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Cover: Visualization of part of a three-dimensional plume
calculated using the implicit solver in MOC3D for a problem
(described by Burnett and Frind, 1987) of a constant source of
solute in a nonuniform flow field (see figure 13 of this report
and related discussion). The calculated concentrations were
visualized using EarthVision software (by Dynamic Graphics,
Inc.) on a Silicon Graphics workstation, and the image includes
a“chair” cut to expose the internal structure of the plume.
The colorization scale was selected so that each color band
represents an interval of one-tenth of the range of relative
concentrations. Also depicted are four of the equations
relevant to the implicit formulation (see equations 10, 14, 15,
and 16 of this report).
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PREFACE

The MOC3D computer code simulates the transport of a single solute in ground
water that flows through porous media. The model is a package for the U.S. Geological
Survey (USGS) MODFLOWground-water model. The new algorithm documented in this
report incorporates an implicit difference approximation in time of the dispersive transport
equation and is an aternative to the explicit difference approximation. The code for this
algorithm isintegrated with the code for MOC3D, forming Version 2. This extension
offers significantly improved efficiency of MOC3D for transport problems that are
dominated by dispersion or diffusion relative to advection.

Version 2 of the MOC3D code, which includes the new extension, is available for
downloading over the Internet from a USGS software repository. The repository is
access ble on the World Wide Web (WWW) from the USGS Water-Resources Information
Web page at URL http://water.usgs.gov/. The URL for the public repository is:
http://water.usgs.gov/softwar e/. The public anonymous FTP siteis on the Water-
Resources Information server (water.usgs.gov or 130.11.50.175) in the /pub/software
directory. When this codeisrevised or updated in the future, new versions or releases will
be made available at these same sites.

Although extensive testing of MOC3D (Version 2) with the implicit dispersive
trangport agorithm indicates that this model will yield reliable calculations for awide
variety of field problems, the user is cautioned that the accuracy and efficiency of the model
can be affected significantly for certain combinations of parameter values and boundary
conditions.
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ABSTRACT

This report documents an extension to the U.S. Geological Survey MOC3D
transport model that incorporates an implicit-in-time difference approximation for the
dispersive transport equation, including source/sink terms. The original MOC3D transport
model (Version 1) uses the method of characteristics to solve the transport equation on
the basis of the velocity field. The original MOC3D solution algorithm incorporates
particle tracking to represent advective processes and an explicit finite-difference
formulation to calculate dispersive fluxes. The new implicit procedure eliminates several
stability criteriarequired for the previous explicit formulation. This allows much larger
transport time increments to be used in dispersion-dominated problems. The decoupling
of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit
extension, the MOC3D model is upgraded to Version 2.

A description of the numerical method of the implicit dispersion calculation, the
data-input requirements and output options, and the results of simulator testing and
evaluation are presented. Version 2 of MOC3D was evaluated for the same set of
problems used for verification of Version 1. These test results indicate that the implicit
calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the
explicit calculation for transport problems that are characterized by a grid Peclet number

|ess than about 1.0.

INTRODUCTION

This report documents an extension to
theU.S. Geological Survey (USGS) MOC3D
transport model (Konikow and others, 1996)
that incorporates an implicit-in-time formulation
for the dispersion equation. MOC3D smulates
three-dimensional solute transport in flowing
ground water for asingle dissolved chemical
constituent and represents the processes of
advective transport, hydrodynamic dispersion
(including both mechanical dispersion and
diffusion), mixing (or dilution) from fluid
sources, and simple chemical reactions
(including linear sorption and decay). The
MOC3D transport model uses the method of
characteristics to solve the transport equation
on the basis of the velocity field, whichis
calculated from the head distribution
determined by MODFL OW-96 (Harbaugh and
McDonad, 1996a).

Initsorigina implementation
(Konikow and Bredehoeft, 1978; Konikow

and others, 1996), the method of characteristics
uses particle tracking to represent advective
transport and explicit finite-difference methods
to calculate concentration changes over time
that result from dispersive fluxes and mixing
with solute from fluid sources. Explicit
methods, however, have stability criteria
associated with them. In some cases, these
criteria cause the model to take extremely small
time increments and thus become costly in
computational time, especialy for three-
dimensional systems. These cases are
characterized by relatively large dispersivity
values.

The new agorithm, documented in this
report, employs an implicit finite-difference
equation to calcul ate concentration changes
over time that results from dispersive fluxes
and mixing with fluid sources. Aniterative
equation solver is used to solve the
simultaneous difference equations, requiring



five new parameters to be specified asinput
datain addition to the parameters previously
needed for Version 1 of MOC3D. Theimplicit
solution is unconditionally stable, which allows
larger time steps to be taken than with the
explicit solution. Thus, it can be much less
costly in computation time for dispersion-
dominated problems than the original explicit
method. The implicit algorithm code,

however, requires more computer memory than
the explicit method for a given size problem.

With the implicit extension, the
MOC3D model is upgraded to Version 2.
MOC3D isintegrated with MODFLOW-96, the
U.S. Geological Survey’s (USGS) modular,
three-dimensional, finite-difference, ground-
water flow model (McDonald and Harbaugh,
1988; Harbaugh and McDonald, 1996a and
1996b). MODFLOW solves the ground-water
flow equation and the reader isreferred to the
documentation for that model and its
subsequent packages and modules for complete
details. Inthisreport it is assumed that the
reader isfamiliar with the MODFLOWfamily
of codes, including MOC3D (Version 1).

MOC3D (Version 2) isoffered asa
general smulator that is applicable to awide
range of field problems that involve solute
transport. The user, however, should first
become aware of the assumptions and
limitations inherent in the smulator, as
described in this report and by Konikow and
others (1996). There are some situationsin
which the model results could be inaccurate or
model operation costly. Thisreport includes
guidelines for recognizing these situations and
avoiding such problems.

MOC3D islimited to fluid properties,
such as density and viscosity, that are uniform
and constant, and thus independent of
concentration values. Within the finite-
difference grid used to solve the flow equation
in MODFLOW, the user is able to specify a
window or subgrid over which MOC3D will

solve the solute-transport equation. MOC3D,
however, requires that the horizontal (row and
column) grid spacing be constant in each
direction within the subgrid. The types of
reactions that are incorporated into MOC3D are
restricted to those that can be represented by a
first-order rate reaction, such as radioactive
decay, or by aretardation factor, such as
equilibrium, reversible, sorption-desorption
reactions that are governed by alinear isotherm
and constant distribution coefficient.

The computer program for the implicit
dispersive transport extension is written in
FORTRAN-77 and has been developed in a
modular style. This documentation includes a
description of the implicit finite-difference
algorithm used to solve the dispersive flux and
fluid source terms of the solute-transport
equation in MOC3D (Version2). A complete
description of the data requirements, input
format specifications, program options, and
output formatsisincluded. Thisreport must be
used in conjunction with the original MOC3D
documentation (Konikow and others, 1996),
which provides information on al previousy
existing features of MOC3D, including details
on the method of characteristics, code
structure, and model use.

Acknowledgments. The authors
appreciate the helpful model evaluation and
review comments provided by USGS
colleagues D.J. Goode and C.E. Heywood.

THEORETICAL BACKGROUND
AND GOVERNING EQUATIONS

The ground-water flow and intertitial
velocity equations used in MOC3D are given
by Konikow and others, 1996, and will not be
repeated here. Solution to the flow equation
provides theinterstitial velocity field, which
couples the solute-transport equation to the
ground-water flow equation.



Governing Equation for Solute Transport

The solute-transport equation is that
presented in Konikow and others (1996,
equation 6):
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where Cis volumetric concentration (mass of
solute per unit volume of fluid, ML-3), r pis
the bulk density of the aquifer material (mass of
solids per unit volume of aquifer, ML-3), C is
the mass concentration of solute sorbed on or
contained within the solid aquifer material
(mass of solute per unit mass of agquifer
material, MM-1), eisthe effective porosity
(dimensionless), Visavector of interstitial
fluid velocity components (LT-1), D isa
second-rank tensor of dispersion coefficients
(L2T-1), Wisavolumetric fluid sink (W<O0) or
fluid source (W>0) rate per unit volume of
aquifer (T-1), Cisthevolumetric
concentration in the sink/source fluid (ML-3), |
isthe decay rate (T-1), t istime (T), andx; are
the Cartesian coordinates (L).

For the case of reversible, linear
equilibrium sorption, the form of the solute-
transport equation that is solved in Version 2 of
MOCS3D isthe same as that solved in Version
1:
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Review of Assumptions

As described by Konikow and others
(1996), a number of assumptions have been

made in the development of the governing
equations. Followingisalist of the main
assumptions for review:

1. Darcy'slaw isvalid and hydraulic-head
gradients are the only significant
driving mechanism for fluid flow.

2. Thehydraulic conductivity of the
aquifer system is constant with time.
Also, if the system is anisotropic, it is
assumed that the principal axes of the
hydraulic-conductivity tensor are
aligned with the coordinate system of
the grid, so that the cross-product terms
of the hydraulic-conductivity tensor are
eliminated.

3. Gradients of fluid density, viscosity,
and temperature do not affect the
velocity distribution.

4. No chemical reactions occur that affect
the fluid or aquifer properties.

5. Thedispersivity coefficients are
constant with time, and the aquifer is
isotropic with respect to longitudinal
dispersivity.

Asnoted by Konikow and Bredehoeft
(1978), the nature of a specific field problem
may be such that not all of these underlying
assumptions are valid. The degreeto which
field conditions deviate from these assumptions
will affect the applicability and reliability of the
model for that problem. If the deviation from a
particular assumption is significant, the
governing equations and the numerical
simulator may have to be modified to account
for the appropriate processes or factors.

NUMERICAL METHODS

The notation and conventions used in
this report and in the computer code to describe
the grid and to number the nodes areillustrated
infigures 1 and 2. Theindexing notation used
hereis consistent with that used in the
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Figure 1. Notation used to label rows, col-

umns, and nodes within one layer (k) of a
three-dimensional, block-centered, finite-
difference grid for MOC3D.

computer code for MODFLOWby McDonald
and Harbaugh (1988), although not the
notation used in some sections of their report.
Our indexing notation maintains conformity
between the text of thisreport and the
FORTRAN code in MOC3D, and the index
order corresponds to an x,y,z sequence.
However, our notation differs from that used in
some other ground-water modelsin that the x-
directionisindexed by “j» and increases from
left to right along arow to indicate the column
number. Our use of Dx and Dy is synonymous
with the use of Dr and Dc, respectively, by
McDonad and Harbaugh (1988). They-
directionisindexed by “i” and increases from
the top of the grid to the bottom within a
column to indicate the row number. Thus, ina
map view of any one horizontal layer, as
illustrated in figure 1, the node representing a
cell in the first row and first column of the grid
would liein the upper left corner of the grid.
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Figure 2. Representative three-dimensional grid for
MOCS3D illustrating notation for layers.

The z-direction represents layers and is indexed
by “k.” Asindicated in figure 2, thefirst layer
(k =1) inamultilayer grid would be the top
(or highest elevation) layer. The saturated
thickness of acell (i k) isequivalent to Dz.

Ground-Water Flow Equation

A numerical solution of the three-
dimensional ground-water flow equation is
obtained by the MODFLOW code using
implicit (backward-in-time) finite-difference
methods. Successful use of MOC3D requires a
thorough familiarity with the use of
MODFLOW. Comprehensive documentation
of MODFLOWis presented by McDonald and
Harbaugh (1988), Harbaugh and McDonald
(1996a and 1996b), and the various reports for
additional implemented packages and modules.

Average Interstitial Velocity

The solution of the transport equation
requires knowledge of the velocity (or specific
discharge) field. Therefore, after the head
distribution has been calculated for agiven time
step or steady-state flow condition, the specific
discharge across every face of each finite-
difference cell within the transport subgrid is
calculated using afinite-difference
approximation (see Konikow and others,
1996).



The particle-tracking agorithm requires
that the seepage velocity at any point within a
cell be defined to compute advective transport.
It iscalculated at points within afinite-
difference cell based on interpolated estimates
of specific discharge at those points divided by
the effective porosity of the cell.

Solute-Transport Equation

The mathematical properties of the
transport equation vary depending upon which
termsin the equation are dominant in a
particular system. Where solute transport is
dominated by advection, asis common in many
field problems, the transport equation
resembles a hyperbolic type of equation
(smilar to equations that describe the
propagation of awave or of ashock front). In
contrast, where a system is dominated by
dispersive and diffusive fluxes, such as might
occur where fluid velocities are relatively low
and aquifer dispersivities are relatively high,
the transport equation becomes more parabolic
in nature (similar to the transient ground-water
flow equation). Because system properties and
fluid velocity may vary significantly, the
dominant process (and the mathematical
properties of the governing equation) may vary
from point to point and over time within the
domain of simulation.

Method of Characteristics

The approach of the method of
characteristicsis not to solve equation 2 itself,
but rather to solve an equivalent system of three
ordinary differential equations and one partial
differential equation:
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dy_Vy

daz _V,
— === 5
dt Ry ®)
d_1 18, 10
dt  eRfTx e T g
W(C¢- C
( I e (6)
eRy

Although the concentration in equation 6 is
now that of a parcel of fluid moving in space
with the retarded velocity (V/Ry), we retain the
same symbol, C, as a matter of notational
convenience.

Solutions to equations 3-5 yield the
characteristic curves[x = x(t), y = y(t), and
z=z(t)]. Thisisaccomplished by introducing
a set of moving points (or reference particles)
that can be traced within the stationary
coordinates of afinite-difference grid. Each
particle corresponds to one characteristic curve,
and values of X, y, and z are obtained as
functions of t for each characteristic (Garder
and others, 1964). Each particle hasan
associated concentration and moves through the
flow field by the flow velocity acting along its
trgectory. For the algorithm documented in
this report, equation 6 is solved along the
characteristic curvesfor C(t) by using an
implicit finite-difference formulation in time.
Previously, equation 6 was solved by using an
explicit finite-difference formulation.

Along the characteristic curves, the
processes of advection, dispersion, mixing,
and reactions are occurring continuously and
simultaneously (Konikow and Bredehoeft,
1978). Therefore, equations 3-6 should be
solved ssimultaneousdly, but for practical
reasons, they are solved sequentialy.
Sequentia solution follows the concept of the
method of fractional steps or operator splitting
presented by Y anenko (1971). Senditivity to
the sequence of solving the characteristic and
dispersive transport equations is minimized by
solving equation 6 using concentration



gradients that are based on the average of the
concentrations at each node before and after
advection. This effectively gives equal weight
to the concentration gradients before and after
advection when computing the solute flux due
to dispersion. These averaged concentrations,

designated as C;,i K arecalculated as:

Cn +Clnfradv
— ik > (AL ’ (7)
n+adv

where C;;"\ ™ isthe concentration at the new
time level after advection alone.

Cj,i,k

Particle Tracking

Advection in flowing ground water is
smulated by particle tracking. The other solute
transport terms—dispersion, sources, and
decay—are simulated by computing changesin
the concentration associated with each particle.
The concentration changes caused by
dispersion and fluid sources are computed on
the finite-difference grid, fixed in space,
whereas concentration changes caused by
decay are calculated directly on the moving
particles. After the flow equation is solved for
anew time step, specific discharges are
recomputed on the basis of the new head
distribution, and the movement of particles
during this flow time step is based only on
these specific discharges.

Decay

Decay is ssimulated by reducing the
particle concentrations after advection
(Konikow and others, 1996). A major
advantage of calculating the effect of decay
directly on the particles, rather than on the
nodal concentrations, isthat this procedure
eliminates any numerical dispersion caused by
the interpolation between concentrations on the
moving particles and on the fixed grid (that is,
averaging from particle concentrations to nodal
concentrations and back to particle
concentrations).

This decay algorithm has no numerical
stability restrictions associated with it (Goode
and Konikow, 1989). If the half-lifeison the
order of or smaller than the transport time step,
however, some accuracy will be lost because of
the explicit decoupling of decay and other
transport processes.

When a solute subject to decay enters
the aquifer through afluid source, it is assumed
that the fluid source contains the solute in the
concentration specified by C(. The MOC3D
simulator allows decay to occur only within the
ground-water system, and not within the
source reservoir. Inother words, for agiven
stress period, C( remains constant in time.
Because decay is assumed to be continuous
over atimeincrement, however, the effective
value of C(for asolute subject to decay is
adjusted by the factor e! Dt/2 to account for the
fact that solute injected into the aquifer at the
beginning of the time increment will have
aready decayed by the end of the time
increment. If the problem being smulated
requires that the solute in the source fluid itself
undergo decay, then the code will have to be
modified.

Node Concentrations

After all particles have been moved, the
concentration at each node istemporarily
assigned the average concentration of all
particles then located within the volume of that

cell; this average concentration is denoted as
Crradv
i,

C"\l Cdd B A Y kt+1_k
al p (Jp _J!Ip _I! p - )
adv _ P=
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where thed functionis 1 if the particle iswithin
thecell j,i,k and is zero otherwise, and Cj; is
the decayed particle concentration at the end of
atransport timeincrement. Thetimeindex is



labeled “n+adv” because this temporarily
assigned average concentration represents
conditions at the new time level only with
respect to advective transport and decay. The
effect of advective transport isto move particles
having different concentrations into and out of
each cdll.

Finite-Difference Approximations

The dispersive transport equation along
acharacteristic curve, equation 6 without the
decay term, is discretized in space using finite-
difference approximations. The rate of change
in concentration due to dispersion and sources
can be written:
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where subscript m is a summation index for the
dispersion term. Thej,i,k subscriptsin
equation 9 denote the spatid finite-difference
grid indexing, as discussed previously in the
section “Numerical Methods.” Equation 9is
the dispersive transport equation applied to the
fixed mesh that advances the numerical solution
to the final concentrations, C™**, at the end of
the timeincrement. The components of the
dispersive flux in each direction across cell
faces are calculated using finite-difference
approximations that are centered-in-space.

To complete the formulation of the
finite-difference equation represented by
equation 9, we must approximate the time
derivative of concentration. We use the
concept of the method of fractional steps
(Yanenko, 1971) to implement a sequential
solution to equations 3-6. Summarizing the
approach, as described in more detail by
Konikow and others (1996), advective
transport is represented by particle tracking.
Concentration changes caused by dispersive
fluxes and fluid sources are calculated using
concentration gradients in equation 9 that at any

point in space are the average of (1) the
concentration gradients at the start of the time
increment ( erf i ) and (2) the concentration
gradients computed after advection of particles
(C} ), as denoted in equation 7. Therefore,

the time derivative on the | eft side of equation 9
is approximated by the genera finite difference
for afractional step (Yanenko, 1971, p.23):

@CC') Cn+1 _ Cadv

\— » ——

€ dt ﬂj’i’k Lo gn
=gF(C™™)+(1- q)F(C"), (10)
where t" isthetimeat level n (that is, the
beginning of atime increment, Dt), q isthe
time difference weighting factor, and F isthe
right-hand side of equation 9. The superscript
“*” indicates that the terms depend on the
average of the concentration at the old time
level and the concentration at the new time level
after advection and decay (see equation 7).
Equation 10 isnot aclassical difference
equation because it depends on intermediate
concentrations, not just values at the beginning
and end of thetime step. Setting thetime
weighting factor, g, to 1 givesafully implicit



or backwards-in-time (BT) difference equation.
Setting the time weighting factor to 0.5 givesa
difference equation similar to Crank-Nicolson
or centered-in-time (CT).

The time truncation error associated
with centered-in-time differencing is on the
order of (Dt)?2; the error associated with
backwards-in-time differencing is on the order
of Dt. For typically small values of Dt, the
truncation error for CT will be smaller than that
for BT. However, CT differencing has the
potentia for introducing oscillations into the
numerical solution. See Kipp (1987, p. 112-

114) for additional details about the numerical
properties of aternative finite-difference
formulations.

The next step isto express the
difference equation in residual form by writing:

Cn+1 — Cadv +DC, (12)

where DC isthe changein Cover atime
increment (Dt) due to dispersive transport and
sources. Equation 11 isinserted into equation
10, yielding the finite-difference approximation
to equation 9 for an interior node, j,ik:
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and where the Tg terms are the conductances
for solute transport (1/T), 2B i k° bji k +
1/2(bj i k-1 + byji k+1) isthevertica distance
between nodes (,i,k+1) and (j,i,k-1), and
ebD,,,, are the dispersion terms (L3/T) given
by equations A5-A22 in Konikow and others
(1996). Notethat T and T are denoted
differently to help clarify that these
conductances arein the vertical direction, and
depend on different values of B. Also note that
Cd isconstant over any time increment, hence
thereisno time level index associated withitin
equation 12.

The coefficients Tg are evaluated at
timen, that is, at the beginning of the time step.
The time weighting factor, g, can actually be
set to any value from 0.5 to 1.0 for an implicit
difference equation in time.

The source concentration, C¢, isa
specified function of time and source location.
When the source flow rate is negative, so that
the node represents a fluid sink, the source
concentration, Cd, becomes that of the cell.
Note that the source-sink terms must be



summed individually because multiple terms
can exist at the same node and each fluid flux
specification can have adifferent concentration
associated with it.

Excluded cdllsin the simulation region
are handled by replacing equation 12 with a
trivial equation for the change in concentration
at theselocations. That is, the difference
equation for that cell becomes DC = 0.

Note that the cross-dispersive flux
terms have been evaluated explicitly in time
using the intermediate concentrations (C*) in
order to retain the 7-point stencil for the finite-
difference equation. The 7-point stencil is
formed by the connection of a given nodeto its
six nearest neighbors (ahead, behind, in front,
in back, above, and below) in each of the three
coordinate directions. Thisenablesa
renumbering scheme, described below, to be
used to form areduced matrix for the linear
equation solver. Because the cross-dispersive
terms of equation 12 are explicit (not afunction
of C™?), at least two iterations are necessary
for solving the dispersive transport equation at
each time step. The number of iterationsis
specified by the user with the value of NCXIT
in the input data set (see Appendix A).

The difference equations represented by
equation 12 form a set of smultaneous linear
equations of the form

ADC =b (14)

where A isasymmetric, sparse matrix of the
coefficients of DCin equation 12, and b isthe
known right-hand-side vector formed by the
terms containing C* in equation 12. A
symmetric matrix means that the elements
above the diagona are a mirror image reflection
of those below the diagonal. A sparse matrix is
one where most (more than 75 percent) of the
elements are zero. Before solving equation 14,
it is advantageous to transform to a reduced set
of equations.
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Reduced Matrix Equation

Equation 14 istransformed to a reduced
matrix equation, also known as the Schur
complement (Axelsson, 1994), obtained by
reordering the nodes using a red-black
renumbering scheme (Price and Coats, 1974,
Aziz and Settari, 1979). For red-black
renumbering, the nodes are renumbered in
sweeps along a primary coordinate direction
skipping every other node. The secondary
direction isincremented at the end of each
primary sweep and the tertiary direction is
incremented at the end of a set of secondary
sweeps. After thefirst sweep cycleis
complete, asecond cycle is done to renumber
the remaining nodes in the same fashion. In
two dimensions this renumbering is analogous
to numbering all the red squares of a
checkerboard followed by numbering all the
black squares. The selection of the primary,
secondary, and tertiary sweep directionsis up
to the user. The convergence rate of the
conjugate-gradient solver, however, can be
markedly different under different reorderings.
There can be as much as afactor of two
between the minimum and maximum number
of iterations of the solver needed to converge to
asolution at a given time step depending on the
sequence of directions used for the
renumbering.

The red-black renumbering scheme
leads to a partitioned coefficient matrix, A, of
theform

_€Dg
AR
where D g and D g are diagonal matrices.
Elimination in equation 14 yields the reduced
matrix equation
RDCB = f B
where DG isthe vector of changesin
concentration for the black nodes and f 5 is the

T -
AgrY

a, (15)
Dga

(16)



right-hand-side vector for the black nodes. The
reduced matrix, R, is given by

R=Dg- AgrDrApr, (17)
andfgisgiven by
fo=bg- AgDrbg. (18)

The advantages to forming the reduced
matrix equation are (1) it contains only half the
number of unknown elements for DC, and (2)
it increases the convergence rate of the iterative
solver. The disadvantage isthat the R matrix
requires ten elements of storage per equation
rather than the four elements per equation
required by the A matrix. After equation 16 is
solved for DGg, then DGy is easily obtained
from

DCr = Dr[fr- AgrDCql,
where DC isthe vector of changesin

concentration for the red nodes and f g isthe
right-hand-side vector for the red nodes.

(19)

Matrix Equation Solver

Aniterative solution agorithm for the
set of linear, symmetric, sparse-matrix
equations (represented by equation 16) has
been developed. It isaconjugate-gradient
method with preconditioning based on
incomplete Cholesky (1C) factorization, as
described by Stoer and Bulirsch (1991) and
Axelsson (1994). Incomplete Cholesky
factorization is a powerful preconditioning
technique for use with iterative methods applied
to sparse linear systems of equations (Meijerink
and Van der Vorst, 1977). The preconditioned
systemis

MRDCB= MbB, (20)

where M isan approximate inverse of R. For

incomplete Cholesky preconditioning,
m »[LoL™] ", 21)

where L isthe lower triangular factor of matrix
R; thatis,
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LDL" =R. (22)

Different orders of 1C factorization can
be employed (Mejerink and Van der Vorst,
1981). Order one means no fill-inis alowed
of any zero (null) element locationsin the
origina R matrix during the | C factorization.
Order one IC factorization, used here,
corresponds to method ICCG(1,1) of Meijerink
and Van der Vorst (1981). Dupont and others
(1968) proposed a modified incompl ete
factorization (MIC) with the requirement that
rowsum(M) = rowsum(R), where rowsum
(M) means the sum of the elements along arow
of matrix M. Thisrequirement ismet by
adding any discarded elements from the IC
factorization to the diagonal element of the
corresponding row. MIC preconditioning is
the method used in the present version of the
solver.

Choosing the Parameters for the

lterative Equation Solver

Aswith any iterative solver, a
convergence criterion and maximum number of
iterations need to be specified. In addition, the
red-black renumbering scheme has six possible
permutations of the renumbering sequence for
forming the reduced matrix. Short tria
simulations of one or two time steps are
sufficient to find the optimum choice for fastest
convergence. Actually, the six choices usually
group into three pairs of nearly equal iteration
counts.

Thetolerance for convergence of the
iterative solver sets the maximum acceptable
value for the Euclidean norm of the residual
vector. Theresidual vector is defined as

r =b; - RDC;, (23)
and the Euclidean norm is defined as
ek (‘)‘1/2
Irll=%a r= (24)
ei:]_ 4]



Actudly, the norm of theresidual isscaled to
the Euclidean norm of theinitial residud
vector. Thus,

& o .
¢ =C0¢¢, 25
erpg €bh9 (23)

where eisthe convergence tolerance.

Experience with test problems has
shown that a convergence tolerance of 10 to
107 is necessary to obtain three or four digit
agreement with results of adirect solver. No
algorithm is presently available to set this
tolerance based on the problem specifications.
For large problems, use of adirect solver is
impractical, therefore the user must experiment
with severa vaues of the convergence
tolerance to determine the largest value that
provides agreement to the desired number of
digits with a more accurate solution obtained
using asmaller tolerance. Findly, theiteration
[imit prevents run away conditions when the
convergence rate becomes very slow. Under
some conditions, the user may need to double
or triple the suggested limit of 100. More than
afew hundred iterations, however, indicates
that adjustments probably need to be made in
the spatial or temporal discretization.

Accuracy Criteria

One advantage of solving the dispersion
equation implicitly isthat thisformulationis
unconditionally stable. In contrast, the explicit
formulation requires the observance of stability
criteria, which limit the allowable time step
(Konikow and others, 1996). Thus, the
implicit algorithm alows for significantly larger
time steps during the ssimulation. It should be
noted that stability does not imply accuracy.
Solution accuracy decreases as the time step
increases. A stable solution may be based on
such alarge time step that its accuracy isvery
poor.

When the implicit differencing is
implemented using atime weighting near 0.5, a
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potential exists for stable oscillationsto be
produced in the concentration solution. Also,
for al amounts of implicit temporal
differencing, the use of a symmetric spatial
differencing for the cross-product terms of the
dispersion tensor gives a potential for
overshoot and undershoot in the calcul ated
concentration solution, particularly when the
velocity field is oblique to the axes of the grid.
Remedies for excessive overshoot and
undershoot are: (1) suppress the calculation of
the cross-dispersive flux terms, or (2) refine
the finite-difference mesh. Option 1 requires
patching the source code and option 2 may lead
to excessively long simulation times.

An accuracy criterion incorporated in
both Version 1 and Version 2 of MOC3D
constrains the movement of particles during
each time step. For reasons described by
Konikow and others (1996), an accurate
computation of concentration changes caused
by advective transport requires the maintenance
of arelatively uniformly spaced field of marker
particles that are moving along relatively
smooth and continuous pathlines. Thus, a
restriction must be placed on the size of the
time step to ensure that the distance aparticle
movesin the x-, y-, or z-directions does not
exceed some critica distance, related to the grid
spacing. The simulator allows the user to
specify the value of this critical distance (named
CELDISin the code and input instructions).
Thistrandates into alimitation on the time-step
length. If the time step used to solve the flow
equation exceeds the time limit, the time step
will be subdivided into an appropriate number
of equal-sized smaller time increments.

The original explicit agorithmin
MOC3D aso includes a stability criterion
(Konikow and others, 1996, p. 24, equation
61) that constrains Dt for the explicit finite-
difference solution of the term describing
concentration changes due to fluid sources.
This check assures that not more than one pore
volume of fluid is displaced by fluid injection



(recharge) during any single timeincrement. In
the implicit solution, one term of the finite-
difference approximation is at the n+1 time
level. Thisrelaxesthe stability criterion by a
factor of two. Therefore, in the code
implementing the implicit solution agorithms
for dispersive flux, we have incorporated an
automatic check of the magnitude of fluid
sources, and constrain the transport time
increment, if necessary, to assure that not more
than one pore volumeis displaced in 0.5 Dt.

Mass Balance

As described by Konikow and others
(1996), mass-balance calculations are
performed to help check the numerical accuracy
and precision of the solution. One modification
of the previoudly described mass-balance
cal culations has been implemented to assure
consistency with the new implicit agorithm. In
calculating the cumulative mass flux out of the
system, the explicit procedure assumes that the
concentration associated with afluid sink is

C jr,‘i « » the node concentration at the beginning

of the time increment (see Konikow and others,
1996, equation 66). If theimplicit solver is
selected, however, the code will assume that
the concentration associated with afluid sink is

the average concentration during the time
nt+l

increment, (Cfi,k +Cj,i,k)/2.

Review of MOC3D Assumptions

The assumptions that have been
incorporated into Version 2 of the MOC3D
simulator are the same asfor Version 1. These
are relevant to both grid design and model
application. Efficient and accurate application
of MOC3D requires the user to be aware of
these assumptions. Therefore, the user should
review the description of these items as
presented by Konikow and others (1996).
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COMPUTER PROGRAM

MOC3D Version 2 isimplemented asa
package for MODFLOW. MOC3D usesthe
flow components calculated by MODFLOWto
compute velocities across each cell face in the
transport domain. The computed velocities are
used in an interpolation scheme to move each
particle adistance and direction with time to
represent advection. The transport mechanisms
of fluid sources, dispersion, and decay are
subsequently applied to the concentrations
associated with the particles.

A separate executable version of
MODFLOW, which is adapted to link with and
use the MOC3D package, must first be created
to run MOC3D Version 2simulations. The
MOC3D codeiswritten in standard
FORTRAN-77, and it has been successfully
compiled and executed on multiple platforms,
including 486- and Pentium-based personal
computers, Macintosh personal computers, and
Data General and Silicon Graphics Unix
workstations. FORTRAN compilersfor each
of these platforms vary in their characteristics
and may require the use of certain optionsto
compile MOC3D successfully. For instance,
the compiler should initialize al variablesto
zero. Depending on the size of the X-array
(defined by LENX in the MODFLOW source
code), options to enable the compiler to handle
large-array addressing may be needed. Most
real variablesin MOC3D are defined assingle
precision variablesin the FORTRAN code. In
our experience, use of double-precision
definitions for most variables has not been
necessary.

Implementing MOC3D requires the use
of aseparate file that contains file names smilar
to the one used in MODFLOW. The principal
MOC3D input data (such as subgrid
dimensions, hydraulic properties, and particle
information) are read from the main MOC3D
datafile. Other filesare used for observation
wells, concentrationsin recharge, and severd



input and output options. Detailed input-data
requirements and instructions are presented in
Appendix A.

Version 2 also incorporates a new
option in MOC3D for the format of
concentration data written to a separate output
file. Thisnew option, which is highlighted in
Appendix A, alows datato be saved asatable
of valuesin which each line (or record)
contains the location of a node and the value of
concentration at that node. Thiswill facilitate
three-dimensiona visualization of the output
because this new format is compatible with
many commercialy available software
packages that enable rendering and viewing of
three-dimensional data sets.

The input data set used for the first test
problem (involving one-dimensiona steady
flow) isincluded in Appendix B to provide the
reader with an illustrative example.

MOC3D output isrouted to amain file,

separate from the MODFLOWmMmain output file,

and optionally to additional output files.
Appendix C contains output from the example
input data set contained in Appendix B.

General Program Features

Because the mode is based on the
assumption that the fluid properties (such as
density and viscosity) are constant and uniform
and independent of changes in concentration,
the head distribution and flow field are
independent of the solution to the solute-
transport equation. Therefore, the flow and
transport equations can be solved sequentially,
rather than simultaneously. Because transport
depends on fluid velocity, which is calculated
from the solution to the flow equation, the flow
equation must be solved first. The sequenceis
illustrated in figure 3 for a hypothetical problem
involving transient flow and three stress
periods. The numbered sequence from 1
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Figure 3. Double time-line illustrating the sequence of progression in the MOC3D model
for solving the flow and transport equations. This example is for transient flow and three
stress periods (NPER = 3) of durations PERLEN 4, PERLEN 5, and PERLEN 3. Each time
step for solving the flow equation (of duration DELT) is divided into one or more time
increments (of duration TIMV) for solving the transport equation; all particles are moved

once during each transport time increment.

For illustration purposes, the sequence of

solving the two equations is labeled for the first five time steps of the first stress period, and
the indices for counting time steps for flow and time increments for transport are labeled
for the fourth time step (from Konikow and others, 1996).



through 16, which starts at the left edge of the
doubletimeline, illustrates the order of
equation solution for the first five time steps of
thefirst stress period. Thisfigureillustrates
the nomenclature used for time parametersin
MODFLOWand MOC3D, as well asthe
relation between them.

Theimplicit solution to the flow
equation in MODFLOWgenerally allowsthe
use of time steps of increasing length during a
given stress period. The length of the first time
step for solving the flow equation is calculated
by MODFLOWon the basis of user-defined
values for the number of time steps (NSTP), a
time-step multiplier (TSMULT), and the length
of the stress period (PERLEN). After the flow
equation is solved for the first time step (Dt,),
the MOC3D simulator compares the length of
this time step with the limitations imposed by
the accuracy criteriafor solving the transport
equation. If the limitations are exceeded,
MOC3D will subdivide the flow time step into
the minimum number of equal-sized time
increments that meet the criteria. In the
example shown in figure 3, the first two time
steps for flow are sufficiently small so that the
transport equation can use atime increment of
the same duration as the flow time step (that is,
TIMV =DELT). Asthistime-marching
sequence progresses and time-step lengths are
increased, the accuracy time-step constraints
are eventually exceeded. Figure 3 shows that
after the second time step, the transport
equation had to be solved over shorter time
increments than the flow equation.

As mentioned previously, transport
may be simulated within a subgrid, whichisa
“window” within the primary MODFLOW(grid
used to simulate flow (see Konikow and
others, 1996, figure 9). The grid dimensions
are limited only by the size of the“ X" array
(see“ Space Allocation” in the MODFLOW
documentation).

15

Program Segments

MOC3D Version 2 input and output
utilizes the standard MODFLOWarray reading
and writing utilities as much as possible.
Konikow and others (1996) describe briefly
each of the subroutinesin MOC3D that are
used for ten different categories of functions.
Following is abrief description of the
additional subroutinesthat are added to form
Version 2 of the MOC3D code. In addition,
severa existing MOC3D Version 1 subroutines
were modified to create Version 2.

New subroutines related to dispersion
caculations arelisted intable 1. Dispersion
coefficients are determined on cell faces. To
improve efficiency, however, the dispersion
coefficients are lumped with the porosity,
thickness, and an appropriate grid dimension
factor of the cell into combined parameters
called “ dispersion equation coefficients.” For
example, the dispersion equation coefficient for
thej+1/2,i k facein the column directionis

(ebDXX) j+12,0k
Dx '

These combined coefficients are the ones that
are written to the output files.

MODFLOW source and sink packages
contain an option called CBCALLOCATE.
When used, the package will save the cell-by-
cell flow terms across all faces of every source
or sink cell. MOC3D uses these fluid fluxesto
calculate solute flux to or from the source/sink
nodes. Because these individual solute fluxes
are required to compute the solute mass
balance, the CBCALLOCATE option must
always be selected when using MOC3D.
Implicit calculations of concentration changes at
nodes caused by mixing with fluid sources are
controlled by the “ SRC” subroutinein table 2.

Subroutines related to initiaization of
the iterative solver for the implicit dispersion




Table 1. MOCS3D subroutines controlling
implicit dispersion calculations

Called from
MOCS5LDAS

Subroutine
LOADT

Description

Build solute con-
ductance factors
and load into one-
dimensional
arrays

ASEMBL Assemble matrix MOCS5LDAS
coefficients and

right hand side

vector for the dis-

persion equation

Calculate explicit
terms for right
hand side of ma-
trix equation using
intermediate con-
centrations (C?)

RHSN MOCS5MVOT

Table 2. MOC3D subroutine controlling im-
plicit calculations relating to sources and sinks

Called from
MOC5MVOT

Subroutine
SRC5IAP

Description

Calculate changes
in concentration
due to implicit flux
terms at fluid
sources

equation on areduced matrix are listed in table
3. Table4 lists subroutines related to operation
of theiterative solver itsalf.

Also, the main MODFLOWT outinein
MOC3D Version 2 has been shortened. Many
of the calls to MOC3D-specific subroutines
were combined into new modules designed to
control the linkages between the flow and
transport routines. This simply minimizesthe
number of calls from the main MODFLOW
routine; there is no change in the functionality
of the overall code. These changesare
beneficial to programmers, but areinvisibleto
model users. The new transport-controlling
subroutines are listed in table 5.
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Table 3. MOCS3D subroutines controlling
initialization of iterative solver for implicit
dispersion calculation

Subroutine Called from

INIT

Description

Initialize static data MOC5RPCK
for solver

REORDR Perform red-black INIT
reordering of nodes
based on the se-

lected permutation

of the coordinate

directions

LDCI Load array for REORDR
connection
indices based on

renumbered mesh

Load array for
connection
indices for
reduced matrix

Load array with nat- REORDR
ural numbering for

selected permu-

tation of the co-

ordinate directions

LDCIR REORDR

LDIND

RBORD Map natural node REORDR
number into red-

black node number

MODEL TESTING AND
EVALUATION

TheMOC3D Version 2 simulator was
tested and evaluated by running the same suite
of test cases as was applied to MOC3D Version
1 by Konikow and others (1996). This suite
included base results generated by anaytical
solutions and by other numerical models. It
spanned arange of conditions and problem
types so that the user will gain an appreciation
for both the strengths and weaknesses of this
particular code. It should be noted that all test
cases involve steady flow conditions.



Table 4. MOC3D subroutines and functions
for iterative solver on reduced matrix

Called from
MOC5MVOT

Subroutine
CGRIES

Description

Solve the matrix
equation using the
conjugate-gradient
method

ABMULT Multiply black node CGRIES
matrix times a

vector

ARMULT Multiply red node CGRIES
matrix times a

vector
Multiply black node

diagonal matrix
times a vector

DBMULT CGRIES

FORMR Form reduced CGRIES

matrix

LSOLV Solve lower triang- CGRIES
ular black-node

matrix equation

RFACTM Factor reduced CGRIES
matrix using mod-
ified incomplete

decomposition

uUsoLv Solve upper trian- CGRIES
gular black-node

matrix equation

VPSV Calculate a vector CGRIES
plus a scalar times

a vector

MTOIJK Return the index several
(i,j,k) of the point

with natural index MV

XIP Calculate a vector several
inner product

(function)

One-Dimensional Flow

Thefirst test case evaluates MOC3D for
arelatively smple system involving one-
dimensional solute transport in afinite-length
aquifer having athird-type source boundary
condition, as described by Konikow and others
(1996). The numerical results are compared to
an analytical solution by Wexler (1992, p. 17).
The length of the system is 12 cm; other
parameters are summarized intable 6. The
solute-transport equation was solved using
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Table 5. MOC3D subroutines controlling
overall solute-transport calculations

Subroutine Called from

MOC5RPCK

Description

Control calls for main routine
reading and pre-

paring data and for

performing consist-

ency checks

MOCSINIT Control calls for main routine
initializing
transport terms

Control calls for
calculating fluxes
and printing
velocities

MOC5VELO main routine

MOCS5DISP  Control calls for main routine
calculating and
printing dispersion

coefficients

MOC5LDAS Load solute con- main routine
ductance factors

and assemble

matrix for implicit

solution of the

dispersion equatior

MOC5MVOT Control calls for main routine
advective trans-

port (particle

tracking), total

concentration

change, solute

mass balance,

and solute output

MOC3D Version 2 on a120-cell subgrid to
assure a constant velocity within the transport
domain and to allow an accurate match to the
boundary conditions of the analytical solution.

Two different values of dispersion
coefficients were evaluated in the first set of
tests. ThevaueswereDyx= 0.1 and 0.01
cmé/s, which are equivalent toa, = 1.0 and
0.1 cm, respectively. Breakthrough curves
showing concentration changes over time at
three different distances from the boundary for
the lower dispersion case, as calculated with
both analytical and numerical solutions, are
compared in figure 4. Numerical results using
the implicit dispersion solver were generated
using both the Crank-Nicolson and backward-



Table 6. Parameters used in implicit
MOC3D simulation of solute transport in a
one-dimensional, steady-state flow system

Parameter Value
Tx= Ty 0.01 cm?s
e 0.1
a, 0.1 cm
ary=ary 0.1cm
PERLEN (length of stress period) 120s
Vy 0.1 cm/s
Vy=V; 0.0 cm/s
Initial concentration (Cp) 0.0
Source concentration (C¢) 1.0
Number of rows 1
Number of columns 122
Number of layers 1
DELR (Dx) 0.1 cm
DELC (Dy) 0.1 cm
Thickness (b) 1.0 cm
NPTPND (Initial number of 3

particles per cell)

CELDIS 0.5
INTRPL (Interpolation scheme) 2
FDTMTH 0.5
NXCIT 2

IDIR 1
EPSSLV 1x 105
MAXIT 100

in-time approximations (specified by the value
of FDTMTH intheinput data). To improve
clarity, this plot only shows every fourth data
point for the numerical model results, except
for the curve for x = 0.05 cm, where every data
point is shown for times less than 10 seconds
and every tenth data point is shown for times
greater than 10 seconds. Note that this distance
(x = 0.05) represents the first node downgradi-
ent from the source location. Thereisavery
close match between the numerical and
analytical solutions. At early times and short
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Figure 4. Numerical (implicit) and analytical
solutions at three different locations for solute
transport in a one-dimensional, steady flow
field. Parameter values for this base case are
listed in table 6.

distances the numerical solution exhibits some
oscillation about the mean, which isrelated to
the discrete nature of the particles used to
represent the advection process. This small
loss of precision, however, is not acumulative
error, asit vanishes after moderate travel times
or distances. For this case, the results obtained
using the explicit solution for dispersive fluxes
yield an amost identical numerical solution (see
Konikow and others, 1996, figure 18). All
numerical solutions required 241 time
increments to solve the transport equation
because CELDIS was aways the limiting
criteria.

The results for the higher dispersion
case are presented in figure 5. For clarity, only
every tenth data point is shown for the
numerical solutionsat x =4.05 cm and x =
11.05 cm and for the solution at x = 0.05 cm
for times greater than 50 seconds (every data
point is shown for x = 0.05 cm for times less
than 50 seconds). In general, theimplicit
numerical results show avery close agreement
with the analytical solution. The only notable
exception isfor x = 0.05 cm (representing the
first node of the grid downstream from the
solute and fluid source) at early times, where
the backward-in-time solution shows
concentrations that aretoo high. This
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Figure 5. Numerical (implicit) and analytical
solutions at three different locations for solute
transport in a one-dimensional, steady flow field
for case of increased dispersivity (a; = 1.0 cm,
D, = 0.1 cm?/s, and other parameters as
defined in table 6).

discrepancy, however, disappears for later
times and at longer distances. The oscillations
and loss of precision at nodes very close to the
source are related to the discrete nature of the
particles used to represent advection, as
discussed by Konikow and others (1996, p.
43-44). The magnitude of the oscillations
diminishes over time as dispersion reduces the
local concentration gradients.

This high-dispersion case illustrates the
relative computational efficiency of the implicit
formulation relative to the explicit formulation
using MOC3D. Inthelatter case, the
dispersion coefficient imposed the limiting
stability criteria, and 2401 time increments (or
particle moves) were required to solve the
transport equation. The implicit solver of
MOC3D (Version 2), however, required only
241 moves. The explicit results are virtualy
identical to theimplicit Crank-Nicolson
concentrations.

Konikow and others (1996) also
present the results of these tests in the form of
concentration profilesin space at various times
and for various retardation factors (see their
figures 22 and 23). Replication of these tests
using the implicit formulation yields amost as
good of amatch to the analytical solution as,
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for example, seenin figure 6 for the
nonreactive case. Infigure 6, only every
fourth data point is shown, except fort =6 s,
where every data point is shown for distances
lessthan 1.5 cm. For brevity, the comparisons
for reactive cases are not presented here.
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Figure 6. Numerical (implicit) and analytical
solutions for three different times for same
one-dimensional, steady flow, solute-transport
problem shown in figure 4.

The effect of decay is evaluated by
specifying the decay rate as| = 0.01 s1 for the
same low-dispersion, no sorption, problem as
defined for figure 4. Theseresults are
presented in figure 7, which shows excellent
agreement between the andytical and implicit
numerical solutions. Only every fourth data
point is plotted in figure 7 for the numerical
results. Thereisno discernible difference
between the Crank-Nicolson and backward-in-
time solutions, and both match the analytical
solution very closely. Also, theimplicit
solutions closaly match the explicit solutions,
and both required the same number of time
increments (241) to solve the transport
equation.

Uniform, Three-Dimensional Flow

To evaluate and test MOC3D Version 2
with implicit dispersive transport calculations
for three-dimensional cases, we compared
numerical results with those of the analytical
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Figure 7. Numerical (implicit) and analytical
solutions for four different times for solute
transport in a one-dimensional, steady flow field
for case with decay at rate of | = 0.01 s°1.

solution developed by Wexler (1992) for the
case of three-dimensional solute transport from
a continuous point source in a steady, uniform
flow field in ahomogeneous aquifer of infinite
extent. Konikow and others (1996) note that
this evaluation primarily isatest of the
accuracy of the calculated dispersiveflux in
three directions because the flow field is
aligned with the grid. The problem and
analytical solution are described in detail by
Konikow and others (1996, p. 45-48); the
parameters and boundary conditions for this
test case are summarized in table 7.

The results of MOC3D are compared
graphically with those of the analytical solution
for the x-y plane passing through the point
source in figure 8. Figure 8a shows the
concentrationsin this plane as calculated using
the analytical solution and figure 8b showsthe
same for the Crank-Nicolson implicit MOC3D
results (the backward-in-time results were
indistinguishable from those in figure 8b, so
are not reproduced here). The results agree
very closaly, athough a dlightly greater
distance of transport or spreading is evident in
the MOC3D results, both upstream as well as
downstream of the source. Part of this
difference, however, can be explained simply
by the fact that the sourceis applied over a
larger areain the horizontal plane of the
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Table 7. Parameters used in implicit MOC3D
simulation of transport from a continuous point
source in a three-dimensional, uniform, steady-

state flow system

Parameter Value
Tax= Ty 0.0125 m2/day
e 0.25
a, 0.6 m
ary 0.03 m
ary 0.006 m
PERLEN (length of stress period) 400 days
Vy 0.1 m/day
Vy= Vg 0.0 m/day
Initial concentration (Cp) 0.0
Source concentration (C¢) 25 106 g/mE
Q (at well) 1.0 106

m3/d
Source location row 8, column
1, layer 1
Number of rows 30
Number of columns 12
Number of layers 40
DELR (Dx) 3m
DELC (Dy) 0.05m
Thickness (b) 1.0 cm
NPTPND (Initial number of 3
particles per cell)

CELDIS 0.1
INTRPL (Interpolation scheme) 1
FDTMTH 0.5
NXCIT 2
IDIR 1
EPSSLV 1x10
MAXIT 100

MOC3D model, in which the length of the
source cell is3 minthedirection parald to
flow, whereas the source is represented as a
true point in the analytical solution.

The results obtained using the explicit
MOC3D formulation are presented by
Konikow and others (1996, figure 25b). The
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Figure 8. Concentration contours for (a) ana-
lytical and (b) numerical solutions in the
horizontal plane containing the solute source
(layer 1) for three-dimensional solute transport
in a uniform steady flow field. Parameters are
defined in table 7.

explicit and implicit results are nearly identical.
The explicit solution method used 207 time
increments and the implicit solution methods
used only 134, so theimplicit method is
somewhat more efficient for this case.

Konikow and others (1996) also
present comparisons for this case for vertica
planes parallel and perpendicular to the flow
direction. The comparisonswith the implicit
resultsare as close asin figure 8, and so for
brevity are not reproduced here.
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Two-Dimensional Radial Flow

A radia flow and dispersion problem
was aso used to compare the implicit
dispersive transport MOC3D solution to the
analytical solution given by Hsieh (1986) for a
finite-radiusinjection well in an infinite aquifer
of two dimensions. The problem involves
flow from asingle injection well; the velocities
vary in space and are inversely related to the
distance from the injection well.

The parameters for the problem are
summarized in table 8 and the andytical
solution and other details about thistest case
are presented by Konikow and others (1996, p.
49-50). The problem was again modeled using

Table 8. Parameters used in implicit MOC3D
simulation of two-dimensional, steady-state,
radial flow case

Parameter Value
Tax = Ty 3.6 m2/hour
e 0.2
a 10.0 m
ary=ary 10.0 m
PERLEN (length of stress period) 1000 hours

Q (at well)
Source concentration (C¢)

56.25 m3/hour
1.0

Number of rows 30
Number of columns 30
Number of layers 1
DELR (Dx) = DELC (Dy) 10.0 m
Thickness (b) 10.0 m
NPTPND (Initial number of 46
particles per cell)
CELDIS 0.5
INTRPL (Interpolation scheme) 2
FDTMTH 1.0
NXCIT 2
IDIR 1
EPSSLV 1x 105
MAXIT 100




agrid having 30 cellsin the x-direction and 30
cellsin the y-direction, representing one
guadrant of theradial flow field (90 of 360
degrees). Initial particle positions were defined
using the custom particle placement option as
described by Konikow and others (1996). The
implicit solutions using Crank-Nicolson and
backward-in-time differencing were essentially
identical, and both matched the anaytical
solution almost exactly (see Konikow and
others, 1996, figure 29). The implicit
solutions of MOC3D aso agree very closely
with the explicit dispersive transport solution of
MOC3D presented by Konikow and others
(1996). The explicit solution, however,
required 596 time increments, whereas the
implicit solutions required only 282 time
increments.

Point Initial Condition in Uniform Flow

A problem including three-dimensional
solute transport from an instantaneous point
source, or Dirac initial condition, in auniform
flow field was used as another test problem.
An andytical solution for an instantaneous
point source in a homogeneous infinite aquifer
isgiven by Wexler (1992, p. 42), who
presents the POINT3 code for arelated case of
a continuous point source. The POINT3 code
was modified to solve for the desired case of an
instantaneous point source. Test problems
were designed to evaluate the numerical
solution for two cases—one in which flow is
paralel to the grid (in the x-direction) and one
in which flow occurs at 45 degrees to the x-
and y-axes. Thisallows usto evaluate the
accuracy and senditivity of the numerical
solution to the orientation of the flow relative to
the grid. The assumptions and parameters for
thistest case are summarized in table 9 and are
described in more detail by Konikow and
others (1996).

As described by Konikow and others
(1996), we specified for the test case of flow in
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Table 9. Parameters used in implicit MOC3D
simulation of three-dimensional transport from a
point source with flow in the x-direction and flow
at 45 degrees to x- and y-axes

Parameter Value
Tax= Ty 10.0 m2/day
e 0.1
a, 1.0 m
ary=ary 0.1m
PERLEN (length of stress period) 90 days
Vy 1.0 m/day
Vy=V; 0.0 m/day*
Initial concentration at source 1" 106
Source location x =30 m,

y =120 m,

z =40 m**
Number of rows 24 and 72
Number of columns 24 and 72
Number of layers 24
DELR (Dx) 10.0 and 3.33
DELC (Dy) 10.0 and 3.33
Thickness (b) 10.0 m
NPTPND (Initial number of 8

particles per cell)

CELDIS 0.5
INTRPL (Interpolation scheme) 2
FDTMTH 0.5
NXCIT 2
IDIR 1
EPSSLV 1x 1077
MAXIT 100

* For flow at 45 degrees to x- and y-axes, Vy =1.0
m/day

** For flow at 45 degrees to x- and y-axes, the source
locationis x =30 m, y =30 m, and z =120 m.

thex-direction that Vx = 1.0 m/d, and Vy = V7
= 0.0 m/d. For flow at 45 degreesto x andy,
we specified Vx = Vy = 1.0 m/d, and Vz = 0.0
m/d. For both cases, the distance the center of
mass of the plume travelsin the x-direction is
the same for equal simulation times. Note,
however, that the magnitude of velocity is
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Figure 9. Concentration contours for (a) analytical and (b, ¢) numerical solutions for transport
of a point initial condition in uniform flow in the x-direction. The z-component of flow is zero,
but there is dispersion in all three directions. Contour values are the log of the concentrations.

higher in the latter case; therefore, there will be

more dispersion in that problem during an
equivalent timeinterval.

The results for both the anaytical and
numerical solutions for the case in which flow

occurs only in the x-direction are shown in
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figure9. Theimplicit dispersive transport
algorithmsin MOC3D gave resultsfor a 72 by
72 grid that are very close to those of the
analytical solution (figure 9a). The numerical
results, however, do show some slight
spreading (or numerical dispersion) relative to



the analytical solution in both the transverse
and longitudinal directions. The Crank-
Nicolson solution (figure 9b) agrees very
closdly with the backward-in-time solution
(figure 9c), except for adightly longer tail on
the highest contour in the backward-in-time
solution. Theimplicit MOC3D solutions also
closaly match the explicit MOC3D results
presented by Konikow and others (1996,
figure 30d). All numerical solutionstook 56

time increments to solve the transport equation
and CELDISwasthelimiting criteriain all
Cases.

The results of the test problem for flow
at 45 degrees to the grid are shown in figure
10. Theanalytical solution (figure 10a), which
provides the basis for the evaluation, was
solvedona 72" 72 grid, and theimplicit
MOC3D solutions are shown for a24” 24" 24
grid (figure 10b) and a72" 72" 24 grid
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Figure 10. Concentration contours for (a) analytical and (b, ¢, d) numerical solutions for
transport of a point initial condition in uniform flow at 45 degrees to x and y. Contour values

are the log of the concentrations.
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(figures 10c and 10d). Unlike the previous
case (where flow is aligned with the grid), the
numerical resultsin figure 10 show a noticeable
differencein the shape of the plume relative to
the anaytical solution. The numericaly
calculated “hourglass’ shape is characteristic of
agrid-orientation effect and is caused primarily
by the off-diagonal (cross-product) terms of the
dispersion tensor. When flow is oriented
paralld to the grid, or when longitudinal and
transverse dispersivities are equal, the cross-
product terms of the dispersion equation are
zero. Becauseflow isat 45 degreesto thegrid,
the cross-product dispersive flux terms are of
maximum size and negative concentrations are
most likely to occur. The calculated
concentration field isless accurate in this case
largely because the standard differencing
scheme for the cross-product dispersive flux
terms can cause overshoot and undershoot of
concentrations. |If the base (or background) is
zero concentration, then undershoot will cause
negative concentrations. The magnitude of this
overshoot and undershoot effect is reduced by
using afiner grid. For thistest problem, the
coarsest grid (figure 10b) exhibits too much
spreading relative to the analytical solution, and
the finer grid resultsin less numerical
dispersion (although the grid-orientation effect
isnot eliminated). The backward-in-time
solution (figure 10c) matches the analytical
solution more closely than does the Crank-
Nicolson solution (figure 10d), which
characterigticaly yields more oscillatory
behavior. Theimplicit and explicit MOC3D
results all show a dight asymmetry in the shape
of the plumein the direction of flow (that is,
thereis dlightly less forward spreading
compared to backward spreading), although
this effect isless pronounced in the explicit
solution (see Konikow and others, 1996,
figure 31d). Thisasymmetry isinconsi stent
with symmetrical spreading found in the
analytical solution, and is caused by the
sequence in which the dispersive and advective
eguations of the transport are solved. Both
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explicit and implicit solutionsusinga72” 72
grid required 56 moves, so the simpler explicit
solution was more efficient for this particular
problem. The solution onthe 24 24 grid
required only 19 moves.

Some small areas of negative
concentrations were calculated, but they do not
appear in figure 10 because they are removed
by using logarithmic-scale contouring. To
show the extent of the areas of negative
concentration, we have replotted the results
illustrated in figures 10b-d in figure 11, using
two types of shading for all areas where the
relative concentration is less than -0.05 and less
than -10.0. The coarse grid solution shows the
largest area in which negative concentrations
occur. The use of afiner grid reducesthe
magnitude of the problem, but does not
eliminateit. We aso tested the sensitivity of
the extent of negative concentrationsto the size
of the transport time increment by reducing the
value of CELDISto 0.1 (the base case used a
value of CELDIS = 0.5). The areaover which
negative concentrations occurred was only
dightly smaller. Theincreasein execution
time, however, was considerable, so the very
small improvement does not appear to justify
the extra computational costs.

Constant Source in Nonuniform Flow

Burnett and Frind (1987) used a
numerical model to smulate a hypothetical
problem having a constant source of solute
over afinite areaat the surface of an aquifer
having homogeneous properties, but
nonuniform boundary conditions, which result
in nonuniform flow. Because an analytical
solution is not available for such a complex
system, we use their results for thistest case as
a benchmark for comparison with the results of
applying the implicit algorithm in MOC3D, as
was a so done by Konikow and others (1996).
Burnett and Frind (1987) used an aternating-
direction Gaerkin finite-element technique to
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Figure 11. Concentration contours showing calculated areas of negative concentrations for
same problem as represented in figure 10.

solve the flow and solute-transport equationsin  presented by Konikow and others (1996, p.

both two and three dimensions. Their model 55-60).

aso includesthe capability to vary a asa Cases of both two- and three-
function of coordinate direction, thereby dimensional transport were examined for this
allowing this feature of MOC3D to be problem. The grids used in theimplicit

MOC3D simulations were designed to match as
closely as possible the finite-element mesh used
by Burnett and Frind (1987). However, some

evaluated. A detailed description of the
problem geometry and of the parametersfor the
numerical smulation using MOC3D are
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differencesin discretization could not be
avoided because the finite-element method uses
a point-centered grid whereas MOC3D uses a
block-centered (or cell-centered) grid. The
former allows specifications of values at nodes,
which can be placed directly on boundaries of
the model domain. Nodesin MOC3D are
located at the centers of cells, and block-
centered nodes are always one-half of the grid
spacing away from the edge of the model
domain. Among the small differencesarising
from the aternative discretization schemes are
that, in theMOC3D grid, (1) the modeled
location of the 14.25 m long source areais
offset by 0.225 m towards the right, and (2)
the total length of the domain is 199.5 m.

Thefirst analysis of thistest casewasa
two-dimensional model. Theinput data values
for thisanaysisarelisted in table 10. Thetop
flow layer consisted of constant-head nodes
and the solute source. We were ableto
increase the efficiency of the smulation by
using acustom initial particle placement of only
three particlesin each cdll and till achieve
reasonably accurate results (see Konikow and
others, 1996, p. 56-57).

Results for the two-dimensional case
from the implicit calculation of the MOC3D
simulator closely match those of Burnett and
Frind (1987) (seefigure 12). The shape of the
plume isamost exactly the same for both
models. Intheimplicit MOC3D results,
however, the contours extend dlightly further
downgradient than those of Burnett and Frind
(1987). Thismay be attributablein part to
small differencesin the numerical trestment of
the source between the two models. The
results using the backward-in-time
approximation and CELDIS= 0.5 are
presented in figure 12b. Thissimulation
required 381 time increments, and the contours
exhibit some very small “wiggles.” When this
was run using CELDIS = 1.0, the ssmulation
required only 191 time increments (effectively
doubling the average length of the time
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Table 10. Parameters used for implicit MOC3D
simulation of transport in a vertical plane from a
continuous point source in a nonuniform,

steady-state,

two-dimensional

flow system

(described by Burnett and Frind, 1987)

Parameter Value
K 1.0 m/day
e 0.35
ap 3.0m
ary 0.10 m
ary 0.01m
PERLEN (length of stress 12,000 days
period)
Q (at well) 56.25 m3/hour

Source concentration (C¢)
Number of rows

Number of columns’
Number of layers'

DELR (Dx)

DELC (Dy)

Thickness (b)

NPTPND (Initial number of
particles per cell)

CELDIS

INTRPL (Interpolation scheme)

FDTMTH
NXCIT
IDIR
EPSSLV
MAXIT

1.0

1

141

91

1.425m

1.0 m
0.2222-0.2333 m
3

0.5
1

1.0
2

1
1x10°7
100

1 One row and layer were allocated to defining
boundary conditions, so concentrations calculated
in only 140 columns and 90 layers were used for

comparison.

increment), but the oscillations were noticeably
worse (although these results are not shown).
When thiswas run again using CELDIS = 0.1,
the smulation required 1901 time increments;
these results are presented in figure 12c. The
oscillations are somewhat reduced relative to
those in figure 12b, and the furthest

downstream extent of the 0.9 and 0.3 contours
has shifted away from the center of mass. The
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Figure 12. Two-dimensional simulation results for nonuniform-flow test case
showing plume positions as contours of relative concentration: (a) finite-element
model (modified from Burnett and Frind, 1987, figure 8a), and (b-d) MOC3D.
Contour interval is 0.2 relative concentration.

simulation was also run using an even smaller
value of CELDIS (0.05), which caused the
model to take 3,801 time increments. But this
further reduction of the size of the time
increment had no discernible effect on the
results. Similarly, when the simulations were
made using the Crank-Nicolson difference,
results were essentially identical to those
obtained using backward-in-time. The results
obtained using the explicit MOC3D solution are
presented in figure 12d for comparison, and
they appear to be almost identical to thosein
figure 12c. The explicit simulation required
4,218 time increments (dispersion was the
limiting criteria). For this problem, itisclear
that theimplicit MOC3D algorithmis
significantly more efficient. Theimplicit
results show some sengitivity to the length of
the time increment. In general, the user should
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evaluate this sengitivity for their particular
problem by making several runsin which the
value of CELDISisvaried.

Aswas done for the explicit MOC3D
tests (Konikow and others, 1996), the implicit
MOC3D grid was expanded to 15 rows having
Dy of 1.0 m for the three-dimensional analyses
of thiscase. Figure 13 shows the transport
resultsin avertical plane at the middle of the
plume for both models for the casein which
at, =001 mand a1, =0.1m. Theimplicit
MOC3D results for the vertical planein the first
row are contoured in figure 13b (because of
symmetry, we only simulate half of the plume,
as explained by Konikow and others, 1996).
The MOC3D plume closely matches that
calculated by the finite-element model, although
the former shows dightly further downstream
migration of solute. Konikow and others
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Figure 13. Three-dimensional simulation results for nonuniform-flow test case in which
ary=0.1mandar,=0.01 m: (a) finite-element model (modified from Burnett and Frind,
1987, figure 8c), and (b) implicit MOC3D solution using backward-in-time approximation
and CELDIS = 0.5. Plume positions are represented by contours of relative concentration
in vertical plane of three-dimensional grid; contour interval is 0.2 relative concentration.

(1996) note that thereis a dight discrepancy in
the basis of comparison because concentrations
from MOC3D are evaluated at the center of the
block (1/2 of acell width from the plane of
symmetry), whereas those from Burnett and
Frind (1987) are evaluated on the cell faces
(directly on the plane of symmetry). The
Crank-Nicolson differencing scheme was a so
used to compute the concentration distribution,
and those results matched those cal cul ated
using the backward-in-time scheme (figure
13b) almost exactly. These implicit solutions
required the same number of time increments
(381) as did the previously described two-
dimensional smulation. The explicit solution

(Konikow and others, 1996, figure 36b),
however, required 4,218 time increments and
was clearly less efficient for achieving
equivalent accuracy.

Figure 14 shows the results for the case
inwhich the vertical transverse dispersivity is
increased by afactor of ten, sothat a,,= a,
= 0.1 m. Overdl, theimplicit dispersive
transport MOC3D results (figure 14b) agree
very closely with those of Burnett and Frind
(1987) (figures 14a). Asbefore, the results
shown in figure 14b for the backward-in-time
approximation agree almost exactly with those
obtained using the Crank-Nicolson implicit
solution and the explicit MOC3D solution.
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Figure 14. Three-dimensional simulation results for nonuniform-flow test case in which
ary = ary = 0.1 m: (a) finite-element model (modified from Burnett and Frind, 1987, fig-
ure 9b), and (b) implicit MOC3D solution using backward-in-time approximation and
CELDIS = 0.5. Plume positions are represented by contours of relative concentration in
vertical plane of three-dimensional grid; contour interval is 0.2 relative concentration.
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Relative Computational and Storage
Efficiency

Computer-memory storage requirements
for theimplicit dispersive transport algorithm
of MOC3D are greater than those for the
explicit dispersive transport algorithm. The
additional arraysrequired for using the implicit
algorithm routines can increase the memory
size requirement by as much as afactor of two
(seetable 11). Computational effort required
for the implicit agorithm, as opposed to the
explicit one, depends on the dominant transport
mechanism in the model--advection or disper-
sion. Thefirst test problem, which was a one-
dimensional, steady-state flow problem, was
run using various values of longitudinal
dispersivity with both the explicit and implicit
algorithms. Aspresented in table 12, the
implicit algorithm is more efficient than the
explicit agorithm when the dispersivity is
greater than 0.1 (the grid spacing for this

problemis0.1 cm). This correspondsto agrid
Peclet number less than 1, where the grid
Peclet number is defined as,

Dx
P%:Z

The computational effort required by the
implicit dispersive transport algorithm in the
MOC3D simulator is strongly dependent on the
size of the problem being solved, as determined
by the total number of nodes, total number of
particles, and total number of time increments,
but isindependent of the value of thetime
weighting factor (FDTMTH). Analysesindicate
that the greatest computational effort, as meas-
ured by CPU time, istypically expended in the
particle tracking routines. For agiven problem,
computational effort may vary significantly asa
function of the characteristics of the particular
computer on which the simulation is performed,
and on which FORTRAN compiler and options
were used to generate the executable code.

(26)

Table 11. Execution times and storage requirements for explicit and implicit solutions
using MOC3D (Version 2) for selected test cases.

Run Time in CPU-seconds

"X" Array Elements Used'

Problem Description Explicit Implicit Explicit Implicit

One-Dimensional Steady 7 10 11,457 17,400
Flow?

Three-Dimensional Steady 404 175 897,331 1,602,994
Flow?2

Two-Dimensional Radial 930 445 455,737 499,900
Flow and Dispersion?

Point Initial Condition in 210 310 1,728,673 2,406,112
Uniform Flow (flow at 45
degrees to grid) 2

Constant Source in 13,360 2,450 868,951 1,457,602
Nonuniform Flow (Two-
Dimensional)3

Constant Source in 38,117 13,026 12,823,151 21,652,034

Nonuniform Flow (Three-
Dimensional) 3

T Al data arrays and lists for MODFLOW, explicit and implicit MOC3D are allocated space in one array,
the MODFLOW "X" array.

2 Data General server with a Motorola 88110 chip running DG Unix 5.4R3.10 with 256MB RAM and a 45
MHz processor was used for this problem. Green Hills Software FORTRAN-88000 was used to compile
MOC3D.

3 Silicon Graphics server with an R8000 chip running Irix 6.0.1 with 576MB RAM and a 90 MHz processor
was used for this problem. MIPSpro F77 was used to compile MOC3D.
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Table 12. Relative simulation times for explicit and implicit solu-
tions using MOC3D (Version 2) for varying values of longitudinal
dispersivity for the one-dimensional, steady-state flow problem.

MOC3D
D_Longi'tu.dinal Peclet Explicit Implicit
ispersivity (cm) Number
0.001 100.0 1.0" 2.1
0.01 10.0 1.0 2.1
0.02 5.0 1.0 2.1
0.1 1.0 1.0 2.1
0.2 0.50 1.6 1.8
0.5 0.20 3.7 1.7
1.0 0.10 7.1 1.7
10.0 0.01 67.2 1.6

* A value of 1.0 is equivalent to the base run, which took 6.9 cpu
seconds to execute on a Data General server with a Motorola 88110
chip running DG Unix 5.4R3.10 with 256 MB RAM and a 45MHz

processor.

To provide aqudlitative indication of
these relations, we have run all of the sample
problems described in this report on avariety
of computers. The costs, given as actual run
times for each problem on selected computer
systems, are presented in table 13. Therun
times are measured as CPU time in seconds.
Asshown in table 13, the running times for a
given problem may vary by more than afactor
of ten, depending on which computer was
used. However, for the given test problems,
the cost was much more sensitive to the overall
size of the problem. The CPU timeon agiven
computer varied by about four orders of
magnitude between the simplest one-
dimensiona problem and the most complex
three-dimensional problem. Thus, the model
user should be aware that simulation cost may
be a serious constraint on the size of problem
that is feasible to smulate.

CONCLUSIONS

Theimplicit dispersive transport
algorithm presented as an extension to the
MOC3D smulator can simulate the transient,
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three-dimensional, transport of a solute subject
to decay and retardation. The numerical
methods used to solve the governing equations
have broad general capability and flexibility for
application to awide range of hydrogeological
problems.

The accuracy and precision of the
numerical results of the implicit dispersive
trangport agorithm were tested and evaluated
by comparison to analytical and numerical
solutions for the same set of test problems as
reported for the explicit algorithm in MOC3D
(Version 1). These evaluation testsindicate
that both the explicit and implicit solution
algorithmsin the MOC3D (Version 2) model
can successfully and accurately ssimulate three-
dimensional transport and dispersion of a
solutein flowing ground water. An advantage
of theimplicit algorithm isthat it hasless
computational cost for a given accuracy for
dispersion-dominated problems. Assuch, it
complements the explicit dispersive transport
algorithm, which is more economical for
advection-dominated problems when time step
limitations on the particle transport calculation
become limiting.



Table 13. Comparison of MOC3D (Version 2) simulation times using implicit solver for selected
test cases on various computer platforms

Run Time in CPU-Seconds

Proble_m. Number of  Number Maximum Silicon Data PC Macintosh
Description Nodes of Numper of Grabiins | General (133 MHz, PowerPC
Moves  Particles ©rapnics ™ gorver2  pentium)®  (7300/200)4
One-Dimensional 120 241 360 1.5 10 3 4.5
Steady Flow
Three-Dimensional 14,400 27 43,200 16 175 30 83
Steady Flow
Two-Dimensional 900 282 41,400 33 445 77 158
Radial Flow and
Dispersion
Point Initial Condition 13,824 19 110,729 20 310 40 90

in Uniform Flow (flow
at 45 degrees to
grid)
Constant Source in 12,831 381 57,066 210 2450 420 783
Nonuniform Flow
(Two-Dimensional)®
Constant Source in 192,465 381 855,330 2425 NT NT NT
Nonuniform Flow
(Three-
Dimensional)®

NT = Not Tested

1 Silicon Graphics server with an R8000 chip running Irix 6.0.1 with 576MB RAM and a 90 MHz processor.
MIPSpro F77 was used to compile MOC3D.

2 Data General server with a Motorola 88110 chip running DG Unix 5.4R3.10 with 256MB RAM and a 45 MHz
processor. Green Hills Software FORTRAN-88000 was used to compile MOC3D.

3 IBM-compatible Pentium PC running WindowsNT with 32MB RAM and a 133 MHz processor. Lahey LF90
version 4.50e was used to compile MOC3D.

4 Macintosh 7300 with 200 MHz PowerPC 604e processor and 32MB of RAM. MOC3D was compiles using
Fortner Research LS FORTRAN Version 1.1 for Power Mac.

5 CELDIS=0.5
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APPENDIX A: DATA INPUT INSTRUCTIONS FOR MOC3D (Version 2)

This Appendix includes a complete set of instructions for preparing a data set for the
MOC3D model. Mgjor changes that have been implemented since the release of Version 1 are
shaded to highlight the new instructions.

MODFLOW Name File

Transport simulation is activated by including arecord in the MODFLOW namefile using
the file type (Ftype) “CONC” to link to the transport namefile. The transport name file specifies
the files to be used when simulating solute transport in conjunction with a simulation of ground-
water flow using MODFLOW. The transport name file worksin the same way as the MODFLOW
namefile.

MODFLOW Source and Sink Packages

Except for recharge, concentrations associated with fluid sources (C') are read as auxiliary
parameters in the MODFLOW source package. The source concentration is read from a new
column appended to the end of each line of the data file describing a fluid sink/source (see
documentation for revised MODFLOWmodel; Harbaugh and McDonald, 1996a and 1996b). For
example, concentrations associated with well nodes should be appended to the line in the WEL
Package where the well’ s location and pumping rate are defined. These concentrations will be read
if the auxiliary parameter “CONCENTRATION” (or “CONC") appears on thefirst line of the well
input datafile. The concentration in recharge is defined separately, as described in following
section “ Source Concentration in Recharge File.”

To simulate solute transport the MODFLOW option enabling storage of cell-by-cell flow
rates for each fluid source or sink isrequired in all fluid packages except recharge. The key word
“CBCALLOCATE” (or “CBC”) must appear on thefirst line of each input datafile for afluid
package (see Harbaugh and McDonald, 1996a and 1996b).

MOC3D Input Data Files

All input variables are read using free formats, except as specificaly indicated. Infree
format, variables are separated by one or more spaces or by a comma and optionally one or more
gpaces. Blank spaces are not read as zeros.



MOC3D Transport Name File (CONC)

FOR EACH SIMULATION:

1. Dat a:

FTYPE NUNI T FNAVE

The name file consists of records defining the names and units numbers of thefiles. Each
“record” consists of a separate line of data. There must be arecord for the listing file and for the
main MOC3D input file.

Thelisting (or output) file (“*CLST”) must be the first record. The other files may bein any
order. Each record can be no more than 79 characters.

FTYPE

CLST

Thefile type, which may be one of the following character strings:

MOCS3D liting file (separate from the MODFLOWIisting file) [required] .

MOC or MOCIMP  ManMOC3D input datafile[required]. SpecifyingMOC

CRCH
CNCA

CNCB
VELA

VELB
PRTA

PRTB
OBS
DATA

indicates dispersion calculations will be explicit (as described by Konikow
and others, 1996) and specifying M OCI MP indicates dispersion
calculationswill be implicit (as described in this report).

Concentrations in recharge [ optional] .

Separate output file containing concentration datain ASCII (text-only) format.
Frequency and format of printing controlled by NPNTCL and ICONFM
[optional]. If concentrations are written to a separate output file, they will
not be written to the main output file.

Separate output file containing concentration datain binary format [optional] .

Separate output file with velocity datain ASCII format. Frequency and format
of printing controlled by NPNTVL and IVELFM [optional].

Separate output file with velocity datain binary format [ optional].

Separate output file with particle locations printed in ASCII format. Frequency
and format of printing controlled by NPNTPL [optional].

Separate output file with particle locations printed in binary format [ optional] .
Observation wellsinput file [ optional].

For formatted files such as those required by the OBS package and for array
data separate from the main MOC3D input data file [optional] .

DATA(BINARY) For formatted input/output files[optional] .

NUNI T

FNAVE

The FORTRAN unit number used to read from and writeto files. Any legal unit

number other than 97, 98, and 99 (which are reserved by MODFLOW) can be
used provided that it is not previoudly specified in the MODFLOWnamefile.

The name of thefile.
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Main MOC3D Package Input (MOC or MOCIMP)

Input for the method-of-characteristics (MOC3D) solute-transport package is read from the
unit specified in the transport name file. The input consists of up to 19 separate records or data
sets, as described in detail below. These data are used to specify information about the transport
subgrid, physical and chemical transport parameters, numerical solution variables, and output
formats. Output file controls for the MOC3D package are specified in the transport namefile,
described previoudy. Compared to the original version of MOC3D, Version 2 includes one
additional data set, which isused only if theimplicit solver is selected. Thisdata set is placed
between the original data sets 7 and 8, and hence has been labeled as data set 7.1.

FOR EACH SIMULATION:

1. Data: HEDMOC A two-line character-string title describing the
simulation (80 text characters per line).

2. Data: HEDMOC (conti nued)

3. Data: | SLAY1 | SLAY2 | SROM | SRON2 | SCAL1 | SCOL2

| SLAY1 Number of first (uppermost) layer for transport.
| SLAY2 Last layer for transport.

| SROM First row for transport.

| SROA2 Last row for transport.

| SCOL1 First column for transport.

| SCOL2 Last column for transport.

Notes:

Transport may be simulated within a subgrid, which is a“window” within the primary
MODFLOW grid used to simulate flow. Within the subgrid, the row and column spacing must be
uniform, but thickness can vary from cell to cell and layer to layer. However, as discussed in the
section reviewing MOC3D assumptions, the range in thickness values (or product of thickness and
porosity) should be as small as possible.

4. Data: NCDI SP DECAY D FFUS

NCDI SP Flag for no dispersion (set NODISP=1 if no dispersion in problem; thiswill reduce
storage alocation).

DECAY First-order decay rate [1/T] (DECAY =0.0 indicates no decay occurs).
D FFUS Effective molecular diffusion coefficient [L2/T].

Notes:
The decay rate (I ) isrelated to the half life (ty,) of a constituent by | = (In 2)/ty,.
The effective molecular diffusion coefficient (Dyy) includes the effect of tortuosity.
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5. Data: NPIVAX NPTPND

NPMAX Maximum number of particles available for particle tracking of advective transport
in MOC3D. If set to zero, the model will calculate NPMAX according to the
following equation:

NPMAX =2 NPTPND" NSROW" NSCOL" NSLAY.

NPTPND Initial number of particles per cell in transport simulation (that is, at t = 0.0). Valid
options for default geometry of particle placement include 1, 2, 3, or 4 for one-
dimensional transport smulation; 1, 4, 9, or 16 for two-dimensional transport
simulation; and 1, 8, or 27 for three-dimensional transport smulation. The user
can also customizeinitial placement of particles by specifying NPTPND asa
negative number, in which case the minus sign is recognized as aflag to
indicate custom placement isdesired. In this case, the user must input local
particle coordinates as described below.

IF NPTPND ISNEGATIVE IN SIGN:
6. Data: PNEWL PNEWR PNEWC

PNEWL Relative positionin the layer (z) direction for initia placement of particle within any
finite-difference cell.

PNEVWR Relative position in the row (y) direction for initial placement of particle.

PNEWC Relative position in the column (x) direction for initial placement of particle.

Notes:

The three new (or initial) particle coordinates are entered sequentially for each of the
NPTPND particles. Each line contains the three relative local coordinates for the new particles, in
order of layer, row, and column. There must be NPTPND lines of data, one for each particle. The
local coordinate system range is from -0.5 to 0.5, and represents the relative distance within the cell
about the node location at the center of the cell, so that the node is located at 0.0 in each direction.

FOR EACH SIMULATION:
7. Data: CELD S FZERO | NTRPL

CELD S Maximum fraction of cell dimension that particle may move in one step (typically,
0.5£CELDIS£1.0).

FZERO If the fraction of active cells having no particles exceeds FZERO, the program will
automatically regenerate an initial particle distribution before continuing the smulation
(typicaly, 0.01 £ FZEROE£ 0.05).

| NTRPL  Flag for interpolation scheme used to estimate velocity of particles. The default
(INTRPL=1) will use alinear interpolation routine; if INTRPL=2, a scheme will be
implemented that uses bilinear interpolation in the row and column (j and i)
directions only (linear interpolation will still be applied inthek, or layer, direction).
(See section “ Discussi on—Choosing appropriate interpolation scheme.”)
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FOR EACH SIMULATION (only if MOCIMP is specified in Transport Name File):

7.1 Data: FDTMIH NCXI'T | D REC EPSSLV MAXI T

FDTMIH Waeighting factor for tempora differencing of dispersion equation (0.0 £ FDTMTH £
1.0). We suggest using either avalue of FDTMTH = 0.5, a centered-in-time (or
Crank-Nicolson) approximation, or FDTMTH = 1.0, a backward-in-time (or fully
implicit) approximation. [Default value = 1]

NCXI T Number of iterations for the explicitly-lagged cross-dispersive flux terms (NCXIT 3 1).
We suggest that the user initialy specify avalue of 2, but if the solution exhibits
significant areas of negative concentrations, then the value of NCXIT should be
increased to require more iterations, which typicaly will reduce the extent and
magnitude of negative concentrations (at the cost of increased computational time).
[Default value = 2]

| DI REC Direction index for permutation of the red-black node renumbering scheme. The order
isasfollows: 1: x,y,z; 2: X,z,y; 3:Y¥,X,Z, 4. y,2,X; 5. z,x,y; and 6: z,y,x. Thefirst
direction index is advanced most rapidly and the last direction index is advanced
least rapidly. In some cases, there can be asignificant variation in the number of
iterations needed to achieve convergence, depending on the order of the directions
for the red-black renumbering. We suggest that the user initially specify IDIREC =
1. If thisleads to ardatively large number of iterations (more than 10), then the user
should experiment with alternate choices to determine the one requiring the fewest
number of iterations for their particular problem. [Default value = 1]

EPSSLV Tolerance on thereative residua for the conjugate-gradient solution of the matrix of the
difference equations. We suggest that the user initially specify EPSSLV £ 10-5. An
adequately small value of EPSSLV has the property that a smaller value does not
change the numerica solution within the number of significant digtits desired by the
user. Inthe single-precision code implemented here, EPSSLV should not be less
than 107. [Default value = 10-3]

MAXI T Maximum number of iterations allowed for the iterative solution to the differernce
equations for dispersive transport. In most cases, MAXIT = 100 is satisfactory.
[Default value = 100]

Notes:

Entering a zero or out-of-range value for any of these five variables will cause the code to
use the indicated default value.
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FOR EACH SIMULATION:

8. Data: NPNTCL | CONFM NPNTVL | VELFM NPNTDL | DSPFM  NPNTPL

NPNTCL

| CONFM

NPNTVL

| VELFM

NPNTDL

| DSPFM
NPNTPL

Flag for frequency of printing concentration data. If NPNTCL=-2, concentration data
will be printed at the end of every stress period; if NPNTCL=-1, datawill be
printed at the end of every flow time step; if NPNTCL =0, datawill be printed at the
end of the smulation; if NPNTCL=N>0, datawill be printed every Nth particle
moves, and at the end of the simulation. Initial concentrations are aways printed.
Solute budget and mass balance information are only printed every time
concentration data are saved.

Flag for output format control for printing concentration data. 1f concentration data are
written to main output file (file type CNCAis not used), ICONFM represents a code
indicating the format style (table 14, also see Harbaugh and McDonald, 199643, p.
19). If concentration data are written to a separate output file (file type CNCA
exists), specifying | CONFM3 0 will indicate that concentration data are to be
written as a matrix of values for each layer of the subgrid, whereas specifying
| CONFM< 0 will indicate that concentration data are to be written as a table of
values having one row for each node in the subgrid and four columns (x, vy, z, and
concentration), where x, y, and z are the actual nodal coordinatesin the length units
of the model simulation. Note that we follow the MODFLOW convention in that y
increases from top to bottom row, and z increases from top layer to bottom layer.
Also note that the x and y values are given with respect to the entire MODFLOW
grid, but the z location is calculated only for vertical distances within the layers of
the transport subgrid. If data are written in matrix style, one header line precedes
and identifiesthe datafor each layer. If data are written as atable of values, one
header line is written each time that concentration data are saved.

Flag for printing velocity data. If NPNTVL=-1, velocity datawill be printed at the end
of every stress period; if NPNTVL=0, datawill be printed at the end of the
simulation; if NPNTVL=N>0, datawill be printed every Nth flow time steps, and
at the end of the simulation.

Specification for format of velocity data, if being printed in main output file (see table
14).

Flag for printing dispersion equation coefficients that include cell dimension factors
(see section “Program Segments’). If NPNTDL=-2, coefficients will be printed at
the end of every stress period; if NPNTDL=-1, coefficients will be printed at the
end of the ssimulation; if NPNTDL=0, coefficients will not be printed; if
NPNTDL=N>0, coefficients will be printed every Nth flow time step.

Specification for format of dispersion equation coefficients (see table 14).

Flag for printing particle locations in a separate output file (only used if file types
“PRTA” or “PRTB” appear in the MOC3D namefile). If neither “PRTA” or
“PRTB” isentered in the name file, NPNTPL will be read but ignored (so you must
always have some value specified here). If either “PRTA” or “PRTB” isentered in
the namefile, initial particle locations will be printed to the separate file first,
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followed by particle data at intervals determined by the value of NPNTPL. If
NPNTPL=-2, particle datawill be printed at the end of every stress period; if
NPNTPL=-1, datawill be printed at the end of every flow time step; if
NPNTPL=0, datawill be printed at the end of the simulation; if NPNTPL=N>0,
datawill be printed every Nth particle moves, and at the end of the smulation.

Table 14. Formats associated with MOC3D print flags. (Positive values for wrap format;
negative values for strip format. Also see Harbaugh and McDonald, 1996a, p. 19.)

Print flag Format Print flag Format Print flag Format
0 10G11.4 7 20F5.0 14 10F6.1
1 11G10.3 8 20F5.1 15 10F6.2
2 9G13.6 9 20F5.2 16 10F6.3
3 15F7.1 10 20F5.3 17 10F6.4
4 15F7.2 11 20F5.4 18 10F6.5
5 15F7.3 12 10G11.4
6 15F7.4 13 10F6.0

FOR EACH SIMULATION:

9. Data: CNOFLO Concentration associated with inactive cells of subgrid (used for
output purposes only).

FOR EACH LAY ER OF THE TRANSPORT SUBGRID:

10. Data: Cl NT( NSCOL, NSROW Initial concentration.
Modul e: U2DREL"

FOR EACH SIMULATION, ONLY |IF TRANSPORT SUBGRID DIMENSIONS ARE
SMALLER THAN FLOW GRID DIMENSIONS:

11. Data: ClI NFL( 1 C NFL) C( to be associated with fluid inflow across the

boundary of the subgrid.
Modul e: ULDREL"

Notes:

The model assumes that the concentration outside of the subgrid is the same within each
layer, so only one value of CINFL is specified for each layer within and adjacent to the subgrid. That
is, the size of the array (ICINFL) is determined by the position of the subgrid with respect to the
entire (primary) MODFLOW grid. If the transport subgrid has the same dimensions as the flow grid,

" Moduleis astandard MODFLOW input/output module.
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this parameter should not be included in the input data set. If the subgrid and flow grid have the
same number of layers, but the subgrid has fewer rows or fewer columns, ICINFL=NSLAY. Values
are also required if there is aflow layer above the subgrid and/or below the subgrid. The order of
input is: Cd for first (uppermost) transport layer (if required); Cd for each successive (deeper)
transport layer (if required); C( for layer above subgrid (if required); and Cd for layer below
subgrid (if required).

FOR EACH SIMULATION:

12. Data: NZONES Number of zone codes among fixed-head nodes in transport subgrid.

IF NZONES> O:
Dat a: | ZONE ZONCON

| ZONE Value identifying a particular zone.
ZONCON Source concentration associated with nodes in the zone defined by IZONE above.

Notes:

Zones are defined within the IBOUND array in the BAS Package of MODFLOW by
specifying unique negative values for fixed-head nodes to be associated with separate fluid source
concentrations. Each zone is defined by a unique value of IZONE and a concentration associated
with it (ZONCON). There must be NZONES lines of data, one for each zone. Note that values of
IZONE in this list must be negative for consistency with the definitions of fixed-head nodesin the
IBOUND array in the BAS Package. If anegative value of IBOUND is defined in the BAS package
but is not assigned a concentration value here, MOC3D will assume that the source concentrations
associated with those nodes equal 0.0.

FOR EACH LAY ER OF THE TRANSPORT SUBGRID:

13. Data: | GENPT( NSCOL, NSROW Flag to treat fluid sources and sinks as

either “strong” or “weak.”
Modul e: U2DI NT

Notes:

Where fluid source is “strong,” new particles are added to replace old particles as they are
advected out of that cell. Where afluid sink is“strong,” particles are removed after they enter that
cell and their effect accounted for. Where sources or sinks are weak, particles are neither added nor
removed, and the source/sink effects are incorporated directly into appropriate changes in particle
positions and concentrations. If IGENPT=0, the node will be considered aweak source or sink; if
IGENPT=1, it will be a strong source or sink. See section on “Special Problems” and discussion by
Konikow and Bredehoeft (1978).

" Moduleis astandard MODFLOW input/output module.
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IF NODISP t 1 (If dispersion isincluded in simulation):

14. Dat a: ALONG NSLAY) Longitudinal dispersivity.
Modul e: ULDREL"

15. Dat a: ATRANH( NSLAY) Horizontal transverse dispersivity.
Modul e: ULDREL"

16. Dat a: ATRANV( NSLAY) Vertical transverse dispersivity.
Modul e: ULDREL

FOR EACH SIMULATION:

17. Dat a: RF( NSLAY) Retardation factor (RF=1 indicates no retardation).
Modul e: ULDREL*

Notes:
If RF=0.0 in input, the code automatically resets it as RF=1.0 to indicate no retardation.

FOR EACH LAY ER OF TRANSPORT SUBGRID:

18a. Dat a: THCK( NSCOL, NSROW Cdll thickness.
Modul e: U2DREL*

18b. Dat a: POR( NSCOL, NSROW Cell porosity.
Modul e: U2DREL*

Notes:

The thickness and porosity are input as separate arrays for each layer of the transport
subgrid. The sequence used in data set 18 isto first define the thickness of the first layer of the
transport subgrid, and then define the porosity of that same layer. Next, that sequence is repeated for
all succeeding layers. The product of thickness and porosity should not be allowed to vary greatly
among cellsin the transport subgrid.

" Moduleis astandard MODFLOW input/output module.
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Source Concentration in Recharge File (CRCH)

Concentrations in recharge, if the recharge package is used, are read from a separate unit
specified in the MOC3D namefile. Thisisdefined using the file type (Ftype) “CRCH.”

FOR EACH STRESS PERIOD, IF RECHARGE PACKAGE USED:
1. Data: | NCRCH Flag to reuse or read new recharge concentrations.

Notes:
Read new recharge concentrations if INCRCH 3 0. Reuse recharge concentrations from the
last stress period if INCRCH < 0.

2. Data: CRECH( NSCCOL, NSROW Source concentration associated with fluid
entering the aguifer in recharge.
Modul e: U2DREL”

Observation Well File (OBS)

Nodes of the transport subgrid can be designated as “ observation wells.” At each such
node, the time, head, and concentration after each move increment will be written to a separate
output fileto facilitate graphical postprocessing of the calculated data. The input file for specifying
observation wellsisread if thefile type (Ftype) “OBS’ isincluded in the MOC3D namefile.

FOR EACH SIMULATION, IF OBSPACKAGE USED:

1. Data: NUMOBS | OBSFL
NUMOBS Number of observation wells.
| OBSFL If IOBSFL =0, well data are saved in NUMOBS separate files. 1f IOBSFL>0, all

observation well datawill be written to one file, and the file name and unit
number used for thisfile will be that of the first observation well in thelist.

FOR EACH OBSERVATION WELL.:

2. Data: LAYER ROW COLUMN UNI T
LAYER Layer of observation well node.
ROW Row of observation well node.
COLUWN Column of observation well node.
UNI' T Unit number for output file.
Notes:

If NUMOBS>1 and IOBSFL = 0, you must specify a unique unit number for each observa-
tion well and match those unit numbersto DATA file types and file names in the MOC3D namefile.
If IOBSFL>0, you must specify a unique unit number for the first observation well and match that
unit number to a DATA file type and file name in the MOC3D name file.

" Moduleis astandard MODFLOW input/output module.
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APPENDIX B: ANNOTATED INPUT DATA SET FOR EXAMPLE
PROBLEM

This example input data set is the one used to generate the solution for the base case in the
one-dimensional steady-state flow problem. Parameter values are indicated in table 6 and selected
results are shown in figures 4 and 6. Several of the following datafiles (finite.nam, finite.bas,
finite.bcf, and finite.sip) are those required for MODFLOW-96, and their formats are described
by Harbaugh and McDonald (19964).

In the data files shown below, the right side of some data lines includes a semi-colon
followed by text that describes the parameters for which values are given. These comments
(including the semi-colon) are not read by the program because in free format the code will only
read the proper number of variables and ignore any subsequent information on that line. This style
of commenting datafilesis optional, but users may find it helpful when preparing their own data
files.

Information pertaining specifically to the implicit solution is highlighted by shading.

Following (enclosed in a border) are the contents of the MODFLOW namefile for the
sample problem; explanations are noted outside of border:

Filename: finite.nam

list 16 finite.l st =1 Designates main output file for MODFLOW
bas 95 finite. bas - Basicinput datafor MODFLOW
bcf 11 finite. bcf - Block-centered flow package
sip 19 finite.sip = Input for numerical solution of flow equation
conc 33 fint_nmoc. nam | = Transport name file (turns transport “on”)

1 2 3

1 Ftype (that is, the type of file)
2 Unit number
3 File name (name chosen to reflect contents of file)




Following (enclosed in aborder) are the contents of the basic package input datafile for the
MODFLOWs mulation of the sample problem; explanations are noted outside of border:

Filename: finite.bas

Finite: GConpare to Véxler programand MOC3D BAS | nput -1
NLAY NROW NOCL NPER | TMUN -1

1 1 122 1 1 a2

FREE CHTOCH - 3
0 1 ;| APART, | STRT a4

95 1( 251 3) 3 ; IBOUND -5
-72171111111111111111111111:1 - 5
1111111111111 111111111111 = 5
11111111111 11111111111111 - 5
11111111111 11111111111111 - 5
111111111111 111111111-2 = 5
0. 00 ; HNCFLO -6

95 1. 0( 122F6. 0) 1 ; HEAD - 7

12. 1 a7
120.0 1 1. ; PERLEN NSTP, TSMULT - 8

1 Two header lines of comments. For convenience and clarity, the second line is used to |abel names of
parameters on subsequent line of file.

2 Flow grid dimensions, number of periods, and time units.
3 Options line (new in MODFLOW-96)

4\ ags for buffer array and drawdown calculations.

S |BOUND identifiers (first line) and array

6 Head value assigned to inactive cells

7 Initial head information

8 MODFLOW time-step information

Following (enclosed in aborder) are the contents of the block-centered flow package input
datafile; explanations are noted outside of border:

Filename: finite._bcfT

1 00.000.000 ; ISS, flags BCF | nput -1
0 ; LAYCON -2
0 1.0 ; TRPY - 3
0 0.1 ; DELR - 4
0 0.1 ; DELC - 4
0 0.01 7 TRAN

1 Flag for steady-state flow, flag for cell-by-cell flow terms, five flags related to wetting
2 Layer type

3 Anisotropy factor

4 Grid spacing information
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Following (enclosed in aborder) are the contents of the strongly implicit procedure package
input data file; explanations are noted outside of border:

Filename: finite.sip

500 5 ;. MXI TER, NPARM SI P I nput -1
1. 0. 0000001 0 0.001 0O ; ACO, HOLCSE, | PCALC WBEED, | PRSI P - 2

1 Maximum iterations, number of iteration parameters
2 Acceleration parameter, head change criterion, flag for seed, seed, printout interval for SIP

Following (enclosed in aborder) are the contents of the MOC3D name file for the sample
problem; explanations are noted outside of border:

Filename: fint_moc.nam

cl st 94 finite. out - Designates main output file for MOC3D

nocinp 96 fint_inp. noc = Maininput datafile for MOC3D

obs 44 finite.obs - Input datafile for observation wells

dat a 45 finite.oba - Output file for observation well data

cnca 22 finite.cna - Separate output file for concentration data (ASCII)
1 2 3

1 Ftype

2 Unit number

3 File name
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Following (enclosed in aborder) are the contents of the main input data file for the MOC3D
simulation for the sample problem; selected explanations are noted outside of border:

Filename finite_imp.moc

ne-di mensional , Steady Flow, No Decay, Low Dispersion: MOXC3D (Inplicit) -1
| SLAY1 | SLAY2 | SROM | SROR2 | SCaL1 1 SCaL2 -1
1 1 1 1 2 121 - 2
0 0. 00 0.0 ; NOD SP, DECAY, D FFUS - 3
0 3 ;. NPMVAX, NPTPND - 4
0.5 0. 05 2 ; CELD'S, FZERO |INTRPL - 4
0.5 2 1 1.e-05 100 ; FDTMIH NXA T, | D R EPSSLV, NAXI T -5
0-100000; NPNTA, |ICONFM NPNTWVL, |VELFM NPNTDL, |DSPFM NPRTPL -6
0.0 ; ONCFLO - 7
0 0.0 (122F3.0) ; initial concentration
0 1. . C inflow
2 ; NZONES to fol l ow - 8
-1 1.0 ; | ZONE, ZONOON - 8
-2 0.0 ; | ZONE, ZONOON - 8
0 0 ;1 GENPT -9
0 0.1 ; longitudi nal disp.
0 0.1 ; transverse disp. horiz.
0 0.1 ; transverse disp. vert.
0 1.0 ; retardation factor
0 1.0 : thickness
0 0.1 ; porosity

1 Two header lines of comments. For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2 |ndicesfor transport subgrid

3 Flag for no dispersion, decay rate, diffusion coefficient
4 Particle information for advective transport

S Information to control implicit dispersion calculations
6 Print flags

7 Value of concentration associated with inactive cells

8 Concentrations associated with fixed-head nodes (fixed head nodes are defined in the IBOUND array inthe
MODFLOW BAS package)

9 Flag for “strong” sources or sinks

Following (enclosed in aborder) are the contents of the observation well input data file for
the sample problem; explanations are noted outside of border:

Filename: finite.obs

3 1 ; NUMOBS | OBSFL Cbservation well data |- 1
1 1 2 45 ;layer, row, colum, unit nunber - 2
1 1 42 ;layer, row, colum - 2
1 1 112 ;layer, row, colum - 2

1 Number of observation wells, flag to print to one file or separate files
2 Node location and unit number for outpuit file (linked to the Ftype DATA in MOC3D namefile)
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APPENDIX C: SELECTED OUTPUT FOR EXAMPLE PROBLEM

This example output was generated from the input data sets listed in Appendix B for the
base case of the one-dimensiona steady-state flow problem. We do not include the main
MODFLOWIisting (output) file. The line spacing and font sizes of the output files have been
modified in places to enhance the clarity of reproduction in thisreport. Some repetitive lines of
output have been deleted where indicated by an ellipsis(...). Output related specifically to the
implicit solution is highlighted by shading.

Some brief annotations were added to this sample output listing to help the reader
understand the purpose of various sections of output. These annotations are written in bold italics.

Following are the contents of the MOC3D main outpuit file (finite.out) for the sample
problem.

US GA.0d CAL SUIRVEY
METHCD- OF- CHARACTERI STI CS SCLUTE- TRANSPORT MCDEL
MOC3D (Version 2.0) 11/16/98

MOC BASI C | NPUT READ FROM UNI T
LI STING FILE finite. out UINT 94

CPEN NG fi nt _i np. noc
FILE TYPE MOOMP UNT 96

CPENI NG finite. obs
FILE TYPE GBS UINT 44

CPEN NG finite. oba FILE INFORMATION
FILE TYPEE DATA UNT 45

CPENI NG finite.cna
FI LE TYPE CNCA UINT 22

MOC BASI C INPUT READ FROMUNT 96

2 TITLE LINES:
One-di nmensional , Steady Flow, No Decay, Low Dispersion: MXC3D (Inplicit)
| SLAY1 | SLAY2 | SROM | SROR2 | SCaL1 I SCaL2

PROBLEM DESCRIPTORS, INCLUDING GRID CHARACTERISTICS AND PARTICLE INFORMATION:
MAPPI NG OF SCLUTE TRANSPCRT SUBGR D I N FLONCGR D

FI RST LAYER FCR SOLUTE TRANSPCRT = 1 LAST LAYER FCR SCLUTE TRANSPCRT = 1
FI RST ROV FCR SOLUTE TRANSPCRT = 1 LAST ROV FCOR SCLUTE TRANSPCRT = 1
FI RST CCLUW FCR SCLUTE TRANSPCRT= 2 LAST CCLUWN FCR SCLUTE TRANSPCRT = 121

UN FORM DELCOL AND DELRON I N SUBERI D FOR SOLUTE TRANSPCRT

NO CF LAYERS = 1 NO CF ROMNB = 1 NO OF GOLUWNS = 120
NO SOLUTE DECAY
NO MCLECULAR DI FFUSI ON
MAXI MUM NUMBER CF PARTI CLES (NPMVAX) = 720
13669 ELEMENTS I N X ARRAY ARE USED BY MC
12 ELEMENTS I N X ARRAY ARE USED BY GBS
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NUMBER CF PARTI CLES I NI TIALLY I N EACH ACTI VE CELL (NPTPND) = 3
PARTI CLE MAP ("0" indicates particle | ocation; shown as
fractions of cell distances relative to node |ocation):

-1/3 0 1/3
I NI TI AL RELATI VE PARTI CLE COCRDI NATES
1 0. 00000 0.00000 -0.33333
2 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.33333
CELD S= 0. 500
FZERO = 0. 050
I NTRPL= 2; Bl LI NEAR | NTERPCLATI ON SCHEME

NUVER CAL PARAMETERS FCR | MPLIC T SCLVER

FDTMIH = 0.50

NOXIT = 2

| Dl REC = 1

EPSSLV = 1. 0000E- 05

MXIT = 100

NPNTCL=  0: OONCENTRATI ONS WLL BE WR TTEN AT THE END OF THE S| MLATI N

MODFLOW FCRVAT SPECI FI ER FOR OONCENTRATI ON DATA: | OONFME - 1

NPNTVL= 0: VELOO TI ES WLL BE WR TTEN AT THE END OF THE SIMLATION | g irpuT
MODFLOW FCRVAT SPEQI FI ER FCR VELOO TY DATA | VELFM= 0

CONTROL

NPNTDL= 0: DI SP. OCEFFI O ENTS WLL NOT BE WR TTEN

NPNTPL= 0: PARTI CLE LOCATI ONS WLL NOT BE WR TTEN

CONCENTRATI ON WLL BE SET TO 0. 00000E+00 AT ALL NO FLON NCDES (| BOUND=0) .

I N TI AL OONCENTRATI ON = 0. 0000000E+00 FCR LAYER 1

VALUES OF C REQU RED FCR SUBGR D BOUNDARY ARRAY = 1

ONE FOR EACH LAYER | N TRANSPORT SUBGRI D

ORDER OF C VALUES: FIRST LAYER | N SUBGR D, EACH SUBSEQUENT LAYER INITIAL AND
LAYER ABOVE SUBGR D, LAYER BELON SUBGR D BOUNDARY

SUBGR D BONDARY ARRAY = 1. 000000
NUMBER CF ZONES FCR CONCENTRATI ONS AT FI XED HEAD CELLS = 2
ZONE FLAG = -1 | NFLON CONCENTRATI ON = 1. 0000E+00
ZONE FLAG = -2 | NFLOW CONCENTRATI CN = 0. 0000E+00
Sl NK- SCURCE FLAG = 0 FOR LAYER 1
LONG TUDNL. DI SPERSIM TY = 0. 1000000
HOR Z. TRANSVERSE DI SP. = 0. 1000000
VERT. TRANSVERSE DI SP. = 0.1000000
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RETARDATI ON FACTCR = 1. 000000
INNTIAL TH CKNESS = 1. 000000 FCR LAYER 1

INTIAL PORCSI TY = 0.1000000 FOR LAYER 1

OOCRDI NATES FCR 3 CBSERVATI ON VELLS:
WELL # LAYER ROV CCOLUWN UINT

1 1 1 2 45
2 1 1 42 45
3 1 1 112 45

ALL CBSERVATI ON WELL DATA WLL BE WRITTEN ON UN T 45

CONCENTRATI ON DATA WLL BE SAVED ON UNT 22 IN X Y, Z, CONC FORVAT

TOTAL NUVBER OF PARTI CLES GENERATED = 360

TOTAL NUVBER OF ACTI VE NCDES (NACTIV) = 120

MAX. NUMBER OF CELLS THAT CAN BE VO D OF PARTI OLES (NZCR T) = 6
(1F NZOR' T EXCEEDED, PARTI OLES ARE REGENERATED)

CALCULATED VELOCITIES (INCLUDING EFFECTS OF RETARDATION, IF PRESENT):

EFFECTI VE MEAN SCLUTE VELOQ TI ES | N COLUW DI RECTI ON
AT NCDES

1
VELQOTY (GO) INLAYER 1 AT END GF TIME STEP 1 IN STRESS PERCD 1

1 2 3 4 5 6 7

10,1000 0.1000 0.1000 0.1000 0.1000 0.1000 0. 1000

EFFECTI VE MEAN SCLUTE VELOO TI ES | N ROV DI RECTI ON
AT NCDES

1
VELOO TY (ROW IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERCD 1

0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

EFFECTI VE MEAN SCLUTE VELQOI TI ES | N LAYER DI RECTI ON
AT NCDES

1
VELOO TY (LAYER) IN LAYER 1 AT END COF TIME STEP 1 IN STRESS PERCD 1

0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
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STABILITY C(RTERA --- MQC

MAXIMM FLUD VELOO TIES: G VEL = 1.00E-01 R VEL = 1.00E- 20 L-VEL = 1.00E- 18
MN MM TI ME TO TRAVEL THCK = 1. 0O0E+18

TIW = 5.00E-01 NTITW = 241

MAX. G VEL. |'S CONSTRAINT AND OCCURS BETWEEN NODES (2, 1, 1) AAD( 1, 1, 1)
THERE ARE NO FLU D SOURCES | N THE TRANSPCRT SUBGR D

NUVMBER CF MOVES FCR ALL STABILITY CR TER A
CELD'S | NDECTI ON
241 1
CELDIS IS LIMTING
TI ME STEP 1 IN STRESS PER (D 1

NO COF PARTICLE MOVES REQU RED TO COWPLETE THS TIME STEP = 241
MOVE TI ME STEP (TIMW) = 4.979253113270E- 01

(NUMERICAL SOLUTION TO TRANSPORT EQUATION STARTS AT THIS POINT)

NP = 360 AT START OF MOVE | MOV = 1
No. of solver iterations = 1 Rel ative residual = 1. 9848E- 09
NP = 360 AT START CF MOVE 1 MOV = 2
No. of solver iterations = 1 Relative residual = 3.6997E- 08 TRACK PROGRESS
OF MOVES, NUMBER
OF ACTIVE
NP = 361 AT START OF MOVE | MOV = 240 |[PARTICLES, AND
No. of solver iterations = 1 Relative residual = 7.8027E- 08
NP = 361 AT START OF MOVE | MOV = 241 IMPLICIT SOLVER
No. of solver iterations = 1 Relative residual = 9. 7147E- 08
SCLUTE BUDGET AND NASS BALANCE FCR TRANSPCRT SUBGERI D
VALUES CALCULATED AT END CF:
STRESS PER (D 1 aJuor oF 1
FLOW TI ME STEP 1 aJr or 1
TRANSPCRT TI ME | NCREMENT 241 QJT CF 241
ELAPSED TI ME = 1. 2000E+02
CHEM CAL MASS | N STCRAGE:
I N TIAL: MASS DI SSCLVED = 0. 0000E+00 MASS SCRBED = 0. 0000E+00
PRESENT: MASS DI SSOLVED = 1.1391E-01 MASS SCRBED = 0. 0000E+00

CHANGE | N MASS STCRED = -1. 1391E-01
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CUMLLATI VE SCLUTE MASS (L**3) (M VL)

N

CONSTANT

SUBGR D BOUNDARY
RECHARGE

WEL

R

DRAI NS

GENL. HEAD-DEP. BDYS.
EVAPOTRANSPI RATI ON
SPECI FI ED FLOW ( FHB)

DECAY
HEAD
LS
VERS

TOTAL I N

GENL. HEAD-DEP. BDYS.
EVAPOTRANSPI RATI ON
SPECI FI ED FLOW ( FHB)

TOTAL QUT

SCOURCE- TERM DECAY

RESI DUAL

PERCENT DI SCREPANCY

[cNeololoNoNoNol NoNe

A

[cNeloloNoNoNoNoNoNe)

'
(e}

. 0000OE+00
. 0000E+00
. 2001E-01
. 0000OE+00
. 0000E+00
. O000E+00
. 0000OE+00
. 0000E+00
. O000E+00
. 0000OE+00

. 2000E- 01

. O000E+00
. 0000OE+00
. 3127E- 03
. O000E+00
. 0000OE+00
. 000OOE+00
. O000E+00
. 0000OE+00
. 000OOE+00
. O000E+00

. 3127E- 03

. 0000E+00

.2171E-04

. 8476E- 01 RELATIVE TO MASS FLUX IN

ITEMIZED

BUDGETS FOR

SOLUTE FLUXES
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Following (enclosed in a border) are the abridged contents of the observation well output
file for the sample problem. This output file was generated using the option to write all
observation well datato asinglefile (IOBSFL = 1).

Filename: finite.oba

" CBSERVATI ON VEELL DATA"

"TIME, THEN HEAD AND CONC. FCR EACH CBS. WELL AT NCDE (K, 1,J)"

" TIME H&CAT 1, 1, 2 H& CAT 1, 1, 42 H&CAT 1, 1,112*"
0. OO0OE+00 0. O0OOE+00 0. 000E+00 0. 000E+00 0. O0OE+00 0. 000E+00 0. O0OE+00
4.9793E-01  1.200E+01 2.763E-01 8.000E+00 5.865E-32  1.000E+00 0. O0OOE+00
9.9585E-01  1.200E+01  7.444E-01 8.000E+00 8.686E-30 1.000E+00 0. 000E+00
1.4938E+00 1.200E+01 6.607E-01  8.000E+00 4.280E-28 1.000E+00 0. OO0OE+00
1.9917E+00 1.200E+01 8.175E-01 8.000E+00  1.949E-26 1.000E+00 0. OOOE+00
2.4896E+00 1.200E+01  8.219E-01  8.000E+00  4.459E-25 1.000E+00 0. 00OE+00
1.1851E+02 1. 200E+01 1. 0O00OE+00 8. 000E+00  1.000E+00  1.000E+00  7.043E-01
1.1900E+02 1.200E+01  1.000E+00  8.000E+00  1.000E+00  1.000E+00 7. 133E-01
1.1950E+02 1.200E+01  1.000E+00  8.000E+00  1.000E+00  1.000E+00 7. 255E-01
1. 2000E+02 1. 200E+01 1. 000E+00 8. 000E+00  1.000E+00  1.000E+00  7.334E-01
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Following (enclosed in aborder) are the partial contents of the separate ASCII output file
for concentration in atable format style. Initial concentrations follow the first header line; final
concentrations follow the second (internal) header line.

Filename: finite.cna

CONCENTRATI ONS AT NCDES (X Y, Z, CONO) : | MOv= 0, KSTP= 0, KPER= 0, SUMIGH=0. 0000E+00

1. 5000E-01 5. 0000E-02 5.0000E-01 0.0000E+00
2.5000E-01 5.0000E-02 5.0000E-01 0.0000E+00
3. 5000E-01 5. 0000E-02 5.0000E-01 0O.0000E+00
4. 5000E-01 5.0000E-02 5.0000E-01 O0.0000E+00
5. 5000E-01 5. 0000E-02 5.0000E-01 0.0000E+00
6. 5000E-01 5.0000E-02 5.0000E-01 0. 0000E+00
7.5000E-01 5. 0000E-02 5.0000E-01 0.0000E+00
8. 5000E-01 5. 0000E-02 5.0000E-01 0.0000E+00
9. 5000E-01 5. 0000E-02 5.0000E-01 0O.0000E+00

1.1650E+01 5. 0000E-02 5. 0000E-01 0. 0000E+00
1.1750E+01 5. 0000E-02 5.0000E-01 0. 0000E+00
1. 1850E+01 5. 0000E-02 5.0000E-01 0. 0000E+00
1.1950E+01 5. 0000E-02 5. 0000E-01 0. 0000E+00
1. 2050E+01 5. 0000E-02 5.0000E-01 0. 0000E+00
CONCENTRATI ONS AT NCDES (X Y, Z, CONO) : | MOV= 241, KSTP= 1, KPER= 1, SUMICH=1. 2000E+02

1. 5000E-01 5. 0000E-02 5.0000E-01 1.0000E+00
2.5000E-01 5.0000E-02 5.0000E-01 1.0000E+00
3. 5000E-01 5. 0000E-02 5.0000E-01 1.0000E+00
4. 5000E-01 5.0000E-02 5.0000E-01 1.0000E+00
5. 5000E-01 5. 0000E-02 5.0000E-01 1.0000E+00
6. 5000E-01 5.0000E-02 5.0000E-01 1.0000E+00
7.5000E-01 5. 0000E-02 5.0000E-01 1.0000E+00
8. 5000E-01 5. 0000E-02 5.0000E-01 1.0000E+00
9. 5000E-01 5. 0000E-02 5.0000E-01 1.0000E+00

1. 1650E+01 5. 0000E-02 5.0000E-01 6. 1888E-01
1.1750E+01 5. 0000E-02 5.0000E-01 5.9739E-01
1. 1850E+01 5. 0000E-02 5.0000E-01 5. 7546E-01
1.1950E+01 5. 0000E-02 5.0000E-01 5.5432E-01
1. 2050E+01 5. 0000E-02 5.0000E-01 5.3902E-01




