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Abstract 
 

The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided 
the strain formulation or the field compatibility condition. The strain formulation was 
incomplete. The missing portion has been formulated and identified as the boundary 
compatibility condition (BCC). The BCC, derived through a variational formulation, has been 
verified through integral theorem and solution of problems. The BCC, unlike the field 
counterpart, do not trivialize when expressed in displacements. Navier’s method and the stiffness 
formulation have to account for the extra conditions especially at the inter-element boundaries in 
a finite element model. Completion of the strain formulation has led to the revival of the direct 
force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite 
element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The 
benefits from the new methods in elasticity, in finite element analysis, and in design optimization 
are discussed. Existing solutions and computer codes may have to be adjusted for the compliance 
of the new conditions. Complacency because the discipline is over a century old and computer 
codes have been developed for half a century can lead to stagnation of the discipline.  
 
 

Introduction 
 

The theory of solid mechanics is formulated through a set of formidable mathematical equations. 
An engineer may select an appropriate subset to solve a particular problem. An error in the 
solution is normally attributed either to equation complexity, or to a deficiency in the model. But 
rarely the completeness of the basic theory is questioned because it was presumed complete, 
circa 1860, when St. Venant provided the strain formulation. This conclusion is not justified 
because incompleteness has been detected in the strain formulation. Research is in progress to 
alleviate the deficiency in the theory of solid mechanics. Benefits from the use of the completed 
strain formulation are being shown in continuum elasticity,1-6 in finite element analysis,7-25 and 
in design optimization.26-36 
 
The theory of strengths of materials began with the cantilever experiment conducted by Galileo 
in 1632.37 Several decades later the stress (σ)-strain (ε) law { } [ ]{ }σ = κ ε was formulated and 
interpreted by Hooke (1635-1703), Young (1773-1829), and Poisson (1781-1840). The material 
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law contained the genus of analysis. The constraint imposed on stress became the stress 
formulation. Likewise, the condition on the strain became the strain formulation. The stress and 
strain formulations along with the material matrix [ ]κ  are sufficient for the determination of the 
stress state in an elastic continuum. The pie chart in figure 1 graphically depicts the two 
formulations. Cauchy developed the stress formulation in elasticity in 1822. 
 

 
Figure 1.—Stress and strain formulations. 

 
This contained two distinct sets of equations: the field equations τij, j + bi = 0, and boundary or 
traction conditions pi = τijnj. Here, 1 ≤ i, j ≤ 3, τij is the stress, and bi and pi are the body force and 
traction, respectively. The stress formulation occupies the left half of the pie chart. St. Venant 
provided the strain formulation in 1860, but only in the field of the continuum. It is depicted in 
the third quarter. The boundary portion—that was missed for over a century—is marked as the 
fourth quarter. It has been identified as the boundary compatibility condition (BCC). The BCC 
was formulated in the two-dimensional elasticity6 in 1986 and extended to three dimensions1 at 
the end of the twentieth century. A correct solution to an elasticity problem must satisfy all the 
equations contained in each of the four quarters of the pie diagram, even though a solution can be 
obtained by manipulating the information contained in the first three quarters of the chart.38 The 
fidelity of such a solution cannot be guaranteed.25 

 
The boundary compatibility conditions, unlike the field counterpart, do not trivialize when 
expressed in terms of the displacement variables: neither on the boundary of an elastic 
continuum, nor along the numerous inter-element boundaries in a finite element model. If BCC 
are indeed independent conditions, and not redundant to the displacement continuity condition, 
then Navier’s method becomes BCC noncompliant. This may pose a burden because a question 
can be raised as to the accuracy of the many existing solutions.39 Existing computer codes7,25 

may have to be adjusted for the compliance of the BCC. Complacency, because the discipline is 
over a century old and computer codes have been in development for about half a century, can 
lead to its stagnation.  
 
The importance of the compatibility condition (CC) cannot be overstated. Without the CC the 
solid mechanics discipline would degenerate into a few determinate analysis courses that could 
be covered in elementary strength of materials and applied mathematics. The compatibility 
concept makes solid mechanics a research discipline that is practiced at doctoral and post-



NASA/TM—2003-212584 3

doctoral levels in academia and in large research centers throughout the world. Traditional 
treatment of the compatibility concept in structures (i.e., ‘cut’ and close ‘gap’) and in elasticity 
(i.e., strain formulation) is inconsistent. In summary, the solid mechanics discipline has 
acknowledged the existence of CC. It has often been showcased. Used very sparingly. Confused 
with displacement continuity but has never been adequately researched nor understood. 
 
Beltrami and Michell in 1900 attempted a direct stress calculation method,39 but it was not 
successful because of the nonavailability of the BCC†. The BMF could not solve the more 
prevalent second and third boundary value problems with displacement and mixed boundary 
conditions. Navier’s (1785-1836) formulation39 presumed to have resolved the impasse. He 
advocated calculating displacement first and then recovering stress by backsubstitution. The 
strain formulation available to Navier produced trivial conditions when expressed in 
displacement variables. This allowed Navier to bypass the strain formulation to develop the 
displacement method, which in essence contained the stress formulation, or information 
contained in the left half portion of the pie diagram. In finite element analysis, Navier’s method 
became the stiffness method, which currently is the method of choice. Mathematically speaking 
Navier’s method and the stiffness formulation are incomplete because they are compatibility 
noncompliant.  
 
The new compatibility information contained in the fourth quarter of the pie chart has been used 
to formulate two direct stress calculation methods: Integrated Force Method (IFM) for finite 
element analysis and the completed Beltrami-Michell formulation (CBMF) in elasticity. CBMF 
is obtained by adding new BCC to the classical BMF. IFM is obtained by specializing the strain 
formulation for finite element models. Both IFM and CBMF bestow simultaneous emphasis on 
the stress and strain formulations. This paper outlines the basic compatibility concept. It is 
discussed through the solution of a plate flexure problem. Solution fidelity is shown in finite 
element analysis. The benefit in design optimization is presented. The cited references provide 
detailed discussion on the subject. 
 
 

Basic Compatibility Concept 
 
Coupling the stress formulation and the strain formulation yields a complete set of equations for 
the solution of stress in an elastic continuum. The concept can be stated by the following 
symbolic expression: 
 

{ } ( )
Stress formulation Mechanical load

Stress 1Strain formulation Initial deformation = 
⎡ ⎤ ⎧ ⎫⎪ ⎪

⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

 
The expression bestows simultaneous emphasis on stress formulation (or equilibrium equation, EE) 
and strain formulation (or compatibility condition). It provides both necessary and sufficient 
conditions to calculate the stress tensor. Displacement can be back-calculated by integrating the 
stress. At this stage the rigid-body motion is eliminated. Displacement is not essential to calculate 
                                                           
† “It is possible by taking account of these relations [the compatibility conditions] to obtain a complete system of 
equations which must be satisfied by stress components, and thus the way is open for a direct determination of stress 
without the intermediate steps of forming and solving differential equations to determine the components of 
displacements.” _Love39. 
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the stress state.4 However, it has become the current medium of the solid mechanics discipline. 
Strain (or deformation) compliance is the central concept behind both the field and boundary 
compatibility conditions. The field compliance applies to the field. Compliance on the boundary 
becomes the BCC. The compatibility concept is illustrated considering a two-dimensional 
domain D bounded by the simple curve Γ shown in figure 2(a). 
  

Field Compatibility: In the domain mark a field segment Fd with the associated boundary Γd. 
This segment is segregated and depicted in figure 2(b) with domain Fs and boundary Γs. Subject 
both segments, (Fd and Γd) and (Fs and Γs), to identical stress and strain states of the real problem. 
The field CC ensures that these segments fit without any gap or variation in material properties 
before and after deformation. St. Venant39 provided the mathematical equations for field 
compatibility in 1860. 
 
Boundary Compatibility: On the boundary curve, mark Cu and Cd for undeformed and deformed 
states, respectively, as shown in figure 2(a). The boundary segment is segregated and shown in 
figure 2(c) as (Cus and Cds). Both segments, (Cu and Cd) and (Cus and Cds), are subjected to identical 
stress and strain states of the actual problem. Like the field compliance, the boundary compatibility 
ensures that segments (Cu and Cd) and (Cus and Cds) fit without any gap or change in the material 
properties before and after deformation. The mathematical equation for BCC was formulated6 in 
1986. In brief, the same basic compliance concept applies to the field or to the boundary, as the 
case may be. 
 

 
 

Figure 2.—Deformation compatibility in continuum. 
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For an elastic continuum with a rigid boundary with no significant deformation, the BCC may 
exhibit automatic compliance, but this is most unlikely along the numerous interelement deformable 
boundaries in a finite element model. Consider next a discrete indeterminate truss with supports at 
A and C and its lower chord coinciding with the boundary segment. It is marked as a ‘Virtual truss’ 
in figure 2(a). The ith bar deformation is designated as βi. The BCC for the truss is the balance of the 
elemental deformations along the boundary bars: (β1 + β2 + β3 + β4 + β5 = 0). The truss response 
will be erroneous if this BCC is not applied.  
 
The compatibility is a controller type of relation. In elasticity the strains ε are controlled, f (εxx, 
εyy, …, εzx) = 0, or the deformations β are balanced, f (β1, β2, . . . , βn) = 0, for a discrete structural 
system. The controller type of relations cannot be derived from an application of the standard 
concepts like “action equal to reaction” (leading to the EE), or the “cause effect relation” (that 
has given us Hooke’s law), or the “continuity concept” used in finite element analysis. This is 
probably one important reason for the late development of these conditions. In elasticity, field 
compatibility can be derived by simply eliminating the three displacements from the six strain 
displacement relations. However, the derivation of the BCC required the use of variational 
calculus.6 For structures, however, a direct application of St. Venant's strain formulation would 
have sufficed. No calculus would have been required because, like EE, the CC is a set of 
algebraic equations. But such a procedure was not adopted, and the CC was not developed as a 
deformation balance concept. 
 
In three-dimensional elasticity,1 the new BCC expressed in stress has the following form: 
 

( ) ( ){ } ( ) ( ){ } ( )1 1 0 2az y z x y yz y z x y z yza a a a
z yν ν ν ν

∂ ∂σ − νσ − νσ − + ν τ + σ − νσ − νσ − + ν τ =
∂ ∂
 

( ) ( ){ } ( ) ( ){ } ( )1 1 0 2bx z x y z zx z x y z x zxa a a a
x zν ν ν ν

∂ ∂σ − νσ − νσ − + ν τ + σ − νσ − νσ − + ν τ =
∂ ∂
 

( ) ( ){ } ( ) ( ){ } ( )1 1 0 2ca a a ay x y z x xy x y z x y xyy x
∂ ∂σ − νσ − νσ − + ν τ + σ − νσ − νσ − + ν τ =ν ν ν ν∂ ∂

 
where, ν is Poisson’s ratio, and avx, avy, and avz are the direction cosines of the outward normal to 
the boundary surface. 
 
The BCC written in terms of displacements (u, v, and w), yield a nontrivial set of conditions. 
 

( ) ( )
2 2 2

1 2 2 0 3az yy z
v wa a a v a w

y zz y
ν νν ν

∂ ∂ ∂= + − + =
∂ ∂∂ ∂

R

 

( ) ( )
2 2 2

2 2 2 0 3bx zz x
w ua a a w a u

z xx z
ν νν ν

∂ ∂ ∂= + − + =
∂ ∂∂ ∂

R
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( ) ( )
2 2 2

3 2 2 0 3cy xy x
v ua a a u a v

x yx y
ν νν ν

∂ ∂ ∂= + − + =
∂ ∂∂ ∂

R

 
The nontrivial BCC must be added to the displacement formulation because a correct solution 
must be BCC compliant. BCC in equation (3) are expressed in terms of the second derivatives of 
displacements. If such derivatives become zero at a boundary or at a finite element interface, 
then the BCC may be neglected. This is not likely at flexible boundaries. In other words the 
existing solutions should be verified and adjusted for BCC compliance, as will be presented in 
the following sections.  
 
 

Navier’s Formulation with BCC 
 

The BCC has to be added to the Navier’s formulation as shown in the following equations: 
 
(1) The three field equations are not changed. 
 

( )2( ) 0 4axG G u F
x

∂ελ + + ∇ + =
∂

 

( )2( ) 0 4byG G v F
y

∂ελ + + ∇ + =
∂

 

( )2( ) 0 4czG G F
z

∂ελ + + ∇ ω + =
∂

 

where, λ and G  are Lamé constants, and u v w
x y z

∂ ∂ ∂ε = + +
∂ ∂ ∂

. 

(2) The stress or traction boundary conditions also are not changed. 
 

( )5ax vx vx vy vz vx vy vz
u u u u v wT a G a a a G a a a
x y z x x x

µ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= λε + + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 

( )5by vy vy vz vx vy vz vx
v v v v w uT a G a a a G a a a
y z x y y y

µ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= λε + + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

( )5cz vz vz vx vy vz vx vy
w w w w u vT a G a a a G a a a
z x y z z z

µ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= λε + + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
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(3) Boundary compatibility conditions must be added to the classical formulation: 
 

( ) ( )
2 2 2

2 2
0 6ay z z y

v wa a a v a w
y zz y

ν ν ν ν
∂ ∂ ∂+ − + =

∂ ∂∂ ∂
 

( ) ( )
2 2 2

2 2
0 6bz x x z

w ua a a w a u
z xx z

ν ν ν ν
∂ ∂ ∂+ − + =

∂ ∂∂ ∂
 

( ) ( )
2 2 2

2 2
0 6cy x y x

v ua a a u a v
x yx y

ν ν ν ν
∂ ∂ ∂+ − + =

∂ ∂∂ ∂
 
(4) Displacement boundary conditions: The kinematics conditions are essential. 
 

( ), , and 7u u v v w w= = =
 
Navier’s formulation is incomplete because BCC given by equation (6) was missed. 
 
 

Completed Beltrami-Michell Formulation 
 

CBMF considers stress as the primary unknown. It has been derived from the stationary 
condition of the IFM functional.1 The basic equations of CBMF are reproduced: 
 
Field equilibrium equations: 
 

( )0 8axyx zx
xB

x y z
∂τ∂σ ∂τ

+ + + =
∂ ∂ ∂

 

( )0 8bxy y yz
yB

x y z
∂τ ∂σ ∂τ

+ + + =
∂ ∂ ∂

 

( )0 8cyzzx z
zB

x y z
∂τ∂τ ∂σ

+ + + =
∂ ∂ ∂

 
Field compatibility conditions: 
 

( ) ( ) ( ) ( )
22 2

2 2 2 1 0 9ayz
y z x z x y y zz y

∂ τ∂ ∂σ − νσ − νσ + σ − νσ − νσ − + ν =
∂ ∂∂ ∂

 



NASA/TM—2003-212584 8

( ) ( ) ( ) ( )
22 2

2 2 2 1 0 9bzx
z x y x y z z xx z

∂ τ∂ ∂σ − νσ − νσ + σ − νσ − νσ − + ν =
∂ ∂∂ ∂

 

( ) ( ) ( ) ( )
22 2

2 2 2 1 0 9cxy
x y z y z x x yy x

∂ τ∂ ∂σ − νσ − νσ + σ − νσ − νσ − + ν =
∂ ∂∂ ∂

 
(3) Boundary equilibrium or traction conditions: 
 

( )10ax x y xy z xz xa a a Pν ν νσ + τ + τ =
 

( )10bx xy y y z yz ya a a Pν ν ντ + σ + τ =
 

( )10cx xz y yz z z za a a Pν ν ντ + τ + σ =
 
(4) Boundary compatibility conditions: 
 

( ) ( ){ } ( ) ( ){ } ( )1 1 0 11az y z x y yz y z x y z yza a a a
z yν ν ν ν

∂ ∂σ − νσ − νσ − + ν τ + σ − νσ − νσ − + ν τ =
∂ ∂
 

( ) ( ){ } ( ) ( ){ } ( )1 1 0 11bx z x y z zx z x y z x zxa a a a
x zν ν ν ν

∂ ∂σ − νσ − νσ − + ν τ + σ − νσ − νσ − + ν τ =
∂ ∂
 

( ) ( ){ } ( ) ( ){ } ( )1 1 0 11cy x y z x xy x y z x y xya a a a
y xν ν ν ν

∂ ∂σ − νσ − νσ − + ν τ + σ − νσ − νσ − + ν τ =
∂ ∂
 
The three BCC given by equation (11) had been missing since 1860. 
 
(5) Displacement continuity conditions: 
 

( ), , and 12u u v v w w= = =
 
CBMF is defined through the EE and the CC in the field and on the boundary of an elastic 
continuum, given by equations (8) to (11). Stress determination by CBMF does not require the 
displacement boundary conditions. The displacement functions, u(x, y, z), v(x, y, z), and w(x, y, 
z), if required, can be determined by integrating the known stress. The calculation of the 
constants of integration in the displacement functions requires the displacement boundary 
conditions given by equation (12). CBMF can be used for analysis of stress, displacement, and 
mixed boundary value problems. A correct solution must satisfy all elasticity equations (eqs. (8) 
to (12)) in CBMF or its equivalent (eqs. (4) to (7)) in the displacement method. Solutions that 
have been obtained without the use of the BCC should be verified for the compliance, especially 
for a continuum with deformable boundaries. In traditional solutions to the elasticity problem, 
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displacement continuity conditions are augmented with the slope or derivative of displacement. 
For some problems the “slope” condition may resemble the boundary compatibility condition.  
 
 

Solution of a Plate Flexure Problem 
 
The use of BCC is illustrated considering a flat plate in flexure3, as shown in figure 3. It has 
clamped boundaries along edges AB and DC. The edges AD and BC are simply supported. It has 
spans 2a and 2c and thickness h. It is made of an isotropic material with modulus E and 
Poisson’s ratio v . It is subjected to a sinusoidal distributed load 0 cos , / 2a.q q x= α α = π  It has 
three moment variables Mx, My, and Mxy, and one transverse displacement w. The problem is to 
determine the moment and the displacement functions. 
 

 
Figure 3.—Rectangular plate in flexure. 

 
Displacement method solution: Traditionally the problem is solved using the stiffness method. 
The transverse displacement w is considered as the primary unknown. It is obtained by solving a 

fourth-order differential equation, 4w q D∇ = , where 
3

212(1 )
EhD

v
=

−
 is the plate rigidity and q 

is the transverse load. At simple supports
2 2

2 2 0w wv
x y

∂ ∂+ =
∂ ∂

and w = 0; for clamped boundary 

conditions w = 0 and 0.w
y

∂ =
∂

 The moment functions are back calculated from the displacement. 

The available textbook solution39 is not reproduced here. 
 
Force Method Solution: CBMF considers three moments Mx, My and Mxy as the primary 
unknowns. The CBMF is derived from the stationary condition of the IFM variational 
functional.6 The three original CBMF equations are reduced to two by eliminating the Mxy 
moment function using the following two field compatibility conditions: 
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( ) ( )(1 ) 0 13ay x xyM vM v M
x y

∂ ∂− − + =
∂ ∂

 

( ) ( )(1 ) 0 13bx y xyM vM v M
y x

∂ ∂− − + =
∂ ∂

 
The equations required for a rectangular plate with straight boundaries are listed in table 1. The 
conditions on straight boundaries parallel to the coordinate axes are quite simple because one 
component of the direction cosine is zero, while the other is unity. In the field there are two 
second-order differential equations that can be solved one after the other, but not simultaneously. 

 
TABLE 1.—COMPLETED BELTRAMI-MICHELL FORMULATION 

FOR PLATE FLEXURE PROBLEM 
Field equations Boundary conditions 

( ) ( )2 1x yM M v q∇ + = +  Along simply supported edges (BC, AD) 
Mx = 0, My = 0                      

( ) ( )
2 2

2 2 0y x y xM vM vM M
x y

∂ ∂− + − =
∂ ∂

 Along clamped edges (AB, CD) 
(Mx – vMy) = 0, Mxy = 0               

 Rigid boundary conditions along all edges 
w = 0                              

 
The boundary conditions of the force and displacement methods are compared in table 2. Both 
methods impose the rigid body condition on transverse displacement w which does not produce 
any moment. This condition is not used in CBMF during the calculation of moments. In CBMF 
the moment boundary conditions, when written in displacement, give rise to conditions on 
curvatures. On simply supported boundary both curvatures are restrained. In clamped boundary 
the normal and shear curvatures are set to zero. In the stiffness method, boundary conditions are 
imposed on displacement and slope but not in terms of curvature. It is important to note that the 
CBMF conditions when expressed in the displacement variable, do not automatically map into 
the boundary conditions of the stiffness method, (compare third and fourth columns in Table 2). 
For this problem the boundary conditions can be shown to be equivalent. Consider the clamped 

boundary AB. The slope condition 0 , (-a x a)w for
y

⎛ ⎞∂ = ≤ ≤⎜ ⎟∂⎝ ⎠
, when differentiated with respect to the 

x-coordinate, transforms to the CBMF condition on curvature: 
2

0w
x y

⎛ ⎞∂⎜ ⎟=
⎜ ⎟∂ ∂⎝ ⎠

. Likewise the 

displacement condition ( 0 , (-a x a)w for= ≤ ≤ ) becomes the curvature 
2

2 0w

x

⎛ ⎞∂⎜ ⎟=
⎜ ⎟∂⎝ ⎠

 for CBMF. Such 

a transformation becomes invalid if the rigid (or uniformity) condition is not allowed, such as for 
example along a flexible finite element interface. All boundary conditions, including the 
continuity conditions in the finite element analysis, must be examined for equivalence between 
the force and displacement methods. 
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TABLE 2.—BOUNDARY CONDITIONS 
Completed Beltrami Michell’s Formulation Boundary Type In moment variable In curvature 

Stiffness Method  
In displacement  

Simple Support Mx = 0 
 
 
 

My = 0 

2

2 0w
x

∂ =
∂

 

 
2

2 0w
y

∂ =
∂

 

2 2

2 2 0w wv
x y

∂ ∂+ =
∂ ∂

 

 

Clamped Mx – vMy = 0 
 
 
 

Mxy = 0 

2

2 0w
x

∂ =
∂

 

 
2

0w
x y

∂ =
∂ ∂

 

0w
y

∂ =
∂

 

 
 
 
 

Rigid Condition w = 0 w = 0 w = 0 
 
Boundary conditions specified directly on moments (or forces) are used in the CBMF and also in 
BMF. The classical method cannot handle the displacement and slope boundary conditions. In 
other words the plate problem cannot be solved by the classical BMF because the transformation 

of displacement w = 0 and slope conditions 0w
x

∂ =
∂

 into moments is difficult, and it may require 

integral equations. Consequently the classical method became inapplicable for solution of the 
vast problems with displacement conditions. Thus Navier’s displacement formulation is used for 
continuum analysis. The Navier method again is incomplete with respect to the BCC, see 
equation (6). The BCC obtained from the stationary condition of the variational functional of 
IFM6 has produced the required boundary conditions, in moment (force) variables, see equations 
in table 2. The displacement condition w = 0 along the four edges of the plate is not used to 
calculate the moment functions in CBMF because this is a rigid-body motion and does not 
induce any stress in the plate. The rigid boundary conditions are used to back calculate the 
displacement function w from the moments.  

 
 

Solution Strategy 
 
In the CBMF a second-order differential equation (see Table 1) is solved first to obtain Mx + My. 
Then the second equation is transformed and solved independently. CBMF requires the solution 
of two second-order uncoupled differential equations. It is simpler than the stiffness method 
which must solve a fourth-order differential equation. The CBMF solution is obtained using 
separation of variables. 
 

( ) ( )cos 14ax xM M y x= α  
 

( )( ) cos 14by yM M y x= α
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( )( )sin 14cx y xyM M y x= α
 

 
The CBMF moment (Mx, My, and Mxy) solution follows:  
 

( ) ( ) ( )0
3 1 2

(1 )cos 15a
2(1 )

y y y y
x

qvM x C e e C y e e
v

α −α α −α⎡ ⎤−= α + −α − −⎢ ⎥+ α⎣ ⎦  
 

( )( ) ( ) ( )0
1 3 1 2

(1 )cos 15b
2(1 )

y y y y qvM x C C e e C y e e vy v
α −α α −α⎡ ⎤−= α − + + α − −⎢ ⎥+ α⎣ ⎦  

 

( )( ) ( ) ( )3 1 1
(1 )sin 2 15c(1 )2

y y y y
xy

vx C C e e C y e eM v
α −α α −α⎡ ⎤

⎢ ⎥
⎣ ⎦

−α − − − α += +
 

 
The displacement calculation uses the rigid-body boundary condition w = 0. In other words 
CBMF uses conditions on moments (or curvatures) to calculate moments. The displacement w 
boundary condition is used to calculate the displacement function. The slope condition of a 
clamped boundary was not used explicitly. This is automatically satisfied through the BCC. The 
displacement function has the following form: 
 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )20
3 1 1 22 2

1cos 1 1 16a
21

y y y y y yv qxw C v e e vC e e C y e e v
D v

α −α α −α α −α− ⎤− α ⎡= + + − + −α + − − ⎥⎣ αα − ⎦
 

 
The constants C1 and C3 are as follows:  
 

( ) ( )0
1 2 2 22 1 16b

4

c c

c c
q e eC v

e c e

α −α

α − α
−⎛ ⎞= +⎜ ⎟α + α −⎝ ⎠

 
( )( ) ( ) ( )

( )0
3 2 2 2

1 1
16c

4

c c c c

c c

v e e v c e eq
C

e c e

α −α α −α

α − α

+ − + α − +
=

α + α −  
 
An identical solution is obtained by the stiffness method because the boundary conditions 
become equivalent between the force and the displacement methods. 
 
 

Finite Element Discrete Analysis 
 
Strain formulation in discrete analysis (that included framework and a finite element model) was 
neither fully understood in the field nor on the boundary, even though its requirement was 
known. The technique of “cut” and close “gap” in structures20 is quite different than the strain 
formulation in elasticity. An understanding of the compatibility conditions for discrete 
systems18,19,21 has lead to the formulation of the Integrated Force Method. IFM with internal 
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force {F} as the unknown is the discrete analog of the CBMF in elasticity. IFM constrains the 
solution to satisfy both the stress and strain formulations simultaneously, and this promotes 
solution fidelity. A dual formulation to the primal IFM (IFMD) with displacement as the primary 
unknown has been obtained by mapping force into displacement {X}. Its governing equation 
resembles the stiffness equation [K]{X} = {P}. The equations of the IFM and IFMD, along with 
the mixed and hybrid methods for static and frequency analysis, are listed next.  
 
Integrated Force Method: 
  Static analysis: 
 

[ ]{ } { } ( )17aS F P=  
 

{ } [ ] [ ]{ } { }{ } ( )0 17bX J G F= + β
 

 

[ ] [ ]
[ ][ ] ( )17c

B
S

C G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

 

[ ]( ) ( )1[ ]   rows of 17d
T

J m S −=
 

 
 Dynamic analysis: 
 

[ ] ( )2 { } 0 18
[0]

MJG
S F
⎛ ⎞⎡ ⎤

− ω =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠  
 
Dual Integrated Force Method:  
 Static analysis: 
 

[ ]{ } { } ( )19aD X P=  
 

( )-1[ ]  [ ][ ] [ ] 19bTD B G B=  
 

{ } [ ] [ ] { } [ ] { } ( )1 1 0 19cTF G B X G− −= − β  
 
 Dynamic analysis: 
 

( ) ( )2-  0 20D M Xω =
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Stiffness method: The governing equation is 
 

[ ]{ } { } ( )21K X P=  
 
Mixed method: The governing equation is 
 

( )0
22

0
S F P

JG I X
⎡ ⎤ ⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎩ ⎭  
 
Total formulation: The governing equation is 
 

( )
0 0

0 0 23
0 0

S F P
JG I X
G I

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥− =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥− β⎣ ⎦ ⎩ ⎭ ⎩ ⎭  

 
where 
{F}  n component internal force vector. 
{P}  m component external load vector. 
{δR}  (r = n – m) component effective initial deformation vector. 
{βo}  n component initial deformation vector. 
{β}  n component deformation vector. 
{X}  m component displacement vector. 
[S]   (n × n) IFM governing matrix. 
[B]  (m × n) equilibrium matrix. 
[G]  (n × n) flexibility matrix. 
[J]   (m × n) displacement coefficient matrix.  
[M]  (m × m) mass matrix.  
[D]  (m × m) IFMD governing matrix. 
[K]  (m × m) stiffness matrix. 
m   number of displacement unknowns. 
n   number of force unknowns. 
ω   circular frequency. 
 
Both IFM and IFMD have one equation to calculate force {F}, and another to calculate 
displacement {X}. The stiffness method has a single equation to calculate displacement. Stress is 
recovered through a series of back calculations. Stress recovery by differentiating approximate 
displacement can be a viable source of error. The equations of the stiffness method, the mixed 
method, and the total formulation have been derived from IFM as special cases. The reverse 
course, i.e. the stiffness equation cannot be specialized to obtain IFM, as depicted in figure 4. 
With a small programming effort, a stiffness method code can be improved to reap the many 
IFM benefits when implemented with the IFMD elements because IFM and IFMD yield identical 
solutions.25 
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Figure 4.—Compatibility barrier prevented extension of force method  

for indeterminate structures. 
 
The compatibility limitation blocked the growth of the method of forces, as sketched in figure 4. 
It caused a bifurcation of the analysis method into the stiffness method and the redundant-force 
method. Limitations of the redundant force method led to its demise.20 The monopolistic 
dominance of the stiffness method is not justified because of compatibility noncompliance along 
numerous inter-element boundaries in a finite element model. IFM retains both equilibrium and 
compatibility concepts. IFM has been specialized to obtain the stiffness method (see eq. 21), 
mixed method eq. 22, and the total formulation eq. 23. 
 
IFM/Analyzers Code11: The finite element code incorporates IFM and IFMD, as well as the 
stiffness method. The Fortran 77 code is written for both sequential and parallel calculations. It 
performs linear analysis for mechanical and thermal loads, and initial displacement, as well as 
frequency analysis. The code has a total of 44 different types of elements for each method. Its 
element library includes beam, membrane, plate, and solid elements of different shapes. Some 
elements have mid-side nodes. The analyzer uses the NASA GPS sparse solver and Harwell 
routines. Solutions have been obtained for finite element models up to one-half million 
unknowns. The IFM/Analyzer has also been reduced to obtain a modest code with all three 
methods. The small code entitled IFM-UE can be used for undergraduate education in 
engineering. It is available at the IFM Website for Undergraduate Education.7 The solution 
capacity of this code is about 5000 equations. It has five different types of elements that can 
model skeletal frames and membrane structures. 
 
Solution fidelity: IFM, IFMD, and stiffness method have been compared in a controlled 
environment for a set of test problems.11,16,17 Results for a few typical examples obtained using 
the IFM/Analyzers code and a commercial stiffness method code are depicted in figure 5. The 
three IFM elements used are (1) a four-node QUAD0405 membrane element with five force 
unknowns, (2) an eight-node brick element HEX0818 with 18 force unknowns, and (3) a four-
node-plate bending element PLB0409 with nine unknown moments. These elements use standard 
displacement functions. Element generation used numerical integration but did not use reduced 
integration or bubble function techniques.  
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Displacement and moment solutions for a flat plate under a concentrated load are given in figure 
5(a). Convergence is achieved for IFM with eight elements. The stiffness method based 
commercial code required 64 elements. The displacement solution for a cantilever beam using 
membrane elements is shown in figure 5(b). The stress solution using a hexahedral element is 
depicted in figure 5(c). For IFM both stress and displacement converged for a model with six 
elements. The commercial code converged to a wrong solution. The frequency analysis of a 
turboprop blade using brick element is given in figure 5(d). The stiffness method prediction for 
the fundamental frequency was 80 percent erroneous. Stress concentration in the blade due to a 
small hole is qualitatively shown as an ‘eye’. The test results and stiffness method predictions for 
a beryllium cylinder in a satellite structure are shown in figure 5(e). The measured displacement 
of 0.5 in. matched with the prediction, but the measured stress of 120 ksi was well below the 
calculated stress of 25 ksi. From this study, which also included commercial software packages, 
it was observed that IFM and/or IFMD produced accurate stress, displacement, and frequency 
results even for modest finite element models. The stiffness method quite often lacked precision. 
For the examples the integrated force method outperformed the stiffness method, overshadowing 
the simplicity at its element level. 
 
The developer of the commercial code disputed the IFM results.25 To address this concern we 
solved all the examples again. The versions of the MSC/Nastran code used were: 70.7.0 Silicon 
graphics/IRIX64 6.5 (2001), 69.0 IBM/RISC System/6000 (1997), and MSC/Nastran (1982). No 
numerical inaccuracy was detected in any of the seven tables in the paper.11 For illustration we 
have selected the simple cantilever problem. It was solved using IFM and the MSC/Nastran 
code. Results obtained are given in table 3 and graphed in figure 6. The earlier version of the 
MSC/Nastran code exhibited a residual error of 8.6 percent in the solution (see fig. 5(b)). But the 
solution from the current version of the MSC/Nastran code (which must have implemented the 
IFMD element25) is identical to IFMD results (see fig. 6). The tip displacement and the diagonal 
terms of the governing matrix for IFMD, two versions of MSC/Nastran code, and the standard 
stiffness method for a two-element model are given in table 3. The current version of 
MSC/Nastran code has now produced the coefficients that are identical to the IFMD, even 
though the earlier version of the MSC/Nastran code exhibited error. For the example, neither 
monotonic convergence (see figs. 6 and 5(b)) nor a big finite element model could guarantee 
high fidelity solution in the stiffness method. Solution accuracy should be estimated from the 
residue of equilibrium equations and compatibility conditions.  
 

TABLE 3.—SOLUTION FOR A TWO-ELEMENT MODEL 
 Tip displacement 

in 10–3 in. Diagonal coefficients of governing matrix 

IFM/IFMD 
Timoshenko’s solution 

-1.1008 
-1.152 

a[6.1  16.6  3.0  8.3  3.0  8.3  6.1  16.6] 

Stiffness method -0.2576 b[1.25 1.03 1.27 1.04 1.27 1.04 1.25 1.03] 

MSC/Nastran, 1990 -1.0055 b[1.0  1.02 1.0  1.01 1.0  1.01 1.0  1.02] 

MSC/Nastran, 2001 
(Identical to IFM/IFMD) 

-1.1008 b[1.0  1.0  1.0  1.0  1.0   1.0  1.0   1.0] 

aNormalized with 106. 
bNormalized with respect to IFM/IFMD solution. 



NASA/TM—2003-212584 18

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50
Number of elements

N
or

m
al

iz
ed

 ti
p 

di
sp

la
ce

m
en

t

IFM
MSC-2001

 Current version of MSC/Nastran exactly matches IFM
 

Figure 6.—Solution for a cantilever beam. 
 
 

Design Optimization 
 

The compatibility conditions must be accounted for in the design of indeterminate structures. An 
understanding and utilization of CC can produce efficient and safe structures. IFM is the 
preferred analysis tool in design because of the following four unique features:  
(1) Flexibility matrix: The sizing design parameters are retained in a pristine state in the 
flexibility matrix [G]. This matrix only has to be updated during the design iterations.  
(2) The EE matrix [B] and the CC matrix [C] are independent of sizing design variables. The EE 
matrix [B] in the IFM equation is confined to an individual element. For example, EE matrices of 
element i and element j are not intermingled. In contrast, the inverse of the flexibility matrix, 
intermingled with the equilibrium matrix, is scattered through out the governing matrix [K] in the 
stiffness method. This facilitates the calculation of the shape design parameters via IFM. 
(3) Closed-form design sensitivity for stress, displacement, and frequency constraints required 
for optimization are easily obtained via IFM32 because matrices [B] and [C] are independent of 
the design parameters, and the flexibility matrix is a concatenation of elemental matrices. 
 
(4) Direct-design and fully utilized design methods have been formulated through IFM.27 This is 
possible because the force variables can easily be linked to the design parameters.  
 
The benefits that accrue from IFM in design have been demonstrated for trusses.31,33,34 The 
influence of compatibility in design is discussed for three issues. 
 
1) Infeasibility of fully stressed design  
The compatibility conditions make a fully stressed design infeasible for an indeterminate truss. 
Consider for example the five-bar truss shown in figure 7(a). Its compatibility condition 
expressed in terms of member stress σi is σ1 + 1.01σ2 – 1.05σ3 – 1.02σ4 + 0.04σ5 = 0. It is 
independent of member areas. The truss cannot be fully stressed σi = σ0, i = 1, 2,…,5 to material 
strength σ0 when member areas are considered as variables. The infeasibility of the full-stress 
design was derived in 1969.34 It has since been extended for stress and displacement 
constraints.31 The design can converge to a truss that is either determinate or close to it when the 
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CCs are disregarded. Such a design may not be attractive to the industry because of safety and 
over-design considerations. 
 
2) Singularity in optimization29 
Design optimization can encounter singularity because the compatibility condition imposes 
functional dependency among the active stress constraints, as well as the stress and displacement 
constraints. The design direction can become unreliable because of the singularity of the 
coefficient matrix of the search direction. The singularity issue is illustrated considering the 
design optimization of the five-bar truss shown in figure 7(a), for minimum weight condition for 
stress and displacement constraints. A quadratic programming algorithm was used to solve the 
problem. The design iterations are shown in figures 7(b) and (c) for two cases: 

(1) Singularity is disregarded (see figure 7(b)). 
(2) It is alleviated through the compatibility formulation (see figure 7(c)). 

 

 
 

Figure 7(a).—Tapered one-bay truss. 
 

 
 

Figure 7(b).—Standard optimization. 
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Figure 7(c).—Optimization accounting singularity. 
 
Case (2) converged, while case (1) led to nonconvergence. The utilization of the compatibility 
concept improved the design optimization of the truss.  

 
3) Design sensitivity.28,32 
Design optimization via mathematical programming methods of operations research requires the 
sensitivity matrix. The optimization process is expected to be robust when this matrix is accurate. 
This issue is examined through the solution of a 60-bar ring problem for minimum weight 
condition for 180 stress and 4 displacement constraints. The problem is solved using an explicit 
or closed-form sensitivity matrix, as well as an approximate sensitivity matrix derived from 
IFM28 (see figure 8). Convergence is reached in 50 reanalysis cycles when approximate 
sensitivity is used. The closed-form sensitivity required about 25 percent extra re-analysis, or a 
total of 63 cycles. This unexpected observation is again attributed to compatibility condition.36 
Singularity is overwhelming with the closed-form sensitivity, but it is diluted when an 
approximation is used.  
 

 
 

Figure 8.—Convergence for weight for a ring. 
 
In summary, the compatibility condition has considerable influence in the design of 
indeterminate structures. Ignoring compatibility amounts to a brute-force approach that is not 
likely to produce a robust design that industry would use.35 The infeasibility, singularity, and 
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sensitivity in design optimization have been examined for truss-type structures. The same three 
issues should be examined for flexural members following the approach that has been 
established for the truss. The behavior study for flexural members is more difficult because stress 
varies along the member length and depth. Understanding the role of compatibility will provide 
an insight to behavior of flexural members, leading to a more robust design method. The 
neglected fully stressed (or utilized) design concept should be revived because it has the potential 
to become an alternate tool to the design optimization method. It is simple and is practiced in the 
industry. We have addressed modified fully utilized design (MFUD)27 for truss design for stress 
and displacement constraints. From solution of many design problems, it is observed that 
properly formulated MFUD can match or quite often exceed the optimization methods. MFUD 
should be extended to flexural members beginning with continuous beam and then frame with 
variable depth member; for stress, displacement, and frequency constraints.  
 
 

Conclusions 
 

The solid mechanics discipline was deemed complete over a century ago. This judgment is in 
error because the strain formulation was incomplete both in elasticity and in structures. The 
strain formulation cannot be ignored because the compatibility concept makes solid mechanics a 
research discipline. It has significant influence in elasticity, in finite element discrete analysis, 
and in design optimization. The importance of an accurate stress state can never be overstated. 
The missing portion of the strain formulation that was not known until recently can control the 
fidelity of the stress state. A method that circumvents compatibility may work or fail depending 
on the complexity of the problem. Fidelity of the stress solution can only be guaranteed when it 
is generated via the Integrated Force Method for finite element analysis and by the completed 
Beltrami-Michell formulation in elasticity. Indeterminate structures cannot be designed elegantly 
only through an application of determinate design principles. The compatibility condition that 
provides an insight to the behavior of indeterminate structure is required for the traditional 
design as well as for design optimization method. The strain formulation should be addressed 
simultaneously in elasticity, in finite element discrete analysis, and in design optimization, even 
though traditionally the three subjects were treated separately. High-speed computers are 
extremely helpful but cannot replace the information contained in the shaded quarter of the pie 
diagram in figure 1. The vacuum created when the researchers knowledgeable in strain 
formulation retire may be difficult to fill. The premier academic and research institutions should 
encourage the basic research to complete the solid mechanics discipline.  
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The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation
or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated
and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has
been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize
when expressed in displacements. Navier’s method and the stiffness formulation have to account for the extra conditions
especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the
revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite
element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new
methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and
computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline
is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.




