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Variables and Parameters 
𝛼𝛼 user-defined credibility level (1 − 𝛼𝛼) 

   CI credible interval (Bayesian analog of a confidence interval) 
𝑔𝑔𝑠𝑠 detection probability for formal PCM search process 
𝑔𝑔𝑖𝑖 detection probability for incidental carcasses 
𝜆𝜆 true annual mortality rate (for example, bats per year), Poisson distributed 
𝜆̂𝜆 estimated mortality rate 
𝑀𝑀 true number of fatalities 
𝑀𝑀∗ estimated minimum number of fatalities such that Pr(𝑀𝑀 ≤ 𝑀𝑀∗) ≥ 1 − 𝛼𝛼 
𝑥𝑥𝑠𝑠 number of carcasses found during formal PCM searches 
𝑥𝑥𝑖𝑖 number of incidental carcasses found 
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Some Approaches to Accounting for Incidental 
Carcass Discoveries in Non-Monitored Years using 
the Evidence of Absence Model 

by Daniel Dalthorp1, Paul Rabie2, Manuela Huso1, and Andrew Tredennick2

Executive Summary 
We evaluate three approaches to accounting for incidental carcasses when estimating an 

upper bound on total mortality (𝑀𝑀) as 𝑀𝑀∗ using the Evidence of Absence model (EoA; Dalthorp 
and others, 2017) to assess compliance with an Incidental Take Permit (ITP) (Dalthorp & Huso, 
2015) under a monitoring protocol that includes formal, dedicated carcass surveys that achieve 
an overall detection probability of 𝑔𝑔𝑠𝑠 = 0.15 in the first year, followed by 4 years with no formal 
monitoring but with carcasses potentially discovered incidentally by operations and maintenance 
crews in their normal course of activity or otherwise discovered outside the formal searches. We 
refer to carcasses discovered incidentally as “incidentals” and define 𝑥𝑥𝑖𝑖 as the count of 
incidentals. Similarly, we define 𝑥𝑥𝑠𝑠 as the number of carcasses found during the formal searches 
conducted the first year. 

Three Methods to Account for Incidentals 
The difficulty with incidentals is that they cannot simply be included in the carcass count 

that is used to calculate 𝑀𝑀∗ because the detection probability for incidentals is typically not 
known. This presents a statistical puzzle in that we know that the incidentals provide information 
about mortality rates, but it is difficult to quantify that information in the calculation of 𝑀𝑀∗. We 
explore three possibilities:  

1. exI: exclude incidentals and calculate 𝑀𝑀∗ based solely on carcasses found in the formal
search process (with detection probability 𝑔𝑔𝑠𝑠);

2. prI: incorporate the information provided by incidentals into a truncated, informed prior
distribution to be used in EoA;

3. inI: include incidentals in the carcass count and calculate  𝑀𝑀∗ based on all carcasses found
(𝑥𝑥𝑠𝑠 + 𝑥𝑥𝑖𝑖), whether in the formal search process (with detection probability 𝑔𝑔𝑠𝑠 or as
incidentals (with detection probability 𝑔𝑔𝑖𝑖).
The first method (exI) is the default for EoA and is statistically valid. Carcasses

discovered outside the monitored period or outside the search plots are accounted for by the 
spatial and temporal search coverage components in the EoA model. Although valid, the method 
loses statistical power as the number of unmonitored years accumulates. 

1U.S. Geological Survey, Corvallis, Oregon 
2Western Ecosystems Technology, Inc. (WEST), Cheyenne, Wyoming 
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The second method (prI) makes use of some of the information in the incidentals 
without requiring an estimate or assumption about detection probability for incidental carcasses 
(𝑔𝑔𝑖𝑖) . It is statistically valid and improves slightly on the statistical power of the first method. 
Also, because it does not require an estimate or assumption about 𝑔𝑔𝑖𝑖 , it avoids the uncertainties 
involved in assuming a fixed value for 𝑔𝑔𝑖𝑖 and the expense of estimating 𝑔𝑔𝑖𝑖 if no fixed 
assumption is made about 𝑔𝑔𝑖𝑖. 

The third method (inI) is an attempt to take maximal advantage of the information 
implicit in the incidental finds. To do so requires enhancing the information by either assuming a 
fixed value for 𝑔𝑔𝑖𝑖 or by adequately estimating it. If an assumed value for 𝑔𝑔𝑖𝑖 is badly mistaken 
(for example, assuming 𝑔𝑔𝑖𝑖 = 0.05 when it is really 0.005 or vice versa), there is substantial risk 
that 𝑀𝑀∗ will be grossly inaccurate. However, if it is known that 𝑔𝑔𝑖𝑖 is small (for example, 𝑔𝑔𝑖𝑖 <
0.01), and 𝑔𝑔𝑖𝑖 is assumed to be small, then misspecification of 𝑔𝑔𝑖𝑖 has little effect on the accuracy 
of inI coverage probabilities. Because information in the incidentals is more fully incorporated 
into estimates, discovery of incidentals in non-monitored years can have a strong impact on 𝑀𝑀∗, 
providing greater opportunity to detect high fatality rates that went unnoticed in the first year of 
monitoring but increasing the probability of an 𝑀𝑀∗ that is much higher than the true 𝑀𝑀. 

Evaluation of the Methods 
EoA was designed to calculate the upper bounds (𝑀𝑀∗) of 100(1 − 𝛼𝛼)% credibility 

intervals for mortality (𝑀𝑀), which can be interpreted as the maximum number of fatalities that is 
compatible with the data. A total mortality that exceeds 𝑀𝑀𝛼𝛼

∗  can be effectively ruled out with 
100(1 − 𝛼𝛼)% credibility. The natural test for EoA-type models is on the accuracy of 𝑀𝑀𝛼𝛼

∗ , that is, 
whether the probability that 𝑀𝑀 exceeds 𝑀𝑀∗ is close to 𝛼𝛼. We call the true probability that 𝑀𝑀𝛼𝛼

∗ ≥
𝑀𝑀 the “coverage probability” or simply “coverage” and call 1 − 𝛼𝛼 the nominal or target 
coverage. We conducted simulations to test the coverage probabilities for the three methods 
under a wide variety of scenarios under a general framework of: 

• formal PCM searches conducted in the first year, with detection probability of gs = 0.15; 
• 4 years without formal monitoring 

o actual detection probabilities for incidentals ranging from gi = 0.001 to 0.05 
o assumed detection probabilities (inI only) ranging from 0.001 to 0.05 

• actual mortality rates ranging from λ = 0.5/year to 10/year; 
• α values of 0.1, 0.2, and 0.5. 

Results 
We found that coverages for all three estimators (assuming 𝑔𝑔𝑖𝑖 known in inI) converged 

to the target 1 − 𝛼𝛼 as 𝜆𝜆 increased, with rate of convergence dependent on 𝛼𝛼. Estimators exI and 
prI had similar coverage in almost all cases, with prI outperforming exI in most of the few 
cases where they differed. Both estimators over-covered (implying a tendency for 𝑀𝑀∗ to be too 
large) when the annual take (𝜆𝜆) was small and credibility level (1 − 𝛼𝛼) was large. As 𝜆𝜆 increased, 
both estimators converged on nominal coverage at close to the same rate when 𝛼𝛼 was 0.5. 

When 𝑔𝑔𝑖𝑖 was known, estimator inI had more accurate coverage probabilities than did 
exI and prI in most scenarios. In particular, it had much less of a tendency to overestimate when 
𝜆𝜆 was small and 𝑔𝑔𝑖𝑖 was large. This is because inI directly and efficiently incorporates the 
information from the incidentals into the estimates. However, its advantage appeared to largely 
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evaporate when desired credibility was 50 percent, in which case inI represented only a 
marginal improvement over exI or prI. 

The relatively good performance of estimator inI in many of the simulation scenarios 
depends on 𝑔𝑔𝑖𝑖 being known, which is usually an unrealistic assumption. When 𝑔𝑔𝑖𝑖 is misspecified 
or poorly estimated, inI can be strongly biased. Because the process of detecting incidentals is 
difficult to predict, designing and conducting trials to accurately estimate 𝑔𝑔𝑖𝑖 would require 
careful thought. In theory, 𝑔𝑔𝑖𝑖 could be estimated using simplified binomial search trials that do 
not require follow-up searches to monitor the fates of carcasses after initial placement. This 
would involve placement of trial carcasses throughout the monitoring period and using the 
fraction of those carcasses that were discovered incidentally as an estimate of 𝑔𝑔𝑖𝑖 (after 
accounting for search coverage). 

Introduction 
Wind energy facility operators typically conduct post-construction fatality monitoring 

(PCM) studies at wind energy facilities to evaluate the direct impacts to birds and bats, which 
may collide with wind turbines. Counts of carcasses are analyzed with data from experimental 
trials designed to evaluate detection bias (imperfect searcher efficiency, carcass removal, 
unsearched areas, etc.) to arrive at an estimate of total mortality and mortality rate at a site. When 
the goal is to provide assurance of compliance with an incidental take permit of a rare species 
(for which carcass counts may be low or even zero), the Evidence of Absence (EoA; Dalthorp 
and others, 2017; Dalthorp and Huso, 2015) estimator is the most appropriate statistical estimator 
available. In this context, EoA is not designed to give a point estimate of how many rare 
individuals were killed, but to calculate 𝑀𝑀∗ and credible intervals, which are the Bayesian analog 
to the confidence intervals of classical statistics. In practice, 𝑀𝑀∗ is often used to determine 
whether projects are in compliance with their incidental take permits (ITPs) and to determine the 
mitigation debits accruing to a permit holder. In mathematical terms, 𝑀𝑀𝛼𝛼

∗  is defined as the 
minimum number of fatalities such that Pr(𝑀𝑀 ≤ 𝑀𝑀∗ ∣ 𝑋𝑋 = 𝑥𝑥;𝑔𝑔 = 𝑔𝑔�) ≥ 1 − 𝛼𝛼 for the user’s 
choice of credibility level, 1 − 𝛼𝛼 where 𝑀𝑀 is the true mortality of the rare species, 𝑥𝑥 is the 
number of carcasses found in a search process for which the detection probability has been 
estimated as 𝑔𝑔� (Dalthorp and others, 2017). In lay terms, EoA is saying you have a 1 − 𝛼𝛼 chance 
that true mortality was ≤M * given your search process and what was discovered. We refer to this 
value as 𝑀𝑀∗ throughout, including subscripts as needed to differentiate among estimators or to 
distinguish credibility levels. 

Finding incidental carcasses (defined as bird or bat carcasses found outside of prescribed 
PCM searches) at a wind energy facility has been the source of discussion regarding how they 
should be treated in the context of EoA. Observations of incidental carcasses are not data in the 
sense that they were not observed as part of the data collection process that is modeled in EoA. 
Indeed, the EoA framework is designed to account, through 𝑔𝑔�, for carcasses that likely exist but 
were not found during PCM searches, which would include incidental carcasses. However, when 
the purpose of monitoring is to evaluate compliance with the Endangered Species Act and 
associated ITP and to determine mitigation debits for permit holders, these incidental finds can 
represent valuable information. 

The question we address here is: How can incidental carcasses be treated in the context of 
EoA while maintaining the strong statistical properties of the estimator? In this report, we focus 
exclusively on one specific monitoring plan in which PCM monitoring is conducted in the first 
year with an overall detection probability of 𝑔𝑔𝑠𝑠 = 0.15, followed by 4 years in which no formal 
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PCM is conducted, but the potential exists for bats to be discovered incidentally by workers at 
the site. We describe three approaches to accounting for incidental carcasses when estimating 𝑀𝑀∗ 
in the EoA framework to assess compliance with an ITP (Dalthorp and Huso, 2015). We 
describe a probability-based simulation we conducted to assess the three approaches for handling 
incidentals in terms of coverage probabilities; that is, the accuracy of the level of credibility 
given in statements that can be made using EoA like “Having searched for Indiana bats with an 
overall detection probability of 𝑔𝑔 and having found none, we can assert with 50 percent 
credibility that no more than five were taken in this period.” We provide results and discussion 
of results and conclude with recommendations on approaches to interpreting incidental finds in a 
management context where the objective is to be reasonably sure—with 100(1 − 𝛼𝛼)% 
credibility—that permitted take is not being exceeded. 

Three Approaches for Accounting for Incidental Carcasses 
Exclude Incidentals (exI): 𝑀𝑀∗ ∼ [𝑀𝑀 ∣ 𝑔𝑔𝑠𝑠, 𝑥𝑥𝑠𝑠] 

This is the standard EoA calculation of 𝑀𝑀∗. The modeling framework of EoA already 
accounts for carcasses that are missed due to unsearched areas, unsearched periods of time, 
carcass removal, or imperfect searcher efficiency, and that the exI approach (“exclude 
incidentals”) is well-supported by statistical theory. An incidental carcass represents one of those 
missed and can be thought of as accounted for in the estimator. EoA acknowledges that some 
carcasses may be missed in the searches, and an incidental represents serendipitous discovery of 
one that was missed. 

Truncated Prior (prI) 
The prI estimator makes use of the information that total mortality must be greater than 

or equal to the number of incidentals found by truncating the lower bound of EoA’s prior 
distribution to exclude the possibility that 𝑀𝑀 < 𝑥𝑥𝑖𝑖. Instead of using an integrated binomial 
reference prior (Pr(𝑀𝑀 = 𝑚𝑚) ∝ √𝑚𝑚 + 1 − √𝑚𝑚) that EoA uses as a default, prI uses a prior that 
has probability 0 for 𝑀𝑀 < 𝑥𝑥𝑖𝑖 and Pr(𝑀𝑀 = 𝑚𝑚) ∝ 1/√𝑚𝑚 (a Jeffreys prior) for 𝑚𝑚 ≥ 𝑥𝑥𝑖𝑖. When the 
number of incidentals (𝑥𝑥𝑖𝑖) does not exceed the number of carcasses found in formal searches 
(𝑥𝑥𝑠𝑠), the prI estimator is virtually indistinguishable from the traditional exI. The differences 
between exI and prI are significant only when 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑠𝑠 and 𝑥𝑥𝑠𝑠 is small. This situation would be 
expected to be rare except when the detection probability for incidentals is not small in relation 
to 𝑔𝑔𝑠𝑠. 

Include Incidentals (inI): 𝑀𝑀∗ ∼ [𝑀𝑀 ∣ 𝑔𝑔′, 𝑥𝑥𝑠𝑠 + 𝑥𝑥𝑖𝑖] 
Including incidentals in the carcass survey count requires accounting for the detection 

probability of the incidentals, which we define as carcasses that are discovered outside of 
standardized search plots or in non-monitored years. In either case, 𝑔𝑔𝑠𝑠 in the model should be 
slightly adjusted and replaced with a 𝑔𝑔′ that includes a component that reflects detection 
probability of incidentals. If the detection probability for survey carcasses (𝑔𝑔𝑠𝑠) is substantially 
higher than detection probability for incidentals (𝑔𝑔𝑖𝑖), this approach would be fairly robust to 
misspecification of 𝑔𝑔𝑖𝑖, and 𝑔𝑔𝑖𝑖 could be assumed to be some fixed value. However, as the non-
monitored years accumulate, the overall proportion of carcasses found in the carcass surveys 
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decreases (𝑔𝑔𝑠𝑠 in year 1, 𝑔𝑔𝑠𝑠/2 for carcasses through the first two years, etc.), and the sensitivity to 
misspecification of 𝑔𝑔𝑖𝑖 increases. Our simulations include evaluation of effect of misspecification 
of 𝑔𝑔𝑖𝑖. 

Simulation Study 
We assess (via simulation) how the estimators perform under various realistic scenarios 

that are rooted in probability and evaluate their performance in terms of coverage. Particularly, 
we adopt the basic framework of annual mortalities as 𝑀𝑀 ∼ Poisson(𝜆𝜆), 1 year of PCM 
monitoring at 𝑔𝑔𝑠𝑠 = 0.15 followed by 1–4 non-monitored years, during which the probability of 
finding incidentals is >0. Scenarios include all combinations of 𝜆𝜆 ∈ {0.5, 1, 1.5 , . . . , 10} and 
detection probabilities for incidental carcasses 𝑔𝑔𝑖𝑖 ∈ {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}. In 
addition, estimator inI is based on an assumed 𝑔𝑔𝑖𝑖 taken from the same set as the actual 𝑔𝑔𝑖𝑖. Thus, 
for example, in some scenarios inI assumed 𝑔𝑔𝑖𝑖 is correct and in others 𝑔𝑔𝑖𝑖 is mis-specified. The 
other estimators make no assumptions about 𝑔𝑔𝑖𝑖. In the first year, when the carcass surveys are 
conducted, the detection probability for the carcass surveys is assumed to be 𝑔𝑔𝑠𝑠 = 0.15, and 
carcasses that are not found in the searches are available for detection as incidentals. The 
probability of incidental detections in the first year is likely to be lower than in later years 
because most of the would-be incidental discoveries are made by the search teams instead. We 
assume that the detection for incidentals in the first year is 𝑔𝑔𝑖𝑖/3. The denominator is arbitrary, 
but the estimator is only weakly dependent on that assumption unless 𝑔𝑔𝑖𝑖 is not small in relation 
to 𝑔𝑔𝑠𝑠. For inI, we then take the assumed 𝑔𝑔 to be 𝑔𝑔′ = 𝑔𝑔𝑠𝑠 + (1 − 𝑔𝑔𝑠𝑠)𝑔𝑔𝑖𝑖/3 for the first year and 
(𝑔𝑔𝑠𝑠 + (1 − 𝑔𝑔𝑠𝑠)𝑔𝑔𝑖𝑖/3 + (𝑦𝑦 − 1)𝑔𝑔𝑖𝑖)/𝑦𝑦 for cumulative totals over 𝑦𝑦 years. 

We evaluate the estimators in terms of coverage probabilities of 𝑀𝑀𝛼𝛼
∗  for 𝑀𝑀 with 𝛼𝛼 ∈

{0.1, 0.2, 0.5}, which reflects the intent and common implementation of EoA as a tool for 
determining compliance. In addition, extensive tables show 𝑀𝑀∗ values that may be useful in 
evaluating mitigation obligations. This general framework, which includes models for discovery 
of incidentals, allows for evaluation of the estimators rooted in probability theory. 

Results 
Under most of the conditions that we tested, the estimators performed similarly. The 

similarities began to break down as the detection probability for incidentals (𝑔𝑔𝑖𝑖) increased to 
0.05, and the distinctions were most pronounced when 𝛼𝛼 = 0.1. Figure 1  shows coverage 
probabilities for the three estimators when 𝑔𝑔𝑖𝑖 = 0.05, 𝑦𝑦 = 5, and 𝛼𝛼 = 0.1 for 𝜆𝜆 from 0.5 to 𝜆𝜆 = 
60 per year, a mortality rate that is unlikely to be seen in practice but is useful for seeing 
convergence of the estimators to nominal coverage. 

A perfect estimator would cover 𝑀𝑀 exactly 100(1 − 𝛼𝛼)% of the time, but exact coverage 
is rarely possible for discrete distributions, especially when counts are small. Estimator 
overcoverage (above the blue target) means that 𝑀𝑀∗ exceeds 𝑀𝑀 more frequently than expected, 
which means the estimator tends to overestimate for that scenario. Similarly, coverage below the 
target indicates a tendency to underestimate. Lines represent coverage probabilities of 𝑀𝑀𝛼𝛼

∗  for 
cumulative mortality through 𝑦𝑦 years. The degree of overestimation or underestimation in 
particular cases can be seen in tables 1–6. 

Additionally, a 𝑔𝑔𝑖𝑖 of 0.05 is probably an upper bound on what might occur for bats, and 
𝛼𝛼 = 0.1 is more stringent than the more commonly used 𝛼𝛼 = 0.5 or 0.2. Thus, figure 1 represents 
the scenarios with the most extreme divergence among the estimators and serves to highlight the 
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qualitative differences in how the estimators make use of the information in the incidentals. 
Quantitative differences among the estimators depend on specific combinations of 𝑔𝑔𝑖𝑖 and 𝛼𝛼, as 
illustrated in figures 2–4. 

In all cases, coverage probabilities for exI and prI converged to the target coverage as 𝜆𝜆 
increased. Although virtually identical over most of the range of 𝜆𝜆, exI and prI diverge from 
each other in figure 1 when 𝜆𝜆 was between, roughly, 8 and 15. Under these conditions, prI gave 
somewhat higher coverages than exI, reflecting a tendency to give higher estimates. This gives 
the prI model slightly greater power than exI to detect large 𝜆𝜆’s in the non-monitored years. 

When mortality rates are not very high (𝜆𝜆 < 7 in the figure)—which is likely in 
practice—estimators exI and prI have a strong tendency to overestimate the total mortality over 
5 years, with coverage probability of 100 percent when 𝑔𝑔𝑖𝑖 = 0.05 and 𝛼𝛼 = 0.1. The problem is 
that the information content in the formal carcass surveys in year 1 is progressively diluted as the 
non-monitored years accrue, and the overall detection probability for carcasses arriving over the 
course of 5 years decreases to 3 percent. After accounting for the uncertainty inherent in such a 
small 𝑔𝑔, it becomes difficult to rule out mortality of 𝑀𝑀 > 𝜆𝜆 ⋅ 5 when 𝜆𝜆 is not large. 

The inI estimator can remedy some of the tendency for exI and prI to overestimate 
under the conditions in figure 1 . With 𝑔𝑔𝑖𝑖 = 0.05 the information content in the incidentals is 
potentially high, but harvesting that information efficiently requires knowing or reliably 
estimating 𝑔𝑔𝑖𝑖. If 𝑔𝑔𝑖𝑖 is known, inI converges to nominal coverage more rapidly than the other 
two estimators and has substantially less of a tendency toward over-estimation. However, this 
requires that detection probability for incidentals is known or reliably estimated. 

In figures 2–4, coverage probabilities for 𝑀𝑀𝛼𝛼
∗  are shown for the three estimators for 0.5 ≤

𝜆𝜆 ≤ 10 and 𝑔𝑔𝑖𝑖 ∈ {0.001, 0.0025, 0.005, 0.01, 0.02, 0.05}. The black and green lines represent 
coverages for exI and prI, resp. The solid red lines represent coverages for inI when the value 
assumed for 𝑔𝑔𝑖𝑖 in inI is correct; broken red lines are for inI when 𝑔𝑔𝑖𝑖 is misspecified. The 
topmost red line is for an assumed 𝑔𝑔𝑖𝑖 of 0.001, and successively lower lines are for 𝑔𝑔𝑖𝑖 = 0.0025, 
0.005, 0.01, 0.02, 0.05, respectively. The horizontal, light blue line represents the nominal, target 
coverage (1 − 𝛼𝛼). In many panels, the coverages for one or more of the estimators are nearly 
identical for most, if not all, of the values of 𝜆𝜆. As a result, sometimes one or more lines appear 
to be missing. This is because they are entirely coincident with a line that was drawn later. The 
lines were drawn in order: exI first (black), inI next (red), and prI last (green). 
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Figure 1. Convergence of estimator coverages when detection probability for incidental carcasses (gi) is 
0.05 and the user-defined credibility level (𝛼𝛼) is 0.1. [Horizontal blue line indicates target coverage.] 

In all cases, estimator exI is independent of the detection probability for incidentals (𝑔𝑔𝑖𝑖), 
so the black lines are identical within each column in the panels. When 𝑔𝑔𝑖𝑖 is small (for example, 
𝑔𝑔𝑖𝑖 ≤ 0.01), discovery of incidentals is not likely, so the prior in prI rarely needs adjustment. As 
a result, in the small 𝑔𝑔𝑖𝑖 scenarios, prI and exI are virtually indistinguishable. This is reflected in 
the figures by a virtual absence of a black line for exI, which becomes hidden by the green line 
for prI. Additionally, whenever 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑠𝑠 the adjustment to the prior in prI has trivial impact on 
𝑀𝑀∗ because the posterior distribution for 𝑀𝑀 will automatically assign probability 0 to values of 
𝑀𝑀 that are  <𝑥𝑥𝑠𝑠, so the incidentals do not provide information that affects the estimation. In other 
words, truncating the prior when the posterior would perform the same (or a possibly more 
pronounced) truncation has virtually no effect. 

Coverages (nominal 90 percent) for exI and prI are largely indistinguishable (fig. 2) in 
the simulation scenarios except when 𝑔𝑔𝑖𝑖 is relatively large, in which case prI had a greater 
tendency to overestimate than did exI. When 𝜆𝜆 > 9, exI had a slight tendency to underestimate. 

In these scenarios where 𝑔𝑔𝑖𝑖 is correctly specified for inI (solid red lines), convergence to 
nominal coverage is faster than it is for the other two estimators, especially when 𝑔𝑔𝑖𝑖 is larger 
(bottom rows of figures). This means that when 𝛼𝛼 = 0.1 and 𝜆𝜆 is small, inI shows much less of 
a tendency to overestimate than do exI and prI. This is because, by assigning a detection 
probability to incidentals and incorporating them into the estimator, inI is able to attain a larger 
𝑔𝑔 value than either exI or prI, thereby tending to give smaller 𝑀𝑀∗ values, especially when 𝑔𝑔𝑖𝑖 
and 𝜆𝜆 are large, in which case the incidentals carry more information, which inI is able to 
leverage into greater accuracy (fig. 2). 
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Figure 2. Estimator coverages for nominal 90 percent CIs. [Red lines are for Estimator 3 (𝚒𝚒𝚒𝚒𝚒𝚒) when 
detection probability for incidental carcasses (𝑔𝑔𝑖𝑖) is specified as 0.001, 0.0025, 0.005, 0.01, 0.02, or 0.05 
(top to bottom lines). Solid lines are for 𝑔𝑔𝑖𝑖 correctly specified and broken lines for detection probability for 
incidental carcasses 𝑔𝑔𝑖𝑖 misspecified (dashed for assumed 𝑔𝑔𝑖𝑖 ≤ 0.01 and dotted for 𝑔𝑔𝑖𝑖 ≥ 0.02). Blue 
lines indicate the target coverage.] 
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When 𝑔𝑔𝑖𝑖 is misspecified, the performance of inI is notably less impressive than when 𝑔𝑔𝑖𝑖 
is correctly assumed. For example, when true 𝑔𝑔𝑖𝑖 is 0.01 (third row of panels in fig. 2) and 𝑔𝑔𝑖𝑖 is 
assumed to be >0.01 (dotted red lines below the solid line), inI has a fairly strong tendency to 
underestimate, and when true 𝑔𝑔𝑖𝑖 = 0.01 and 𝑔𝑔𝑖𝑖 is wrongly assumed to be 0.001 or 0.0025, the 
performance advantage of inI over exI and prI vanishes, as reflected in the dashed red lines in 
the fourth row of panels (fig. 2). 

In general, with 𝛼𝛼 = 0.1, if true 𝑔𝑔𝑖𝑖 is small (𝑔𝑔𝑖𝑖 ≤ 0.01, top four rows of panels) and 𝑔𝑔𝑖𝑖 is 
assumed to be small (dashed or solid red lines), then inI performs similarly to exI and prI but 
tends to have lower estimates where they differ. 

When true 𝑔𝑔𝑖𝑖 = 0.05 but is assumed to be small, inI tends to overestimate, matching or 
even exceeding the tendency of prI to overestimate when 𝜆𝜆 is very large (𝜆𝜆 > 7  or  8), and 𝑔𝑔𝑖𝑖 is 
assumed to be very small (𝑔𝑔𝑖𝑖 ≤ 0.005). 

Qualitatively, the same kinds of patterns repeat when 𝛼𝛼 = 0.2 or 𝛼𝛼 = 0.5, but the 
nuances differ.
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Figure 3. Estimator coverages for nominal 80 percent CIs. [Red lines are for 𝚒𝚒𝚒𝚒𝚒𝚒 when the detection 
probability for incidental carcasses (𝑔𝑔𝑖𝑖) is specified as 0.001, 0.0025, 0.005, 0.01, 0.02, or 0.05 (top to 
bottom lines). Solid lines are for 𝑔𝑔𝑖𝑖 correctly specified and broken lines for 𝑔𝑔𝑖𝑖 misspecified (dashed for 
assumed 𝑔𝑔𝑖𝑖 ≤ 0.01 and dotted for 𝑔𝑔𝑖𝑖 ≥ 0.02). Blue lines indicate the target coverage.] 
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Figure 4. Estimator coverages for nominal 50 percent CIs. [Red lines are for 𝚒𝚒𝚒𝚒𝚒𝚒 when incidental 
carcasses (𝑔𝑔𝑖𝑖) is specified as 0.001, 0.0025, 0.005, 0.01, 0.02, or 0.05 (top to bottom lines). Solid lines are 
for 𝑔𝑔𝑖𝑖 correctly specified, and broken lines for 𝑔𝑔𝑖𝑖 misspecified (dashed for assumed 𝑔𝑔𝑖𝑖 ≤ 0.01 and dotted 
for 𝑔𝑔𝑖𝑖 ≥ 0.02). Blue lines indicate the target coverage.] 

When 𝛼𝛼 = 0.5 (fig. 4), overall performances of exI and prI are virtually 
indistinguishable. When 𝑔𝑔𝑖𝑖 is correctly specified, inI outperforms both exI and prI, but the 
differences are slight except when 𝑔𝑔𝑖𝑖 = 0.05 and 𝜆𝜆 is small. 

As when 𝛼𝛼 = 0.1 or 0.2, misspecification of 𝑔𝑔𝑖𝑖 degrades the performance of estimator 
inI. If true 𝑔𝑔𝑖𝑖 ≤ 0.01 and 𝑔𝑔𝑖𝑖 is likewise assumed to be small, the overall performance of inI is 
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comparable to that of exI or prI. However, when 𝑔𝑔𝑖𝑖 is not small (≥ 0.02) but is assumed to be 
small (dashed lines in bottom two rows of panels in fig. 4), inI has a strong tendency to 
overestimate, and when true 𝑔𝑔𝑖𝑖 ≤ 0.01 but is assumed to be not small (𝑔𝑔𝑖𝑖 ≥ 0.02, dotted red 
lines in top four rows of panels in fig. 4), inI has a strong tendency to underestimate. 

Tables 
Mortality estimates for all three estimators (𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎

∗ , 𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎
∗ , and 𝑀𝑀inI

∗ ) as a function of 
specific numbers of carcasses found in regular PCM searches (𝑥𝑥𝑠𝑠), incidental carcass discoveries 
(𝑥𝑥𝑖𝑖), detection probabilities (𝑔𝑔𝑖𝑖), and credibility levels (1 − 𝛼𝛼) are listed in the following series 
of tables. Also included in the tables are the probabilities that each given combination of 𝑥𝑥𝑠𝑠 and 
𝑥𝑥𝑖𝑖 occur, depending on the actual annual fatality rate (𝜆𝜆 = 2, 5, or 10) and number of monitored 
years (1 or 5). Tables with all combinations of 𝑔𝑔𝑖𝑖 ∈ {0.005, 0.01, 0.05} and 𝛼𝛼 ∈ {0.5, 0.1} are 
presented below.  

The tables are dense with information, and little interpretation is provided. Instead, they 
are provided to allow readers to investigate probabilities and magnitudes of potential estimation 
errors. A discussion of Table 1 provides guidance on interpretation.  

Table 1 shows the 𝑀𝑀0.5
∗  values for all three estimators when 𝑔𝑔𝑖𝑖 = 0.005 as a function of 𝑥𝑥𝑠𝑠 

and 𝑥𝑥𝑖𝑖 and the number of years of data. It is assumed that 𝑔𝑔𝑖𝑖 is correctly specified in inI. The 
probabilities of each combination of 𝑥𝑥𝑠𝑠 and 𝑥𝑥𝑖𝑖 are shown for each 𝜆𝜆 ∈ {2, 5, 10}. 

Table 1. 𝑀𝑀∗ ∣ {𝑥𝑥𝑠𝑠, 𝑥𝑥𝑖𝑖} for all three estimators, with 𝛼𝛼 = 0.5,  𝑔𝑔𝑖𝑖 = 0.005. 
 1 year 5 years 

 
𝒙𝒙𝒔𝒔 

 
𝒙𝒙𝒊𝒊 

 
𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎

∗  
 

𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙
∗  

 
𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒

∗  
𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎)  

𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎
∗  

 
𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙

∗  
 

𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒
∗  

𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎) 

𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 
0 0 1 1 1 0.7405 0.4687 0.2195 7 7 6 0.7110 0.4234 0.1798 
1 0 8 8 8 0.2208 0.3541 0.3296 39 39 34 0.2123 0.3210 0.2689 
2 0 14 14 14 0.0325 0.1300 0.2483 72 72 63 0.0311 0.1183 0.2043 
3 0 21 21 21 0.0032 0.0330 0.1249 105 105 92 0.0030 0.0297 0.1024 
4 0 27 27 27 0.0002 0.0061 0.0457 139 139 121 0.0002 0.0056 0.0373 
5 0 34 34 34 0.0000 0.0009 0.0143 172 172 151 0.0000 0.0008 0.0119 
6 0 41 41 40 0.0000 0.0001 0.0035 205 205 180 0.0000 0.0001 0.0028 
7 0 47 47 47 0.0000 0.0000 0.0007 239 239 209 0.0000 0.0000 0.0006 
8 0 54 54 54 0.0000 0.0000 0.0001 272 272 238 0.0000 0.0000 0.0001 
0 1 1 3 8 0.0022 0.0036 0.0029 7 10 34 0.0309 0.0466 0.0382 
1 1 8 7 14 0.0006 0.0023 0.0047 39 39 63 0.0088 0.0337 0.0586 
2 1 14 14 21 0.0001 0.0009 0.0032 72 72 92 0.0014 0.0119 0.0426 
3 1 21 21 27 0.0000 0.0002 0.0017 105 105 121 0.0002 0.0034 0.0218 
4 1 27 27 34 0.0000 0.0000 0.0007 139 139 151 0.0000 0.0006 0.0082 
5 1 34 34 40 0.0000 0.0000 0.0002 172 172 180 0.0000 0.0001 0.0024 
6 1 41 41 47 0.0000 0.0000 0.0000 205 205 209 0.0000 0.0000 0.0006 
7 1 47 47 54 0.0000 0.0000 0.0000 239 239 238 0.0000 0.0000 0.0001 
0 2 1 4 14 0.0000 0.0000 0.0000 7 13 63 0.0007 0.0023 0.0042 
1 2 8 8 21 0.0000 0.0000 0.0000 39 39 92 0.0002 0.0017 0.0064 
2 2 14 14 27 0.0000 0.0000 0.0000 72 72 121 0.0000 0.0006 0.0044 
3 2 21 21 34 0.0000 0.0000 0.0000 105 105 151 0.0000 0.0001 0.0023 
4 2 27 27 40 0.0000 0.0000 0.0000 139 139 180 0.0000 0.0000 0.0009 
5 2 34 34 47 0.0000 0.0000 0.0000 172 172 209 0.0000 0.0000 0.0002 
0 3 1 5 21 0.0000 0.0000 0.0000 7 14 92 0.0000 0.0001 0.0003 
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1 3 8 9 27 0.0000 0.0000 0.0000 39 39 121 0.0000 0.0001 0.0004 
2 3 14 14 34 0.0000 0.0000 0.0000 72 72 151 0.0000 0.0000 0.0003 
3 3 21 21 40 0.0000 0.0000 0.0000 105 105 180 0.0000 0.0000 0.0001 

For example, when 𝑥𝑥𝑠𝑠 = 2 and 𝑥𝑥𝑖𝑖 = 0, 𝑀𝑀∗ = 14 for all three estimators for 1-year data, 
while 𝑀𝑀∗ = 72 for exI and prI and 𝑀𝑀∗ = 63 for inI for 5-year data. The estimates are higher 
for 5-year data because they use a smaller realized, cumulative 𝑔𝑔 to account for mortality in the 
non-monitored years 2–4. The probability of that occurrence (𝑥𝑥𝑠𝑠 = 2 and 𝑥𝑥𝑖𝑖 = 0 through 5 
years) is 0.0311 when 𝜆𝜆 = 2 and 0.1183 when 𝜆𝜆 = 5 (Table 1). 

When 𝜆𝜆 ≤ 10, 𝑀𝑀∗ is the same for all three estimators after the first year over 98 percent 
of the time (top 6 rows of left panel in table). The cases where they differ are rare. For example, 
when 𝑥𝑥𝑠𝑠 = 6 and 𝑥𝑥𝑖𝑖 = 0, 𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎

∗ = 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙
∗ = 41 and 𝑀𝑀𝚒𝚒𝚒𝚒𝚒𝚒

∗ = 40; the probability of that result is 
<0.00005 when 𝜆𝜆 = 2, 0.00011 when 𝜆𝜆 = 5, and 0.0035 when 𝜆𝜆 = 10 (Table 1). 

When the year of formal monitoring is followed by four non-monitored years, 𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎
∗ =

𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙
∗  in all cases where either 𝑥𝑥𝑠𝑠 > 0 or 𝑥𝑥𝑖𝑖 = 0. These cases account for over 95 percent of the 

total. In other words, exI and prI would be in agreement more than 95 percent of the time when 
𝜆𝜆 ≤ 10 for 5-year data and over 99 percent of the time for 1-year data (assuming 𝑔𝑔𝑖𝑖 = 0.005 and 
𝛼𝛼 = 0.5, as in table 2). The only practical distinction between 𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎

∗  and 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙
∗  for 5-year data is 

when 𝑥𝑥𝑠𝑠 = 0 and 𝑥𝑥𝑖𝑖 = 1, in which case 𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎
∗ = 7 and 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙

∗ = 10. This situation would occur 3–
5 percent of the time for 𝜆𝜆 = 2, 5 or 10. All other cases where 𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎

∗  and 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙
∗  differ occur with 

frequency less than 1 percent combined (Table 1). 
When no incidentals are found over the course of 5 years, 𝑀𝑀𝚒𝚒𝚒𝚒𝚒𝚒

∗  is consistently less than 
𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎
∗  and 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙

∗ , and 95.7 percent of time inI will have a smaller 𝑀𝑀∗ than will prI or exI when 
𝜆𝜆 = 2. When 𝜆𝜆 is much greater than 2, the probability of finding incidentals increases 
significantly, as does the probability that 𝑀𝑀𝚒𝚒𝚒𝚒𝚒𝚒

∗ > 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙
∗ . For example, when 𝜆𝜆 = 5, the 

probability that 𝑀𝑀𝚒𝚒𝚒𝚒𝚒𝚒
∗ > 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙

∗  is 10.2 percent, and when 𝜆𝜆 increases to 10, Pr(𝑀𝑀𝚒𝚒𝚒𝚒𝚒𝚒
∗ > 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙

∗ ) 
rises to 19 percent (table 2). 

Tables with all combinations of 𝑔𝑔𝑖𝑖 ∈ {0.005, 0.01, 0.05} and 𝛼𝛼 ∈ {0.5, 0.1} are presented 
below. 

Table 2. 𝑀𝑀∗ ∣ {𝑥𝑥𝑠𝑠, 𝑥𝑥𝑖𝑖} for all three estimators, with 𝛼𝛼 = 0.5, 𝑔𝑔𝑖𝑖 = 0.01. 
1 year 5 years 

𝒙𝒙𝒔𝒔 𝒙𝒙𝒊𝒊 𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎
∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙

∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒
∗  

𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 
𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎

∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙
∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒

∗  
𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 

𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 
0 0 1 1 1 0.7359 0.4661 0.2169 7 7 5 0.6794 0.3814 0.1444 
1 0 8 8 7 0.2223 0.3491 0.3267 39 39 30 0.2055 0.2868 0.2192 
2 0 14 14 14 0.0331 0.1308 0.2431 72 72 56 0.0305 0.1077 0.1625 
3 0 21 21 20 0.0030 0.0327 0.1215 105 105 82 0.0027 0.0269 0.0803 
4 0 27 27 27 0.0002 0.0061 0.0455 139 139 108 0.0002 0.0050 0.0303 
5 0 34 34 34 0.0000 0.0007 0.0139 172 172 134 0.0000 0.0006 0.0090 
6 0 41 41 40 0.0000 0.0001 0.0033 205 205 160 0.0000 0.0001 0.0024 
7 0 47 47 47 0.0000 0.0000 0.0008 239 239 186 0.0000 0.0000 0.0006 
8 0 54 54 53 0.0000 0.0000 0.0001 272 272 211 0.0000 0.0000 0.0001 
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0 1 1 3 7 0.0040 0.0066 0.0068 7 10 30 0.0581 0.0819 0.0641 
1 1 8 7 14 0.0013 0.0054 0.0092 39 39 56 0.0172 0.0609 0.0947 
2 1 14 14 20 0.0002 0.0018 0.0069 72 72 82 0.0027 0.0223 0.0709 
3 1 21 21 27 0.0000 0.0005 0.0031 105 105 108 0.0003 0.0058 0.0357 
4 1 27 27 34 0.0000 0.0001 0.0013 139 139 134 0.0000 0.0011 0.0130 
5 1 34 34 40 0.0000 0.0000 0.0005 172 172 160 0.0000 0.0001 0.0045 
6 1 41 41 47 0.0000 0.0000 0.0001 205 205 186 0.0000 0.0000 0.0008 
7 1 47 47 53 0.0000 0.0000 0.0000 239 239 211 0.0000 0.0000 0.0002 
0 2 1 4 14 0.0000 0.0001 0.0001 7 13 56 0.0024 0.0087 0.0133 
1 2 8 8 20 0.0000 0.0000 0.0001 39 39 82 0.0008 0.0064 0.0193 
2 2 14 14 27 0.0000 0.0000 0.0001 72 72 108 0.0001 0.0024 0.0144 
3 2 21 21 34 0.0000 0.0000 0.0000 105 105 134 0.0000 0.0005 0.0074 
4 2 27 27 40 0.0000 0.0000 0.0000 139 139 160 0.0000 0.0001 0.0031 
5 2 34 34 47 0.0000 0.0000 0.0000 172 172 186 0.0000 0.0000 0.0008 
6 2 41 41 53 0.0000 0.0000 0.0000 205 205 211 0.0000 0.0000 0.0002 
7 2 47 47 60 0.0000 0.0000 0.0000 239 239 237 0.0000 0.0000 0.0001 
0 3 1 5 20 0.0000 0.0000 0.0000 7 14 82 0.0001 0.0006 0.0019 
1 3 8 9 27 0.0000 0.0000 0.0000 39 39 108 0.0000 0.0004 0.0025 
2 3 14 14 34 0.0000 0.0000 0.0000 72 72 134 0.0000 0.0002 0.0021 
3 3 21 21 40 0.0000 0.0000 0.0000 105 105 160 0.0000 0.0000 0.0010 
4 3 27 27 47 0.0000 0.0000 0.0000 139 139 186 0.0000 0.0000 0.0004 
5 3 34 34 53 0.0000 0.0000 0.0000 172 172 211 0.0000 0.0000 0.0001 
0 4 1 7 27 0.0000 0.0000 0.0000 7 16 108 0.0000 0.0000 0.0001 
1 4 8 9 34 0.0000 0.0000 0.0000 39 40 134 0.0000 0.0000 0.0004 
2 4 14 14 40 0.0000 0.0000 0.0000 72 72 160 0.0000 0.0000 0.0002 
3 4 21 21 47 0.0000 0.0000 0.0000 105 105 186 0.0000 0.0000 0.0001 

 

Table 3. 𝑀𝑀∗ ∣ {𝑥𝑥𝑠𝑠, 𝑥𝑥𝑖𝑖} for all three estimators, with 𝛼𝛼 = 0.5, 𝑔𝑔𝑖𝑖 = 0.05. 
  1 year  5 years 

𝒙𝒙𝒔𝒔 𝒙𝒙𝒊𝒊 𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎
∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙

∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒
∗  

 𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 
𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎

∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙
∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒

∗  
 𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 

𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 
0 0 1 1 1 0.7213 0.4413 0.1941 7 7 3 0.4835 0.1633 0.0256 
1 0 8 8 7 0.2156 0.3312 0.2888 39 39 16 0.1438 0.1215 0.0378 
2 0 14 14 13 0.0315 0.1224 0.2179 72 72 30 0.0211 0.0458 0.0292 
3 0 21 21 19 0.0038 0.0304 0.1101 105 105 43 0.0026 0.0117 0.0144 
4 0 27 27 25 0.0002 0.0060 0.0405 139 139 57 0.0001 0.0022 0.0053 
5 0 34 34 31 0.0000 0.0008 0.0120 172 172 71 0.0000 0.0003 0.0017 
6 0 41 41 37 0.0000 0.0001 0.0030 205 205 84 0.0000 0.0001 0.0004 
7 0 47 47 43 0.0000 0.0000 0.0006 239 239 98 0.0000 0.0000 0.0000 
8 0 54 54 49 0.0000 0.0000 0.0002 272 272 112 0.0000 0.0000 0.0000 
0 1 1 3 7 0.0204 0.0311 0.0273 7 10 16 0.2064 0.1728 0.0563 
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1 1 8 7 13 0.0059 0.0226 0.0420 39 39 30 0.0628 0.1293 0.0845 
2 1 14 14 19 0.0008 0.0087 0.0303 72 72 43 0.0089 0.0480 0.0623 
3 1 21 21 25 0.0001 0.0022 0.0157 105 105 57 0.0010 0.0119 0.0323 
4 1 27 27 31 0.0000 0.0004 0.0058 139 139 71 0.0000 0.0025 0.0118 
5 1 34 34 37 0.0000 0.0001 0.0020 172 172 84 0.0000 0.0003 0.0036 
6 1 41 41 43 0.0000 0.0000 0.0005 205 205 98 0.0000 0.0000 0.0010 
7 1 47 47 49 0.0000 0.0000 0.0001 239 239 112 0.0000 0.0000 0.0003 
8 1 54 54 56 0.0000 0.0000 0.0000 272 272 126 0.0000 0.0000 0.0001 
0 2 1 4 13 0.0003 0.0012 0.0020 7 13 30 0.0446 0.0935 0.0606 
1 2 8 8 19 0.0001 0.0009 0.0028 39 39 43 0.0129 0.0704 0.0891 
2 2 14 14 25 0.0000 0.0003 0.0022 72 72 57 0.0020 0.0254 0.0685 
3 2 21 21 31 0.0000 0.0001 0.0011 105 105 71 0.0002 0.0060 0.0347 
4 2 27 27 37 0.0000 0.0000 0.0003 139 139 84 0.0000 0.0012 0.0123 
5 2 34 34 43 0.0000 0.0000 0.0001 172 172 98 0.0000 0.0002 0.0039 
6 2 41 41 49 0.0000 0.0000 0.0000 205 205 112 0.0000 0.0000 0.0010 
7 2 47 47 56 0.0000 0.0000 0.0000 239 239 126 0.0000 0.0000 0.0002 
8 2 54 54 62 0.0000 0.0000 0.0000 272 272 139 0.0000 0.0000 0.0001 
0 3 1 5 19 0.0000 0.0000 0.0001 7 14 43 0.0066 0.0336 0.0426 
1 3 8 9 25 0.0000 0.0000 0.0002 39 39 57 0.0018 0.0251 0.0660 
2 3 14 14 31 0.0000 0.0000 0.0001 72 72 71 0.0003 0.0090 0.0478 
3 3 21 21 37 0.0000 0.0000 0.0001 105 105 84 0.0000 0.0022 0.0243 
4 3 27 27 43 0.0000 0.0000 0.0000 139 139 98 0.0000 0.0004 0.0094 
5 3 34 34 49 0.0000 0.0000 0.0000 172 172 112 0.0000 0.0000 0.0026 
6 3 41 41 56 0.0000 0.0000 0.0000 205 205 126 0.0000 0.0000 0.0006 
7 3 47 47 62 0.0000 0.0000 0.0000 239 239 139 0.0000 0.0000 0.0002 
0 4 1 7 25 0.0000 0.0000 0.0000 7 16 57 0.0009 0.0083 0.0234 
1 4 8 9 31 0.0000 0.0000 0.0000 39 40 71 0.0003 0.0068 0.0342 
2 4 14 14 37 0.0000 0.0000 0.0000 72 72 84 0.0000 0.0026 0.0257 
3 4 21 21 43 0.0000 0.0000 0.0000 105 105 98 0.0000 0.0006 0.0130 
4 4 27 27 49 0.0000 0.0000 0.0000 139 139 112 0.0000 0.0002 0.0050 
5 4 34 34 56 0.0000 0.0000 0.0000 172 172 126 0.0000 0.0000 0.0014 
6 4 41 41 62 0.0000 0.0000 0.0000 205 205 139 0.0000 0.0000 0.0003 
7 4 47 47 68 0.0000 0.0000 0.0000 239 239 153 0.0000 0.0000 0.0001 
0 5 1 8 31 0.0000 0.0000 0.0000 7 18 71 0.0000 0.0018 0.0102 
1 5 8 10 37 0.0000 0.0000 0.0000 39 40 84 0.0000 0.0014 0.0147 
2 5 14 15 43 0.0000 0.0000 0.0000 72 72 98 0.0000 0.0005 0.0115 
3 5 21 21 49 0.0000 0.0000 0.0000 105 105 112 0.0000 0.0002 0.0053 
4 5 27 27 56 0.0000 0.0000 0.0000 139 139 126 0.0000 0.0000 0.0022 
5 5 34 34 62 0.0000 0.0000 0.0000 172 172 139 0.0000 0.0000 0.0005 
6 5 41 41 68 0.0000 0.0000 0.0000 205 205 153 0.0000 0.0000 0.0002 
0 6 1 9 37 0.0000 0.0000 0.0000 7 19 84 0.0000 0.0003 0.0035 
1 6 8 11 43 0.0000 0.0000 0.0000 39 41 98 0.0000 0.0002 0.0053 
2 6 14 15 49 0.0000 0.0000 0.0000 72 72 112 0.0000 0.0002 0.0039 
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3 6 21 21 56 0.0000 0.0000 0.0000 105 105 126 0.0000 0.0000 0.0021 
4 6 27 27 62 0.0000 0.0000 0.0000 139 139 139 0.0000 0.0000 0.0006 
5 6 34 34 68 0.0000 0.0000 0.0000 172 172 153 0.0000 0.0000 0.0002 
0 7 1 10 43 0.0000 0.0000 0.0000 7 20 98 0.0000 0.0001 0.0010 
1 7 8 12 49 0.0000 0.0000 0.0000 39 41 112 0.0000 0.0000 0.0017 
2 7 14 16 56 0.0000 0.0000 0.0000 72 72 126 0.0000 0.0000 0.0012 
3 7 21 21 62 0.0000 0.0000 0.0000 105 105 139 0.0000 0.0000 0.0006 
4 7 27 27 68 0.0000 0.0000 0.0000 139 139 153 0.0000 0.0000 0.0002 
5 7 34 34 74 0.0000 0.0000 0.0000 172 172 167 0.0000 0.0000 0.0001 
0 8 1 11 49 0.0000 0.0000 0.0000 7 22 112 0.0000 0.0000 0.0004 
1 8 8 13 56 0.0000 0.0000 0.0000 39 42 126 0.0000 0.0000 0.0003 
2 8 14 16 62 0.0000 0.0000 0.0000 72 72 139 0.0000 0.0000 0.0004 
3 8 21 21 68 0.0000 0.0000 0.0000 105 105 153 0.0000 0.0000 0.0001 
0 9 1 12 56 0.0000 0.0000 0.0000 7 23 126 0.0000 0.0000 0.0001 
1 9 8 14 62 0.0000 0.0000 0.0000 39 43 139 0.0000 0.0000 0.0002 
3 9 21 22 74 0.0000 0.0000 0.0000 105 105 167 0.0000 0.0000 0.0001 

 

Table 4. 𝑀𝑀∗ ∣ {𝑥𝑥𝑠𝑠, 𝑥𝑥𝑖𝑖} for all three estimators, with 𝛼𝛼 = 0.1, 𝑔𝑔𝑖𝑖 = 0.005. 
 

  1 year 5 years 

𝒙𝒙𝒔𝒔 𝒙𝒙𝒊𝒊 𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎
∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙

∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒
∗  

𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎) 
𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎

∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙
∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒

∗  
𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎) 

𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 
0 0 8 8 8 0.7396 0.4689 0.2202 44 44 38 0.7103 0.4244 0.1808 
1 0 20 20 19 0.2212 0.3517 0.3271 103 103 90 0.2129 0.3179 0.2686 
2 0 29 29 29 0.0326 0.1317 0.2490 152 152 133 0.0315 0.1193 0.2041 
3 0 38 38 38 0.0033 0.0330 0.1239 199 199 174 0.0032 0.0299 0.1016 
4 0 47 47 47 0.0002 0.0065 0.0467 243 243 212 0.0002 0.0060 0.0386 
5 0 55 55 55 0.0000 0.0010 0.0148 286 286 250 0.0000 0.0009 0.0123 
6 0 64 64 63 0.0000 0.0001 0.0036 328 328 287 0.0000 0.0001 0.0029 
7 0 72 72 71 0.0000 0.0000 0.0008 369 369 323 0.0000 0.0000 0.0006 
8 0 80 80 79 0.0000 0.0000 0.0001 410 410 359 0.0000 0.0000 0.0001 
0 1 8 10 19 0.0023 0.0035 0.0032 44 48 90 0.0307 0.0455 0.0380 
1 1 20 19 29 0.0006 0.0024 0.0048 103 103 133 0.0086 0.0344 0.0569 
2 1 29 29 38 0.0001 0.0008 0.0033 152 152 174 0.0012 0.0126 0.0434 
3 1 38 38 47 0.0000 0.0002 0.0017 199 198 212 0.0001 0.0030 0.0216 
4 1 47 47 55 0.0000 0.0001 0.0005 243 243 250 0.0000 0.0006 0.0077 
5 1 55 55 63 0.0000 0.0000 0.0002 286 286 287 0.0000 0.0001 0.0024 
6 1 64 64 71 0.0000 0.0000 0.0001 328 328 323 0.0000 0.0000 0.0007 
7 1 72 72 79 0.0000 0.0000 0.0000 369 369 359 0.0000 0.0000 0.0002 
0 2 8 12 29 0.0000 0.0000 0.0000 44 52 133 0.0008 0.0025 0.0043 
1 2 20 20 38 0.0000 0.0000 0.0000 103 103 174 0.0002 0.0019 0.0059 
2 2 29 29 47 0.0000 0.0000 0.0000 152 152 212 0.0000 0.0006 0.0047 
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3 2 38 38 55 0.0000 0.0000 0.0000 199 198 250 0.0000 0.0002 0.0023 
4 2 47 47 63 0.0000 0.0000 0.0000 243 243 287 0.0000 0.0000 0.0008 
5 2 55 55 71 0.0000 0.0000 0.0000 286 286 323 0.0000 0.0000 0.0003 
6 2 64 64 79 0.0000 0.0000 0.0000 328 328 359 0.0000 0.0000 0.0001 
0 3 8 13 38 0.0000 0.0000 0.0000 44 54 174 0.0000 0.0000 0.0003 
1 3 20 20 47 0.0000 0.0000 0.0000 103 103 212 0.0000 0.0000 0.0005 
2 3 29 29 55 0.0000 0.0000 0.0000 152 152 250 0.0000 0.0000 0.0003 
3 3 38 38 63 0.0000 0.0000 0.0000 199 198 287 0.0000 0.0000 0.0002 
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Table 5. 𝑀𝑀∗ ∣ {𝑥𝑥𝑠𝑠, 𝑥𝑥𝑖𝑖} for all three estimators, with 𝛼𝛼 = 0.1, 𝑔𝑔𝑖𝑖 = 0.01. 
 

  1 year 5 years 

𝒙𝒙𝒔𝒔 𝒙𝒙𝒊𝒊 𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎
∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙

∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒
∗  

 𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 
𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎

∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙
∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒

∗  
 𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 

𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 
0 0 8 8 8 0.7379 0.4640 0.2176 44 44 34 0.6813 0.3786 0.1457 
1 0 20 20 19 0.2202 0.3503 0.3270 103 103 80 0.2033 0.2872 0.2196 
2 0 29 29 29 0.0324 0.1319 0.2437 152 152 118 0.0302 0.1084 0.1637 
3 0 38 38 38 0.0033 0.0326 0.1201 199 199 154 0.0030 0.0267 0.0809 
4 0 47 47 46 0.0003 0.0063 0.0456 243 243 188 0.0003 0.0051 0.0306 
5 0 55 55 54 0.0000 0.0010 0.0137 286 286 222 0.0000 0.0008 0.0092 
6 0 64 64 63 0.0000 0.0001 0.0038 328 328 255 0.0000 0.0001 0.0025 
7 0 72 72 71 0.0000 0.0000 0.0008 369 369 287 0.0000 0.0000 0.0005 
8 0 80 80 79 0.0000 0.0000 0.0001 410 410 319 0.0000 0.0000 0.0001 
0 1 8 10 19 0.0043 0.0067 0.0060 44 48 80 0.0584 0.0825 0.0626 
1 1 20 19 29 0.0014 0.0046 0.0094 103 103 118 0.0175 0.0611 0.0933 
2 1 29 29 38 0.0001 0.0019 0.0067 152 152 154 0.0023 0.0228 0.0699 
3 1 38 38 46 0.0000 0.0005 0.0035 199 198 188 0.0003 0.0058 0.0345 
4 1 47 47 54 0.0000 0.0001 0.0013 243 243 222 0.0000 0.0011 0.0130 
5 1 55 55 63 0.0000 0.0000 0.0004 286 286 255 0.0000 0.0001 0.0041 
6 1 64 64 71 0.0000 0.0000 0.0000 328 328 287 0.0000 0.0000 0.0011 
7 1 72 72 79 0.0000 0.0000 0.0000 369 369 319 0.0000 0.0000 0.0002 
0 2 8 12 29 0.0000 0.0000 0.0001 44 52 118 0.0025 0.0089 0.0135 
1 2 20 20 38 0.0000 0.0000 0.0001 103 103 154 0.0008 0.0063 0.0204 
2 2 29 29 46 0.0000 0.0000 0.0002 152 152 188 0.0001 0.0025 0.0148 
3 2 38 38 54 0.0000 0.0000 0.0001 199 198 222 0.0000 0.0006 0.0073 
4 2 47 47 63 0.0000 0.0000 0.0000 243 243 255 0.0000 0.0001 0.0030 
5 2 55 55 71 0.0000 0.0000 0.0000 286 286 287 0.0000 0.0000 0.0007 
6 2 64 64 79 0.0000 0.0000 0.0000 328 328 319 0.0000 0.0000 0.0002 
7 2 72 72 86 0.0000 0.0000 0.0000 369 369 350 0.0000 0.0000 0.0001 
0 3 8 13 38 0.0000 0.0000 0.0000 44 54 154 0.0001 0.0007 0.0018 
1 3 20 20 46 0.0000 0.0000 0.0000 103 103 188 0.0000 0.0004 0.0028 
2 3 29 29 54 0.0000 0.0000 0.0000 152 152 222 0.0000 0.0001 0.0021 
3 3 38 38 63 0.0000 0.0000 0.0000 199 198 255 0.0000 0.0001 0.0008 
4 3 47 47 71 0.0000 0.0000 0.0000 243 243 287 0.0000 0.0000 0.0003 
5 3 55 55 79 0.0000 0.0000 0.0000 286 286 319 0.0000 0.0000 0.0001 
0 4 8 15 46 0.0000 0.0000 0.0000 44 56 188 0.0000 0.0000 0.0002 
1 4 20 21 54 0.0000 0.0000 0.0000 103 104 222 0.0000 0.0000 0.0003 
2 4 29 29 63 0.0000 0.0000 0.0000 152 152 255 0.0000 0.0000 0.0002 
3 4 38 38 71 0.0000 0.0000 0.0000 199 198 287 0.0000 0.0000 0.0001 
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Table 6. 𝑀𝑀∗ ∣ {𝑥𝑥𝑠𝑠, 𝑥𝑥𝑖𝑖} for all three estimators, with 𝛼𝛼 = 0.1, 𝑔𝑔𝑖𝑖 = 0.05. 
 1 year 5 years 

𝒙𝒙𝒔𝒔 𝒙𝒙𝒊𝒊 𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎
∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙

∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒
∗  

 𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 
𝑴𝑴𝚎𝚎𝚎𝚎𝚎𝚎

∗  𝑴𝑴𝚙𝚙𝚙𝚙𝚙𝚙
∗  𝑴𝑴𝚒𝚒𝚒𝚒𝚒𝚒

∗  
 𝐏𝐏𝐏𝐏(𝒙𝒙𝒔𝒔,𝒙𝒙𝒊𝒊 ∣ 𝝀𝝀,𝒈𝒈𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 

𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝝀𝝀 = 𝟐𝟐 𝝀𝝀 = 𝟓𝟓 𝝀𝝀 = 𝟏𝟏𝟏𝟏 
0 0 8 8 7 0.7181 0.4422 0.1915 44 44 17 0.4808 0.1629 0.0266 
1 0 20 20 18 0.2170 0.3298 0.2916 103 103 42 0.1471 0.1224 0.0405 
2 0 29 29 27 0.0326 0.1218 0.2176 152 152 62 0.0218 0.0446 0.0283 
3 0 38 38 35 0.0034 0.0305 0.1093 199 199 81 0.0023 0.0113 0.0150 
4 0 47 47 43 0.0002 0.0058 0.0413 243 243 99 0.0002 0.0021 0.0059 
5 0 55 55 50 0.0000 0.0008 0.0120 286 286 117 0.0000 0.0002 0.0017 
6 0 64 64 58 0.0000 0.0001 0.0031 328 328 134 0.0000 0.0000 0.0004 
7 0 72 72 66 0.0000 0.0000 0.0007 369 369 151 0.0000 0.0000 0.0001 
8 0 80 80 73 0.0000 0.0000 0.0001 410 410 168 0.0000 0.0000 0.0000 
0 1 8 10 18 0.0211 0.0319 0.0267 44 48 42 0.2066 0.1748 0.0549 
1 1 20 19 27 0.0061 0.0229 0.0416 103 103 62 0.0609 0.1284 0.0844 
2 1 29 29 35 0.0009 0.0086 0.0316 152 152 81 0.0095 0.0478 0.0633 
3 1 38 38 43 0.0001 0.0024 0.0156 199 198 99 0.0010 0.0120 0.0315 
4 1 47 47 50 0.0000 0.0005 0.0058 243 243 117 0.0000 0.0022 0.0114 
5 1 55 55 58 0.0000 0.0001 0.0018 286 286 134 0.0000 0.0003 0.0036 
6 1 64 64 66 0.0000 0.0000 0.0004 328 328 151 0.0000 0.0000 0.0011 
7 1 72 72 73 0.0000 0.0000 0.0001 369 369 168 0.0000 0.0000 0.0003 
0 2 8 12 27 0.0003 0.0011 0.0021 44 52 62 0.0450 0.0932 0.0600 
1 2 20 20 35 0.0001 0.0010 0.0026 103 103 81 0.0132 0.0702 0.0909 
2 2 29 29 43 0.0000 0.0003 0.0021 152 152 99 0.0019 0.0257 0.0686 
3 2 38 38 50 0.0000 0.0000 0.0011 199 198 117 0.0001 0.0064 0.0331 
4 2 47 47 58 0.0000 0.0000 0.0004 243 243 134 0.0000 0.0013 0.0123 
5 2 55 55 66 0.0000 0.0000 0.0002 286 286 151 0.0000 0.0002 0.0036 
6 2 64 64 73 0.0000 0.0000 0.0000 328 328 168 0.0000 0.0000 0.0009 
7 2 72 72 80 0.0000 0.0000 0.0000 369 369 184 0.0000 0.0000 0.0003 
0 3 8 13 35 0.0000 0.0000 0.0001 44 54 81 0.0064 0.0330 0.0420 
1 3 20 20 43 0.0000 0.0000 0.0002 103 103 99 0.0018 0.0245 0.0628 
2 3 29 29 50 0.0000 0.0000 0.0002 152 152 117 0.0003 0.0096 0.0487 
3 3 38 38 58 0.0000 0.0000 0.0000 199 198 134 0.0000 0.0024 0.0248 
4 3 47 47 66 0.0000 0.0000 0.0000 243 243 151 0.0000 0.0005 0.0094 
5 3 55 55 73 0.0000 0.0000 0.0000 286 286 168 0.0000 0.0001 0.0027 
6 3 64 64 80 0.0000 0.0000 0.0000 328 328 184 0.0000 0.0000 0.0006 
7 3 72 72 87 0.0000 0.0000 0.0000 369 369 201 0.0000 0.0000 0.0001 
0 4 8 15 43 0.0000 0.0000 0.0000 44 56 99 0.0008 0.0089 0.0222 
1 4 20 21 50 0.0000 0.0000 0.0000 103 104 117 0.0002 0.0065 0.0350 
2 4 29 29 58 0.0000 0.0000 0.0000 152 152 134 0.0000 0.0025 0.0253 
3 4 38 38 66 0.0000 0.0000 0.0000 199 198 151 0.0000 0.0007 0.0136 
4 4 47 47 73 0.0000 0.0000 0.0000 243 243 168 0.0000 0.0001 0.0049 
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5 4 55 55 80 0.0000 0.0000 0.0000 286 286 184 0.0000 0.0000 0.0015 
6 4 64 64 87 0.0000 0.0000 0.0000 328 328 201 0.0000 0.0000 0.0004 
7 4 72 72 95 0.0000 0.0000 0.0000 369 369 217 0.0000 0.0000 0.0001 
0 5 8 16 50 0.0000 0.0000 0.0000 44 58 117 0.0000 0.0019 0.0096 
1 5 20 22 58 0.0000 0.0000 0.0000 103 104 134 0.0000 0.0014 0.0152 
2 5 29 30 66 0.0000 0.0000 0.0000 152 152 151 0.0000 0.0005 0.0116 
3 5 38 38 73 0.0000 0.0000 0.0000 199 198 168 0.0000 0.0001 0.0054 
4 5 47 47 80 0.0000 0.0000 0.0000 243 243 184 0.0000 0.0000 0.0023 
5 5 55 55 87 0.0000 0.0000 0.0000 286 286 201 0.0000 0.0000 0.0006 
6 5 64 64 95 0.0000 0.0000 0.0000 328 328 217 0.0000 0.0000 0.0001 
0 6 8 17 58 0.0000 0.0000 0.0000 44 60 134 0.0000 0.0004 0.0036 
1 6 20 23 66 0.0000 0.0000 0.0000 103 104 151 0.0000 0.0002 0.0051 
2 6 29 30 73 0.0000 0.0000 0.0000 152 152 168 0.0000 0.0001 0.0040 
3 6 38 38 80 0.0000 0.0000 0.0000 199 198 184 0.0000 0.0000 0.0020 
4 6 47 47 87 0.0000 0.0000 0.0000 243 243 201 0.0000 0.0000 0.0009 
5 6 55 55 95 0.0000 0.0000 0.0000 286 286 217 0.0000 0.0000 0.0002 
6 6 64 64 102 0.0000 0.0000 0.0000 328 328 233 0.0000 0.0000 0.0001 
0 7 8 18 66 0.0000 0.0000 0.0000 44 62 151 0.0000 0.0001 0.0012 
1 7 20 23 73 0.0000 0.0000 0.0000 103 105 168 0.0000 0.0000 0.0017 
2 7 29 30 80 0.0000 0.0000 0.0000 152 152 184 0.0000 0.0000 0.0013 
3 7 38 38 87 0.0000 0.0000 0.0000 199 198 201 0.0000 0.0000 0.0006 
4 7 47 47 95 0.0000 0.0000 0.0000 243 243 217 0.0000 0.0000 0.0003 
0 8 8 19 73 0.0000 0.0000 0.0000 44 63 168 0.0000 0.0000 0.0003 
1 8 20 24 80 0.0000 0.0000 0.0000 103 105 184 0.0000 0.0000 0.0005 
2 8 29 31 87 0.0000 0.0000 0.0000 152 153 201 0.0000 0.0000 0.0003 
3 8 38 39 95 0.0000 0.0000 0.0000 199 198 217 0.0000 0.0000 0.0001 
4 8 47 47 102 0.0000 0.0000 0.0000 243 243 233 0.0000 0.0000 0.0001 
0 9 8 21 80 0.0000 0.0000 0.0000 44 65 184 0.0000 0.0000 0.0001 
1 9 20 25 87 0.0000 0.0000 0.0000 103 106 201 0.0000 0.0000 0.0002 
2 9 29 31 95 0.0000 0.0000 0.0000 152 153 217 0.0000 0.0000 0.0001 

Conclusions 
All three estimators are statistically valid in the sense that they are rooted in probability 

theory and do not rely on wildly implausible assumptions. The exI (exclude incidentals) and prI 
(truncated prior) estimators produce virtually identical results, except in the somewhat unusual 
situation where 𝑥𝑥𝑠𝑠 = 0 and 𝑥𝑥𝑖𝑖 > 0, in which case 𝑀𝑀𝚙𝚙𝚙𝚙𝚙𝚙

∗  tended to be greater than 𝑀𝑀𝚎𝚎𝚎𝚎𝚎𝚎
∗ . Both 

tended to overestimate when 𝜆𝜆 was small and credibility level (1 − 𝛼𝛼) was large, and both 
converged on nominal coverage at close to the same rate when 𝛼𝛼 was 0.5. inI, which includes 
incidentals in the observed carcass count and uses an assumed or estimated 𝑔𝑔𝑖𝑖, had similar or 
much better coverage than the other two when the detection probability in unmonitored years 
was correctly estimated (or assumed), but had poorer coverage properties when badly 
misspecified. However, if 𝑔𝑔𝑖𝑖 was “small” (≤ 1%) and was assumed small, the coverage 
properties were still better than or comparable to coverages for exI and prI even when 𝑔𝑔𝑖𝑖 was 
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misspecified (as, say, 𝑔𝑔𝑖𝑖 assumed to be 1% when it is really 0.1%). These small 𝑔𝑔𝑖𝑖 values may 
not be applicable for eagles or other large raptors, which would require a separate analysis. 

The probability of detection (𝑔𝑔) in EoA accounts for carcasses that occur outside of the 
study either in time (non-monitoring years) or space (outside of searched plots), so 𝚎𝚎𝚎𝚎𝚎𝚎 (exclude 
incidentals) in EoA is valid. Although valid, the statistical power of 𝚎𝚎𝚎𝚎𝚎𝚎 rapidly declines as an 
estimate of 𝑔𝑔 is diluted through non-monitored years. Additionally, if incidentals are found but 
are excluded from estimation of total mortality (𝑀𝑀∗), it is possible for the estimate of mortality to 
be less than the number of carcasses actually observed. Information available in incidental 
carcass discoveries can be incorporated into EoA by truncating the lower bound of the prior 
distribution for 𝑀𝑀 (𝚙𝚙𝚙𝚙𝚙𝚙) to ensure that 𝑀𝑀∗ ≥ 𝑥𝑥 and to improve on the statistical power of EoA. 
If the detection probability for incidentals (𝑔𝑔𝑖𝑖) can be estimated, incorporating 𝑔𝑔𝑖𝑖 into the overall 
estimation of 𝑔𝑔 and including the incidentals in the carcass count used for calculating 𝑀𝑀∗ would 
provide a more complete accounting of the information available in incidentals. This would have 
the effect of increasing the overall 𝑔𝑔 value, leading to lower mortality estimates in most cases 
and partially correcting for the tendency of 𝚎𝚎𝚎𝚎𝚎𝚎 and 𝚙𝚙𝚙𝚙𝚙𝚙 and to overestimate mortality when 𝜆𝜆 
is small. However, in the unusual event that 𝜆𝜆 is small and incidentals are found in non-
monitored years, 𝚒𝚒𝚒𝚒𝚒𝚒 would substantially overestimate 𝑀𝑀. If 𝑔𝑔𝑖𝑖 is badly misspecified or poorly 
estimated, 𝑀𝑀∗ may be strongly biased. For larger species like eagles or other large raptors, 
accurate estimation of 𝑔𝑔𝑖𝑖 may be more crucial than it is for bats. 

Limitations 
Frequencies, Not Magnitudes 

This modest simulation study is limited to exploration of basic statistical properties of 
three approaches to accounting for incidentals under some simplified scenarios. The primary 
focus is the coverage probabilities for estimating 𝑀𝑀 and the frequencies with which the 
estimators over- or under-estimate 𝑀𝑀∗. The magnitude of over-estimations is discussed only 
briefly, but the extensive results tables show 𝑀𝑀∗ values in a wide array of scenarios. These 𝑀𝑀∗ 
values should not be interpreted in isolation but only in conjunction with the probabilities with 
which they occur. 

Sensitivity and Specificity 
The frequencies with which high fatality rates are not detected (false negatives) and low 

fatality rates are mistakenly interpreted as high (false positives) are discussed only briefly. In a 
general framework of 1 year of monitoring followed by 4 non-monitored years, there is limited 
statistical power to distinguish clearly between high and low fatality rates. The difficulty is 
compounded by the high degree of volatility that is inherent in small count data. In addition, the 
simulations are based on a simplifying assumption that the true number of annual fatalities varies 
as a Poisson random variable with constant mean, but in practice the numbers of annual fatalities 
are likely to be more variable than Poisson or have rates that vary significantly from year to year. 
This would affect the coverage probabilities, increase the frequencies of very high 𝑀𝑀∗’s, and 
increase the probabilities that high fatality rates would pass unnoticed in the non-monitored 
years. 
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Alternatives 
The analysis is strictly limited to exI, prI, and inI in the context of 1 year of monitoring 

at 𝑔𝑔 = 0.15 followed by 4 non-monitored years, which was the scope of the original question 
posed to us. Alternatives such as different numbers of monitored and non-monitored years, 
different 𝑔𝑔𝑠𝑠 values, other ways of accounting for incidentals are beyond the scope of the study. 
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