

LOAN COPY: RETURN TO AFWL (WLIL-2)
KIRTLAND AFB, N MEX

A COMPUTATIONAL METHOD FOR TIME-OPTIMAL SPACE RENDEZVOUS

by Ernest S. Armstrong and Athena T. Markos
Langley Research Center
Langley Station, Hampton, Va.

A COMPUTATIONAL METHOD FOR TIME-OPTIMAL SPACE RENDEZVOUS

By Ernest S. Armstrong and Athena T. Markos

Langley Research Center

Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

[^0]
A COMPUTATIONAL METHOD FOR TIME-OPTIMAL SPACE RENDEZVOUS

By Ernest S. Armstrong and Athena T. Markos
Langley Research Center

SUMMARY

A method is presented for obtaining space-rendezvous trajectories between a one-stage rocket vehicle and a target in a circular Keplerian orbit. The trajectories satisfy the necessary conditions of the Pontryagin maximum principle for time-optimal rendezvous in which no terminal mass constraint is placed on the rocket. The use of Pontryagin's theory leads to a two-point boundary-value problem. A digital program is given for the iterative solution of this problem. The method is successfully applied for the determination of time-optimal rendezvous trajectories between a vehicle launched from the surface of the moon and a target in an 80 -nautical-mile circular orbit.

INTRODUCTION

The study of trajectories for rendezvous in space has been of interest for many years. An early summary of some aspects of the problem is given in reference 1 . The application of optimization theory to trajectory computation has also received attention (refs. 2 and 3). Paiewonsky and Woodrow (ref. 4) have considered the problem of a three-dimensional time-optimal space rendezvous between a single-stage rocket vehicle, with constrained terminal mass, and a target in a circular Keplerian orbit. Linearized dynamic equations were used to describe the motion of the vehicle, and the mass limitation was of the form of a terminal inequality constraint. Linearization of the equations imposes the condition that the rocket be in proximity to the target. Reference 5 has considered the three-dimensional time-optimal rendezvous problem with unsimplified dynamic equations and fixed terminal mass through the dual problem of three-dimensional fuel-optimal rendezvous with specified final time. The present paper continues the extention of the problem of reference 4 to unsimplified dynamics by considering threedimensional time-optimal rendezvous with unspecified terminal mass.

The mathematical model of reference 5 , which treats the rocket as a point mass and takes into account rotation of the attracting center, is employed. The Pontryagin maximum principle (ref. 6) is applied to find the correct thrust magnitude and direction for time optimality. This operation leads to a two-point boundary-value problem in which certain initial conditions on a set of differential equations introduced by the maximum
principle have to be found such that certain terminal conditions are met. Following a method developed in reference 5, a digital program is written to solve the boundary-value problem by iteration. The procedure is illustrated numerically by solving the problem of finding time-optimal trajectories of a rocket vehicle launched from the moon to rendezvous with a target in an 80-nautical-mile circular orbit.

In addition to extending the work of reference 4, the digital program and accompanying analysis provide a useful method for obtaining time-optimal rendezvous trajectories and control laws. Therefore, the digital program is discussed and a listing included.

SYMBOLS

$\mathrm{A}, \mathrm{M}, \mathrm{N}, \mathrm{K}, \mathrm{L}, \mathrm{T}_{1}, \mathrm{~T}_{2} \quad$ constant matrices
$\mathrm{A}_{\mathrm{i}}=\beta\left[\frac{1}{x_{7} \sqrt{\psi}}-\frac{\psi_{\mathrm{i}}^{2}}{\mathrm{x}_{7}(\sqrt{\psi})^{3}}\right]$
B seven-dimensional diagonal matrix with elements b_{i}
$\mathrm{B}_{\mathrm{ik}}=-\frac{\beta \psi_{\mathrm{i}} \psi_{\mathrm{k}}}{\mathrm{x}_{7}(\sqrt{\psi})^{3}}$
$b_{i} \quad$ positive weighting elements $(i=1,2, ., 7)$
$C_{i k}=\frac{3 \Omega^{2} R_{S}{ }^{3} v_{\mathrm{v}} \mathrm{V}_{\mathrm{k}}}{(\sqrt{\mathrm{x}})^{5}}$
c effective exhaust velocity
$D_{i k}=-\frac{3 \Omega^{2} \mathrm{R}_{\mathrm{s}}{ }^{3}\left(2 \psi_{\mathrm{i}} \mathrm{v}_{\mathrm{k}}+\mathrm{d}\right)}{(\sqrt{\mathrm{x}})^{5}}$
$d=\psi_{2}\left(x_{1}+R_{S_{x}}\right)+\psi_{4}\left(x_{3}+R_{S_{y}}\right)+\psi_{6}\left(x_{5}+R_{S_{z}}\right)$
$E_{i k}=\frac{15 \Omega^{2} R_{s}{ }^{3}{d v_{i}} v_{k}}{(\sqrt{x})^{7}}$
$\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})] \quad$ scalar measure of terminal error, $\sum_{\mathrm{i}=1}^{7} \frac{\mathrm{~b}_{\mathrm{i}}\left[\mathrm{e}_{\mathrm{i}}(\bar{\alpha})\right]^{2}}{2}$

$\dot{\bar{R}}_{V} \quad$ first derivative of $\overline{\mathrm{R}}_{V}$	
$\dot{\mathrm{R}}_{\mathrm{V}_{\mathrm{x}}}, \dot{\mathrm{R}}_{\mathrm{v}_{\mathrm{y}}}$,	${ }_{V_{Z}} \quad$ first derivatives of $R_{V_{X}}, R_{V_{Y}}$, and $R_{V_{z}}$
$\overline{\mathrm{r}}=\overline{\mathrm{R}}_{\mathrm{V}}-\overline{\mathrm{R}}_{\mathrm{S}}$	
$\mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}, \mathrm{r}_{\mathrm{z}}$	elements of $\overline{\mathrm{r}}$
$\dot{r}_{x}, \dot{r}_{y}, \dot{r}_{z}$	first derivatives of r_{x}, r_{y}, and r_{z}
s	dummy integration variable
$\operatorname{sgn} \rho$	signum function defined by $\left\{\begin{array}{l}1 \text { if } \rho>0 \\ -1 \text { if } \rho<0 \\ \text { Unspecified if } \rho=0\end{array}\right.$
T	magnitude of thrust vector
\bar{T}	thrust vector
t	time
t_{0}	initial time
$\mathrm{tf}_{\text {f }}$	final time
$\left[\mathrm{t}_{2}, \mathrm{t}_{3}\right]$	nonzero subinterval of $\left[\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{\mathrm{f}}\right]$
t^{\prime}	isolated point at which $\mathrm{M}^{\prime} \bar{\psi}(\mathrm{t})=\overline{0}$
u_{i}	elements of $\hat{\mathrm{u}}(\mathrm{i}=1,2,3)$
u_{4}	magnitude of $\overline{\mathrm{T}}$
$\overline{\mathrm{u}}=\mathrm{u}_{4} \hat{\mathrm{u}}$	
$\hat{\mathbf{u}}$	unit vector in direction of \bar{u}
$\mathrm{u}_{4}{ }^{*}$	optimal form of u_{4}
4	

$\overline{\mathrm{u}}^{*}=\mathrm{u}_{4}{ }^{*} \hat{\mathrm{u}}^{*}$	
$\hat{\mathrm{u}}^{*}$	optimal form of $\hat{\mathbf{u}}$
$\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}$	variable $\mathrm{v}_{1}, \mathrm{v}_{3}$, or v_{5}
$\mathrm{v}_{1}=\mathrm{x}_{1}+\mathrm{R}_{\mathrm{S}_{\mathrm{X}}}$	
$\mathrm{v}_{3}=\mathrm{x}_{3}+\mathrm{R}_{\mathrm{S}_{\mathrm{y}}}$	
$\mathrm{v}_{5}=\mathrm{x}_{5}+\mathrm{R}_{\mathrm{S}_{\mathrm{z}}}$	
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	rotating axis system defined by figure A-1
$\begin{aligned} & x^{\prime}, y^{\prime}, z^{\prime} \\ & X, Y, Z \end{aligned}$	inertial axis system defined by figure A-2
$\sqrt{x}=\sqrt{ }(x$	$\left.+\mathrm{R}_{\mathrm{S}_{\mathrm{x}}}\right)^{2}+\left(\mathrm{x}_{3}+\mathrm{R}_{\mathrm{S}_{\mathrm{y}}}\right)^{2}+\overline{\left(\mathrm{x}_{5}+\mathrm{R}_{\mathrm{S}_{\mathrm{z}}}\right)^{2}}$
x_{i}	state variables ($\mathrm{i}=0,1, \ldots 8$)
\dot{x}_{i}	first derivative of x_{i}
x_{i}	initial values of x_{i}
$\overline{\mathrm{x}}=\operatorname{col}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{6}\right)$	
$\dot{\overline{\mathrm{x}}} \quad$ first derivative of $\overline{\mathrm{x}}$	
$\overline{\mathrm{x}}_{\mathrm{O}} \quad$ initial value of $\overline{\mathrm{x}}$	
$\overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{\mathrm{o}}\right)$	vector defined in equation (A9)
α_{i}, α_{j}	unknown parameters
$\bar{\alpha}$	seven-dimensional vector with elements α_{i}
β	bound on thrust magnitude

$\|\overline{\mathrm{a}}\|=(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}})^{1 / 2}$
[a,b] closed interval
[a,b) interval closed at a and open at b
$\frac{\partial \bar{b}(\bar{a})}{\partial \bar{a}} \quad$ Jacobian matrix with elements $\quad c_{i j}=\frac{\partial b_{i}(\bar{a})}{\partial a_{j}}$
$\begin{array}{cc}\frac{\partial b_{i}(\bar{a})}{\partial a_{j}} & \text { first partial derivative of } b_{i}(\bar{a}) \text { with respect to } a_{j} \text { evaluated at } \\ \bar{a}=\operatorname{col}\left(a_{1}, \ldots a_{n}\right)\end{array}$
ϵ
,
$\overline{0} \quad$ null vector
-1
as superscript to matrix, denotes inverse

DEVELOPMENT OF THE BOUNDARY-VALUE PROBLEM

In appendix A the dynamic equations are developed for a space vehicle which is required to rendezvous with a target in a circular Keplerian orbit about a rotating body. The vehicle is a one-stage rocket, treated as a point mass, with bounded thrust magnitude. The controls are the magnitude and direction of the thrust vector.

From equation (A8), the dynamic equations when written as first-order differential equations in relative coordinates take the form

$$
\begin{array}{lr}
\dot{x}_{0}=1 & \left(x_{0}\left(t_{0}\right)=0\right) \\
\dot{\bar{x}}=\frac{u_{4} M \hat{u}}{x_{7}}+\bar{Y}\left(\bar{x}, x_{8}\right) & \left(\bar{x}\left(t_{0}\right)=\bar{x}_{0} ; \bar{x}\left(t_{f}\right)=\overline{0}\right) \\
\dot{x}_{7}=-\frac{u_{4}}{c} & \left(x_{7}\left(t_{0}\right)=m_{0}\right) \tag{1}\\
\dot{x}_{8}=1 & \left(x_{8}\left(t_{0}\right)=t_{0}\right)
\end{array}
$$

The vector \bar{x} is a six-dimensional vector whose elements $x_{1}, x_{2}, \ldots x_{6}$ are the relative position ($\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{5}$) and velocity ($\mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{6}$) components of the vehicle and target. The variables x_{7} and x_{8} are the instantaneous vehicle mass and the time, respectively. The vector $\overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right.$), given by equation (A9), includes the kinematic parts of the equations. The scalar u_{4} and unit vector $\hat{\mathrm{u}}$ are, respectively, the magnitude and direction of the thrust vector $\overline{\mathrm{T}}$. The matrix M is a constant matrix defined in appendix A .

Pontryagin's maximum principle (ref. 6) is now applied to find controls which minimize $\int_{t_{0}}^{t_{f}} d t$ while satisfying equation (1). In using the maximum principle, a new variable $x_{0} \cdot$ is introduced such that $\dot{x}_{0}=1\left(x_{0}\left(t_{0}\right)=0\right)$ and the problem becomes one of minimizing $x_{0}\left(\mathrm{t}_{\mathrm{f}}\right)$. From reference 6 the following conditions must be satisfied:
(1) A function $u_{4} \leqq \beta$ and a function $\hat{\mathrm{u}}$ (with $\|\hat{\mathrm{u}}\|=1$) must be chosen to maximize
$\underset{\sim}{\mathrm{H}}\left(\psi_{0}, \ldots \psi_{8} ; \mathrm{x}_{1}, \ldots \mathrm{x}_{8} ; \mathrm{u}_{1}, \ldots \mathrm{u}_{4}\right)=\psi_{0} \dot{\mathrm{x}}_{0}(\mathrm{t})+\bar{\psi}(\mathrm{t}) \cdot \dot{\dot{x}}(\mathrm{t})+\psi_{7}(\mathrm{t}) \dot{\mathrm{x}}_{7}(\mathrm{t})+\psi_{8}(\mathrm{t}) \dot{\mathrm{x}}_{8}(\mathrm{t})$
for fixed ψ_{i} and $x_{i}(i=0,1, \ldots 8)$. The vector $\bar{\psi}$ is equal to $\operatorname{col}\left(\psi_{1}, \ldots \psi_{6}\right)$. The terms $\psi_{i}(i=0,1, \ldots 8)$ are nine additional variables introduced by the Pontryagin maximum principle and defined by

$$
\begin{equation*}
\dot{\psi}_{i}=-\frac{\partial H}{\partial x_{i}} \quad(i=0,1, \ldots 8) \tag{3}
\end{equation*}
$$

(2) For any $t \in\left[t_{0}, t_{f}\right], \psi_{0}(t)=$ Constant $\leqq 0$ and the maximum value of $\underset{\sim}{H}\left(\psi_{0}, \ldots \psi_{8} ; x_{1}, \ldots x_{8} ; u_{1}, \ldots u_{4}\right)$ with respect to $u_{1}, \ldots u_{4}$, given by $\underset{\sim}{\mathrm{M}}\left(\psi_{0}, \ldots \psi_{8} ; \mathrm{x}_{1}, \ldots \mathrm{x}_{8}\right)$, must be identically zero over $\left[\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}\right]$.
(3) The transversality condition must be satisfied.

Since $\bar{x}\left(\mathrm{t}_{\mathrm{f}}\right)$ is specified and $\mathrm{x}_{7}\left(\mathrm{t}_{\mathrm{f}}\right)$ and $\mathrm{x}_{8}\left(\mathrm{t}_{\mathrm{f}}\right)$ are unspecified, the transversality condition discussed in reference 6 yields

$$
\psi_{7}\left(t_{f}\right)=\psi_{8}\left(\mathrm{t}_{\mathrm{f}}\right)=0
$$

From a consideration of condition (1),

$$
\underset{\sim}{\mathrm{H}}=\psi_{0}+\bar{\psi} \cdot\left[\frac{\mathrm{u}_{4} \mathrm{M} \hat{\mathrm{u}}}{\mathrm{x}_{7}}+\overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right)\right]-\frac{\psi_{7} \mathrm{u}_{4}}{\mathrm{c}}+\psi_{8}
$$

whereby, from equation (3),

$$
\left.\begin{array}{lr}
\dot{\psi}_{0}=0 & \left(\psi_{0} \leqq 0\right) \\
\dot{\bar{\psi}}=-\frac{\partial \overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right) \bar{\psi}}{\partial \overline{\mathrm{X}}} & \left(\bar{\psi}\left(\mathrm{t}_{0}\right)\right. \\
\text { undetermined }) \\
\dot{\psi}_{7}=-\frac{\mathrm{u}_{4} \bar{\psi} \cdot \mathrm{M} \hat{\mathrm{u}}}{\mathrm{x}_{7}^{2}} & \left(\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right) \tag{4}\\
\dot{\psi}_{8}=-\frac{\partial \overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right)}{\partial \mathrm{x}_{8}} \cdot \bar{\psi} & \left(\psi_{8}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right)
\end{array}\right\}
$$

If $M^{\prime} \bar{\psi} \neq 0$, the $\hat{\mathbf{u}}$ which maximizes $\underset{\sim}{H}$ and satisfies $\|\hat{u}\|=1$ is

$$
\begin{equation*}
\hat{\mathrm{u}}^{*}=\frac{\mathrm{M}^{\top} \psi}{\left\|\mathrm{M}^{\top} \psi\right\|} \tag{5}
\end{equation*}
$$

since $\bar{\psi} \cdot \mathrm{Mu}$ can be written as $\mathrm{M}^{\top} \bar{\psi} \cdot \hat{\mathrm{u}}$. Then $\underset{\sim}{\mathrm{H}}$ becomes

$$
\underset{\sim}{H}=\psi_{0}+u_{4}\left(\frac{\left\|\mathrm{M}^{\prime} \bar{\psi}\right\|}{\mathrm{x}_{7}}-\frac{\psi_{7}}{\mathrm{c}}\right)+\bar{\psi} \cdot \overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right)+\psi_{8}
$$

and the function $u_{4} \leqq \beta$ which maximizes $\underset{\sim}{H}$, if $\frac{\left\|M^{\prime} \bar{\psi}\right\|}{x_{7}}-\frac{\psi_{7}}{c}$ does not vanish identically over a nonzero interval in $\left[\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{\mathrm{f}}\right]$, is

$$
\mathrm{u}_{4}^{*}=\frac{\beta}{2}(1+\operatorname{sgn} \rho)=\left\{\begin{array}{ll}
\beta & (\rho(\mathrm{t})>0) \tag{6}\\
0 & (\rho(\mathrm{t})<0)
\end{array}\right\}
$$

with

$$
\rho=\frac{\left\|\mathrm{M}^{\prime} \bar{\psi}\right\|}{\mathrm{x}_{7}}-\frac{\psi_{7}}{\mathrm{c}}
$$

The complete control now takes the form

$$
\begin{equation*}
\overline{\mathrm{u}}^{*}=\mathrm{u}_{4}{ }^{*} \hat{\mathrm{u}}^{*}=\frac{\beta}{2}(1+\operatorname{sgn} \rho) \frac{\mathrm{M}^{\prime} \bar{\psi}}{\left\|\mathrm{M}^{\prime} \bar{\psi}\right\|} \tag{7}
\end{equation*}
$$

The function $\rho(\mathrm{t})$ is the switching function for the system. The function $\rho(\mathrm{t})$ has no zeros on $\left[\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{\mathrm{f}}\right]$ except possibly at t_{f}, which simply means the thrust is always at its maximum value. Since $\psi_{\boldsymbol{7}}(\mathrm{t})$ is such that

$$
\dot{\psi}_{7}=\frac{\beta}{2}(1+\operatorname{sgn} \rho) \frac{\left\|\mathrm{M}^{\prime} \bar{\psi}\right\|}{\mathrm{x}_{7}{ }^{2}} \geqq 0
$$

and $\psi_{7}\left(t_{f}\right)=0$, it follows that $\psi_{7}(t) \leqq 0$ for all $t \in\left[t_{0}, t_{f}\right]$. If $\psi_{7}\left(t^{\prime}\right)=0$ at some $t^{\prime} \in\left[t_{0}, t_{f}\right)$, the condition $\rho(t)<0$ must be satisfied for $t>t^{\prime}$ in order to meet the condition $\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)=0$. The implication is that from t^{\prime} until t_{f}, the vehicle coasts; that is, $T=0$ from t^{\prime} to t_{f}. However, to rendezvous at t_{f} requires that the vehicle and target have the same position and velocity. Therefore, $\psi_{7}(t)$ can vanish only at t_{f}, since it is not possible for the vehicle to coast into the same position and velocity as the target; that is, $\psi_{7}(t)<0$ and $\rho(t)>0$ for $t \in\left[t_{0}, t_{f}\right)$. Equation (7) then takes the form

$$
\begin{equation*}
\overline{\mathbf{u}}^{*}=\beta \frac{\mathbf{M}^{\top} \bar{\psi}}{\left\|\mathbf{M}^{\top} \bar{\psi}\right\|} \tag{8}
\end{equation*}
$$

and $\underset{\sim}{M}$ becomes

$$
\underset{\sim}{\mathrm{M}}=\psi_{0}+\beta \rho+\bar{\psi} \cdot \overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right)+\psi_{8}
$$

In an optimal system, $\mathrm{M}^{\prime} \bar{\psi}=\left(\psi_{2}, \psi_{4}, \psi_{6}\right)^{\prime}=\overline{0}$ over a nonzero interval (for example, over $\left[\mathrm{t}_{2}, \mathrm{t}_{3}\right]$ of $\left.\left[\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}\right]\right)$ cannot be allowed. For, if it is, the differential equations for ψ_{2}, ψ_{4}, and ψ_{6} imply $\left(\psi_{1}, \psi_{3}, \psi_{5}\right) \equiv \overline{0}$ over $\left[\mathrm{t}_{2}, \mathrm{t}_{3}\right]$. In fact, $\bar{\psi}(\mathrm{t}) \equiv 0$ would be the solution of the $\bar{\psi}$ system over $\left[\mathrm{t}_{2}, \mathrm{t}_{\mathrm{f}}\right]$. Since $\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)$ and $\psi_{8}\left(\mathrm{t}_{\mathrm{f}}\right)$ both vanish, $\psi_{7}(\mathrm{t}) \equiv 0$ and $\psi_{8}(\mathrm{t}) \equiv 0$ over $\left[\mathrm{t}_{2}, \mathrm{t}_{\mathrm{f}}\right]$. Also $\underset{\sim}{\mathrm{M}} \equiv 0$ implies that $\psi_{0}=0$ over $\left[\mathrm{t}_{2}, \mathrm{t}_{\mathrm{f}}\right]$, giving $\left(\psi_{0}, \bar{\psi}(\mathrm{t}), \psi_{7}(\mathrm{t}), \psi_{8}(\mathrm{t})\right) \equiv 0$ over $\left[\mathrm{t}_{2}, \mathrm{t}_{\mathrm{f}}\right]$, which is a contradiction to the maximum principle. The maximum principle states that for each $t \in\left[t_{0}, t_{f}\right]$, the vector $\left(\psi_{0}(t), \psi_{1}(t), \ldots \psi_{8}(t)\right)$ is nonzero. Isolated points at which $\mathrm{M}^{\prime} \bar{\psi}=0$ have no effect on the solution, since $\overline{\mathbf{u}}(\mathrm{t})$ is bounded. For definiteness,

$$
\hat{u}\left(t^{\prime}\right)=\lim _{t \rightarrow t^{\prime}} \frac{M^{\prime} \bar{\psi}(t)}{\left\|M^{\prime} \bar{\psi}(t)\right\|}
$$

at any isolated points t^{\prime} where $M^{\prime} \bar{\psi}\left(\mathrm{t}^{\prime}\right)=0$.
Equations (1) and (4) now take the form

$$
\left.\begin{array}{rlr}
\dot{x}_{0}=1 & \left(x_{0}\left(\mathrm{t}_{0}\right)=0\right) \\
\dot{\overline{\mathrm{x}}}= & \frac{\beta \mathrm{MM}^{\prime} \bar{\psi}}{\left\|\mathrm{M}^{\prime} \bar{\psi}\right\| \mathrm{x}_{7}}-\frac{\Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3}}{\left\|\mathrm{~A} \overline{\mathrm{x}}+\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right\|^{3}}\left[\mathrm{~N} \overline{\mathrm{x}}+\mathrm{MR}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right]+\Omega^{2} \mathrm{MR}_{\mathrm{S}}\left(\mathrm{x}_{8}\right) \\
& +\left(\mathrm{N}^{\prime}+2 \omega \mathrm{~K}+\omega^{2} \mathrm{~L}\right) \overline{\mathrm{x}} & \left(\overline{\mathrm{x}}\left(\mathrm{t}_{0}\right)=\overline{\mathrm{x}}_{0} ; \overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right)=\overline{0}\right) \\
\dot{\mathrm{x}}_{7}=-\frac{\beta}{\mathrm{c}} & \left(\mathrm{x}_{7}\left(\mathrm{t}_{0}\right)=\mathrm{m}_{0}\right) \\
\dot{\mathrm{x}}_{8}=1 & \left(\mathrm{x}_{8}\left(\mathrm{t}_{0}\right)=\mathrm{t}_{0}\right)
\end{array}\right\}
$$

and

$$
\begin{align*}
& \dot{\psi}_{0}=0 \\
& \dot{\bar{\psi}}=\frac{\Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3} \mathrm{~N}^{\top} \bar{\psi}}{\left\|\mathrm{A} \overline{\mathrm{x}}+\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right\|^{3}}-\frac{3 \Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3}}{\left\|\mathrm{~A} \overline{\mathrm{x}}+\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right\|^{5}}\left\{\left[\mathrm{~N} \overline{\mathrm{x}}+\mathrm{M} \bar{R}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right] \cdot \bar{\psi}\right\} \mathrm{A}^{\prime}\left[\mathrm{A} \overline{\mathrm{x}}+\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right] \\
& -\left(\mathrm{N}+2 \omega \mathrm{~K}^{\prime}+\omega^{2} \mathrm{~L}^{\prime}\right) \bar{\psi} \quad\left(\bar{\psi}\left(\mathrm{t}_{0}\right) \text { undetermined }\right) \\
& \dot{\psi}_{7}=\frac{\beta\left\|M^{\top} \bar{\psi}\right\|}{x_{7}{ }^{2}} \tag{9b}\\
& \dot{\psi}_{8}=\frac{\Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3} \bar{\psi} \cdot \mathrm{M} \bar{R}_{S}\left(\mathrm{x}_{8}\right)}{\left\|\mathrm{A} \overline{\mathrm{x}}+\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right\|^{3}}-\Omega^{2} \bar{\psi} \cdot \mathrm{M} \dot{\bar{R}}_{\mathrm{S}\left(\mathrm{x}_{8}\right)} \\
& \left.-\frac{3 \Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3}}{\left\|\mathrm{~A} \overline{\mathrm{x}}+\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right\|^{5}}\left\{\dot{\overline{\mathrm{R}}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right) \cdot\left[\mathrm{A} \overline{\mathrm{x}}+\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right]\right\}\left\{\bar{\psi} \cdot\left[\mathrm{N} \overline{\mathrm{x}}+\mathrm{M} \bar{R}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right]\right\} \quad\left(\psi_{8}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right)\right\}
\end{align*}
$$

By comparing equations (9a) and (9b), a two-point boundary-value problem is recognized; $\psi_{0}, \quad \bar{\psi}\left(\mathrm{t}_{0}\right), \quad \psi_{7}\left(\mathrm{t}_{0}\right), \quad \psi_{8}\left(\mathrm{t}_{\mathrm{o}}\right)$, and t_{f} need to be found such that $\overline{\mathrm{x}}, \underset{\sim}{M}, \psi_{7}$, and ψ_{8} are zero at t_{f}. This boundary-value problem can be placed in the simpler form

$$
\underset{\sim}{\mathrm{M}}\left(\psi_{0}, \ldots \psi_{8} ; \mathrm{x}_{1}, \ldots \mathrm{x}_{8}\right)=0
$$

which yields

$$
\begin{equation*}
\psi_{8}\left(\mathrm{t}_{\mathrm{o}}\right)=-\left[\psi_{0}+\beta \rho\left(\mathrm{t}_{\mathrm{o}}\right)+\bar{\psi}\left(\mathrm{t}_{\mathrm{o}}\right) \cdot \overline{\mathrm{Y}}\left(\overline{\mathrm{x}}_{\mathrm{o}}, \mathrm{t}_{\mathrm{o}}\right)\right] \tag{10}
\end{equation*}
$$

Since $\underset{\sim}{M} \equiv 0$ over $\left[t_{0}, t_{f}\right]$, since $\psi_{8}\left(t_{f}\right)=0$, since $\bar{x}\left(t_{f}\right)=\overline{0}$, and since $\bar{Y}\left(\overline{0}, t_{f}\right)=\overline{0}$, it follows that

$$
\underset{\sim}{\mathrm{M}}=\psi_{0}+\beta \rho(\mathrm{t} \mathrm{f})=0
$$

or

$$
\begin{equation*}
\psi_{0}=-\beta \rho\left(\mathrm{t}_{\mathrm{f}}\right) \tag{11}
\end{equation*}
$$

The boundary-value problem then reduces to satisfying equations (9a), (9b), (10), and (11) and finding parameters $\psi_{1}\left(\mathrm{t}_{\mathrm{o}}\right), \ldots \psi_{7}\left(\mathrm{t}_{\mathrm{o}}\right)$ and t_{f} such that $\overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right)$ and $\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)$ are zero. There appear to be eight parameters and seven boundary conditions. However, because of the homogeneous form of their differential equations, one of the parameters $\psi_{i}\left(t_{0}\right) \quad(i=1,2, \ldots 7)$ can be removed by normalization - that is, by fixing its value.

Also, by observing the differential equation for ψ_{7}, it can be noted that the parameter $\psi_{7}\left(t_{0}\right)$ could be determined after the other parameters are found by setting

$$
\psi_{7}\left(\mathrm{t}_{\mathrm{o}}\right)=-\beta \int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} \frac{\left\|\mathrm{M}^{\prime} \bar{\psi}(\mathrm{s})\right\|}{\mathrm{x}_{7}^{2}(\mathrm{~s})} \mathrm{ds}
$$

The minimal combination is then six parameters $\left(\bar{\psi}\left(t_{0}\right)\right.$ and t_{f}, with one of the elements of $\bar{\psi}\left(t_{0}\right)$ normalized $)$ and six boundary conditions $\left(\bar{x}\left(t_{f}\right)=0\right)$. However, since the correct algebraic sign of an element of $\bar{\psi}\left(\mathrm{t}_{\mathrm{o}}\right)$ may not be known a priori, the problem is best solved by finding seven parameters $\left(\bar{\psi}\left(t_{0}\right)\right.$ and t_{f}, with $\psi_{7}\left(t_{0}\right)$ normalized $)$ such that the seven boundary conditions $\left(\overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right.$ and $\left.\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right)$ are met.

SOLUTION OF THE BOUNDARY-VALUE PROBLEM

Development of Iterative Logic

The approach taken to obtain a solution of the foregoing boundary-value problem is that discussed in reference 5. In reference 5 , given a similar boundary-value problem, a vector $\overline{\mathrm{e}}(\bar{\alpha})$ is defined such that when $\overline{\mathrm{e}}(\bar{\alpha})=0$ the boundary conditions are satisfied and the unknown parameters for the problem are $\bar{\alpha}$.

The vectors $\bar{\alpha}$ and $\overline{\mathrm{e}}(\bar{\alpha})$ correspond to $\operatorname{col}\left(\alpha_{\mathrm{i}}\right)$ and $\operatorname{col}\left(\mathrm{e}_{\mathbf{i}}(\bar{\alpha})\right)$ ($\mathrm{i}=1,2, \ldots$.), respectively, with elements

$$
\left.\begin{array}{cc}
\alpha_{1}=\psi_{1}\left(\mathrm{t}_{\mathrm{o}}\right) & \mathrm{e}_{1}(\bar{\alpha})=\mathrm{x}_{1}(\bar{\alpha}) \\
\alpha_{2}=\psi_{2}\left(\mathrm{t}_{\mathrm{o}}\right) & \mathrm{e}_{2}(\bar{\alpha})=\mathrm{x}_{2}(\bar{\alpha}) \\
\cdot & \cdot \tag{12}\\
\alpha_{6}=\psi_{6}\left(\mathrm{t}_{\mathrm{o}}\right) & \cdot \\
\alpha_{7}=\mathrm{t}_{\mathrm{f}} & \mathrm{e}_{6}(\bar{\alpha})=\mathrm{x}_{6}(\bar{\alpha}) \\
\mathrm{e}_{7}(\bar{\alpha})=\psi_{7}(\bar{\alpha})
\end{array}\right\}
$$

The quantities $\mathrm{x}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots .6)$ and ψ_{7} are written $\mathrm{x}_{\mathrm{i}}(\bar{\alpha})$ and $\psi_{7}(\bar{\alpha})$ to indicate their implicit dependence on $\bar{\alpha}$.

The magnitude of $\overline{\mathrm{e}}(\bar{\alpha})$ is measured by a scalar quantity

$$
\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})]=\frac{\overline{\mathrm{e}}(\bar{\alpha}) \cdot \mathrm{B} \overline{\mathrm{e}}(\bar{\alpha})}{2}
$$

where B is a positive definite diagonal matrix of weighting elements. Here

$$
\begin{equation*}
\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})]=\frac{1}{2}\left[\mathrm{~b}_{1} \mathrm{x}_{1}{ }^{2}(\bar{\alpha})+\mathrm{b}_{2} \mathrm{x}_{2}{ }^{2}(\bar{\alpha})+\ldots+\mathrm{b}_{6} \mathrm{x}_{6}{ }^{2}(\bar{\alpha})+\mathrm{b}_{7} \psi_{7}{ }^{2}(\bar{\alpha})\right] \tag{13}
\end{equation*}
$$

where $b_{i}>0 \quad(i=1,2, \ldots 7)$.

A value of $\bar{\alpha}$ is assumed, the differential equations are integrated forward in time until $\mathrm{t}=\mathrm{t}_{\mathrm{f}}=\alpha_{7}$, and $\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})]$ is evaluated. If $\overline{\mathrm{e}}(\bar{\alpha})$ vanishes or, for practical purposes, is sufficiently small, the boundary-value problem is considered solved. Otherwise, the assumed $\bar{\alpha}$ is corrected by

$$
\begin{equation*}
\delta \bar{\alpha}=-\left[\frac{\partial \overline{\mathrm{e}}(\bar{\alpha})^{\prime}}{\partial \bar{\alpha}} \mathrm{B} \frac{\partial \overline{\mathrm{e}}(\bar{\alpha})}{\partial \bar{\alpha}}+\lambda \mathrm{I}\right]^{-1} \frac{\partial \overline{\mathrm{e}}(\bar{\alpha})^{\prime}}{\partial \bar{\alpha}} \mathrm{B} \overline{\mathrm{e}}(\bar{\alpha}) \tag{14}
\end{equation*}
$$

Where $\lambda>0$ is adjusted such that

$$
\begin{equation*}
\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha}+\delta \bar{\alpha})]<\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})] \tag{15}
\end{equation*}
$$

For this problem $\frac{\partial \overline{\mathbf{e}}(\bar{\alpha})}{\partial \bar{\alpha}}$ is given as the partitioned matrix

$$
\frac{\partial \overline{\mathbf{e}}(\bar{\alpha})}{\partial \bar{\alpha}}=\left[\begin{array}{c:c}
& \tag{16}\\
\frac{\partial \overline{\mathrm{x}}(\bar{\alpha})}{\partial \bar{\alpha}} & \dot{\overline{\mathrm{x}}}(\bar{\alpha}) \\
\hdashline & \\
\hdashline \frac{\partial \psi_{7}(\bar{\alpha})}{\partial \bar{\alpha}} & \dot{\psi}_{7}(\bar{\alpha})
\end{array}\right]
$$

where $\frac{\partial \overline{\mathrm{x}}(\bar{\alpha})}{\partial \bar{\alpha}}$ is a Jacobian matrix with elements $\frac{\partial \mathrm{x}_{\mathrm{i}}(\bar{\alpha})}{\partial \alpha_{\mathrm{j}}} \quad(\mathrm{i}=1,2, \ldots 6$; $\mathrm{j}=1,2, \ldots 6)$ and $\frac{\partial \psi_{7}(\bar{\alpha})}{\partial \bar{\alpha}}$ is a row vector with elements $\frac{\partial \psi_{7}(\bar{\alpha})}{\partial \alpha_{j}}(\mathrm{j}=1,2, \ldots 6)$.

The first six elements of $\delta \bar{\alpha}$ are the corrections on $\psi_{i}\left(t_{0}\right) \quad(i=1,2, \ldots 6)$. The seventh element $\delta \alpha_{7}$ is the correction on the last value of t_{f}. The next final time is given by $\alpha_{7}+\delta \alpha_{7}$.

The procedure is designed to be applied iteratively and generate a monotone decreasing sequence of $\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})]$ converging to the smallest $\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})]$ available relative to the initial choice of $\bar{\alpha}$. Success of the method is dependent on the user's ability to find starting values of $\bar{\alpha}$ and at each stage find values of λ such that equation (15) is satisfied. At each stage a one-dimensional search may be performed to find the values of λ. However, for this problem it was found that a value of λ of 10 or 1 would suffice throughout. In general, the method does not guarantee a solution for an arbitrary boundary-value problem. It has, however, been highly successful in yielding solutions to the boundary-value problem under consideration herein and to others (see ref. 5).

Expanded versions of equations (9a) and (9b), with x_{8} replaced by t, are

$$
\begin{align*}
& \dot{x}_{i}=X_{i+1} \\
& \left(i=1,3,5 ; \quad x_{i}\left(t_{0}\right)=x_{i_{0}} ; \quad x_{i}\left(t_{f}\right)=0\right) \\
& \dot{x}_{2}=\frac{\beta \psi_{2}}{x_{7} \sqrt{\psi}}-\Omega^{2} R_{S}{ }^{3} \frac{x_{1}+R_{S_{x}}}{(\sqrt{x})^{3}}+\Omega^{2} R_{S_{X}}+\omega^{2} x_{1}+2 \omega x_{4} \quad\left(x_{2}\left(t_{0}\right)=x_{2} ; \quad x_{2}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right) \\
& \dot{x}_{4}=\frac{\beta \psi_{4}}{x_{7} \sqrt{\psi}}-\Omega^{2} R_{S}{ }^{3} \frac{x_{3}+R_{S}}{(\sqrt{x})^{3}}+\Omega^{2} R_{S_{y}}-2 \omega x_{2}+\omega^{2} x_{3} \quad\left(x_{4}\left(t_{o}\right)=x_{4} ; \quad x_{4}\left(t_{f}\right)=0\right) \tag{17a}\\
& \dot{x}_{6}=\frac{\beta \psi_{6}}{x_{7} \sqrt{\psi}}-\Omega^{2} R_{S} 3^{\mathrm{x}_{5}+R_{S_{\mathrm{z}}}} \frac{(\sqrt{\mathrm{x}})^{3}}{}+\Omega^{2} \mathrm{R}_{\mathrm{S}_{\mathrm{Z}}} \\
& \left(x_{6}\left(\mathrm{t}_{\mathrm{o}}\right)=\mathrm{x}_{6 \mathrm{o}} ; \quad \mathrm{x}_{6}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right) \\
& \dot{x}_{7}=-\frac{\beta}{c} \\
& \left(x_{7}\left(t_{0}\right)=m_{0}\right)
\end{align*}
$$

and
$\dot{\psi}_{1}=\frac{\Omega^{2} \mathrm{R}_{\mathrm{s}}{ }^{3} \psi_{2}}{(\sqrt{\mathbb{Z}})^{3}}-3 \Omega^{2} \mathrm{R}_{\mathrm{s}}{ }^{3} \mathrm{~d} \frac{\mathrm{X}_{1}+\mathrm{R}_{\mathrm{R}_{\mathrm{X}}}}{(\sqrt{\mathbb{X}})^{5}}-\omega^{2} \psi_{2}$
$\left(\psi_{1}\left(t_{0}\right)=\alpha_{1}\right)$
$\dot{\psi}_{2}=-\psi_{1}+2 \omega \psi_{4}$
$\left(\psi_{2}\left(t_{0}\right)=\alpha_{2}\right)$
$\dot{\psi}_{3}=\frac{\Omega^{2} \mathrm{R}_{\mathrm{s}}{ }^{3} \psi_{4}}{(\sqrt{\mathrm{x}})^{3}}-3 \Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3} \mathrm{~d} \frac{\mathrm{x}_{3}+\mathrm{R}_{\mathrm{S}_{\mathrm{y}}}}{(\sqrt{\mathrm{x}})^{5}}-\omega^{2} \psi_{4}$
$\left(\psi_{3}\left(t_{0}\right)=\alpha_{3}\right)$
$\dot{\psi}_{4}=-2 \omega \psi_{2}-\psi_{3}$
$\left(\psi_{4}\left(t_{0}\right)=\alpha_{4}\right)$
$\dot{\psi}_{5}=\frac{\Omega^{2} R_{s}{ }^{3} \psi_{6}}{(\sqrt{x})^{3}}-3 \Omega^{2} R_{s}{ }^{3} d \frac{x_{5}+R_{S_{z}}}{(\sqrt{x})^{5}}$
$\left(\psi_{5}\left(t_{0}\right)=\alpha_{5}\right)$
$\dot{\psi}_{6}=-\psi_{5}$
$\left(\psi_{6}\left(t_{0}\right)=\alpha_{6}\right)$
$\dot{\psi}_{7}(t)=\frac{\beta \sqrt{\psi}}{\mathbf{x}_{7}{ }^{2}}$
$\left(\psi_{7}\left(\mathrm{t}_{\mathrm{o}}\right)\right.$ normalized; $\left.\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)=0\right)$
where

$$
\begin{gathered}
\sqrt{\psi}=\sqrt{\psi_{2}{ }^{2}+{\psi_{4}}^{2}+\psi_{6}^{2}} \\
\sqrt{\mathrm{x}}=\sqrt{\left(\mathrm{x}_{1}+\mathrm{R}_{\mathrm{S}_{\mathrm{x}}}\right)^{2}+\left(\mathrm{x}_{3}+\mathrm{R}_{\left.\mathrm{S}_{\mathrm{y}}\right)^{2}+\left(\mathrm{x}_{5}+\mathrm{R}_{\mathrm{S}_{\mathrm{z}}}\right)^{2}}\right.}
\end{gathered}
$$

and

$$
\mathrm{d}=\psi_{2}\left(\mathrm{x}_{1}+\mathrm{R}_{\mathrm{S}_{\mathrm{x}}}\right)+\psi_{4}\left(\mathrm{x}_{3}+\mathrm{R}_{\mathrm{S}_{\mathrm{y}}}\right)+\psi_{6}\left(\mathrm{x}_{5}+\mathrm{R}_{\mathrm{S}_{\mathrm{z}}}\right)
$$

The derivatives needed to form equation (15) can be obtained (ref. 7) by solving the following system in conjunction with equations (17a) and (17b) from t_{0} to t_{f}, with $\mathrm{j}=1,2, . . .6$:

$$
\begin{align*}
& \left.\frac{d}{d t}\left(\frac{\partial x_{i}}{\partial \alpha_{j}}\right)=\frac{\partial x_{i+1}}{\partial \alpha_{j}} \quad\left(\frac{\partial x_{i}\left(t_{0}\right)}{\partial \alpha_{j}}=0 ; i=1,3,5\right)\right) \\
& \frac{d}{d t}\left(\frac{\partial \mathbf{x}_{2}}{\partial \alpha_{j}}\right)=A_{2} \frac{\partial \psi_{2}}{\partial \alpha_{j}}+B_{24} \frac{\partial \psi_{4}}{\partial \alpha_{j}}+B_{26} \frac{\partial \psi_{6}}{\partial \alpha_{j}}+\left[C_{11}-\frac{\Omega^{2} R_{S}^{3}}{(\sqrt{x})^{3}}+\omega^{2}\right] \frac{\partial \mathbf{x}_{i}}{\partial \alpha_{j}} \\
& +\mathrm{C}_{13} \frac{\partial \mathrm{x}_{3}}{\partial \alpha_{j}}+2 \omega \frac{\partial \mathrm{x}_{4}}{\partial \alpha_{j}}+\mathrm{C}_{15} \frac{\partial \mathrm{x}_{5}}{\partial \alpha_{j}} \\
& \left(\frac{\partial \mathrm{x}_{2}\left(\mathrm{t}_{\mathrm{o}}\right)}{\partial \alpha_{j}}=0\right) \\
& \frac{d}{d t}\left(\frac{\partial \mathrm{x}_{4}}{\partial \alpha_{j}}\right)=\mathrm{B}_{24} \frac{\partial \psi_{2}}{\partial \alpha_{\mathrm{j}}}+\mathrm{A}_{4} \frac{\partial \psi_{4}}{\partial \alpha_{\mathrm{j}}}+\mathrm{B}_{46} \frac{\partial \psi_{6}}{\partial \alpha_{\mathrm{j}}}+\mathrm{C}_{13} \frac{\partial \mathrm{x}_{1}}{\partial \alpha_{\mathrm{j}}}-2 \omega \frac{\partial \mathrm{x}_{2}}{\partial \alpha_{\mathrm{j}}} \tag{18a}\\
& +\left[C_{33}-\frac{\Omega^{2} R_{S}^{3}}{(\sqrt{x})^{3}}+\omega^{2}\right] \frac{\partial x_{3}}{\partial \alpha_{j}}+C_{35} \frac{\partial \mathrm{x}_{5}}{\partial \alpha_{j}} \\
& \left(\frac{\partial \mathbf{x}_{4}\left(\mathrm{t}_{0}\right)}{\partial \alpha_{\mathrm{j}}}=0\right) \\
& \frac{d}{d t}\left(\frac{\partial x_{6}}{\partial \alpha_{j}}\right)=B_{26} \frac{\partial \psi_{2}}{\partial \alpha_{j}}+B_{46} \frac{\partial \psi_{4}}{\partial \alpha_{j}}+A_{6} \frac{\partial \psi_{6}}{\partial \alpha_{j}}+C_{15} \frac{\partial x_{1}}{\partial \alpha_{j}}+C_{35} \frac{\partial x_{3}}{\partial \alpha_{j}} \\
& +\left[\mathrm{C}_{55}-\frac{\Omega^{2} \mathrm{R}_{\mathrm{s}}{ }^{3}}{(\sqrt{\mathrm{x}})^{3}}\right] \frac{\partial \mathrm{x}_{5}}{\partial \alpha_{\mathrm{j}}} \\
& \left(\frac{\partial \mathbf{x}_{6}\left(\mathrm{t}_{\mathrm{o}}\right)}{\partial \alpha_{j}}=0\right)
\end{align*}
$$

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial \psi_{1}}{\partial \alpha_{j}}\right)=\left[\frac{\Omega^{2} R_{s}^{3}}{(\sqrt{x})^{3}}-C_{11}-\omega^{2}\right] \frac{\partial \psi_{2}}{\partial \alpha_{j}}-C_{13} \frac{\partial \psi_{4}}{\partial \alpha_{j}}-C_{15} \frac{\partial \psi_{6}}{\partial \alpha_{j}}+\left(D_{21}+E_{11}\right) \frac{\partial \mathrm{x}_{1}}{\partial \alpha_{\mathrm{j}}} \\
& +\left(F_{24}^{31}+E_{13}\right) \frac{\partial x_{3}}{\partial \alpha_{j}}+\left(F_{26}^{51}+E_{15}\right) \frac{\partial x_{5}}{\partial \alpha_{j}} \quad\left(\frac{\partial \psi_{1}\left(t_{0}\right)}{\partial \alpha_{j}}=\left\{\begin{array}{ll}
1 & (j=1) \\
0 & (j \neq 1)
\end{array}\right)\right. \\
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \psi_{2}}{\partial \alpha_{\mathrm{j}}}\right)=2 \omega \frac{\partial \psi_{4}}{\partial \alpha_{\mathrm{j}}}-\frac{\partial \psi_{1}}{\partial \alpha_{\mathrm{j}}} \\
& \left(\frac{\partial \psi_{2}\left(t_{0}\right)}{\partial \alpha_{j}}=\left\{\begin{array}{ll}
1 & (j=2) \\
0 & (j \neq 2)
\end{array}\right)\right. \\
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \psi_{3}}{\partial \alpha_{\mathrm{j}}}\right)=-\mathrm{C}_{13} \frac{\partial \psi_{2}}{\partial \alpha_{\mathrm{j}}}+\left[\frac{\Omega^{2} \mathrm{R}_{\mathrm{s}}^{3}}{(\sqrt{\mathrm{x}})^{3}}-\mathrm{C}_{33}-\omega^{2}\right] \frac{\partial \psi_{4}}{\partial \alpha_{\mathrm{j}}}-\mathrm{C}_{35} \frac{\partial \psi_{6}}{\partial \alpha_{\mathrm{j}}}+\left(\mathrm{F}_{42}^{13}+\mathrm{E}_{13}\right) \frac{\partial \mathrm{x}_{1}}{\partial \alpha_{\mathrm{j}}} \\
& +\left(D_{43}+E_{33}\right) \frac{\partial x_{3}}{\partial \alpha_{j}}+\left(F_{46}^{53}+E_{35}\right) \frac{\partial x_{5}}{\partial \alpha_{j}} \quad\left(\frac{\partial \psi_{3}\left(t_{0}\right)}{\partial \alpha_{j}}=\left\{\begin{array}{ll}
1 & (j=3) \\
0 & (j \neq 3)
\end{array}\right)\right. \\
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \psi_{4}}{\partial \alpha_{\mathrm{j}}}\right)=-2 \omega \frac{\partial \psi_{2}}{\partial \alpha_{\mathrm{j}}}-\frac{\partial \psi_{3}}{\partial \alpha_{\mathrm{j}}} \\
& \left(\frac{\partial \psi_{4}\left(t_{0}\right)}{\partial \alpha_{j}}=\left\{\begin{array}{ll}
1 & (j=4) \\
0 & (j \neq 4)
\end{array}\right)\right\} \tag{18b}\\
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \psi_{5}}{\partial \alpha_{\mathrm{j}}}\right)=-\mathrm{C}_{15} \frac{\partial \psi_{2}}{\partial \alpha_{\mathrm{j}}}-\mathrm{C}_{35} \frac{\partial \psi_{4}}{\partial \alpha_{\mathrm{j}}}+\left[\frac{\Omega^{2} \mathrm{R}_{\mathrm{s}}{ }^{3}}{(\sqrt{\mathrm{x}})^{3}}-\mathrm{C}_{55}\right] \frac{\partial \psi_{6}}{\partial \alpha_{\mathrm{j}}}+\left(\mathrm{F}_{62}^{15}+\mathrm{E}_{15}\right) \frac{\partial \mathrm{x}_{1}}{\partial \alpha_{\mathrm{j}}} \\
& +\left(F_{64}^{35}+E_{35}\right) \frac{\partial \mathrm{x}_{3}}{\partial \alpha_{\mathrm{j}}}+\left(\mathrm{D}_{65}+\mathrm{E}_{55}\right) \frac{\partial \mathrm{x}_{5}}{\partial \alpha_{\mathrm{j}}} \\
& \left(\frac{\partial \psi_{5}\left(t_{0}\right)}{\partial \alpha_{j}}=\left\{\begin{array}{ll}
1 & (j=5) \\
0 & (j \neq 5)
\end{array}\right)\right. \\
& \frac{d}{d t}\left(\frac{\partial \psi_{6}}{\partial \alpha_{j}}\right)=-\frac{\partial \psi_{5}}{\partial \alpha_{j}} \\
& \left(\frac{\partial \psi_{6}\left(\mathrm{t}_{\mathrm{o}}\right)}{\partial \alpha_{\mathrm{j}}}=\left\{\begin{array}{ll}
1 & (\mathrm{j}=6) \\
0 & (\mathrm{j} \neq 6)
\end{array}\right)\right. \\
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \psi_{7}}{\partial \alpha_{\mathrm{j}}}\right)=\frac{\beta\left(\psi_{2} \frac{\partial \psi_{2}}{\partial \alpha_{\mathrm{j}}}+\psi_{4} \frac{\partial \psi_{4}}{\partial \alpha_{\mathrm{j}}}+\psi_{6} \frac{\partial \psi_{6}}{\partial \alpha_{\mathrm{j}}}\right)}{\mathrm{x}_{7}^{2} \sqrt{\psi}} \\
& \left(\frac{\partial \psi_{7}\left(t_{o}\right)}{\partial \alpha_{j}}=0\right)
\end{align*}
$$

In this system

$$
\mathrm{A}_{\mathbf{i}}=\beta\left[\frac{1}{\mathrm{x}_{7} \sqrt{\psi}}-\frac{\psi_{\mathbf{i}}^{2}}{\mathrm{x}_{7}(\sqrt{\psi})^{3}}\right]
$$

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{ik}}=-\frac{\beta \psi_{\mathrm{i}} \psi_{\mathrm{k}}}{\mathrm{x}_{7}(\sqrt{\psi})^{3}} \\
& \mathrm{C}_{\mathrm{ik}}=\frac{3 \Omega^{2} \mathrm{R}_{\mathrm{s}}^{3} \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{k}}}{(\sqrt{\mathrm{x}})^{5}} \\
& \mathrm{D}_{\mathrm{ik}}=-\frac{3 \Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3}\left(2 \psi_{\mathrm{i}} \mathrm{v}_{\mathrm{k}}+\mathrm{d}\right)}{(\sqrt{\mathrm{x}})^{5}} \\
& \mathrm{E}_{\mathrm{ik}}=\frac{15 \Omega^{2} \mathrm{R}_{\mathrm{S}}^{3} \mathrm{dv}_{\mathrm{i}} \mathrm{v}_{\mathrm{k}}}{(\sqrt{\mathrm{x}})^{7}}
\end{aligned}
$$

and

$$
\mathrm{F}_{\mathrm{em}}^{\mathrm{ik}}=-\frac{3 \Omega^{2} \mathrm{R}_{\mathrm{s}}^{3}\left(\psi_{\mathrm{e}} \mathrm{v}_{\mathrm{i}}+\psi_{\mathrm{m}} \mathrm{v}_{\mathrm{k}}\right)}{(\sqrt{\mathrm{x}})^{5}}
$$

with

$$
\begin{gathered}
v_{1}=x_{1}+R_{S_{x}} \\
v_{3}=x_{3}+R_{S_{y}}
\end{gathered}
$$

and

$$
v_{5}=x_{5}+R_{S_{z}}
$$

Iteration Sequence

In summary, the procedure used to solve the boundary-value problem presented in the preceding section is as follows:
(1) Assume a value of $\bar{\alpha}$ given by equation (12).
(2) Solve equations (17a) and (17b) to $\mathrm{t}_{\mathrm{f}}=\alpha_{7}$ and evaluate $\overline{\mathrm{e}}(\bar{\alpha})$ given by equation (12).
(3) If $\overline{\mathrm{e}}(\bar{\alpha})$ is sufficiently small, then the problem is solved; $\bar{\alpha}$ gives the unknown initial conditions and final time, and the corresponding solution of equation (13) gives the optimal trajectory.
(4) Otherwise, with the use of the solution given by equation (13), for the assumed $\bar{\alpha}$, solve equations (18a) and (18b) and evaluate equation (16).
(5) If previous value is not satisfactory, find λ such that equation (15) follows.
(6) Replace $\bar{\alpha}$ by $\bar{\alpha}+\delta \bar{\alpha}$ and return to step (2).

A digital computer program for this procedure is discussed in the next section.

DESCRIPTION OF PROGRAM

General

The program was written in FORTRAN IV language for the Control Data series 6000 computer systems at the Langley Research Center. A complete listing of the program is found in appendix B .

Upon acceptance of an assumed value of $\bar{\alpha}$ and appropriate system constants characterizing the particular rendezvous problem to be solved, the program proceeds according to the steps listed in the preceding section. The program does not contain a search routine for the determination of λ in step (5). It is expected that in each instance a value of λ which will work for the complete iteration process can be found.

The mathematical symbols used in the theory and their FORTRAN equivalents are given in table 1.

TABLE 1.- FORTRAN EQUIVALENTS OF MATHEMATICAL SYMBOLS

Subroutines

Seven subroutines are used in addition to the main program. The purpose of each is given in table 2:

TABLE 2.- SUBROUTINE LISTING

Subroutine	Purpose
DERSUB	Evaluates all differential equations to be solved
CHSUB	Tests for the end of a trajectory
COMP	Evaluates the position and rate of $\overline{\mathrm{R}}_{\mathrm{S}}(\mathrm{t})$, the vector from the origin to the target
ITERAT	Computes and applies the correction $\delta \bar{\alpha}$ to the initial $\bar{\alpha}$ $\partial \mathrm{x}_{\mathrm{i}}(\bar{\alpha}) \quad \partial \psi_{\mathrm{i}}(\bar{\alpha}) \quad \partial \psi_{\eta}(\bar{\alpha})$
BLOCK DATA .	Initializes $\frac{1}{\partial \alpha_{j}}, \frac{1}{\partial \alpha_{j}}$, and $\frac{\mu_{j}}{\partial \alpha_{j}}$ $(i=1,2, \ldots 6 ; j=1,2, \ldots 6)$
INT2 .	Numerically integrates the differential equations with a fixed-step size method by employing a fourth-order Adams-Bashforth predictor formula and a fourth-order Adams-Moulton corrector formula
MATINV	Obtains the inverse of the matrix $\left[\frac{\partial \overline{\mathrm{e}}^{\prime}}{\partial \overline{\bar{\alpha}}} \mathrm{B} \frac{\partial \overline{\mathrm{e}}}{\partial \overline{\bar{\alpha}}}+\lambda \mathrm{I}\right]$

Input
Input is of the form shown in table 3:

TABLE 3.- INPUT DATA

Card number	FORTRAN variable name	Description	FORTRAN format
1	NO	Case number	I20
2	S¢MEG, BETA, C, TF	$\omega, \quad \beta, \quad \mathbf{c}, \quad \mathrm{t}_{\mathrm{f}}=\alpha_{7}$	4E20.8
3	PHIVO, THETVO, RV	$\varphi_{\mathrm{v}}{ }^{\mathrm{o}}, \theta_{\mathrm{v}}{ }^{\mathrm{o}}, \mathrm{R}_{\mathrm{V}}\left(\mathrm{t}_{0}\right)$	3E20.8
4	DRVXO, DRVYO, DRVZO	$\dot{\mathrm{R}}_{\mathrm{V}_{\mathrm{x}}}\left(\mathrm{t}_{0}\right), \quad \dot{\mathrm{R}}_{\mathrm{V}_{\mathrm{y}}}\left(\mathrm{t}_{0}\right), \quad \dot{\mathrm{R}}_{\mathrm{V}_{\mathrm{z}}}\left(\mathrm{t}_{0}\right)$	3E20.8
5	PHIO, THETAO, IO, RS	$\varphi_{0}, \quad \theta_{\mathrm{O}}, \quad \iota_{\mathrm{o}}, \quad \mathrm{R}_{\mathrm{S}}$	4E20.8
6	$\operatorname{VAR}(1), \operatorname{VAR}(8)$, MU	$\mathrm{t}_{0}, \mathrm{~m}_{0}, \mu$	3E20.8
7	$\operatorname{VAR}(9)$ to $\operatorname{VAR}(12)$	α_{1} to α_{4}	4E20.8
8	$\operatorname{VAR}(13)$ to VAR(15)	$\alpha_{5}, \alpha_{6}, \psi_{7}\left(\mathrm{t}_{0}\right)$	3 E 20.8
9	CI, SPEC	Computing interval, printing frequency (see "Output" section)	2E20.8
10	IPRINT, IER \varnothing R, IMAT	(See 'Output" section)	3 I 20
11	LAMBDA, CRIT, MAXIT	λ, stopping criterion, maximum number of iterations (see "Output" section)	2E20.8, 120
12	$B(1)$ to $\mathrm{B}(4)$	b_{1} to b_{4}	4E20.8
13	$B(5)$ to $B(7)$	b_{5} to b_{7}	3E20.8

All the input variables are dimensionalized and angles are in radians; α_{i} ($i=1,2, \ldots 6$, $b_{i}(i=1,2, \ldots 7)$, and $\psi_{i}(i=0,1, \ldots 8)$ are considered dimensionless.

Output
The program offers several options for output. Regardless of the options, the input data are always printed initially. Afterwards, output is presented at each iteration according to the following input variables: SPEC, IPRINT, IER \varnothing R, IMAT.

SPEC specifies how often results are to be printed. If $\mathrm{SPEC}=10^{10}$, output will be printed only at $t=t_{0}$ and $t=t_{f}$. If $S P E C=n C I$, where $C I$ is the integration computing interval and n is a positive integer, results will be printed every n integration step. At $t=t_{0}$, the variables that are printed are $t_{0}, \psi_{i}\left(t_{0}\right)(i=1,2, \ldots 7)$, and u_{i} ($i=1,2,3$). At any other time t, determined by SPEC, the variables that are printed are $t, \psi_{i}(t) \quad(i=1,2, \ldots 7), \quad \bar{R}_{S}(t), \quad \dot{\bar{R}}_{S}(t), \quad \bar{R}_{V}(t), \quad \dot{\bar{R}}_{V}(t), \quad x_{i} \quad(i=1,2, \ldots 7)$, $u_{i}(i=1,2,3), \quad \dot{x}_{2}(t), \dot{x}_{4}(t), \dot{x}_{6}(t), \quad \beta,\left\|\bar{R}_{V}(t)\right\|$, and the relative distances and velocities $\sqrt{\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{3}{ }^{2}+\mathrm{x}_{5}{ }^{2}}$ and $\frac{\mathrm{d}}{\mathrm{dt}} \sqrt{\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{3}{ }^{2}+\mathrm{x}_{5}{ }^{2}}$. At $\mathrm{t}=\mathrm{t}_{\mathrm{f}}, \quad \mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})]$ and $\delta \bar{\alpha}$ are also printed.
IPRINT provides the option for printing the partial derivatives $\frac{\partial \psi_{\mathrm{i}}(\mathrm{t})}{\partial \alpha_{\mathrm{j}}}, \frac{\partial \mathrm{x}_{\mathrm{i}}(\mathrm{t})}{\partial \alpha_{\mathrm{j}}}$, and $\frac{\partial \psi_{7}}{\partial \alpha_{j}}(i=1,2, \ldots 6 ; j=1,2, \ldots 6)$. If IPRINT $=0$, the partial derivatives are not printed; if $\operatorname{IPRINT}=1$, the partial derivatives are printed.

IER \varnothing R provides the option for printing the truncation errors for the differential equations. If $\operatorname{IER} \varnothing R=0$, truncation errors for the differential equations are not printed; if $\operatorname{IER} \emptyset_{R}=1$, the truncation errors are printed.

IMAT provides the option for printing the matrix $\left[\frac{\partial \overline{\mathbf{e}}^{\prime}(\bar{\alpha})}{\partial \bar{\alpha}} \mathrm{B} \frac{\partial \overline{\mathrm{e}}(\bar{\alpha})}{\partial \bar{\alpha}}+\lambda \mathrm{I}\right]$, its inverse, and the product of the two. If IMAT $=0$, the matrices are not printed; if IMAT $=1$, the matrices are printed.

The program terminates when convergence is reached $(\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})] \leqq \mathrm{CRIT})$ or when the maximum number of iterations (MAXIT) has been reached.

EXAMPLE COMPUTATIONS

The use of the foregoing procedures is demonstrated by the problem of a space vehicle launched from the surface of the moon to rendezvous, in a minimum of flight time, with a target in a circular orbit. The vehicle has a bounded thrust magnitude which, along
with the thrust direction, acts as a control variable. There is no terminal mass constraint. The system constants used in this study are given in table 4.

TABLE 4.- SYSTEM CONSTANTS

Initial time, t_{0}, sec .
Upper bound on thrust magnitude, β, lbm (kg) 3504 (1589.4)
Initial mass, m_{0}, slugs (kg) . 285.5 (4166.3)
Effective exhaust velocity, c, ft/sec (m/sec) 9853.2 (279.86)
$\mathrm{R}_{\mathrm{V}}\left(\mathrm{t}_{\mathrm{o}}\right)$ set equal to radius of moon, $\mathrm{ft}(\mathrm{km})$. 5.707×10^{6} (1739.4)
R_{S} set equal to radius of 80 -nautical-mile satellite
circular orbit, ft (km) . 6.1934×10^{6}
Universal gravitational constant multiplied by the moon mass, $\mu, \mathrm{ft}^{3} / \mathrm{sec}^{2}\left(\mathrm{~m}^{3} / \mathrm{sec}^{2}\right)1 .727 \times 10^{14} \quad\left(48.90 \times 10^{11}\right)$
Angular velocity of moon about axis of rotation, $\omega, \mathrm{rad} / \mathrm{sec} \quad 2.66 \times 10^{-6}$
The satellite orbital plane was placed in the xy-plane of the rotating system (fig. A-1). Studies were made with the vehicle launched from rest from the surface of the moon with the launch site both in and out of this plane (planar and nonplanar case, respectively).

It was found that a workable set of $b_{i}(i=1,2$, . . 7) and λ for convergence was $b_{1}=b_{3}=b_{5}=b_{7}=1, b_{2}=b_{4}=b_{6}=10$, and $\lambda=10$ or $\lambda=1$. These values were used throughout. It was observed that increasing the value of λ yielded a slower converging process, while a decrease was apt to produce divergence. It was also observed that by increasing a particular b_{i}, greater influence could be applied to the correction of the error e_{i}; that is, this error would be corrected more quickly than before, but at the expense of the other errors.

It was found that in the planar case, with the vehicle launched such that the satellite lead angle $\varphi_{\mathrm{O}}-\varphi_{\mathrm{V}}{ }^{0}$ was 90 (with $\varphi_{\mathrm{O}}=89^{\circ}$), the set of values

$$
\begin{aligned}
& \alpha_{1}=-100 \ddot{R}_{S_{X}}\left(t_{0}\right)=7.8565 \\
& \alpha_{2}=\dot{R}_{S_{X}}\left(t_{0}\right)=5.296 \times 10^{3} \\
& \alpha_{3}=\ddot{\mathrm{R}}_{\mathrm{S}_{\mathrm{y}}}\left(\mathrm{t}_{0}\right)=-4.5016 \\
& \alpha_{4}=\dot{\mathrm{R}}_{\mathrm{S}_{\mathrm{y}}}\left(\mathrm{t}_{0}\right)=-92.44 \\
& \alpha_{5}=\ddot{\mathrm{R}}_{\mathrm{S}_{\mathrm{z}}}\left(\mathrm{t}_{0}\right)=0 \\
& \alpha_{6}=\dot{\mathrm{R}}_{\mathrm{S}_{\mathbf{z}}}\left(\mathrm{t}_{0}\right)=0 \\
& \alpha_{7}=500 \text { seconds }
\end{aligned}
$$

$\left(\psi_{7}\left(t_{0}\right)\right.$ having been normalized at $\left.-1.184 \times 10^{5}\right)$ leads to convergence with the values of b_{i} previously mentioned and $\lambda=10$ in 12 iterations. This procedure gave a solution to be used as a nominal, or guessed, solution for neighboring lead angles. Table 5 shows the planar results obtained. For each lead angle the iteration was stopped when

$$
\overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right) \cdot \overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right)+\psi_{7}{ }^{2}\left(\mathrm{t}_{\mathrm{f}}\right) \leqq 1
$$

with $\psi_{7}\left(\mathrm{t}_{\mathrm{o}}\right)$ normalized at -1.184×10^{5}. Since the results are planar, $\psi_{5}(\mathrm{t}) \equiv \psi_{6}(\mathrm{t}) \equiv 0$.
It can be seen from table 5 that near the lead angle 13.7°, the smallest value of t_{f} and hence the largest terminal mass occur. Figure 1 shows a graph of these results.

TABLE 5.- TIME-OPTIMAL PLANAR RESULTS

$\begin{gathered} \text { Lead angle, } \\ \varphi_{\mathrm{o}}-\varphi_{\mathrm{v}}{ }^{\mathrm{o}} \\ \operatorname{deg}^{2} \end{gathered}$	Unknown parameters					Percent initial mass at t_{f}
	$\psi_{1}\left(\mathrm{t}_{0}\right)$	$\psi_{2}\left(\mathrm{t}_{0}\right)$	$\psi_{3}\left(\mathrm{ta}_{0}\right)$	$\psi_{4}\left(\mathrm{t}_{0}\right)$	t_{f}, sec	
8	11.662	5577.3	5.6883	2051.8	547.9	31.7
9	12.929	5948.3	7.4703	2638.8	524.8	34.6
10	14.120	6239.4	10.026	3422.5	499.5	37.8
12	12.530	5464.5	17.992	5427.7	453.0	43.6
13	6.9429	3774.3	20.577	5758.3	443.3	44.8
13.7	2.4694	2500.4	20.507	5501.0	442.3	44.9
14	. 73674	2012.3	20.108	5315.8	443.0	44.8
16	-6.2567	-42.810	15.897	4005.4	454.8	43.3
18	-8.4150	-882.65	12.256	3110.3	471.7	41.2
22	-8.5773	-1472.0	7.8560	2155.4	507.3	36.8

Figure 1.- Percentage of initial mass at rendezvous as a function of lead angle $\varphi_{0}-\varphi_{v}{ }^{0}$. Planar case; $\theta_{V}{ }^{\circ}=0^{\circ}$.

Schematic views of the flight paths for planar solutions with lead angles $8^{\circ}, 13.7^{\circ}$, and 22° are shown in figure 2. From this figure an idea can be gained as to the different maneuvers required for different lead angles. Arrows placed along the trajectories indicate the true direction of the thrust vector at 50 -second intervals. The spatial coordinates used in this plot are to different scales. The xy-plane is viewed as being inertial since the total rotation of the moon was less than 0.1° for the longest flight time.

Examples of out-of-plane results were obtained by holding φ_{O} and $\varphi_{\mathrm{V}}{ }^{\circ}$ fixed at 93.7° and 80°, respectively, and allowing nonzero values of $\theta_{\mathrm{v}}{ }^{\circ}$. For $\theta_{\mathrm{v}}{ }^{\circ}=2^{\circ}$, the planar solution for $\varphi_{\mathrm{O}}-\varphi_{\mathrm{v}}{ }^{\mathrm{o}}=13.7^{\circ}$ was used as a nominal. The results for this nonplanar case exemplify a typical sequence of iterations, and this sequence is tabulated in table 6. For $\theta_{\mathrm{v}}{ }^{\mathrm{o}}=2 \mathrm{o}, \mathrm{b}_{1}=\mathrm{b}_{3}=\mathrm{b}_{5}=\mathrm{b}_{7}=1, \mathrm{~b}_{2}=\mathrm{b}_{4}=\mathrm{b}_{6}=10$, and $\lambda=1$. Table 7 shows other out-of-plane results for the fixed lead angle of 13.7°. A graph of the percentage of initial mass at rendezvous as a function of out-of-plane angle $\theta_{\mathrm{v}}{ }^{\mathrm{o}}$ is shown in figure 3.

Figure 2.- Comparison of planar time-optical trajectories. $\varphi_{V}{ }^{\circ}=80^{\circ} ; \varphi_{0}=88^{\circ}, 93.7^{\circ}$, and $102^{\circ} ; \theta_{V}{ }^{0}=0^{\circ}$. (0.3048 meter $=1$ foot)

TABLE 6.- TYPICAL TIME-OPTIMAL ITERATION SEQUENCE $\left[\varphi_{\mathrm{O}}=93.7^{\circ}, \varphi_{\mathrm{v}}{ }^{\mathrm{o}}=80^{\circ} ; \quad \theta_{\mathrm{V}}{ }^{\mathrm{O}}=2^{\mathrm{O}}\right.$ (except for nominal results) $]$

Iteration	Unknown parameters							
	$\psi_{1}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{2}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{3}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{4}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{5}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{6}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\mathrm{t}_{\mathrm{f}}, \mathrm{sec}$	$\mathrm{E}[\overline{\mathrm{e}}(\bar{\alpha})]$
Nominal $^{\mathrm{a}}$	2.4694	2500.4	20.507	5501.0	0	0	442.3	1.75×10^{10}
1	2.6048	2526.5	20.415	5498.3	-4.6177	-1340.9	443.2	2.30×10^{8}
2	3.5498	2718.7	19.445	5369.0	-4.8561	-1409.4	448.5	2.23
$\times 10^{6}$								
3	3.6100	2732.8	19.461	5371.7	-4.8560	-1412.6	448.8	9.29
4	3.6263	2736.9	19.469	5374.8	-4.8587	-1413.6	448.8	9.55
5	3.6325	2738.6	19.474	5376.2	-4.8596	-1413.9	448.8	1.61
$\mathrm{~b}_{6}$	3.6351	2739.2	19.476	5376.8	-4.8599	-1414.0	448.8	.271

$\mathrm{a}_{\theta_{\mathrm{v}}} \mathrm{o}=0 ; \quad \mathrm{x}_{1}\left(\mathrm{t}_{\mathrm{f}}\right)=-582.7, \quad \mathrm{x}_{2}\left(\mathrm{t}_{\mathrm{f}}\right)=-0.03386, \quad \mathrm{x}_{3}\left(\mathrm{t}_{\mathrm{f}}\right)=-3275.5, \quad \mathrm{x}_{4}\left(\mathrm{t}_{\mathrm{f}}\right)=0.15997$, $x_{5}\left(\mathrm{t}_{\mathrm{f}}\right)=1.8728 \times 10^{5}, \quad \mathrm{x}_{6}\left(\mathrm{t}_{\mathrm{f}}\right)=-27.581$, and $\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)=9.9489$.
$\mathrm{b}_{\mathrm{x}_{1}}\left(\mathrm{t}_{\mathrm{f}}\right)=-0.0017, \quad \mathrm{x}_{2}\left(\mathrm{t}_{\mathrm{f}}\right)=0.230, \quad \mathrm{x}_{3}\left(\mathrm{t}_{\mathrm{f}}\right)=-0.006, \quad \mathrm{x}_{4}\left(\mathrm{t}_{\mathrm{f}}\right)=-0.026$,
$x_{5}\left(\mathrm{t}_{\mathrm{f}}\right)=0.001, \quad \mathrm{x}_{6}\left(\mathrm{t}_{\mathrm{f}}\right)=0.015$, and $\psi_{7}\left(\mathrm{t}_{\mathrm{f}}\right)=-0.042$ for a computing time of 23 seconds.

TABLE 7.- TIME-OPTIMAL OUT-OF-PLANE RESULTS

$$
\left[\varphi_{\mathrm{o}}=93.7^{\circ}, \quad \varphi_{\mathrm{v}}^{\mathrm{o}}=80^{\circ}\right]
$$

$\theta_{\mathrm{V}}{ }^{\mathrm{o}}, \mathrm{deg}$	Unknown parameters							
	$\psi_{1}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{2}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{3}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{4}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{5}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\psi_{6}\left(\mathrm{t}_{\mathrm{o}}\right)$	$\mathrm{t}_{\mathrm{f}}, \mathrm{sec}$	Percent initial mass at t_{f}
0	2.4694	2500.4	20.507	5501.0	0	0	442.3	44.9
2	3.6351	2739.2	19.476	5376.8	-4.8599	-1414.0	448.8	44.1
4	5.6559	3154.0	16.644	4913.9	-7.8427	-2482.2	466.8	41.8
6	6.6424	3323.6	13.215	4201.8	-8.6545	-3010.3	492.2	38.7
8	6.5482	3215.7	10.282	3495.9	-8.2675	-3132.6	520.0	35.2
10	5.9679	2970.9	8.0805	2914.0	-7.4739	-3048.8	546.6	31.9

Figure 3.- Percentage of initial mass at rendezvous as a function of out-of-plane angle $\theta_{\mathrm{V}}{ }^{0}$ for fixed lead angle $\varphi_{0}-\varphi_{V}{ }^{0}$ of 13.7^{0}.

The computational time for obtaining both planar and nonplanar trajectories was less than 1 minute.

CONCLUDING REMARKS

A technique has been presented for obtaining three-dimensional rendezvous trajectories between a one-stage rocket vehicle and a target in a circular Keplerian orbit. The trajectories satisfy the necessary conditions of the Pontryagin maximum principle for time-optimal rendezvous in which no terminal mass constraint is placed on the rocket.

The use of Pontryagin's theory leads to a two-point boundary-value problem. Certain initial conditions on a set of differential equations introduced by the maximum principle had to be found such that certain boundary conditions were met. A digital program was given for the solution of this problem based on an iteration method. Given assumed values of the initial conditions, which do not yield rendezvous, the program attempts to correct these values in such a way that rendezvous is more closely attained. Iterative use of this procedure gives a sequence of trajectories converging to one yielding rendezvous.

The program was successfully applied to a problem in which a space vehicle was launched from the surface of the moon and required to rendezvous with a target in an 80-nautical-mile circular orbit. Both planar and nonplanar trajectories were obtained with equal ease in less than 1 minute of computational time on the Control Data series 6000 computer systems.

Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 8, 1968, 125-17-05-10-23.

APPENDIX A

FORMULATION OF DYNAMIC EQUATIONS

The dynamic equations for a space vehicle which is required to rendezvous with a target in a circular Keplerian orbit about a rotating body are derived in reference 5. The formulation of these equations is summarized in this appendix. The vehicle is a one-stage rocket, treated as a point mass, with bounded thrust magnitude. The controls are the magnitude and direction of the thrust vector.

Let x, y, and z be Cartesian coordinates of a rotating axis system located in the center of the body with the z-axis through the axis of rotation of the body. The geometry is represented in figure A-1.

Figure A-1.- The rotating axis system.
The vector $\bar{R}_{S}(t)$ is from the origin to the target, $\bar{R}_{V}(t)$ is from the origin to the vehicle, and ω is the angular velocity of the body about its axis of rotation. The relative distance between the target and vehicle is given by

$$
\begin{equation*}
\overline{\mathbf{r}}(\mathrm{t})=\overline{\mathrm{R}}_{\mathrm{V}}(\mathrm{t})-\overline{\mathrm{R}}_{\mathrm{S}}(\mathrm{t}) \tag{A1}
\end{equation*}
$$

Since the target is assumed to be in a circular orbit, it moves in its orbital plane at a constant distance R_{S} from the center of the body with a constant angular velocity $\Omega=\left(\mu / R_{\mathbf{S}}^{3}\right)^{1 / 2}$, where μ is the universal gravitational constant multiplied by the body mass and where the magnitude of R_{S} is $\left[\bar{R}_{S}(t) \cdot \bar{R}_{S}(t)\right]^{1 / 2}$. Consider an inertial XYZ-axis system fixed in the center of the body such that, at the initial time t_{0}, it is alined with the rotating xyz-axis system. In this framework the target can be pictured as in figure A-2.

Figure A-2.- Target viewed in the inertial axis system.
The angles ι_{0} and θ_{0} define the normal and line of nodes, respectively, of the target orbital plane relative to the inertial system. The x^{\prime} and y^{\prime} axes therefore define the orbital plane of the target. If at to the target is in the position $\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)=\left(\mathrm{R}_{\mathrm{S}} \cos \varphi_{\mathrm{O}}, \quad \mathrm{R}_{\mathrm{S}} \sin \varphi_{\mathrm{O}}\right)$ and moves toward the line of nodes, then

$$
\bar{R}_{S}\left[\mathrm{x}^{\prime}(\mathrm{t}), \mathrm{y}^{\prime}(\mathrm{t}), \mathrm{z}^{\prime}(\mathrm{t})\right]=\mathrm{R}_{\mathrm{S}}\left\{\begin{array}{c}
\cos \left[\varphi_{\mathrm{O}}-\Omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{O}}\right)\right] \tag{A2}\\
\sin \left[\varphi_{\mathrm{O}}-\Omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{O}}\right)\right] \\
0
\end{array}\right\}
$$

and

$$
\begin{equation*}
\overline{\mathrm{R}}_{\mathrm{S}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{T}_{1} \overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right) \tag{A3}
\end{equation*}
$$

where

$$
T_{1}=\left[\begin{array}{ccc}
\cos \theta_{0} & -\cos \iota_{0} \sin \theta_{0} & \sin \iota_{0} \sin \theta_{0} \tag{A4}\\
\sin \theta_{0} & \cos \iota_{0} \cos \theta_{0} & -\sin \iota_{0} \cos \theta_{0} \\
0 & \sin \iota_{0} & \cos \iota_{0}
\end{array}\right]
$$

Since the xyz-axis system rotates about the Z-axis with a constant angular velocity ω,

$$
\begin{equation*}
\overline{\mathrm{R}}_{\mathrm{S}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\overline{\mathrm{R}}_{\mathrm{S}}(\mathrm{t})=\mathrm{T}_{2}(\mathrm{t}) \overline{\mathrm{R}}_{\mathrm{S}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \tag{A5}
\end{equation*}
$$

APPENDIX A

where

$$
T_{2}(t)=\left[\begin{array}{ccc}
\cos \omega\left(t-t_{0}\right) & \sin \omega\left(t-t_{0}\right) & 0 \\
-\sin \omega\left(t-t_{0}\right) & \cos \omega\left(t-t_{0}\right) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Also

$$
\begin{equation*}
\frac{d \bar{R}_{S}(\mathrm{t})}{\mathrm{dt}}=\dot{\mathrm{T}}_{2}(\mathrm{t}) \overline{\mathrm{R}}_{\mathrm{S}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})+\mathrm{T}_{2}(\mathrm{t}) \dot{\bar{R}}_{\mathrm{S}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \tag{A6}
\end{equation*}
$$

where

$$
\dot{T}_{2}(t)=\omega\left[\begin{array}{ccc}
-\sin \omega\left(t-t_{0}\right) & \cos \omega\left(t-t_{0}\right) & 0 \\
-\cos \omega\left(t-t_{0}\right) & -\sin \omega\left(t-t_{0}\right) & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
\dot{\bar{R}}_{\mathrm{S}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{R}_{\mathrm{S}} \Omega \mathrm{~T}_{1}\left\{\begin{array}{c}
\sin \left[\varphi_{\mathrm{O}}-\Omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{O}}\right)\right] \\
-\cos \left[\varphi_{\mathrm{O}}-\Omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{O}}\right)\right] \\
0
\end{array}\right\}
$$

Thus the position and rate of $\bar{R}_{S}(t)$ can be obtained by specifying R_{S}, L_{0}, θ_{0}, and φ_{o} at t_{o} and by using equations (A5) and (A6).

The thrust control vector $\overline{\mathrm{T}}$ is related to the rotating axis system by

Figure A-3.- Reference axis system for control vector.

$$
\overline{\mathrm{T}}=\mathrm{T}\left[\begin{array}{cc}
\cos \theta_{\mathbf{c}} & \cos \varphi_{\mathbf{c}} \tag{A7}\\
\cos \theta_{\mathbf{c}} & \sin \varphi_{\mathbf{c}} \\
\sin \theta_{\mathbf{c}}
\end{array}\right]
$$

as shown in figure A-3.
The vectors \hat{i}, \hat{j}, and \hat{k} are unit vectors in the direction of the x, y, and z axes, respectively, and T is the magnitude of the thrust vector. Let

$$
\hat{\mathrm{u}}=\left[\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2} \\
\mathrm{u}_{3}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta_{\mathrm{c}} & \cos \varphi_{\mathrm{c}} \\
\cos \theta_{\mathrm{c}} & \sin \varphi_{\mathrm{c}} \\
\sin \theta_{\mathrm{c}}
\end{array}\right]
$$

APPENDIX A

$$
\begin{aligned}
& u_{4}=T \\
& \overline{\mathbf{r}}=\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\left[\begin{array}{l}
R_{\mathrm{V}_{\mathrm{x}}}-R_{\mathrm{S}_{\mathrm{x}}} \\
\mathrm{R}_{\mathrm{v}_{\mathrm{y}}}-\mathrm{R}_{\mathrm{S}_{\mathrm{y}}} \\
\mathrm{R}_{\mathrm{V}_{\mathrm{z}}}-\mathrm{R}_{\mathrm{S}_{\mathrm{z}}}
\end{array}\right] \\
& \dot{\overline{\mathrm{r}}}=\left[\begin{array}{l}
\dot{r}_{\mathrm{x}} \\
\dot{r}_{\mathrm{y}} \\
\dot{r}_{\mathrm{z}}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{array}{ll}
\mathrm{x}_{1}=\mathrm{r}_{\mathrm{x}} & \text { (relative } \mathrm{x} \text { distance) } \\
\mathrm{x}_{2}=\dot{\mathrm{r}}_{\mathrm{x}} & \text { (relative } \mathrm{x} \\
\mathrm{x}_{3}=\mathrm{r}_{\mathrm{y}} & \text { (relacity) } \\
\mathrm{x}_{4}=\dot{r}_{\mathrm{y}} & \text { (relative } \mathrm{y} \\
\mathrm{y} & \text { distance) } \\
\mathrm{x}_{5}=\mathrm{r}_{\mathrm{z}} & \text { (relative } \mathrm{z}
\end{array}
$$

In this framework the dynamic equations can be written as (ref. 5)

$$
\left.\begin{array}{lr}
\dot{\bar{x}}=\frac{u_{4} \mathrm{M} \hat{u}}{\mathrm{x}_{7}}+\overline{\mathrm{Y}}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right) & \left(\overline{\mathrm{x}}\left(\mathrm{t}_{0}\right)=\overline{\mathrm{x}}_{0} ; \overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right)=\overline{0}\right) \\
\dot{\mathrm{x}}_{7}=-\frac{\mathrm{u}_{4}}{\mathrm{c}} & \left(\mathrm{x}_{7}\left(\mathrm{t}_{0}\right)=\mathrm{m}\left(\mathrm{t}_{0}\right)=\mathrm{m}_{0}\right) \tag{A8}\\
\dot{\mathrm{x}}_{8}=1 & \left(\mathrm{x}_{8}\left(\mathrm{t}_{0}\right)=\mathrm{t}_{0}\right)
\end{array}\right\}
$$

where

$$
\begin{equation*}
\mathrm{Y}\left(\overline{\mathrm{x}}, \mathrm{x}_{8}\right)=-\frac{\Omega^{2} \mathrm{R}_{\mathrm{S}}{ }^{3}}{\left\|\mathrm{~A} \overline{\mathrm{x}}+\mathrm{R}_{\mathrm{S}}\right\|^{3}}\left[\mathrm{~N} \overline{\mathrm{x}}+\mathrm{M}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)\right]+\Omega^{2} \mathrm{MR}_{\mathrm{S}}\left(\mathrm{x}_{8}\right)+\left(\mathrm{N}^{\prime}+2 \omega \mathrm{~K}+\omega^{2} \mathrm{~L}\right) \overline{\mathrm{x}} \tag{A9}
\end{equation*}
$$

with
$\overline{\mathrm{x}}=\operatorname{col}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{6}\right)$
$\mathrm{M}=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{N}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
$K=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\mathrm{L}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
and
$A=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

APPENDIX A

In order to compute the initial value of $\bar{x}\left(t_{0}\right)$, the initial value of $\bar{R}_{V}\left(t_{0}\right)$ can be specified by

$$
\dddot{R}_{\mathrm{V}}\left(\mathrm{t}_{\mathrm{o}}\right)=\left[\begin{array}{cc}
\cos \theta_{\mathrm{V}}^{\circ} & \cos \varphi_{\mathrm{V}}{ }^{\circ} \\
\cos \theta_{\mathrm{V}}^{\circ} & \sin \varphi_{\mathrm{V}}^{\circ} \\
\sin \theta_{\mathrm{V}}^{\circ}
\end{array}\right]
$$

where $\theta_{\mathrm{v}}{ }^{\mathrm{o}}$ and ${\varphi_{\mathrm{v}}}^{\circ}$ are as shown in figure A-4. Also

Figure A-4.- Initial orientation of vehicle with respect to the rotating axis system.

$$
\dot{\bar{R}}_{V}\left(t_{o}\right)=\left[\begin{array}{c}
\dot{R}_{V_{x}}\left(t_{o}\right) \\
\dot{R}_{V_{y}}\left(t_{o}\right) \\
\dot{R}_{V_{z}}\left(t_{o}\right)
\end{array}\right]
$$

and $\overline{\mathrm{R}}_{\mathrm{S}}\left(\mathrm{t}_{\mathrm{O}}\right)$ and $\dot{\bar{R}}_{\mathrm{S}}\left(\mathrm{t}_{\mathrm{O}}\right)$ are computed from equations (A2) to (A6).

The act of rendezvous requires that the vehicle and target have the same position and velocity at t_{f}; hence, the condition $\overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right)=\overline{0}$. In addition, $u_{4} \leqq \beta$, the largest value obtainable for the thrust magnitude.

APPENDIX B

PROGRAM LISTING

The program presented on the following pages is written in FORTRAN IV language for the Control Data series 6000 computer systems at the Langley Research Center.

```
PROGRAM E1257(1NPUT OOUTPUT.TAPE5=INPUT,TAPE6=OUTPUT)
TIME OPTIMAL RENDEZVOUS STUDY
DEFINITIONS
NO CASE NO.
SOMEG
BETA
C
TF
PHIVO,THETVO
RV
DRVXO.DRVYO.DRVZO
PHIO.THETAO,IO
RS
VAR(1)
MU
VAR(9)-VAR(15)
CI
SPEC
IPRINT
IEROR
IMAT
LAMBDA
CRIT
MAXIT
B
INPUT AS FOLLOWS
INPUT CARD NO.
QUANTITY FORMAT
NO I
SOMEG.BETA,C.TF E
PHIVO,THETVO,RV
DRVXO.DRVYO,DRVZO
PHIO,THETAO,IO,RS
VAR(1) VAR(B),MU
VAR(9) - VAR(12) E
VAR(13) - VAR(15) E
CI.SPEC
I 
```



```
EQUIVALENCE(VAR(I),T1)
C
C FORMAT STATEMENTS
C
    100 FORMAT(I20/4E2O.8/3E20.8/3E20.8/4E20.8/3E20.8/4E20.8/3E20.8)
    200 FORMAT{2E20.8/3I20/2E20.8.120/4E20.8/3E20.8)
    500 FORMATI3OHITIME OPTIMAL RENDEZVOUS STUDY,IOX BHCASE NO. 13///////
        16H INPUT///5H BETA 2X E16.8.10X 2HRS 8X E16.8, 10X 7HOMEGA M 3X
        2E16.8.10X 6HLAMBDA 2X E16.8/2H C 5X EIG.8, 1OX 2HRV 8X E1G.8. 1OX
        37HOMEGA T 3X E16.8. 10X 2HMU 6X E16.8//)
    501 FORMAT (19H WEIGHTING ELEMENTS/7E16.7///)
    502 FORMAT<19H INITIAL CONDITIONS//3H TO,4X.EI6.8.10X.6HPHI VO.4X.
        1E16.8,10X,8HRVXO DOT, 2X,E16.8.1OX.4HPH10.4X,E16.8/5H MASS.2X.E16.8
        2,10X,8HTHETA VO,2X,E16.8,10X,8HRVYO DOT, 2X,E16.8,10X,6HTHETAO,2X.
    3E16.8/5H MDOT2XE16.8,46X 8HRVZO DOT2X E16.8,10X2HIO 6XE16.8///)
    503 FORMAT (19H ASSUMED CONDITIONS//3H TF,4X.E16.8.10X,4HPSI1,6X.E16.8,
        110X,4HPSI2.6X.E16.8/5H PSIT,2X,E16.8,1OX,4HPSI3.6X.EIG.8,1 OX.
        24HPSI4.6X,E16.8/33X.4HPSI5.6X,E16.8.10X.4HPSI6.6X,E16.8////)
    504 FORMAT(28H COMPUTED INITIAL CONDITIONS//3H XR,4X.E1G.8.1OX.GHXR DO
    1T,4X,E16.8/3H YR,4X,E16.8,10X,6HYR DOT,4X,E16.8/3H ZR,4X,E16.8,
    210X.GHZR DOT,4X.E16.8//4H RSX.3X.E16.8.10X.7HRSX DOT, 3X.E16.8,10X.
    33HRVX,7X,E16.8/4H RSY, 3X,E16.8,1OX,7HRSY DOT,3X,E16.8,1OX.3HRVY,
    47X,E16.8/4H RSZ,3X,E16.8.1OX,7HRSZ DOT,3X,E16.8,10X,3HRVZ,7X,E16.8
    5/53HIINTEGRATION ROUTINE USES FIXED COMPUTING INTERVAL = E16.8//)
C
800 FORMAT\5H TIME 2X E16.8, 1OX 4HRELD 5X E16.8,10X6HTHRUST 3X E16.8/
    15H MASS 2X E16.8, 10X 4HRELV 5X E16.8.10X2HRV 7X E16.8/)
804 FORMAT(5H PSII 2X E16.8.10X 4HPSI2 5X E16.8.10X 4HPSIT 5X ElG.8/
    15H PSI3 2X El6.8. 10X 4HPSI4 5X E16.8/5H PSI5 2X E16.8. 10X 4HPSI6
    25X E16.8/)
805 FORMAT(9H PARTIALS//BH X/ALPHA/6(6E18.B/)//
    110H PSI/ALPHA/G(6E18.8/)//11H PSI7/ALPHA/6E18.8//)
806 FORMAT{3H XR,4X.E16.8.1OX.GHXR DOT,3X,E16.8,10X,7HDXR DOT,2X,
    1E16.8.1OX.2HUX,8X.E16.8/3H YR,4X,E16.8.10X,GHYR DOT,3X.E16.8.1OX.
    27HDYR DOT,2X,E16.8,10X,2HUY,8X,E1G.8/3H ZR,4X,E16.8,10X,6HZR DOT,
    33X,E16.8,10X,7HDZR DOT,2X,E16.8,10X,2HUZ,8X,E16.8/)
80B FORMAT&4H RSX,3X,E16.8,10X,7HRSX DOT,2X,E16.8,10X.3HRVX,6X,E16.8.
    110X,7HRVX DOT, 3X,E16.8/4H RSY. 3X,E16.8,10X,7HRSY DOT, 2X.E16.8,10X,
    23HRVY.6X.E16.8,10X.7HRVY DOT.3X.E16.8/4H RSZ.3X.E16.8,10X.
    37HRSZ DOT,2X.E16.8,10X,3HRVZ.6X.E16.8,10X.7HRVZ DOT,3X.E16.8/1
810 FORMAT(5H TIME 2X E16.8/)
811 FORMAT(5H PSII 2X E16.8.10X 4HPSI2 5X E16.8.10X 4HPSIT 5X El6.8,
    110X 2HUX 8X E16.8/5H PSI3 2X E16.8, 10X 4HPSI4 5X E16.8. 45X
    22HUY 8X EI6.8/5H PSI5 2X E16.8. 10X 4HPSI6 5X E16.8. 45X 2HUZ 8X
    3E16.8/)
```

```
    900 FORMAT(24 H LOCAL TRUNCATION ERRORS//2H X/6E18.8//3H X7/E18.8///
        14H PSI/GEI8.8//5H PSI7/E18.8//111H P(X/ALPHA)/6(6E18.8/)//
        213H P(PSI/ALPHA)/6(GE18.B/)///14H P(PSI7/ALPHA)/
        36E18.8//)
C
    4 9 0 0 ~ F O R M A T ( / / ) , ~
    901 FORMAT(4OH MAX NO. OF ITERATIONS HAS BEEN REACHED)
C
    903 FORMAT(9H E(ALPHA) 2X E16.8/)
C
C
c
c
c
    1 RERO(5,100) NO,SOMEG*BETA,C.TF,PHIVO,THETVO&RV,DRVXO,ORVYO,DRVZO,
        1PHIO,THETAO, 10,RS,VAR(1),VAR(8),MU,(VAR(1),I=9,15)
        2 READ(5,200)CI.SPEC.IPRINT,IEROR,IMAT,LAMBDA,CRIT,MAXIT.
        1(B(1).I=1.7)
C
        COMPUTE CONSTANT TERMS AND INITIAL CONDITIONS
C
        COMEGS=MU/RS**3
        COMEG=SGRT (COMEGS)
        SOMEGS=SOMEG**2
        S10=SIN(10)
        STO=SIN(THETAO)
        C10=COS(10)
        CTO=COS(THETAO)
C
c
C
        T1 MATRIX
        XT1(1,1)=CTO
        XT1(1,2)=-CIO*STO
        XT1(1.3)=S10*STO
        XT1(2,1)=STO
        XT1(2.2)=C1O*CTO
        XT1(2.3)=-S1O*CTO
        XT1(3.1)=0.0
        XT1(3.2)=SIO
        XT1(3.3)=C10
c
C INITIALIZATION
c
    RVX=RV*COS(THETVO)*COS(PHIVO)
    RVY=RV*COS(THETVO)*SIN(PHIVO)
    RVZ=RV*SIN(THETVO)
```

```
            RVXO=RVX
            RVYO=RVY
            RVZO=RVZ
            CALL COMP (0.O)
            VAR(2)=RVX-RSV(1)
            VAR(3)=DRVXO-DRSV(1)
            VAR(4)=RVY-RSV(2)
            VAR(5)=DRVYO-DRSV(2)
            VAR(6)=RVZ-RSV (3)
            VAR(7)=DRVZO-DRSV(3)
            OER(B)=-BETA/C
            WRITE(6.500) NO,BETA,RS,SOMEG.LAMEDA,C,RV,COMEG,MU
            WRITE(6.501) (B(1), I=1,7)
            WRITE(6.502) VAR(1),PHIVO.DRVXO,PHIO,VAR(8), THETVO,DRVYO,THETAO.
            1DER(B), DRVZO.10
                WRITE(6.503) TF,VAR(9)*VAR(10)*VAR(15)*VAR(11),VAR(12).VAR(13).
            IVAR(14)
            WRITE(6.504) (VAR(I).I=2.7),RSV(1),DRSV(1).&RVX@RSV(2),DRSV(2),RVY,
            2RSV(3),DRSV(3),RVZ,CI
C
C INITIALIZATION FOR INTEGRATION ROUTINE
C
            DO 17 I=1.15
            17 SAVE(1)=VAR(I)
            DO 14 1=16.93
            14 VAR(I)=SAVE(I)
C
            TEMPCI=CI
            TEMPSP=SPEC
            I KOUNT=0
    1010 KOUNT=0
            II=0
            FIRST=.TRUE.
            CI=TEMPCI
            SPECETEMPSP
```



```
            IERRVAL.DERSUB,CHSUB, ITEXT)
C
C RETURN FROM INTEGRATION ROUTINE
    11 IF ((AES(T1-TF) .LE. 1.OE-OS) OOR. FIRST .OR.
        1((SPEC -LT. 1.OEIO).AND. (SPEC .NE. O.O))) GO TO 16
            GO TO 20
C
C
```


APPENDIX B

```
C WRITE OUTPUT
C
    16 RELD =SORT (VAR(2)**2+VAR (4)**2+VAR(6)**2)
        RELV=SQRT (VAR(3)**2+VAR (5)**2+VAR(7)**2)
        RVX=VAR(2)+RSV(1)
        RVY=VAR(4)+RSV(2)
        RVZ=VAR(6)+RSV(3)
        RVMAG=SGRT(RVX**2+RVY**2+RVZ**2)
        DRVX=VAR(3)+DRSV(1)
        DRVY=VAR(5)+DRSV(2)
        ORVZ=VAR(7)+DRSV(3)
C
    U4=BETA
    UX=VAR(10)/EN1
    UY=VAR(I2)/ENI
    UZ=VAR(14)/EN1
        IF (FIRST) GO TO 60
        WRITE(6.800) VAR(1),RELD,U4,VAR(8) &RELV,RVMAG
        WRITE(6.804) VAR(9),VAR(10),VAR(15),VAR(11),VAR(12).
    IVAR(13)-VAR(14)
        WRITE(6.806) VAR(2),VAR(3),DER(3),UX.VAR(4),VAR(5),DER(5).UY.
        IVAR(6) VAR(7), DER(7),UZ
        WRITE(6.808) RSV(1),DRSV(1),RVX,DRVX,RSV(2),DRSV(2).RVY,DRVY.
    1RSV(3),DRSV(3),RVZ,DRVZ
        GO TO 61
            60 WRITE(G.810)VAR(1)
        WRITE(6.811)VAR(9),VAR(10),VAR(15),UX.VAR(11) VAR(12) ©UY4
        IVAR(13).VAR(14).UZ
            61 IF (IPRINT,NE, 1)GO TO 50
        WRITE(6.805) ((PX(I*J),J=1.6), I=1.6).
```



```
C
SO IF(IEROR EEQ. 1)GO TO }
    GO TO 49
C
    9WRITE(6,900)(ERRVAL(I),I=1,14),((ERX(I,J),J=1,6):I=1,6)*
    1((ERPSI(I,J),J=1,6), I=1,6),(ERPSI7(I),I=1,6)
49 WRITE(6.4900)
20 IF (FIRST) FIRST=.FALSE.
    IF (ABS(T1-TF) &E. 1.OE-06) GO TO 13
    IF ((TI+CI) LE. TF) GO TO 10
    CI=TF-TI
    II=0
    SPEC=0.0
    GO TO 10
```

```
        13 IKOUNT=IKOUNT+1
        IF(IKOUNT \bulletGT. MAXIT) GO TO 15
C
C
    EDP=0.0
    DO 19 1*2.7
    19EDP=EDP+B(I-1)*VAR(I)**2
        EDP=05*(EDP+B(7)*VAR(15)**2)
    WRITE(6.903) EDP
    IF (EDP •LE. CRIT) GO TO I
    CALL ITERAT
    DO 18 I=1.93
18 VAR(1)=SAVE(I)
    GO TO 1010
15 WR1TE(6.901)
        GO TO 1
        ENC
    SUBROUTINE DERSUB
    COMMON /SPACE/
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & VAR & -CUVAR & -SAVE & - C & - MAXIT & - IMAT \\
\hline 2 & E & -PE & - PEMAT & -PEVEC & - ERRVAL & - SOMEG \\
\hline 3 & DER & -RS & - BETA & - DP 1 & - TF & - ELE 1 \\
\hline 4 & RSV & -FI & - DP2 & - Cl & - ELE2 & - DRSV \\
\hline 5 & F2 & -E1 & , II & -SOMEGS & - COMEGS & -IPRINT \\
\hline 6 & F3 & -E2 & - N & -COMEG & - EN2 & - KOUNT \\
\hline 7 & Q1 & -E3 & - TEMPCI & -SIO & - PHIO & - Q2 \\
\hline 8 & E4 & - SPEC & - STO & - LAMBDA & - TEMPT & -Q3 \\
\hline 9 & T2 & - TEMPSP & - CIO & - CRIT & - EN1 & - IKOUNT \\
\hline 1 & RV×0 & -RVYO & -RVZO & - DRV×0 & - DRVYO & - DRVZO \\
\hline 2 & T4 & MU & - CTO & - B & - XT 1 & \\
\hline
\end{tabular}
    REAL LAMBDA.MU
C
C
    DIMENSION
1VAR(93)
2 ELEI (92)
3 RSV(3)
4 PPSI(6,6)
5 CUPSI (6,6)
6 DRPS I (6,6)
7 ERPSI(6,6)
8 PE(7,7)
9 B(7)
```

```
-CUVAR(93)
```

-CUVAR(93)
-ELE2(92)
-ELE2(92)
-DRSV(3)
-DRSV(3)
-PPS17(6)
-PPS17(6)
-CUPS17(6)
-CUPS17(6)
-DRPSI7(6)
-DRPSI7(6)
-ERPS17(6)
-ERPS17(6)
,PEMAT (7,7)
,PEMAT (7,7)
-SAVE(93)

```
-SAVE(93)
```

```
-DER(93)
```

-DER(93)
*
*
-ERRVAL(92)
-ERRVAL(92)

```
.PX(6,6)
```

.PX(6,6)
,CUPX(6,6)
,CUPX(6,6)
DRPX(6,6)
DRPX(6,6)
-ERX(6.6)
-ERX(6.6)
-E(7)
-E(7)
PPEVEC(7.1)
PPEVEC(7.1)
-XT1(3,3)

```
-XT1(3,3)
```


APPENDIX B

C

EQUIVALENCE

1	(VAR(16), PX(1.1))	- (VAR(52) 4PP
2	(VAR(88),PPS 17(1))	-(Cuvar (16), Cupx (1, 1))
3	(CUVAR(52), CUPS1(1,1))	- (CuVar (88), CuPsi7(1)
4	(DER(16), DRPX(1,1))	((DER(52) - DrPPs 1 (1.1))
5	(DER(88) , DRPSI7(1))	-(ERRVAL (15), ERX (1,1))
6	(ERRVAL (51), ERPSI(1.1))	(${ }^{(E R R V A L}$ (87),ERPSI7(1))

EQUIVALENCE (CUVAR(1),TJ)
TCOMP=TJーSAVE(1)
CALL COMP (TCOMP)
Q1 $=\operatorname{CUVAR}(2)+\operatorname{RSV}(1)$
Q2\#CUVAR(4)+RSV(2)
Q3=CUVAR (6)+RSV(3)
EN1 =SQRT (CUVAR(10)**2+ CUVAR(12)**2+ CUVAR(14)**2)
EN2=SQRT (Q1**2+Q2**2+Q3**2)
$\operatorname{OP} 1=\operatorname{CUVAR}(2) * \operatorname{CUVAR}(10)+\operatorname{CUVAR}(4) * \operatorname{CUVAR}(12)+\operatorname{CUVAR}(6) * \operatorname{CUVAR}(14)$
DP2=RSV(1)*CUVAR(10)+RSV(2)*CUVAR(12)+RSV(3)*CUVAR(14)
F2=(COMEGS*RS**3)/EN2**3
$\mathrm{F} 3=(3 \cdot 0 * \mathrm{~F} 2 / E N 2 * * 2) *(O P 1+D P 2)$
$E 1=1.0 /(\operatorname{CUVAR}(B) * E N i)$
E2=E1/CUVAR(8)
E3=E1/EN1**2
E4 =EN: /CUVAR (8)**2
$T 2=(3 \cdot 0 * F 2) / E N 2 * * 2$
T4⒌0*F3/EN2**2
STATE VARIABLES

```
    DER(9)=F2*CUVAR(10)-F3*Q1-SOMEGS*CUVAR(10)
    DER(10)=-CUVAR(9)+2.0*SOMEG*CUVAR(12)
    DER(11)=F2*CUVAR(12)-F3*Q2-SOMEGS*CUVAR(12)
    DER(12) =-2.0*SOMEG*CUVAR(10)-CUVAR(11)
    DER(13)=F2*CUVAR(14)-F3*Q3
    DER(14)=-CUVAR(13)
    F1=BETA/(CUVAR(8)*ENI)
51 DER(2)=CUVAR(3)
DER(3)=F1*CUVAR(10)-F2*Q1+COMEGS*RSV (1)+SOMEGS*CUVAR(2)+2•0*SOMEG*
1 CUVAR(5)
    DER(4) =CUVAR(5)
    DEF (5)=F1*CUVAR(12)-F2*Q2+COMEGS*RSV(2)-2.0*SOMEG*CUVAR(3)+SOMEGS*
```


APPENDIX B

```
1CUVAR(4)
    DER(6)=CUVAR (7)
    DER(7)=F1*CUVAR(14)-F2*Q3+COMEGS*RSV(3)
    DER(8)=-BETA/C
    DER(15)=(BETA*ENI)/CUVAR(8)**2
```


APPENDIX B

1 CUPS $1(6,1)+(-T 2 *(\operatorname{CUVAR}(14) * Q 1+\operatorname{CUVAR}(10) * Q 3)+T 4 * Q 1 * Q 3) * C U P X(1 \cdot 1)+$ 2(-T2* (CUVAR (14)*Q2+CUVAR(12)*Q3)+T4*Q2*Q3)*CUPX(3.1)+(-2•0*T2* 3CUVAR(14)*Q3-F3+T4*Q3**2)*CUPX(5.1)
inve
RETURN
END
SUBROUTINE CHSUB
COMMON /SPACE/

1	VAR	-CUVAR	- SAVE	-C	- MAXIT	- IMAT
2	E	-PE	- PEMAT	- PEVEC	- ERRVAL	- SOMEG
3	DER	-RS	- beta	- DP 1	- TF	-ELE1
4	RSV	-F1	- DP2	-CI	- ELE2	- DRSV
5	F2	- E1	, II	- SOMEGS	- COMEGS	- IPRINT
6	F3	- E2	- N	- COMEG	- EN2	-KOUNT
7	Q1	-E3	- TEMPCI	- S 10	- PHIO	- 02
8	E4	- SPEC	- STO	- LAMEDA	- TEMPT	- Q3
9	T2	- TEMPSP	-C10	-CRIT	- EN1	-1KOUNT
1	RVXO	-RVYO	-RVZO	- DRVXO	- ORVYO	- DRVZO
2	T4	-MU	- CTO	-B	- XT1	

C
REAL LAMBDA.MU
c
C

DIMENSION

VAR(93)
ELE1 (92)
RSV(3)
PPS $1(6,6)$
CUPSI(6.6)
DRPS $1(6,6)$
ERPS 1 (6.6)
PE(7.7)
B(7)

- CUVAR(93)
- ELE2 (92) -DRSV(3) -PPSI7(6) -CUPSI7(6) -DRPSI7(6) - ERPSI7(6) -PEMAT (7.7) -SAVE(93)
-DER(93)
- ERRVAL (92)
- $\operatorname{PX}(6.6)$
- CUPX $(6,6)$
- $\operatorname{DRPX}(6,6)$
- $\operatorname{ERX}(6,6)$
-E(7)
- PEVEC(7.1)
- XT1(3.3)

C C

EQUIVALENCE

(VAR(16), PX(1.1))	- (VAR(52) -PPSI(1.1))
(VAR (88) •PPSI7 (1))	- (CUVAR (16).CUPX (1, 1))
(CUVAR(52).CUPSI(1.1))	- (CUVAR (88).CUPSI7(1))

APPENDIX B

XTOR1) =RS*COS (PHIOMT)
$X T O(2)=R S * S I N(P H I O M T)$
$X T O(3)=0.0$
c
C T2 MATRIX
C
SOTESIN(SOMEG*DT)
COT*COS (SOMEG*DT)
$X T 2(1,1)=C O T$
XT2(1.2) =SOT
$X T 2(1,3)=0.0$
$X T 2(2,1)=-S O T$
$X T 2(2,2)=C O T$
XT2(2.3) $=0.0$
$X T 2(3,1)=0.0$
$x \operatorname{T2}(3,2)=0.0$
$x \operatorname{T2}(3.3)=1.0$
c
C T2 DOT MATRIX
C
XTDZ(1, 1) =-SOMEG*SOT
XTD2 $(1,2)=$ SOMEG*COT
$\operatorname{XTD} 2(1,3)=0.0$
$\operatorname{XTD2}(2,1)=-S O M E G * C O T$
XTD2 $(2,2)=-S O M E G * S O T$
$X \operatorname{TD2}(2,3)=0.0$
$\operatorname{xTD2}(3,1)=0.0$
$\operatorname{xTD2}(3,2)=0.0$
XTE $2(3.3)=0.0$
C
C T3 MATRIX
C
XT3(1) $=$ COMEG*XTO (2)
XT3(2) $=$-COMEG*XTO (1)
$X T 3(3)=0.0$
c
C TITO MATRIX
C

```
            00 100 I=1:3
            RSXYZ (I) =0.0
            DO 100 J=1.3
    100 RSXYZ(I)=RSXYZ(I)+XTI(1.J)*XTO(J)
C
C RSV MATRIX
C
    DO 101 I=1.3
            RSV(1)=0.0
            DO 101 J=1.3
    101 RSV(I)=RSV(I)+XT2(I&J)*RSXYZ(J)
            DO 102 1=1.3
            TORS(I)=0.0
            DO 102 J=1.3
    102 TDRS(I)=TDRS(I)+XTD2(I:J)*RSXYZ(J)
            DO 103 I= 1.3
            RSXYZD(1)=0.0
            DO 103 J=1.3
    103 RSXYZD(I)=RSXYZD(I)+XT1(I&J)*XT3(J)
            DO 104 I=1.3
            TRSDOT ( I )=0.0
            DO 104 J=1.3
    104 TRSDOT(I)=TRSDOT(1)+XT2(I.J)*RSXYZD(J)
C
C RSV DOT MATRIX
C
    DO 105 I=1.3
    105 DRSV(1)=TDRS(1)+TRSDOT(1)
        RETURN
        END
        SUBROUTINE ITERAT
        COMMON /SPACE/
\begin{tabular}{|c|c|c|c|c|c|}
\hline VAR & - CUVAR & - SAVE & . \(C\) & -MAXIT & - IMAT \\
\hline E & -PE & - PEMAT & - PEVEC & - ERRVAL & - SOMEG \\
\hline DER & -RS & - BETA & - DP 1 & - TF & - ELEI \\
\hline RSV & - \(\mathrm{F}_{1}\) & - DP2 & , CI & - ELE2 & - DRSV \\
\hline F2 & - E1 & - II & -SOMEGS & -COMEGS & - IPRINT \\
\hline F3 & - E2 & - N & -COMEG & - EN2 & - KOUNT \\
\hline Q1 & - E3 & - TEMPCI & - 510 & -PHIO & - Q2 \\
\hline E4 & - SPEC & - STO & - LAMBDA & - TEMPT & - Q3 \\
\hline T2 & - TEMPSP & -CIO & - CRIT & - ENI & - IKOUNT \\
\hline RV×0 & -RVYO & -RVZO & - ORVXO & - DRVYO & - ORVZO \\
\hline T4 & -MU & - CTO & - B & - XT 1 & \\
\hline
\end{tabular}
C
    REAL LAMBOA,MU
```

1	VAR(93)	- CUVAR (93)
2	ELE1(92)	- ELE2(92)
3	RSV(3)	-DRSV(3)
4	PPSI $(6,6)$	-PPSI7(6)
5	CUPSI $(6,6)$	-CUPSI7(6)
6	DRPS $1(6,6)$	-DRPSI7(6)
7	ERPSI(6,6)	-ERPS17(6)
8	PE(7,7)	4PEMAT (7.7)
9	B(7)	-SAVE(93)

```
-DER(93)
-ERRVAL (92)
.PX(6.6)
-CUPX(6,6)
-DRPX(6,6)
- ERX(6.6)
-E(7)
-PEVEC(7+1)
-XT1(3.3)
```

c
c
EQUIVALENCE
1 (VAR(16).PX(1.1))

- (VAR(52). PPSI(1.1))
-(CUVAR (16),CUPX(1,1))
-(CUVAR(88),CUPS17(1))
-(DER(52), DRPSI(1,1))
(DER(88), DRPSI7(1)) (ERRVAL(15),ER×(1,1))
-(ERRVAL(87),ERPSI7(1))
c
(VAR(88), PPS $17(1)$)
(CUVAR(52), CUPSI(1.1))
(DER(16), DRPX(1.1))

DIMENSION IPIVOT(7).INDEX(7.2)

DIMENSION SAVMAT(7.7).UNIT(7.7)

```
    FORM MATRIX OF PARTIALS
```

 DO \(25 \mathrm{t}=1,6\)
 DO \(25 \mathrm{~J}=1.6\)
 PE(1.J) \(=P \times(1 . J)\)
 25 CONTINUE
 c
 c
 \(J=1\)
 DO \(26 \mathrm{t}=1,5,2\)
 \(J=J+2\)
 PE(1.7)=VAR(J)
 PE(1+1,7)=DER(J)
 26 CONTINUE
DO $27 \quad 1=1.6$
27 PE(7.1)=PPS17(1)
$\operatorname{PE}(7.7)=\operatorname{DER}(15)$

APPENDIX B

```
c
C FORM E VECTOR
    DO 38 I=1,6
    3BE(I)=VAR(I+1)
    E(7)=VAR(15)
c
c
c
C
c
    SOLVE THE MATRIX EQ (PE *B*PE+LAMBDA*I)DELTA=PE *B*E
    DO 50 I=1.7
    PEVEC(I.1)=0.0
    DO 50 J=1.7
    50 PEVEC(1,1)=PEVEC(I,1)-PE(J,I)*B(J)*E(J)
        IF(IMAT NE. 1) GO TO 13
    DO 14 I=1.7
    DO 14 J=1,7
    14 SAVMAT (I.J)=PEMAT(I,J)
        IF(IMAT -EQ. 1) WRITE(6.11) ((PEMAT(I,J):J=1,7),I=1,7)
    11 FORMAT(6H PEMAT/7(7E16.7/)//)
    13 CALL MATINV(PEMAT,7.PEVEC,1,DETERM&IPIVOT.INDEX,7.ISCALE)
C
    IF(IMAT •EQ. 1) WRITE(6,12)((PEMAT(I,J),J=1,7), I=1,7)
    12 FORMAT(BH INVERSE/7(7E16.7/)///)
        IF(IMAT *NE. 1) GO TO 15
    DO 16 I=1.7
    OO 16 J=1.7
    UNIT(I,J)=0.0
    DO 16K=1.7
16 UNIT(I,J)=UNIT(I,J)+SAVMAT(I,K)*PEMAT(K,J)
    WRITE(6,17) ((UNIT(1,J),J=1,7),I=1,7)
17 FORMAT(9H IDENTITY/7(7E16.7/)//)
```

15 WRITE(6.10) IKOUNT.PEVEC(7.1) (PEVEC(I•1)•I=1•6)
10 FORMAT (34H1CORRECTIONS ON INITIAL CONDITIONS, $1 O X, 13 H I T E R A T I O N ~ N O E . ~$ $12 \times 13 / 1 / 9 H$ DELTA TF. $4 \times$ E16. 8.

10X, 10HDELTA P

 $410 H D E L T A$ PSI6.2X•E16.8//)
TF =TF+PEVEC(7.1)
DOSII $=1$ * 6
SAVE $(I+B)=$ SAVE $(I+8)+$ PEVEC (I 1 1$)$
1 CONTINUE
RETURN
END
BLOCK DATA

1	VAR	- CUVAR	- SAVE	-C	- MAXIT	- IMAT
2	E	-PE	- PEMAT	- PEVEC	-ERRVAL	- SOMEG
3	DER	-RS	- beta	- DP 1	- TF	- ELE1
4	RSV	, F 1	- DP2	-CI	- Ele 2	- DRSV
5	F2	- E1	- I 1	-SOMEGS	- COMEGS	-IPRINT
6	F3	-E2	, N	- COMEG	- EN2	- KOUNT
7	Q1	-E3	- TEMPCI	-SIO	, PHIO	- Q2
8	E4	- SPEC	- STO	- LAMBDA	- TEMPT	- Q3
9	T2	- TEMPSP	-CIO	-CRIT	- ENI	- IKOUNT
1	Rvxo	- RVYO	-RVZO	- DRVXO	- DRVYO	- DRVZO
2	T4	-MU	-CTO	-B	- XT 1	

REAL LAMBDA, MU

DIMENSION

1	$\operatorname{VAR}(93)$
2	ELEI 192$)$
3	RSV (3)
4	PPSI (6.6)
5	$\operatorname{CUPSI}(6.6)$
6	DRPSI 6.6$)$
7	ERPSI 6.6$)$
8	PE (7.7)
9	B(7)

```
-CUVAR(93) ©DER(93)
-ELE2(92) -ERRVAL(92)
-DRSV(3) .PX(5.5)
,PPSIT(6) -CUPX(6.6)
-CUPSI7(6) -DRPX(6.6)
-DRPSI7(6) ,ERX(6.6)
,ERPSI7(6) -E(7)
-PEMAT(7.7) -PEVEC(7.1)
-SAVE(93) -XT1(3.3)
```

C
C
EQUIVALENCE
1 (VAR (16) •PX(1.1)) (VAR(52) 1 PPSI(1•1))

APPENDIX B

```
(VAR(BB),PPSI7(1)) *(CUVAR(16),CUPX(1*1))
(CUVAR(52),CUPSI(1,1)) ,(CUVAR(88),CUPSI7(1))
C
                2 (VAR(BB),PPSI7(1))
4 (DER(16)•DRPX(1,1))
                    (DER(8B),ORPSI7(1))
6 (ERRVAL(51),ERPSI(1•1))
```

```
-(DER(52),DRPSI (1.1))
```

-(DER(52),DRPSI (1.1))
-(ERRVAL(15).ERX(1.1))
-(ERRVAL(15).ERX(1.1))
(ERRVVLL(87),ERPSI7(1))

```
(ERRVVLL(87),ERPSI7(1))
```

```
3 (CUVAR(52), CUPSI(1,1))
DATA N/92/
DATA (SAVE (I), \(I=16,93) / 78 * 0.0 /\)
            DATA SAVE(52)/1.0/.SAVE(59)/1.0/.SAVE(66)/1.0/.SAVE(73)/1.0/.
            1SAVE(80)/1.0/.SAVE(87)/1.0/
                END
                    SUBROUTINE INTZ(II,N,NT,CI,SPEC,CIMAX, IERR, VAR,CUVAR,DER,ELEI,
            1ELE2,ELT,ERRVAL,DERSUB,CHKSUB, ITEXT)
            DIMENSION VAR(93),CUVAR(93)
            OIAENSION DER(93),ELE1(92),ELE2(92),ELT(92),ERRVAL(92)
            DIMENSION TEMP(92),DER1(92),DER2(92),DER3(92)
            DIMENSION SIVAR(93)
            IF(II)1.1.2
C INITIALIZATION SECTION
            1 IF(CI) 3,4.3
            4 WRITE(6,1000)
    1000 FORMAT(11HOCI=0 STOP)
            CALL EXIT
C SAVE CI
            3 H=CI
        18 IERR=1
            TO=SPEC+VAR(1)
            MODE=1
            II=1
            N1=N+1
            DO 5 J=1,N1
            CUVAR(J)=VAR(J)
            5 CONTINUE
C EVALUATION SECTION HERE
            8 CALL DERSUB
                    IF(MODE.LE.1) GO TO 6
            IF(II-3)36.36.7
        36 CALL CHKSUB
            IF(II.EQ.2) GO TO I
        37 DO 38 J=1.N1
        38VAR(J)=CUVAR(J)
            IF(11-3)6.7.7
        7 RETURN
        6 IF(SPEC) 9.7.9
        9 DEL=VAR(1)-TO
```


APPENDIX B

```
    DELP=DEL* (1 + +1.OE-6)
    IF(ABS(DELP)-ABS(SPEC))2,10,10
10 TO=VAR(1)
    GO TO 7
    2 II=1
        IF(MODE-4) 11.12.12
C RUNGE-KUTTA
    11DO 20 J=2.N1
    DFR3(J-1)=DER2(J-1)
    DER2 (\-1)=DER1(J-1)
    DER1 (J-1)=DER(J)
    ELE1(J-1)=DER(J)
    CUVAR (J)=0 00D+00
    DELT=0.4*ELE1 (J-1)*H
    5IVAR (J)=VAR(J)
    CUVAR (J)=SIVAR (J)+DELT
20 CONTINUE
    SIVAR(1)=VAR(1)
    CUVAR(1)=S 1VAR(1)+0.4*H
    CALL DERSUB
    IF(II-3)23.23.7
23 CUVAR(1)=S1VAR(1)+0.45573725*H
    DO 24 J=2,N1
    ELE2(J-1)=DER(J)
    OELT=(0.29697761*ELE1(J-1)+0.15875964*ELE2(J-1))*H
    CUVAR(J)=SIVAR(J)+DELT
24 CONTINUE
    CALL DERSUB
    IF(1I-3)25.25.7
25 CUVAR{1)=S1 VAR{1)+H
    DO 26 J=2.N1
    TEMP (J-1)=DER(J)
    OELT=(0.21810040*ELE1(J-1)-3.05096516*ELEZ(J-1)
    1+3.83286476*TEMP(J-1))*H
    CUVAR(J)=S1VAR(J)+DELT
2 6 ~ C O N T I N U E ~
    CALL DERSUB
    IF(11-3)27.27.7
27 DH=H
    CUVAR(1)=VAR(1)+DH
    DO 2B J=2.N1
    DOLB=0.17476028*ELE1(J-1)-0.55148066*ELEZ(J-1)
    1+1-20553560*TEMP(J-1)+0.17118478*DER(J)
    CUVAR (J)=VAR (J)+DH*DOUB
2B CONTINUE
```

```
        MODE=MODE+1
    GO TO }
    ADAMS-MOULTON
    ADAMS-BASHFORTH PREDICTOR
    12 CUVAR(1)=VAR(1)+H
    DH=H/24.0
    DO 13 J=2.N1
    DOUB=55.0*DER(J)-59.0*DER1(J-1)+37*0*DER2(J-1)-9.0*DER3(J-1)
    CUVAR(J)=VAR(J)+DH*DOUB
    13 CONTINUE
    DO 14 J=1.N
    DER3(J) =DER2(J)
    DER2(J)=DER1(J)
    14 DERI(J )=DER(J+1)
    CALL DERSUB
    IF(II-3)15.15.7
C ADAMS-MOULTON CORRECTOR
15 DO 16 J=2.N1
    TEMP=CUVAR(J)
    DOUB=9.0*DER(J)+19.*DER1(J-1)-5.0*DER2(J-1)+DER3(J-1)
    CUVAR(J)=VAR(J)+DH*DOUB
    16 ERRVAL(J-1)=(TEMP-CUVAR(J))/14.210526
    19 GO TO 8
    END
    SUBROUTINE MATINV(A,N.B,M,DETERM,IPIVOT,INDEX,NMAX,ISCALE)
C
c
C
C
C
C
C
    5 1 SCALE=0
    6 R1=10.0**100
    7 R2=1.0/R1
    10 DETERM=1.0
    15 DO 20 J=1.N
    20 IPIVOT(J)=0
    30 DO 550 I=1 ,N
c
C SEARCH FOR PIVOT ELEMENT
C
40 AMAX =0.0
```

```
        45 DO 105 J=1,N
        50 IF (IPIVOT(J)-1) 60. 105.60
        60 DO 100 K=1.N
        70 IF (IPIVOT(K)-1) 80, 100. 740
        80 IF (ABS(AMAX)-ABS (A (J,K)),85.100.100
        85 IROW=J
        90 1 COLUM=K
        95 AMAX=A(J,K)
    100 CONTINUE
    105 CONTINUE
        IF (AMAX) 110.106.110
    106 DETERM=0.0
        I SCALE=0
        GO TO 740
    110 IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
C
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
C
    130 IF (IROW-ICOLUM) 140. 260, 140
    140 DETERM = -DETERM
    150 DO 200 L=1.N
    160 SWAP=A(IROW&L)
    170 A(IROW,L)=A(ICOLUM,L)
    200 A(ICOLUM,L)=SWAP
    205 IF(M) 260. 260. 210
    210 DO 250 L=1. M
    220 SWAP=B(IROW*L)
    230 B(1ROW,L)=B(ICOLUM,L)
    250 B(ICOLUM,L)=SWAP
    260 1NDEX(1.1) =1ROW
    270 INDEX(1.2)=1COLUM
    310 PIVOT=A(ICOLUM.ICOLUM)
        IF (PIVOT) 1000.106:1000
c
C SCALE THE DETERMINANT
C
    1000 PIVOTI=PIVOT
    1005 IF(ABS (DETERM)-R1 11030.1010.1010
    1010 DETERM = DETERM/R1
        ISCALE = I SCALE+1
        IF(ABS (DETERM)-R1)1060.1020.1020
    1020 DETERM=DETERM/R1
        ISCALE=1SCALE+1
        GO TO 1060
    1030 IF(ABS \DETERM)-R2)1040:1040,1060
```

```
    1040 DETERM = DETERMFR1
    ISCALE=1SCALE-1
    IF (ABS (DETERM) -R2 )1050.1050.1060
    1050 DETERM=DETERM*R1
    ISCALE=ISCALE-1
    1060 IF(ABS(PIVOTI)-R1)1090.1070.1070
    1070 PIVOTI=PIVOTI/RI
            1SCALE=ISCALE+1
            IF(ABS(PIVOTI)-R1)320*1080.1080
    1080 PIVOTI=PIVOTI/RI
            ISCALE=1 SCALE+1
            GO TO 320
    1090 IF(ABS(PIVOTI)-R2)2000.2000.320
    2000 PIVOTI=PIVOTI*RI
    ISCALE = ISCALE-1
    IF(ABS(PIVOT1)-R2)2010.2010.320
    2010 PIVOTI=PIVOTl*RI
    ISCALE=1SCALE-1
    320 DETERM=DETERM*PIVOTI
C
C DIVIDE PIVOT ROW EY PIVOT ELEMENT
C
    330 A(ICOLUM,ICOLUM)=1.0
    340 DO 350 L=1,N
    350 A(ICOLUM,L)=A(ICOLUM&L)/PIVOT
    355 IF(M) 380. 380. 360
    360 DO 370 L=1.M
    370 B(ICOLUM&L)=B(ICOLUM,L)/PIVOT
C
C REDUCE NON-PIVOT ROWS
    380 DO 550 Lix1.N
    390 IF(LI-ICOLUM) 400. 550.400
    400 T=A(LI,ICOLUM)
    420 A(LI.ICOLUM)=0.0
    430 DO 450 L=1,N
    450 A(LI,L)=A(LI|L)-A(ICOLUM&L)*T
    455 IF(M) 550, 550, 460
    460 DO 500 L=1,M
    500 B(L1,L)=8(LI,L)-B(ICOLUM*L)*T
    g50 CONTINUE
C
C INTERCHANGE COLUMNS
C
600 DO 710 1=1,N
```


APPENDIX B

```
610 L=N+1-1
620 IF (INDEX(L.1)-INDEX(L.2)) 630. 710. 630
630 JROW=INDEX(L.1)
640 JCOLUM=1NDEX(L.2)
650 DO 705 K=1.N
660 SWAP=A(K.JROW)
670 A(K,JROW)=A(K,JCOLUM)
700 A(K,JCOLUM)=SWAP
70S CONTINUE
710 CONTINUE
740 RETURN
    END
```


REFERENCES

1. Houbolt, John C.: Problems and Potentialities of Space Rendezvous. Astronautica Acta, Vol. VII, Fasc. 5-6, 1961, pp. 406-429.
2. Lawden, D. F.: Optimal Trajectories For Space Navigation. Butterworths (London), 1963.
3. Breakwell, John V.: The Optimization of Trajectories. J. Soc. Ind. Appl. Math., vol. 7, no. 2, June 1959, pp. 215-247.
4. Paiewonsky, Bernard; and Woodrow, Peter J.: Three-Dimensional Time-Optimal Rendezvous. J. Spacecraft Rockets, vol. 3, no. 11, Nov. 1966, pp. 1577-1584.
5. Armstrong, Ernest S.: A Combined Newton-Raphson and Gradient Parameter Correction Technique for Solution of Optimal-Control Problems. NASA TR R-293, 1968.
6. Pontryagin, L. S.; Boltyanskii, V. G.; Gamkralidze, R. V.; and Mishchenko, E. F.: The Mathematical Theory of Optimal Processes. Interscience Publ., c. 1962.
7. Coddington, Earl A.; and Levinson, Norman: Theory of Ordinary Differential Equations. McGraw-Hill Book Co., Inc., 1955.

Abstract

"The aeronautical and space activities of the United States sball be conducted so as to contribute . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." -National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

[^0]: For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $\$ 3.00$

