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Simulation of Storm Peaks and Storm
Volumes for Selected Subbasins in
the West Fork Trinity River Basin,

Texas, Water Years 199394

By Timothy H. Raines

Abstract

A model parameter set for use with the
Hydrologic Simulation Program—FORTRAN
watershed model was developed to simulate storm
peaks and storm volumes for the 28 subbasins of
the West Fork Trinity River Basin upstream from
Lake Worth, northwest of Fort Worth, Texas, from
the calibration and testing of 5 gaged subbasins.
These parameters can be transferred to the 23
ungaged subbasins. The model simulates storm
runoff for a channel-routing model that can be used
to improve reservoir operation during floods in the
basin.

Rainfall and runoff data were collected from
October 1, 1992, to September 30, 1994. A total of
55 storms were recorded at the 5 streamgage sta-
tions during the 24 months. Twelve different pervi-
ous land segments were defined based on types of
soil, land cover, and watershed slope. A total of 20
process-related parameters were defined for each
land segment, and 6 basin-related parameters were
defined for each stream reach.

The mean absolute errors for the 5 subbasins
for simulation of storm peaks range from 48.0 to
470 percent and for simulation of storm volumes
range from 34.4 to 416 percent. A sensitivity anal-
ysis was done to determine what a change in a
parameter value has on the largest storm peak and
on the total storm volume. The model then was
recalibrated and tested on the basis of the analysis
of the sensitivity of parameters and on the analysis
of the errors from the initial model calibration and
testing. The mean absolute errors for the 5 sub-
basins using the recalibrated parameters for simu-

lation of storm peaks range from 47.1 to 297
percent, and for simulation of storm volumes range
from 27.6 to 193 percent.

The model produced better results for simu-
lation of the larger storm peaks and storm volumes
than for simulation of the smaller storm peaks and
storm volumes, especially after an extended period
of no runoff. The same range in errors can be
expected when transferring the parameters to the
23 ungaged subbasins. Additional data collection
and model refinement could decrease the range of
expected model errors. More storm data and
improved discharge rating curves could result in
model parameters that account for the wide sea-
sonal variations in runoff in the study area.

INTRODUCTION

Recent flooding (1990) in the West Fork Trinity
River Basin upstream from Lake Worth, northwest of
Fort Worth, Texas, has caused extensive damage to pub-
lic and private property and has resulted in a need for
improved flood forecasting to better manage reservoir
operation. Although simulation models for flood rout-
ing in the main channel of the West Fork Trinity River
and in reservoirs are available for the basin, rainfall-
runoff data for the subbasins are lacking. Accurate esti-
mates of storm runoff for the 28 subbasins that drain
into the West Fork Trinity River Basin upstream from
Lake Worth are needed for input into a channel-routing
model. Previous attempts to use event-based simulation
models have been unsatisfactory because the models
were unable to accurately estimate the volume, magni-
tude, and timing of peak flows. A range in evaporation,
infiltration, and storage capacities measured throughout
the year results in a wide variation of storm runoff.
Therefore, continuous-simulation models could provide
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a better representation of seasonal variations of rainfall
and runoff than event-based simulation models.

In 1991, the U.S. Geological Survey, in coop-
eration with the Tarrant County Water Control and
Improvement District No. 1, began a study to develop
a model parameter set to simulate storm peaks and vol-
umes for selected subbasins in the West Fork Trinity
River Basin. Specific objcctives of the study were to
(1) develop a set of paramcters for a continuous-
simulation model from the calibration and testing of 5
gaged subbasins; (2) transfer the parameter set to the
remaining 23 ungaged subbasins of the West Fork Trin-
ity River Basin upstream from Lake Worth; and (3) use
the model to simulate storm runoff in the basin to
improve reservoir operation during floods.

Purpose and Scope

This report describes the simulation of storm
peaks and storm volumcs for 5 gaged subbasins in
the West Fork Trinity River Basin upstream from
Lake Worth. Rainfall and runoff data from 55 storms
used in this report were collected during water years
1993-94 (October 1. 1992, to September 30, 1994).
Each subbasin was characterized by twelve various
pervious land segments that were defined based on
types of soil. land cover, and watershed slope and
was subdivided into two to three reaches for input (o
a continuous-simulation model. A total of 20 process-
related parameters were defined for each land segment,
and 6 basin-relatcd paramcters were defined for each
stream rcach.

Description of Study Area

The study arca is in the north-central part of
Texas (fig. 1). The West Fork Trinity River Basin
upstream from Lake Worth drains about 2,100 square
miles (mi?). The basin is divided into 28 major sub-
basins that range from 15.8 to 227 mi? and contains
three major reservoirs: Lake Bridgeport, Eagle Moun-
tain Lake, and Lake Worth (fig. 2).

The study area is characterized by a moderate
climate with hot, dry summers; warm, wet autumns;
cool, dry winters; and warm. wet springs. Mean annual
temperature for the study arca is 64 °F (dcgrees Fahr-
enhcit) with monthly means ranging from 44 °F in
January to 85 °F in July. Mcan annual precipitation,
mostly as rainfall, totals about 28 inches (in.) (National
Oceanic and Atmospheric Administration, 1990).
Rainfall in the study arca is generated from frontal sys-

tems and convective heating. The frontal systems in
spring and fall produce moderate- to high-intensity,
long-duration storms that generally result in the maxi-
mum storm peaks for the year. Convective thunder-
storms produce widely scattered, high-intensity, short-
duration storms that occur mostly in summer.

Soils in the basin consist mainly of the
Windthorst-Duffau and the Truce-Bonti primary series.
The Windthorst-Duffau series consists of deep, sandy-
loam soils formed in weakly cemented sandstone that
has moderately low permeability. A representative soil
profile consists of 10 in. of sandy loam overlying 30 in.
of sandy-clay loam. The Truce-Bonti series consists of
deep, clay-loam soils formed in strongly cemented
sandstone and clay that has low permeability. A repre-
sentative soil profile consists of 9 in. of fine sandy loam
overlying 31 in. of clay (U.S. Department of Agricul-
ture, Soil Conservation Service, 1977, 1978, 1981).
Land cover is characterized by alternating prairies and
woodlands consisting of mesquite, juniper, shinnery
oak, post oak, and live oak trees. The rangeland is used
for grazing beef and dairy cattle, whereas the cropland
is used for growing peanuts and grain sorghum. The
average watershed slope varies from gently sloping to
sloping, or about 2 o 5 percent.

Description of Simulation Model

The Hydrologic Simulation Program—
FORTRAN (HSPF) (U.S. Environmental Protection
Agency. 1992) is a continuous-simulation model using
a conceptual framework to represent infiltration, evap-
oration, interception storage, surface runoff, interflow,
and base flow on a pervious land segment (PERLND)
and retention storage and surface runoff on an impervi-
ous land segment (IMPLND). Each user-defined land
segment represents its own unique hydrologic response
system based on soil type, land cover, watershed slope,
or other important basin characteristic. These land seg-
ments do not need to be contiguous. The runoff from
each land segment is moved through a system of
reaches or reservoirs (RCHRES) using storage routing.
In addition to runoff, water-quality concentrations for
sevcral constituents can be simulated for each land
segment.

The HSPF model uses input from three types of
data: time serics, process-related model parameters,
and basin-related model parameters. Continuous time
series of precipitation and potential evaporation are
needed to execute the model. Point-precipitation data
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Figure 1. Location of West Fork Trinity River Basin.
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measured by raingages are assumed to be uniform over The 20 process-related model parameters listed
a land scgment. Potential evaporation data can be esti-  in table 1 (at end of report) represent the physical pro-
mated from measured pan evaporation or computed cesses of soil infiltration, soil moisture, evapotranspira-
using minimum and maximum temperatures. Meas- tion (ET), interception storage of plants, interflow
ured runoff time series are used for model calibration recession, ground-water recession, and surface runoff
and testing. for each land segment. The process-related model

4 Simulation of Storm Peaks and Storm Volumes for Selected Subbasins in the West Fork Trinity River Basin, Texas, Water Years
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parameters for each land segment are adjusted to
calibrate the model. The following parameters can

be varied by month to account for seasonal variations:
interception storage capacity (CEPSC), interflow
inflow (INTFW), interflow recession rate (IRC), lower
zone ET (LZETP), Manning’s n for assumed overland
flow plane (NSUR), and upper zone nominal storage
(UZSN). The HSPF users manual (U.S. Environmental
Protection Agency, 1992) provides a more complete
description of each parameter.

The six basin-related model parameters listed
in table 2 (at end of report) define the areal extent of
each land segment, the reach length, and a table of val-
ues (FTABLE) of surface area, volume, and discharge
as a function of depth for each reach of the watershed.
These parameters represent the physical characteristics
of each reach of a watershed and generally remain
unchanged during calibration of the model.

Only one parameter set was developed for the 5
gaged subbasins to establish a level of confidence in
transferring the parameter set to the 23 ungaged sub-
basins. Accuracy might be improved by calibrating
each basin separately; but calibrating each basin sepa-
rately would not provide a method for or confidence in
transferring the parameters to the ungaged subbasins. In
this study, two gaged subbasins were used for model
calibration and the remaining three gaged subbasins
were used for model testing. Error and sensitivity anal-
yses were done. The calibration of HSPF was facilitated
by the use of an expert system interface developed by
Lumb and others (1994) that provided graphics, error
statistics, and advice on which parameters to change.

Regional Basin Characteristics

The HSPF simulation run time increases propor-
tionately to the number of land segments used; there-
fore, the number of land segments used needs to be such
that a balance is struck between accuracy and computa-
tion time. Geographic information system (GIS) cover-
ages of soil type, land cover, watershed slope, roads,
and urban areas were analyzed by the cooperator for the
entire basin to identify basin characteristics that could
produce unique hydrologic responses (Alice Godbey,
Tarrant County Water Control and Improvement Dis-
trict No. 1, written commun., 1993). Two groups of soil
types, three groups of land cover, and two groups of
watershed slopes were identified to represent 12 unique
pervious land segments. The two groups of soil types
were classified as low permeability (less than 2 inches

per hour [in/hr]) and moderately low permeability
(greater than 2 in/hr). Crop, forest, and pasture charac-
terized the three main land-cover groups. The water-
shed-slope group was divided into flat (slopes less than
3 percent) and steep (slopes greater than 3 percent).
Because less than 2 percent of the entire watershed con-
tains roads and urban areas, no impervious land seg-
ments were used.

Gaged Subbasins

Because minimal data existed for the 28 sub-
basins, a network of raingage and streamgage stations
was installed to obtain rainfall and runoff data to cali-
brate and test the continuous-simulation model. Five of
the 28 subbasins were selected for data collection on the
basis of their representative soil type, land cover, and
slope for the entire study area. The drainage areas for
the 5 gaged subbasins range from 36.0 t0 62.6 mi’ (table
3 at end of report).

Each gaged subbasin was subdivided into two to
three reaches (figs. 3—7). The basin-related model
parameters for each gaged subbasin are listed in table 4
(at end of report). The areas of each pervious land seg-
ment were computed for each reach using GIS (Alice
Godbey, Tarrant County Water Control and Improve-
ment District No. 1, written commun., 1993). Beans
Creek and Big Creek consist mostly of soil group 1,
whereas Garrett Creek, Salt Creek, and Walnut Creek
consist mostly of soil group 2. The three land-cover
groups are fairly well distributed in each of the five
subbasins. Most watershed slopes are flat (less than 3
percent) for the five subbasins. The reach length was
measured from U.S. Geological Survey (USGS) 7.5
minute quadrangle topographic maps. A channel cross
section was measured for each reach to compute the
FTABLE values (David Marshall, Tarrant County
Water Control and Improvement District No. |, written
commun., 1993). The surface area as a function of
depth was computed by multiplying the average chan-
nel width by the reach length. The volume as a function
of depth was computed by multiplying the average
cross-sectional area by the reach length. The discharge
as a function of depth was either taken from the rating
table at the streamgage station or was estimated using
Manning’s equation (Chow and others, 1988). The
basin-related parameters were not adjusted during the
model calibration process.

Flood-stage data were measured at the five sub-
basins with float, tape, and stilling-well systems that

INTRODUCTION 5
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Figure 3. Data-collection network for the Beans Creek subbasin.

were installed during February to September 1992. charge rating tables were developed for each stream-
Each streamgage station also included telephone com-  gage station using a water-surfacc-profile (WSPRO)
munication equipment for remote data access. The model (Shearman, 1990). The theoretical rating tables
streamgages were classified as partial-record gages and were refined when a few direct discharge measure-
measured only stage above an index clevation. As a ments were available. An effort was made to make
result, no basc-flow data were recorded. Because the more direct flood measurements, but because of a
objective of this study was to simulate storm peaks and small number of large floods, the short duration of run-
storm volumes, the assumption was that the partial- off, and the occurrence of flood peaks in the late
record strcamgages would provide adequate data. Dis-  cvening and early morning, few flood measurements
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were made during the study period. No flood measure-
ments were available to refine the rating table for Big
Creek. Continuous channel modification at Salt Creek
during the study period required repeated shifting of
the initial rating table. Rainfall was measured with a
network of 10 tipping-bucket raingage stations
(installed and operated by the cooperator) in the 5
gaged subbasins with 1 raingage for about cvery 25
mi. The raingage network was supplemented by two
to four daily observer stations in cach subbasin. Some
rainfall data werc lost because of instrumentation fail-
ure duc to lightning strikes during the study period.
These data were estimated using the rainfall totals

measured at the nearby observer stations. Locations of
the raingage and streamgage stations for each subbasin
are shown in figures 3—7. Storm-runoff and rainfall
data used in this report were collected from October 1,
1992, to September 30, 1994. Daily pan evaporation
data measured at Lake Benbrook, about 15 miles (mi)
south of Lake Worth, were used as representative data
for the study area.

Acknowledgments
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Sanderson of the Tarrant County Water Control operation, and maintenance of the five streamgage

and Improvement District No. 1 assisted with data stations.

collection, parameter estimation, and model develop-

ment. Also, several residents in the study areameasured ~ SIMULATION OF STORM PEAKS AND

and recorded daily precipitation. Charles Wood, David STORM VOLUMES

Tudor, Daryl Pinion, Bradley Mansfield, Jeffrey

Sandlin, Clyde Schoultz, Ralph Ollman, Vernon To simulate storm peaks and storm volumes, a set
Hastings, Martin Danz, Glenn Rivers, and Jack Benton of process-related model parameters was determined
of the U.S. Geological Survey helped in the installation, ~ from calibration of data collected from the Beans Creck
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and Walnut Creek subbasins from October 1, 1992, to 24-month study period. The temporal and spatial test-
September 30, 1993 (water year 1993). The parameter ing provided a level of confidence when transferring

set was tested temporally on the Beans Creek and the parameters to ungaged subbasins. An error analysis
Walnut Creek subbasins using the data from October 1, ~ was done to identify sources of error that are not
1993, to September 30, 1994 (water year 1994), and explained by the simulation model. A sensitivity anal-
spatially on the Big Creek, Garrett Creek, and Salt ysis was done to identify which parameters had the

Creek subbasins using data collected during the entire greatest effect on simulation results. The parameters

10 Simulation of Storm Peaks and Storm Volumes for Selected Subbasins in the West Fork Trinity River Basin, Texas, Water
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were revised on the basis of the results of the error and
sensitivity analyses.

Model Calibration and Testing

The HSPF model was calibrated using data for
the Beans Creek and Walnut Creek subbasins collected
from October 1, 1992, to September 30, 1993 (water
year 1993). Initial estimates for the 20 process-related
parameters were (1) based on the physical properties of
soil, land cover, and slope in the subbasins (Chow and
others, 1988); (2) assigned the default values listed in
table 1; or (3) taken from a previous study (Dinicola,
1990). For each land segment, the default values were
used as the estimates for the parameters AGWETP,
BASETP, DEEPFR, and KVARY because no data were
available to calibrate the base-flow recession parame-
ters. The estimates for the parameters INFEXP and
INFILD also remained the default values because there
was no justification to change the defaults. The 14 cali-
brated annual parameters are listed in table 5 (at end of
report), the 3 calibrated monthly parameters are listed in
table 6 (at end of report), and the 3 initial condition val-
ues are listed in table 7 (at end of report). Each parame-
ter varied by soil group, land-cover group, or slope
group corresponding to the physical process the param-
eter represents. For example, the parameters LZSN,
INFILT, INTFW, and UZSN varied by soil group and
represented the different storage and infiltration capaci-
ties of the soil, whereas the parameters CEPSC, LZETP,
and NSUR varied by land-cover group and represented
the different surface roughnesses, interception storages,
and evapotranspiration potentials of the land-cover
groups. The parameters LSUR and SLSUR varied by
the watershed-slope group. The parameters AGWRC
and IRC were assumed to be uniform for all land seg-
ments. The parameters INTFW, IRC, and NSUR were
not varied monthly because iterative model simulations
determined that the parameter values had little or no
effect in explaining seasonal variations in runoff for this
study area. Values of the annual parameters AGWRC,
INFILT, INTFW, IRC, LSUR, LZSN, NSUR, and
SLSUR values of the monthly parameters CEPSC,
LZETP, and UZSN were adjusted during the calibration
process using the software program HSPEXP (Lumb
and others, 1994). The values for the initial conditions
AGWS, LZS, and UZS were initially estimated from
Dinicola (1990) and were revised during calibration.
These values were varied by soil group.

A total of 55 storms were recorded in the 5 gaged
subbasins from October 1, 1992, to September 30,
1994; the minimum was 6 storms for the Big Creek sub-
basin, and the maximum was 16 storms for the Walnut
Creek subbasin. The calibrated parameter set (tables 5—
6) was developed from 10 storms that occurred during
water year 1993 in the Beans Creek and Walnut Creek
subbasins. The remaining 45 storms were used to test
the parameters temporally and spatially to assess
the transferability of the parameter set to ungaged
subbasins.

The measured and simulated times of peak, storm
peaks, storm volumes, and errors for the calibration and
testing simulations are listed in table 8 (at end of report).
The simulated times of peak are within 3 hours of the
measured times of peak for the 3 storms for the Beans
Creek subbasin and the 7 storms for the Walnut Creek
subbasin during water year 1993. The errors for storm
peaks range from -60.8 to 214 percent, and the errors for
storm volumes range from -66.7 to 111 percent for the
10 storms that were used for calibration (table 8). The
maximum simulated storm peak and storm volume dur-
ing water year 1993 for the Beans Creek subbasin are
greater than the maximum measured values, whereas
the maximum simulated storm peak and storm volume
for the Walnut Creek subbasin are less than the maxi-
mum measured values. Five of the 10 storm peaks and
6 of the 10 storm volumes have an absolute error of less
than 50 percent. The best agreement between the 10
measured and simulated hydrographs used for the
model calibration is shown in figure 8 for Walnut Creek
at Reno during September 13—14, 1993.

Five storms for the Beans Creek subbasin and 9
storms for the Walnut Creek subbasin during water year
1994 were used to test the parameters temporally. The
simulated times of peak are within 3 hours of the meas-
ured times of peak for 13 of the 14 storms (table 8). The
errors for storm peaks range from -98.6 to 416 percent,
and the errors for storm volumes range from -87.8 to
258 percent.

Six storms for the Big Creek, 12 storms for the
Garrett Creek, and 13 storms for the Salt Creek sub-
basins during both water years were used to test the
parameters spatially (table 8). The simulated times of
peak are within 3 hours of the measured time for 19
ofthe 31 storms. The errors for storm peaks range from
-99.6 to 1,000 percent, and the errors for storm volumes
range from -98.7 to 786 percent. For the testing period,
6 of the 8 maximum storm peaks of the water year for
each subbasin and 4 of the 8 maximum storm volumes

SIMULATION OF STORM PEAKS AND STORM VOLUMES 11
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Figure 8. Measured and simulated hydrographs for Walnut Creek at Reno, Texas, September 13—14, 1993.

of the water year for each subbasin have a simulated time of peak is within 3 hours for most storms; there
value higher than the measured value. Only 10 of the was a tendency for the simulated peak to occur before
45 storms used for testing have an absolute error of less  he measured peak..

than 50 percent for both storm peaks and storm vol-

umes. One of the best agreements between measured The measured storm peaks and the simulated

and simulated hydrographs used for testing is for storm peaks for the 55 storms are shown in figure 11.

Garrett Creek near Paradise during May 11-13, 1994 There is a fairly symmetric spread of simulated peaks

(fig. 9). greater than about 70 cubic feet per second (ft’/s) about
The measured times of peak and the simulated the match line; and there is a cluster of simulated storm

times of peak for the 55 storms are shown in figure 10.  peaks less than about 70 ft*/s that underestimates meas-

The difference between the simulated and measured ured storm peaks in the 100- to 2,000-ft>/s range.
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Figure 9. Measured and simulated hydrographs for Garrett Creek near Paradise, Texas, May 11-13, 1994.

The measured storm volumes and the simulated
storm volumes for the 55 storms are shown in figure 12.
Overall, there is a fairly symmetric spread of simulated
volumes greater than about 0.02 in. about the match
line; and there is a cluster of simulated storm volumes
less than 0.02 in. that underestimates measured storm
volumes in a range from about 0.04 to 0.30 in.

The mean absolute error and bias for the meas-
ured and simulated storm peaks and storm volumes for
each water year for the five gaged subbasins are listed
in table 9 (at end of report). Mean absolute error is the
average of the absolute values of all storm errors; bias

is the average of all storm errors. A small bias occurs
when positive errors and negative errors are almost
equal. For the calibration data from water year 1993, the
mean absolute error and bias for the three storm peaks
for the Beans Creek subbasin are 48.0 and 6.7 percent
and for the seven storm peaks for the Walnut Creek
subbasin are 63.2 and 6.9 percent. The mean absolute
error and bias for storm volumes are 46.6 and -9.9
percent for the three storm peaks for the Beans Creek
subbasin and are 34.4 and -2.2 percent for the seven
storm volumes for the Walnut Creek subbasin. For the
temporal-testing data from water year 1994, the mean

SIMULATION OF STORM PEAKS AND STORM VOLUMES 13
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Figure 10. Measured times of peak and simulated times of peak using calibrated parameters.

absolutc error and bias are 153 and 85.2 percent for the
Beans Creck subbasin and are 81.0 and -21.9 percent
for the Walnut Creck subbasin. The results are similar
for storm volumes; the mean absolute error and bias are
132 and 68.6 percent for the Beans Creek subbasin and
are 63.7 and -8.0 percent for the Walnut Creek sub-
basin. For the spatial-testing data from the other three
subbasins tested, the mean absolute errors for storm
peaks range from 68.3 to 470 percent, and the biases
range from -47.2 to 401 percent. The mean absolute
errors for storm volumes range from 58.7 to 416 per-
cent, and biascs range from -52.4 to 416 percent.

The mean absolute errors in storm volumes
are less than the crrors in storm peaks for every sub-
basin except Big Creck (table 9). The errors for testing
simulations gencrally arc larger than the errors for cal-
ibration simulations. The mean absolute errors also
generally increase from water year 1993 to water year
1994 for the five subbasins.

The monthly distribution of errors for storm
peaks and storm volumes for the 24-month study
period is listed in table 10 (at end of report). Forty of
the 55 storms occurred in 4 months—~February, May,
September, and October. The remaining 15 storms are
distributed through March, April, June, August,
November, and December. No storms occurred in Jan-
uary and July. The distribution of errors was relatively
even for simulating storm peaks, but there secemed to be
a bias for undersimulating storm volumes.

Error Analysis

The types of error from the model calibration
and testing can be classified as measurement errors
or systematic errors. Measurement errors are intro-
duced as a result of missing data and inaccurate rating
tables of stage and discharge. Rainfall data are missing
for several raingage stations during January through

14 Simulation of Storm Peaks and Storm Volumes for Selected Subbasins in the West Fork Trinity River Basin, Texas, Water
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Figure 11. Measured storm peaks and simulated storm peaks using calibrated parameters.

March 1993 and had to be estimated from daily
observer data. The two streamgage stations with the
highest simulation errors, Big Creek and Salt Creek
(table 9), also had the least accurate rating tables which
result in inaccurate discharge records. The spatial vari-
ability of rainfall might not be represented adequately
with the existing raingage network of two to three
points in each subbasin.

Systematic crrors arc associated with the inability
of the simulation model to represent the physical pro-
cesses of runoff. These errors are represented in the
model parameters and model equations. The wide vari-
ation in measured rainfall compared to measured storm
volume indicates the seasonal differences in runoff
(fig. 13). A total 0of 4.20 in. of rainfall produced 1.56 in.
of runoff in May on Walnut Creek, whereas 4.84 in. of
rainfall produced only 0.36 in. of runoff in September.
The model parameters and model equations need to
account for these variations. On average, || storms

were measured among 5 gaged subbasins during the 24-
month study period. ranging from 6 at Big Creek to 16
at Walnut Creek. Eleven is a very small number of
storms when calibrating the model to account for a full
range of storm volumes, seasons, and antecedent soil-
moisture conditions. Another limitation of this study
involved using flood-hydrograph strcamgage stations
with a continuous-simulation model, which provided no
data to calibrate the parameters related to base flow. The
pervious land scgments used in this model might not
represent adequately all the different hydrologic
response units of the study area. Also, some uncertainty
exists in the values of FTABLES for the reach volume
and the corresponding discharge, which seems to be
true for the Big Creek and Salt Creek subbasins.

The measurement and systematic errors account
for some of the error and bias of the simulated storm
peaks and storm volumes. However, from the results
listed in tables 89 and shown in figures 10—12, the
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calibrated parameter set does not adequately simulate
the storm peaks and storm volumes. There could be a
seasonal bias for simulating storm volumes based on
the monthly distribution of simulation errors presented
in table 10. Also, the errors seem to increase from water
year 1993 to water year 1994 (table 9). Additional
information on the sensitivity of each parameter might
provide some insight into which parameters might be
adjusted to provide better calibration and testing
results.

Sensitivity Analysis

A sensitivity analysis was done on selected
parameters on the Walnut Creek subbasin to determine
what effect a change in a parameter value has on the
largest storm peak and the total storm volume for the 24
months. The simulation was done using data from 10 of
the 16 storms for Walnut Creek. A maximum of 10

storms can be used for calibration by the expert system
of HSPEXP (Lumb and others, 1994). The largest sim-
ulated peak discharge is 15,400 ft’/s, and the total sim-
ulated storm volume is 4.57 in., using the calibrated
model parameters for the entire 24 months. The change
in simulated peak discharge from 17,800 ft3/s listed in
table 8, using the calibrated model parameters for water
year 1993, to 15,400 ft3/s, using the calibrated model
parameters for the 24 months, represents the sensitivity
of storm peaks to the change in the initial conditions
(AGWS, LZS, and UZS values) assumed for calibra-
tion (table 7) to the simulated values at the end of water
year 1993,

Each parameter was modified to represent a
reasonable change. The changes in model results rela-
tive to a change in the parameter value are listed in
table 11 (at end of report). The parameters INFILT,
LZSN, and UZSN have the most effect on both storm
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peaks and storm volumes combined; the parameters
DISCH, LSUR, NSUR, SLSUR, and VOL primarily
affect the timing and magnitude of the storm peaks with
relatively less effect on the storm volumes. None of
these parameters affected the timing of the largest peak,
but a few of the smaller storm peaks were affected.
Also, the parameters AGWS, LZS, and UZS represent
the initial conditions at the start of the simulation and
did not have an effect on storm peaks that occurred
more than 6 months into a simulation, but did have an
cffect on the storm peaks and storm volumes that
occurrcd early 1n a simulation. Changing the 11 param-
cters noted above produced the largest change in model
results,

Model Recalibration and Testing

A new process-related parameter set was devel-
oped from the recalibration of the Beans Creek and

Walnut Creek subbasins from October 1, 1992, to
September 30, 1994, using information derived from
the error analysis and the sensitivity analysis, and was
tested on the data from Big Creck, Garrett Creek, and
Salt Creek. The model was run for the entire period of
record to provide additional storms for calibration.
Somme values of parameters INFILT, INTFW, LZETP,
and LZSN were increased and some values of UZSN
were decreased to decreasc the magnitude of the storm
peaks and storm volumes. Some values of parameters
LSUR and NSUR were increased, whereas some
values of SLSUR were decreased. The values of the
parameter CEPSC werc not modified. The values of
parameters AGWRC and IRC were decreased to
steepen the ground-water and interflow recession rates.
The values of parameter BASETP were modified from
the default value of zero (table 1) to 0.1 to aliow avail-
able potential evaporation to be satisfied from base flow.

SIMULATION OF STORM PEAKS AND STORM VOLUMES 17



The parameters KVARY, INFEXP, INFILD, DEEPFR,
and AGWETP retained the default values listed in table
1. The recalibrated annual parameters are listed in table
12 (at end of report); the 3 recalibrated monthly param-
eters are listed in table 13 (at end of report); and the 3

initial condition values are listed in table 14 (at end of
report).

The FTABLE volumes from table 4 were
increased by 25 percent for the Big Creek, Garrett
Creek, and Salt Creek subbasins to provide more stor-
age in the reaches for each subbasin to decrease the
magnitude of the storm peaks. The initial values for
AGWS, LZS, and UZS for water year 1994 (table 14)
were from the simulation output from the end of water
year 1993,

Data from the 8 storms for the Beans Creek sub-
basin and the 16 storms for the Walnut Creek subbasin
during water years 1993 and 1994 were used to recali-
brate HSPF. The remaining 31 storms for the other 3
subbasins were used to test the recalibrated parameters.
The measured and simulated times of peak, storm
peaks, storm volumes. and errors using recalibrated
parameters for the five subbasins are listed in table 15
(at end of report).

The difference between the measured and
simulated times of peak, using the recalibrated para-
meters, is within 3 hours for 23 of the 24 storms for
the Beans Creek and Walnut Creek subbasins (table
15). The errors for the storm peaks range from -99.9 to
312 percent using the recalibrated parameters (table
15), compared to -98.6 to 416 percent using the cali-
brated parameters (table 8). The errors for the storm
volumes using the recalibrated parameters range from
-98.8 to 203 percent (table 15), compared to -87.8 to
258 percent using the calibrated parameters (table 8).
Although the ranges of errors were decreased using
the recalibrated parameters, the number of storms
with absolute errors less than 50 percent did not
improve. Nine storm peaks and 10 storm volumes of
the 24 storms using the recalibrated parameters have
errors less than 50 percent (table 15), compared to 9
storm peaks and 9 storm volumes of the 24 storms
using the calibrated parameters (table 8). The improve-
ment in the simulated hydrograph for Beans Creek on
February 14-16, 1993, using the recalibrated parame-
ters compared to the simulated hydrograph using the
calibrated parameters, is shown in figure 14. The error
of the storm peak improved from 82.1 percent (table 8)
to -18.4 percent (table 15), and the error of the storm

volume improved from 55.0 percent (table 8) to -15.3
percent (table 15).

The recalibrated parameters were tested for 6
storms for Big Creek, 12 storms for Garrett Creek, and
13 storms for Salt Creek during water years 1993 and
1994. Twenty-two of the 31 simulated times of peak are
within 3 hours. Most of the nine storms for which the
simulated time of peak differs by more than 3 hours
from the measured time of peak correspond to the
storms for which little or no runoff was simulated. The
errors for the storm peaks using the recalibrated param-
eters range from -99.9 to 582 percent (table 15), com-
pared to -99.6 to 1,000 percent using the calibrated
parameters (table 8). The errors for storm volumes
using the recalibrated parameters range from -99.6 to
306 percent (table 15), compared to -98.7 to 786 per-
cent using the calibrated parameters (table 8). Six
storm peaks and 7 storm volumes for the 31 storms
using the recalibrated parameters have absolute errors
less than 50 percent (table 15), compared to 10 storm
peaks and 11 storm volumes for the 31 storms using the
calibrated parameters (table 8).

Seven of the 10 maximum simulated storm peaks
and 5 of the 10 maximum storm volumes for each water
year for the 5 gaged subbasins exceed the measured
values (table 15). These results, using the recalibrated
parameters, are the same as the results using the cali-
brated parameters (table 8).

The measured and simulated hydrographs for
Big Creek near Chico during October 19-20, 1993, are
shown in figure 15. There is relatively good agreement
between simulated and measured storm peaks using
the recalibrated parameters, but the storm volume is
overestimated.

Measured times of peak and simulated times
of peak using the recalibrated parameters for the 55
storms are shown in figure 16. The time of peak either
remained unchanged or was delayed 1 hour from the
times shown in figure 10 for most of the 55 storms.
The storms with the largest differences generally were
the storms for which little or no simulated runoff was
generated.

Measured storm peaks and simulated storm
peaks for the 55 storms using the recalibrated parame-
ters are shown in figure 17. The distribution of data
about the match line is very similar to the distribution
in figure 11. The same 11 simulated storm peaks of less
than about 70 ft*/s from figure 11 are less than the cor-
responding measured storm peaks.
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Figure 14. Measured and simulated hydrographs for Beans Creek at Wizard Welis, Texas, February 14—16, 1993.

Measured storm volumes and simulated storm
volumes for the 55 storms using the recalibrated param-
eters are shown in figure 18. The distribution of data
about the match line is very similar to the distribution in
figure 12. Ten of the 55 simulated storm volumes are
less than 0.02 in. and are clustered apart from the rest of
the data, which is similar to the simulated storm peaks
(fig. 17) where increased infiltration, storage, and evap-
oration, as represented by the recalibrated parameters,
generated little or no simulated runoft for some storms.

The mean absolute errors and biases of storm
peaks and storm volumes for each water year using the

recalibrated parameters for the five gaged subbasins are
listed in table 16 (at end of report). The mean absolute
errors for each subbasin for storm peaks range from
47.1 to 297 percent using the recalibrated parameters
compared to 48.0 to 470 percent using the calibrated
parameters (table 9). The mean absolute errors for each
subbasin for storm volumes range from 27.6 to 193 per-
cent using the recalibrated parameters compared to 34.4
to 416 percent using the calibrated parameters (table 9).
The biases for each subbasin for storm peaks range from
-85.4 to 202 percent using the recalibrated parameters
compared to -47.2 to 401 percent using the calibrated
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Figure 15. Measured and simulated hydrographs for Big Creek near Chico, Texas, October 19-20, 1993.

parameters (table 9). The biases for each subbasin for
storm volumes range from -75.6 to 114 percent using
the recalibrated parameters compared to -52.4 to 416
percent using the calibrated parameters (table 9). The
errors for the five gaged subbasins generally decreased
using the recalibrated parameters.

The mean absolute errors and biases generally
are less for the storm volumes than for the storm peaks
using the recalibrated parameters (table 16), which is
similar to the results of the initial calibration (table 9).
In addition, the mean absolute error and bias using the
recalibrated parameters (table 16) increases from water

year 1993 to water year 1994 for fewer storm peaks and
storm volumes than using the calibrated parameters
(table 9).

The monthly distribution of errors for storm
peaks and storm volumes for the 55 storms using the
recalibrated parameters are listed in table 17 (at end of
report). The monthly results are similar to the results
using the calibrated parameters (table 10); however, the
annual totals are somewhat reversed: the calibrated
parameters tend more to undersimulate storm volumes,
whereas the recalibrated parameters tend more to
undersimulate the storm peaks. December is the only
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Figure 16. Measured times of peak and simulated times of peak using recalibrated parameters.

month that indicates a bias to oversimulating storm
peaks and storm volumes using the recalibrated param-
eters. However. more storm data are needed to clearly
indicatc a monthly bias for simulating storm peaks and
storm volumes for the other 11 months.

Transfer of Model Parameters to Ungaged
Subbasins

The model produced better results for simulation
of the larger storm peaks and storm volumes than for
simulation of the smaller storm peaks and storm vol-
umes, especially after an extended period of no runoff.
However, only selected data for 55 storms at 5 subba-
sins during 24 months were used to calibrate and test the
HSPF model parameters. A continuous-simulation
model does provide a means to account for some varia-
tions in runoff generation compared to event-based
models. The recalibrated process-related parameter set

can be transferred to the other ungaged subbasins with
the same range in error expected. The basin-related
parameters will need to be computed for cach ungaged
subbasin.

On the basis of the results of this study, additional
collection of storm-runoff data, improvement of dis-
charge rating curves, and identification of additional
sources of rainfall data could result in model parameters
that account for the wide variations in runoff and reduce
the range of expected error in model simulation. A
longer period of record would provide a better represen-
tation of the combinations of storm size, season, and
antecedent moisture conditions. The smaller storm
peaks that occur during spring and summer might be the
result of more widely scattered rainfall with nonuniform
intensity.
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Figure 17. Measured storm peaks and simulated storm peaks using recalibrated parameters.

SUMMARY

The purpose of this study was to simulatc storm
peaks and storm volumes for sclected subbasins of the
West Fork Trinity River Basin upstream from Lake
Worth northwest of Fort Worth, Texas. The simulated
flows can be used as input to a channel-routing model
that can be used to improve reservoir operation in the
basin during floods.

A model parameter set for use with HSPF was
developed to simulate storm peaks and storm volumes
for ungaged subbasins from calibration and testing of
five gaged subbasins. Rainfall and runoff data were
collected from October 1, 1992, to September 30,
1994, with a total of 55 storms used in this study.
Twelve different pervious land segments were defined
for the study based on 2 groups of soil. 3 groups of land
cover, and 2 groups of slope. Scventeen parameters
were defined for cach land segment.

The model was calibrated with data from 10
storms and tested temporally and spatially with data
from the remaining 45 storms. The mean absolute
errors for storm peaks for the five subbasins range from
48.0 to 470 percent and for storm volumes range from
34.4 to 416 percent using the calibrated parameters. A
sensitivity analysis was done on selected parameters to
determine the effect of a change in a parameter value
on time of peak, storm peak, and storm volume for one
gaged subbasin.

The results of the parameter sensitivity and error
analyses from the initial model calibration were used to
recalibrate the parameters. The mean absolute errors
for storm peaks for the five subbasins range from 47.1
to 297 percent and for storm volumes range from 27.6
to 193 percent using the recalibrated parameters.

The model produced better results for simulation
of the larger storm peaks and storm volumes than for
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Figure 18. Measured storm volumes and simulated storm volumes using recalibrated parameters.

simulation of the smaller storm peaks and storm vol-
umes, especially after an extended period of no runoff.
The parameters can be transferred to the 23 ungaged
subbasins with the same range in error expected. How-
ever, additional data collection and model refinement
could decrease the model errors. In the study area, a
wide variation in runoff was produced from similar
magnitudes of measured rainfall. Continuous discharge
data, improved stage-discharge rating tables, and more
storm data could improve model calibration.
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Table 1. Process-related model parameters for the Hydrologic Simulation Program—FORTRAN

[ET, evapotranspiration]

Parameter Description' Default Minimum Maximum Units
AGWS Initial active ground-water storage None 0 None Inches
AGWETP  Available ET satisfied by active ground water 0 0 1.0 None
AGWRC Active ground-waler recession rate None .001 1.0 Per day
BASETP Available ET satisfied by base flow 0 0 1.0 None
CEPSC Interception storage capacity 0 0 1.0 Inches
DEEPFR Fraction of inflow that enters inactive ground water 0 0 1.0 None
INFEXP Infiltration equation exponent 20 0 10.0 None
INFILD Ratio of maximum and mean infiltration capacities 2.0 1.0 20 None
INFILT Index to infiltration capacity of soil None .0001 100.0 Inches per hour
INTFW Interflow inflow None 0 None None

IRC Interflow recession rate None 0 1.0 Per day
KVARY Nonexponential ground-water recession rate 0 0 None Per inch
LSUR Length of assumed overland flow plane None 1.0 None Feet
LZETP Lower zone ET 0 0 1.0 None

LZS Initial lower zone storage None 0 None Inches
LZSN Lower zone nominal storage None .01 100.0 Inches
NSUR Manning’s n for assumed overland flow plane N .001 1.0 None
SLSUR Slope of assumed overland flow plane None .000001 10.0 Feet per foot
Uzs Initial upper zone storage None 0 None Inches
UZSN Upper zone nominal storage None .01 10.0 Inches

' The users manual for Hydrologic Simulation Program—FORTRAN (U.S. Environmental Protection Agency, 1992) pro-
vides a more complete description of cach parameter.

Table 2. Basin-related model parameters for the Hydrologic Simulation Program—FORTRAN

[PERLND, pervious land segment; IMPLND, impervious land segment; FTABLE, table of depth, surface arca, volume, and
discharge for each reach]

Parameter Description' Units
AREA Drainage area of each PERLND or IMPLND Acres
LEN Reach length Miles
DEPTH FTABLE depth Feet
SAREA FTABLE surface area Acres
VOL FTABLE volume Acre-feet
DISCH FTABLE discharge Cubic feet per second

' The users manual for Hydrologic Simulation Program—FORTRAN (U.S. Environmental Protection Agency, 1992) pro-
vides a more complete description of each parameter.
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Table 3. Gaged subbasins in the West Fork Trinity River Basin upstream from Lake Worth

U.S. Geological Survey
station number

Station name

Drainage area
(square miles)

08042900 Beans Creek at Wizard Wells 36.0
08042950 Big Creek near Chico 50.0
08044135 Garrett Creek near Paradise 52.7
08044140 Salt Creck near Paradise 53.0
08044800 Walnut Creck at Reno 62.6

Table 4. Basin-related parameters for each gaged subbasin

[Land segments arc characterized and designated by a 3-digit descriptor. The first digit designates soil permeability: I, low permeability (less
than 2 inches/hour): 2. moderately low permeability (more than 2 inches/hour; X, all permeabilitics (or permeability not characterized). The
second digit designates land cover: C, crop;: F. forest: P, pasture: X, all land covers (or land cover not characterized). The third digit
designates watershed slope: F, flat, less than 3 percent: S, steep, more than 3 percent; X. all slopes (or slope not characterized). For example,
a land segment characlterized by soils of moderately fow permeability, a forest cover, and a steep slope has the descriptor 2FS. A land

segment for which only land cover is characterized (as crop) has the descriptor XCX.

AREA, land-segment drainage area; LEN. reach length: mi. miles; FTABLE, tablc of depth (DEPTH). surface arca (SAREA). volume

(VOL), and discharge (DISCH) for a rcach: ft. feet; acre-ft, acre-feet; ft¥/s. cubsic feet per second: --, no value]

Parameter' Beans Creek Big Creek Garrett Creek Salt Creek Walnut Creek
Reach 1

AREA (acres)
ICF 1,307 844 0 104 175
1CS 128 131 0 80 141
IFF 2,037 4,622 0 133 469
IFS 381 808 0 129 329
IPF 4,782 6,736 0 253 586
IPS 899 1.402 0 171 382
2CF 127 130 2,701 2.856 3.106
2CS 9 27 338 1,317 179
2FF 54 1,048 4,409 4,802 3513
2FS 6 194 765 2.476 403
2PF 302 1,158 5,220 5,273 5,610
2PS 43 340 795 2.403 569

LEN (mi) 7.71 9.44 13.8 11.8 8.55

FTABLE
DEPTH (ft) 0-20.0 0-20.0 0-20.0 0-20.0 0-16.0
SAREA (acres) 0-23.4 0-57.2 0-45.0 0-71.2 0-51.8
VOL (acre-ft) 0421 0--687 0-567 0-1,024 0498
DISCH (ﬁ3/s) 02,400 010,600 0-3.360 0-12,100 0-7,180

Reach 2

AREA (acres)
ICF 734 699 52 0 148
1CS 76 34 12 0 61
IFF 902 1,976 136 0 779
1FS 169 195 13 0 416

Table 4
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Table 4. Basin-related parameters for each gaged subbasin—Continued

Parameter' Beans Creek Big Creek Garrett Creek Salt Creek Walnut Creek
Reach 2—Continued
1PF 1,900 3,088 77 0 690
1PS 347 201 12 0 341
2CF 288 250 2,189 3,456 2,309
2CS 39 36 334 489 89
2FF 314 568 4,540 3,449 2,514
2FS 76 144 738 898 122
2PF 647 861 6,159 4,671 4,043
2PS 98 209 864 948 190
LEN (mi) 6.74 6.49 13.3 4.4 2.70
FTABLE
DEPTH (ft) 0-20.0 0-20.0 0-20.0 0-20.0 0-20.0
SAREA (acres) 0-19.2 0-39.3 0-43.5 0-56.5 0-36.0
VOL (acre-ft) 0-331 0-472 0-548 0-979 0426
DISCH (ftY/s) 0--2,000 011,600 0-3,360 0-9,500 0-18,100
Reach 3
AREA (acres) -
1CF 568 282 0 -- 0
1CS 222 20 0 -- 0
1FF 1,439 1,229 0 -~ 0
1FS 532 225 0 -- 0
1PF 2,192 2,296 0 -- 0
1PS 804 420 0 - 0
2CF 188 319 956 -- 3,300
2CS 9 22 109 -- 93
2FF 618 477 1,082 -- 3.247
2FS 26 89 224 -- 205
2PF 729 730 1,782 -- 5.746
2PS 33 171 270 -- 306
LEN (mi) 3.88 4.37 2.64 -- 4.19
FTABLE
DEPTH (ft) 0-20.0 0-20.0 0-20.0 -- 0-20.0
SAREA (acres) 0-29.9 0-68.9 0-18.2 - 0-50.8
VOL. (acre-ft) 0-543 0--847 0-236.8 -- 0-610
DISCH (ftY/s) 04,760 0-20,000 0-4.410 -- 0-22,500

' The users manual for Hydrologic Simulation Program—FORTRAN (U.S. Environmental Protection Agency, 1992) pro-
vides a more complete description of each parameter.
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Table 6. Calibrated monthly parameters
[Units listed below parameter name except for parameters with no units; in., inches.

Land segments are characterized and designated by a 3-digit descriptor. The first digit designates soil permeability: 1, low
permeability (less than 2 inches/hour); 2, moderately low permeability (more than 2 inches/hour; X, all permeabilities (or
permeability not characterized). The second digit designates land cover: C, crop; F, forest: P, pasture: X, all land covers (or
land cover not characterized). The third digit designates watershed slope: F, flat, less than 3 percent; S, steep. more than 3
percent; X, all slopes (or slope not characterized). For example, a land segment characterized by soils of moderately low
permeability, a forest cover, and a steep slope has the descriptor 2FS. A land segment for which only land cover is
characterized (as crop) has the descriptor XCX.

Parameter definitions: CEPSC, interception storage capacity; LZETP, lower zone evapotranspiration; UZSN, upper zone
nominal storage. The users manual for Hydrologic Simulation Program—FORTRAN (U.S. Environmental Protection Agency,
1992) provides a more complete description of each parameter.

Land
F Mar N D
segment Jan eb a Apr  May  June  July  Aug  Sept  Oct ov ec
CEPSC'-?
(in.)

XCX 005 0.05 005 0.09 0.14 0.18 0.24 0.28 0.24 0.18 0.12 0.08

XFX Al 1 .16 8 .24 28 32 32 28 22 18 .14
XPX 08 .09 10 12 18 22 26 26 22 8 12 08
LZETP'?
XCX 2 3 .5 .6 .6 7 8 9 .8 ) .5 3
XFX 3 4 .6 .7 7 .8 9 .9 .9 7 .6 4
XPX 2 3 5 .6 .6 T 8 9 8 .6 .5 3
UZSN'?
(in.)
I1XX 1 N 2 2 3 4 5 6 5 4 3 2
2XX 2 2 4 4 .5 .6 7 .8 T .6 5 4

! Initial estimates for this parameter taken from Dinicola (1990).
2 . . . .
< Parameter was revised during calibration.
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Table 7. Initial condition values for model calibration

[Land segments are characterized and designated by a 3-digit descriptor. The first digit designates soil permeability: 1, low
permeability (less than 2 inches/hour); 2, moderately low permeability (more than 2 inches/hour; X, all permeabilities (or
permeability not characterized). The second digit designates land cover: C, crop: F, forest; P, pasture; X, all land covers (or
land cover not characterized). The third digit designates watershed slope: F, flat, less than 3 percent; S, steep, more than 3
percent; X, all slopes (or slope not characterized). For example, a land segment characterized by soils of moderately low
permeability, a forest cover, and a steep slope has the descriptor 2FS. A land segment for which only land cover is
characterized (as crop) has the descriptor XCX.

AGWS, active ground-water storage; LZS, lower zonc storage; UZS, upper zone storage. The users manual for Hydrologic
Simulation Program-FORTRAN (U.S. Environmental Protection Agency, 1992) provides a more complete description of each

parameter. in., inches]

Station Water year Land segment AGWS'* Lzs' uzs!*

(in.) (in.) (in.)

Beans Creek 1993 1XX 0.01 0.5 0.1
2XX .01 .5 .

1994 1XX 2 2.0 3

2XX 2 2.0 3

Big Creck 1993 1XX .01 5 .
2XX .01 .5 ]

1994 1XX 2 2.0 3

2XX 2 2.0 .3

Garrett Creek 1993 1XX .6 3.0 4
2XX .6 3.0 4

1994 1XX .6 3.0 4

2XX .6 3.0 4

Salt Creck 1993 1XX .6 3.0 4
2XX .6 3.0 4

1994 1XX 2 2.0 3

2XX 2 20 3

Walnut Creek 1993 I1XX .0 3.0 4
2XX .6 3.0 4

1994 1XX 2 2.0 3

2XX 2 2.0 3

"Initial estimates for this parameter taken from Dinicola (1990).
2 Parameter was revised during calibration.
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Table 9. Mean absolute errors and biases of storm peaks and storm volumes using calibrated parameters

[Mean absolute error = 100 * [Z(|S-M|)/M}/N; bias = 100 * [Z(S-M)/M}/N; S, simulated value; M, measured value; N, number
of values]

Storm peaks Storm volumes
Water
Station Mean absolute error Bias Mean absolute error Bias
year
(percent) (percent) (percent) (percent)
Beans Creek 1993 48.0 6.7 46.6 99
1994 153 85.2 132 68.6
Big Creek 1993 68.3 -47.2 85.5 -31.7
1994 136 136 416 416
Garrett Creek 1993 83.5 83.5 62.8 23.2
1994 99.0 -8.6 58.7 -52.4
Salt Creek 1993 161 116 85.6 9.7
1994 470 401 168 164
Walnut Creek 1993 63.2 6.9 344 -2.2
1994 81.0 =219 63.7 -8.0

Table 10. Monthly distribution of errors of storm peaks and storm volumes using calibrated parameters

[Error = 100 * [(S-M)/S]; S, simulated value; M, measured value; --, no storms]

Storm-peak errors Storm-volume errors
Month
Positive Negative Positive Negative

January - - - -
February 8 7 6 9

March 3 2 1
April - 2 -- 2
May 3 4 2 5

June -- 1 --
July - - - -
August - | - 1
September 3 5 2 6
October 4 7 3
November -- 1 -- 1
December 4 1 3 2
Total 27 28 21 34
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Table 11. Sensitivity of selected parameters

{Paramcter definitions; AGWETP, available evapotranspiration satisfied by active ground water; AGWRC, active ground-
water recession ratc; BASETP, available evapotranspiration satisficd by base flow; DEEPFR, fraction of inflow that enters
inactive ground water; INFEXP, infiltration equation exponent; INFILD, ratio of maximum and mean infiltration capacities;
INFILT, index to infiltration capacity of soil; INTFW, interflow inflow; IRC, interflow recession rate; KVARY, nonexponential
ground-water recession rate; LSUR, length of assumed overland flow plane; LZSN, lower zone nominal storage; NSUR.
Manning’s n for assumed overland flow plane; SLSUR, slope of assumed overland flow plane; CEPSC, interception storage
capacity; LZETP, lower zone evapotranspiration; UZSN, upper zonc nominal storage; DISCH, FTABLE discharge; VOL,
FTABLE volume; AGWS, initial active ground-water storage; LZS, initial lower zone storage; UZS, initial upper zone
storage; FTABLE, table of depth, surface arca, volume, and discharge for each reach. The users manual for Hydrologic
Simulation Program—FORTRAN (U.S. Environmental Protection Agency, 1992) provides a more complete description of
each parameter.

ft/s, cubic feet per second; in.. inches: change = 100 * [(A-1)/1]; A = adjusted value:; 1 = initial value; --, undefined change]

Parameter Initial Adjusted Change in Time of Storm i:l;?:rgn(: Storm iﬁh;:?r:
adjusted value value parameter peak P‘jak peak vo!ume volume
(percent) (ft°/s) (percent) (in.) (percent)
Annual process-related parameters
AGWETP 0.0 0.1 -- 1800 15,800 2.6 4.69 2.6
AGWRC 996 .906 -9.0 1800 15,500 i 4.73 35
BASETP 0 A -- 1800 15,800 2.6 4.66 2.0
DEEPFR 0 . - 1800 15,400 0 4.56 -2
INFEXP 2.0 1.5 -25.0 1800 15,900 3.2 4.80 5.0
INFILD 2.0 1.5 -25.0 1800 15,200 -1.3 4.57 0
INFILT 015,.045 022, .068 50.0 1800 13,000 -15.6 3.80 -16.9
INTFW 4, .8 6,12 50.0 1800 14,400 -6.5 4.85 6.1
IRC .01 B 900.0 1800 15,200 -1.3 4.43 -3.1
KVARY .0 2 - 1800 15,400 .0 4.57 .0
LSUR 2,000, 3,000 3,000, 4,000 50.0, 33.3 1800 13,300 -13.6 4.35 -4.8
LZSN 1.0,3.0 1.5.4.5 50.0 1800 13.300 -13.6 3.67 -19.7
NSUR .20, .35..25 .30, .45,.35  50.0,28.6,40.0 1800 13,000 -15.6 433 -5.3
SLSUR .01, .05 02, .07 100.0, 40.0 1800 18,300 18.8 4.80 5.0
Monthly process-related parameters
CEPSC .05-.32 1542 200.0-31.2 1800 15,100 -1.9 437 -4.4
LZETP 2-9 3-1.0 50.0-11.1 1800 15,000 -2.6 4.68 2.4
UZSN 18 2-9 50.0-2.5 1800 14,100 -8.4 4.03 -11.8
Basin-related parameters
DISCH 0-22,500 0-11,250 -50.0 1800 13.400 -13.0 4.50 -1.5
VOL 0-610 0-1220 100.0 1800 12,100 214 4.42 -33
Initial process-related conditions
AGWS .6 3 -50.0 1800 15,400 0 4.57 .0
LZS 3.0 2.0 -333 1800 15,400 .0 4.49 -1.8
[OFA 4 2 -50.0 1800 15,400 0 4.55 -4
Nonc - - .0 1800 15,400 .0 4.57 .0
34 Simulation of Storm Peaks and Storm Volumes for Selected Subbasins in the West Fork Trinity River Basin, Texas, Water
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Table 13. Recalibrated monthly parameters
[Units listed below parameter name except for parameters with no units; in., inches.

Land segments arc characterized and designated by a 3-digit descriptor. The first digit designates soil permeability: 1. low
permeability (less than 2 inches/hour); 2, moderately low permeability (more than 2 inches/hour; X, all permeabilities (or
permeability not characterized). The second digit designates land cover: C, crop; F, forest; P, pasture: X, all land covers (or
land cover not charactcrized). The third digit designates watcrshed slope: F, flat, less than 3 percent; S, steep, more than 3
percent; X, all slopes (or slope not characterized). For example. a land segment characterized by soils of moderately low
permcability, a forest cover, and a steep slope has the descriptor 2FS. A land segment for which only land cover is
characterized (as crop) has the descriptor XCX.

Paramcter definitions: CEPSC. interception storage capacity; LZETP, lower zone evapotranspiration; UZSN, upper zone
nominal storage. The users manual for Hydrologic Simulation Program—FORTRAN (U.S. Environmental Protection Agency,
1992) provides a more complete description of each parameter]

Land
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
segment
cEpsc'?
(in.)

XCX 0.05 005 0.05 0.09 0.14 0.18 0.24 0.28 0.24 0.18 0.12 0.08

XFX A1 A 16 18 24 28 32 32 28 22 A8 14
XPX 08 .09 .10 12 18 22 26 26 22 18 12 .08
LZETP'~
XCX 2 3 4 5 6 7 8 9 7 6 5 3
XFX 3 4 5 6 7 8 9 9 8 7 6 4
XPX 2 3 4 5 6 7 8 9 7 7 5 3
UZSN'-2
(in.)
1XX N N 2 2 2 3 4 4 3 3 3 2
2XX 2 2 3 3 4 5 6 6 5 4 4 3

nitial cstimates for this paramcter taken from calibration results.
2 . . . .
< Parameter was revised during recalibration.

36 Simuiation of Storm Peaks and Storm Volumes for Selected Subbasins in the West Fork Trinity River Basin, Texas, Water
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Table 14. Initial condition values for model recalibration

[Land segments are characterized and designated by a 3-digit descriptor. The first digit designates soil permeability: 1, low
permeability (less than 2 inches/hour); 2, moderately low permeability (more than 2 inches/hour; X, all permeabilities (or
permeability not characterized). The second digit designates land cover: C, crop; F, forest: P, pasture; X, all land covers (or
tand cover not characterized). The third digit designates watershed slope: F, flat. less than 3 percent; S, steep, more than 3
percent; X, all slopes (or slope not characterized). For example, a land segment characterized by soils of moderately low
permeability, a forest cover, and a steep slope has the descriptor 2FS. A land segment for which only land cover is
characterized (as crop) has the descriptor XCX.

AGWS, active ground-water storage; LZS, lower zone storage; UZS, upper zone storage. The users manual for Hydrologic

Simulation Program-FORTRAN (U.S. Environmental Protection Agency, 1992) provides a more complete description of each

paramecter. in., inches)

Station Water year Land segment AG(:I:SLZ L(Zs')z U(Z':;z

Beans Creek 1993 1XX 0.02 0.5 0.11
2XX .02 .6 12

1994 1XX .01 .5 01

2XX .01 7 02

Big Creck 1993 1XX 02 .5 1
2XX .02 .6 12

1994 1XX .01 3 01

2XX .01 S .01

Garrett Creek 1993 1XX A2 7 11
2XX A2 1.1 12

1994 1 XX .01 4 .01

2XX .02 1.0 .03

Salt Creek 1993 1XX .02 i .05
2XX 02 1.7 .08

1994 1 XX .03 S .03

2XX .05 1.3 .05

Walnut Creck 1993 1XX 52 2.7 21
2XX .62 3.1 32

1994 1XX .02 7 .01

2XX .02 1.1 .02

" Initial estimates for this parameter taken from calibration results.

i . . . .
< Parameter was revised during recalibration.

Table 14
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Table 16. Mean absolute errors and biases of storm peaks and storm volumes using recalibrated parameters

[Mean absolute error = 100 * [Z(]S-M|)/M]/N; bias = 100 * [Z(S-M)/M]/N; S, simulated value: M, measured valuc: N, number

of values]
Storm peaks Storm volumes
Station Water year  Mean absolute error Bias Mean absolute error Bias
(percent) (percent) (percent) (percent)

Bcans Creek 1993 47.1 -47 | 37.4 374
1994 126 442 100 27.1
Big Creek 1993 854 -85.4 75.6 -75.6

1994 51.1 =511 193 114
Garrett Creck 1993 86.4 86.4 86.9 86.9
1994 82.9 -26.3 77.4 -11.7
Salt Creek 1993 132 71.6 122 65.4
1994 297 202 162 96.3
Walnut Creck 1993 55.7 -8.6 27.6 20.9
1994 71.7 -52.9 77.0 -36.7

Tabie 17. Monthly distribution of errors of storm peaks and storm volumes using recalibrated parameters

[Error = 100 * [(S-M)/S]; S, simulated value; M, measured value; --, no storms]

Storm-peak errors

Storm-volume errors

Month
Positive Negative Positive Negative

January - - -- --
February 6 9 8
March 3 2
April -- 2 - 2
May 2 5 2 S
June -- I -- !
July -- -- -- --
August -- | -- 1
September 5 5
October 4 6 5
November -- 1 -- 1
December 4 | 5 —

Total 21 34 25 30
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