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Abstract

Structured decision making is a systematic, transparent
process for improving the quality of complex decisions by
identifying measurable management objectives and feasible
management actions; predicting the potential consequences
of management actions relative to the stated objectives; and
selecting a course of action that maximizes the total ben-
efit achieved and balances tradeoffs among objectives. The
U.S. Geological Survey, in cooperation with the U.S. Fish
and Wildlife Service, applied an existing, regional frame-
work for structured decision making to develop a prototype
tool for optimizing tidal marsh management decisions at the
Long Island National Wildlife Refuge Complex in New York.
Refuge biologists, refuge managers, and research scientists
identified multiple potential management actions to improve
the ecological integrity of five marsh management units within
the refuge complex and estimated the outcomes of each action
in terms of performance metrics associated with each man-
agement objective. Value functions previously developed at
the regional level were used to transform metric scores to a
common utility scale, and utilities were summed to produce
a single score representing the total management benefit that
could be accrued from each potential management action.
Constrained optimization was used to identify the set of
management actions, one per marsh management unit, that
could maximize total management benefits at different cost
constraints at the refuge-complex scale. Results indicated that,
for the objectives and actions considered here, total manage-
ment benefits may increase consistently up to about $24,000,
but that further expenditures may yield diminishing return on
investment. Potential management actions in optimal port-
folios at total costs less than $24,000 consistently included
approaches for increasing drainage from the marsh surface
within the marsh management units. The potential manage-
ment benefits were derived from expected improvements
in surface-water drainage and capacity for marsh elevation

'U.S. Geological Survey.
2U.S. Fish and Wildlife Service.

to keep pace with sea-level rise, and presumed increases in
numbers of spiders (as an indicator of trophic health) and tidal
marsh obligate birds. The prototype presented here does not
resolve management decisions; rather, it provides a frame-
work for decision making at the Long Island National Wildlife
Refuge Complex that can be updated as new data and infor-
mation become available. Insights from this process may also
be useful to inform future habitat management planning at

the refuges.

Introduction

The National Wildlife Refuge System (NWRS) protects
extensive salt marsh acreage in the northeastern United States.
Much of this habitat has been degraded by a succession of
human activities since the time of European settlement (Gedan
and others, 2009), and accelerated rates of sea-level rise
exacerbate these effects (Gedan and others, 2011; Kirwan and
Megonigal, 2013). Therefore, strategies to restore and enhance
the ecological integrity of national wildlife refuge (NWR) salt
marshes are regularly considered. Management may include
such activities as reestablishing natural hydrology, augmenting
or excavating sediments to restore marsh elevation, control-
ling invasive species, planting native vegetation, minimizing
shoreline erosion, and remediating contaminant problems.
Uncertainty stemming from incomplete knowledge of system
status and imperfect understanding of ecosystem dynam-
ics commonly hinders management predictions and conse-
quent selection of the most effective management options.
Consequently, tools for identifying appropriate assessment
variables and evaluating tradeoffs among management objec-
tives are valuable to inform marsh management decisions.

Structured decision making is a systematic approach to
improving the quality of complex decisions that integrates
assessment metrics into the decision process (Gregory and
Keeney, 2002). This approach involves identifying measurable
management objectives and potential management actions,
predicting management outcomes, and evaluating tradeoffs
to choose a preferred alternative. From 2008 to 2012, the
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U.S. Geological Survey (USGS) and U.S. Fish and Wildlife
Service (FWS) used structured decision making to develop a
framework for optimizing management decisions for NWR
salt marshes in the FWS Northeast Region (that is, salt
marshes in the coastal region from Maine through Virginia).
The structured decision-making steps were applied through
successive “rapid prototyping” workshops, an iterative pro-
cess in which relatively short periods of time are invested to
continually improve the decision structure (Blomquist and
others, 2010; Garrard and others, 2017). The decision frame-
work includes regional management objectives addressing
critical components of salt marsh ecosystems, and associated
performance metrics for determining whether objectives are
achieved (Neckles and others, 2015). The regional objectives
structure served as the foundation for a consistent protocol for

National Wildlife Refuge Complex, New York

monitoring salt marsh integrity at these northeastern coastal
refuges, in which the monitoring variables are linked explic-
itly to management goals (Neckles and others, 2013). From
2012 to 2016, this protocol was used to conduct a baseline
assessment of salt marsh integrity at all 17 refuges or refuge
complexes in the FWS Northeast Region with salt marsh
habitat (fig. 1).

The Long Island National Wildlife Refuge Complex
consists of 10 parcels on Long Island, New York. Three of
the parcels (Lido Beach Wildlife Management Area, Seatuck
National Wildlife Refuge, and Wertheim National Wildlife
Refuge) collectively protect about 193 hectares of salt
marsh along the south shore of Long Island (fig. 2). These
marsh areas provide critical nesting and wintering habitat
for bird species of highest conservation priority, including
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Figure 1.

Map showing national wildlife refuges and national wildlife refuge complexes of the U.S. Fish and Wildlife Service where salt

marsh integrity was assessed from 2012 to 2016 using the regional monitoring protocol.



Ammodramus caudacutus (saltmarsh sparrow), Branta berni-
cla (Atlantic brant), and Anas rubripes (American black duck),
in the New England and mid-Atlantic coast bird conserva-
tion region of the U.S. North American Bird Conservation
Initiative (FWS, 2006; Steinkamp, 2008; U.S. North American
Bird Conservation Initiative, 2020). The salt marsh also pro-
vides important foraging habitat for wading bird species, such
as Ardea alba (great egret), Egretta thula (snowy egret), Ardea
herodias (great blue heron), and Plegadis falcinellus (glossy
ibis), during breeding and migratory seasons (FWS, 2006;
National Audubon Society, 2020). The primary concerns for
salt-marsh integrity at this refuge complex are marsh degrada-
tion associated with historic hydrologic alterations, spread of
the invasive reed Phragmites australis (hereafter referred to as
Phragmites), and marsh submergence associated with rising
sea level (FWS, 2006; Rochlin and others, 2012; New York
State Energy Research and Development Authority, 2017).
Salt-marsh management goals set by the FWS for the refuge
complex focus on maintaining, restoring, and enhancing high
quality habitat for breeding, migrating, and wintering birds. In
this study, the regional structured decision-making framework
was used to help prioritize management options within the
three specified parcels at the refuge complex.

Purpose and Scope

This report describes the application of the regional
structured decision-making framework (Neckles and others,
2015) to the Long Island National Wildlife Refuge Complex.
The regional framework was parameterized to local condi-
tions through rapid prototyping, producing a decision model
for the refuge complex that can be updated as new information
becomes available. Included are a suite of potential manage-
ment actions to achieve objectives in five marsh manage-
ment units at the refuge complex (fig. 2), approximate costs
for implementing each potential action, predictions for the
outcome of each management action relative to individual
management objectives, and results of constrained optimiza-
tion to maximize management benefits subject to cost con-
straints. This decision structure can be used to understand
how specific actions may contribute to achieving management
objectives and identify an optimum combination of actions, or
“management portfolio,” to maximize management benefits at
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the refuge scale for a range of potential budgets. The prototype
presented here provides a framework for continually improv-
ing the quality of complex management decisions at the Long
Island National Wildlife Refuge Complex.

Description of Study Area

The Long Island National Wildlife Refuge Complex
comprises 10 separate parcels across Long Island, New York.
Three of the parcels, the Lido Beach Wildlife Management
Area in Lido Beach, Seatuck National Wildlife Refuge in
Islip, and Wertheim National Wildlife Refuge in Brookhaven,
protect oases of salt marsh habitat along this highly developed
shoreline. The salt marsh habitat within these three parcels is
divided into one marsh management unit at the Lido Beach
Wildlife Management Area (fig. 24); one marsh manage-
ment unit at the Seatuck National Wildlife Refuge (fig. 2B);
and three marsh management units at the Wertheim National
Wildlife Refuge (Western Unit, Eastern Unit, and Northern
Unit; fig. 2C). Most of the land within 1 kilometer of the
marsh management units at Lido Beach Wildlife Management
Area and Seatuck National Wildlife Refuge consists of
residential and commercial development, whereas most of
the land within 1 kilometer of the units at Wertheim National
Wildlife Refuge is categorized under natural land uses (land
classified by the 2011 National Land Cover Database as cat-
egories other than agricultural or developed; Multi-Resolution
Land Characteristics Consortium, 2020). All marsh man-
agement units contain extensive grid ditching from historic
mosquito-control measures. Invasive plants occur in all marsh
management units, and reducing the extent of Phragmites is
a management goal for the complex (FWS, 2006). Average
summer surface-water salinities in the marsh management
units were about 28 parts per thousand (ppt) at the Lido Beach
Wildlife Management Area (measured in 2014), 27 ppt at the
Seatuck National Wildlife Refuge (measured in 2013), and
11-14 ppt at the Wertheim National Wildlife Refuge (FWS,
2016). Given these salinities, the surface water in the marsh
management units is classified as mesohaline (5-18 ppt) at
Wertheim National Wildlife Refuge and polyhaline (18-30
ppt) at Seatuck National Wildlife Refuge and Lido Beach
Wildlife Management Area (as defined by Cowardin and oth-
ers, 1979).
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Lido Beach Wildlife Management Area in Lido Beach, New York; B, Seatuck National Wildlife Refuge in Islip, New York; and C, Wertheim
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Regional Structured Decision-Making
Framework

A regional framework for assessing and managing salt
marsh integrity at northeastern NWRs was developed through
collaborative efforts of FWS regional and refuge managers
and biologists, salt marsh research scientists, and structured
decision-making experts. This process followed the discrete
steps outlined by Hammond and others (1999) and Gregory
and Keeney (2002):

* 1. Clarify the temporal and spatial scope of the man-
agement decision.

* 2. Define objectives and performance measures to
evaluate whether objectives are achieved.

3. Develop alternative management actions for achiev-
ing objectives.

* 4. Estimate the consequences or likely outcomes of
management actions in terms of the performance
measures.

* 5. Evaluate the tradeoffs inherent in potential alterna-
tives and select the optimum alternatives to maximize
management benefits.

This sequence of steps was applied through successive
workshops to refine the decision structure and incorporate
newly available information. Initial development of the struc-
tured decision-making framework occurred during a week-
long workshop in 2008 to define the decision problem, specify
management objectives, and explore potential strategies
available to restore and enhance salt marsh integrity. During
2008 and 2009, workshop results were used to guide field tests
of salt marsh monitoring variables (Neckles and others, 2013).
Subsequently, in 2012, data and insights gained from these
field tests were used in a two-part workshop to refine manage-
ment objectives and develop the means for evaluating manage-
ment outcomes (Neckles and others, 2015).

From the outset, FWS goals included development of
an approach for consistent assessment of salt marsh integrity
across all northeastern NWRs (fig. 1). Within this regional
context, staff at a given refuge must periodically determine
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the best approaches for managing salt marshes to maximize
habitat value while considering financial and other constraints.
The salt marsh decision problem was thus defined as apply-
ing to individual NWRs over a 5-year planning horizon. The
objectives for complex decisions can be organized into a
hierarchy to help clarify what is most important to decision
makers (Gregory and others, 2012). The hierarchy of objec-
tives for salt marsh management decisions (table 1) was based
explicitly on the conservation mission of the NWRS, which is
upheld through FWS management to “ensure that the biologi-
cal integrity, diversity, and environmental health of the System
are maintained for the benefit of present and future genera-
tions of Americans,” as mandated in the National Wildlife
Refuge System Improvement Act of 1997 (16 U.S.C. §668dd
note). Two fundamental objectives, or the overall goals for salt
marsh management decisions, were drawn from this policy to
maximize (1) biological integrity and diversity, and (2) envi-
ronmental health, of salt marsh ecosystems. Participants in the
prototyping workshops deconstructed these overall goals fur-
ther into lower level objectives relating to salt marsh structure
and function and identified performance metrics to evaluate
whether objectives are achieved (table 1). In addition, perfor-
mance metrics were weighted to reflect the relative importance
of each objective (Neckles and others, 2015).

The hierarchy of objectives for salt marsh management
(table 1) provides the foundation for identifying possible man-
agement actions at individual NWRs and predicting manage-
ment outcomes. Workshop participants developed preliminary
influence diagrams (app. 1), or conceptual models relating
management actions to responses by each performance metric
(Conroy and Peterson, 2013), to guide this process. To allow
metric responses to be aggregated into a single, overall perfor-
mance score, participants also defined value functions relating
salt marsh integrity metric scores to perceived management
benefit on a common, unitless “utility” scale (Keeney and
Raiffa, 1993). Stakeholder elicitation was used to determine
the form of each value function relating the original metric
scale to the utility scale, ranging from 0, representing the low-
est management benefit, to 1, representing the highest benefit
(app. 2). Neckles and others (2015) provided details regarding
development of the structured decision-making framework
and a case-study application to Prime Hook National Wildlife
Refuge in Delaware.
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Table 1. Objectives hierarchy for salt marsh management decision problems.

[Two fundamental objectives (overall goals of the decision problem) draw directly from U.S. Fish and Wildlife Service (FWS) National Wildlife Refuge System
policy to maintain, restore, and enhance biological integrity, diversity, and environmental health within the refuge complex. These are broken down into lower
level objectives focused on specific aspects of marsh structure and function. Values in parentheses are weights assigned to objectives, reflecting their relative
importance. Weights on any branch of the hierarchy (that is, objectives that are at the same level of the hierarchy under a fundamental objective) sum to one.
The weight for each metric is the product of the weights from each level of the hierarchy leading to that metric. See also Neckles and others (2015). NA, not
applicable]

FWS Objectives

Performance metrics

Unit of measurement

Maximize biological integrity and diversity' (0.5)

Maximize cover of native vegetation (0.24)

Maximize abundance and diversity of native

nekton (0.18):
Maximize nekton abundance (0.50)

Maximize nekton diversity (0.50)

Maintain sustainable populations of obligate

salt marsh breeding birds (0.20)

Maximize use by nonbreeding wetland birds

(0.20)

Maintain trophic structure (0.18)

Cover of native vegetation
NA

Native nekton density
Native nekton species richness

Abundance of four species of tidal marsh
obligate birds (clapper rail, willet, saltmarsh
sparrow, seaside sparrow)

Abundance of American black duck as indicator
species

Density of spiders as indicator taxon

Percent
NA

Number per square meter
Number of native species

Number per marsh management unit
from call-broadcast surveys, summed
across all sampling points in unit

Relative abundance for refuge during
wintering waterfow] season (low,
medium, high)?

Number per square meter

Maximize environmental health! (0.5)

Maintain natural hydrology (0.44):

Maintain natural flooding regime (0.50)
Maintain natural salinity (0.50)

Maintain the extent of the marsh platform
(0.44)

Minimize use of herbicides (0.12)

NA

Percent of time marsh surface is flooded relative
to ideal reference system

Surface-water salinity relative to ideal reference
system

Change in marsh surface elevation relative to
sea-level rise

Rate of application

NA

Absolute deviation from reference in
percentage points

Absolute deviation from reference in
parts per thousand

O=change in elevation is less than amount
of sea-level rise; 1=change in elevation
greater than or equal to amount of sea-
level rise

Pints

'Fundamental objectives of salt marsh management decisions.

2Relative abundance based on local knowledge.
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Application to the Long Island National
Wildlife Refuge Complex

In February 2018, FWS regional biologists, biologists
and managers from four northeastern NWR administrative
units and USGS research scientists (table 2) participated in
a 1.5-day rapid-prototyping workshop to apply the regional
structured decision-making framework to the Eastern Shore
of Virginia, Fisherman Island, and Plum Tree Island National
Wildlife Refuges and the Long Island National Wildlife
Refuge Complex. Participants worked within refuge-specific
small groups to focus on management issues at individual
refuges. Plenary discussions of common patterns of salt marsh
degradation, potential management strategies, and mecha-
nisms of ecosystem response offered additional insights to
enhance refuge-specific discussions.

Participants identified a range of possible management
actions for achieving objectives within each marsh man-
agement unit at the Long Island National Wildlife Refuge
Complex and estimated the total cost of implementation over
a S-year period; the specific years of implementation were
not identified in this prototype. Potential actions to enhance
salt marsh integrity included restoring natural marsh hydrol-
ogy, enhancing avian breeding success, controlling invasive
plants, or altering marsh elevation (table 3, in back of report).
Participants predicted the outcomes of each management
action 5 years after initial implementation in terms of salt
marsh integrity performance metrics. For most metrics, base-
line conditions within each unit measured during the 2012—14
salt marsh integrity assessment (FWS, 2016) were used to
predict the outcomes of a “no-action” alternative. Baseline
conditions were estimated by using expert judgement for three
metrics that lacked assessment data (abundance of American
black ducks, density of spiders, and change in marsh sur-
face elevation relative to sea-level rise). Regional influence
diagrams relating management strategies to outcomes aided
in predicting consequences of management actions (app. 1).
Although the influence diagrams incorporated the potential
effects of stochastic processes, including weather, sea-level
rise, herbivory, contaminant inputs, and disease, on manage-
ment outcomes, no attempt was made to quantify these sources
of uncertainty during rapid prototyping. Management predic-
tions also inherently included considerable uncertainty sur-
rounding the complex interactions among controlling factors
and salt marsh ecosystem components.

Following the workshop, the potential management ben-
efit of each salt marsh integrity performance metric was calcu-
lated by converting salt marsh integrity metric scores (table 3,
workshop output) to weighted utilities (table 4, in back of
report) using regional value functions (app. 2). Weighted
utilities were summed across all salt marsh integrity metrics
for each action; this overall utility therefore represented the
total management benefit, across all objectives, expected to

Table 2. Participants in the workshop convened at the Eastern
Shore of Virginia National Wildlife Refuge to apply a regional
framework for optimizing salt marsh management decisions to
three national wildlife refuge administrative units in February 2018.

[FWS, U.S. Fish and Wildlife Service; NWR, National Wildlife Refuge;
USGS, U.S. Geological Survey]

Affiliation
FWS NWR specialists

Eastern Shore of Virginia and Fisherman

Participant

Pam Denmon

Island NWRs
Eastern Shore of Virginia and Fisherman Robert Leffel

Island NWRs
Long Island NWR Complex Monica Williams
Plum Tree Island NWR William Crouch
Plum Tree Island NWR Lauren Cruz

FWS regional expert

Rachel Carson NWR Susan Adamowicz

Research scientists

USGS Eastern Ecological Science Center James Lyons

USGS Eastern Ecological Science Center Hilary Neckles

accrue from a given management action (table 4). Constrained
optimization (Conroy and Peterson, 2013) was used to find the
management portfolio (the combination of actions, one action
per marsh management unit) that maximizes the total manage-
ment benefit across all units under varying cost scenarios for
the entire refuge complex. Constrained optimization using
integer linear programming was implemented in the Solver
tool in Microsoft Excel (Kirkwood, 1997).

Budget constraints were increased in $2,500 increments
up to $10,000; in $10,000 increments up to $100,000; in
$50,000 increments up to $300,000; in $100,000 increments
up to $1 million; and in $500,000 increments thereafter. The
upper limit to potential costs was not determined in advance;
rather, it reflected the total estimated costs of the proposed
management actions. A cost-benefit plot of the portfolios
identified through the optimization analysis was used to
identify the efficient frontier for resource allocation (Keeney
and Raiffa, 1993), which is the set of portfolios that are not
dominated by other portfolios at similar costs (or the set of
portfolios with maximum total benefit for a similar cost). The
cost-benefit plot also revealed the cost above which further
expenditures would yield diminishing returns on invest-
ment. To exemplify use of the decision-making framework to
understand how a given portfolio could affect specific man-
agement objectives, the refuge-scale management benefits for
individual performance metrics were compared between one
optimal portfolio and those predicted with no management
action taken.
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Results of Constrained Optimization

Potential management actions identified to improve
marsh integrity at the Long Island National Wildlife Refuge
Complex included adding sediment to the marsh surface to
increase elevation; enhancing marsh drainage through creating
runnels or removing ditch plugs; restoring marsh morphol-
ogy through filling ditches; and controlling invasive plants or
predators (table 3). For costs ranging from $0 to $625,000, the
estimated management benefits for individual actions across
all metrics, measured as weighted utilities, ranged from 0.493
(for implementing invasive plant control in the Wertheim—
Northern Unit) to 0.973 (for removing ditch plugs and clean-
ing ditches in the Wertheim—Western Unit), out of a maximum
possible total management benefit of 1.0 (table 3, table 4).

In all but one marsh management unit (Lido Beach Wildlife
Management Area), the alternative with both the lowest
management benefit and lowest cost was applying herbicide to
control invasive plants.

Constrained optimization was applied to identify the
optimal management portfolios over 5 years for a range of
total costs to the refuge complex. As total cost increased from
$0 (no action in any unit) to about $302,000, the total manage-
ment benefit at the refuge scale increased from 2.735 to 4.609
(a 67-percent increase; table 5) out of a possible maximum of
5.0 (the maximum possible management benefit of 1.0 for any
management action, summed across the five marsh manage-
ment units). Graphical analysis showed a fairly consistent
increase in management benefit as costs increased to $23,900
(fig. 3, portfolio 6). Portfolio 6 represented the turning point
in the cost-benefit analysis; as expenditures increased beyond
the cost of portfolio 6, total management benefit continued to
increase but at a lower rate, yielding diminishing returns on
investment. There was very little gain in management benefit
for expenditures greater than about $49,000 (fig. 3, port-
folio 8).

Several patterns emerged relative to the potential man-
agement actions selected by constrained optimization within
the set of portfolios that yielded the greatest total management
benefit per unit cost (table 5, portfolios 2 through 6). These
portfolios consistently included actions that could improve
drainage from the marsh surface. Portfolios up to a total cost
of about $10,000 included excavating runnels at the Lido

Beach Wildlife Management Area and removing ditch plugs
at one or more of the Wertheim National Wildlife Refuge
units. As costs increased from $10,000 to $23,900, portfolios
included multiple actions within some of the marsh manage-
ment units, such as removing ditch plugs and cleaning ditches
at Wertheim Northern Unit (portfolio 5) or digging runnels
and grading the marsh platform at Seatuck National Wildlife
Refuge (portfolio 6). In contrast, some management actions
were not included in any portfolio. For example, trapping
mesopredators or creating nest mounds were identified to
increase sparrow populations at all the marsh management
units, but these actions were never selected. Similarly, the
management portfolios never included actions that incorpo-
rated sediment deposition or invasive plant control.

Examination of the refuge-scale metric responses to
actions included in portfolio 6, which is the turning point in
the cost-benefit plot (fig. 3), revealed how implementation
could affect specific management objectives. The actions
included were predicted to achieve large gains in the overall
management benefits derived from increased numbers of tidal
marsh obligate birds, increased density of spiders (as an indi-
cator of trophic health), reduced duration of flooding, and the
capacity of marsh elevation to keep pace with sea-level rise,
and modest gains in the benefits derived from changes in den-
sity and species richness of nekton (fig. 4). Ecologically, the
combination of actions in portfolio 6 may result in an average
203-percent increase in tidal marsh obligate bird counts (aver-
aged across all marsh management units), 20-percent increase
in nekton density, 14-percent increase in nekton species rich-
ness, 63-percent decrease in the deviation of surface flooding
from the ideal reference condition, and 80-percent increase in
spider density (derived as the average difference between the
predicted metric scores for the actions implemented in portfo-
lio 6 and the “no-action” alternative; table 3). Implementation
of actions in this portfolio was also predicted to improve the
capacity for marsh elevation to keep pace with sea-level rise
in four of the five marsh management units. The management
benefits predicted for portfolios 2 through 5, at total costs up
to $19,300, were derived primarily from expected improve-
ments in surface-water drainage and capacity for marsh eleva-
tion to keep pace with sea-level rise, and presumed increases
in densities of spiders and numbers of tidal marsh obligate
birds (table 3, table 4).
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Table 5. Actions included in various management portfolios to maximize the total management benefits subject to increasing cost
constraints at the Long Island National Wildlife Refuge Complex, New York.

[Letter designations for actions refer to specific actions and are listed in table 3 and table 4. Portfolios represent the combination of potential actions, one per
marsh management unit, that maximized the total management benefit across all units, subject to a refuge-wide cost constraint. The management actions con-
stituting individual portfolios were selected using constrained optimization. The total cost represents the sum of costs estimated for each action included in the
portfolio. The maximum possible total management benefit for the refuge complex is 5.0, derived as the maximum possible total management benefit of 1.0 for
any management action within one management unit, summed across five units. NWR, National Wildlife Refuge; WMA, Wildlife Management Area]

Marsh management unit

Portfolio Lido Beach Worthei Worthei Worthei Total cost Total management
100 beac ertheim ertheim ertheim (do"ars) benefit
Seatuck NWR WMA Western Unit Eastern Unit Northern Unit
1 A A A A A 0 2.753
2 A B A A D 2,375 3.294
3 A B A C D 4,875 3.603
4 A B D C D 9,875 4.005
5 H B D C M 19,300 4.129
6 E B D C D 23,900 4.263
7 H F D C D 36,800 4.308
8 E F D C D 48,900 4.474
9 E F D C M 56,400 4.506
10 E F 1 C M 63,150 4.509
11 E F o C M 131,400 4.534
12 F F 1 C M 158,725 4.563
13 F F (0] C M 226,975 4.588
14 F F o K M 301,975 4.609
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Figure 4. Predicted management benefit at the refuge scale for individual performance metrics,
expressed as weighted utilities, resulting from implementation of the management actions included
in portfolio 6, in comparison to the management benefit from the baseline “no-action” portfolio, at
the Long Island National Wildlife Refuge Complex in New York. Baseline (“no action”) predicted
management benefit for marsh surface elevation change is 0. The actions included in each portfolio

are listed in table 5.

Considerations for Optimizing Salt
Marsh Management

A regional structured decision-making framework for
salt marshes in NWRs in the northeastern United States
was applied by the USGS, in cooperation with the FWS, to
develop a tool for optimizing management decisions at the
Long Island National Wildlife Refuge Complex. Use of the
existing regional framework and a rapid-prototyping approach
permitted NWR biologists and managers, FWS regional
authorities, and research scientists to construct a decision
model for the refuge complex within the confines of a 1.5-day
workshop. This preliminary prototype provides a local frame-
work for decision making while revealing information needs
for future iterations. Insights from this process may also be
useful to inform future habitat management planning at the
refuge complex.

The suite of potential management actions and predicted
outcomes included in this prototype (table 3) were based on
current understanding of the Long Island National Wildlife
Refuge Complex salt marshes and hypothesized process-
response pathways (app. 1). Tidal flooding is the predominant
physical control on the structure and function of salt marsh
ecosystems (Pennings and Bertness, 2001), and there is
widespread scientific effort to elucidate how salt marshes may
respond to accelerating rates of sea-level rise and manage-
ment strategies to enhance their sustainability (Kirwan and
Megonigal, 2013; Roman, 2017). Management actions to

improve drainage or raise the elevation of the marsh surface
are increasingly proposed to reduce vulnerability of northeast-
ern salt marshes threatened with submergence (Wigand and
others, 2017). At the Long Island National Wildlife Refuge
Complex, various actions were identified to remedy alterations
to salt marsh hydrology associated with mosquito control. In
particular, ditch plugs were installed in many northeastern
marshes to increase surface water habitat for larvivorous fish
(Meredith and others, 1985), but this hydrologic manipulation
may promote marsh subsidence (Vincent and others, 2013). In
this prototype, removing ditch plugs was expected to allevi-
ate the extended water-logging of the marsh substrate that

can lead to vegetation loss and subsidence, thereby enhanc-
ing marsh capacity to maintain elevation. The predicted high
management benefit yielded by ditch plug removal led to its
frequent selection within optimal management portfolios.
Multiple interacting factors influence the long-term success of
restoration actions in prolonging marsh integrity and improv-
ing marsh resilience (Roman, 2017). Future iterations of this
decision model can incorporate improved understanding of
both implementation costs and marsh responses to manage-
ment actions. In addition, during construction of the regional
decision model, a lack of widely available data on rates of ver-
tical marsh growth led to the adoption of a very coarse scale
of measurement for change in marsh surface elevation relative
to sea-level rise (table 1). From 2008 to 2014, three surface
elevation tables (Lynch and others, 2015) were installed in
each marsh management unit to obtain high-resolution mea-
surements of change in marsh surface elevation. Incorporating



this information into subsequent iterations of this structured
decision-making framework would likely improve predictions
related to the potential for marsh surface elevation to keep
pace with sea-level rise.

Results of constrained optimizations (table 5) based on
the objectives, management actions, and predicted outcomes
included in this prototype identified four areas in which to
improve the utility of the prototype for refuge decision mak-
ing. First, although reducing the extent of Phragmites is a
management concern at the Long Island National Wildlife
Refuge Complex, application of herbicides as a control mea-
sure was not selected for any optimal portfolio. The transpar-
ency of the structured decision-making framework reveals
the tradeoffs associated with applying herbicide to reduce
the spread of invasive plants. In most instances, controlling
invasive plants was predicted to increase the percent cover
of native vegetation and the abundance of tidal marsh obli-
gate birds (table 3), and increase the management benefits
associated with achieving these specific objectives (table 4).
However, spraying all but small quantities of herbicides,
which are a potential environmental contaminant, also had
direct negative consequences on the objective to minimize
herbicide use (table 4); whereas applying 35 pints of herbicide
per year at the Lido Beach Wildlife Management Area was
predicted to increase the total management benefit, applying
the quantities of herbicide necessary to control widespread,
multiple stands of invasive plants in the other marsh manage-
ment units was predicted to decrease the total management
benefit (table 4). Thus, the benefits associated with use of
herbicide to reduce invasive plants may not offset the negative
value of environmental contaminants. These results emphasize
the importance that refuge managers have placed on control-
ling spread of Phragmites through various methods, including
increasing porewater salinity through tidal restoration (FWS,
2006). This prototype could be adapted to allow managers
to evaluate the relative expected benefits and detriments of
chemical and other control methods.

Second, controlling predators (Roberts and others, 2017,
2019) and constructing islands as nesting habitat (Benvenuti,
2016) have been proposed for increasing reproductive success
of saltmarsh sparrows, but the efficacy of these manage-
ment actions is unknown. The lack of information to predict
management benefits may have contributed to the exclusion
of these management actions from optimal portfolios, sug-
gesting that these and other methods to improve nest success
might warrant investigation. Future iterations of the decision
model might consider additional actions targeting saltmarsh
sparrows. For example, recent studies identified acquisition of
adjacent parcels for inland marsh-migration (Wiest and others,
2014) and removal of trees or other tall structures near marsh
edges to enhance openness (Marshall and others, 2020) as
potential approaches for limiting declines of saltmarsh spar-
row populations.
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Third, partially filling mosquito ditches with plant fiber
has shown short-term promise in promoting ditch “self heal-
ing” through natural sedimentation and revegetation, but the
long-term success of this technique for restoring marsh eleva-
tions requires further investigation (Burdick and others, 2020).
Although such ditch remediation was identified as a pos-
sible mechanism to achieve salt marsh management goals at
Wertheim National Wildlife Refuge (table 3), this action was
never included in an optimal portfolio. Long-term monitoring
of marsh recovery trajectories following experimental ditch
remediation will allow refinement of the decision model for
Long Island National Wildlife Refuge Complex.

Finally, the constrained optimizations analyzed in this
report were based on approximations of management costs. A
detailed list of actual expenses can be compiled as salt marsh
management is undertaken around the region, including staff
time for project planning, as well as materials, equipment,
contracts, and staff time for implementation. This will allow
future iterations of the decision model to include more accu-
rate cost estimates.

The prototype model for the Long Island National
Wildlife Refuge Complex provides a useful tool for decision
making that can be updated in the future with new data and
information. The spatial and temporal variability inherent in
parameter estimates were not quantified during rapid proto-
typing. Previously, preliminary sensitivity analysis revealed
little effect of incorporating ecological variation in abundance
of marsh-obligate breeding birds on the optimal solutions for
Prime Hook National Wildlife Refuge (Neckles and others,
2015). This lends confidence to use of this framework for
decision making; however, including probability distributions
for each performance metric in the decision model could be a
high priority for future prototypes. Future monitoring of salt
marsh integrity performance metrics will be useful to refine
baseline parameter estimates and to determine the background
rate of change in the absence of management actions; feed-
back from measured responses to management actions around
the region will help reduce uncertainties surrounding manage-
ment predictions. The structured decision-making framework
applied here to the Long Island National Wildlife Refuge
Complex is based on a hierarchy of regional objectives and
regional value functions relating performance metrics to per-
ceived management benefits. It will be important to ensure that
subsequent iterations reflect evolving management objectives
and desired outcomes. Elements of the decision model could
be further adapted, for example through differential weight-
ing of objectives or altered value functions, to reflect specific,
local management goals and mandates. Future optimiza-
tion analyses that use this framework could also incorporate
additional constraints on action selection, such as ensuring
that particular actions within individual marsh management
units are included in optimal management portfolios, to further
tailor the model to refuge-specific needs.
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24 Optimization of Salt Marsh Management at the Long Island National Wildlife Refuge Complex, New York

Appendix 1. Regional Influence Diagrams

The influence diagrams (following the style of proto-
type diagrams in Neckles and others, 2015) in this appendix
(figs. 1.1-1.8) relate possible management strategies to perfor-
mance metrics. Shapes represent elements of decisions, as fol-
lows: rectangles for actions, rectangles with rounded corners
for deterministic factors, ovals for stochastic events, and hexa-
gons for consequences expressed as a performance metric.
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Restore
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ditches, create
pools and channels
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Restore tidal
flooding “"
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of native species
runoff muni
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A composition

Control invasive “"
Spectes Nutrient
availability

Plant native
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Figure 1.1. Influence diagram used to estimate percent cover of native vegetation in response to implementing certain management

actions.
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Figure 1.2. Influence diagram used to estimate nekton density and species richness in response to implementing certain management

actions.
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Figure 1.4. Influence diagram used to estimate abundance of American black ducks in winter, as indicator species for nonbreeding
wetland birds, in response to implementing certain management actions.
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Figure 1.5. Influence diagram used to estimate density of spiders, as indicator of trophic health, in response to implementing certain

management actions.
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Figure 1.6. Influence diagram used to estimate percent of time marsh surface is flooded and salinity of marsh surface water in

response to implementing certain management actions.
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Figure 1.7. Influence diagram used to estimate change in elevation of the marsh surface relative to sea-level rise in response to
implementing certain management actions.
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Appendix 2.  Utility Functions for the Long Island National Wildlife Refuge Complex

Appendix 2. Utility Functions for the Long Island National Wildlife

Refuge Complex

Utilities [u(x)] are derived as monotonically increasing,
monotonically decreasing, or step functions over the range of
performance metric x. In the functions in figures 2.1-2.10, x,
Low, High, and p are expressed in performance metric units;
Low and High represent the endpoints of the given metric
range for the Long Island National Wildlife Refuge Complex;
and p represents a shape parameter derived by stakeholder
elicitation (Neckles and others, 2015). Break points in step
functions were also derived by stakeholder elicitation.

~(x-Low)
l-e 7*
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08— ] l-e 7
@
> where
.5 06 — — Low =0
g High =100
E p =50
=)
P —
£
02— _
0 I I I I
0 20 40 60 80 100
Native vegetation, in percent cover
Figure 2.1. Native vegetation at the Long Island National Wildlife Refuge Complex, New York.
100 T T T T T T
. ~(x—Low)
g 00| 1 il A
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Figure 2.2. Native nekton density at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.3. Native nekton species richness at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.4. Tidal marsh obligate birds at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.5. American black ducks at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.6. Marsh spiders at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.7. Duration of surface flooding at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.8. Salinity of surface water at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.9. Change in marsh surface elevation relative to sea-level rise at the Long Island National Wildlife Refuge Complex, New York.
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Figure 2.10. Application of herbicides at the Long Island National Wildlife Refuge Complex, New York.
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