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Development of Demographic Models to Analyze 
Populations with Multi-Year Data—Using Agassiz’s 
Desert Tortoise (Gopherus agassizii) as a Case Study

By Kristin H. Berry and Julie L. Yee

Abstract
We developed a model for analyzing multi-year 

demographic data for long-lived animals and used data from 
a population of Agassiz’s desert tortoise (Gopherus agassizii) 
at the Desert Tortoise Research Natural Area in the western 
Mojave Desert of California as a case study. The study area 
was 7.77 square kilometers and included two locations: inside 
and outside the fenced boundary. The wildlife-permeable, 
protective fence was designed to prevent entry from vehicle 
users and sheep grazing. We collected mark-recapture data 
from 1,123 tortoises during seven annual surveys consisting of 
two censuses each over a 34-year period. Additional data were 
collected when marked tortoises were recovered dead and 
removed between survey years. We used a Bayesian modeling 
framework to develop a multistate Jolly-Seber model because 
of its ability to handle unobserved (latent) states and modified 
this model to incorporate the additional data from non-survey 
years. Three size-age states (juvenile, immature, adult), sex 
(female, male), two location states (inside and outside the 
fenced boundary), and three survival states (not-yet-entered, 
entered/alive, and dead/removed) were incorporated into 
the model. We calculated population densities and estimated 
probabilities of growth of the tortoises from one size-age state 
to a larger size-age state, survival after 1 year and 5 years, and 
detection. Our results show a declining population with low 
estimates for survival after 1 year and 5 years. The probability 
for tortoises to move from outside to inside the boundary 
fence was greater than for tortoises to move from inside 
the fence to outside. The probability for detecting tortoises 

differed by size-age state and was lowest for the smallest 
tortoises and highest for the adult tortoises. The framework 
for the model can be used to analyze other animal populations 
where vital rates are expected to vary depending on multiple 
individual states.

Introduction
Development of demographic models and calculations of 

vital rates are desirable for learning more about the potential 
for population growth, recovery, and survival of species in 
general and can be especially valuable for providing guidance 
on recovery efforts for threatened and endangered species 
(Beissinger and Westphal, 1998; Hellgren and others, 2000; 
Norris and McCulloch, 2003). Mark-recapture techniques 
and multistate models were used to develop a demographic 
model for the loggerhead sea turtle (Caretta caretta; Monk 
and others, 2011), and matrix models were used to evaluate 
headstarting as a management tool for other long-lived turtles, 
specifically the yellow mud turtle (Kinosternon flavescens) 
and Kemp’s ridley sea turtle (Lepidochelys kempi; Heppell 
and others, 1996). Preparation of demographic models is 
also important as baseline, before a population or species 
becomes imperiled (for example, the alligator snapping 
turtle, Macrochelys temminckii; Folt and others, 2016]), 
and demographic models, when coupled with ecological 
and spatial models, can provide a basis for estimating risk 
from climate change for vulnerable species (Pearson and 
others, 2014).
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Agassiz’s desert tortoise (Gopherus agassizii, hereinafter 
“desert tortoise” or “tortoise”) is one of six species of North 
American tortoises; all have populations that are threatened, 
endangered, or in peril (Murphy and others, 2011; Berry and 
Aresco, 2014; Edwards and others, 2016). The desert tortoise 
was listed as a threatened species by the State of California in 
1989 and by the Federal government in 1990 (U.S. Fish and 
Wildlife Service, 1990; California Department of Fish and 
Wildlife, 2016). A few years before the desert tortoise was 
listed as threatened, Turner and others (1987) developed the 
first life table for desert tortoises, drawing on mark-recapture 
data from 1977 through 1986 (primarily 1983–86). The 
life table included estimates of survival and fecundity for 
a population in the eastern Mojave Desert. The authors 
estimated that the population had the potential to increase 
at a rate of 2 percent per year. However, they noted that 
local extinctions could occur if tortoise habitat deteriorated 
irreversibly through human activities. Doak and others (1994) 
developed stage-based demographic models for the desert 
tortoise, using mark-recapture data from eight study areas in 
the western Mojave Desert. According to Doak and others 
(1994), the models predicted population declines, and the 
populations were at risk of extinction within decades. Wisdom 
and others (2000) followed with an analysis of vital rates and 
population growth, and Reed and others (2009) conducted a 
vital rate sensitivity analysis for females only. Authors of the 
latter three studies emphasized the relative importance of adult 
survival compared with survival of the smaller, younger size 
classes in recovering tortoise populations (Doak and others, 
1994; Wisdom and others, 2000; Reed and others, 2009). 
However, Hellgren and others (2000, p. 1297), in a study 
on the demography of the related Texas tortoise (Gopherus 
berlandieri), emphasized that high survival of early life stages 
(hatchlings) was “necessary for population persistence.”

To demonstrate new methods for modeling demographic 
attributes, we used data from a long-term study of desert 
tortoise populations at the Desert Tortoise Research Natural 
Area (Natural Area) as a case study. In 1979, Berry and others 
(1986) established a 7.77-square kilometers (km2) study area 
centered on an interpretive kiosk at the Natural Area in the 
western Mojave Desert. The study area was divided into two 
portions, 58 percent inside the protective fenced boundary and 
42 percent outside the fence, where land received considerable 
use from human activities (recreational vehicle use, camping, 
and sheep grazing). The boundary fence was made of hog 
wire, raised off the ground, and wildlife-permeable. The 

long-term objectives were to track changes in population 
attributes inside and outside the fence over time and to 
determine the effects of visitor use on the tortoise population. 
The authors used the stratified Lincoln Index (Overton, 1981) 
to assess densities between the first annual survey in 1979 and 
the second annual survey in 1985. They reported declines in 
populations both inside and outside the fence in the 6-year 
period and also noted other demographic attributes (size-age 
class structure, sex ratios, mortality, and causes of death).

Our objectives were to develop demographic models 
using modern mark-recapture modeling techniques (Williams 
and others, 2002; Royle and Dorazio, 2008, 2012; Link 
and Barker, 2010; Kéry and Schaub, 2012; among others). 
To apply the models, we used some datasets from the 
mark-recapture surveys of tortoises at the Natural Area. 
Specifically, we estimated:

•	 Probabilities of a tortoise transitioning from a smaller 
to a larger size-age state;

•	 Probabilities that a tortoise changes its location with 
respect to the protective fence (inside-to-outside the 
fence versus outside-to-inside the fence);

•	 Probabilities of annual and 5-year survival by 
sex, location (inside or outside the fence), and 
size-age state;

•	 Probabilities of detecting a tortoise, given it was in 
the study area, by sex, location (inside or outside 
the fence), and size-age state, and, as a secondary 
objective, the potential influence of precipitation on the 
detectability of tortoises; and

•	 Total population sizes among the sexes, size-age states, 
and locations (inside and outside the fence) for each 
sampling year.

In this Open-File Report, we report a model for analyzing 
multi-year demographic data for long-lived animals and use 
selected datasets from a population of Agassiz’s desert tortoise 
at the Desert Tortoise Research Natural Area in the western 
Mojave Desert of California as a case study to describe the 
model. We then used the model and datasets along with 
several other datasets on vegetation, clinical signs of disease 
and trauma on the tortoises, causes of death and annualized 
mortality rates, predators, and anthropogenic impacts for a 
journal article (Berry and others, 2020).
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Methods

Study Area

The 7.77-km2 study area was located at the southeastern 
corner of the Desert Tortoise Research Natural Area in eastern 
Kern County, California, at elevations of 740–790 meters (m). 
The study area was divided by the Natural Area boundary 
fence into inside (4.53 km2) and outside (3.24 km2) portions. 
The fence was made of hog wire and was raised about 
25 centimeters (cm) off the ground to allow passage of wildlife 
and to protect tortoises and habitat inside the fence from sheep 
grazing and uncontrolled recreational vehicle use, which 
occurred outside the fence (details in Berry and others, 1986). 
Perennial vegetation was composed of several associations 
of creosote bush scrub (California Department of Fish and 
Game, 2010). Three of the more common and dominant 
species of shrubs included creosote bush (Larrea tridentata), 
white bur-sage (Ambrosia dumosa), and rayless goldenhead 
(Acamptopappus sphaerocephalus). Most precipitation, 
typical of the western Mojave Desert, occurs in late fall and 
winter (Rowlands, 1995). Twenty-year annual norms for 
the hydrologic water year (October 1–September 30) were 
141.1 millimeters (mm) and fall-winter norms were 112.5 mm 
(PRISM, www.pr​ism.oregon​state.edu/​).

Collecting Data

We conducted censuses of the tortoise population in 
7 survey years (1979, 1985, 1989, 1993, 1997, 2002, 2012) 
spanning 34 years and at intervals ranging from 4 to 10 years. 
In each survey year, two back-to-back censuses occurred in 
spring between late March and the first week of June at the 
height of tortoise activity (Zimmerman and others, 1994). 
A total of 14 censuses occurred. The field team sought 
tortoises by walking transects less than or equal to 10 m apart, 
covering the entire plot with north-south transects followed 
by east-west transects or vice versa. When a tortoise was 
found for the first time, it was assigned a unique identification 
number and notched in a pattern conveying the unique number 
on one or more marginal scutes. Throughout this report, unless 
otherwise noted, we used the term “capture” to refer to the 
first-time capture of an unmarked tortoise or recapture of a 
marked tortoise. We also use the term “detection” to refer 
to the capture of a tortoise or recovery of a dead tortoise. 

Subsequent to the first capture and as tortoises were observed, 
data were recorded on identification numbers, locations 
and standard metrics: straight-line carapace length at the 
midline (MCL, in millimeters) and weight (in grams) for all 
tortoises and sex for tortoises ≥180 mm MCL (see Berry and 
Christopher [2001] and Jacobson [2014] for examples of 
data sheets that we used). During the surveys, field workers 
also collected and photographed shell-skeletal remains and 
recorded the locations of the remains. The remains were later 
reassembled (if necessary) and analyzed in the laboratory to 
determine size, sex, and if it was a marked tortoise (Berry and 
Woodman, 1984; Berry and Christopher, 2001).

In addition to data collected on the 14 censuses, tortoises 
were sometimes found during non-census periods, either 
opportunistically or during other research activities in the 
study area. These encounters occurred before the first annual 
survey (before 1979), between the seven annual surveys, 
and after the last annual survey (after 2012), and provided 
supplemental information for our demographic model. Three 
types of non-census encounters were potentially useful—dead 
encounters of marked individuals, live encounters when a 
tortoise was first captured, and live encounters when a tortoise 
was last recaptured. Marked tortoises encountered dead were 
removed from the study area and, therefore, were unavailable 
for future recapture. Failure to account for these removals 
would lead to underestimates of detection probability. 
Occasionally a tortoise was captured live before being 
recaptured during a census year. We considered including 
these opportunistic captures because they represented a more 
accurate start year of when that tortoise was known to be in the 
population and available for detection than we would have by 
relying only on encounters during the survey years. Sixty-six 
tortoises were captured live opportunistically (that is, not on 
a survey) and 34 of the 66 tortoises were recaptured during 
a census year. However, there were relatively few of them 
(3 percent; 34 of 1,123 modeled tortoises) and they generally 
occurred shortly before a census recapture. Ultimately, we 
did not include them in the model because the opportunistic 
captures would provide relatively little additional information. 
The same was true for tortoises recaptured live during 
non-survey years and then not seen again. We also considered 
including these opportunistic recaptures; however, there were 
relatively few of them (<3 percent; 29 of 1,123 modeled 
tortoises) too, and they generally occurred shortly after a 
census observation. Including them in the model would have 
provided relatively little information.

http://www.prism.oregonstate.edu/
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Models

We used mark-recapture data from 1,123 tortoises to 
develop a multistate Jolly-Seber (JS) model to describe 
size-age, locations relative to the boundary fence, and survival 
(states) of marked and recaptured tortoises, and to estimate 
densities in each state category as well as by sex (Jolly, 1965; 
Seber, 1965; Schwarz and Arnason, 1996; Link and Barker, 
2010; Kéry and Schaub, 2012; Royle and Dorazio, 2012). 
Jolly-Seber models are applied to marked animal data by 
expressing the encounter pattern of each individual in terms 
of a likelihood function for the given individual’s probability 
of survival and recapture. For example, frequent redetections 
over an extended range of time support the likelihood of a 
high survival probability and a high recapture rate, whereas 
inconsistent redetections over an extended range of time 
support the likelihood of a high survival probability and 
low recapture rate, and a sequence of frequent redetections 
followed by no further redetections can indicate a likelihood 
of mortality. By producing estimates of capture probabilities, 
JS models can be used to jointly estimate the number of 
uncaptured individuals—hence, total population size or 
population density.

We hypothesized that size-age and sex could potentially 
affect the locations (inside fence versus outside fence) of 
tortoises, and that size-age, sex, and locations of tortoises 
could potentially affect their survival and detection rates. 
These states were subject to change (that is, state transitions) 
for individual tortoises in consecutive censuses as they grew 
from smaller to larger size-age, moved locations between 
inside and outside the fence, and in some cases died. When 
a marked tortoise was not redetected, then its status was 
unknown (or latent) and we lacked direct information on 
its size-age, location, and survival, and thus its inclusion in 
the population. Our encounter histories for desert tortoises 
included many unobserved (latent) states. We chose a 
Bayesian modeling framework to develop our multistate JS 
model because of its ability to handle unobserved (latent) 
states (Kéry and Schaub, 2012).

We summarized observed states of size-age, location, and 
survival status of tortoises into three categorical variables:

1.	Size-age. We assigned each tortoise to one of three 
size-age classes based on carapace length (MCL): 
(a) about 45–139 mm, juvenile and small immature 
tortoises (hereinafter, “JV”); (b) ≥140–179 mm, 
large immature tortoises (hereinafter, “IM”); and 
(c) ≥180 mm, subadult (small) and moderate to 
large-sized adult tortoises (hereinafter, “AD”).

2.	Location. We categorized the location of capture, 
recapture, or recovery of each tortoise as either inside 
or outside the fenced boundary of the Desert Tortoise 
Research Natural Area.

3.	Live-dead status. We categorized the survival status of 
each tortoise at each of their detections as either live or 
dead; in cases when a tortoise was alive but moribund, 
we categorized it as dead.

Sex was assigned to adult tortoises based on secondary 
sex characteristics of the male (that is, longer and often 
upturned gular horn, concave posterior plastron in the male, 
longer tail, and larger size; Woodbury and Hardy, 1948). We 
defined sex only for AD tortoises. Sex of JV and IM tortoises 
was a latent variable, except for tortoises later recaptured or 
recovered as adults when their sexes could be determined.

We applied biological assumptions when constructing 
hierarchical mathematical models (see section “Mathematical 
Models” in appendix 1) for the probability of a state transition 
between consecutive censuses in terms of the time since 
the last census and other state variables, either observed or 
latent. For example, tortoises in our model were allowed to 
transition from smaller to larger size-age states according to 
a probability function based on the time between censuses, 
whereas we assumed zero probability of transitioning from 
larger to smaller size-ages. During periods of drought, it was 
possible for the MCL of tortoises to shrink and potentially 
be placed into a smaller size-age than an earlier census. 
However backward growth never occurred between our three 
size-age state categories and we assumed it to have zero 
probability in our models. We use a path diagram to illustrate 
the hierarchy of relationships among state variables and other 
covariates, and their effects on state transition and detection 
processes (fig. 1).

Tortoises in our model were also allowed to move 
locations freely between inside and outside the fence, and we 
modeled two probability functions—one for the probability 
of changing from an inside location to an outside location, 
and another for the probability of changing from an outside 
location to an inside location. We allowed location transition 
probabilities to vary as a function of sex and size-age class, 
in accordance with differences in home range sizes between 
these demographic classes. In general, adult males have larger 
home ranges than adult females and the smaller, younger 
tortoises have smaller home ranges (Harless and others, 
2009; Hazard and others, 2015). We reasoned that individuals 
with larger home ranges would have larger rates of location 
changes and may travel outside the study area on a short- or 
long-term basis.

Because surveys were conducted at irregular time 
intervals, sometimes as short as 1 month and other times as 
long as 1 decade, we modeled the probability of surviving 
from one survey to the next survey as the annual survival 
probability raised to a power equal to the number of years 
since the previous survey (that is, interval survival = [annual 
survival] ^ [time since last census]). We modeled annual 
survival probability as a function of sex, size-age class, 
and location.
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Methods    5

In the final component of our hierarchical model, we 
modeled the process of capturing and recapturing tortoises by 
allowing detectability (that is, the probability of capture or 
recapturing a tortoise given it is there to capture) to vary as a 
function of sex, size-age class, and location. Sex differences 
could occur because males have greater movement activity 
and are more likely to spend time above ground where they 
are easier to find. Size-age differences could occur because 
large mature tortoises are easier to detect than small young 
tortoises. We expected tortoises outside the fence to be easier 
to detect than tortoises inside the fence because substantial 
parts of the area outside the fence gradually became denuded 
and the ground compacted due to off-road vehicle activity and 
sheep grazing. Therefore, our models assume that detectability 
outside the fence was equal to or greater than detectability 
inside the fence.

We used a Bayesian implementation of a multistate 
JS model as outlined by Kéry and Schaub (2012), using a 
14-interval model, with several key modifications:

1.	Censuses were conducted at unequal intervals ranging 
from 1 month (between consecutive censuses in the 
same year) to 10 years (from 2002 through 2012); 
therefore, we allowed the probability of growth and 
survival between intervals to depend on the length of 
time of the preceding interval.

2.	We expanded the state-space in our multistate model 
to accommodate not just multiple states of a variable 
but also multiple state-space variables (size-age states 
JV, IM, and AD; location states Inside and Outside; and 
entry/survival states Not-yet-entered, Alive and present, 
and Dead or removed or permanently emigrated; see 
appendix 1). Following the assumptions illustrated in 
fig. 1, we modeled the state space hierarchically, for 
example, allowing the probability of entry/survival to 
depend on location and size-age states, and location 
states to depend on size-age (see section “Mathematical 
Models” in appendix 1 for details).

3.	The standard multistate JS model assumes that dead 
animals are not observable, whereas in our study 
the carcasses of marked tortoises were often found 
during and between censuses and then removed. 
We incorporated death information into our model 
whenever available to account for these deaths and to 
better estimate survival probability (see section “Death 
Records” in appendix 1).

4.	We modified the JS model in a manner that could 
accommodate data from non-census detections occurring 
at variable times midway during intervals (see section 
“Non-Census Data Modeling” in appendix 1).

Figure 1.  Hierarchical relationships between state variables (size-age [gray boxes], location [dark-blue boxes], 
and survival [mustard boxes]) and state transitions (vertical arrows between state variables going from time t to 
time t+1). Other covariates include time since last census (years since time t; light-blue box) and sex (pink box). 
Arrows pointing to arrows represent the effects of covariates and state variables on the probabilities of other 
state transition processes. Arrows pointing to detection represent the effects of sex and state variables on the 
probability of detection of a given tortoise.
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6    Development of Demographic Models to Analyze Populations with Multi-Year Data

5.	Age transitions in our model were one-way (for 
example, juveniles could become adults, but adults could 
not become juveniles); therefore, we non-randomly 
initialized the Markov chains for the Bayesian model 
simulations to avoid conflicts between randomized initial 
age and realized age after later intervals in the data. To 
ensure that chains were not converging to solutions that 
could be biased by their initial values, we applied highly 
contrasting rules when initializing different chains (see 
section “Initializing Markov Chains” in appendix 1). We 
considered the Bayesian simulations to converge when 
these chains converged to similar distributions.

We drew on monthly PRISM records for rainfall data 
for each of the fall-winter periods (October 1–March 31) 
preceding the annual surveys (table 1). We initially included 
precipitation in the detectability component of preliminary 
models as a continuous covariate. Timing and amounts of 
rainfall have a profound influence on above-ground activity 
for tortoises (Henen and others, 1998; Duda and others, 1999; 
Christopher and others, 2003). We reasoned that years with 
greater fall-winter precipitation had greater annual vegetation 
(forage) in spring, resulting in increased time that tortoises 
spent above ground during censuses, thus increasing their 
detectability. However, dense annual vegetation during such 
a spring could also obscure tortoises, especially the smaller 
ones, thereby reducing detection. As the vegetation dries, 
detection is likely to improve. In drought years, fewer tortoises 
are active above ground, potentially reducing detection (Henen 
and others, 1998; Duda and others, 1999). In cases where 
rain occurs in April or May during a drought year, tortoises 
may emerge to drink, thus potentially increasing detectability 

in the census with the precipitation event. (Such an event 
occurred in May of the 14th census, resulting in emergence of 
several tortoises).

The initial results from the preliminary models suggested 
a potentially non-significant or negative correlation between 
precipitation and detectability. Therefore, we re-evaluated the 
potential for meaningful precipitation effects and ultimately 
decided to exclude precipitation from our final models. In 
that evaluation, we defined, for each year, a raw index of 
detectability based on the ratio of recaptures (number of 
times a tortoise was recaptured in that year, ignoring any 
history from previous years) divided by first-time captures 
(the time a tortoise was captured for the first time that year, 
ignoring previous years). In table 1, we show the recapture 
ratio and annual precipitation across years. The relationship 
between recapture ratio and winter precipitation is unclear, 
due to the sparseness of years and the large leverage of an 
unusually high precipitation (317 mm) in the 1993 spring year 
combined with a relatively low recapture rate. The relatively 
low recapture ratio may be associated with the high mortality 
from the epidemic of an infectious upper respiratory tract 
disease caused by species of Mycoplasma (Jacobson and 
others, 1991; Brown and others, 1999). The analysis with this 
year suggests a potentially negative relationship, whereas in 
the absence of this year, the relationship appears potentially 
positive (fig. 2). In either case, the pattern is highly variable 
and not statistically compelling. We decided that the data were 
too sparse and too variable to be meaningful, and we excluded 
precipitation from further modeling.

We used Markov Chain Monte Carlo (MCMC) 
simulations to fit and evaluate our JS model. We used the 
`jagsUI` package in R software as an interface for using Just 
Another Gibbs Sampler (JAGS) software to conduct these 
MCMC simulations (Plummer, 2003, 2016; Kellner, 2016; 
R Core Team, 2016). We initialized three Markov chains 
differently based on biologically contrasting assumptions 
about population demographics, and we examined trace plots 
and potential scale reduction factors to assess the chains 
for convergence (Gelman and others, 1997). These chains 
reflected the posterior distributions (that is, distributions 
of credible values for population demographic parameters) 
from which we derived our estimates of densities per 
square kilometer and state transition probabilities (that 
is, probabilities of growth, movement, and survival). We 
estimated population densities and probabilities by taking the 
median (50-percent quantile) of posterior distributions and 
90-percent credible intervals (CI) by taking the 5-percent and 
95-percent quantiles of the posterior distribution. To avoid 
cumbersome reporting, we present the median estimates, 
followed by the 90-percent CI in parentheses. We considered 
differences in variables to be significant at P ≤0.1, or if the 
90-percent CIs did not overlap. We report all figures from our 
resulting models to two significant digits.

Table 1.  Precipitation falling between October 1 
and March 31 (winter rain) during the time periods 
associated with each of the seven survey years (1979, 
1985, 1989, 1993, 1997, 2002, and 2012) at the Desert 
Tortoise Research Natural Area, western Mojave Desert, 
California.

[The precipitation figures are from PRISM records 
(www.pr​ism.oregon​state.edu/​) and were used in the preliminary 
model. Recapture ratio is a raw index of detectability calculated 
as the number of recapture events in a given year divided by the 
number of unique tortoises captured or recaptured that year]

Winter 
years

Spring 
years

Winter rain  
(millimeters)

Recapture 
ratio

1978–79 1979 172.32 0.9275
1984–85 1985 117.51 2.112
1988–89 1989 46.89 1.064
1992–93 1993 316.81 0.713
1996–97 1997 82.02 1.050
2001–02 2002 41.73 1.240
2011–12 2012 97.31 1.556

http://www.prism.oregonstate.edu/
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Results    7

Results

Numbers of Captures

Over the course of the period from 1979 to 2012, 
1,120 desert tortoises were live captured and marked on 
surveys. An additional 3 desert tortoises were found dead 
and included with the 1,120 tortoises for modeling. Among 
the live captures, there were 420 females, 373 males, and 
327 of unknown sex. Most (734) were AD, and 129 were 
IM and 257 were JV captures. Most (751) captures occurred 
inside, although 369 occurred outside. There were 1,119 
live recapture events, with 606 female recaptures, 418 male 
recaptures, and 95 of unknown sex.

There were 58 JV recaptures, 60 IM recaptures, and 
1,001 AD recaptures. Most (825) recaptures occurred inside 
the fence compared with outside (294). Of these desert 
tortoises, 248 were recovered dead. Slightly more than 
one-half of the dead recoveries were female (136) compared 
to 87 males and 25 of unknown sex. Most (223) were AD, 
10 were IM, and 15 were JV. Most dead recoveries occurred 
inside the fence (215) compared with outside (32).

Convergence

Following recommendations by Gelman and others 
(1997) that potential scale reduction factors (​​ ̂  r ​​) should be close 
to 1 and much less than 1.2 for acceptable convergence, our JS 
model satisfied the Gelman-Rubin assessment for convergence 
for some but not all model parameters (appendix 2). We 
reached convergence for all model parameter coefficients 
associated with movement and the effects of sex and location 
on survival and detection probabilities after 142 hours of 
processing time. Our model did not reach convergence for 
any parameters associated with size-age variables, including 
all parameter coefficients for growth processes and the slope 
parameter coefficients for the effects of size-age on movement, 
survival, and detection probabilities. Repeated updates to 
the Markov chains culminating in approximately 200 hours 
of additional processing time resulted in no improvements 
to model convergence nor changes in the distributions of 
the chains. However, when samples from these chains were 
combined to estimate posterior distributions, their posterior 
distribution standard deviations were consistently smaller (<1) 
than the wide prior standard deviations (100) we specified 
prior to modeling, indicating that there was information in the 
data to bring the chains closer together (for additional details, 
see appendix 2).

Figure 2.  Tortoise recapture ratio in relationship to winter precipitation (in millimeters [mm]). Recapture ratio is a 
raw index of detectability calculated as the number of times a tortoise was recaptured in a given year divided by 
the number of times a tortoise was captured for the first time that year, ignoring any capture history from previous 
years.
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Probability of Tortoises Growing from One Size/
Age State to a Larger Size

Among three size-age classes (JV, IM, AD), three growth 
transitions were possible across the wide range of intervals 
between censuses (1 month to 10 years). We modeled the 
transitions of JVs growing to IMs, JVs growing to ADs, and 
IMs growing to ADs. The probability of growth to a larger 
size-age is highest for the IMs growing to the AD transition, 
with this probability increasing rapidly between years 1 and 
5 (fig. 3). Tortoises of the IM size-age can reach adulthood 
within about 7 years. Tortoises in the JV size-age state take 

more years to achieve adult size but have the potential to reach 
breeding size in 10 years, depending on initial size within 
the JV size-age state. The credible intervals are wide for both 
the JV and IM size-age states to transition to the AD size-age 
state. However, tortoises in the JV size-age state have a low 
probability of transitioning to the next size-age state, the 
IM tortoises, and the probability of transition has a narrow 
credible interval. As JV tortoises age, they pass into and out 
of the IM state over time, so that the probability of becoming 
IM increases for the first 3–4 years and decreases beyond that 
period as JVs that became IMs increasingly grow into the 
AD state.

Figure 3.  Estimated probabilities of a desert tortoise growing to a larger size based on intervals between years 
for the 34-year study at the Desert Tortoise Research Natural Area, western Mojave Desert, California. Bands of 
color refer to 90-percent credible intervals. AD, small to large-sized adult tortoises; IM, large immature tortoises; 
JV, juvenile and small immature tortoises; No., Number of.
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Results    9

Probability of Desert Tortoises 
Changing Location

Overall, the probability for tortoises to change locations 
regarding the boundary fence was low: from inside to outside 
the fence, the estimated probability ranged from a low of 
0.019 to a high of 0.057, and from outside to inside the fence, 
the estimated probability ranged from 0.068 to 0.145. The 
probability of a tortoise moving from outside the boundary 
fence to inside was 184-percent greater (90-percent CI = 106 
to 300 percent) than vice versa (table 2). In general, the 
probability of a female changing location was lower than for 
males, but not significantly so. Females had a 27.8-percent 
lower probability of changing locations than males when 
averaging equally across the three size-age classes, but the 
90-percent CI overlapped zero (90-percent CI = –49.0 percent 
to 3.2 percent). However, when considering only 
inside-to-outside movements, females were 48.5 percent 
less likely than males to change locations, with a significant 
credible interval (90-percent CI = –17.9 to –68.0 percent). For 
tortoises changing location from outside to inside the fence, 
probabilities increased markedly with increasing size. When 
comparing movements between locations, the probabilities 
of movement from outside to inside the fence were higher 
for tortoises in the two larger size classes than vice versa, 
but not significantly so. Tortoises in the AD size-class were 
70.3 percent more likely and tortoises in the IM size-class 
were 31.0 percent more likely than JV to move from outside 
to inside the fence; however, credible intervals overlapped 
zero (90-percent CI = –8.0 to 198 percent, and –4.1 to 
75.4 percent, respectively).

Survival of Tortoises by Size/Age State

The estimated probability of annual survival (survival of 
>1 year) did not differ much between sexes, size-age classes, 
and locations of tortoises: the median values for survival 

ranged from a low of 0.791 to a high of 0.862 (fig. 4). Annual 
survival for females averaged equally across all size classes 
and locations was 3.6 percent higher than for males, and 
statistically significant (90-percent CI = 1.4 to 5.8 percent). 
When averaging equally across size classes and for both 
sexes, annual survival was only 1.7 percent higher inside the 
fence than outside the fence, and not significant (90-percent 
CI = –0.76 to 4.4 percent). When compounding the annual 
survival estimate over a longer period of 5 years, the estimated 
probability of a tortoise surviving >5 years was, overall, lower 
than 50 percent. Median estimates of 5-year survival varied 
among cohorts based on different sex, size-age, and location 
(range=0.324–0.477; fig. 5), with 5-year survival of females 
19.0 percent significantly higher than males (90-percent 
CI = 7.0 to 31.9 percent), and differences among locations and 
size-age classes remained not significant.

Detection of Desert Tortoises between Censuses 
at the Annual Level

For a given sex and size-age state, no significant 
differences existed between detections for tortoises occurring 
either inside or outside the boundary fence (fig. 6). The 
probability of detection was lowest for the smallest size-age 
class (range of median probabilities of detection: 0.578–0.593) 
and highest for largest size class (0.727–0.739), regardless of 
sex. Similarly, the 90-percent credible intervals were widest 
for the smallest size-age class and narrowest for the largest 
size-age class. Detection probabilities were significantly 
higher for larger tortoises than smaller tortoises. When 
averaging across both sexes, inside and outside, the detection 
probabilities were 24.8 percent (90-percent CI = 13.9 to 
59.5 percent) higher for AD compared to JV tortoises, 
10.4 percent (90-percent CI = 6.2 to 21.1 percent) higher 
for AD tortoises compared to IM tortoises, and 13.1 percent 
(90-percent CI = 7.2 to 31.7 percent) higher for IM tortoises 
compared to JV tortoises.

Table 2.  Probability of desert tortoises moving from inside to outside the fence or from 
outside to inside the fence between consecutive surveys by sex and size-age class at 
the Desert Tortoise Research Natural Area, western Mojave Desert, California, during 
the 1979–2012 study period.

[The range of figures within the parentheses is 90-percent credible intervals]

Size 
class

Females Males

Inside to outside Outside to inside Inside to outside Outside to inside

JV 0.0190 
(0.0064–0.0454)

0.0685 
(0.0375–0.1317)

0.0374 
(0.0143–0.0834)

0.0859 
(0.0483–0.1586)

IM 0.0238 
(0.0124–0.0391)

0.0906 
(0.0629–0.1295)

0.0458 
(0.0274–0.0722)

0.1129 
(0.0791–0.1599)

AD 0.0293 
(0.0201–0.0404)

0.1179 
(0.0903–0.1507)

0.0568 
(0.0411–0.0753)

0.1338 
(0.1085–0.1894)
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10    Development of Demographic Models to Analyze Populations with Multi-Year Data

Figure 4.  Estimated median probabilities (points) with 90-percent credible intervals (error bars) of annual 
survival by sex and size-age class state for desert tortoises developed from mark-recapture data collected over 
a 34-year period at the Desert Tortoise Research Natural Area, western Mojave Desert, California. AD, small to 
large-sized adult tortoises; IM, large immature tortoises; JV, juvenile and small immature tortoises.
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Figure 5.  Estimated median probabilities (points) with 90-percent credible intervals (error bars) of desert 
tortoises surviving >5 years by sex and size-age at the Desert Tortoise Research Natural Area, western Mojave 
Desert, California. AD, small to large-sized adult tortoises; IM, large immature tortoises; JV, juvenile and small 
immature tortoises.
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12    Development of Demographic Models to Analyze Populations with Multi-Year Data

Changes in Densities

Estimates of densities varied between censuses in a 
given survey year. Estimates were higher for the second 
censuses of years 1979, 1985, and 2012 inside the fence, and 
for 1979 and 1985 outside the fence (fig. 7). When estimated 
for the entire study area, densities of tortoises per square 
kilometer declined 87.5 percent (90-percent CI = 86.3 to 
88.9 percent) from 80.6 to 10.2 tortoises per km2 (censuses 
2 and 14) between 1979 and 2012 (fig. 8). Similar patterns 
were apparent when densities were arrayed separately by 
location (densities of tortoises occurring inside versus outside 
the boundary fence [fig. 7]). Overall, densities declined 
between the second censuses in 1979 and the second census 
in 2012 by 84.2 percent (82.5–86.0 percent) inside the fence 
and 93.8 percent (92.0–95.2 percent) outside the fence. The 
lowest point in densities for both inside and outside the fence 
was in 2002, with lower densities overall outside the fence 

than inside. Between 2002 and 2012, densities of tortoises 
per square kilometer increased significantly from 9.9 to 14.3 
inside the fence, whereas outside the fence, the changes in 
densities were not significant (from 4.17 to 4.32 tortoises 
per km2). By the last census in 2012, densities were 2.5 
(90-percent CI = 1.8 to 3.3) times higher inside than outside 
the fence.

When densities were arrayed by sex, size-age class, and 
location (fig. 9), patterns similar to those shown in figures 7 
and 8 are evident. The major factor influencing tortoise 
density was size-age class. Adults formed the larger portion 
in all survey years. However, for a population to recover and 
develop stability after catastrophic loss, sufficient juveniles 
must survive to maturity to ensure perpetuation of the 
population. Therefore, abundance and survival of juvenile 
tortoises is an important issue.

Figure 6.  Median probabilities (points) with 90-percent credible intervals (error bars) of detecting desert 
tortoises at the census level, when a tortoise is available to be detected (that is, alive and present) at the Desert 
Tortoise Research Natural Area, western Mojave Desert, California. AD, small to large-sized adult tortoises; 
IM, large immature tortoises; JV, juvenile and small immature tortoises.
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Figure 7.  Density estimates of all sizes of desert tortoises per square kilometer (km2) for the 14 censuses 
conducted between 1979 and 2012 at the Desert Tortoise Research Natural Area, western Mojave Desert, 
California. Error bars are 90-percent credible intervals.
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Figure 8.  Density estimates of all sizes of desert tortoises per square kilometer (km2) occurring inside the fence 
(top) and outside the fence (bottom) by census at the Desert Tortoise Research Natural Area, western Mojave 
Desert, California, 1979–2012. Error bars are 90-percent credible intervals.
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Figure 9.  Density estimates of desert tortoises per square kilometer (km2) by survey census, sex, size-age class, 
and location with regard to the fence at the Desert Tortoise Research Natural Area, western Mojave Desert, 
California. Error bars are 90-percent credible intervals for the sum total densities of females and males. AD, small 
to large-sized adult tortoises; IM, large immature tortoises; JV, juvenile and small immature tortoises.
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Discussion

Model Convergence

Our JS model satisfied the Gelman-Rubin test for 
convergence for some but not all model parameters. 
Our model included large matrices (14 survey censuses 
for 1,123 marked tortoises), which we augmented with 
several hundred more possible uncaptured tortoise records 
(appendix 1). Because most marked tortoises were not 
recaptured in most survey censuses, the Bayesian JS 
model undergoes an intensive data imputation process to 
fill information gaps with a distribution of likely values 
(for example, the size-age, location, and survival status of 
a tortoise during an interval when it has not been seen) in 
accordance with the model. The Markov chains track the 
imputation and model parameter estimates as they sample 
(explore) numerical solutions for our large matrix of tortoises 
and survey censuses. The multiple multistate variables 
(size-age, location, and survival status) require similarly large 
additional matrices. Gibbs sampling algorithms, although 
remarkably adept at handling complicated models, were 
noted by Betancourt (2017) for their sometimes inefficient 
sampling behavior and, hence, difficulties converging in 
high-dimensional spaces such as ours. Betancourt (2017) also 
showed that Hamiltonian Monte Carlo (HMC) can be more 
efficient at exploring high-dimensional spaces and thus better 
at converging to solutions; however, the HMC only applies to 
continuous variables, not to categorical multistate variables. 
More efficient sampling methods have yet to be developed for 
multistate models.

Although some of our Markov chains did not converge 
to the same solution, they appeared to converge to solutions 
that were near one another. We initialized different chains with 
very different values based on biologically opposing guesses 
about demographic and movement patterns (normal-growth/
high-survival versus slow-growth/low-survival, and minimal 
movement versus random movement; appendix 1). We 
also specified very large prior distributions for the range of 
parameter space in which we allowed the Markov chains to 
explore potential solutions. Despite our efforts to initialize 
chains so that they could explore very different solutions, all of 
our chains converged to a relatively narrow range of solutions, 
if not the same solution. All chains converged to estimates 
leading to similar interpretations about demographic patterns 
and population densities of our study population of tortoises.

The differences among chains might partly be explained 
by possible artifacts due to differences in the way we 
initialized them. The chains differed only for parameters 
involving size-age classification (that is, the growth model 
and effects of size-age on movement, survival, and detection; 

appendix 2). The chains that were initialized with the 
normal-growth/high-survival patterns converged together, 
but did not converge to the same set of solutions as the chain 
that was initialized with slow-growth/low-survival patterns 
(appendix 2). In the normal-growth/high-survival pattern, we 
initialized missing information gaps on tortoises based on 
optimistic guesses that they would have grown normally and 
died shortly before their recovery (or not died at all if never 
recovered; appendix 1). In the slow-growth/low-survival 
pattern, we initialized those gaps based on pessimistic guesses 
that they did not grow until shortly before their earliest 
recapture in a larger size-age class. This could create a bias 
in the slow-growth chain where it could appear that tortoises 
tend to be less detected while in the smaller size-age class 
and more detected immediately after growth to a larger 
size-age class. Indeed, although all chains indicate a positive 
correlation between size-age class and detection probability, 
the slow-growth chain suggests a larger positive correlation 
than the normal-growth chain does.

Strengths and Weaknesses of Models

Models can produce different results depending on 
assumptions and techniques employed. Berry and others 
(1986), in a demographic analysis of population attributes of 
the tortoise population at the Desert Tortoise Natural Area 
interpretive center, reported population densities that differed 
markedly from the JS model, specifically for 1979. The 
authors used the Stratified Lincoln Index (SLI) as described 
by Overton (1981). To better understand the sources of 
similarities and differences, we first compared assumptions 
inherent in the SLI and JS models (table 3) and then followed 
by determining the source of the differences.

The density estimates for 1979 and 1985, reported by 
Berry and others (1986) using the SLI, were generally higher 
with wider confidence intervals than the Bayesian credible 
intervals generated using the JS model. The most obvious 
differences were for density estimates of total population size 
inside and outside the fence in 1979: inside the fence, the 
midpoint of the density estimate was 131 tortoises per km2 
from the SLI method versus the median density of 91 tortoises 
per km2 from the JS model (table 4). Outside the fence, the 
density estimate was 114 tortoises per km2 (SLI) versus 
69 tortoises per km2 for the JS model. To explore potential 
reasons for the differences, we first compared methods of 
reporting—SLI produced a point estimate with a symmetric 
95-percent confidence interval (lower and upper limits of 
confidence interval are equidistant to the point estimate), 
whereas the Bayesian JS model resulted in a probability 
density distribution for the estimates of population density. 
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Table 3.  Comparison of assumptions on population closure, and assumptions or abilities in the analysis of detection probability, 
movements, demographic processes, population estimation and other issues for the Stratified Lincoln Index (SLI) developed by Overton 
(1981) and Jolly-Seber (JS).

[Assumptions and abilities are described both generally and for the specific applications of SLI implemented by Berry and others (1986) or the JS model 
presented in this report. Abbreviations: i.e., that is; e.g., for example; >, greater than]

Assumptions/abilities
Stratified Lincoln Index (SLI) Jolly-Seber (JS)

Can do? Did Berry and others (1986) do? Can do? Does this study do?

Population closure

Assume open population within year (i.e., recruitment 
and death between same-year censuses allowed)

No No Yes Yes

Assume open population between years (i.e., recruit-
ment and death between years allowed)

Yes Yes Yes Yes

Detection probability

Assume detection probability varies by year Yes Yes Yes No
Assume detection probability varies between locations Yes Yes Yes Yes
Assume detection probability varies between sexes Yes No Yes Yes
Assume detection probability varies between size-age 

groups
Yes Yes Yes Yes

Assume detection probability varies in relation to an-
nual covariates (e.g., precipitation)

No No Yes No

Movement

Assume movements occur between location states/strata Yes Yes Yes Yes
Ability to estimate movement Yes Yes Yes Yes

Demographic processes

Ability to estimate size-age growth No No Yes Yes
Ability to estimate survival No No Yes Yes

Population size

Ability to estimate population size Yes Yes Yes Yes
Use of information

Ability to use full encounter history (e.g., if tortoise is 
observed in previous and later year, but not current 
year, then can it contribute to current year estimate?)

No No Yes Yes

Ability to include covariates (e.g., annual precipitation) No No Yes No
Computing issues

Minimum required sample size Recommended >50 None, but smaller sizes are less 
precise.

Other computing notes Requires calculating the inverse of a kxk ma-
trix, where k is the number of strata. Not an 
issue with modern computers when matrix 
is invertible.

Bayesian Monte Carlo models 
can take long time or be dif-
ficult to converge, as this one 
was.



18    Development of Demographic Models to Analyze Populations with Multi-Year Data

We reported our Bayesian modeling results in terms of the 
median estimate and a 90-percent credible interval based on 
lower 5-percent and upper 95-percent quantiles. Second, we 
noted that juvenile and small immature (JV in the JS model) 
tortoises numerically contributed more to these differences 
than other size-age classes: inside the fence, the SLI estimate 
was 44 compared to 17 tortoises per km2 using JS. Outside 
the fence, the SLI estimate was 42 tortoises/km2 compared 
to 13 tortoises per km2 with JS. If we look at total tortoises 
captured in 1979 in the JV size-age state (<140 mm MCL 
size class), the figure is 111 tortoises. For a crude density 
estimate, this count divided by the size of the total study 
area, 7.77 km2, yields 14.3 tortoises per km2, less than the 
44 tortoises per km2 estimate from the SLI but very close to 
the median density estimate of 17 tortoises per km2 from the 
JS estimates. However, only 11 of the 51 JV tortoises cap-
tured in census 1 were recaptured in census 2 (8 of 36 inside, 
5 of 15 outside), producing an overall detection probability 
of 0.216 (0.222 inside, 0.200 outside) for this size-age state 
during a single survey census. When compounded over two 
censuses in an annual survey year, the probability of detecting 
a given JV at least once during the two censuses is equal to 
the probability of not missing the JV twice in both censuses 
or 1 – (40/51)2=0.385. The detection probability for JVs using 
SLI was approximately one-half the detection probability 
estimates from JS. Detection probabilities for a single survey 
census under the JS model for JV females inside the fence 
were 0.578 (0.449–0.637) and for JV males inside the fence 
were 0.582 (0.451–0.639). These same probabilities for JV 
females outside the fence were 0.589 (0.463–0.652) and for 
JV males outside the fence were 0.593 (0.463–0.653; fig. 6). 
In 1985, the density estimates of SLI and JS differed by only a 
few tortoises. As noted in table 3, the assumptions for detec-
tion probability differ between SLI and JS, contributing to the 
differences observed in the 1979 density estimates.

Differences in modeling assumptions may have also 
contributed to differences in results. The JS model made fewer 
assumptions than the SLI method with regard to population 
closure, with the difference being that the SLI method assumes 
that no entries or death/removals occurred between two 
censuses in the same year, whereas such changes were allowed 
in the JS model. Differences in closure assumptions might not 
have greatly affected the results because incidents of death or 
growth to a larger size-age during the short interval between 
consecutive censuses were infrequent, and we structured 
the JS model to estimate smaller transition probabilities in 
correspondence to short intervals. There may have been more 
significant differences between the JS and SLI methods when 
it came to detection probability. In our JS model, we assumed 
that detection probability could vary with certain factors such 
as sex, size-age, and location, but not with year. In contrast, 
the SLI model, which is calculated independently by year, is 
naturally structured to allow for annual variations in detection 
probability, but ignores information about sex, size-age, and 
tortoise capture information from other years. It is difficult to 
assess how these differences might have affected each model’s 
estimates or contributed to their differences, but the differences 
in JV tortoise detection probability for 1979 between the 
SLI and JS models are striking and led to correspondingly 
large differences in population density for this size-age group 
(table 4). Because the JS model processes all information 
from all years at once, it can essentially average information 
(for example, detection probability information) and achieve 
greater precision in its estimates when a process (for example, 
detectability) is similar across years, as our model assumes. 
However, a drawback of this approach is that it could cause 
biases for particular years when that process (for example, 
detection) might have differed from the norm (for example, 
behavior and movements of tortoises in a dry versus a wet 
year; Duda and others, 1999). An alternative implementation 
of the JS model could include a year effect in the detection 
model to allow year-specific estimates of detection probability.

Table 4.  Comparison of density estimates at the Desert Tortoise Research Natural Area for 1979 and 1985 
using the Stratified Lincoln Index (Overton, 1981) method and the Jolly Seber model.

[Density estimates for the Stratified Lincoln Index for adult and all sizes are from Berry and others (1986); those with 
an asterisk (*) were calculated using the Stratified Lincoln Index for comparisons with Jolly-Seber size-age states. 
Abbreviations: AD, small to large-sized adult tortoises; JV, juvenile and small immature tortoises; km2, square kilometer; mm, 
millimeter; <, less than; ≥, greater than or equal to]

Size-age class, 
carapace length at 

the midline, size  
(mm [MCL])

Year

Stratified Lincoln Index: midpoint of 
density estimate, numbers per km2 

(95-percent confidence interval)

Jolly-Seber: Median density estimate  
(numbers per km2, 90-percent 

credible interval)

Inside fence Outside fence Inside fence Outside fence

All sizes 1979 131 (111–155) 114 (90–146) 91 (86–100) 69 (65–77)
<140 mm MCL (JV) 1979 44 (18–89)* 42 (9–154)* 17 (15–22) 13 (11–17)
≥180 mm MCL (AD) 1979 70 (58–84) 53 (41–69) 61 (59–64) 46 (42–49)
All sizes 1985 89 (77–101) 52 (42–65) 80 (78–86) 47 (45–51)
<140 mm MCL (JV) 1985 14 (8–25)* 9 (5–16)* 12 (11–16) 9 (8–11)
≥180 mm MCL 1985 69 (60–79) 40 (32–52) 62 (61–64) 35 (33–37)
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Limitations of Data

Models can only be as reliable as the data on which they 
are based. For example, estimates for probability of growth, 
survival, and mortality rely on capture-recapture data. In 
accumulating long-term, accurate data for analyses of these 
topics, shortening the interval times for capture, recapture, and 
collection of remains of tortoises is highly desirable, shorter 
than the four- to ten-year intervals of this study. With lengthy 
intervals, critical information is lost on whether a tortoise was 
increasing in size, when a tortoise was last alive, and when 
and where deaths of individuals occurred. The investigators 
do not know if the animals walked away from the plot, were 
illegally collected, or died. Furthermore shell-skeletal remains 
deteriorate (Berry and Woodman, 1984) and need to be 
collected frequently. The shell-skeletal remains of very small 
tortoises (hatchlings, juveniles, and small immature tortoises) 
deteriorate more rapidly than remains of large immature and 
adult tortoises because of the early developmental stages 
of bone and scute (thin bones and few layers of laminae 
composing scutes). Shells of juveniles a few years old at the 
time of death are highly likely to disappear within a year, 
whereas bones and scutes of an adult may persist for 4 years or 
more. With the long sampling intervals in our study, remains 
of adults deteriorate, are scavenged, and the notches used 
to identify individuals are lost or obscured. More accurate 
estimates of survival could have been calculated if remains 
were collected annually. Similar statements could be made 
about some of the other population attributes.

The variables used in models need to be appropriate for 
a given situation. As mentioned in section, “Methods” and 
described in more detail in section, “Models,” we explored 
preliminary models that included effects of precipitation 
on the detectability component of the model and ultimately 
discontinued that model development in favor of a model 
without precipitation. In general, an unnecessarily complex 
model can slow the convergence of chains, requiring many 
days for models to run with a possibility of non-convergence.

Finally, although models provide valuable information 
about several demographic attributes (for example, density, 
sex, size-ages, spatial distributions, and survival) of imperiled 
animal species, they also have limitations. For example, they 
may not be able to provide critical information about such 
topics as causes of population increases or decreases or death 
unless the appropriate variables are known and added to the 
models. The appearance of a new and emerging infectious 
disease is one example. The drivers of change are essential to 
understand for recovery efforts for federally and State-listed 
threatened and endangered species. When land managers are 
provided with such data on causes of population declines or 
mortality, they can institute adaptive management procedures 
to reduce human-caused deaths and thereby aid in recovery of 
the species.

Low Detectability

Detecting early life stages of reptiles and amphibians can 
be very difficult for some species and can lead to assumptions 
of poor survival (Pike and others, 2008; Refsnider and others, 
2011; Durso and Seigel, 2015). Estimates of detection are 
an important part of modelling populations (Mazerolle and 
others, 2007; Mazerolle, 2015) and are especially valuable 
when the species or the smaller life states are cryptic (Pike 
and others, 2008). Morafka (1994) suggested that neonate 
and juvenile desert tortoises are cryptic and difficult to find, 
but Berry and Turner (1986) reported on habits of more than 
1,400 small tortoises from long-term mark-recapture plots 
in the Mojave and Colorado Deserts. Although detection 
probabilities of adults are higher than observed in smaller 
tortoises, the JV (and IM tortoises) are detectable. With 
training and careful observations, field workers find JV and 
IM tortoises.

Population Trends and Changes Over Time

Our models show significant declines in the population at 
the southeastern part of the Desert Tortoise Research Natural 
Area over a 34-year period and concomitant low survival after 
5 years, regardless of tortoise size or whether inside or outside 
the fence. Population declines were probably underway at the 
time our study area was first sampled. Similar declines were 
documented elsewhere in some populations in the Mojave and 
western Sonoran (Colorado) deserts at other sites first sampled 
in the late 1970s (Berry and Medica, 1995). Declines in desert 
tortoise populations were documented much earlier at the 
Woodbury-Hardy study population on the Beaver Dam Slope 
of Utah (Woodbury and Hardy, 1948). The Beaver Dam Slope 
population, first sampled using mark-recapture techniques in 
the 1930s, experienced a significant decrease by the 1970s, 
such that the U.S. Fish and Wildlife Service (USFWS) listed 
the local population as threatened in 1980 (U.S. Fish and 
Wildlife Service, 1980). Listing of the entire population north 
and west of the Colorado River/Grand Canyon complex 
followed in 1990 (U.S. Fish and Wildlife Service, 1990). At 
least one population in the eastern Mojave Desert appeared 
stable in the 1980s, followed by a decline in the 1990s. Turner 
and others (1987) developed a life table and age/size specific 
survival rates for a desert tortoise population at Goffs in the 
eastern Mojave Desert using mark-recapture data collected 
during annual surveys of differing lengths, efforts, and 
intervals between 1977 and 1986. The authors reported that 
survival rates varied by size and year. Annual survival rate 
after the first year of life ranged from 0.76 to 0.97; for tortoises 
50 to 100 mm MCL, annual rates of survival were 0.77–0.80. 
Adult tortoises had survival rates of 0.88–0.94. During the 
brief time Turner and others (1987) developed data for the 
life table, the population appeared to be stable or increasing. 
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However, the Goffs population declined precipitously between 
1994 and 2000, apparently due to a shell disease, cutaneous 
dyskeratosis, possibly herpesvirus, and other diseases 
(Christopher and others, 2003; Jacobson and others, 2012). 
One local population outside of critical habitat in the western 
Colorado Desert did not experience declines over 18 years 
beginning in 1997. Agha and others (2015) studied survival 
of adult tortoises with radio-transmitters at a site with two 
parts, one with wind turbines and adjacent to a second part 
in designated wilderness. The authors reported high survival 
rates of adults in both parts of the site; the site had little human 
use, unlike our case study described here.

We compared our results from the JS model with 
results from other studies using different methods and report 
similarities in results. In 2004, the USFWS initiated distance 
sampling throughout designated critical habitat for adult desert 
tortoises (U.S. Fish and Wildlife Service, 2015). Sampling 
was undertaken annually and analyzed separately by critical 
habitats or Desert Wildlife Management Areas, also known as 
Tortoise Conservation Areas. The distance sampling result for 
the critical habitat outside and adjacent to the Desert Tortoise 
Research Natural Area, called the Fremont-Kramer critical 
habitat, was 2.2 adult tortoises per km2 in 2012 (U.S. Fish 
and Wildlife Service, 2014), the year of our study, compared 
with our figure of 2.32 per km2 (1.85–2.93 per km2) from the 
JS model for densities of adults outside the fence. Another 
source of data is available from outside the boundary fence 
from a study undertaken in 2011 both inside and outside the 
Desert Tortoise Research Natural Area using randomly placed 
hectare plots (Berry and others, 2014). In the hectare plot 
study, the authors estimated adults at 2.4 per km2 (2.3–2.6 per 
km2, 95-percent confidence intervals) in critical habitat outside 
the Natural Area fence and 3.7 per km2 (3.6–3.8 per km2, 
95-percent confidence intervals) on adjacent private land. 
Basically, outside the fenced boundary of the Natural Area, 
estimates of densities for adults during 2011–12 were similar 
in the Fremont-Kramer region regardless of method used—JS, 
line-distance sampling, or hectare plots. Results for densities 
of adults inside the protective fence were higher than outside 
the fence and also similar, whether measured by the JS model 
(9.16 adults per km2 [8.71–9.71 adults per km2]) or hectare 
sampling plots (10.2 adults per km2, 95-percent confidence 
interval=9.9–10.4 adults per km2; Berry and others, 2014).

Low Survival and High Mortality Rates

The low survival rates observed at our study site were 
associated with the steep declines in population density 
observed over a relatively short time. Study populations of 

desert tortoises have experienced high mortality rates (or low 
survival) over short periods in other desert regions, and the 
authors have associated the high death rates of adults with 
drought (for example, 18.4 percent of adults in 1 year in the 
northeastern Mojave Desert in Ivanpah Valley, California; 
Turner and others, 1984) and low survival probability (0.269) 
of adults over 7 years at one of two sites in southern Nevada 
in the eastern Mojave Desert (Longshore and others, 2003). 
High mortality rates also were associated with drought in a 
study of adult tortoises in the western Mojave Desert, although 
infectious disease probably played a significant role (Peterson, 
1994; but see Jacobson and others, 1991; Brown and others, 
1999). Drought is only one potential source of population loss. 
Population declines, low densities, and high mortality rates 
also are associated with other human-related activities such 
as predation, off-highway recreation vehicle use, livestock 
grazing, and loss and deterioration of habitat (Keith and 
others, 2008; U.S. Fish and Wildlife Service, 2010; Berry and 
others, 2014). Tortoises living inside the fenced boundary of 
the Natural Area did not experience threats from off-highway 
recreational vehicle use, livestock grazing, and loss and 
deterioration of habitat, but these were common threats to 
tortoises living outside the fence. Tortoises in both locations 
experienced drought, disease, and predation. Survival of adults 
was low for several reasons, but the appearance of a new and 
emerging infectious disease, mycoplasmosis, contributed to 
the high death rate (Jacobson and others, 1991, 2014). For 
the juvenile tortoises, hyperpredation by the common raven 
contributed to low survival (Berry and others, 1986; Kristan 
and Boarman, 2003). The common raven (Corvus corax) is 
a species with a growing population, fueled by subsidies of 
food, water, and perch sites from human activities (Boarman 
and Berry, 1995).

High mortality rates of adults in long-lived freshwater 
and terrestrial chelonians can have catastrophic consequences, 
because many species of turtles and tortoises require several 
years to reach reproductive maturity, produce relatively few 
eggs annually, and have low survival rates of young turtles 
(Brooks and others, 1991; Congdon and others, 1993). Female 
desert tortoises, for example, may require 12–20 years to reach 
reproductive maturity, and even then may produce an average 
of one or two (or no) clutches of 4.5 eggs annually (Turner and 
others, 1987). Recovery of a population after either a period 
of high mortality or long-term elevated and chronic mortality 
may require a very long time (for example, sudden mortality 
in the common snapping turtle associated with predation, 
Brooks and others, 1991).
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Potential Future Developments of 
the Models

We developed a Bayesian multistate or state-space, 
hierarchical JS model that can be used for analyzing 
demographic data for animal or plant populations. We used 
selected long-term datasets from Agassiz’s desert tortoise at 
the Desert Tortoise Research Natural Area as a case study. 
For future work with desert tortoises and other long-lived 
species in long-term studies, our models can be modified by 
altering the underlying assumptions. Some modifications 
might include different numbers of size-age states, study areas, 
and intervals between surveys; use of opportunistic captures; 
and allowing for year-specific effects in probabilities of 
detection and (or) survival models. Environmental variables 
(precipitation, drought) and probability of hyperpredation 
events are other possibilities to add to the models. Models 
drawn from a dataset with brief intervals between surveys 
may be easier to work with than those with long intervals 
between surveys.
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Model Development
We used a combination of modeling examples presented by Kéry and Schaub (2012; multistate capture-recapture model 

in section 9.2, and multistate Jolly-Seber [JS] model in section 10.3.2) as starting points for developing our desert tortoise 
population model (see also Jolly, 1965; Seber, 1965; Schwarz and Arnason, 1996; Link and Barker, 2010; Royle and Dorazio, 
2012). These models address key features of our desert tortoise population study: (1) an open population with entry (or birth) 
and removal (or death); (2) movements between two areas of interest (inside and outside the Desert Tortoise Research Natural 
Area [hereinafter “Natural Area”] boundary fence); and (3) a mark-recapture framework that enables estimation of survival 
probability, capture probability, and population size. We defined a state-space to represent the location (inside or outside the 
fence) of a given tortoise at a given time, and we used a state transition matrix to represent the probabilities of location change 
(inside to outside, or outside to inside). We also defined a state-space to represent the status of a tortoise in the population 
(not-yet-entered, entered/alive, or dead/removed), and we used another state transition matrix to represent the probabilities of its 
entry and survival.

We made several modifications or accommodations to this model to address several circumstances unique to our study 
design. These circumstances included (1) uneven interval spacing between census occasions; (2) state processes and detection 
processes likely influenced by the variable interval spacing, other state variables, or covariates; (3) removal of tortoise carcasses 
from the study area whenever found; (4) extraneous information on capture, recapture, or recovery of tortoises during intervals 
between censuses (non-census data); (5) large numbers of census occasions and multiple state processes (size-age states, 
location states, and survival states) generated a very large number of latent states (unobserved states) for tortoises at census 
occasions when they were not captured and, although the model is capable of handling latent states if time and memory are 
adequate, we took additional measures to eliminate some whenever possible; and (6) our state processes necessitated special 
consideration when setting the initial values of chains in the Markov-Chain Monte Carlo (MCMC) process, and we developed a 
customized set of initialization rules. We discuss our handling of these circumstances separately in the next six sections.

Throughout this report, unless otherwise noted, we use the term “capture” to refer to the first-time capture of an unmarked 
tortoise or recapture of a marked tortoise. We also use the term “detection” to refer to the capture of a tortoise or recovery of a 
dead tortoise. In our model, we assume that the first-time capture probability, recapture probability, and recovery probability of a 
given tortoise are equal, and can be referred to equivalently as detection probability.

Intervals
Two month-long censuses were conducted in each spring of 7 years (1979, 1985, 1989, 1993, 1997, 2002, and 

2012), with each pair of censuses occurring consecutively (that is, the second census in the pair beginning immediately 
after the first census concluded, so that the two censuses were approximately 1 month apart). Because of the short time 
separating both censuses per given year, we weighed the advantages and disadvantages of collapsing the information from 
each pair of censuses and modeling as a single census, for a 7-occasion model, versus modeling each census separately, 
for a 14-occasion model. We chose the 14-occasion model because of its similarity to Pollock’s Robust Design Model 
(ht​tp://www.p​hidot.org/​software/​mark/​docs/​book/​pdf/​chap15.pdf), which constitutes primary sampling periods (long intervals—
in our case, different years—when entry and removals from the open population can easily occur) and secondary sampling 
periods (very short intervals—in our case, the pairs of consecutive censuses—when the population is essentially closed). An 
important advantage to this framework is the power to estimate recapture probabilities based on the repeated censuses each year 
when the population is essentially closed. The Robust Design Model is well-documented and will not be presented here, but 
interested readers may see an overview at the website noted earlier in this paragraph as well as in key papers (Pollock, 1982; 
Kendall and others, 1997).

We did not assume complete closure between consecutive censuses in the same year. A small number of tortoises suffered 
mortality between the two censuses (for example, captured or recaptured alive in the first census, then dead or moribund in the 
following month’s census). Rather than assuming population closure (that is, forcing probability of survival to equal 1), we 
modeled the probability of survival between a pair of censuses by taking annual survival probability and raising it to the power 
of 1/12 to represent monthly survival probability (see section “Mathematical Models”). We also allowed new tortoises to enter 
the population at any census.

http://www.phidot.org/software/mark/docs/book/pdf/chap15.pdf
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To estimate population size as well as allow new tortoises to enter the population, the Bayesian implementation of the JS 
model includes a strategy called parameter-expanded data augmentation (Royle and Dorazio, 2012). As a brief description, 
we take the set of marked tortoises and list their encounter histories (detection and non-detection data records), and then we 
augment the list with an additional set of all-zero encounter histories (non-detection records) belonging to an implausibly large 
number of hypothetical never-captured tortoises that could potentially have existed in the population. We know by observation 
the number of tortoises in the subset of the population that have been captured at least once. The problem of population 
estimation is then reduced to that of estimating the number of tortoises in the remainder of the population that have never been 
captured. Using recapture probabilities estimated by other components of the model, it is possible to estimate the probability 
for an unmarked tortoise to never be captured, and consequently the most likely number of hypothetical tortoises to have been 
present, but never captured. The implementation is presented with detailed examples by Kéry and Schaub (2012), and those 
details will not be included here. However, it is useful to know that this strategy requires the addition of a “dummy” occasion 
so that all tortoises start in a “not-yet-entered” state prior to the first census. Thus the 14-occasion model actually used a 
15-occasion framework.

The indexing of occasions was important to our modeling. Each tortoise contributes information about the mark-recapture 
population model at every census occasion (whether or not the tortoise is observed at that occasion), except a tortoise does not 
contribute information to census occasions after it is recovered dead and removed. We calculated our model by iterating the 
likelihood of each tortoise’s data from occasions 1–15, except for recovered tortoises, which were iterated over a narrower range 
of occasions (see also sections “Death Records” and “Non-Census Data Modeling”).

Table 1.1.  Relation of survey 
years, census numbers, and 
their corresponding occasion 
numbers in the model.

Year Census Occasion

Dummy Dummy 1
1979 1 2
1979 2 3
1985 3 4
1985 4 5
1989 5 6
1989 6 7
1993 7 8
1993 8 9
1997 9 10
1997 10 11
2002 11 12
2002 12 13
2012 13 14
2012 14 15
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Mathematical Models
We used recapture data across all 14 survey occasions to model population demographic patterns (rates of transition to 

larger size-age groups, and survival rates) and movement (rates of transition between inside and outside the fence) in a Bayesian 
JS modeling framework (Kéry and Schaub, 2012), which is used to also estimate population size and distribution inside and 
outside the fence by sex and size-age group. We grouped size-age classes into three groups: (1) juveniles through immature 
1 (<140 mm; hereafter “JV”), (2) immature 2 (140–179 mm; hereinafter “IM”), and (3) subadults through adults (≥180 mm; 
hereinafter “AD”).

In these models, we represented the status of size-age (JV, IM, AD), location (IN, OUT), and live-dead (not-yet-entered, 
entered/alive, or dead/removed) as states; and growth, movement, and survival processes as transitions between states. We used 
logit functions to express the probabilities of state transition in relationships to predictor variables such as sex, length of time 
between surveys, and other states. Specifically, we used multinomial logistic regression for transitions between the three size-age 
states as a function of time between surveys, and binomial logistic regression for transitions between location states as a function 
of sex and size-age and for transitions between live-dead states as a function of sex, size-age, and location. We accounted for 
imperfect detection by incorporating another binomial logistic regression for detection probability as a function of sex, size-age, 
and location.

The transition probabilities for a JV tortoise follow a multinomial logistic function:

	​ Pr​{JV transition to IM}​ ​ = ​
exp​(​ξ​ JI​​ ​X​ Yrs​​)​ _ c  ​​� (1.1)

	​ Pr​{JV transition to AD}​ ​ = ​
exp​(​ξ​ 0JA​​ + ​ξ​ JA​​ ​X​ Yrs​​)​  _______________ c  ​​� (1.2)

	​ Pr​{JV remain JV}​ ​ = ​
exp​(​ξ​ 0JJ​​ + ​ξ​ JJ​​ ​X​ Yrs​​)​  _______________ c  ​​� (1.3)

where
	ξ0JI, ξ0JA, and ξ0JJ	 are intercept coefficients;
	 ξJI, ξJA, and ξJJ	 are slope coefficients for the number of years since previous survey (XYrs); and
	 c	 is a scaling factor equal to the sum of the three numerators ensuring that all three probabilities sum to 1.

The gamma parameters are not uniquely identified, that is, an arbitrary constant can be added to all parameters without 
affecting the model; therefore, we set ξ0JJ = ξJJ = 0, or, equivalently, the last numerator to 1. The transition probabilities for an 
IM tortoise are similar, except simplify to a binomial logistic function because there is 0 probability of transitioning backward 
from IM to JV:

	​ Pr​{IM transition to AD}​ ​ = ​  
exp​(​ξ​ 0IA​​ + ​ξ​ IA​​ ​X​ Yrs​​)​  __________________  1 + exp​(​ξ​ 0IA​​ + ​ξ​ IA​​ ​X​ Yrs​​)​

​ ​ = ​   1  _____________________  
1 + exp​(− ​(​ξ​ 0IA​​ + ​ξ​ IA​​ ​X​ Yrs​​)​)​

​​� (1.4)

	​ Pr​{IM remain IM}​ ​ = ​   1 __________________  1 + exp​(​ξ​ 0IA​​ + ​ξ​ IA​​ ​X​ Yrs​​)​
​​� (1.5)

where
	ξ0IA and ξIA	 are intercept and slope coefficients.

No further changes to size-age occur after a tortoise reaches AD size, and transition probabilities are set to 0.
We also used logistic functions to express transition probabilities between the location states, inside and outside the fenced 

area, as a function of sex and size-age.
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	​ Pr​{IN transition to OUT}​ ​ = ​   1  ______________________________   1 + exp​(− ​(​ψ​ 0IO​​ + ​ψ​ FIO​​ ​X​ F​​ + ​ψ​ SzIO​​ ​X​ Sz​​)​)​
​​� (1.6)

	​ Pr​{OUT transition to IN}​ ​ = ​   1  ______________________________   1 + exp​(− ​(​ψ​ 0OI​​ + ​ψ​ FOI​​ ​X​ F​​ + ​ψ​ SzOI​​ ​X​ Sz​​)​)​
​​� (1.7)

where
	ψ0IO and ψ0OI	 are intercept coefficients;

	ψFIO, ψSzIO, ψFOI, and ψSzOI	 are slope coefficients;
	 XF	 is an indicator of sex (1 if female, 0 if male); and
	 XSz	 is an index of size (1 for JV, 2 for IM, and 3 for AD).

We used a logistic function to represent annual survival:

	​ Pr​{survive year}​ ​ = ​   1  _______________________________   
1 + exp​(− ​(​ϕ​ 0​​ + ​ϕ​ F​​ ​X​ F​​ + ​ϕ​ Sz​​ ​X​ Sz​​ + ​ϕ​ L​​ ​X​ L​​)​)​​​� (1.8)

where
	 ϕ0 	 is the intercept coefficient; and
	ϕF, ϕSz and ϕL	 are slope coefficients for sex, size-age (XF, XSz) and
	 XL	 is an index of location (1 for inside fence, 2 for outside).

We raised the annual survival probability to the power of k, the number of years since the previous census. For two 
consecutive month-long surveys in the spring, we raised annual survival probability to the power of 1/12 to represent survival 
from one month to the next.

We defined detection probability, the probability of detecting a tortoise conditional on it being alive and present:

	​ Pr​{detection}​ ​ = ​   1  ________________________________   1 + exp​(− ​(​p​ 0​​ + ​p​ F​​ ​X​ F​​ + ​p​ Sz​​ ​X​ Sz​​ + ​p​ L​​ ​X​ L​​)​)​​​� (1.9)

where
	 p0 	 is the intercept coefficient; and
	pF, pSz and pL	 are slope coefficients for sex, size-age, and location (XF, XSz, XL).

We applied the data augmentation technique to estimate the number of undetected tortoises living according to each 
sex, size-class state, and location state (Kéry and Schaub, 2012). We fit all demographic models using the “jagsUI” package 
of R statistical software as an interface to the Bayesian modeling software JAGS (Plummer, 2003; Kellner, 2016; R Core 
Team, 2016).

Death Records
Out of 1,123 tortoises analyzed, 141 were recovered dead on a census and 107 others were recovered dead on non-census 

detections. As carcasses were recovered, they were removed from the study area and unavailable for detection. Tortoises that 
were never found dead had the possibility of being dead or alive throughout the remainder of the study and were modeled at 
all occasions from censuses 1–14 (that is, occasions 1–15, including the dummy occasion; see section “Intervals”). Conversely, 
recovered tortoises were modeled over a truncated range of occasions from census 1 through the last census up to its removal. 
For example, a tortoise (call it “Tortoise A”) that is recovered in census 3 was modeled from censuses 1 through 3 (that is, 
occasions 1–4). Every recovered tortoise was assigned a “last occasion” index ranging from 2 to 15 depending on when its 
recovery occurred, and tortoises that were never recovered were assigned a “last occasion” index of 15.
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Non-Census Data Modeling
Occasionally, between census occasions and during the course of other non-census tortoise research activities at the Natural 

Area, tortoises were sometimes encountered. When this occurred, they were processed in a similar manner as tortoises captured 
or recaptured during a census occasion—that is, new captures were assigned an ID; their ID was recorded along with their 
location, size, and sex (when MCL ≥180 only); and dead tortoises were removed. In cases of non-census recoveries (carcass 
removals) of marked tortoises, then those individuals became unavailable for detection in subsequent censuses. We incorporated 
non-census recovery data into our model because they were too valuable to ignore. All recoveries, whether census or non-census 
related, provide certain information of a tortoise’s death and contribute directly to estimates of survival probability. If we had 
restricted our analysis to tortoise capture and recapture data collected only during censuses, then any tortoise that was removed 
during a non-census recovery would have only live encounters recorded for it; in other words, the model would be unable to 
separate these dead removed tortoises from surviving tortoises that simply evaded further recapture.

The standard mark-recapture model is structured around an interval-based framework, with captures and recaptures 
occurring in relatively short capture periods (in our case census occasions, which divide those intervals). Because non-census 
recoveries did not occur during census occasions, we considered several approaches: (1) assign the non-census recovery to the 
nearest census occasion, thus treating it as if it had occurred on a census; (2) assign the non-census recovery to the next census 
occasion, thus treating it as if had occurred on a later census; or (3) modifying the definition of an occasion so that it could 
represent non-census detection events. We rejected the first approach because it introduced potential data conflicts for tortoises 
actually captured or recaptured alive in the census immediately before being recovered dead. We rejected the second approach 
because the gap between censuses (except for consecutive censuses from the same year) ranged from 4 to 10 years, and we 
were uncertain of the potential biases in misattributing the year of recovery. We chose the third approach; for tortoises with 
non-census recoveries, we modified its next occasion by assigning it to the time of the non-census recovery.

For example, a tortoise (call it “Tortoise B”) that is recovered in 1981 is modeled for two census occasions (censuses 1 
and 2 in 1979) and an additional occasion for 1981. The data for Tortoise B resemble that of Tortoise A (from section, “Death 
Records” example) in the sense that (1) they are both modeled the same number of occasions with respect to demographic 
processes such as growth, movement, and survival, and (2) they are both dead on the last occasion. There are also two important 
differences. First, the timing of the third occasion differs (1985 for Tortoise A, and 1981 for Tortoise B), and consequently the 
“time since last census” variable, which is used to model growth and survival, also differs (for example, since the last census 
would be 1979, then 6 years for Tortoise A, and 2 years for Tortoise B). Second, the recovery of Tortoise A occurred as part of a 
census and is admissible for modeling the detection process, but the recovery of Tortoise B is not. Therefore, whereas Tortoise 
A is modeled through census 3 (that is, occasion 4) for both detection as well as demographic processes (growth, movement, 
and survival), Tortoise B is handled slightly differently and modeled through census 2 (occasion 3) for the detection process and 
through a modified version of occasion 4 (modified for the non-census recovery timing) for the demographic processes.

To manage the different occasions that were admissible for the different processes (demographic or detection), for 
non-census recovered tortoises, we defined a “last census” index equal to the last census occasion prior to the non-census 
recovery (for example, for Tortoise B, occasion 3). For non-census recovered tortoises, the “last census” index was also one 
occasion less than the “last occasion” index (see section “Death Records”; for Tortoise B, occasion 4). Demographic processes 
were modeled through the “last occasion” index, whereas detection processes were modeled through the “last census” index. For 
tortoises that were recovered on a census, the “last census” index was equal to the “last occasion” index. For tortoises that were 
never recovered nor confirmed dead, the “last census” index and “last occasion” index were both equal to 15.

In addition to non-census recoveries, we considered incorporating records of non-census live captures or recaptures into 
the model. These live records, when they occur prior to the first detection on a census or after the last detection on a census, can 
provide some additional information about the period of years when a tortoise was present. We visually inspected first and last 
non-census live records and found that they generally occurred close in time to the nearest detection on a census. We decided 
that there was little to gain from incorporating live non-census records into the model.
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Latent States
Latent states (unobserved states) of tortoises occurred on census occasions when they were not captured or recaptured 

and hence were unavailable for us to observe their states. As part of the Bayesian analysis, the MCMC follows an iterative 
process that simulates the distributions of likely values for all latent variables. Because the MCMC process can be extremely 
time-consuming and memory-intensive, especially when large numbers of parameters or latent variables are involved, we 
reduced the number of latent variables by applying constraints and filling data gaps whenever possible. Specifically, we filled 
data gaps in size-age or survival states when a comparison of observed states in previous and successive occasions indicated 
that the tortoise must have remained in the same state during any intervening occasions. We also reduced the number of 
occasions that we input into the model whenever a tortoise was recovered and removed and unavailable for detection in 
subsequent occasions.

For example, Tortoise 1023 was captured alive on occasions 2, 4, and 5 (that is, censuses 1, 3, and 4), and recovered 
dead on occasion 8 (census 7). Survival state variables are coded as 1=not-yet-entered, 2=live, 3=dead, or NA=not captured 
or recaptured. Occasion 1 is the dummy census (see section “Intervals”), and all tortoises are set to the “not-yet-entered” 
state (table 1.3).

Although the tortoise was not observed at occasion 3, we know that it must have been alive in that occasion because it was 
recaptured alive in two later occasions. We filled the gap in occasion 3 with a live code (2); however, we could not fill the gaps 
for occasions 6 and 7. Because the tortoise was found dead in occasion 8, we only needed to model this tortoise’s data through 
occasion 8, thus leaving 2 latent survival state variables for the MCMC to model (table 1.4).

As a second example, Tortoise 907 was captured alive on occasions 4 and 5 (that is, censuses 3 and 4) and never 
encountered again (table 1.5).

Table 1.2.  Years when non-census detections (captures, 
recaptures, or recoveries) occurred, their timing in relation to 
census surveys, and the corresponding occasion in the model to 
which they were assigned.

Year Timing in relation to censuses Assigned occasion

1978 Before census 1 1
1981 Between censuses 2 and 3 4
1982 Between censuses 2 and 3 4
1986 Between censuses 4 and 5 6
1987 Between censuses 4 and 5 6
1988 Between censuses 4 and 5 6
1989 Between censuses 6 and 7 8
1990 Between censuses 6 and 7 8
1991 Between censuses 6 and 7 8
1992 Between censuses 6 and 7 8
1997 Between censuses 9 and 10 11
1998 Between censuses 10 and 11 12
1999 Between censuses 10 and 11 12
2000 Between censuses 10 and 11 12
2001 Between censuses 10 and 11 12
2014 After census 14 NA

Table 1.3.  Observed survival states (1=not-yet-entered, 2=alive, 3=dead) and latent survival states (NA) by 
occasion number, for Tortoise 1023.

Occasion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Survival state 1 2 NA 2 2 NA NA 3 NA NA NA NA NA NA NA
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Because the survival status of Tortoise 907 was unknown throughout the remainder of the study, the state variables for 
occasions 6 through 15 are latent. The state variables for occasions 2 and 3 are also latent because we do not have data indicating 
whether this tortoise had entered the population at those occasions. We modeled this tortoise’s data through occasion 15 and had 
12 latent survival state variables to model.

Initializing Markov Chains
We iterated (MCMC) simulations to generate statistical distributions for the probable values of latent state variables (see 

section “Latent States”) and, thus jointly, of model coefficients (see section “Mathematical Models”). A list of these parameters 
is shown in table 1.6. We initialized three Markov chains with different sets of starting estimates. We initialized model 
coefficients by using random number generating functions based on diffuse prior distributions, based on a normal distribution 
with mean 0 and standard deviation 100, except for one coefficient for the effect of location on detection probability, θL. We 
were concerned that estimates of detection probability could confound with estimates of survival probability due to declining 
numbers of detections in the later occasions. We also expected that tortoises should be at least as easy to detect when they were 
outside the fence as compared to when they were inside the fence because the area outside of the fence deteriorated with large 
denuded areas and the ground compacted owing to off-road vehicle activity and sheep grazing. To incorporate this relationship, 
we constrained our prior distribution for θL to range uniformly from 0 to 1.

The latent states included survival state (1=not-yet-entered, 2=live, or 3=dead), size-age state (1=JV, 2=IM, or 3=AD), and 
location state (1=Inside or 2=Outside). We did not simply apply random generation to initialize all of these states because of the 
high chance of generating contradictory sequences (for example, AD size-age in one occasion and IM in the next, or dead in one 
occasion and live in the next). It was impossible for the model to process a chain when it was initialized with a contradictory 
state sequence.

We considered two alternative approaches to initializing state variables in the chains: (1) initialize the chains randomly but 
constrained by a set of rules that ensured allowable state sequences, or (2) initialize the chains deterministically using a set of 
rules that ensured allowable state sequences but assign different chains with different rules based on very different assumptions 
about survival and growth. We chose the latter approach because it had two advantages over the former approach: (1) it was 
easier to implement and (2) it allowed us to choose rules that produce very different sets of initial values (that is, greater 
over-dispersion) between the chains to better assess model convergence. When multiple chains converge to the same solutions, 
after being initialized with widely varying values, then those solutions are considered to be robust (Gilks and others, 1996).

Table 1.4.  Model input on survival states (1=not-yet-entered, 
2=alive, 3=dead) and latent survival states (NA) by occasion 
number, for Tortoise 1023.

Occasion 1 2 3 4 5 6 7 8

Survival state 1 2 2 2 2 NA NA 3

Table 1.5.  Observed survival states (1=not-yet-entered, 2=alive) and latent survival states (NA) by occasion 
number, for Tortoise 907.

Occasion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Survival state 1 NA NA 2 2 NA NA NA NA NA NA NA NA NA NA
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We initialized chains using biologically contrasting scenarios about the population demographics. For the best-case 
scenario, we initialized the first two chains by assigning the latent size-age and survival state variables to initial values that were 
consistent with normal-growth and high-survival rates. We varied the two “best-case scenario” chains according to different 
movement scenarios. Specifically, for the first chain we initialized location state variables according to a minimal-movement 
rule by initializing latent locations to last known previous location or next soonest location, whichever was more immediate. 
We initialized the second chain using a random-movement rule by initializing latent locations randomly as inside or outside. For 
the worst-case scenario, we initialized a third chain by initializing the latent size-age and survival state variables with values 
consistent with slow-growth and low-survival rates. For example, under low survival, we initialized tortoises as dead for latent 
survival states after the last live observation, and we initialized size-age states to the slowest growth possible within the intervals 
that tortoises were detected or initialized live (growth could not occur after death). We describe our rules for initializing survival 
and size-age states in greater depth in the following section. We initialized movement states in the worst-case scenario chain 
according to minimal-movement rules, also respecting the rule that tortoises would not move after death.

Rules for Initializing Latent Survival States

We applied two different initialization rules for latent variables of survival state based on worst-case (low-survival) 
and best-case (high-survival) scenarios for survival rates. Under the high-survival rule, we initialized all latent survival state 
variables to the “live” state. Under the low-survival rule, we initialized all latent survival state variables to the “dead” state, 
except in cases where a tortoise was later observed alive. To illustrate, we return to the examples of Tortoises 1023 and 907 
(see section “Latent States”). Because Tortoise 1023 was last captured alive in occasion 5 and recovered dead in occasion 8, we 
assigned two different sets of initial values for the latent survival state in occasions 6 and 7.

The other occasions have data; therefore, they do not require initial values. Tortoise 907 was known to be alive in the 
population during occasions 4 through 5. The latent variables after the last occasion on which it was seen alive were all 
initialized to a live status under the high-survival rule, and to a dead status under the low-survival rule. We initialized the 
occasions prior to the first capture (occasions 2 and 3) to a not-yet-entered state under both rules.

Table 1.6.  Model parameters in three different Markov chains initialized using random distributions (normal, uniform, and Bernoulli) 
and contrasting deterministic rules to maximize differences in starting values among the chains.

[Parameter coefficients and sex were initialized at random from N(0,100) (normal distributions with mean 0 and standard deviation 100), U (0, 1) (uniform 
distributions with range 0 to 1), and B(0.5), (Bernoulli distributions with probability 0.5) distributions]

Parameter Description Initialization method

ξ0JI, ξJI, ξ0JA, ξJA JV to IM or AD growth coefficients N(0,100)
ξ0IA, ξIA IM to AD growth coefficients N(0,100)

ψ0IO, ψFIO, ψSzIO IN to OUT movement coefficients N(0,100)
ψ0OI, ψFOI, ψSzOI OUT to IN movement coefficients N(0,100)

ϕ0, ϕF, ϕSz, ϕL Annual survival coefficients N(0,100)
p0, pF, pSz Detection coefficients N(0,100)

pL Detection coefficient, location effect U(0,1)
XF,i Sex (1=F, 0=M) of tortoise i, if latent B(0.5)
XSz,it Size-age (1=JV, 2=IM, 3=AD) of tortoise i at occasion t, if latent Chain 1: normal-growth rule 

Chain 2: normal-growth rule 
Chain 3: slow-growth rule

XL,it Location (1=inside, 2=outside) of tortoise i at occasion t, if latent Chain 1: minimal-move rule 
Chain 2: random-move rule 
Chain 3: minimal-move rule

XLD,it Survival state (1=not-yet-entered, 2=live, 3=dead) of tortoise i at occasion t, if latent Chain 1: high-survival rule 
Chain 2: high-survival rule 
Chain 3: low-survival rule

kengelki
Sticky Note
Marked set by kengelki



Appendix 1.  Technical Details of Modeling Methods    33

Latent Size-Age States

We also applied two different initialization rules for latent variables of size-age state based on worst-case (slow-growth) 
and best-case (normal-growth) scenarios for growth rates. We initialized latent size-age states using a combination of 
information based on size-age and number of years since the last previous detection, size-age and number of years until the next 
soonest detection, and the survival status at the next soonest detection.

Under the slow-growth rule, we initialized all latent size-age state variables to the last known size-age state, except in cases 
where the next detection of the tortoise was as a dead recovery. Because we only used the slow-growth rule in combination with 
the low-survival rule, for initializing the worst-case scenario chain, we were constrained to initializing latent size-age states in 
a manner that was consistent with initialized latent survival states under the low-survival rule. For any latent states preceding 
a dead recovery, we initialized the latent size-age to the size-age at the time of recovery because the latent survival state would 
have been initialized to the dead state and tortoises cannot grow when dead.

Under the normal-growth rule, we initialized size-age based on a combination of information about the observed size-age 
of that tortoise during any previous or successive detections, and the timing or occasion numbers of those detections. For any 
latent states that preceded the very first detection of a tortoise, we initialized the latent size-age to the first detected size-age. For 
any latent states after the first detection, we developed a hierarchy of rules for choosing which detection event (the last previous 
or the next successive) would provide more useful information from a biological perspective for initializing the latent size-age 
under normal growth conditions:

1.	 If <5 years since last previous detection, then initialize latent size-age to the size-age observed at the last previous 
detection; or

2.	 If ≥5 years since last previous detection but <5 years until the next successive detection, then initialize size-age to the 
size-age observed at the next successive detection; or

3.	 If ≥5 years since last previous detection, and either ≥5 years until the next successive detection or no successive detections, 
then initialize size-age based on the size-age state at the time of the last previous detection and the number of years since 
the last previous detection; and

A.	If the tortoise was in the JV size-age class at the time of the last previous detection, and there were ≥5 years and 
<15 years since the last previous detection, and ≥5 years since the next detection, then initialize size-age to the IM 
size-age class; or

Table 1.8.  Initialized values of latent survival states (1=not-yet-entered, 2=alive, 3=dead) under high-survival and 
low-survival rules for Tortoise 907, which was last seen alive in occasion 5.

[States for occasions 1, 4, and 5 do not require initialization because they were not latent states. The observed survival state is copied from table 1.5 
for reference]

Occasion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Observed survival state 1 NA NA 2 2 NA NA NA NA NA NA NA NA NA NA
Initialized latent survival state 

(High- survival rule)
NA 1 1 NA NA 2 2 2 2 2 2 2 2 2 2

Initialized latent survival state 
(Low-survival rule)

NA 1 1 NA NA 3 3 3 3 3 3 3 3 3 3

Table 1.7.  Initialized values of latent survival states (1=not-yet-entered, 2=live, 3=dead) under 
high-survival and low-survival rules for Tortoise 1023, which was recovered dead in occasion 8.

[States for occasions 1–5 and 8 do not require initialization because they were not latent states. The observed survival 
state is copied from table 1.4 for reference]

Occasion 1 2 3 4 5 6 7 8

Observed survival state 1 2 2 2 2 NA NA 3
Initialized latent survival state (High-survival rule) NA NA NA NA NA 2 2 NA
Initialized latent survival state (Low-survival rule) NA NA NA NA NA 3 3 NA
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B.	If the tortoise was in the JV size-age class at the time of the last previous detection, and there were ≥15 years since the 
last previous detection, and ≥5 years until the next detection, then initialize size-age to the AD size-age class; or

C.	If the tortoise was in the IM size-age class at the time of the last previous detection, and there were <10 years since the 
last previous detection, and ≥5 years since the next detection, then initialize size-age to the IM size-age class.

For example, the size-age states for Tortoises 1023 and 907, respectively, are presented in tables 1.9 and 1.10, 
with observed size-age states shown for reference and the corresponding initial values under the slow-growth and 
normal-growth rules.

Table 1.9.  Observed size-age states and initialized values of latent size-age states (1=JV, 
2=IM, 3=AD) under slow-growth and normal-growth rules for Tortoise 1023, which was 
recovered dead in occasion 8.

[Under the slow-growth rule for the worst-case scenario Markov chain, the latent size-age states in occasions 
6 and 7 are initialized to the same size-age (AD) of the tortoise when it was recovered dead in occasion 8, 
for consistency with latent survival states having been set to the dead state under the low-survival rule (see 
table 1.7)]

Occasion 1 2 3 4 5 6 7 8

Year — 1979 1979 1985 1985 1989 1989 1993
Observed size-age NA 1 NA 2 2 NA NA 3
Initial values (slow-growth) 1 NA 1 NA NA 3 3 NA
Initial values (normal-growth) 1 NA 1 NA NA 2 2 NA

Table 1.10.  Observed size-age states and initialized values of latent size-age states (1=JV, 2=IM, 3=AD) 
under slow-growth and normal-growth rules for Tortoise 907, which was captured in the JV size-age state in 
occasions 4 and 5.

Occasion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Year — 79 79 85 85 89 89 93 93 97 97 02 02 12 12
Obs. size-age NA NA NA 1 1 NA NA NA NA NA NA NA NA NA NA
Slow-growth 1 1 1 NA NA 1 1 1 1 1 1 1 1 1 1
Normal-growth 1 1 1 NA NA 1 1 2 2 2 2 3 3 3 3
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Convergence
We used the “jagsUI” package in R software as an interface for using Just Another Gibbs Sampler (JAGS) software to 

conduct MCMC simulations with Gibbs sampling algorithms (Plummer, 2003, 2016; Kellner, 2016; R Core Team, 2016). 
We parallel-processed the Markov chains in batches that could complete in a day, approximately 5,000 iterations per chain, 
at a thinning rate of 25. Following each day’s updates, we examined trace plots and potential scale reduction factors to assess 
the chains for convergence (Gelman and others, 1997). We monitored burn-in activity (large shifts in the trace plots) and 
convergence of some parameters, and we continued after burn-in until there were no further discernible shifts or convergence 
among the trace of chains, nor improvements in the Gelman-Rubin tests for at least 2 days of simulations in a row, about 
35,000 iterations total.

When chains had still not reached convergence or failed to mix, we adapted our model to address the possibility that our 
initial values could be too overdispersed or that our prior distributions could be too diffuse to converge to the correct solution. 
Gibbs sampling methods, and more generally Metropolis-Hastings algorithms, have been noted to have problems converging 
in high-dimensional models (Betancourt, 2017). We repeated our analysis, except that we divided it into two stages. In the 
first stage, we simplified our model to a Cormack-Jolly-Seber (hereinafter “CJS”) model, which only estimates the parameter 
coefficients of the growth, movement, and survival processes. In the second stage, we refit our JS model with revised sets of 
initial values and prior distributions based on information resulting from the CJS model.

More specifically, we simplified our model by omitting population estimation, which contributes to the high dimensionality 
of our model with parameter-extended data-augmentation, the dummy occasion, and the “not-yet-entered” survival state. This 
essentially reduced our model to a CJS model, but we retained the same model equations with the same diffuse priors and 
specifications as our JS model. Another difference between the CJS model and the JS model is that the CJS model only uses data 
from a tortoise conditional upon its first capture. We ran simulations based on the CJS model and assessed convergence in the 
same manner as for the JS model.

When the CJS model reached convergence, we took the posterior distributions of model coefficients and used them to 
generate new initial values and new prior distributions for model coefficients in our JS model (table 1.11). We generated new 
initial values for model coefficients of our JS model by randomly sampling directly from the posterior distributions from the 
CJS model. For those model coefficients that had converged chains, we kept the original diffuse prior, N (0,100); that is, normal 
distribution with mean of 0 and standard deviation of 100. For model coefficients that did not converge, we revised the prior so 
that it was centered around the corresponding posterior distribution from the CJS model but with a variance larger than the CJS 
posterior variance and smaller than the original diffuse variance. We repeated simulations using the revised prior distributions 
and initial values and assessed convergence in the same manner.
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Table 1.11.  Prior and initialization distributions for model coefficient 
parameters of the Jolly-Seber model after revisions based on a converged 
Cormack-Jolly-Seber model.

[Parameters were initialized at random from N(μ,σ) (normal distribution with mean μ and 
standard deviation σ), U(0,1) (uniform distribution with range 0 to 1), and G(α,β) (Gamma 
distribution shape α, and scale β) distributions]

Parameter Description
Revised initial 

values
Revised prior 
distribution

γ0JI JV to IM growth intercept N(–2.7, 0.41) N(–2.7, 1.12)
γ0JA JV to AD growth intercept N(–5.5, 1.00) N(–5.6, 1.41)
γJI Effect of years on JV to IM growth N(0.46, 0.11) N(0.5, 0.79)
γJA Effect of years on JV to AD growth N(0.76, 0.18) N(0.8, 0.91)
γ0IA IM to AD growth intercept N(–1.8, 0.40) N(–1.8, 1.12)
γIA Effect of years on IM to AD growth N(0.58, 0.15) N(0.6, 0.88)
λ0IO IN to OUT movement intercept N(–4.2, 1.30) N(0, 100)
λFIO Movement of females vs males N(–0.49, 0.32) N(0, 100)
λSzIO Movement of larger vs smaller sizes N(0.39, 0.43) N(0, 100)
λ0OI OUT to IN movement intercept N(–2.2, 0.85) N(0, 100)
λFOI Movement of females vs males N(–0.53, 0.31) N(0, 100)
λSzOI Movement of larger vs smaller sizes N(0.24, 0.29) N(0, 100)
ψ0 Annual survival intercept N(0.60, 0.27) N(0.6, 1.0)
ψF Survival of females vs males N(0.28, 0.08) N(0, 100)
ψSz Survival of larger vs smaller sizes N(0.29, 0.08) N(0.3, 0.77)
ψL Survival outside vs inside fence N(–0.14, 0.10) N(0, 100)
θ0 Detection intercept N(–1.3, 0.31) N(–1.6, 1.0)
θF Detection of females vs males N(–0.023, 0.13) N(0, 100)
θSz Detection of larger vs smaller sizes N(0.79, 0.10) N(0.8, 0.79)
θL Detection outside vs inside fence G(1.4, 1/0.06) U(0, 1)
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Appendix 2.  Technical Details of Modeling Results
We ran Markov chain Monte Carlo (MCMC) simulations on our model as described in appendix 1. Based on trials running 

MCMC simulations on previous versions of our model, we observed that the chains wandered for the first several thousand 
iterations and then stabilized after approximately 15,000 iterations. For the final version of our model, we started the chains 
with a burn-in of 15,000 iterations per chain to discard, followed by another set of 15,000 iterations, with a thinning rate of 
25, yielding 600 posterior samples per chain, for a total of 1,800 samples across the three chains. The processing time to run 
the chains using parallel processing was 142 hours (nearly 6 days). Based on visual inspection of trace plots of the chains, the 
chains did not appear to settle into their posterior distributions until approximately the 20,000th iteration, about 5,000 iterations 
beyond the 15,000 burn-in iterations we originally planned to discard. The chains for some of the parameters indicated high 
autocorrelations and low effective sample sizes. We continued to process additional iterations, in increments of 15,000, to update 
the model and monitor the chains for further improvements in their convergence. We repeated four updates of the model, with 
each update processing an additional 15,000 iterations with a thinning rate of 25 and yielding 1,800 new samples. We examined 
trace plots after each successive update and saw no further improvements or changes to the chains. The four updates took 75, 59, 
33, and 33 hours, respectively (8–9 days processing time). We report results from the fourth and final update.

Following recommendations by Gelman and others (1997) that potential scale reduction factors (​​ ̂  r ​​) should be close to 1 
and much less than 1.2 for acceptable convergence, our Jolly-Seber model satisfied the Gelman-Rubin test for convergence for 
some but not all model parameters. We reached convergence for all model parameter coefficients associated with movement 
and the effects of sex and location on survival and detection probabilities (table 2.1). When combining the samples from the 
three Markov chains, and accounting for autocorrelations within the chains, the effective sample sizes describing the posterior 
distributions of these coefficients varied from 39 to 1,800.

Table 2.1.  Model coefficient parameters and summaries of Markov chain Monte Carlo simulations of posterior distribution estimates.

[Model coefficients are listed in terms of their mathematical symbol in model equations (see appendix 1) and their programming code name as used in 
figures 2.1–2.5. (Note: Greek letter naming conventions were not consistent between symbols and code names.) Posterior distribution summaries include mean, 
standard deviation (SD), median (50-percent quantile), and 90-percent credible interval (5-percent and 95-percent quantiles). Potential scale reduction factors 
(PSRF; ​​ ̂  r ​​), indicating chains converged when <1.1, and effective sample sizes are presented. Abbreviation: %, percent; SD, standard deviation]

Model coef-
ficient

parameters Posterior distribution
90-percent credible 

interval PSRF 
Effective 

sample size
Symbol Code name Mean SD Median 5% 95%

ξ0JI xi.intercept[1,2] –3.507 0.457 –3.474 –4.293 –2.790 1.165 16
ξJI xi.intercept[1,3] –4.552 0.951 –4.286 –6.387 –3.347 2.738 4
ξ0JA xi.intercept[2,3] –2.258 0.397 –2.266 –2.915 –1.607 1.471 8
ξJA xi.slopeYrs[1,2] 0.546 0.294 0.655 0.071 0.913 4.583 3
ξ0IA xi.slopeYrs[1,3] 0.988 0.368 1.149 0.374 1.414 5.326 3
ξIA xi.slopeYrs[2,3] 0.733 0.482 0.979 –0.009 1.246 7.756 3
ψ0IO psiIO.intercept –3.500 0.841 –3.469 –4.976 –2.181 1.067 39
ψFIO psiIO.slopeSex –0.694 0.297 –0.690 –1.183 –0.205 1.006 354
ψSzIO psiIO.slopeSize 0.227 0.288 0.223 –0.216 0.734 1.069 39
ψ0OI psiOI.intercept –2.630 0.590 –2.669 –3.562 –1.650 1.054 43
ψFOI psiOI.slopeSex –0.241 0.264 –0.246 –0.677 0.204 1.006 285
ψSzOI psiOI.slopeSize 0.285 0.204 0.298 –0.050 0.600 1.050 47
ϕ0 phi.intercept 1.687 0.491 1.854 0.854 2.299 4.054 3
ϕF phi.slopeSex 0.200 0.074 0.200 0.076 0.320 1.037 59
ϕSz phi.slopeSize –0.026 0.181 –0.104 –0.239 0.270 5.378 3
ϕL phi.slopeLoc –0.131 0.087 –0.129 –0.277 0.010 1.028 77
p0 po.intercept –0.167 0.374 –0.053 –0.827 0.313 3.363 4
pF po.slopeSex –0.013 0.105 –0.013 –0.189 0.157 1.001 1,800
pSz po.slopeSize 0.370 0.126 0.332 0.205 0.593 3.349 4
pL po.slopeLoc 0.050 0.045 0.036 0.003 0.141 1.000 1,800
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Our model did not reach convergence for any parameters associated with size-age variables, including all parameter 
coefficients for growth processes and the slope parameter coefficients for the effects of size-age on movement, survival, and 
detection probabilities (table 2.1). Intercept parameter coefficients also did not converge, as intercept parameter coefficients are 
correlated with slope parameter coefficients. For these parameters, the ​​ ̂  r ​​ statistic ranged from 1.4 to 7.8. Combining the samples 
of the three Markov chains, the effective sample sizes for the posterior distributions of these coefficients were ≤16, and in some 
cases only 3.

When examining individual chains for the non-converged parameters, for example, the effect of time (in years) on growth 
rates, there were consistent patterns (figs. 2.1 and 2.2). Both chains based on normal-growth and high-survival (chains 1 and 
2, red and black) were always well mixed, whereas the third chain based on slow-growth and low-survival (chain 3, green) 
was different from the other two, and in some cases completely separate from the other two. In cases when the third chain did 
not overlap with the other two chains, the effective sample size was equal to 3, the number of chains. Although chains did not 
mix for these parameters, they exhibited stationary behavior (that is, did not display trends with increasing iterations) at least 
over the last 60,000 out of 90,000 iterations (339 hours) that we ran for this model. Thus, although these parameter estimates 
did not converge in the sense of reaching agreement between all three chains, individual chains appeared to have converged 
to a distribution. Different chains appeared to converge to different distributions depending on whether they were initialized 
according to normal-growth/high-survival starting values or slow-growth/low-survival starting values.

When differences between chains occurred, the median values of model parameters never differed by more than 
approximately 2 (figs. 2.1–2.5), which is a relatively small difference when considering that model parameters from different 
chains were randomly initialized from normal distributions with a standard deviation of 100. This indicates that our model 
managed to extract some information from the data with regard to these parameters. However, differences of 2 in the parameters 
can still translate into large inconsistencies in derived parameters (for example, probability and population density estimates). 
For example, –1 and 1 on the logit scale translate to 27-percent and 73-percent probabilities, respectively. The uncertainty in our 
estimates due to the lack of convergence among chains is reflected by widened 90-percent credible intervals that represent the 
majority range of estimates across all three chains omitting the lowest 5 percent and highest 5 percent of values. A 90-percent 
level is high enough to ensure that the credible interval will include median estimates from the highest and lowest chains no 
matter how different they are.

Having converged chains is important when making statistical inferences. When chains are unconverged or when they 
converge to different posterior distributions, they cannot all be correct. This calls into question the validity of results from any 
one chain, and we are unable to determine the true posterior distribution or even which chain is closest to it. We present posterior 
estimates based on the combined results of unconverged chains because, although less ideal than those of converged chains, 
they can still be useful when they provide similar inferences to one another. Differences among chains reveal some sensitivities 
to their initial values, which we had systematically set to opposite ends of the biological spectrum for growth (normal or slow), 
survival (high or low), and movement (minimal or random). We believe that the truth falls somewhere between the ends of 
the spectrum, and that our 90-percent credible intervals from the posterior distribution based on unconverged chains likely 
encapsulate most of the true posterior distribution. Therefore, unconverged chains can still be useful when they indicate similar 
population inferences (figs. 2.6, 2.7, and 2.8). For example, consider the parameters for the effect of time (in years) since the 
previous survey on the probability of growth from JV to IM, JV to AD, and IM to AD size-age states (fig. 2.1, bottom row, 
and fig. 2.2, first two rows). When combining the chains together, the posterior distribution densities were bimodal, displaying 
two separate concentrations of estimates for the effect of years on growth. These estimates were mostly positive, and almost 
completely positive for growths from JV to IM or from JV to AD. The positive estimates suggest a positive correlation wherein 
an increased time (in years) since the last survey will increase the probability of growth to a larger size-age state. The third 
chain in green, which was initialized based on slow-growth starting values, rests lower on the plots than the other two chains 
(red and black), which were initialized based on normal-growth starting values. Both chains support a positive effect, at least for 
the JV to IM and the JV to AD growths, with the effect being greater with the normal-growth chain than the slow-growth chain 
(figs. 2.6 and 2.7). Likewise, all three chains consistently indicate similar patterns of large decreases in population size over 
time (fig. 2.8).
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Figure 2.1.  Trace plots and posterior distribution density plots of three Markov chains for four parameters 
the intercepts of growth models from JV to IM size-age (xi.intercept [1,2]) (top row), JV to AD size-age (xi.
intercept [1,3]) (second from top row), IM to AD size-age (xi.intercept [2,3]) (third from top row), and the 
effect of time (in years) since previous survey on growth from JV to IM size-age (xi.slopeYrs [1,2] (bottom 
row). Two chains (red and black) were started with normal-growth and high-survival initial values, and the 
third chain (green) was started with slow-growth and low-survival initial values.
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Figure 2.2.  Trace plots and posterior distribution density plots of three Markov chains for four 
parameters—the effect of time (in years) since previous survey on growth from JV to AD size-age (xi.
slopeYrs [1,3]) (top row), IM to AD size-age (xi.slopeYrs [2,3]) (second from top row), and the intercept 
and effect of sex (being female) in the movement model from inside to outside (psiIO.intercept [third from 
top row], psiIO.slopeSex [bottom row]). Two chains (red and black) were started with normal-growth and 
high-survival initial values, and the third chain (green) was started with slow-growth and low-survival initial 
values.
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Figure 2.3.  Trace plots and posterior distribution density plots of three Markov chains for four 
parameters—the effect of size-age on inside-to-outside movements (psiIO.slopeSize) (top row), intercept 
in the outside-to-inside movement model (psiOI.intercept) (second from top row), and effects of sex (being 
female) and size-age on outside-to-inside movements (psiOI.slopeSex [third from top row], psiOI.slopeSize 
[bottom row]). Two chains (red and black) were started with normal-growth and high-survival initial values, 
and the third chain (green) was started with slow-growth and low-survival initial values.
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Figure 2.4.  Trace plots and posterior distribution density plots of three Markov chains for four 
parameters—the intercept in the survival model (phi.intercept) (top row), and effects of sex (being female; 
phi.slopeSex) (second from top row), size-age (phi.slopeSize) (third from top row), and location (phi.
slopeLoc) (bottom row) on survival. Two chains (red and black) were started with normal-growth and 
high-survival initial values, and the third chain (green) was started with slow-growth and low-survival initial 
values.
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Figure 2.5.  Trace plots and posterior distribution density plots of three Markov chains for four 
parameters—the intercept in the detection model (po.intercept) (top row), and effects of sex (being female; 
po.slopeSex) (second from top row), size-age (po.slopeSize) (third from top row), and location (po.slopeLoc) 
(bottom row) on survival. Two chains (red and black) were started with normal-growth and high-survival 
initial values, and the third chain (green) was started with slow-growth and low-survival initial values.
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Figure 2.6.  Medians (dots) and 90-percent credible intervals (bars) from posterior 
distributions based on three separate Markov chains for estimating the probability of 
transitioning from JV to AD size-age in relationship to increasing time since the previous 
survey. Variables V1–V19 correspond to time intervals (time since previous survey) ranging 
from 1 to 10 years in increments of one-half-years. Two chains (red and black) were started 
with normal-growth and high-survival initial values, and the third chain (green) was started 
with slow-growth and low-survival initial value.
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Figure 2.7.  Medians (dots) and 90-percent credible intervals (bars) from posterior 
distributions based on three separate Markov chains for estimating the probability of 
transitioning from IM to AD size-age in relationship to increasing time since the previous 
survey. Variables V1–V19 correspond to time intervals (time since previous survey) ranging 
from 1 to 10 years in increments of one-half-years. Two chains (red and black) were started 
with normal-growth and high-survival initial values, and the third chain (green) was started 
with slow-growth and low-survival initial value.
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Figure 2.8.  Medians (dots) and 90-percent credible intervals (bars) from posterior 
distributions based on three separate Markov chains for estimating the population size of 
desert tortoises across 14 surveys in 1979 (N[1] and N[2]), 1985 (N[3] and N[4]), 1989 (N[5] and 
N[6]), 1993 (N[7] and N[8]), 1997 (N[9] and N[10]), 2002 (N[11] and N[12]), and 2012 (N[13] and 
N[14]). Two chains (red and black) were started with normal-growth and high-survival initial 
values, and the third chain (green) was started with slow-growth and low-survival initial value.
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Appendix 3.  JAGS Code for Multistate JS Model
############################################################################
## JAGS MODEL FOR JOLLY-SEBER MODEL
############################################################################
# Three state variables and one categorical covariate
# Tortoise must be in one of each of these categories
# ---------------------------------------------
# Sex Parameter (SS), Individual Covariate:
# 1=Female
# 2=Males
# ---------------------------------------------
# Size/Age States (SAS):
# 1=Juv or Juvenile
# 2=Imm or Immature
# 3=Ad or Adult
# ---------------------------------------------
# Location States (LoS):
# 1=I or Inside
# 2=O or Outside
# ---------------------------------------------
# Live/Dead States (LDS):
# 1=Ny or Not yet entered
# 2=Lv or Live
# 3=Dd or Dead, Removed or ID damaged
# ---------------------------------------------
# Observation (Obs):
# 1=Observed or detected
# 2=Not Seen or not detected
# ---------------------------------------------

model{

# ===========================================================================
# DERIVED POPULATION PARAMETERS
# ================================

# nIntervals = 15 (14 census + 1 dummy)
# N[t] = number of tortoises alive and present on census t, where t=1 to 14
# Nx[t,sex,sze,loc] = number of tortoises of a particular sex, size, and location that 
were alive and present on census t, where t=1 to 14
# N2[u] = number of tortoises alive and present on either of 2 censuses in year u, 
where u=1 to 7
# Nx2[u,sex,sze,loc] = number of tortoises of a particular sex, size, and location 
that were alive and present on either of 2 censuses in year u, where u=1 to 7.  This 
calculation allows double-counting if tortoise changed size or location state within 
the same year 

# This section for derived parameters for sample sizes aggregating info from both 
censuses by year 

for (u in 1:7){
  for (sex in 1:2){
    for (sze in 1:3){
      for (loc in 1:2){
        Nx2[u,sex,sze,loc] <- sum(alx2[,u,sex,sze,loc])
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        for (i in 1:M){
          alx2[i,u,sex,sze,loc] <- al2[i,u]*equals(zFemale[i], 2-sex)*
                  (equals(zSizeAge[i,u*2-1], sze)*equals(zLoc[i,u*2-1], loc) + 
                   equals(zSizeAge[i,u*2], sze)*equals(zLoc[i,u*2], loc))/2 
                  # divide by 4 to average btw 2 states of both SizeAge and Loc  
        }
      }
    }
  }
}

for (u in 1:7){
  N2[u] <- sum(al2[,u])         # Actual population size (annual-level)
  for (i in 1:M){
    al2[i,u] <- al[i,u*2-1] || al[i,u*2] # Live in year u if live either survey 
  } # i
} # t

# --------------------------------------------------------

for (t in 2:nIntervals){
  for (sex in 1:2){
    for (sze in 1:3){
      for (loc in 1:2){
        Nx[t-1,sex,sze,loc] <- sum(alx[,t-1,sex,sze,loc])
        for (i in 1:M){
          alx[i,t-1,sex,sze,loc] <- al[i,t-1]*
                                    equals(zFemale[i], 2-sex)*
                                    equals(zSizeAge[i,t], sze)*
                                    equals(zLoc[i,t], loc)
        }
      }
    }
  }
}

Nsuper <- sum(w)                # Superpopulation size
for (i in 1:M){
  w[i] <- 1-equals(alive[i], 0)
} # i

for (t in 1:(nIntervals-1)){
  N[t] <- sum(al[,t])         # Actual population size (survey-level)
                              # B[t] <- sum(d[,t])   # Number of entries
} # t

for (i in 1:M){
  alive[i] <- sum(al[i,])
                            #   for (t in 1:(nIntervals-1)){
                            #     d[i,t] <- equals(zLiveDead[i,t]-al[i,t], 0)
                            #   } # t
  for (t in 2:nIntervals){
    al[i,t-1] <- equals(zLiveDead[i,t], 2)
  } # t
} # i
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# for (t in 1:(nIntervals-1)){
#   b[t] <- cprob[t]/psi        # Entry prob = prob of entry at t given incl
# } # t
# psi <- sum(cprob[])           # Inclusion prob = prob of ever entering
# 
# cprob[1] <- gamma[1]          # Prob of not entering prior to t then enter
# for (t in 2:(nIntervals-1)){
#   cprob[t] <- gamma[t]*prod(qgamma[1:(t-1)])
# } # t
# 
# for (t in 1:(nIntervals-1)){  # Prob of not entering given not yet entered
#   qgamma[t] <- 1-gamma[t]
# } # t

# =========================================================================
# LIKELIHOOD
# ================================
# Loop through all individuals and augmented zero-histories

for (i in 1:M){

  # There are two time loops:
  # One for observation process (2 through JS.lc), 
  # and a second one for state transitions (2 through JS.l).

  # -------------------------------------------------------------------------
  # LIKELIHOOD FOR OBSERVATION PROCESS (DETECTION)
  # Loop through all time intervals that are applicable for each individual, 
  # start with JS census interval 2 
  # and end with the last JS census interval (JS.lc[i]).
  # Note: LiveDead states are 2:3 in JS model as opposed to 1:2 in CJS model 
  
  for (t in 2:JS.lc[i]){
    
    # Detection (Observation) Process: 
    # observation indicator (1=observed, 0=not observed)
    # (dcat not needed here, because outcomes are bernoulli)
  
      Detect[i,t] ~ dbern(po[zSizeAge[i,t], zLoc[i,t], zLiveDead[i,t], i, t])
    
    # Define array of detection (observation) probabilities.  
    # For individual i at time t, this is a 3-d array:

    for (sizeage in 1:3){
      for (loc in 1:2){
        po[sizeage,loc,1,i,t] <- 0
        logit(po[sizeage,loc,2,i,t]) <- po.intercept 
                                        + po.slopeSex * zFemale[i] 
                                        + po.slopeSize * sizeage 
                                        + po.slopeLoc * loc 
                                        #+ po.slopeDead * ld 
                                        #+ po.slopePpt * SpringPpt[i,t]
                                        #+ po.slopePrvPpt * PrevSpringPpt[i,t]
                                        #+ po.slopeYrs * YrsSinceDetect[i,t]
        po[sizeage,loc,3,i,t] <- 0
      }
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    }

  } # END LOOPING through time intervals t

  # -------------------------------------------------------------------------
  # LIKELIHOOD FOR STATE PROCESS (SIZE/AGE, LOCATION, AND LIVE/DEAD STATUS)
  # Loop through all time intervals that are applicable for each individual. 

  for (t in 2:nIntervals){

    AL[i,t] <- equals(zLiveDead[i,t-1], 2) # indicates if live on prev survey

    # -----------------------------------------------------------------------
    # LIKELIHOOD FOR ENTRY/LIVE/DEAD STATUS

    # State Process: draw Live/Dead State LDS(t) given LDS(t-1)

      zLiveDead[i,t] ~ dcat( psLiveDead[zLiveDead[i,t-1],  i,  t,  ] )

    # Define 3x3 state-transition matrix for Entry/Live/Dead States
    # Previously the model was defined by:
    # psLiveDead[1,i,t,2] <- gamma[t-1]
    # psLiveDead[1,i,t,3] <- 0
    # However this created opportunities for inconsistencies
    # for tortoises that were only seen dead and might not have 
    # been alive on earlier surveys (for example, tortoise 866)  

      psLiveDead[1,i,t,1] <- 1-gamma[t-1]
      psLiveDead[1,i,t,2] <- gamma[t-1]*(phi[i,t]^(YrsSinceSurvey[i,t]/2))
      psLiveDead[1,i,t,3] <- gamma[t-1]*(1-(phi[i,t]^(YrsSinceSurvey[i,t]/2)))
      psLiveDead[2,i,t,1] <- 0
      psLiveDead[2,i,t,2] <- phi[i,t]^YrsSinceSurvey[i,t]
      psLiveDead[2,i,t,3] <- 1-(phi[i,t]^YrsSinceSurvey[i,t])
      psLiveDead[3,i,t,1] <- 0
      psLiveDead[3,i,t,2] <- 0
      psLiveDead[3,i,t,3] <- 1

    # Define annual probabilities of Live/Dead State LDS(t) given LDS(t-1):

      # Tortoises that have not yet entered (LDS=1) transition to 
      # Live (LDS=2) according to removal entry rates (gamma parameter)
      # that do not depend on covariates.  Use model for other states.

      logit(phi[i,t]) <- phi.intercept 
                        + phi.slopeSex * zFemale[i]
                        + phi.slopeSize * zSizeAge[i,t]
                        + phi.slopeLoc * zLoc[i,t]

    # -----------------------------------------------------------------------
    # LIKELIHOOD FOR SIZE/AGE

    # State Process: draw Size/Age State SAS(t) given SAS(t-1)

      zSizeAge[i,t] ~ dcat( psSizeAge [zSizeAge[i,t-1],  i,  t,  ] )  

      # Alternatively,           
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      # zSizeAge[i,t] ~ dcat( psSizeAge [zSizeAge[i,t-1],  i,  t-1,  ] ) 
      # (But I think this will cause problems resolving the parms at t-1)    

    # Define state-transition matrix for Size/Age States
    # (If tortoise alive previous survey, use mlogit probs
    # otherwise no transitions with prob 1)
  
      psSizeAge[1,i,t,1] <- xiJuvJuv[i,t]*AL[i,t]+(1-AL[i,t])
      psSizeAge[1,i,t,2] <- xiJuvImm[i,t]*AL[i,t]
      psSizeAge[1,i,t,3] <- xiJuvAd[i,t]*AL[i,t]
      psSizeAge[2,i,t,1] <- 0
      psSizeAge[2,i,t,2] <- xiImmImm[i,t]*AL[i,t]+(1-AL[i,t])
      psSizeAge[2,i,t,3] <- xiImmAd[i,t]*AL[i,t]
      psSizeAge[3,i,t,1] <- 0
      psSizeAge[3,i,t,2] <- 0
      psSizeAge[3,i,t,3] <- 1

    # Define probabilities of SizeAge State SAS(t) given SAS(t-1):

      # Juveniles (SAS=1) have three options at the next time step:
      # Juveniles (no transition, i.e. SAS=1), Immatures (SAS=2), 
      # or Subadults/Adults (SAS=3)
  
      xiJuvJuv[i,t] <- expLin[1,i,t,1]/sum(expLin[1,i,t,])  
      xiJuvImm[i,t] <- expLin[1,i,t,2]/sum(expLin[1,i,t,])
      xiJuvAd[i,t] <- expLin[1,i,t,3]/sum(expLin[1,i,t,])

      expLin[1,i,t,1] <- 1
      log(expLin[1,i,t,2]) <- 
          xi.intercept[1,2] + xi.slopeYrs[1,2] * YrsSinceSurvey[i,t] 
      log(expLin[1,i,t,3]) <- 
          xi.intercept[1,3] + xi.slopeYrs[1,3] * YrsSinceSurvey[i,t]

      # Immatures (SAS=2) have two state possibilities at next time step:
      # Juveniles (SAS=1) has 0 probability (no reverse aging), 
      # which leaves Immatures (SAS=2) and Subadults/Adults (SAS=3)

      xiImmJuv[i,t] <- expLin[2,i,t,1]/sum(expLin[2,i,t,])
      xiImmImm[i,t] <- expLin[2,i,t,2]/sum(expLin[2,i,t,])
      xiImmAd[i,t] <- expLin[2,i,t,3]/sum(expLin[2,i,t,])
      
      expLin[2,i,t,1] <- 0
      expLin[2,i,t,2] <- 1
      log(expLin[2,i,t,3]) <- 
          xi.intercept[2,3] + xi.slopeYrs[2,3] * YrsSinceSurvey[i,t]

      # Subadults/Adults (SAS=3) will remain Subadults/Adults (SAS=3) 
      # with 100 pct probability

      xiAdJuv[i,t] <- expLin[3,i,t,1]/sum(expLin[3,i,t,])
      xiAdImm[i,t] <- expLin[3,i,t,2]/sum(expLin[3,i,t,])
      xiAdAd[i,t] <- expLin[3,i,t,3]/sum(expLin[3,i,t,])

      expLin[3,i,t,1] <- 0
      expLin[3,i,t,2] <- 0
      expLin[3,i,t,3] <- 1
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    # -----------------------------------------------------------------------
    # LIKELIHOOD FOR LOCATION

    # State Process: draw Location State LoS(t) given LoS(t-1)
    # (use dcat rather than dbern to model the location as 1 and 2, 
    # in order to index the detection array below)
    
      zLoc[i,t] ~ dcat( psLocation [zLoc[i,t-1],  i,  t,  ] )
  
    # Define state-transition matrix for Size/Age State
    
      psLocation[1,i,t,1] <- 1-psiIO[i,t]
      psLocation[1,i,t,2] <- psiIO[i,t]
      psLocation[2,i,t,1] <- psiOI[i,t]
      psLocation[2,i,t,2] <- 1-psiOI[i,t]
  
    # Define probabilities of Location State LoS(t) given LoS(t-1), 
    # as a function of sex and size:

      logit(psiIO[i,t]) <- psiIO.intercept 
                        + psiIO.slopeSex * zFemale[i]
                        + psiIO.slopeSize * zSizeAge[i,t]

      logit(psiOI[i,t]) <- psiOI.intercept 
                        + psiOI.slopeSex * zFemale[i]
                        + psiOI.slopeSize * zSizeAge[i,t]

  } # END LOOPING through time intervals t

  # State process starts with interval 1 (below) 
  # and then continues with interval 2 (above time loop) and  
  # ends with last interval (JS.l[i]) prior to or incl death observation.
  
  zSizeAge[i,1] ~ dcat(pSizeAge)
  zLoc[i,1] ~ dcat(pLoc) 

  # --------------------------
  # LIKELIHOOD FOR SEX
  # Latent or Observed sexes 

  zFemale[i] ~ dbern(pFemale)

} # END LOOPING through individuals i

# ===========================================================================
# PRIORS
# ================================

# Intercept and slope parms for logit probs in state transition matrices
# (multinomial logit in the case of size/age states and live/dead states).

  # ------------------------------
  # SIZE/AGE Transition Parameters
  # ------------------------------
  # The slopeYrs parameter relates the no. of years since previous obs
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  # (YrsSinceSurvey) to xi,
  # the prob that a size/age transition occurs 
  # between the previous and current time step.   
  # There are 3 size/age groups (3x3 transition matrix).
  # These constraints limit the number of parameters,
  # 1) the unit sum constraint 
  # (probabilities of all states at the next time step must sum to 1)
  # 2) larger tortoises cannot transition to a smaller state

  # parameters for the logit probabilities of...
  # ...size/age state process: juvenile->immature

    xi.intercept[1,2] ~ dnorm(-2.7, 0.8)
    xi.slopeYrs[1,2] ~ dnorm(0.5, 1.6)
    
  # ...size/age state process: juvenile->subadult/adult

    xi.intercept[1,3] ~ dnorm(-5.6, 0.5)
    xi.slopeYrs[1,3] ~ dnorm(0.8, 1.2)
    
  # ...size/age state process: immature->subadult/adult

    xi.intercept[2,3] ~ dnorm(-1.8, 0.8)
    xi.slopeYrs[2,3] ~ dnorm(0.6, 1.3)

  # ------------------------------
  # LOCATION Transition Parameters
  # ------------------------------
  # The slopeSex and slopeSize parms relate sex and size of tortoise to psi,
  # the prob that a loc transition occurs between previous and current obs.
  #  
  # There are 2 location regions, hence a 2x2 transition matrix.
  # Tortoises can transition in both directions.

  # parameters for the logit probabilities of...
  # ...location state process: inside->outside

    psiIO.intercept ~ dnorm(0,0.0001)
    psiIO.slopeSex ~ dnorm(0,0.0001)
    psiIO.slopeSize ~ dnorm(0,0.0001)

  # ...location state process: outside->inside

    psiOI.intercept ~ dnorm(0,0.0001)
    psiOI.slopeSex ~ dnorm(0,0.0001)
    psiOI.slopeSize ~ dnorm(0,0.0001)

  # ---------------------------------------------
  # ENTRY/LIVE/DEAD/REMOVAL Transition Parameters
  # ---------------------------------------------
  # The slopeYrs, slopeSex, slopeSize, and slopeLoc parms are effects on 
  # phi, the probability that a tortoise survives between intervals.
  # Additional effects could include precipitation 
  # (but not sure we have enough data to separate this effect)

  # Entry parms do not depend on covariates and allowed to vary btw intervals  
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    for (t in 1:(nIntervals-1)){
      gamma[t] ~ dunif(0,1)
      }

  # parameters for the logit probabilities of...
  # ...state process: live->dead

    phi.intercept ~ dnorm(0.6, 1.0)
    #phi.slopeYrs ~ dnorm(0,0.0001)
    phi.slopeSex ~ dnorm(0,0.0001)
    phi.slopeSize ~ dnorm(0.3, 1.7)
    phi.slopeLoc ~ dnorm(0,0.0001)

  # -------------------------------
  # DETECTION Parameters
  # -------------------------------
  # ...for the logit probabilities of detection

    po.intercept ~ dnorm(-1.6, 1.0)
    po.slopeSex ~ dnorm(0,0.0001)
    po.slopeSize ~ dnorm(0.8, 1.6)
    po.slopeLoc ~ dunif(0,1) # prev, po.slopeLoc ~ dnorm(0,0.0001)
    #po.slopeDead ~ dnorm(0,0.0001)
    #po.slopePpt ~ dnorm(0,0.0001)
    #po.slopePrvPpt ~ dnorm(0,0.0001)
    #po.slopeYrs ~ dnorm(0,0.0001)

  # -------------------------------
  # HYPERPARAMETERS
  # -------------------------------
  pSizeAge ~ ddirch(c(1,1,1))
  pLoc ~ ddirch(c(0.5833,0.4167)) # ratio of inside to outside areas

} # END MODEL
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