-East digital elevation model,
sea-level data, with contour intervals
at 39.372 feet.

Base from U.S. Defense Mapping Agency,

B. Drainage-network digital map extracted
from Marshalitown-West digital line
graph data, with stream-order numbers.

Base from U.S. Geological Survey digital
data, 1:100,000, 1984

Universal Transverse Mercator projection,
Zone 15

D. Basin-length digital map digitized
from Waterloo topographic map.

Base from U.S. Defense Mapping Agency,

1:250,000, 1976 1:250,000, 1976
Universal Transverse Mercator projection, Universal Transverse Mercator projection,
Zone 15 Zone 15
0 25 5 MILES
L 1 J
o] 25 5 KILOMETERS
EXPLANATION

4 STREAMFLOW-GAGING STATION

Figure 4. Four geographic-information-system maps that constitute a digital representation of selected
aspects of a drainage basin.
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features in the first three of the four GIS digital
maps shown in figure 4. As a prerequisite, the
digital maps are edited to ensure that
drainage-divide boundaries, stream segments,
and the basin-length line segments are
connected properly. If noncontributing drainage
areas are identified, they are assigned
attributes with separate polygon designations
so that the basin-characteristic programs can
distinguish between  contributing and
noncontributing areas. Each line segment in the
drainage-network digital map is assigned a
Strahler stream-order number (Strahler, 1952)
and a code indicating whether the line segment
represepts part of the main channel or a
secondary channel. Specific GIS programs have
been developed to assign the proper stream-
order number to each line segment and to code
those line segments representing the main
channel. Figure 4B shows the Strahler
stream-order numbers for streams in the Black
Hawk Creek at Grundy Center (station number
05463090; map number 73, fig. 1) drainage
basin. A description on how to order streams
using Strahler’s method is included in Appendix
B (at end of this report).

The line segments in the elevation-contour
digital map were assigned elevations from the
processing of the DEM data. Line segments
overlain by noncontributing drainage-area
polygons are assigned attributes designating
noncontributing contour segments. Two point
attributes are added to the elevation-contour
digital map to represent the maximum and
minimum elevations of the drainage basin. The
maximum basin elevation is defined from the
highest DEM-generated contour elevation
within the contributing drainage area. The
minimum basin elevation is defined at the basin
outlet as an interpolated value between the first
elevation contour crossing the main channel
upstream of the basin outlet and the first
elevation contour crossing the main channel
downstream of the basin outlet.

The third step uses the four GIS digital
maps shown in figure 4 and a set of programs
developed by the USGS (Majure and Soenksen,
1991) to quantify the 24 morphologic basin
characteristics listed in Appendix A (at end of
this report). These basin characteristics include
selected measurements of area, length, shape,
and topographic relief that define selected

aspects of basin morphology, and several
channel characteristics. The programs access
the information automatically maintained by
the GIS for each of the four digital maps, such as
the length of line segments and the area of
polygons, as well as the previously described
attribute information assigned to the polygon,
line-segment, and point features of three of the
four GIS digital maps. The GIS programs then
use this information to automatically quantify
the 24 morphologic basin characteristics.

The fourth step uses a software program
developed to quantify the remaining two basin
characteristics listed in Appendix A (at end of
this report). These two climatic characteristics
are quantified using GIS digital maps
representing the distributions of mean annual
precipitation and 2-year, 24-hour precipitation
intensity for the area contributing to all
surface-water drainage in Iowa. This area
includes a portion of southern Minnesota. The
mean annual precipitation digital map was
digitized from a contour map for Iowa, supplied
by the Iowa Department of Agriculture and
Land Stewardship, State Climatology Office
(Des Moines), and from a contour map for
Minnesota (Baker and Kuehnast, 1978). The
2-year, 24-hour precipitation intensity digital
map was digitized from a contour map for Iowa
(Waite, 1988, p. 31) and interpolated contours
for southern Minnesota that were digitized from
a United States contour map (Hershfield, 1961,
p. 95). The digital map representing the
distribution of 2-year, 24-hour precipitation
intensity for Iowa and southern Minnesota is
shown in figure 5. The weighted average for
each climatic characteristic is computed for a
drainage basin by calculating the mean of the
area-weighted precipitation values that are
within the drainage-divide polygon.

Of the 26 drainage-basin characteristics
listed in Appendix A, 12 are referred to as
primary drainage-basin characteristics because
they constitute specific GIS procedure or
manual topographic-map measurements. They
are listed under headings containing the word
“measurement.” The remaining characteristics
are calculated from the primary drainage-basin
characteristics; they are listed in Appendix A
under headings containing the word
“computation.” Each drainage-basin character-
istic listed in Appendix A is footnoted with a
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Figure 5. Distribution of 2-year, 24-hour precipitation intensity for lowa and southern Minnesota.

reference and the cartographic data source used
for both GIS procedure and manual
measurements.

Verification of Drainage-Basin

Characteristics
To verify that the drainage-basin
characteristics quantified using the GIS

procedure are valid, manual topographic-map
measurements of selected drainage-basin
characteristics were made for 12 of the

streamflow-gaging stations wused in the
drainage-basin flood-estimation method. These
comparison measurements were made for those
primary drainage-basin characteristics
identified as being significantly related to flood
runoff in the multiple-regression equations
presented in the following section entitled
“Drainage-Basin Characteristic Equations.”
Comparison measurements were made from
topographic maps of the same scales as were
used in the GIS procedure. The results of the
comparisons are shown in tahle 1.
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Table 1. Comparisons of manual measurements and geographic-information-system-procedure
measurements of selected drainage-basin characteristics at selected streamflow-gaging stations

[TDA, total drainage area, in square miles; BP, basin perimeter, in miles; BR, basin relief, in feet;
FOS, number of first-order streams; TTF, 2-year, 24-hour precipitation intensity, in inches; MAN,
manual measurement; GIS, geographic-information-system procedure; % DIFF, percentage difference

between MAN and GIS]
Measure- Selected drainage-basin characteristics
Station ment -
number technique TDA! BP BR FOS TTF
05411600 MAN 177 73.3 297 84 3.05
GIS 178 73.9 274 84 3.05
% DIFF +0.6 +0.8 -1.7 0 0
05414450 MAN 21.6 21.9 444 10 3.05
GIS 22.3 21.3 394 10 3.05
% DIFF +3.2 -2.7 -11.3 0 0
05414600 MAN 1.54 5.32 280 1 3.05
GIS 1.53 5.97 291 1 3.05
% DIFF -0.6 +12.2 +3.9 0 0
05462750 MAN 11.6 15.0 160 6 3.05
GIS 11.9 15.5 129 6 3.05
% DIFF +2.6 +3.3 -19.4 0 0
05463090 MAN 56.9 335 181 28 3.15
GIS 57.0 33.1 160 28 3.15
% DIFF +0.2 -1.2 -11.6 0 0
05470500 MAN 204 69.8 318 60 3.15
GIS 208 67.7 292 51 3.15
% DIFF +2.0 -3.0 -8.2 -15.0 0
05481000 MAN 844 139 303 152 3.05
GIS 852 139 300 155 3.05
% DIFF +0.9 0 -1.0 +2.0 0
05489490 MAN 22.9 24.8 280 10 3.25
GIS 22.2 26.2 263 10 3.25
% DIFF -3.1 +5.6 -6.1 0 0
06483430 MAN 29.9 28.8 198 12 2.85
GIS 30.0 28.9 182 12 2.85
% DIFF +0.3 +0.3 -8.1 0 0
06609500 MAN 871 206 582 477 3.05
GIS 869 210 550 475 3.05
% DIFF -0.2 +1.9 -5.5 -0.4 0

14 ESTIMATING DESIGN-FLOOD DISCHARGES FOR STREAMS IN IOWA



Table 1. Comparisons of manual measurements and geographic-information-system-procedure
measurements of selected drainage-basin characteristics at selected streamflow-gaging
stations--Continued

Measure- Selected drainage-basin characteristics
Station ment
number technique TDA! BP BR FOS TTF

06807780 MAN 42.7 47.4 268 18 3.05
GIS 42.8 48.8 280 19 3.05
% DIFF +0.2 +3.0 +4.5 +5.6 0

06903400 MAN 182 79.0 224 80 3.25
GIS 184 79.6 256 80 3.25
% DIFF +1.1 +0.8 +14.3 0 0

WILCOXON SIGNED-RANKS
TEST STATISTIC?
p-VALUE STATISTIC

-0.365 NO TEST3
0.7150

-1.843
0.0653

-1.726
0.0844

-1.334
0.1823

! Manual TDA measurements are streamflow-gaging-station drainage areas published by the U.S.
Geological Survey in annual streamflow reports. Noncontributing drainage areas (NCDA) are not
listed because none were identified for these drainage basins.

2 Using a 95-percent level of significance, the T-value statistic = 2.2010 (Iman and Conover, 1983,
p. 438).

3 All values for % DIFF = 0.

Comparison measurements for total
drainage area (TDA) indicate that the GIS
procedure was within about 1 percent of the
drainage areas published by the USGS in
annual streamflow reports for 8 of the 12
selected gaging stations. This comparison
indicates that delineations of drainage areas
used in the GIS procedure, made from
1:250,000-scale  topographic maps, were
generally valid. The Wilcoxon signed-ranks test
was applied to four of the five drainage-basin
characteristics listed in table 1 using STATIT
procedure SGNRNK (Statware, Inc., 1990,
p. 3-25 - 3-26). Results (table 1) indicate that
GIS procedure measurements of total drainage
area, basin perimeter (BP), basin relief (BR),
and number of first-order streams (FOS) were
not significantly different from manual
topographic-map measurements at the
95-percent level of significance. The greater

variation in measurement comparisons of basin
relief are believed to be due to limitations in the
1:250,000-scale DEM data. Results of the
comparison tests (table 1) indicate that GIS
procedure measurements are generally valid for
the primary drainage-basin characteristics used
in the regression equations presented in the
following section.

Basin slope (BS) is another drainage-basin
characteristic that was quantified using DEM
data. It is hypothesized that basin slope may
have a significant effect on surface-water runoff.
Basin slope was indicated as being a significant
characteristic in a few of the initial
multiple-regression  analyses.  Comparison
measurements indicated that the GIS procedure
greatly underestimated basin slope. Measure-
ment differences for basin slope were between
minus 9 and 66 percent, with an average
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underestimation of 40 percent for the 10
drainage basins tested (Eash, 1993, p. 180-181).
For this reason, the basin-slope characteristic
was deleted from the drainage-basin
characteristics data set during the initial
multiple-regression  analyses.  Basin-slope
comparisons appear to indicate that the
1:250,000-scale DEM data used to create the
elevation-contour digital maps are not capable
of reproducing all the sinuosity of the elevation
contours depicted on_the 1:250,000-scale DMA
topographic maps. The elevation contours
generated using the GIS procedure are much
more generalized than the topographic-map
contours; thus, the total length of the elevation
contours are undermeasured when using the
“contour-band” method of calculating basin
slope (BS) (Appendix A). A comparison of the
elevation contours shown in figure 4C for the
Black Hawk Creek at Grundy Center (station
number 05463090; map number 73, fig. 1)
drainage basin to those depicted on the DMA
1:250,000-scale Waterloo topographic map
showed a significant difference in the sinuosity
of the elevation contours depicted.

Drainage-Basin Characteristic
Equations

The 26 drainage-basin characteristics listed
in Appendix A were quantified for 164
streamflow-gaging stations (fig. 1) and
investigated as potential explanatory variables
in the development of multiple-regression
equations for the estimation of design-flood
discharges. Because of the previously described
problems concerning measurement verification
of basin slope and because of the difficulty
associated with manual measurements of total
stream length, six basin characteristics were
deleted from the regression data set. The
excluded characteristics were basin slope (BS),
total stream length (T'SL), stream density (SD),
constant of channel maintenance (CCM),
ruggedness number (RN), and slope ratio (SR).

Several other drainage-basin characteristics
also were deleted from the data set because of
multicollinearity. Multicollinearity is the
condition where at least one explanatory
variable is closely related to (that is, not
independent of) one or more other explanatory
variables. Regression models that include
variables with multicollinearity may be

unreliable because coefficients in the models
may be unstable. Output from the ALLREG
analysis and a correlation matrix of Pearson
product-moment correlation coefficients- were
used as guides in identifying the variables with
multicollinearity. The hydrologic validity of
variables with multicollinearity in the context of
flood runoff was the principal criterion used in
determining which drainage-basin character-
istics were deleted from the data set. Upon
completion of the ALLREG analyses, any
remaining multicollinearity problems were
identified with the SREGRES procedure by
checking each explanatory variable for variance
inflation factors greater than 10.

Statewide flood-estimation equations were
developed from analyses of the drainage-basin
characteristics using the ordinary least-squares
and weighted least-squares multiple-regression
techniques - previously described. The best
equations developed in terms of PRESS
statistics, coefficients of determination, and
standard errors of estimate are listed in table 2.
The characteristics identified as most
significant in the drainage-basin equations are
contributing drainage area (CDA), relative relief
(RR), drainage frequency (DF), and 2-year,
24-hour precipitation intensity (T'TF). Table 9
(at end of this report) lists these significant
drainage-basin characteristics, as quantified by
the GIS procedure, for 164 streamflow-gaging
stations in Iowa.

Three of the four characteristics listed in the
drainage-basin equations (table 2) are
calculated from primary drainage-basin
characteristics. The drainage-basin equations
are comprised of six primary drainage-basin
characteristics. Contributing drainage area
(CDA) is a measure of the total area that
contributes to surface-water runoff at the basin
outlet. The primary drainage-basin
characteristics used to calculate contributing
drainage area are total drainage area (TDA) and
noncontributing drainage area (NCDA).
Relative relief (RR) is a ratio of two primary
drainage-basin characteristics, basin relief (BR)
and basin perimeter (BP). Drainage frequency
(DF) is a measure of the average number of
first-order streams per unit area and is an
indication of the spacing of the drainage
network. The  primary drainage-basin
characteristics used to calculate drainage
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Table 2. Statewide drainage-basin characteristic equations
for estimating design-flood discharges in Iowa

[@, peak discharge, in cubic feet per second, for a given recurrence interval, in years; CDA,
contributing drainage area, in square miles; RR, relative relief, in feet per mile; DF, drainage
frequency, in number of first-order streams per square mile; TTF, 2-year, 24-hour precipitation
intensity, in inches]

Estimation equation

Number of streamflow-gaging stations = 164

Q, =53.1 CDA%799 RRO643 DR0381 (P _ 9 5)1.36
Qs = 98.8 CDA"755 RRO-652 pF0.380 (PTF . 2,5)0985
Q10 = 136 CDA%733 RRO.654 DR0.384 (P _ 9 5)0.801
Qo5 = 188 CDAY-709 RRO-655 DF0.393 (P _ 9 5)0.610
Qso = 231 CDAY6% RR0.656 D040 (PT _  5)0.491

QIOO =277 CDAO.GSI RRO.656 DFO.409 (TTF - 2.5)0.389

Average Average

Standard standard error equivalent

error of estimate of prediction years of

Logyo Percent (percent) record
0.171 41.0 42.2 3.9
156 372 38.6 54
160  38.2 39.8 6.5
172 413 43.2 7.8
185 445 46.5 9.5
.198 480 50.2 11.5

Note: Basin characteristics are map-scale dependent. See Appendix A and Appendix B for

basin-characteristic descriptions, computations, and scales of maps to use for

manual measurements.

frequency are the number of first-order streams
(FOS) and contributing drainage area (CDA).
The value of FOS is determined by using
Strahler’s method of ordering streams (Strahler,
1952). A description of  Strahler’s
stream-ordering method is included in Appendix
B. The 2-year, 24-hour precipitation intensity
(TTF) is a primary drainage-basin-
characteristic measurement of the maximum
24-hour precipitation expected to be exceeded on
the average once every 2 years.

Additional information pertaining to the
characteristics used in the drainage-basin
equations (table 2) is included in Appendix A.
Techniques on how to make manual
measurements from topographic maps for the
primary drainage-basin characteristics used in
the equations are outlined in Appendix B.
Several of the primary drainage-basin

characteristics are map-scale dependent. Use of
maps of scales other than the scales used to
develop the equations may produce results that
do not conform to the range of estimation
accuracies listed for the equations in table 2.
The scale of map to use for manual
measurements of each primary drainage-basin
characteristic is outlined in Appendix A and
Appendix B.

Examination of residuals, the difference
between the Pearson Type-III and multiple-
regression estimates of peak discharge for the
drainage-basin equations, indicated no evidence
of geographic bias. The drainage-basin
equations thus were determined to be
independent of hydrologic regionalization
within the State.
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The drainage-basin flood-estimation method
developed in this study is similar to the regional
flood-estimation method developed by Lara
(1987) because both methods estimate flood
discharges on the basis of morphologic relations.
While the standard errors of estimate appear to
be higher for the drainage-basin equations than
for Lara’s equations (Lara, 1987, p. 28), a direct
comparison cannot be made because of the
different methodologies used to develop the
equations. Lara’s method is based on the
physiography of broad geographic landform
regions defined for the State, whereas the
drainage-basin method presented in this report
is based on specific measurements of basin
morphology. The drainage-basin equations are
independent of hydrologic regionalization. The
application of regional equations often requires
that subjective judgments be made concerning
basin anomalies and the weighting of regional
discharge estimates. This subjectivity may
introduce additional unmeasured error to the
estimation accuracy of the regional discharge
estimates. The drainage-basin regression
equations presented in this report provide a
flood-estimation method that minimizes the
subjectivity in its application to the ability of the
user to measure the characteristics.

Example of Equation Use--
Example 1

Example 1.--An application of the drainage-
basin flood-estimation method can be illustrated
by using the equation (listed in table 2) to
estimate the 100-year peak discharge for the
discontinued Black Hawk Creek at Grundy
Center crest-stage gaging station (station
number 05463090; map number 73, fig. 1),
located in Grundy County, at a bridge crossing
on State Highway 14, at the north edge of
Grundy Center, in the NW1/4, sec. 7, T. 87 N, R.
16 W. Differences between manually computed
values (table 1) and values computed using the
GIS procedure (tables 1 and 9) are due to
differences in applying the techniques.

Step 1. The characteristics used in the
drainage-basin equation (table 2) are
contributing drainage area (CDA), relative relief
(RR), drainage frequency (DF), and 2-year,
24-hour precipitation intensity (TTF). The
primary drainage-basin characteristics used in
this equation are total drainage area (TDA),

noncontributing drainage area (NCDA), basin
relief (BR), basin perimeter (BP), number of
first-order streams (FOS), and 2-year, 24-hour
precipitation intensity (T'TF). These primary
drainage-basin characteristic measurements
and the scale of maps to use for each manual
measurement are described in Appendix A and
Appendix B.

Step 2. The topographic maps used to
delineate the drainage-divide boundary for this
gaging station are the DMA 1:250,000-scale
Waterloo topographic map and the USGS
1:100,000-scale Grundy County map. Figure 4A
shows the drainage-divide boundary that was
delineated for this gaging station. on the
1:250,000-scale map. Contributing drainage
area (CDA) is calculated from the primary
drainage-basin characteristics total drainage
area (TDA) and noncontributing drainage area
(NCDA). The total drainage area published for
this gaging station in the annual streamflow
reports of the U.S. Geological Survey is 56.9 mi2
(table 9). Inspection of the 1:100,000-scale map
does not show any noncontributing drainage
areas within the drainage-divide boundary of
this basin. The contributing drainage area
(CDA) is calculated as

CDA = TDA-NCDA, (10)

=56.9-0,

= 56.9 miZ.

Step 3. Relative relief (RR) is calculated
from the primary drainage-basin characteristics
basin relief (BR) and basin perimeter (BP). The
difference between the highest elevation
contour and the lowest interpolated elevation in
the basin measured from the 1:250,000-scale
topographic map gives a basin relief of 181 ft
(table 1). Figure 4C shows an approximate
representation of the topography for this
drainage basin. The drainage-divide boundary
delineated on the 1:250,000-scale topographic
map (fig. 4A) is used to measure the basin
perimeter, which is 33.5 mi (table 1). Relative
relief (RR) is calculated as
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RR = B (11)

BP’
s
"~ 335’
= 540 ft/mi .
Step 4. Drainage frequency (DF) is

calculated from the primary drainage-basin
characteristics number of first-order streams
(FOS) and contributing drainage area (CDA). A
total of 28 first-order streams are counted
within the drainage-divide delineation for this
gaging station on the 1:100,000-scale
topographic map (table 1). These first-order
streams are shown in figure 4B. Drainage
frequency (DF) is calculated as

FOS
DF = &5, (12)

2
56.9°

=0.492 first-order streams/mi 2 .

Step 5. The 2-year, 24-hour precipitation
intensity (TTF) for the drainage basin is
determined from figure 5. Because the
drainage-divide boundary for this gaging station
is completely within the polygon labeled as
3.15 in., the 2-year, 24-hour precipitation
intensity is given a value of 3.15 in. (table 1).

Step 6. The 100-year flood estimate using
the drainage-basin equation (table 2) is
calculated as
Quo=  277(CDA)%%8! (RR)656 (DF)O499 (TTF - 2.5)°389,

277 (56.9)%881 (5.40)0-856 (0 492)0409 (3,15 - 2.5)0389,

[}

= 8,310 ft¥s.

Discharge estimates listed in this report are
rounded to three significant figures. The
difference between the above estimate of
8,310 ft3/s and the estimate of 7,740 ft3/s listed
in table 8 (method GISDB) is due to
measurement differences between manual
measurement and GIS procedure techniques
(table 1).

ESTIMATING DESIGN-FLOOD
DISCHARGES USING
CHANNEL-GEOMETRY
CHARACTERISTICS

The channel-geometry flood-estimation
method uses selected channel-geometry
characteristics to estimate the magnitude and
frequency of floods for stream sites in Iowa. The
channel-geometry method is based on measure-
ments of channel morphology, which are
assumed to be a function of streamflow
discharges and sediment-load transport.
Multiple-regression equations were developed
by relating significant channel-geometry
characteristics to Pearson Type-1II, design-flood
discharges for 157 streamflow-gaging stations
in Iowa (fig. 2).

Channel-Geometry Data Collection

The channel-geometry parameters that
were measured for each of the gaging stations
are as follows:

ACW - average width of the active channel,
in feet;

ACD - average depth of the active channel,
in feet;

BFW - average width of the bankfull
channel, in feet;

BFD - average depth of the bankfull
channel, in feet;

SCpq - silt-clay content of channel-bed
material, in percent;

SCpk - silt-clay content of left channel-bank
material, in percent;

SCpx - silt-clay content of right

channel-bank material, in percent;

Dy, - diameter size of channel-bed particles
for which the total weight of all particles
with diameters greater than D5 is equal
to the total weight of all particles with
diameters less than or equal to Dy, in
millimeters; and

GRA - local gradient of channel, in feet per
mile.
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EXPLANATION

ACTIVE-CHANNEL REFERENCE LEVEL
BANKFULL REFERENCE LEVEL

O —0" LOW-FLOW WATERLEVEL
BFwW BANKFULL WIDTH
ACW ACTIVE-CHANNEL WIDTH

Figure 6. Block diagram of a typical stream channel.

The active-channel and bankfull reference
levels for a typical stream channel are
illustrated in figure 6. Photographs of
active-channel and bankfull reference levels at
six gaging stations in Iowa are shown in figure

A standard particle-size analysis (dry sieve,
visual accumulation tube, and wet sieve) was
performed for each of the composite sediment
samples collected from the channel bed and the
left and right channel banks (Guy, 1969). The
local gradient (GRA) was measured from
1:24,000-scale topographic maps and was
calculated as the slope of the channel between

the nearest contour lines crossing the channel
upstream and downstream of the gaging station.

Of the 157 gaging stations selected for study
using the channel-geometry flood-estimation
method, 46 were on stream channels that were
or were suspected of being channelized.
Bankfull width (BFW) and bankfull depth (BFD)
measurements could not be made for these sites
because channelization affects the long-term,
stabilizing conditions of stream channels.
Active-channel width (ACW) and active-channel
depth (ACD) measurements were made at these
46 sites because channel conditions indicated
that the active-channel portions of these
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Table 3. Statewide channel-geometry characteristic equations for estimating design-flood discharges
in Iowa

[Q, peak discharge, in cubic feet per second, for a given recurrence interval, in years; BFW, bankfull
width, in feet; BFD, bankfull depth, in feet; ACW, active-channel width, in feet]

Average Average
Standard standard error equivalent
error of estimate of prediction years of
Estimation equation Logyg Percent (percent) record
Bankfull equations
Number of streamflow-gaging stations = 111
Q, =4.56 BFW0-92 ppp1.02 0.169 40.4 41.0 4.2
Qs = 14.7 BFW0-915 ppp0.899 173 415 42.2 4.6
Q1o = 26.7 BFWO-874 pFp0.846 186 44.9 45.8 5.1
Qo5 = 49.5 BFW0-828 ppp0-.797 206 50.2 > 514 5.8
Qso = 73.2 BFWO-796 pFp0-769 221 544 55.8 7.0
Q100 = 104 BFW?-766 ppp0.747 236  58.7 60.4 8.5
Active-channel equations
Number of streamflow-gaging stations = 157
Q, =38.5ACW-06 0.267 67.8 68.3 1.6
Qs =98.2 ACW0-980 247 619 62.3 2.1
Qo = 157 ACWO-937 246 615 61.9 2.8
Qg5 =256 ACWO891 251 63.0 63.6 3.6
Qso = 349 ACWO-861 258  65.1 65.8 4.8
Qo0 = 458 ACW0-833 267 67.7 68.4 6.3

Note: Bankfull equations may provide improved accuracies over active-channel
equations for channels unaffected by channelization. For channels affected by
channelization, the active-channel equations only are applicable when the active
channels have stabilized (approximately 5 to 10 years after channelization). See
Appendix C for a discussion of stabilized channels.
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region (fig. 2). Consequently, both data sets
were split into regional data sets, and additional
multiple-regression analyses were performed
for two regions in Iowa.

The State was divided into two hydrologic
regions using information on areal trends of the
residuals for the statewide regression
equations, the Des Moines Lobe landform
region, and topography as guides. The
delineation of channel-geometry Regions I and
II is shown in figure 2. The topography of the
Des Moines Lobe landform region (Region II) is
characteristic of a young, postglacial landscape
that is unique with respect to the topography of
the rest of the State (Region I) (Prior, 1991,
p. 30-47). The region generally comprises
low-relief terrain, accentuated by natural lakes,
potholes, and marshes, where surface-water
drainage typically is poorly defined and
sluggish. The shaded area between hydrologic
Regions I and II (fig. 2) represents a transitional
zone where the channel morphology of one
region gradually merges into the other. This
regionalization process served to compensate for
the geographic bias observed in the statewide
residual plots, which was not accounted for
otherwise in the 111- and 157-station channel-
geometry regression equations listed in table 3.

Using the OLS and WLS multiple-
regression techniques previously described, two
sets of flood-estimation equations were
developed for each channel-geometry region. Of
the 11l1-station data set, 78 stations were in
Region I and 33 stations were in Region II. Of
the 157-station data set, 120 stations were in
Region I and 37 stations were in Region IL
Gaging stations located within the regional
transition zone (fig. 2) were compiled into either
Region I or Region II data sets on the basis of
residuals from the statewide regression
equations and on the regional locations of their
stream channels. The best equations developed
in terms of PRESS statistics, coefficients of
determination, and standard errors of estimate
for the Region I data sets are listed in table 4
and the best equations developed for the Region
IT data sets are listed in table 5.

The channel-geometry characteristic that
was identified as most significant in the Region
I 78-station bankfull equations was bankfull
width (BFW). The characteristic identified as

most significant in the Region I 120-station
active-channel equations was active-channel
width (ACW). The channel-geometry character-
istics that were identified as most significant in
the Region II 33-station bankfull equations were
bankfull width (BFW) and bankfull depth
(BFD), and the most significant characteristic in
the Region II 37-station active-channel
equations was active-channel width (ACW).
Appendix C (at end of this report) outlines the
procedure for conducting channel-geometry
measurements of these characteristics.

Comparison of Regional and Statewide
Channel-Geometry Equations

Comparison of the Region I and II equations
with the statewide equations shows an
improvement in the average standard errors of
prediction for all of the regional equations
except the 25-, 50- and 100-year recurrence
intervals of the Region II active-channel
equations. The regional equations listed in
tables 4 and 5 may provide improved accuracies
for estimating design-flood discharges based on
channel-geometry measurements. The
statewide equations listed in table 3 also can be
used to estimate design-flood discharges,
although their accuracies may be less than for
the regional equations. Comparison of the
bankfull equations with the active-channel
equations listed in tables 3-5 shows an
improvement in the average standard errors of
prediction for all of the bankfull equations. The
bankfull equations may provide improved
estimation accuracies in comparison to active-
channel equations for estimating design-flood
discharges for channels unaffected by
channelization.

Bankfull depth (BFD) was identified as a
significant channel-geometry characteristic in
the statewide bankfull equations (table 3). It is
also a significant channel-geometry character-
istic in the estimation of design-flood discharges
for stream sites located within the Des Moines
Lobe landform region (fig. 2, Region II). While
bankfull depth was not identified as significant
in estimating flood discharges in Region I, it
appears to be a significant morphologic feature
distinguishing stream channels in Regions I and
II.
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Table 4. Region I channel-geometry characteristic equations for estimating design-flood discharges in
Iowa outside of the Des Moines Lobe landform region!

[@, peak discharge, in cubic feet per second, for a given recurrence interval, in years; BFW, bankfull
width, in feet; ACW, active-channel width, in feet]

Average Average
Standard standard error equivalent
error of estimate of prediction years of
Estimation equation Logyg  Percent (percent) record
Bankfull equations
Number of streamflow-gaging stations = 78
Qg =4.55 BFW'45 0.160 381 38.9 4.8
Qs =15.6 BFW!:32 .140 33.1 33.8 7.4
Q0 =29.2 BFW'-25 .146 34.5 354 8.8
Qo5 =55.7 BFW118 162 385 39.8 9.8
Q5o =84.2 BFW113 .176 42.3 43.9 12.6
QIOO =122 .BI?‘V]"()9 192 46.4 48.3 16.1

Active-channel equations

Number of streamflow-gaging stations = 120

Q, =45.6 ACWYY7 0213  52.1 53.0 2.4
Qs =118 ACWO-982 180 432 44.2 4.0
Q10 = 190 ACWO-937 175 419 43.0 5.4
Qo5 =312 ACWO-889 179 431 445 7.0
Qsp =427 ACWO838 188  45.3 46.9 8.9
Q100 = 566 ACW0-828 198 482 50.0 11.0

1The Des Moines Lobe landform region is delineated as Region II in figure 2.

Note: Bankfull equations may provide improved accuracies over active-channel
equations for channels unaffected by channelization. For channels affected by
channelization, the active-channel equations only are applicable when the active
channels have stabilized (approximately 5 to 10 years after channelization). See
Appendix C for a discussion of stabilized channels.
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Table 5. Region II channel-geometry characteristic equations for estimating design-flood discharges
in Iowa within the Des Moines Lobe landform region

[Q, peak discharge, in cubic feet per second, for a given recurrence interval, in years; BFW, bankfull
width, in feet; BFD, bankfull depth, in feet; ACW, active-channel width, in feet]

Average Average
Standard standard error equivalent
error of estimate of prediction years of
Estimation equation Logyy  Percent (percent) record
’ Bankfull equations
Number of streamflow-gaging stations = 33
Qy =2.77 BFW0-844 pFp148 0.123 288 30.3 6.5
Qs =7.42 BFW0783 pFpl43 131 308 33.6 6.1
Q0 = 12.1 BFW0-748 pFpl4l 143 339 37.7 6.3
Qo5 = 19.7 BFWO-715 pFpl.38 162 38.6 43.4 6.6
Qso = 26.7 BFW?-6%4 pFp137 176 423 47.8 7.9
Q100 = 34.9 BFW0-675 ppp1.36 190 459 52.1 9.3
Active-channel equations
Number of streamflow-gaging stations = 37
Qy =7.80 ACWL30 0.236 58.5 59.7 1.9
Qs =19.1ACW.2% 235 584 60.1 2.1
Q1o =29.6 ACW19 240  59.7 61.8 2.6
Qo5 =45.6 ACW!16 248  62.0 64.8 3.3
Qs0 =59.5 ACWL14 255  64.2 67.4 4.4
Q190 = 75.0 ACW*12 262  66.4 70.0 . 5.7

1The Des Moines Lobe landform region is delineated as Region II in figure 2.

Note: Bankfull equations may provide improved accuracies over active-channel
equations for channels unaffected by channelization. For channels affected by
channelization, the active-channel equations only are applicable when the active
channels have stabilized (approximately 5 to 10 years after channelization). See
Appendix C for a discussion of stabilized channels.
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The  differences in  peak-discharge
estimation between regional and statewide
active-channel width (ACW) equations are
shown in figures 8B and 9B for the 2- and
100-year recurrence intervals, respectively.
Figures 8B and 9B illustrate the higher
estimated peak discharges obtained from the
Region I equations relative to those obtained
from the Region II equations for a specified
active-channel width. The slopes of the Region I
regression lines are parallel to those of the
statewide regression lines at a higher estimated
discharge. The Region II regression lines have
steeper slopes relative to the Region I and
statewide regression lines but at a lower
estimated discharge. Figures 84 and 94
illustrate the relation of the Region I, bankfull
regression equations for 2- and 100-year
recurrence-interval discharges, respectively.
Tests performed using STATIT procedure
REGGRP (Statware, Inc., 1990, p. 6-32 - 6-36)
indicated that there were statistically
significant differences in the slopes and
intercepts of the Region I and Region II
regression lines for both the bankfull and
active-channel equations.

The paired-t test was used to test whether
design-flood discharge estimates obtained by
both the bankfull and active-channel regression
equations for the same gaging station were
significantly different at the 95-percent level of
significance. The paired-t test was applied using
STATIT procedure HYPOTH (Statware, Inc.,
1990, p. 3-21 - 3-23). For table 3, discharge
estimates for 111 stations were not significantly
different for all design-flood recurrence
intervals. For table 4, discharge estimates for 78
stations were significantly different for the
2-year recurrence interval, but estimates were
not significantly different for the 5-year to
100-year recurrence intervals. For table 5,
discharge estimates for 33 stations were not
significantly different for all design-flood
recurrence intervals.

The application of the channel-geometry
regression equations listed in tables 4 and 5 for
a stream site are determined by two factors, and
the application of the channel-geometry
equations listed in table 3 are determined only
by the second factor. First, the stream site is
located in figure 2 to determine whether Region
I or Region II equations apply. The user may be

faced with a dilemma if design-flood discharges
are to be estimated for a stream site located
within the shaded transitional zone or for a
stream that crosses regional boundaries. The
discharges could be estimated using both the
Region I and II equations and hydrologic
judgment used to select the most reasonable
design-flood estimate, or a weighted average
based on the proportion of drainage area within
each region could be applied. The most
reasonable alternative to resolving this
dilemma may be to use the statewide equations
listed in table 3 because they preclude regional
subjectivity and the majority of statewide
design-flood estimates calculate between Region
I and Region II estimates.

Second, the stream site is inspected to
determine whether the stream was channelized.
If evidence of channelization is not found, then
the bankfull equations are applicable (the first
set of equations listed in tables 3, 4, and 5); if
evidence of channelization is found, then the
active-channel equations may be applicable for
stabilized channels (the second set of equations
listed in tables 3, 4, and 5). Appendix C (at end
of this report) outlines a procedure for
identifying channelized streams and describes
the stabilization conditions for which channel-
geometry measurements of channelized streams
are applicable.

Examples of Equation
Use--Examples 2-4

Example 2.--Use a regional, channel-
geometry equation to estimate the 100-year
peak discharge for the discontinued Black Hawk
Creek at Grundy Center crest-stage gaging
station (station number 05463090; map number
73, fig. 2), located in Grundy County, at a bridge
crossing on State Highway 14, at the north edge
of Grundy Center, in the NW1/4 sec. 7, T. 87 N.,
R. 16 W.

Step 1. The appropriate regional equation is
determined on the basis of which hydrologic
region the stream site is located in and whether
the stream has been channelized. This gaging
station is located in Region I, and an inspection
of the USGS 1:100,000-scale Grundy County
map and a visit to the site show no evidence of
channelization. Therefore the 100-year bankfull
equation for Region I, listed in the first set of
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equations in table 4, is determined to be the
most applicable. The only channel-geometry
characteristic used for the Region I bankfull
equation is the bankfull width (BFW). Appendix
C describes the procedure for conducting this
channel-geometry measurement.

Step 2. Three bankfull widths measuring 52,
50, and 52 ft, measured along a straight channel
reach about 0.75-1.0 mi downstream of the
gaging station, were used to calculate an
average bankfull width (BFW) of 51 ft. Figure
7B shows the bankfull reference level at one of
these channel measurement sections.

Step 3. The 100-year flood estimate for the
Region I bankfull equation (table 4) is calculated
as

Qi00= 122 (BFW)1®,
=122 (51)198
= 8,860 ft¥ss.

Example 3.--Use a regional channel-

geometry equation to estimate the 50-year peak
discharge for the Big Cedar Creek near Varina
continuous-record gaging station (station
number 05482170; map number 108, fig. 2),
located in Pocahontas County, at a bridge
crossing on County Highway N33, 5.5 mi
northeast of Varina, in the NE1/4 sec. 24, T. 91
N,R.34 W. ‘

Step 1. This gaging station is located in
Region II, and an inspection of the USGS
1:100,000-scale Pocahontas County map and a
visit to the site show evidence of channelization.
Therefore, the 50-year active-channel equation
for Region II, listed in the second set of
equations in table 5, is determined to be the
most applicable. Features that are character-
istic of channelized streams are illustrated in
figure 7D, which shows the straightened and
leveed channel reach downstream of the gage.
The only channel-geometry characteristic used
for the Region II active-channel equation is the
active-channel width (ACW). Appendix C
describes the procedure for conducting this
channel-geometry measurement.

Step 2. Three active-channel widths
measuring 25.6, 25.3, and 24.2 ft, measured
along a straight channel reach about 0.25-0.5 mi
downstream of the gaging station, were used to
calculate an average active-channel width

(ACW) of 25.0 ft. Figure 7D shows the
approximate active-channel reference level for
the channel reach measured to calculate an
average active-channel width.

Step 3. The 50-year flood estimate for the
Region II active-channel equation (table 5) is
calculated as

Qso = 59.5 (ACW)I'I‘,
=59.5 (25.0)-14,
=2,330 ft%s.

Example 4.--Use a statewide channel-
geometry equation in table 3 to estimate the
100-year peak discharge for the gaging station
used in example 2.

Step 1. Because a statewide equation is to be
used and no evidence of channelization is
evident, as determined in example 2, the
100-year bankfull equation listed in the first set
of equations in table 3 is applicable. Bankfull
width (BFW) and bankfull depth (BFD) are the
channel-geometry characteristics used for this
equation. Appendix C describes the procedure
for conducting these channel-geometry
measurements.

Step 2. The average bankfull width (BFW)
calculation of 51 ft for this stream channel is
outlined in example 2.

Step 3. The average bankfull depth (BFD)
for this stream channel was calculated to be 6.0
ft. The bankfull depth measurements used to
determine this average are listed in the
“Bankfull-Depth (BFD) Measurements” section
of Appendix C, and they are illustrated in figure
10.

Step 4. The 100-year flood estimate for the
statewide bankfull equation (table 3) is
calculated as

Qi00= 104 (BFW)®88 (BFD)*47,
= 104 (5 1)0,766 (6.0)0'7‘7,
= 8,060 ft%s.

Examples 2 and 4 illustrate the use of
bankfull measurements in computing 100-year
flood estimates for this gaging station using
regional and statewide multiple-regression
equations. The regional estimate was
determined to be 8,860 ft3/s, and the statewide
estimate was determined to be 8,060 ft%/s.
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APPLICATION AND RELIABILITY
OF FLOOD-ESTIMATION
METHODS

The regression equations developed in this
study for both the drainage-basin and
channel-geometry flood-estimation methods
apply only to streams in Iowa where peak
streamflow is not affected substantially by
stream regulation, diversion, or other human
activities. The drainage-basin method does not
apply to basins in urban areas unless the effects
of urbanization on surface-water runoff are
negligible. The channel-geometry method does
not apply to channels that have been altered
substantially from their stabilized conditions by
human activities, as outlined in Appendix C.

Limitations and Accuracy of
Equations

The applicability and accuracy of the
drainage-basin and channel-geometry flood-
estimation methods depend on whether the
drainage-basin or channel-geometry character-
istics measured for a stream site are within the
range of the characteristic values used to
develop the regression equations. The
acceptable range for each of the drainage-basin
characteristics used to develop the statewide
equations (table 2) are tabulated as maximum
and minimum values in table 6. Likewise, the
acceptable range for each of the channel-
geometry characteristics used to develop the
statewide and regional equations (tables 3-5)
also are tabulated as maximum and minimum
values in table 6. The applicability of the
drainage-basin and channel-geometry
equations is unknown when the characteristic
values associated with a stream site are outside
of the acceptable ranges.

The standard errors of estimate and average
standard errors of prediction listed in tables 2-5
are indexes of the expected accuracy of the
regression-equation estimates in that they
provide measures of the difference between the
regression estimate and the Pearson Type-III
estimate for a design-flood recurrence interval.
If all assumptions for applying regression
techniques are met, the difference between the
regression estimate and the Pearson Type-III
estimate for a design-flood recurrence interval

will be within one standard error approximately
two-thirds of the time.

The standard error of estimate is a measure
of the distribution of the observed annual-peak
discharges about the regression surface
(Jacques and Lorenz, 1988, p. 17). The average
standard error of prediction includes the error of
the regression equation as well as the scatter
about the equation (Hardison, 1971, p. C228).
Although the standard error of estimate of the
regression gives an approximation of the
standard error of peak discharges, the average
standard error of prediction provides more
precision in the expected accuracy with which
estimates of peak discharges can be made. The
average standard error of prediction is
estimated by taking the square root of the
PRESS statistic mean. Because the standard
errors of estimate and average standard errors
of prediction are expressed as logarithms (base
10), they are converted to percentages by
methods described by Hardison (1971, p. C230).

The average standard errors of prediction
for the regression models ranged as follows:
statewide drainage-basin equations, 38.6 to 50.2
percent (table 2); statewide channel-geometry
bankfull equations, 41.0 to 60.4 percent (table
3); statewide channel-geometry active-channel
equations, 61.9 to 68.4 percent (table 3); Region
I channel-geometry bankfull equations, 33.8 to
48.3 percent (table 4); Region I channel-
geometry active-channel equations, 43.0 to 53.0
percent (table 4); Region II channel-geometry
bankfull equations, 30.3 to 52.1 percent (table
5); and Region II channel-geometry active-
channel equations, 59.7 to 70.0 percent (table 5).

The average equivalent years of record
represents an estimate of the number of years of
actual streamflow record required at a stream
site to achieve an accuracy equivalent to each
respective drainage-basin or channel-geometry
design-flood discharge estimate. The average
equivalent years of record as described by
Hardison (1971, p.C231-C233) is a function of
the standard deviation and skew of the observed
annual-peak discharges at the gaging stations
analyzed for each respective regression
equation, the accuracy of the regression
equation, and the recurrence interval of the
design flood. The average equivalent years of
record for a design flood with a recurrence
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Table 6. Statistical summary for selected statewide drainage-basin and channel-geometry
characteristics, and for selected regional channel-geometry characteristics at streamflow-gaging

stations in Jowa

[CDA, contributing drainage area, in square miles; RR, relative relief, in feet per mile; DF, drainage
frequency, in number of first-order streams per square mile; TTF, 2-year, 24-hour precipitation inten-
sity, in inches; BFW, bankfull width, in feet; BFD, bankfull depth, in feet; ACW, active-channel width,

in feet]

Statewide drainage-basin characteristics

Statistic CDA RR DF TTF
Maximum 1,060 48.7 2.95 3.26
Minimum .338 1.57 .043 2.82
Mean 209 6.48 520 3.11
Median 80.7 4.45 510 3.14
No. of sites 164 164 164 164

Statewide channél-geometry characteristics

Statistic BFW BFD ACW
Maximum 523 17.1 510
Minimum 9.6 1.7 4.2
Mean 110 7.0 77.0
Median 82.7 6.7 49.8
No. of sites 111 111 157

Regional channel-geometry characteristics

Region I Region II
Statistic BFW ACW BFW BFD ACW
Maximum 523 510 361 12.5 339
Minimum 9.6 4.2 19.3 2.0 6.9
Mean 106 73.7 120 6.6 87.4
Median 71.0 46.1 106 6.6 73.3
No. of sites 78 120 33 33 37

interval of T-years is calculated as (Hardison,
1971, p. C231)

E=r (Lp)z (13)

where E is the average equivalent years of

record, in years;

r is a factor that is a function of the

mean weighted skew coefficient
of the logarithms (base 10) of the
observed annual-peak discharges
at the gaging stations used in
each respective regression-model
data set and the recurrence
interval relating the standard
error of a T-year peak discharge
to the index of variability (s) and
the number of observed annual-
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peak discharges;

@

is an index of variability equal to
the mean standard deviation of
the logarithms (base 10) of the
observed annual-peak discharges
at the gaging stations used in
each respective regression-model
data set; and

SE, is the average standard error of
prediction, in log units (base 10),
estimated using the Press
statistic.

Several of the primary drainage-basin
characteristics used in the regression equations
listed in table 2 are map-scale dependent. Use of
maps of scales other than the scales used to
develop the equations may produce results that
do not conform to the range of estimation
accuracies listed for the equations in table 2.
The scale of map to use for manual
measurements of each primary drainage-basin
characteristic is outlined in Appendix A and
Appendix B.

An additional constraint in the application
and reliability of the channel-geometry
characteristic equations is the requirement to
obtain onsite measurements of bankfull or
active-channel width, and possibly bankfull
depth. Training and experience are required to
properly identify the bankfull and active-
channel features in order to make these
measurements. The variability in making these
measurements can be large, even among
experienced individuals. As reported by Wahl
(1976), based on a test conducted in northern
Wyoming, the standard error in estimated
discharge due to variation in width measure-
ments alone was about 30 percent (0.13 log
unit). Variation in bankfull-depth measure-
ments probably would increase this standard
error in estimated discharge. Wahl (1976) also
noted an average bias with respect to the mean
channel width of about 14 percent (0.06 log
unit). A truer total standard error, in log units,
for a channel-geometry discharge estimate is
calculated by Wahl (1984, p. 63) as the square
root of the sums of the squares of the errors of
the regression equation and of the variation and
average bias in width measurements. Using the
standard error of estimate for the Region I,

100-year flood bankfull equation (table 4) and
assuming the standard errors for measuring
channel width reported by Wahl (1976), the

true standard error = [(0.192)2 + (0.13)2 + (0.06)2] 95,
=0.240.

This yields an average standard error of 59.6
percent compared to 46.4 percent for the
regression equation alone. Wahl (1984, p. 64)
notes that the variability of the measurements
collected in the Wyoming test probably is
greater than normally would be encountered in
applying channel-geometry measurements in a
particular hydrologic area. Sites in the
Wyoming test were chosen for their diversity,
and they ranged from ephemeral streams in a
nearly desert environment to perennial streams
in a high mountain environment.

Despite the limitations associated with the
channel-geometry method, the equations
presented in this report are considered to be
useful as a corroborative flood-estimation
method with respect to the drainage-basin
method. The channel-geometry equations are
applicable to all unregulated, stabilized stream
channels in the State, whereas the drainage-
basin equations are applicable only to stream
sites with drainage areas less than 1,060 miZ,
Although the error of measurement may be
larger for channel-geometry characteristics
than for drainage-basin characteristics, the
variability of channel-geometry measurements
made in Iowa are assumed to be not as great as
reported by Wahl (1984) for the Wyoming test.
An additional advantage in utilizing the
channel-geometry method is that design-flood
discharge estimates obtained from each
flood-estimation method can be used to calculate
a weighted average as described in the following
section.

Weighting Design-Flood Discharge
Estimates

Design-flood discharges determined using
both the drainage-basin and channel-geometry
flood-estimation methods are presumed to be
independent from each other. Each flood-
estimation method thus can be used to verify
results from the other; when design-flood
discharge estimates are independent, the
independent estimates can be used to obtain a
weighted average (IACWD, 1982, p. 8-1).
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Calculation of Estimates

Design-flood discharge estimates calculated
using both the drainage-basin and channel-
geometry flood-estimation methods can be
weighted inversely proportional to their
variances to obtain a weighted average that has
a smaller variance than either of their
individual estimates. According to the
Interagency Advisory Committee on Water Data
(IACWD, 1982), the weighted average is
calculated as

2 2
Qr gb) SE (cg)) *+ QU (cg) (SE (ab))
(SE(db))Z*' (SE

(cg)

where Qrgpcg)is the  weighted average
design-flood discharge, in cubic
feet per second, for a selected
T-year recurrence interval;

is the drainage-basin regression-
equation design-flood discharge,
in cubic feet per second;

QT(db)

is the standard error of estimate,
in log units (base 10), of the
channel-geometry regression
equation (tables 3-5);

SE(cg)

Qr(cg 18 the channel-geometry
regression-equation design-flood
discharge, in cubic feet per
second; and

SE 4y, is the standard error of estimate,
in log units (base 10), of the
drainage-basin regression
equation (table 2).

The standard error of estimate (SE(gheg)), in
log units (base 10), of the weighted average
design-flood discharge estimate Qrgpcg) can be
calculated as

(SE, 4 )2(SE, )2 705
(db) (cg) 2J ‘ (15)

SE =
(dbeg)
LSE(db))2+ (SE(cg))

Example of Weighting--Example 5

Example 5.--Use the 100-year drainage-
basin and channel-geometry regression
estimates (table 8) to obtain a weighted average,
100-year peak-discharge estimate for the
discontinued Black Hawk Creek at Grundy
Center crest-stage gaging station (station
number 05463090; map number 73, figs. 1 and
2).

The 100-year flood estimate calculated for
this gaging station using the drainage-basin
equation is 7,740 ft3/s (listed as method GISDB
in table 8), and the standard error of estimate,
in log units (base 10), for this equation is 0.198
(table 2). The 100-year flood estimate calculated
for this gaging station using the Region I,
bankfull channel-geometry equation is 8,860
ft%/s (listed as method BFRI in table 8), and the
standard error of estimate, in log units, for this
equation is 0.192 (listed in the first set of
equations in table 4). The weighted average,
100-year flood estimate is calculated using
equation 14 as

Q100 (ab) SE (cg)) 2+ Q100 (cg) (SE (ab))?
(SE (4p))%+ (SE

’

Q100 (dbeg) = o)
cg

_17,740(0.192) 2 + 8,860 (0.198) 2
(0.198) 2 + (0.192) 2

= 8,320 ft¥s.

The standard error of estimate for this
weighted average, 100-year peak-discharge
estimate is calculated using equation 15 as

2 2405
(SE 4y)) 2 (SE o)) }
2 b

SE gpeq) =
(dbeg) [ 2
(SE (gn)) %+ (SE (5))

) [ (0.198)2(0.192)2:]0'5
- 2

(0.198) 2 + (0.192)
= 0.138 log units or 32.6 percent.

Weighting Design-Flood Discharge
Estimates for Gaged Sites

Weighted design-flood discharges are
estimated for a gaged site based on either the
Pearson Type-III estimate and regression-
equation estimates from both the drainage-
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basin and channel-geometry flood-estimation
methods or on the Pearson Type-III estimate
and only one of the regression-equation
estimates. The design-flood discharge estimate
is a weighted average of these values in which
the Pearson Type-III estimate for the gaged site
is weighted by the effective record length (ERL)
at the gaged site, and the regression-equation
estimates are weighted by the average
equivalent years of record associated with their
respective regression’equations.

Calculation of Estimates

The: weighted design-flood discharge
estimate for a gaged site as outlined by the
Interagency Advisory Committee on Water Data
(IACWD, 1982, p. 8-1 - 8-2) is calculated as

regression-equation design-flood
discharge for a gaging station, in
cubic feet per second, (listed as
either method BFRI, ACRI,
ACRII, or BFRII in table 8); and

is the average equivalent years of
record for the channel-geometry
regression equation used to
determine @rygcq) (table 4 or 5).

E(cg)

If both the drainage-basin regression-
equation estimate Q(gqy) and the channel-
geometry regression-equation estimate QT(gcg)
are not available for a gaged site, then equation
16 used to calculate the weighted design-flood
discharge estimate QT(wg) is simplified to the

, (16)

@ we) = ERL+E g +E o)

where @r(wg is the weighted design-flood
discharge for a gaging station, in
cubic feet per second, for a

selected  T-year  recurrence
interval;
Qrg 1s the Pearson  Type-III

design-flood discharge for a
gaging station, in cubic feet per
second, as determined by the
analysis of the observed
annual-peak discharge record
(listed as method B17B in table
8);
ERL is the effective record length for a
gaging station, in  years,
representing the QT(g) analysis
(table 8);

QT(gdp) 18 the drainage-basin regression-
equation design-flood discharge
for a gaging station, in cubic feet
per second, (listed as method
GISDB in table 8);

is the average equivalent years of
record for the drainage-basin
regression equation used to
determine @mygqgp, (table 2);

E(gp)

Q@r(geg) 18 the channel-geometry

weighting of two estimates based on @) and
ERL and either Q(ggp) and E(gp) or Qrigeg) and
E(cg)- An example of weighting a gaged site with
only one regression-equation estimate is
illustrated in “Example 7.”

By including both the drainage-basin and
channel-geometry regression-equation esti-
mates, or only one of these estimates, with the
computed Pearson Type-III estimate for a gaged
site, design-flood histories for a relatively long
period of time are incorporated into the
weighted estimate for the gaged site and tend to
decrease the time-sampling error (Choquette,
1988, p. 41). Climatic conditions during a short
gaged period of record often are not indicative of
the longer term climatic variability associated
with a particular gaging station. Such
time-sampling error may be particularly large
when the observed gaged period of record
represents an unusually wet or dry climatic
cycle compared to the longer term average
climatic conditions. Time-sampling error thus is
minimized for a gaging station by weighting the
design-flood discharge estimate @ryg)-

Examples of Weighting--Examples 6-7

Example 6.--Calculate a weighted 100-year
peak-discharge estimate for the discontinued

Black Hawk Creek at Grundy Center
crest-stage gaging station (station number
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05463090; map number 73, figs. 1 and 2). An
inspection of table 8 lists regression-equation
estimates for both the drainage-basin and
channel-geometry flood-estimation methods.
The 100-year Pearson Type-III estimate is
8,320 ft3/s, and the effective record length is 24
years (table 8). The 100-year drainage-basin
regression estimate is 7,740 ft3/s (table 8), and
the average equivalent years of record for this
regression equation is 11.5 (table 2). The
100-year Region I, bankfull channel-geometry
regression estimate is 8,860 ft3/s (table 8), and
the average equivalent years of record for this
regression equation is 16.1 (listed in the first set
of equations in table 4). The weighted 100-year
flood estimate for this gaging station is
calculated using equation 16 as

Estimating Design-Flood
Discharges for an Ungaged Site on a
Gaged Stream

Design-flood discharges for an ungaged site
on a gaged stream can be estimated if the total
drainage area of the ungaged site is between 50
and 150 percent of the total drainage area of the
gaged site by an adjustment procedure
described by Choquette (1988, p. 42-45) and
Koltun and Roberts (1990, p. 6-8). This
procedure uses flood-frequency information
from the Pearson Type-III and
regression-equation estimates at the gaged site
to adjust the regression-equation estimate at
the ungaged site.

(QIOO (g)) (ERL) + (QIOO(gdb)) (E(db)) + (QIOO(gcb)) (E(cg))

Q100 (wg) =

ERL*'E(db)*E(cg)

_ (8,320) (24) + (7, 740) (11.5) + (8, 860) (16.1)

24+11.5+16.1
= 8,360 ft%/s.

Example 7.--Calculate a weighted 50-year
peak-discharge estimate for the discontinued
Fox River at Bloomfield gaging station (station
number 05494300; map number 133, fig. 1),
located in Davis County, at a bridge crossing on
a county highway, about 0.5 mi north of
Bloomfield, in the SE1/4 sec. 13, T. 69 N., R. 14
W. Table 8 lists a regression-equation estimate
for only the drainage-basin flood-estimation
method. The 50-year Pearson Type-III estimate
is 10,600 ft3/s, and the effective record length is
21 years (table 8). The flood-frequency curve
developed from the Pearson Type-III analysis
for this gaging station is shown in figure 3. The
50-year drainage-basin regression estimate is
7,600 ft3/s (table 8), and the average equivalent
years of record for this regression equation is 9.5
(table 2). The weighted 50-year flood estimate
for this gaging station is calculated using a
simplified version of equation 16 as

(Q50(g)) (ERL) + (Q50(gdb)) (E(db))

b
ERL+E(db)

QSO(wg) =

_(10,600) (21) + (7, 600) (9.5)
- 21+95 ’

= 9,670 ft¥s.

Calculation of Estimates

The regression-equation estimate for the
ungaged site is determined as one of the
following: (1) the weighted average @r(dbeg)
calculated from both the drainage-basin and
channel-geometry regression-equation esti-
mates using equation 14 or (2) the regression-
equation estimate of @gp) Or Qr(cq) calculated
from either one of these flood-estimation
methods. The calculation for this adjustment
procedure is

24TDA
Qr (au) = @r (m)[AF-(TDAg J(AF— 1)], an

where Q(a,) is the adjusted design-flood
discharge for the ungaged site, in
cubic feet per second, for a
selected T-year recurrence
interval;

is the regression design-flood
discharge for the ungaged site, in
cubic feet per second, determined
as one of the following: (1) the
weighted average of both the
drainage-basin and channel-

QT(ru)
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geometry  regression-equation
estimates @r(dbeg) (equation 14);
(2) only the drainage-basin
regression-equation estimate
Qrdp); or (3) only the channel-
geometry regression-equation
estimate Qrcg);

AF is the adjustment factor for the
gaged site and is calculated as

QT(wg)

AF = (18)

QT(rg)

where Qrwg is the weighted design-flood
discharge for the gaged site, in
cubic feet per second, as defined
by equation 16;

is the regression design-flood
discharge for the gaged site, in
cubic feet per second, determined
as one of the following: (1) the
weighted average of both the
drainage-basin and channel-
geometry  regression-equation
estimates Qrgbeg), as defined by
equation 14; (2) only the
drainage-basin regression-
equation estimate Qrqp); or (3)

QT(rg)

only the channel-geometry
regression-equation estimate
QT(cg);

ATDA is the absolute value of the
difference between the total
drainage area of the gaged site
(TDAg) and the total drainage
area of the ungaged site; and

TDA, is the total drainage area of the
gaged site, in square miles, listed
as the published drainage area in

table 9.

This procedure (1) adjusts  the
regression-equation estimate for the ungaged
site Qrgu) by the ratio AF when the total
drainage area of the ungaged site equals the
total drainage area of the gaged site TDA, and
(2) prorates the adjustment to 1.0 as the
difference in total drainage area between the
gaged site and the ungaged site approaches

either 0.5 or 1.5 of the total drainage area of the
gaged site. In other words, when the total
drainage area of the ungaged site is 50 percent
larger or 50 percent smaller than the total
drainage area of the gaged site, no adjustment is
applied to the regression-equation estimate for
the ungaged site Q).

Example of Estimation Method--Example 8

Example 8.--Determine the 50-year peak-
discharge estimate for an ungaged site on Otter
Creek, located on the Osceola and Lyon County
line, at a bridge crossing on County Highway
126, 4.75 mi southwest of Ashton, in the SW1/4
sec. 31, T. 98 N., R. 42 W. Because a crest-stage
gaging station is located on this stream, Otter
Creek near Ashton (station number 06483460;
map number 139, fig. 1), the 50-year recurrence
interval regression-equation estimate
calculated for the ungaged site can be adjusted
by the weighted 50-year flood-discharge
estimate calculated for the gaged site.
Estimating the adjusted 50-year peak discharge
for the ungaged site Qgqy (equation 17)
involves four steps.

Step 1. A regression-equation estimate
Q@so(ru) (equation 17) is calculated for the
ungaged site. Both drainage-basin and thannel-
geometry flood-estimation methods could be
used to calculate a weighted average estimate
Q50(dbcg) (equation 14) for the regression
estimate (Qsgry)) or only one of these
flood-estimation methods could be used to
calculate the regression-equation estimate
(Qs0(ru)- For this example, only the statewide
drainage-basin estimate (Qsq(gp) (table 2) will
be used for the 50-year recurrence interval
regression-equation estimate (Qsq(ry)) at the
ungaged site because channel-geometry
measurements were not collected for calculating
a channel-geometry estimate (Qso(cg))-

(A). The characteristics used in the
drainage-basin equation (table 2) are
contributing drainage area (CDA), relative relief
(RR), drainage frequency (DF), and 2-year,
24-hour precipitation intensity (TTF). The
primary drainage-basin characteristics used in
this equation are total drainage area (TDA),
noncontributing drainage area (NCDA), basin
relief (BR), basin perimeter (BP), number of
first-order streams (FOS), and 2-year, 24-hour
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precipitation intensity (TTF). These primary
drainage-basin characteristic measurements
and the scale of maps to use for each manual
measurement are described in Appendix A and
Appendix B.

(B). The topographic maps used to delineate
the drainage-divide boundary for this ungaged
site are the DMA 1:250,000-scale Fairmont
topographic map and the USGS 1:100,000-scale
Osceola County map. Contributing drainage
area (CDA) is calculated from the primary
drainage-basin characteristics total drainage
area (TDA) and noncontributing drainage area
(NCDA). The drainage-divide boundary for this
basin is delineated on the 1:250,000-scale map,
and the total drainage area (TDA) for the
ungaged site is listed in Larimer (1957, p. 313)
as 120 mi2. The total drainage area published
for the gaged site, Otter Creek near Ashton
(station number 06483460; map number 139,
fig. 1), is 88.0 mi? (table 9). Because the total
drainage area of the ungaged site is 136.4
percent of the total drainage area of the gaged
site and within the 50- and 150-percent limits
for application, the adjustment procedure is
determined to be applicable to the ungaged site.
Inspection of the 1:100,000-scale map does not
show any noncontributing drainage areas
within the drainage-divide boundary of this
basin. The contributing drainage area (CDA) for
the ungaged site is calculated using equation 10
as

CDA =TDA - NCDA,
=120-0,
=120 mi2.

(C). Relative relief (RR) for the ungaged site
is calculated from the primary drainage-basin
characteristics basin relief (BR) and basin
perimeter (BP). The difference between the
highest elevation contour and the lowest
interpolated elevation in the basin measured
from the 1:250,000-scale topographic map gives
a basin relief of 286 ft. The drainage-divide
boundary delineated on the 1:250,000-scale
topographic map is used to measure the basin
perimeter, which is 57.8 mi. Relative relief (RR)
is calculated using equation 11 as

_BR
= =5
_ 286
- =

=4.95 fumi.

RR

(D). Drainage frequency (DF) for the
ungaged site is calculated from the primary
drainage-basin characteristics number of
first-order streams (FOS) and contributing
drainage area (CDA). A total of 57 first-order
streams are counted within the drainage-divide
delineation for the ungaged site on the
1:100,000-scale topographic map. Drainage
frequency (DF) is calculated using equation 12
as

FOS
DF = pa’
=57

120°

= 0.475 first-order streams/miZ.

(F). The 2-year, 24-hour precipitation

intensity (T'TF) for the ungaged drainage basin
is determined from figure 5. Because the
drainage-divide boundary of this ungaged site
overlies two of the 2-year, 24-hour precipitation
intensity polygons shown in figure 5, a weighted
average for the basin is computed using
equation 19 as outlined in Appendix B.
According to figure 5, approximately 60 percent
of the total drainage area (TDA) for the ungaged
site is located within the polygon labeled as
2.85 in., and approximately 40 percent of the
total drainage area is located within the polygon
labeled as 2.95 in. The weighted average for the
2-year, 24-hour precipitation intensity (T'TF) is
calculated using equation 19 (Appendix B) as

TTF = (A) (TTFy) + (Ay) (TTFy),

= (0.60) (2.85) + (0.40) (2.95),
= 2.89in.

(G). The 50-year flood estimate for the
ungaged site using the drainage-basin equation
(table 2) is calculated as

Qso = 231 (CDA)* 6% (RR)*556 (DF)*401 (TTF - 2.5)*49,

=231 (120)°6%4 (4,95)0-656 (0.475)0-401
(2.89 - 2.5)0-491,

=8,550 ft¥ss.
Because Q50 = @50(db)» and @s50(ry) (equation

17) = % o(db) in this example, then Qo) =
8,550 ft 7 s.
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Step 2. The weighted 50-year peak
discharge for the gaged site Qsowg) (equation
16) is estimated next. Because table 8 lists both
the drainage-basin and channel-geometry
regression-equation estimates for this gaged
site, Otter Creek near Ashton (station number
06483460, map number 139, fig. 1), the
weighted estimate will be based on the Pearson
Type-III estimate and both of these
regression-equation estimates.

The 50-year Pearson Type-III estimate is
11,100 ft3/s, and the effective record length is 39
years (table 8). The 50-year drainage-basin
regression estimate is 6,710 ft%/s (listed as
method GISDB in table 8), and the average
equivalent years of record for this regression
equation is 9.5 (table 2). The 50-year Region I,
active-channel channel-geometry regression
estimate is 9,260 ft3/s (listed as method ACRI in
table 8), and the average equivalent years of
record for this regression equation is 8.9 (listed
in the second set of equations in table 4). The
weighted 50-year flood estimate for the gaged
site is calculated using equation 16 as

9,260 ft3/s (listed as method ACRI in table 8),
and the standard error of estimate, in log units,
for this equation is 0.188 (listed in the second set
of equations in table 4). The weighted average,
50-year flood estimate for the gaged site is
calculated using equation 14 as

Q50 (db) (SE (eg)) %+ Q50 (cg) (SE (ab))?
(SE 4p)) 2+ (SE

€50 (dbeg) =

b

2
(cg))

_6,710(0.188) 2 +9, 260 (0.185) 2

(0.185)2 + (0.188) 2
=17,960 ft¥s.

Because Qso(dbeg) = @s50(rg) it this example, then
Qs0rp) = 7,965’?% /s.

Step 4. The final step adjusts the 50-year
recurrence interval regression-equation est-
imate of 8,550 ft3/s (Qqv)) calculated for the
ungaged site by the 50-year recurrence interval
information determined for the gaged site. The
adjusted 50-year flood estimate for the ungaged
site Qsq(au) is calculated using equations 17 and
18 as

(Q50(g)) ERL) + (@50 (gan)) (B ab)) + (U0 (geg)) B (cg))

Q50 (wg) = ERL+E g +E

_ (11, 100) (39) + (6, 710) (9.5) + (9, 260) (8.9)

39+9.5+89

=10,100 ft3/s.

Step 3. The regression-equation estimate for
the gaged site @50rg (equation 18) is
determined next. Because table 8 lists both the
drainage-basin and channel-geometry
regression estimates for this gaged site, Otter
Creek near Ashton, the weighted average of
these regression estimates Qso(dhcg) (equation
14) is calculated to determine the regression
estimate Qs(rg)-

The 50-year flood estimate calculated for
this gaging station using the drainage-basin
equation is 6,710 ft3/s (listed as method GISDB
in table 8), and the standard error of estimate,
in log units (base 10), for this equation is 0.185
(table 2). The 50-year flood estimate calculated
for this gaging station using the Region I,
active-channel channel-geometry equation is

2ATDA
“socam) = U0 [AF‘ ( TDA, )(AF' 1)]'

ATDA is the absolute value of the difference
between the total drainage area of the gaged site
(88.0 mi%) and the total drainage area of the
ungaged site (120 mi?),

ATDA = 32.0 mi%;
TDA, = 88.0 mi%;
_ 950 (wg)

Q50 (rg)

10, 100
7,960 ’

AF =1.27;

AF

AF =

(2) (32.0)

880 ) (1.27 - 1)] ,

Qg0 (au) = 8550127 ¢

=9,180 ft¥s.

This adjustment procedure has increased
the 50-year recurrence interval regression-
equation estimate for the ungaged site @5o(ry) by
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107.4 percent based on the 50-year recurrence
interval information determined for the gaged
site upstream of this ungaged site.

SUMMARY AND CONCLUSIONS

Drainage-basin and channel-geometry
equations are presented in this report for
estimating design-flood discharges having
recurrence intervals of 2, 5, 10, 25, 50, and 100
years at stream sites on rural, unregulated
streams in Iowa. The equations were developed
using ordinary least-squares and weighted
least-squares multiple-regression techniques.
Statewide equations were developed for the
drainage-basin flood-estimation method and
statewide and regional equations were
developed for the channel-geometry flood-
estimation method. The drainage-basin
equations are applicable to stream sites with
drainage areas less than 1,060 mi2, and the
channel-geometry equations are applicable to
stabilized stream channels in Iowa.

Flood-frequency curves were developed for
188 continuous-record and crest-stage gaging
stations on unregulated rural streams in Iowa.
Pearson Type-III estimates of design-flood
discharges are reported for these gaging
stations.

Regression analyses of Pearson Type-III
design-flood discharges and selected drainage-
basin characteristics, quantified using a
geographic-information-system (GIS) proce-
dure, were used to develop the statewide
drainage-basin flood-estimation equations. The
significant characteristics identified for the
drainage-basin equations included contributing
drainage area; relative relief, drainage
frequency; and 2-year, 24-hour precipitation
intensity. The regression coefficients for these
equations indicated an increase in design-flood
discharges with increasing magnitude in the
values of each drainage-basin characteristic.
The average standard errors of prediction for
the drainage-basin equations ranged from 38.6
to 50.2 percent.

Techniques on how to make manual
measurements from topographic maps for the
primary drainage-basin characteristics used in
the regression equations are presented along
with examples. Several of the primary

drainage-basin characteristics used in the
regression equations are map-scale dependent.
Use of maps of scales other than the scales used
to develop the equations may produce results
that do not conform to the range of estimation
accuracies listed for the equations.

Regression analyses of Pearson Type-III
design-flood discharges and selected
channel-geometry characteristics were used to
develop both statewide and regional channel-
geometry equations. On the basis of a
geographic bias identified from the statewide
regression residuals, two channel-geometry
hydrologic regions were defined for Iowa
relative to the Des Moines Lobe landform
region. The significant channel-geometry
characteristics identified for the statewide and
regional regression equations included bankfull
width and bankfull depth for natural channels
unaffected by channelization, and active-
channel width for stabilized channels affected
by channelization. The regression coefficients
for the statewide and regional channel-
geometry equations indicated an increase in
design-flood  discharges with increasing
magnitude in the values of each channel-
geometry characteristic. The average standard
errors of prediction for the statewide regression
equations ranged from 41.0 to 68.4 percent and
for the regional regression equations from 30.3
to 70.0 percent. The regional channel-geometry
regression equations provided an improved
estimation accuracy compared to the statewide
regression equations, with the exception of the
Region II active-channel regression equations
developed for design floods having recurrence
intervals of 25, 50, and 100 years. Guidelines for
measuring the channel-geometry character-
istics used in the statewide and regional
regression equations are presented along with
examples.

Procedures for applying the drainage-basin
and channel-geometry regression equations
vary and depend on whether the design-flood
discharge estimate is for a site on an ungaged
stream, an ungaged site on a gaged stream, or a
gaged site. When both a drainage-basin and a
channel-geometry regression-equation estimate
are available for a stream site, a procedure is
presented for determining a weighted average of
the two flood estimates. The procedure for
estimating a design-flood discharge for an
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ungaged site on a gaged stream is based on
information from the Pearson Type-III estimate
for the gaged site, and on information from
either both flood-estimation methods, or from
only one of the methods. At a gaged site, a
weighted design-flood discharge is estimated
from the Pearson Type-III estimate, and from
either both flood-estimation methods, or from
only one of the methods. Examples are provided
for each of these procedures.

The drainage-basin and channel-geometry
flood-estimation methods presented in this
report each measure characteristics that are
presumed to be independent of each other. The
drainage-basin flood-estimation method is
based on measurements of morphologic and
climatic characteristics that are related to how
water flows off the land. The drainage-basin
method measures the varying flood potential at
stream sites as defined by differences in basin
size, topographic relief, stream development,
and precipitation. The channel-geometry
flood-estimation method, in contrast, is based on
measurements of channel morphology that are
assumed to be a function of streamflow
discharges and sediment-load transport. The
channel-geometry method measures the
variability of floods that have actually occurred
as defined by differences in channel width and
depth.

The drainage-basin flood-estimation method
developed in this study is similar to the regional
flood-estimation method developed in a previous
study because both methods estimate flood
discharges on the basis of morphologic relations.
While the standard errors of estimate for the
drainage-basin equations in this study appear
to be higher, a direct comparison cannot be
made because of the different methodologies
used to develop the equations.

The statewide drainage-basin and statewide

channel-geometry regression equations
presented in this report provide flood-
estimation methods that minimize the

subjectivity in their application to the ability of
the user to measure the characteristics.
Although the user of the regional channel-
geometry equations may still encounter a
dilemma when a stream site is located within
the transitional zone or when a stream crosses
regional boundaries, application of the

statewide channel-geometry equations may be
utilized to preclude the regional subjectivity
associated with estimating a design-flood
discharge in this situation. Despite the greater
variability in the error of measurement
associated  with  the  channel-geometry
characteristics, the channel-geometry equations
presented in this report are considered to be
useful as a corroborative flood-estimation
method with respect to the drainage-basin
method.

The estimation accuracy of the drainage-
basin regression equations possibly could be
improved if drainage-basin characteristics were
quantified from larger scale data. The
drainage-basin characteristics quantified by the
GIS procedure were limited to the 1:250,000-
and 1:100,000-scale digital cartographic data
currently available for Iowa.
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APPENDIX A

Selected Drainage-Basin Characteristics Quantified Using a Geographic-
Information-System Procedure

[*, A primary drainage-basin characteristic used in the regression equations (table 2);
superscripts 2, footnotes at end of the appendix reference the literary and data source for
each drainage-basin characteristic and list topographic-map scales to use for manual
measurements of primary drainage-basin characteristics used in the regression equations]

Basin-Area Measurements

TDA* - Total drainage area?, in square miles?, includes noncontributing areas.

NCDA™ - Noncontributing drainage area?, in square rnilesb, total area that does not contribute to
surface-water runoff at the basin outlet.

Basin-Length Measurements

BL - Basin length®, in milesb, measured along the main-channel, flood-plain valley from basin
outlet to basin divide.

BP* - Basin perimeter?, in miles?, measured along entire drainage-basin divide.

Basin-Relief Measurements

BS - Average basin slope?, in feet per mile?d, measured by the “contour-band” method, within
the contributing drainage area (CDA),

_ (total length of all selected elevation contours) (contour interval )

BS CDA

BR" - Basin relief®, in feet®f measured as the sea-level elevation difference between the highest
contour elevation and the lowest interpolated elevation at basin outlet within the CDA.

Basin Computations

CDA - Contributing drainage area?, in square miles, defined as the total area that contributes to
surface-water runoff at the basin outlet,

CDA=TDA — NCDA.

BW - Effective basin width?, in miles,
BW = % .
SF - Shape factor?, dimensionless, ratio of basin length to effective basin width,
SF = g—fV
ER - Elongation ratio?, dimensionless, ratio of (1) the diameter of a circle of area equal to that of _
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the basin to (2) the length of the basin,

4CDA 05 1 05
ER = = 113(==) .
R |: ] 113 ()

r(BL)2
RB - Rotundity of basin?, dimensionless,
n(BL) 2
= ~cpi = 0785 SF.
CR - Compactness ratio?, dimensionless, is the ratio of the perimeter of the basin to the
circumference of a circle of equal area,
BP
CR = —4—Mm———.
2(xCDA) %5
RR - Relative relief®, in feet per mile,
BR
RR = P
Channel- (Stream-) Length Measurements
MCL - Main-channel length?, in miles8, measured along the main channel from the basin outlet to
the basin divide.
TSL - Total stream length®, in miles8, computed by summing the length of all stream segments

within the CDA.
Channel-Relief Measurement

MCS - Main-channel slope?, in feet per mile, an index of the slope of the main channel computed
from the difference in streambed elevationd at points 10 percent and 85 percent of the
distance® along the main channel from the basin outlet to the basin divide,

(Egs—E\p)

MCS = a5 wer

Channel (Stream) Computations

MCSR - Main-channel sinuosity ratio?, dimensionless,

MCL
MCSR = ——.
BL

SD - Stream density?, in miles per square mile, within the CDA,

_TSL

SD CDA’

CCM - Constant of channel maintenance?, in square miles per mile, within the CDA,

46 ESTIMATING DESIGN-FLOOD DISCHARGES FOR STREAMS IN IOWA



CDA 1
CCM— m = S—D.

MCSP - Main-channel slope proportion®, dimensionless,

MCSP = ——A—l—C—L— .
(MCS) 05
RN - Ruggedness number, in feet per mile,
RN = ﬁ(%@ = (SD) (BR).
SR - Slope ratio of main-channel slope to basin slope®, dimensionless, within the CDA,
sr =222,

First-Order Streams Measurement

Fos* - Number of first-order streams within the CDAj'g'k, using Strahler’s method of ordering
streams.

Drainage-Frequency Computation

DF - Drainage frequency®, in number of first-order streams per square mile, within the CDA,
FOS
DF = oA

Climatic Measurements

AP - Mean annual precipitation®, in inches!, computed as a weighted average within the TDA.

TTF - 2-year, 24-hour precipitation intensity®, in inches™", defined as the maximum 24-hour
precipitation expected to be exceeded on the average once every 2 years, computed as a
weighted average within the TDA.

8Modified from Office of Water Data Coordination (1978, p. 7-9 - 7-16).

bMeasured from 1:250,000-scale U.S. Defense Mapping Agency topographic maps.

“Modified from National Water Data Storage and Retrieval System (Dempster, 1983, p. A-24--A-26).
dMeasured from 1:250,000-scale U.S. Defense Mapping Agency digital elevation model sea-level data.
®Modified from Strahler (1958, p. 282-283).

fUse 1:250,000-scale U.S. Defense Mapping Agency topographic maps for manual measurements.

EMeasured from 1:100,000-scale U.S. Geological Survey digital line graph data.
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hModified from Robbins (1986, p. 12).
Modified from Melton (1957).
JModified from Strahler (1952).

kUse 1:100,000-scale U.S. Geological Survey topographic maps (County Map Series) for manual
measurements.

IDetermined from Iowa Department of Agriculture and Land Stewardship, State Climatology Office
(Des Moines), and from Baker and Kuehnast (1978); mean annual precipitation maps.

MDetermined from Waite (1988, p. 31) and Hershfield (1961, p. 95); 2-year, 24-hour precipitation
intensity maps.

Use figure 5 for manual measurements.
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APPENDIX B

Techniques for Manual, Topographic-Map Measurements of Primary
Drainage-Basin Characteristics Used in the Regression Equations

The drainage-basin flood-estimation method is applicable to unregulated rural stream sites in
Towa with drainage areas less than 1,060 miZ. Specific information concerning techniques for making
manual measurements is outlined for the six primary drainage-basin characteristics that are used
to calculate the four basin characteristics listed in the regression equations in table 2. Comparisons
between manual measurements made from different scales of topographic maps are shown in table
7 for four of these six-primary drainage-basin characteristics. Table 7 demonstrates that several of
these primary drainage-basin characteristics are map-scale dependent. Map-scale dependency refers
to a condition whereby a drainage-basin characteristic value is affected substantially by the scale of
topographic map used in the measurement. The comparisons in table 7 list the percentage
differences between manual measurements made at the same scale used for geographic-
information-system (GIS) measurements (the base scale) and manual measurements made at
different scales. Use of maps of scales other than the scales used to develop the equations may
produce results that do not conform to the range of estimation accuracies listed for the equations in
table 2. The scale of map to use for manual measurements of each primary drainage-basin
characteristic is outlined in this section and in the footnotes at the end of Appendix A.

Total Drainage Area (TDA)

The stream site is located and the drainage-divide boundary upstream of the site is delineated
on 1:250,000-scale U.S. Defense Mapping Agency (DMA) topographic maps. The drainage-divide
boundary is delineated along the topographic divide that directs surface-water runoff from
precipitation to the basin outlet located at the stream site. The drainage-divide boundary is an
irregular line that traces the perimeter of the drainage area and is perpendicular to each elevation
contour that it crosses (Office of Water Data Coordination, 1978, p. 7-9 - 7-10). In some cases it may
be difficult to delineate the drainage-divide boundary on 1:250,000-scale topographic maps,
particularly for small drainage basins or for drainage basins located in areas of low relief. In such
cases it may be necessary to use larger scale topographic maps, such as 1:100,000-scale or
1:24,000-scale maps, to facilitate the delineation. Figure 4A shows the drainage-divide boundary for
the Black Hawk Creek at Grundy Center streamflow-gaging station (station number 05463090; map
number 73, fig. 1).

Because GIS measurements of total drainage area were quantified from 1:250,000-scale
topographic maps, the appropriate scale for manual measurements of total drainage area is
1:250,000. Total drainage areas for many Iowa stream sites are listed in “Drainage Areas of Iowa
Streams” (Larimer, 1957). The total drainage areas listed in this publication can be used to calculate
contributing drainage area (CDA) once any necessary adjustments for noncontributing drainage
areas (NCDA) are accounted for. Manual measurements of total drainage area for stream sites
typically are planimetered or digitized from topographic maps if drainage areas are not listed in
Larimer’s (1957) publication.

Noncontributing Drainage Area (NCDA)

Noncontributing drainage areas usually are identified as either an area of internal drainage or
as an area draining into a disappearing stream. Internal drainage areas drain into depressions,
which are represented by hachured contour lines on topographic maps. Internal drainage areas may
include potholes or marshes, which are common within the Des Moines Lobe landform region in
north-central Iowa (Region II, fig. 2). Disappearing streams do not connect with the drainage
network that reaches the basin outlet. In the karst topography of northeast Iowa, sinkholes are a
common cause of disappearing streams.

APPENDIX B 49



‘suiseq aeutelp 3sayj 10J PayIIuUIP! AIIM VION
jueoyruSIs ou IsNBORq PISI| 10U 318 (YFON) Seale afeurelp unnquIuoduoN V(L JO SIUIWAINSEIW [enuUrw 10§ pasn sem tojounueld v,

-a|qeotjdde
J0U M (JLL) SPMIsudul uorjejidioard Inoy-pg ‘18ah-g I0j sjuswainseswr uostiedwo) ‘g 9[qe) ul paysi| aie suonenbs uorssauday
€'€6- Ly 38 0'0¥3+ ¢LG ¢'16- 08 L 0°0TE+ 1v 0°06- 01 1 Sod
Ad1d% +M00T 0S¢ d41d % Av¥e  Jd1d % 4001 Y09¢ d41d %  Mve  Ad1d % +M001 3052
L0T1- 028 289 T'e+ 1€2 A vee 1444 T'eT+ 40 votr+ 06¥ L4244 g4
LoT+ 82¢ 902 g8+ g'es €9+ 078 0°6L get L& 44 60+ 1°¢¢ 612 dd
0y 0L8 906 1'e S81 9'¢- 81 681 81" €235 0¥ 8°1¢ IA44 val;
d41d% MO00T «X09¢ d41d % dA¥e Jd1d % HM00T  «M09¢ dd1d % 3ve AddId % 00T  «30GZ SO1sLIa)
-orreyd
uiseq
(1 '8y ‘,e1 19quinu deur) (1 8y ‘g81 sequnu dewr) (1 '8y ‘11 18quinu dewr)
00560990 00¥€0690 0SP¥IvS0

[S}USWIOINSBIW [ENUEBUI 3[BIS-UOSHIBdUI0D PUB 9[BIS-9SB( UdIMII( IUIIYIP
a8ejuooaad J 41 % ‘sdew oryderdodo) LeAlng [eordojoan) "G ) 9[BIS-(000 PZ: 1 WOIJ speUl sJUIWINSBIW [Bnuew ‘g ‘sdew orydeadodoy
sotag depy £yuno) Aoarng [eotdojoer) ‘q () 2[€98-000‘00T:T WOLJ speUW SJUIWSINSBIUL [BNUBUW ‘J[00] SIUdWAINSEBIW WI}SAS-UOTJBULIOJUL
-orydex3003 10j posn a(eds sseq ‘, ‘sdewr orydeidodo) Louady Furddepy asusja(q ‘g (] 91€98-000°0GE:1 WOI] SpBUI SHUIWIINSBIW [BNUBU
‘Y10G7 ‘swead)s 1oplo-1say Jo Joquunu ‘GO ‘199 Ul ‘JIT[al ulseq ‘Yg ‘sojtwt ul ‘1ajowniad uiseq ‘gg ‘sojiwt aqenbs ur ‘ease afeurelp 12103 ‘(L]

(Suo1yonba uoissa.a. a1y u1 pasn
$917514279D40Y5 U1SDQ-25DUIDLP Ktvwied Jo sdpw a1ydoaFodoy Jo sa)pas Jua.affip wo.f appw spuawainsvawe ponupus Jo suosuvduio)) °f, IqeL

50 ESTIMATING DESIGN-FLOOD DISCHARGES FOR STREAMS IN IOWA



Noncontributing drainage areas are delineated on 1:250,000-scale topographic maps. When
questionable noncontributing drainage areas are encountered, hydrologic judgment is required to
determine whether to delineate these areas as noncontributing. Larger scale topographic maps
facilitate the delineation of questionable noncontributing areas.

Basin Perimeter (BP)

The basin perimeter is measured along the drainage-divide boundary delineated on
1:250,000-scale topographic maps. Because GIS measurements of basin perimeter were quantified
from 1:250,000-scale topographic maps, the appropriate scale for manual measurements is
1:250,000.

Basin Relief (BR)

Basin relief is the difference between the maximum elevation contour and the minimum
interpolated elevation within the contributing drainage area delineated on 1:250,000-scale
topographic maps. The minimum basin elevation is defined at the basin outlet as an interpolated
elevation between the first elevation contour crossing the main channel upstream of the basin outlet
and the first elevation contour crossing the main channel downstream of the basin outlet. Because
GIS measurements of basin relief were quantified from 1:250,000-scale digital elevation model
(DEM) data, the appropriate scale for manual measurements is 1:250,000. Figure 4C shows the
elevation contours created from DEM data for the Black Hawk Creek at Grundy Center drainage
basin.

Number of First-Order Streams (FOS)

The number of first-order streams is a count of all the stream segments defined as being a
first-order drainage using Strahler’s method of ordering streams (Strahler, 1952). First-order
streams are defined for contributing drainage areas on 1:100,000-scale topographic maps. Figure 4B
shows the stream ordering for the Black Hawk Creek at Grundy Center drainage basin. As shown in
figure 4B, a stream segment with no tributaries is defined as a first-order stream. Where two
first-order streams join, they form a second-order stream; where two second-order streams join, they
form a third-order stream; and so forth. Because GIS measurements of the number of first-order
streams were quantified from 1:100,000-scale digital line graph data, the appropriate scale for
manual measurements is 1:100,000. Comparison measurements listed in table 7 indicate that the
number of first-order streams is clearly map-scale dependent and use of map scales other than
1:100,000 may produce results that do not conform to the range of estimation accuracies listed for
the equations in table 2.

2-Year, 24-Hour Precipitation Intensity (TTF)

The map shown in figure 5 is used to calculate 2-year, 24-hour precipitation intensities for
drainage basins in Iowa and for basins that extend into southern Minnesota. This map shows
polygon areas that represent averages for maximum 24-hour precipitation intensities, in inches, that
are expected to be exceeded on the average once every 2 years. These polygons were created from the
precipitation contours depicted on 2-year, 24-hour precipitation intensity maps for Iowa (Waite,
1988, p. 31) and the United States (Hershfield, 1961, p. 95). The polygon areas for southern
Minnesota were interpolated from the precipitation contours depicted on the United States map. The
polygons shown in figure 5 represent the average value, in inches, of rainfall between the
precipitation contours and are not intended to represent interpolated values between the contours.
Figure 5 was used to compute a weighted average of the 2-year, 24-hour precipitation intensity for
each drainage basin processed by the GIS procedure. A manual measurement of 2-year, 24-hour
precipitation intensity can be made by delineating the approximate location of the drainage-divide
boundary for a stream site in figure 5. The approximate percentage of the total drainage area for the
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stream site that falls within each precipitation polygon shown in figure 5 is calculated, and a
weighted average for the basin is computed as

TTF = (A} (TTF) +(Ay) (TTFp) + . ..+ (A,) (TTF,), (19)

where TTF is the weighted average for 2-year, 24-hour precipitation intensity, in inches;

A, is the approximate percentage of the total drainage area of a basin within the ith 2-year,
24-hour precipitation intensity polygon shown in figure 51 =1, ..., p);

TTF;is the 2-year, 24-hour precipitation intensity, in inches, for the ith polygon shown in figure -
5G(G=1,...,p);and

p is the total number of 2-year, 24-hour precipitation intensity polygons shown in figure 5
everlain by the drainage-divide boundary of a basin.

For example, if approximately 70 percent of the total drainage area for a stream site overlies the
polygon labeled as 3.15 in. and approximately 30 percent of the total drainage area overlies the
polygon labeled 3.05 in., then the weighted average for the basin is calculated as

TTF = (A (TTF)) + (A, (TTFy),

=(0.70)(3.15) +(0.30) (3.05),
=3.12in.
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APPENDIX C

Procedure for Conducting Channel-Geometry Measurements

The channel-geometry flood-estimation method is applicable to stream sites in Iowa with
unregulated and stabilized stream channels. The following discussion outlines the procedure for
conducting channel-geometry measurements.

Selection of Channel-Geometry Measurement Reaches

An inspection of 1:100,000- or 1:24,000-scale topographic maps is made to evaluate the channel
reach both upstream and downstream of the stream site. Channel-geometry measurements are made
along a straight channel reach, and an inspection of topographic maps is helpful in determining
whether to start searching upstream or downstream of the site for a measurement reach. If the
channel for some distance upstream and downstream of the stream site is very sinuous, unnaturally
wide, or in an area that may be affected by development, topographic maps can be inspected to locate
more suitable channel reaches at nearby bridges upstream or downstream of the stream site.

Channel-geometry measurements can be made at some distance away from the stream site,
either upstream or downstream, as long as the drainage area upstream of the measurement reach
does not change by more than about 5 percent from the drainage area of the stream site. The
5-percent change in drainage area is an approximate limitation to ensure that channel-geometry
measurements are representative of the streamflow discharges that occur at the stream site.

Topographic maps are useful in identifying linear channels that are usually indicative of
channelization. Channels that appear to be channelized are noted because application of the
channel-geometry equations listed in tables 3-5 are dependent on whether a stream has been
channelized. A visual inspection of the channel also is made upon visiting the stream site to check
for evidence of channelization. Features that are characteristic of channelized streams are
illustrated in figure 7D, which shows the straightened and leveed channel reach downstream of the
Big Creek near Varina gaging station (station number 05482170; map number 108, fig. 2). If
evidence of channelization is not found, then the bankfull equations (the first set of equations listed
in tables 3-5) are applicable; if evidence of channelization is found, then the active-channel equations
(the second set of equations listed in tables 3-5) may be applicable.

The channel-geometry method may not be applicable to poorly drained or pooled streams that
have extremely low, local gradients (less than approximately 0.1 ft/mi.). A local gradient is measured
from 1:24,000-scale topographic maps and is calculated as the slope of the channel between the
nearest contour lines crossing the channel upstream and downstream of a stream site. This slope
measurement is performed only for those stream sites that are suspected of having extremely low,
local gradients and typically is not required for channel-geometry measurements.

Selection of Channel-Geometry Measurement Sections

Measurements of channel-geometry characteristics are made at channel cross sections that
represent stable and self-formed channel-bank conditions. Self-formed channels are natural
channels or channels that have been affected by channelization for which at least the active-channel
portion of the channel has had time to adjust back to natural conditions. Commonly, the
active-channel portion of the channel will adjust back to natural or self-formed conditions within
approximately 5 to 10 years after channelization occurs.

Measurements are made far enough away from bridges or other structures crossing the stream
channel to avoid any alterations to the channel caused by construction. More distance is allowed
downstream of bridges to avoid the effects of the channel constriction and more distance is allowed
upstream of culverts to avoid the effects of backwater. Ideally, measurements are made in a
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As shown in figure 6, the active-channel reference level is identified at a lower channel-bank
elevation. At least three active-channel width measurements are made that are within 10 percent of
the average, and active-channel measurement sections are separated by at least twice the
active-channel width. The tagline or tape is staked in a similar manner as previously described, and
width measurements are read to at least two significant figures. As defined by Osterkamp and
Hedman (1977, p. 256),

“The active channel is a short-term geomorphic feature subject to change by
prevailing discharges. The upper limit is defined by a break in the relatively steep
bank slope of the active channel to a more gently sloping surface beyond the channel
edge. The break in slope normally coincides with the lower limit of permanent
vegetation so that the two features, individually or in combination, define the active
channel reference level. The section beneath the reference level is that portion of the
stream entrenchment in which the channel is actively, if not totally, sculptured by
the normal process of water and sediment discharge.”

Figures 7A and 7E show photographs at two stream sites where a tape and a tagline,
respectively, were staked at the active-channel reference level used to measure active-channel
widths.
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